
Core Technologies for
Native XML Database Management Systems

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Diplom-Informatiker Carl-Christian Kanne

aus Herford

Mannheim, 2003

Dekan: Professor Dr. Herbert Popp, Universität Mannheim
Referent: Professor Dr. Guido Moerkotte, Universität Mannheim
Korreferent: Professor Alfons Kemper, Ph.D., Universität Passau

Tag der mündlichen Prüfung: 14. Februar 2003

Für Ingrid & Walter;

Contents

1 Introduction 1

2 eXtensible Markup Language – XML 3
2.1 The Core Language . 3
2.2 Namespaces . 4
2.3 XPath . 4
2.4 XML Processing Interfaces . 5

2.4.1 Tree-Based Interfaces . 5
2.4.2 Event-Based Interfaces . 6
2.4.3 Document-Based Interfaces . 6
2.4.4 Summary . 7

3 XML Base Management 9
3.1 Requirements . 10

3.1.1 Online Auctions . 10
3.1.2 Life sciences . 11
3.1.3 Conclusion . 11

3.2 XBMS Tasks . 11
3.2.1 Document import . 12
3.2.2 Document Object Model . 12
3.2.3 XPath Query . 12

3.3 Existing DBMS Technology and XML . 12
3.3.1 Relational DBMS . 13
3.3.2 Object-oriented DBMS . 15
3.3.3 Summary . 16

4 Natix 19
4.1 Architectural Overview . 19
4.2 System Control . 21

4.2.1 Requests . 21
4.2.2 View Management . 21

4.3 Application Architectures and Bindings 22
4.3.1 Library Interface . 23
4.3.2 Java . 23

i

ii CONTENTS

4.3.3 WebDAV . 23
4.3.4 HTTP . 24
4.3.5 File System . 24
4.3.6 Others . 24

4.4 Storage Engine . 24
4.5 Schema Management . 25
4.6 Transaction Management . 25

4.6.1 Isolation . 25
4.6.2 Recovery . 25

4.7 Query Evaluation . 26
4.7.1 Query Compiler . 26
4.7.2 Query Execution . 26

4.8 Examples . 26
4.8.1 Document Import . 27
4.8.2 DOM Access . 27
4.8.3 XPath Query . 29

5 Storage 31
5.1 Architectural Overview . 31
5.2 Partitions . 32
5.3 Buffer Manager . 32

5.3.1 Basic Interface . 34
5.3.2 Page Interpreter Sharing . 34
5.3.3 Implementation . 35

5.4 Page Interpreters . 36
5.5 Segments . 37

5.5.1 Segment Base Class . 38
5.5.2 Persistent Arrays . 39
5.5.3 Slotted Page Segments . 40

5.6 Physical Metadata Management . 41
5.6.1 Object Model . 41
5.6.2 Partition Information . 43
5.6.3 Master Segment . 44
5.6.4 Free Extent Segment . 45
5.6.5 Free Space Inventory . 45

5.7 XML Storage . 48
5.7.1 Logical Object Model and Segment Interface 49
5.7.2 Mapping XML to the Logical Object Model 50
5.7.3 Physical Object Model . 55
5.7.4 XML Page Interpreter . 56
5.7.5 Updating Documents . 59
5.7.6 The Split Matrix . 64
5.7.7 Bulkloading Documents . 65

5.8 Evaluation . 72

CONTENTS iii

5.8.1 Environment . 72
5.8.2 Bulkload . 73
5.8.3 Queries . 76

6 Schema 81
6.1 Document Schemas . 81
6.2 Logical Schema Model . 83

6.2.1 Repository . 84
6.2.2 Document Collection . 84
6.2.3 Documents . 85

6.3 Physical Schema Model . 86
6.3.1 Repository . 86
6.3.2 Document Collection . 86
6.3.3 Split Matrix . 86
6.3.4 Indexes . 86

6.4 Detailed Design and Implementation . 87
6.4.1 Overview . 87
6.4.2 Document Collection . 87
6.4.3 Document Directory . 89
6.4.4 Repository Catalog . 90
6.4.5 Document Schemas . 91
6.4.6 Indexes . 91
6.4.7 Example . 91

7 Recovery 95
7.1 Goals . 96
7.2 Recovery Method Introduction . 98

7.2.1 System Model . 98
7.2.2 Recovery for L0 Operations . 100
7.2.3 Recovery for L1 Operations . 105

7.3 Natix Recovery Architecture . 108
7.3.1 Overview . 109
7.3.2 Threading Model . 110
7.3.3 Segments . 111
7.3.4 Page Interpreters . 113
7.3.5 Buffer Manager . 114
7.3.6 Recovery Manager . 114
7.3.7 Log Manager . 116
7.3.8 Transaction Manager . 117
7.3.9 Control Flow Examples . 118

7.4 Detailed Design and Implementation . 123
7.4.1 Log Records . 123
7.4.2 Log Manager . 128
7.4.3 Log Buffer . 136

iv CONTENTS

7.4.4 Segments . 139
7.4.5 Page Interpreters . 145
7.4.6 Buffer Manager . 155
7.4.7 Transaction Manager . 157
7.4.8 Recovery Manager . 164

7.5 Metadata Recovery . 171
7.5.1 Instance Metadata: Partitions . 172
7.5.2 Partition Metadata: Master Segment 173
7.5.3 Partition Metadata: Free Extents 174
7.5.4 Page Metadata: Reserved Space 176
7.5.5 Segment Metadata: Free Space Inventory 182
7.5.6 Segment Metadata: Allocation and Deallocation of Pages 187

7.6 Subsidiary Logging . 193
7.6.1 Page-level Subsidiary Logging . 194
7.6.2 Application: XML-Page Subsidiary Logging 197

7.7 Annihilator Undo . 200
7.7.1 Annihilators . 201
7.7.2 XML Subtree Annihilators . 201
7.7.3 Page Annihilators . 203

7.8 Selective Processing During Restart . 205
7.8.1 Selective Redo in ARIES/RRH . 206
7.8.2 Constraint for Correctness of Selective Redo 206
7.8.3 Selective Processing of Regular Log Records 207
7.8.4 Selective Processing of Compensation Log Records 209

7.9 Evaluation . 211
7.9.1 Environment . 211
7.9.2 Results . 212

8 Conclusion 213

Bibliography 215

Index 223

List of Figures

4.1 Architectural overview . 20
4.2 Importing a document . 27
4.3 Accessing a DOM view . 28
4.4 Exporting a query to a stream . 29

5.1 Storage Engine Architecture . 32
5.2 Abstract partition interface . 33
5.3 Buffer manager interface . 33
5.4 Page interpreter base class . 37
5.5 Interface for segment base class . 38
5.6 Interface for persistent arrays . 39
5.7 Interface for slotted page segments . 42
5.8 Metadata object model . 43
5.9 XML Segment Interface . 51
5.10 A fragment of XML with its associated logical tree 52
5.11 Declaration table interface . 53
5.12 One possibility for distribution of logical nodes onto records 55
5.13 XML page interpreter interface . 57
5.14 A small logical tree and its record representation 58
5.15 Multiway tree representation of records 60
5.16 Possibilities to insert a new node

���
into the physical tree 60

5.17 A record’s subtree before a split occurs . 61
5.18 Record assembly for the subtree from Figure 5.17 62
5.19 XML segment interface . 67
5.20 Code for beginInternalNode() . 69
5.21 Code for endInternalNode() . 70
5.22 Code for pruneCurrentCluster() 70
5.23 Code for clusterChildren() . 71
5.24 Import scalability graph . 74

6.1 Logical schema model . 83
6.2 Physical schema model . 85
6.3 Implementation model . 88
6.4 Segments required for example schema 92

v

vi LIST OF FIGURES

6.5 Segment contents . 92

7.1 Recovery Components . 110
7.2 Forward processing sequence diagram . 119
7.3 Transaction undo sequence diagram . 121
7.4 Restart sequence diagram . 122
7.5 Log record base class . 125
7.6 Some log record classes . 126
7.7 Log manager interface excerpt . 130
7.8 Log buffer interface excerpt . 138
7.9 Segment base class recovery functions . 140
7.10 Performing L1 operations . 143
7.11 Undoing L1 operations . 144
7.12 Two parallel page interpreter hierarchies 146
7.13 Abstract data type interface . 147
7.14 Derive recoverable from regular . 147
7.15 Page interpreter recovery functions . 149
7.16 Code for logging record deletions . 151
7.17 Redo processing in page interpreters . 153
7.18 Undo processing in page interpreters . 153
7.19 Transaction manager interface . 159
7.20 Transaction control block interface . 161
7.21 Recovery manager public interface . 165
7.22 Recovery manager undo loop . 167
7.23 Log records for an XML update transaction 200
7.24 Undo chaining with check for annihilators 202

List of Tables

2.1 API properties . 8

3.1 XBMS approach/problem matrix . 16

5.1 Import scalability . 74
5.2 Import performance (Times in seconds, sizes in pages) 75
5.3 XML Bulkload Times for various systems 76
5.4 Query performance (Times in seconds) . 77

6.1 Document schema features . 82

7.1 Special LSNs . 124
7.2 Special LSN Index . 124
7.3 Log record types and the associated classes 127
7.4 Buffer manager vs. log buffer manager . 137
7.5 Maintenance of updaterLSN . 207
7.6 Import Performance With Logging (Times in seconds) 211

vii

viii LIST OF TABLES

Chapter 1

Introduction

I am just now beginning to discover the difficulty of expressing one’s ideas on
paper. As long as it consists solely of descriptions it is pretty easy;

but where reasoning comes into play, to make proper connection,
a clearness & a moderate fluency, is to me, as I have said,

a difficulty of which I had no idea.

–Charles Darwin

The eXtendible Markup Language (XML) [10] has become a popular data format to
integrate applications. It provides application designers and developers with a convenient
and standardized way to exchange data beyond the boundary of a single program. By
sharing syntax of, tools for, and experience with a common data exchange format across
applications, and even across application domains, software integration becomes simpler
and less costly.

With increased popularity, the role of XML is changing. XML was designed as an
interchange format for arbitrary data, but it is used more and more as a general representa-
tion language for data outside of an application’s main memory address space. Application
data is no longer converted to XML and back for communication purposes only, but is also
stored as XML to make it persistent across executions of the same program.

When reliable, scalable, flexible, high-speed processing and management of persistent
data is required, we enter the domain of database management systems (DBMS). We call
DBMSs designed to manage large collections of XML documents XML Base Management
Systems (XBMS).

The goal of this work is to investigate the core technologies required to build XBMSs.
We identify requirements, and analyze how they can be met using a conventional DBMS.
Our conclusion is that an XML support layer on top of an existing conventional DBMS
does not address the requirements for XBMSs.

Hence, we built a Native XML Base Management System, called Natix. Natix has
been developed completely from scratch, incorporating optimizations for high-performance
XML processing in those places where they are most effective. Almost all of the classical
components of a DBMS are affected in terms of adequacy and performance, including

1

2 CHAPTER 1. INTRODUCTION

the Storage Engine, Schema Management, Transaction Processing, Query Processing, and
Application Programming Interfaces.

A thorough discussion of the complete Natix system and all its techniques and modules
is beyond the scope of this work. Instead, we concentrate on the foundation of Natix, its
overall architecture, the Storage Engine, Schema Management, and Recovery Subsystem.

Natix introduces a storage format that clusters subtrees of an XML document tree into
compact physical records of limited size. Our storage format allows for very efficient access
to documents and document fragments.

Natix offers means to logically and physically partition the set of all XML documents
it manages. Applications can specify logical schemas to group documents into logical
collections, which can be used to address data in queries. Physical schemas allow to control
how the storage primitives provided by the Storage Engine are used to materialize the
application’s documents on physical media.

The size of a physical record containing an XML subtree is typically far larger than the
size of a physical record representing a tuple in a relational database system. This affects
recovery. To improve recovery in the XML context, we developed the novel techniques
subsidiary logging to reduce the log size, annihilator undo to accelerate undo and selective
restart to accelerate restart recovery.

Thesis Outline

XML, its query languages and standard processing interfaces are briefly reviewed in Chap-
ter 2. Chapter 3 discusses how existing database technology can be applied to persistently
store XML documents and identifies the flaws of existing DBMSs in this area. Chapter 4
introduces Natix and explains its architecture and interfaces. The remaining chapters deal
with details of some of Natix’s modules, such as the Storage Engine (Chapter 5), Schema
Management (Chapter 6) and Recovery (Chapter 7). Chapter 8 concludes the thesis.

Acknowledgements

I would like to thank the people that worked with me on Natix during the last years.
Without the help of Sören Göckel, Andreas Grünhagen, Alexander Hollmann, Norman

May, Julia Neumann, Robert Schiele, and Frank Ueltzhoeffer, Natix would not exist.
Thanks to Wolfgang Leideck, Beate Rossi, Simone Seeger and Uwe Steinel for main-

taining an environment that made this possible.
Thanks to Thorsten Fiebig, Till Westmann, and Sven Helmer, for many discussions,

brainstorming sessions, papers, discussions, talks, books, hints, reviews and discussions.
Thanks to Guido Moerkotte, for many things.
Thanks to Susanne for keeping me sane, and being there.

Chapter 2

eXtensible Markup Language – XML

The reason clichés become clichés is that they are
the hammers and screwdrivers of communication.

–Terry Pratchett

This chapter contains a brief introduction to XML and related standards. The core
language is presented, including treatment of namespaces. To prepare our requirements
analysis and the system architecture, we review query languages and typical processing
interfaces for XML.

2.1 The Core Language

The core XML language is defined in a Recommendation by the World Wide Web Com-
mittee [10]. We give only a brief summary, referring to [10] for details.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form charac-
ter data, and some of which form markup. Markup encodes a description of the document’s
storage layout and logical structure.

Essentially, XML is a standardized syntax for semi-structured data [12]. Semi-struct-
ured data can be defined as a tree with labelled edges and leaves. The markup in XML
documents implies a mapping of the document’s character sequence to such a tree and vice
versa.

Markup always begins with a ’ � ’ character and ends with a ’ � ’ character. The pre-
dominant form of markup are elements, which denote inner nodes of the tree, or regions of
the document. Each element has a tag name, which represents the edge label of the edge
leading to the node. An element with tag name � begins by an open tag ����� and ends
with a close tag ����� � . The data between the open and close tag represents the child
nodes of the element.

Character data is mapped to labelled tree leaf nodes.

3

4 CHAPTER 2. EXTENSIBLE MARKUP LANGUAGE – XML

There are other markup types, including attributes which are attached to elements, pro-
cessing instructions to encapsulate application-specific metadata, and more.

Document Type Definitions, or DTDs, can be used to put constraints on the set of al-
lowed tag names and the way elements are nested. More on DTDs can be found in Sec-
tion 6.1.

2.2 Namespaces

The markup vocabulary of a document, its set of possible markup tag names, can be a
combination of tag names from different sources and for different purposes. For exam-
ple, markup for visual layout can be combined with markup for specification of scientific
experiments to create experimental protocols.

Naming conflicts can be the result of combining vocabularies. In the above example, the
tag name color would be meaningful in both vocabularies. To avoid naming conflicts in
such situations, tag names can be qualified with namespaces [9]. A namespace is identified
using a unique Uniform Resource Identifier [3].

To avoid including the complete namespace URI for every tag name in a document,
namespaces are assigned small prefix strings in a document. These prefix strings are then
used to qualify tag names. Additionally, default namespaces for subtrees of a document
can be specified, implying that all unqualified element names in that subtree belong to its
default namespace.

2.3 XPath

A simple query language for XML is XPath [18].
The main purpose of XPath is to select document nodes. Given a context node, an

XPath expression allows to select a result set of nodes in a document tree.
The most important construct in XPath expression is the Location Path. A Location

Path consists of a sequence of Location Steps, separated by � . Each location step selects a
set of document nodes based on a context node. The result of a location path is computed
by first calculating the result of the location path without its last step. Each node in this
result set is used as context node for the last step. The produced result sets are then unioned
to produce the final result.

A location step is of the form axis::nodetest[pred �][pred �].... axis is
a direction of navigation from the context node. nodetest is a special predicate (see
below), and pred � are arbitrary predicate expressions which have to evaluate to true for a
selected node.

Axes include � �����
	 , 	��� � ����	������ , � ��������� , ��� � �������� , � ���
�
��� �!��"$#%��!&'�(�)��" , � ��� � �*	��!��"$#���&+�(�!��"
. A node test is a check for a node type and/or certain tag name.

Hence, the three-location-step expression

child::department/descendant::employee/child::name

2.4. XML PROCESSING INTERFACES 5

selects the name of all employees in all department tags below the context node, even if
there are additional levels of markup between department and employee. Predicates
can base node selection on more complicated expressions:

child::department[child::name=’Sales’]/descendant::employee

only selects employees from the Sales department.
The XPath language is used as a building block in more powerful languages, such as

XSLT [17] and XQuery [6].

2.4 XML Processing Interfaces

There are many different application programming interfaces (APIs) to process XML doc-
uments. Their goals and feature sets vary widely. In the following brief survey, we divide
them into three classes.

First, we describe interfaces based on an object-oriented tree model of the documents.
Second, we look at interfaces which model documents as a series of events. Third are
interfaces intended to deal with document collections and documents as a whole, in contrast
to accessing the internal structure of individual documents.

The section concludes with a summary, which lists the interfaces and their features in
form of a matrix.

2.4.1 Tree-Based Interfaces

As explained in Section 2.1, semi-structured data rendered as XML can be modeled as a
labelled tree. Hence, a straightforward way to access XML documents is to implement an
object-oriented tree model of documents using an object-oriented language. Instances of a
tree model can easily be created from the document’s abstract syntax tree.

Document Object Model

The most prominent member of the tree-based interfaces is the Document Object Model,
or DOM [45]. It is a language and platform-independent specification of a set of classes
with which document trees can be accessed.

DOM provides a class hierarchy for document node types. A base class Node im-
plements basic tree functionality, such as navigation to parent, child, attribute and sibling
nodes, and access to node labels. For every type of tree node, special classes exist, includ-
ing classes for elements, attributes, and text nodes. Tree nodes are referenced through the
language’s native pointer type.

Factory classes support creation of new nodes. Simple queries can be issued which
retrieve nodes based on tag name equality. Document iterators allow to enumerate the
elements of a document, possibly filtered by an application-specified filter object.

6 CHAPTER 2. EXTENSIBLE MARKUP LANGUAGE – XML

The standard document specifies several levels of compliance, which require different
amounts of support of advanced features including querying, namespaces, document itera-
tors, and conversion into textual format.

The Apache Software Foundations versions for Java [74] and C++ [73] are widely used
reference implementations. Implementations for C [15] and other languages exist.

Others

Other tree-based interfaces are the native interfaces of some XML parsers (such as libxml2
[92]), which allow to access the abstract syntax tree in main memory.

JDOM [46] is a DOM variant which incorporates Java-specific idioms instead of relying
on language-independent interfaces. In contrast to regular DOM, its node base class is not
sufficient to access all aspects of a document. XOM [39] is a similar Java-only interface.

2.4.2 Event-Based Interfaces

Event-based interfaces represent documents as a stream of events occuring while the docu-
ment is parsed.

SAX

The SAX interface [57] (Simple API for XML) is a push-interface, where application pro-
grams register callback-handlers. Processing is initiated by calling a parse() method.
The XML processor then traverses the document tree in depth-first sequence.

Every time a node is visited, a callback function of the registered handler is called,
notifying the application about the begin or end of an element, a text node, or any other
part of the document tree.

Several implementaions of SAX exist in different languages including C [92], C++ [73]
and Java [74].

Others

The XNI interface [74] is similar to SAX, but allows to annotate events and pass them on
to other handlers. It allows to customize XML processors by configuring the sequence of
scanner, schema validator, tree builder and other application specific add-on handlers that
is traversed by each event.

The XMLPull [40] interface uses an iterator interface for events, which allows the ap-
plication to pull individual events from the XML processor by application request.

2.4.3 Document-Based Interfaces

In contrast to the XML interfaces above, which deal with the internal structure of docu-
ments, document-based interfaces operate on whole documents and document collections.

2.4. XML PROCESSING INTERFACES 7

WebDAV

WebDAV [32] (Web-based Distributed Authoring and Versioning) is a communications
protocol for the internet which allows transfer, modification, version management and con-
currency control for documents.

WebDAV is built on top of HTTP [28], which is also used for read access to documents.
Hence, every WebDAV server is also an HTTP web server.

Documents can be organized in arbitraily deep hierarchies, and special primitives exist
to lock documents, to avoid conflicts if multiple users try to work with the same document
concurrently. Iterator primitives allow to enumerate all documents and subcollections in a
collection.

WebDAV is not aware of XML documents, apart from the fact that a per-document at-
tribute allows applications to specify the document format, which may be XML. Document
contents are transferred as byte stream.

However, we list WebDAV as XML processing interface, as it is commonly used to
maintain web sites and intranet document stores. Hence, it is a popular means of remotely
accessing XML documents, and as such needs to be supported in an XBMS.

XML:DB

The XML:DB initiative [84] specifies an interface intended to provide uniform access to
XBMSs of different vendors.

The specification is targeted to the Java language, and provides classes to manipulate
and query document collections and documents. Individual documents can be accessed
using either DOM or SAX interfaces.

Query support currently is limited to the XPath language. An XPath-based update query
language is under development.

An extension mechanism allows to introduce additional interface features while main-
taining backwards compatibility.

2.4.4 Summary

Table 2.1 lists some of the surveyed APIs and supported features.

Features Below, we explain the meaning of the rows in Table 2.1.

Structure is checked when the interface allows to access the internal document tree struc-
ture.

Collections refers to the availability of a collection of documents as first-class object in the
interface.

Iteration indicates whether the interface provides a means to iterate over sets of nodes or
documents.

XML-aware Has the interface been designed specifically for XML?

8 CHAPTER 2. EXTENSIBLE MARKUP LANGUAGE – XML

DOM SAX WebDAV XML:DB
structure � � – –�
Collections – – � �
iteration � – – �
XML-aware � � – �
Non-XML data – – � �
Explicit Concurreny – – � –
Multidocument – � � �
Queries � � – –� ���
Updates � – � –�

Table 2.1: API properties

Non-XML data Is it possible to process non-XML documents with the interface?

Explicit Concurrency is checked when the interface provides primitives to lock docu-
ments or parts of documents to prevent access conflicts.

Multidocument refers to the possibility of using the interface to process more than one
document at a time.

Queries indicates whether the interface provides primitives to query documents.

Updates is checked when applications can modify documents using the interface.

Remarks 1) XML:DB includes DOM and SAX Java packages to access document struc-
ture. DOM-based updates need to be propagated as a complete document tree, hence,
updates of individual nodes is impossible. 2) The query capability of DOM is limited to
an tag-name equality query for a single document. 3) WebDAV Search allows for a limited
form of keyword search. 4) The query support is not mandatory and limited to XPath 5)
The DOM interface is a subinterface of XML:DB and may be used to update documents.
An XUpdate language is under development.

Chapter 3

XML Base Management

Fundamental progress has to do with the reinterpretation of basic ideas.

–Alfred North Whitehead

A primary design goal for XML was to have a flexible exchange format for data be-
tween applications. To exchange data, it must be converted into a format that is meaningful
outside the current application’s main memory address space.

XML’s increased popularity has made knowledge about XML and related technologies
common among developers. A large number of tools is available. This makes XML a
natural ingredient for many other situations where data must leave the current application’s
address space, apart from mere data exchange: For all kinds of persistent application data
that is not easily mapped to the tabular structure of relational DBMSs, XML is rapidly
becoming the storage format of choice.

Reliable, scalable, flexible, high-speed processing of persistent data is the domain of
database management systems (DBMS). How can DBMS technology be used to manage
XML document collections? This chapter examines answers to this question.

In Section 3.1, we look at some application domains in which XML is employed, es-
tablishing the core requirements for an XML Base Management System (XBMS). Then, we
examine typical tasks that occur when working with an XBMS in more detail (Section 3.2).

In Section 3.3, by considering different approaches that use traditional DBMSs to real-
ize the mentioned tasks, we establish a central fact:

Traditional DBMSs fall short of addressing all the requirements for XBMSs.

This is illustrated concisely in Section 3.3.3, which contains a matrix mapping the dif-
ferent approaches to the resulting problems. It motivates the construction of our XBMS
Natix, which is introduced in Chapter 4.

9

10 CHAPTER 3. XML BASE MANAGEMENT

3.1 Requirements

A general-purpose XBMS for large-scale XML processing has to fulfill several require-
ments:

1. To store documents effectively and to support efficient retrieval and update of these
documents or parts of them.

2. To support the standardized declarative query languages XPath [18] and XQuery [6].

3. To support the standardized application programming interfaces (APIs) and proto-
cols, such as SAX [57], DOM [45], and WebDAV [32].

4. Last but not least a safe multi-user environment via a transaction manager has to be
provided including recovery and synchronization of concurrent access.

We motivate these core requirements using two concrete application domains.

3.1.1 Online Auctions

An online auctioning site manages auctions for a great variety of products. The products
which are classified into categories such as ”cars”, ”software”, or ”furniture”. Product
descriptions assign values to a set of attributes, where the set of attributes varies depending
on the category. For cars, atttributes might include engine power, age, and color, while
software offers list version and vendor. Some descriptive text and images are included
in all categories. For an internet-based solution, a straightforward representation of such
product descriptions are XML documents.

Other documents that are processed include descriptions and ratings of auction partici-
pants, templates for dynamically generated web pages, themed product catalogs, and other
editorial documents. Progress of auctions is also captured in documents. Bids, messages
and final price are appended to the auction document.

Efficient access to all those documents is crucial to the maintenance of a responsive
site in the presence of many actors in the system. Apart from whole documents, parts of
the documents are also frequently accessed, for example when constructing auction sum-
mary views, then only important parts of an auction document are required, such as a short
description and the current price. Requirement 1 follows.

Users and editors of the site need powerful and efficient search capabilities, for exam-
ple when looking for auctions, or when creating special themed product selections. Search
functionality can be implemented with much less effort and cost when declarative query
languages are available. The selection of documents or parts of documents based on pred-
icates is also required by many other modules in a dynamic web site, establishing require-
ment 2.

To create the dynamic web pages based on the users’ navigation through a site, stylesheet
processors are employed [72]. These are typically based on standard interfaces such as
DOM or SAX, pointing to requirement 3. This requirement also results from third-party

3.2. XBMS TASKS 11

editors and other maintenance tools for web site management, which need standard inter-
faces like WebDAV [32] to operate on the documents.

Finally, the concurrent access of many users and maintainers of the site coupled with
the direct economic relevance of the managed documents, make reliable transaction mana-
gement indispensable.

3.1.2 Life sciences

Another example for an application domain exhibiting requirements (1)-(4) are life sci-
ences. There, annotated biosequences (DNA, RNA, and amino acid) are a predominant
form of data.

The sequences and especially their annotations are commonly represented using XML,
which makes (1) an obvious requirement. As above with auction documents, in addition to
complete sequences with all annotations, a typical access granularity here is a fragment of
the document, for example a single coded protein in a gene, including its annotations.

Typically, the annotated sequence data is processed by a mix of tools for generation,
visualization, (further) annotation, mining, and integration of data from different sources.
Existing XML tools relying on DOM or SAX interfaces need to be integrated (3).

The emergence of new scientific methods regularly requires new tools. Their rapid
development is facilitated by declarative XML query languages because they render trivial
the frequently recurring task of selecting sequences based on their annotation (2).

Each sequence is analyzed using several costly experiments which are performed con-
currently. Their results are valuable annotations added to the sequence data. Obviously,
full-fledged transaction management reduces the risk of wasting resources (4).

3.1.3 Conclusion

Requirements for large-scale persistent XML processing do not differ in principle from
those for large-scale management of other forms of persistent data.

However, the application interfaces, data model, and query languages are very different
from traditional data management approaches. The consequence is that at least a mapping
layer is required when storing XML in a traditional DBMS.

The remainder of this chapter argues why such a mapping layer is undesirable both
from a software engineering perspective, as it makes an application more complex and
costly, and from a performance perspective, because resources are wasted.

3.2 XBMS Tasks

We elaborate on the general requirements stated above by specifying typical tasks that an
XBMS must support. The task descriptions are used in the following section to explain the
difficulties encountered by traditional data management paradigms when addressing the
issues involved with XML document processing.

12 CHAPTER 3. XML BASE MANAGEMENT

3.2.1 Document import

Due to XML’s origin as a data interchange format, relevant XML documents are frequently
generated outside the XBMS, and need to be imported.

As input, the XML document exists in form of a file in the file system, or as a stream of
bytes, for example from a network connection.

As a result of a successful document import, the application is given an identifier which
allows to address the imported document in future operations.

3.2.2 Document Object Model

Applications frequently access documents using a programming language binding of the
Document Object Model (Section 2.4.1). DOM allows to read, update, create and delete
single nodes. Navigational operations allow to traverse a document by moving from a node
to sibling, parent, or child nodes.

An XBMS must allow access to stored documents using a DOM interface, including
updates. Of course, updates performed using DOM have to be governed by transaction
management.

The worst-case amount of used resources (CPU and memory) for DOM operations
should be a function of the number of involved nodes, and not a function of the number of
nodes in the document. This latter requirement is necessary to reproduce the performance
behaviour of typical main-memory implementations of DOM.

In particular, in a scalable XBMS it must be possible to use DOM to process documents
that are larger than the available main memory.

3.2.3 XPath Query

XPath [18] is a simple declarative query language, described in Section 2.3. XPath expres-
sions must be evaluated in an XBMS not only to answer direct user queries, but also when
performing XSL transformations (XSLT [17]), or when answering queries formulated using
XQuery [6]. Both of these languages contain XPath as sublanguage.

Hence, efficient evaluation of XPath expressions for a set of context nodes is a very
important task of an XBMS.

3.3 Existing DBMS Technology and XML

The following discussion of the adequacy of existing DBMS technology for storage and
processing of XML documents is based on the general requirements and tasks from Sec-
tions 3.1 and 3.2.

As we will see, all of the approaches to implement an XBMS using an existing non-
XML DBMS suffer from serious drawbacks. This insight motivates our approach to cre-
ate a native XBMS, where support for XML is not simply welded on top but distributed
throughout the DBMS.

3.3. EXISTING DBMS TECHNOLOGY AND XML 13

3.3.1 Relational DBMS

Relational DBMSs (RDBMSs) represent the matured knowledge about large-scale data
management. A natural approach to implement an XBMS is to add an XML module on top
of an RDBMS.

To represent XML documents in an RDBMS, a relational schema has to be designed.
Three basically different classes of schemas to store XML exist: Storing documents in
character large objects, storing single nodes in separate rows, and deriving a relational
schema from a specific document schema.

Each of these approaches is quite different, and the implementation of typical tasks is
treated in separate sections below.

Character Large Objects

A straightforward way of modeling XML documents is to put each in a separate row of
a single table. Most RDBMSs offer a character large object, or CLOB, data type whose
values can be arbitrarily large strings.

Document import Simply storing the textual representation of XML documents in a field
of type CLOB imports a document into the DBMS.

Neglecting administrative overhead, the document consumes about as much space in-
side the DBMS as in the file system, is controlled by the transaction manager, and protected
by recovery. Besides, exporting the document is simple and efficient, given an efficient
CLOB implementation.

DOM However, if the document structure has to be accessed, as necessary when imple-
menting a DOM interface, there is no difference to the situation in the file system. To
create a DOM tree from the textual representation, it must be analyzed lexicographically
and syntactically, and a main-memory DOM representation has to be built. The amount of
main-memory and CPU which are consumed to do so are a function of the document size.
This is not a scalable approach.

Additionally, in multi-user environments, even if attribute-level locking is supported by
the relational DBMS, a document has always to be locked in entirety. Unless the DBMS
supports a suitable kind of range locking on CLOBs, concurrent updates to the same doc-
ument are impossible. Suitable here means that the access and locking mechanisms need
to provide logical CLOB fragment addresses that are independent from their current offset
in the CLOB. Physical fragment addresses could be invalidated by inserting or removing
parts of the CLOB.

If the document has been modified in its main-memory form, propagating the update
to the stored representation requires to serialize the whole document into textual form.
Because the RDBMS does not know about the semantics of the CLOB, without special
techniques this means the whole document also has to be logged for recovery purposes. If
intra-transactional savepoints are required, the application itself needs to implement sup-

14 CHAPTER 3. XML BASE MANAGEMENT

port for them, because the DBMS does not know about the application’s main-memory
structures.

XPath Evaluation Evaluation of XPath queries requires access to the document struc-
ture, and the same scalability problems as for DOM access apply. An additional concern
here is that several query compilers and evaluation engines are involved to answer a single
query: The RDBMS’ native relational query compiler and engine are used to gain access to
the required document(s). A separate XPath compiler and evaluation engine are used to an-
swer the query inside the document. Such an evaluation process is unnecessarily complex
from a software engineering point of view.

Single Nodes

A second approach when implementing an XBMS with an RDBMS transforms a tree model
for XML documents into a relational schema where each document node is represented by
a separate row. Each tuple needs, in addition to its contents, information about its type, and
a way to locate its neighboring nodes in the tree (siblings, children and parent nodes). The
parent-child relationship can be stored using a parent foreign key reference. Since an XML
document tree is an ordered tree, the order of child nodes of a parent must be materialized.
This can be done by numbering siblings, or by including further references or additional
relations.

Document import Document import parses the document, and stores a tuple for each
node.

The per-node data is likely to take up more space than the markup in the original docu-
ment. For example, the markup for a 2-character tag takes up 7 bytes (� xx ������� � /xx �).
The slot information for a slotted page record in an RDBMS alone probably costs as much.
A parent reference and the other per-node data, such as ordering information, will blow the
record up and cause an RDBMS to use up much more space than the original document,
incurring additional I/O overhead. If foreign key references are used, additional unique in-
dexes to efficiently maintain them are required, causing extra random I/O and storage space
overhead.

Transaction management is also problematic. In an RDBMS, there is no locking gran-
ularity between the whole relation and a single record. Hence, every row that is created on
behalf of a document has to be locked individually, requiring a large number of locks for a
simple document import. The situation for recovery is similar, as an extra log record has to
be generated for every document node. The created log volume is significant, as it not only
includes the storage overhead as explained above, but in addition adds recovery-specific
overhead, such as log record chaining.

DOM Implementing a DOM interface on top of a single-node schema requires to evaluate
a query for every navigational operation in the tree. Evaluation of such queries for every
navigation step is quite costly. It also results in excessive random I/O, as indices have to

3.3. EXISTING DBMS TECHNOLOGY AND XML 15

be consulted and the nodes are not necessarily clustered according to their document tree
neighborhood.

When a DOM subtree is modified, a simple numbering scheme to represent node order-
ing is dangerous, as insertions in the middle of a sibling sequence require expensive renum-
berings. For updates, storage space and transaction management overheads mentioned for
document import carry over. Even worse, concurrent updates may become impossible. To
guarantee serializability, the multigranularity protocol in use by most RDBMSs [34] re-
quires to lock the whole relation in shared mode when repeatable reads of documents or
document subtrees are required, to avoid phantom problems. As a consequence, concurrent
inserts of new nodes are impossible.

XPath Evaluation The storage space overhead and isolation problems also effect XPath
evaluation. Other performance disadvantages occur depending on how XPath expressions
are evaluated.

If an XPath processor is used that operates on the DOM interface, then for the evaluation
of a single XPath expression many navigation queries are issued to perform the processor’s
steps in the tree. This is extremely expensive.

If XPath queries are translated into a relational query [26], the problem of multiple
compilers mentioned above for CLOB storage resurfaces: The query must first be translated
into an SQL query, and which has to be translated into an execution plan. Resources are
wasted. Even simple XPath expressions result in costly query plans. For example, simply
enumerating all descendants of a node is – without other measures – a recursive SQL query,
which typically is quite expensive.

Specific Schemas

If only specific document schemas are to be supported, then it is possible to derive relational
schemas, exploiting knowledge about which elements have to occur together, and whether
arbitrary nesting is possible [20, 82].

This limits the application domain of the XBMS to those covered by the given schemas,
unless automated translation of XML schemas to relational schemas is performed. Even
then, many of the problems for the single node approach remain.

Translation of navigational operations to SQL queries is still required, and multiple
translation of XPath expression only becomes more complicated.

While the specific schema approach can reduce the storage, logging and locking over-
head, as long as several rows are required to represent a document and several documents
share one relation, the concurrency issues related to the multigranularity locking protocol
are not resolved.

3.3.2 Object-oriented DBMS

The discussion of relational DBMSs above also applies to OODBMSs. However, object-
oriented or object-relational DBMSs are better equipped to manage object references and
sets of object references, which can be used to optimize the single node approach.

16 CHAPTER 3. XML BASE MANAGEMENT

Approach Document Import DOM Access XPath Evaulation
File System 1,14 1,5 1,5,14

extra index 1,13 1,5,13 1,5,13
RDBMS CLOB 4,8,5,7(,1) 4,8,5,10

single nodes 6,7,8,11 3,6,7,8,12 6,8,10
specific schema 2,7,8 2,3,7,8,12 2,8,10

OODBMS single nodes 6,7,9 6,7,9,12 6,9,10

Table 3.1: XBMS approach/problem matrix

By converting the tree model directly as schema for an OODBMS, for example by
using the IDL description of the Document Object Model, more efficient support for the
DOM interface is implicit. Tree edges are represented by object references, which can be
traversed without index access if physical OIDs are used. Pointer swizzling further speeds
up this process. Tree order can be represented by storing the list of children for each node
using a collection-valued attribute. This also solves the locking problem, as now individual
node sets and subtrees can be locked without affecting other documents.

Still, the storage and log space overhead and the large number of locks required for
each document cause performance problems.

3.3.3 Summary

As summary, we repeat the issues encountered when dealing with the implementation of
the tasks specified in Section 3.2.

1. No transaction management, in particular no recovery.

2. Only a fixed number of document schemas is supported .

3. Each navigational operation must be mapped to a query.

4. Parsing is required even if only a part of a document is accessed.

5. Scalability (only parts of documents may reside in main memory).

6. Storage space overhead and I/O overhead.

7. High log volume.

8. No concurrent updates due to mismatching lock granularities.

9. Large number of small granularity locks.

10. Multiple Compilation required.

11. Index required for efficient structure navigation.

3.3. EXISTING DBMS TECHNOLOGY AND XML 17

12. Excessive Random I/O.

13. Synchronization of stores required.

14. No index structures available.

In Table 3.1, the issues are grouped by approach. It becomes obvious that no approach
using existing technologies is free of serious drawbacks. Just adding an XML support
module on top of an existing DBMS does not solve any of the encountered problems at all.

Instead, the lower layers of DBMSs need to be engineered for XML support. A native
XBMS is required that incorporates XML specifics in almost any part of its architecture.
Such a system is introduced in the following chapter.

18 CHAPTER 3. XML BASE MANAGEMENT

Chapter 4

Natix

Architektur ist gefrorene Musik

–Johann Wolfgang von Goethe

As argued in Chapter 3, implementing an XBMS is not just a matter of adding an XML
support component to a conventional DBMS. Instead, almost all components of a DBMS
are affected in terms of adequacy and performance.

This chapter introduces Natix, a native XBMS, which is built from scratch to sup-
port management of XML documents. We give an overview of its architecture and briefly
sketch the responsibilities and collaborations of the subsystems. References to other chap-
ters or additional literature describing these components in greater detail are given where
appropriate. Examples show how a native XBMS can support application development by
supplying powerful constructs for persistent XML processing.

4.1 Architectural Overview

An overview of Natix’s system architecture with all major subsystems is shown in Fig-
ure 4.1.

The core of the system is implemented as a C++ library, comprising the components
below the ”Library Interface” line in Figure 4.1. In general, neighbouring boxes represent
packages of classes with C++ function call dependencies in one or both directions.

Applications can use the library directly, or via one of the modules on top of the li-
brary interface which export language bindings other than C++, or protocols in addition to
function calls.

Below, we elaborate on the subsystems. We begin with system control, which acts
as a facade, implementing the library interface. Then we explain different scenarios in
which applications can use Natix. Introductions to the remaining components of the XBMS
library follow, and some example code using Natix concludes the chapter.

19

20 CHAPTER 4. NATIX

Figure 4.1: Architectural overview

4.2. SYSTEM CONTROL 21

4.2 System Control

The system control component provides a unified facade interface for applications to inter-
act with the XBMS.

Applications work with Natix by sending requests to the singleton [30] system control
object. Each time an application request is received, system control translates it into an
appropriate sequence of invocations of the involved subsystems.

Requests are usually specified by constructing request objects (Section 4.2.1) and pro-
cessed by forwarding the object to system control. Request results that are more complex
than simple data types are provided in form of views (Section 4.2.2).

4.2.1 Requests

Typical application requests include ‘process query’, ‘abort transaction’ or ‘import docu-
ment’.

In order to perform such a task with Natix, an application constructs an object of the ap-
propriate request class, whose attributes completely specify the intended action. To invoke
the action, a reference to this object is provided as argument to the process() method
of the system control object, of which there exists only one for each instance of Natix.

When the process() method returns, if necessary, the result fields of the request
object have been filled with values representing the answer to the request.

Request parameters and results are strongly typed. However, each parameter type can
have different representations. For example, a stored document can be addressed in differ-
ent ways, including a single URL, or the name of the repository and the document ID, or a
pointer to the document collection and the document name.

The available request and parameter types are specified using an XML-based syntax,
from which C++ classes are generated. This technique is useful to implement bindings for
other languages, as explained in Section 4.3.

4.2.2 View Management

In Section 2.4, common application programming interfaces for XML and their proper-
ties are presented. The interfaces are not strictly alternatives with the same functionality.
Instead, their properties are often complementary, and which API is chosen depends on
the application requirements. A simple, performance-conscious application, which needs
to read the whole document, may choose libxml2’s SAX binding, while more complex
document transformations are better carried out with a DOM interface.

Views

To increase adoption of XBMS, they must facilitate a smooth transition from existing en-
vironments to XBMS usage, they must allow developers to choose the best suited API for
a given task, and they must be prepared for the introduction of new APIs for XML. Hence,

22 CHAPTER 4. NATIX

Natix does not use a single, fixed API for document access. Instead, each API is considered
just one of many different views on the data.

Fragments

In addition, there are different ”sources” of documents. Apart from documents that are
stored in the XBMS, this includes documents in the file system, documents produced as
query results, and documents received through a network connection. For development
convenience, and to reduce the overall complexity of the system, the view concept has to
be orthogonal to the document source. By orthogonality we mean that there should be a
uniform interface, to open any meaningful view on any document source, for example to
open a SAX view on a query result, or a DOM view on a stored document. In Natix, this
is enabled by the concept of an XML fragment, which is an abstraction representing some
XML tree or subtree regardless of its source.

Fragments are addressed using FragmentDescriptors. Requests exist to create
FragmentDescriptors for a variety of document sources. Possible source specifica-
tions include an OS file name, a Natix DocumentID, or a query expression.

Implementation

Additional request types then allow to open and close views for a given XML fragment.
Each view type implements some API. There exist views for SAX, DOM, libxml2, C++
streams, and other APIs. The SAX and DOM APIs are implemented on top of the existing
Xerces implementations of the APIs, and are binary compatible.

Each combination of document source and view type has a view manager, which trans-
lates operations on the views into operations on the implementing subsystems, such as the
storage engine and the transaction manager. The view manager accesses the schema to
determine which storage engine objects are involved. It also manages main memory for
objects required by the views (such as DOM nodes), may cache created views, and/or share
them between transactions.

Apart from its intuitiveness and convenience for the developer (as illustrated in the ex-
amples below), the view approach implicitly communicates the application’s access profile
to the XBMS. Such access behaviour hints can then be used to optimize performance. For
example, when an application requests a SAX view on a stored document, this indicates
that the document is going to be scanned completely. Hence, the SAX view manager for
stored documents can request a shared lock for the whole document instead of locking
individual nodes or subtrees, and then escalating to a document lock.

4.3 Application Architectures and Bindings

XBMS are suited for a wide range of application domains. Their architectures, implemen-
tation languages, and protocols differ.

4.3. APPLICATION ARCHITECTURES AND BINDINGS 23

The classic client-server database system will not be the only architecture in which
XBMS are used, and C++ is not the only language that is used to work with an XBMS.
Below, we explain how Natix is applied in different scenarios.

4.3.1 Library Interface

The most flexible way to use Natix, and the one with the least overhead, is to link to the
Natix library and use the control interface (Section 4.2) with C++ function calls.

The Natix API is thread-safe, and it is possible to put the data structures into shared
memory, so that several processes can simultaneously work with the same instance.

Interactive Shell

An example for a simple application implemented on top of the C++ library is an interac-
tive shell, one of the standard maintenance tools for Natix. It is a small program which
links to the library and can be used to interactively work with document repositories, con-
figure instance parameters such as buffer size, or create and assign new physical media to
document collections.

All requests supported by Natix’s library interface are specified in a language-indepen-
dent way (Section 4.2.1). These specifications are used to generate a parser which creates
request objects from strings. Requests requiring parameters that are not representable in
string form are not supported by the parser.

The parser is used to implement the simple shell program that reads strings from the
user, transforms them into request objects, processes the requests, and uses a standard
method provided by each request to report its result to the shell’s output stream.

4.3.2 Java

Using the Java Native Interface (JNI), it is possible to call the C++ library from Java pro-
grams [22].

Since the request types are specified in a language-independent way (Section 4.2.1), it
is possible to automatically generate Java request classes and the JNI specification which
binds the Java methods to C++ functions.

For some of the view types, appropriate Java-specific code needs to be written. Streams
in Java, for example, have a different interface from C++ streams, and for other interfaces
like DOM it is necessary for performance reasons to cache the Java representation instead
of forwarding all Java-function calls to the C++ library.

4.3.3 WebDAV

The Web Distributed Authoring and Versioning Protocol WebDAV [32] is a protocol based
on HTTP [28] providing read-write access to document collections.

24 CHAPTER 4. NATIX

WebDAV is a de-facto standard used by many tools for the the creation and mainte-
nance of web sites. Supporting WebDAV enables an XBMS to be integrated into such tools
without special programming.

WebDAV support for Natix is implemented as a module for the Apache Web Server
[75]. This module translates WebDAV requests to read and write documents into requests
for Natix’s library interface.

4.3.4 HTTP

As a side effect, the WebDAV module allows HTTP access to documents stored using
Natix. Hence, exporting a Natix repository using Apache is also possible.

4.3.5 File System

Another example for a high-level API is the file system interface [19]. It is implemented
as an operating system file system driver which links to the Natix library. Documents,
document fragments, and query results can be accessed just like regular files.

This allows all programs that can work with XML files, such as editors, stylesheet
processors, or office applications, to work with Natix without modification.

The repository and document collection hierarchy, as well as the documents’ tree struc-
ture are mapped into a directory hierarchy, which can be traversed with any software that
knows how to work with the file system. Internally, the application’s file system operations
are translated into Natix requests for exporting, importing, or listing documents.

4.3.6 Others

Since the library interface to Natix is specified in a language-independent way, other lan-
guage bindings and protocols can be easily created and maintained, as long as there is a
way to call C/C++ functions from the languages, or from the servers which implement the
protocols.

4.4 Storage Engine

The storage engine contains components for efficient XML, index and metadata storage.
It also manages the storage of the recovery log and controls the transfer of data between
main and secondary storage. An abstraction for block devices allows to easily integrate
new storage media and platforms apart from regular files.

An efficient storage method optimized for XML is crucial to avoid many issues raised
in the previous chapter: reparsing of the document each time it is accessed, storage space
overhead, efficient implementation of navigational primitives, and excessive random I/O.

Natix’s storage format clusters connected subtrees of the document tree into large
records and represents intra-record references differently from inter-record references, to
save space. For more details, see Chapter 5.

4.5. SCHEMA MANAGEMENT 25

4.5 Schema Management

Schema management is responsible for the maintenance of the application-visible logical
and physical structure of the database. The primitives of schema management allow to
group documents into document collections, and to group document collections into repos-
itories.

The application uses the schema management to specify what kind of documents are
allowed in document collections, how document collections are distributed onto physical
media, and which kind of indexes are maintained for the collections.

Most of the schema information is representable or materialized as XML documents,
to provide a unified view on data and schema. The Fragment/View mechanism explained
in Section 4.2.2 provides a uniform interface to the schema.

Schema management is dealt with in Chapter 6.

4.6 Transaction Management

The transaction management component contains classes that provide ACID transactions.
Components for recovery and isolation are located here. These components closely interact
with each other and the storage subsystem.

4.6.1 Isolation

The isolation component is concerned with the serializability of transactions, while allow-
ing a high level of concurrency.

This component needs to addess the lock granularity problem raised in Section 3.3.
We do not elaborate on the topic here, referring to Helmer et al. [42] and Schiele [77] for
details.

4.6.2 Recovery

The recovery subsystem closely cooperates with the storage subsystem to make transactions
atomic and durable. It keeps a log of all updates to allow for transaction undo and restart
recovery.

The recovery subsystem must be able to support fine-grained concurrency control,
which means that transaction undo must be possible even if two transactions modify doc-
uments located on the same disk page, or if two transactions modify parts of the same
document.

One example of the introduced XML-specific recovery optimizations is subsidiary log-
ging (Section 7.6): Using our XML storage format outlined above, typically more than
one node in a clustered subtree is modified by the same transaction, for example during
document bulkload. In a conventional system, all the updates would result in individual
log records, including log record headers. A large amount of log would be generated, and
the log manager would become a system bottleneck. Natix’s recovery subsystem tries to

26 CHAPTER 4. NATIX

combine several operations into a single log record, amortizing logging costs over all nodes
of the same physical record. This reduces the recovery overhead tremendously.

Designing a solid recovery subsystem requires attention to many details, as demon-
strated in Chapter 7.

4.7 Query Evaluation

Evaluation of declarative queries is divided into two major subproblems. First, a declarative
query has to be translated into an execution plan using a query compiler. Second, a powerful
yet efficient execution engine has to be built.

Query evaluation for XML is an extensive topic on its own and beyond the scope of this
work. We only take a quick glance at its integration into Natix’s architecture, and provide
selected pointers into the literature.

4.7.1 Query Compiler

Natix’s query compiler builds execution plans for queries formulated using XPath and
XQuery. To decide which physical operators are necessary to access the required data,
it heavily relies on the schema information.

As an example for an issue of XML query compilation, we look at plans for XPath
expressions. A simple plan uses nested loops to process each location step. However,
XPath axes can overlap, creating duplicates. Duplicate elimination is an expensive pipeline
breaker. How pipelined plans for a sizeable XPath fragment can be created is discussed in
Helmer et al. [43].

To yield optimal performance, it is also possible to integrate XSLT stylesheet processors
directly into the database engine [59].

4.7.2 Query Execution

The Natix query execution engine (NQE), which efficiently evaluates queries, is described
in Fiebig et al. [27].

It is based on a hierarchy of physical iterators [33], which are parameterized using Natix
Virtual Machine programs, small assembler-like statement sequences operating on virtual
registers.

The physical algebra used by the execution engine includes special construction opera-
tors to create XML result documents from queries [25].

4.8 Examples

We provide examples of using Natix from C++ code, implementing the tasks from Sec-
tion 3.2. Apart from illustrating how to control the basic functionality of Natix, the final

4.8. EXAMPLES 27

int main(void)

{
NatixInstance instance("sample_instance");
BeginTransactionRequest beginta;
instance.process(beginta);

// open a XML file in file system
OpenDocumentRequest openreq(beginta.transaction(),

"file://catalog_summer_02.xml");
instance.process(openreq);
FragmentDescriptor doctoadd=openreq.fragment();

// import file into Natix
AddDocumentRequest addreq;
addreq.transaction(beginta.transaction());
addreq.inputFragment(doctoadd);
addreq.collection("CatalogRep","SpecialCatalogColl");
instance.process(addreq);

CloseFragmentRequest closedoc(beginta.transaction(),doctoadd);
instance.process(closedoc);
CommitTransactionRequest committa(beginta.transaction());
instance.process(committa);
return 0;

}

Figure 4.2: Importing a document

code sample shows how C++ language features are used to produce terse yet expressive
XBMS application code.

4.8.1 Document Import

In Figure 4.2, a system control object is instantiated and connected to a configuration file
which specifies the XML base that is to be used (sample instance). A transaction
is started by issuing a begin transaction request. Then, a document in the file system is
opened using an OpenDocumentRequest. A fragment handle for the document in the
file system is the result.

An AddDocumentRequest is constructed and executed, asking to import the docu-
ment into a specified collection.

The example is intentionally verbose to explicitly show all involved objects. In the next
examples, we show how to use C++ language features to make application code more terse.

4.8.2 DOM Access

In Figure 4.3, we assume that there is an already implemented function transformTree(),
operating on a Xerces DOM C++ tree. This function can be reused for a document stored
in Natix as follows.

The document imported in Section 4.2 is opened, this time not in the file system, but

28 CHAPTER 4. NATIX

void transformTree(DOM_Node root)
{
[...]

}

int main(void)

{
NatixInstance instance("sample_instance");
BeginTransactionRequest beginta;
instance.process(beginta);

OpenDocumentRequest opendoc(beginta.transaction(),
"CatalogRep", // repository name
"SpecialCatalogColl", // collection
"catalog_summer_02.xml"); // document

instance.process(opendoc);
OpenDOMViewRequest openview(beginta.transaction(),

opendoc.fragment());
instance.process(openview);

transformTree(openview.view()->root());

CloseDOMViewRequest closeview(beginta.transaction(), openview.view());
instance.process(closeview);

CloseFragmentRequest closedoc(beginta.transaction(), opendoc.fragment());
instance.process(closedoc);

CommitTransactionRequest committa(beginta.transaction());
instance.process(committa);

return 0;
}
/// shorter version:
int main(void)

{
NatixInstance instance("sample_instance");
Transaction *ta=BeginTransactionRequest(instance);

DOMView *dv=OpenDOMViewRequest(ta,
"CatalogRep",
"SpecialCatalogColl",
"catalog_summer_02.xml")).view();

transformTree(dv->root());

CloseDOMViewRequest(ta, dv);
CloseFragmentRequest(ta, f);

CommitTransactionRequest(ta);
return 0;

}

Figure 4.3: Accessing a DOM view

4.8. EXAMPLES 29

int printCapitals1(Transaction *ta, FragmentDescriptor f)

{
FragmentDescriptor queryresult;
queryresult=EvaluateXPathQuery(ta,f,"//city[@capital = ’yes’]").fragment();

StreamView *streamview=OpenStreamViewRequest(ta,queryresult).view();
// copy contents of stream view to stdout
std::cout << *streamview->streambuf();

CloseStreamViewRequest(ta,streamview);
CloseFragmentRequest(ta,queryresult);

}

int printCapitals2(Transaction *ta, FragmentDescriptor f)

{
FragmentDescriptor queryresult;
queryresult=EvaluateXPathQuery(ta,f,"//city[@capital = ’yes’]").fragment();

std::cout << queryresult;

CloseFragmentRequest(ta,queryresult);
}

int printCapitals3(Transaction *ta, FragmentDescriptor f)
{
std::cout << EvaluateXPathQueryTidy(ta,f,"//city[@capital = ’yes’]").fragment();

}

Figure 4.4: Exporting a query to a stream

from its stored location in Natix. Then a DOM view is opened for the document, and the
root node of the DOM representation is given as argument to the function. The DOM view
implements a binary compatible DOM interface to the stored document, which dynamically
loads accessed nodes on demand.

The first main() function in the example is again very verbose. However, there exist
constructors that not only construct a request object, but immediately call the process()
function. The second version of the main() function shows how this enables the use of
temporary request objects to produce more terse code. The code also makes use of the
fact that a transaction knows the system control object with which it is associated. As a
consequence, only the transaction is required as parameter.

4.8.3 XPath Query

As a final example, we show how an XPath expression can be evaluated and its result can
be obtained as a stream (Figure 4.4).

Given the document f on which the expression //city[@captial = ’yes’]
is to be evaluated, and the transaction, an EvaluateXPathQuery request is used to
create a FragmentDescriptor for the query result. For that fragment, a StreamView
is opened. This view allows to access the fragment as a C++ stream buffer [47], which can

30 CHAPTER 4. NATIX

be copied to the standard output stream.
The second version of the function uses an overloaded output operator for fragments,

which automatically opens and closes a stream view, making the code more readable.
The final version uses an EvaluateXPathQueryTidy request, which is a variant of

the EvaluateXPathQuery request that automatically closes the created result fragment
when the temporary request object is destroyed after the result has been written. This results
in a single application code line for a rather complicated process.

Chapter 5

Storage

The people who really run organizations
are usually found several levels down,

where it is still possible to get things done.

–Terry Pratchett

At the heart of every database management system lies the storage engine. It manages
all persistent data structures and their transfer between main and secondary memory. The
system’s overall speed, robustness, and scalability are determined by the storage engine’s
design.

In this chapter, we summarize the relevant techniques utilized in Natix’s storage engine
(up to Section 5.6). The description of the internals includes the important aspect of meta-
data management. While treatment in the first subsections is more detailed than necessary
for the development of efficient XML storage, the details are fundamental to the design of
our recovery subsystem, which is the topic of a later chapter (Chapter 7).

We then elaborate on our novel XML storage method in Section 5.7. After placing it
in the context of other approaches to XML storage, we describe the logical and physical
models we use, the interfaces to manipulate them, and algorithms for bulkload and updates.
A simple way to specify fine tuning parameters for our storage format completes the de-
scription. The chapter concludes with an evaluation, comparing the performance of typical
RDBMS and OODBMS storage layouts with our novel format.

5.1 Architectural Overview

In Figure 5.1, the different modules of the storage subsystem and their call relationships
are shown.

Storage in Natix is organized into partitions, which represent storage devices that can
randomly read and write a fixed number of disk pages. Disk pages are grouped in segments.
There are different types of segments, each implementing a different kind of object collec-
tion. Disk pages resident in main memory are managed by the buffer manager, and their

31

32 CHAPTER 5. STORAGE

Segments BufferManager

Page interpreters

Partitions

Figure 5.1: Storage Engine Architecture

contents are accessed using page interpreters, which are visible not only to the segments,
but also to the buffer manager.

5.2 Partitions

Partitions represent an abstraction of random-access block devices.
The classes in the partition hierarchy themselves implement the basic partition in-

terface, which is shown in Figure 5.2. Apart from reading and writing single pages
(readPage(), writePage()), the interface allows to write a consecutive block
of pages at once (writePages()), and to wait until all write operations are stored
on a physical disk platter (synchronizeWrites(), necessary for logging, refer to
Section 7.4.2). The position of the last read/write operation can be queried using
headPosition() to allow for efficient I/O scheduling.

Partitions have a logical name (name()), which is specified upon creation. The page
size (pageSize()) and total number of pages (size()) are constant for each partition
object. In physical object addresses, partitions are identified by partition numbers, which
are 16-bit wide in Natix (partitionNo()). Each partition may have up to

� � � pages.
The pages of a partition are usually addressed using their page ID, or PID, a combination
of partition number and page number in the partition. Apart from translating the parti-
tion number to a partition object, no further mapping is required to determine the physical
location of a page, given its PID.

Currently, there exist partition classes for Unix files, raw disk access under Linux and
Solaris, and C++ iostreams.

5.3 Buffer Manager

The buffer manager is responsible for transferring pages between main and secondary
memory. In the following, we do not reason why a DBMS needs its own buffer mana-
gement separate from the operating system (refer to Stonebraker et al. [85] for detailed
arguments). Instead, we limit our description to which well-known buffer management

5.3. BUFFER MANAGER 33

class PRT_Partition
{
public:
virtual void open(BSE_AccessMode m=BSE_READWRITE)=0;
virtual void close()=0;

virtual void readPage(PageNo, ptr_t buffer)=0;

virtual void writePage(PageNo, ptr_t buffer)=0;
virtual void writePages(PageNo start, uint32 pagecount, ptr_t buffer)=0;
virtual void synchronizeWrites()=0;
virtual uint32 headPosition() const=0;

ccstring_t name() const;

uint16 pageSize() const;
virtual uint32 size() const=0;
PartitionNo partitionNo() const;

};

Figure 5.2: Abstract partition interface

class BufferFrameCB
{
public:
const PID &pid() const;
ptr_t contents() const;
uint32 fixCount() const;
bool isDirty() const;
PGE_PlainPage *page();
const PGE_PlainPage *page() const;

};

class BufferManager {
public:

bool fetch(const PID &p,
BufferFrameCB *&bf,
PageObjectFactory *fac,
bool exclusive);

void touch(BufferFrameCB *bf);
void unfix(BufferFrameCB *bf);
bool getFrame(const PID &p,

BufferFrameCB *&bf,
PageObjectFactory *fac,
bool exclusive);

void invalidateUnfix(BufferFrameCB *);

void invalidatePartition(PRT_Partition *);
void flush();

BufferFrameCB *transientFrame();
void transientFree(BufferFrameCB *bf);

};

Figure 5.3: Buffer manager interface

34 CHAPTER 5. STORAGE

techniques [23] were selected for Natix.
In addition, we will describe the infrastructure which enables the efficient use of PageIn-

terpreters to read and modify the pages’ contents (PageInterpreters will be intro-
duced later in more detail, Section 5.4).

Currently there is only a single instance of the buffer manager in the system, to keep
the administration effort for Natix low. Multiple instances would require trade-offs on how
to distribute the available memory among them. However, the rest of the system is not
based on the assumption of a single buffer manager instance. The only assumption hard-
coded into the system is that a single segment (Section 5.5) uses exactly one buffer manager
instance.

5.3.1 Basic Interface

The buffer manager interface can be found in Figure 5.3.
Each page frame in the buffer has an associated buffer frame control block. This

BufferFrameCB contains information about which page is currently loaded into the frame
(pid()), and where its contents are located in the buffer (contents()). The buffer
frame also contains the number of current users of the page (fixCount()()), and whether
it differs from the version stored on disk (isDirty()).

The fetch() call provides a BufferFrameCB for a given PID and fetches the page
from disk. Using touch(), the buffer manager is notified that the page was modified.
After work on a page has been completed, an unfix() call tells the buffer manager that
the page is not in use any more and may be replaced. The getFrame() call allows for
assignment of buffer space to a page without loading its current disk contents (to avoid read
access for new pages). Symmetrically, invalidateUnfix() discards dirty pages from
the buffer without writing their contents to disk (to avoid writing deallocated pages).

If a partition has been dropped and is not used any more, any remaining pages are
removed from the buffer using invalidatePartition(). A call to flush() writes
all modified pages to disk.

During query processing, operators used to answer the query often build some special-
ized main memory structures for efficient processing, for example hash tables for grouping.
We want to avoid keeping a region of memory reserved for such operators even when they
are not active, and to maximize the amount of memory available to the buffer manager.
Therefore, such operators can allocate necessary memory from the buffer manager by call-
ing transientFrame(), which returns a buffer frame that is not associated with any
disk page. Such frames can be returned with transientFree().

5.3.2 Page Interpreter Sharing

The buffer manager connects each page to a page interpreter. All page accesses are encap-
sulated by these page interpreters, and a page’s contents are never accessed directly.

A page interpreter is initialized and assigned only when the page is brought into mem-
ory and afterwards shared by all users of the page until it gets replaced. This way, we avoid

5.3. BUFFER MANAGER 35

that every user of a page needs to create and destroy its own page interpreter, resulting in
initialization and memory management overhead.

Only space for a page interpreter base class pointer is reserved in the frame control
block, to avoid a dependency of the buffer manager to the specifics of the different page
interpreter types, and their memory management. This pointer is initialized using PageIn-
terpreterFactories, which are specified by the buffer manager users when fetching pages,
and called by the buffer manager only if a page is brought into memory. If a page is already
in memory, the existing page interpreter is reused.

The buffer manager notifies the page interpreters if certain events for the page occur,
including an impending page flush or page replacement (More details can be found in
Section 5.4).

5.3.3 Implementation

The following describes some crucial details of our buffer management implementation.
While our techniques are based on established knowledge [23, 38, 66], we also highlight
some of the differences.

Address translation

Translation of PIDs to buffer frames is performed using a hash table. It is possible to
provide a hint in form of a buffer frame pointer from an older request for the same page,
which is used without access to the hash table if it still contains the page.

Page Replacement

When selecting a page to be replaced by a newly requested page, Natix employs the Least-
Recently-Used strategy in its Least-Recently-Unfixed variant [23]. An LRU queue is main-
tained, and when fixCount() indicates that the last user has unfixed the page, the asso-
ciated buffer frame is inserted at the front of the queue.

Additional hints may be given during unfix() on whether a page reuse is unlikely in
the near future, for example during a scan operation. In such cases the page is queued for
prompt replacement.

Before replacing a dirty page, it must be written to disk. First, the prepareWrite()
function (refer to Section 5.4) of the associated page interpreter is called, and then the write
operation is performed. Afterwards, it is verified that the page still needs to be written,
because the page interpreter may detect during prepareWrite() that the page contents
is invalid and need not be written to disk (Refer to Section 7.5.4 for details on how this can
happen).

Synchronization

The buffer manager also synchronizes page access by multiple threads. Each buffer page
is synchronized by a data latch, which is part of the buffer frame control block for fast

36 CHAPTER 5. STORAGE

access. Latches are short-duration locks that guarantee the physical consistency of page
contents by allowing only readers to share page access, while writers must hold the page
latch in exclusive mode. The hash table mapping page IDs to memory buffer frames is
synchronized by one mutex for each hash bucket, allowing for efficient symmetric multi-
processing (SMP) with several CPUs, where several processors want to look up page IDs
and modify the buffer’s contents in parallel.

To avoid deadlocks, data page latches are never requested while a hash bucket mutex
is held. In addition, if a buffer frame is assigned a new PID and as a consequence changes
buckets, the modified bucket with the smaller index is always locked first. Otherwise, a
deadlock would occur when another thread tries to move a frame between the same buckets
in the opposite direction.

The data page latch synchronizes access to the contents and the page interpreter. The
hash bucket mutexes synchronize the contents of the frame control blocks in the respective
bucket.

The above roughly follows Mohan et al. [66], largely because we wanted to be able to
implement the ARIES recovery protocol on top of our storage engine. Synchronization of
the list of dirty pages is different from [66], where a separate synchronized dirty page table
is used to mark pages as modified. Our approach is more lightweight because it does not
use extra data structures and synchronization objects. It also makes checkpointing more
efficient (see Section 7.4.6).

While the dirty flag is a member of the frame control block, it is synchronized by both
the page latch and the hash bucket mutex. If a page is modified, the dirty flag must be set
while the exclusive data page latch is still held. Before a page gets written back to disk,
the dirty flag is cleared while holding the hash bucket mutex. This asymmetry prohibits
multiple threads from attempting to flush the same page concurrently. While this could
also be achieved by requesting an exclusive latch on the page before clearing the dirty flag,
there is no need to block read access to the page while it is flushed to disk.

5.4 Page Interpreters

The page interpreters are used to encapsulate access to the pages’ contents. There exist
page interpreters for every type of physical page organization, for example slotted pages,
B-Tree internal nodes, B-Tree leaves, and XML document storage pages.

The page interpreter classes form a class hierarchy, the base class of which (Figure 5.4)
provides support for the common protocol the interpreters use with the buffer manager and
the segments. From this base class, one or more classes are derived for every persistent
data type.

At first glance, the architectural decision to strictly separate intra-page data structure
management (page interpreters) from inter-page data structures (segments) seems to be
minor and straightforward. However, the page interpreters in Natix are not merely a way to
divide-and-conquer persistent data structure implementation, but are exposed as first-level
citizens of the storage subsystem. This allows direct communication between other storage
objects and the page interpreters.

5.5. SEGMENTS 37

class PGE_Page {
public:

virtual void attach(ptr_t c);
void pid(const PID &pid);
virtual void detach();

virtual void attachAndFormat(ptr_t c);
virtual void unformat();

virtual void prepareRead(GloCB *);
virtual void prepareWrite(GloCB *);

bool isInvalid() const;

virtual void format();

void recordedFreeSpaceInfo(uint8 fsi);
uint8 recordedFreeSpaceInfo() const;

};

Figure 5.4: Page interpreter base class

As it turns out, the exposed page interpreters tremendously simplify implementation of
metadata management (Section 5.6) and the recovery subsystem (Chapter 7).

The methods of the page interpreter base class allow the buffer manager to associate a
page with a buffer location after it has been loaded (attach(), pid()), and to remove
this association before the page is replaced (detach()). After reading and before writing
a page, prepareRead() and prepareWrite() are called to calculate/verify check-
sums or check bits (if page reads and writes do not correspond to atomic physical operations
[62]) and possibly do data-type dependent housekeeping. Page interpreters may also indi-
cate, using isInvalid(), that they have been invalidated and need not be written back
to disk.

Apart from the buffer manager protocol, the page interpreter base class factorizes in-
frastructure needed by all segments. Pages need to be initialized, or formatted, before they
are used for the first time, and some of the page header initialization is common to all
data types (format()). Likewise, all segments need free space management structures to
avoid excessive I/O while searching for space for new objects. Although the segments may
use different schemes to manage their free space, a common storage location for free space
information about a page simplifies the implementation, as explained in Section 5.6. The
recordedFreeSpaceInfo() functions allow to manage such information.

5.5 Segments

Segments export the main interfaces to the storage system. They implement large, persistent
object collections and their access methods.

Examples for segment types include Slotted Page Segments, which manage variable-

38 CHAPTER 5. STORAGE

class SEG_Segment {

protected:
virtual PID allocatePage(uint32 hintpages=0, uint32 flag=ALLOC_NONE);
virtual void freePages(PID page, uint32 nopages=1);
virtual bool canAllocatePages(uint32 nopages);

void fetchShared(const PID &pid, BufferFrameCB *&bf) const {
void fetchExclusive(const PID &pid, BufferFrameCB *&bf) {
void getFrameExclusive(const PID &pid, BufferFrameCB *&bf) {
void unfixShared(BufferFrameCB *bf) const;
void unfix(BufferFrameCB *bf, bool dirty);
void touch(BufferFrameCB *bf);

virtual uint8 fsiBitsFor(PGE_PlainPage *) const;

bool hasLogicalPageNos() const;
LogicalPageNo logicalPageNo(PageNo physical) const;
bool hasLogicalPageNo(PageNo physical) const;
PageNo physicalPageNo(LogicalPageNo logical) const;

public:
class iterator;
iterator begin(uint8 fl,uint8 fh) const;
iterator begin() const;
iterator end() const;
iterator find(const PID &pid) const;

};

Figure 5.5: Interface for segment base class

sized records, BTree segments which allow associative access to records based on keys,
and XML segments which store XML document trees.

Every segment type has a different interface providing the operations necessary to ma-
nipulate the respective persistent data structure. The data structures managed by the seg-
ments can be larger than a page. Operations on such structures are mapped onto (sequences
of) operations on single pages.

The segment classes are organized as a class hierarchy, whose base class factorizes
common administrative functions like free space and metadata management. Each segment
consists of a collection of pages on which the data structures are stored.

To illustrate the typical properties of a persistent data type interface, two of the most
important segment types are discussed after briefly presenting the segment base class.

5.5.1 Segment Base Class

The segment base class primarily manages the association between the segment and its
constituent pages.

This association is maintained using an extent-based system [95], which divides a parti-
tion into consecutive page groups (extents) of variable size (Sections 5.6.3 and 5.6.4). Each
extent is either associated with a segment, or free. Using calls to allocatePage() and
freePages(), a concrete segment type can request a fresh page to write to or discard old
pages that no longer hold any data. The segment base class will request new extents from

5.5. SEGMENTS 39

class SEG_DirectMapSegment : public SEG_Segment
{
public:
class iterator;

bool allocateSlot (cptr_t handle, DirectMapSlotNo& slotNo, uint8& unique);
bool allocateSlot (cptr_t handle, DirectMapSlotNo& slotNo, uint8& unique,

DirectMapSlotNo hint);
bool freeSlot (DirectMapSlotNo slotNo, uint8 unique);
uint8 unique (DirectMapSlotNo slotNo);
void recycleSlot (DirectMapSlotNo slotNo);

bool updateSlot (DirectMapSlotNo slotNo, uint8 unique, cptr_t newHandle);
cptr_t retrieveSlot (DirectMapSlotNo slotNo, uint8 unique,

ptr_t target);

bool isAllocated (DirectMapSlotNo slotNo);
};

Figure 5.6: Interface for persistent arrays

the partitions free extent pool (Section 5.6.4) when all pages associated with a segment are
allocated. The sizes of these new extents are governed by a grow specification given at
segment creation time.

The segment base class also encapsulates the buffer manager functionality, to allow
concrete segment types to export interfaces that directly operate on the buffer contents.

Intra-segment free space management is performed using a separate data structure
called Free Space Inventory (FSI), which records for each page on a partition whether
it is formatted and how much free space it contains. The segment base class automatically
performs maintenance of the free space inventory for derived segment classes. Only refine-
ment of the fsiBitsFor() function is required in the derived segment. More on FSI
management can be found in Section 5.6.5.

Optionally, the segment base class can maintain a logical page number mapping, which
provides a dense, segment-local page numbering that is robust against a reorganization of
the segment.

Enumeration of all pages in a segment can be carried out using an STL-like iterator
[47].

5.5.2 Persistent Arrays

Figure 5.6 shows an excerpt of a very simple persistent data structure interface, the Di-
rectMap segment. The DirectMap segment implements a persistent array of fixed-size ob-
jects which can be addressed using an integer index, which is also called slot number.
DirectMap segments are often used to implement object IDs, where a logical ID needs to
be mapped to an object’s physical location [24].

In addition to updating and retrieving array elements, or slots, the segment also provides
memory management for slots. The caller can allocate and release slots, and freed array

40 CHAPTER 5. STORAGE

slots are reused in future allocations. To make it possible to detect dangling references
to freed slots, each array element is assigned a small integer unique value (accessible via
unique()) that is used as part of the address. Every time a slot number is reallocated, the
unique number is increased. After

���
reallocations, the slot cannot be allocated again. By

calling recycleSlot(), a slot number may be reused by resetting its unique number.
Access to slot contents is based on copying complete slot contents from

(updateSlot()) or to (retrieveSlot()) caller-allocated buffers. This keeps the
interface simple, but incurs a performance penalty which is tolerated because the managed
objects in direct map segments, such as the physical object references mentioned above,
tend to be small.

The direct map segment’s implementation is straightforward. Dividing the slot number
by the number of slots per page determines the logical page number of a slot is determined,
which is then mapped to a PID using the segment base class’ logical page number map.
Maintenance of unique number, slot contents and free slots on each page is done by the
DirectMap page interpreter.

5.5.3 Slotted Page Segments

The most important persistent data type in Natix is the variable-length record. Collections
of such records are managed in Slotted Page Segments.

Natix basic records have the page size as their upper size limit. This is sufficient for
most uses, and allows for an optimized interface, as shown below. In all cases where
large records would have been necessary in Natix, special segment types were implemented
instead which take the semantics of the data stored in the records into account. The primary
example for this is the XML storage segment, which will be detailed in Section 5.7.

Basic Slotted Page Segments

An excerpt of the Slotted Page Segment interface is shown in Figure 5.7. There appears to
be no uniform terminology for slotted pages and related techniques, despite their popularity
in DBMS implementation [2, 38, 87, 95]. We call pages with slot tables Slotted Pages, and
use the term RID for IDs of records on such pages. By TID concept, we mean the concept
of overflow records with stable RIDs (see next section).

Records are addressed using record IDs, or RIDs, which consist of a PID and a slot
number on the page. Slot numbers are mapped to the intra-page location of the record by
the page interpreters, as explained in Section 5.4. Variable-length records are used in a lot
of different contexts in the system, and performance of the slotted page segment heavily
influences overall system performance. To allow efficient access to the records, users of
the slotted page segment can directly operate on the buffer version of the records, without
expensive copy operations or representation changes.

This has consequences for the interface. First, it is necessary to allow addressing of
records not only with their RID, but also using their buffer location. This is done using
the buffer frame from the buffer manager and the slot pointer from the respective page
interpreter. A proliferation of similar method calls is the result, since the storage system

5.6. PHYSICAL METADATA MANAGEMENT 41

also allows to give hints for the placement of new records, and since it should be possible to
first address a record with its RID, and subsequently operate directly on the buffer. Second,
there must be a way to notify the segment that the caller does not need direct access for a
certain frame any more, which is the reason for making the unfix() method public.

Not shown in Figure 5.7 are the calls that allow to partly modify a record (insertIn-
toRecord, deleteFromRecord etc.).

TID Segments

A derived variant of the Slotted Page Segment is the TID Slotted Page Segment, which
implements the TID concept of record addressing [2, 38, 87, 95]. In a TID Slotted Page
Segment, a record may grow although there is no more space on its page. In this case, the
record is moved to a different page. Even for moved records, the original RID is still a valid
way to identify the record, and the original page contains a reference to the new location.

The same interface as in the basic Slotted Page Segment is used, and the complete
redirection mechanism is hidden from the caller. Special calls and flags exist to allow
control over when buffer frames are unfixed during redirection and record relocation.

5.6 Physical Metadata Management

This section discusses Natix’s physical metadata management. Physical metadata is data
which describes how the storage management objects such as segments themselves, are
made persistent.

The most important aspect of metadata management is free space management, includ-
ing search for free space on a page, search for a free page, or search for a free extent of
pages. It is difficult to overemphasize the importance of efficient metadata management1.

Our notion of physical metadata does not include mapping of application-controlled
structures such as document collections, indexes, and document attributes such as names
and identifiers to storage manager structures. We collectively call this kind of data the
Physical Schema and deal with its management in Chapter 6.

Below, we first establish a metadata model to define more precisely what we mean by
physical metadata. The implementation of its components are explained in the remainder
of the section.

5.6.1 Object Model

Figure 5.8 shows a UML diagram depicting the classes of objects metadata management
has to deal with.

The following subsections explain how the associations in the diagram are materialized
on physical storage, as far as this is not dependant on specific segment implementations.

1Nearly every time some update workload exhibited unexpected performance behaviour in Natix, we
found that metadata processing dominated the total required time. Simple changes in metadata management
corrected the situation.

42 CHAPTER 5. STORAGE

class SEG_SlottedPageSegment : public SEG_RecordSegment
{
public:
enum UpdateFlag;
bool insertRecord(ptr_t content,

uint16 size,
RID &rid,
uint16 sizehint,
uint32 flag);

virtual bool insertRecord(ptr_t content,
uint16 size,
BufferFrameCB *&bf,
PGE_RNAL_SlottedPage::Slot *&sl,
uint16 sizehint,
uint32 flag);

virtual bool insertRecordAt(const RID& hint,
ptr_t content,
uint16 size,
RID &rid,
uint16 sizehint,
uint32 flag);

virtual bool insertRecordOnFrame(BufferFrameCB *&bf,
ptr_t content,
uint16 size,
PGE_RNAL_SlottedPage::Slot *&sl,
uint16 sizehint,
uint32 flag);

virtual bool insertRecordOnFrame(BufferFrameCB *hint,
ptr_t content,
uint16 size,
BufferFrameCB *&bf,
PGE_RNAL_SlottedPage::Slot *&sl,
uint16 sizehint,
uint32 flag);

virtual void deleteRecord(const RID &);
virtual void deleteRecord(BufferFrameCB *bf, PGE_RNAL_SlottedPage::Slot *sl);
virtual bool updateRecord(const RID &rid,

ptr_t newcontent,
uint16 size,
uint32 flag);

virtual bool updateRecord(BufferFrameCB *&bf,
PGE_RNAL_SlottedPage::Slot *&sl,
ptr_t newcontent,
uint16 size,
uint32 flag);

virtual bool updateRecord(BufferFrameCB *bf,
PGE_RNAL_SlottedPage::Slot *sl,
ptr_t newcontent,
uint16 size,
BufferFrameCB *&newbf,
PGE_RNAL_SlottedPage::Slot *&newsl,
uint32 flag);

virtual void locateRecord(const RID& rid,
BufferFrameCB*& bf,
PGE_RNAL_SlottedPage::Slot*& slot,
bool fetchExcl);

virtual RID getOriginalRID(BufferFrameCB*& bf,
PGE_RNAL_SlottedPage::Slot*& slot);

virtual void unfix(BufferFrameCB *);
};

Figure 5.7: Interface for slotted page segments

5.6. PHYSICAL METADATA MANAGEMENT 43

Segment

Instance PagePartition

Extent

Object

0..*

1

MasterSegment
ExtentTable

1..*

1

0..*

1

MasterSegment
Descriptor

1

0..*

FreeExtentSegment

0..*1
config file

(MasterSegment
Descriptor) 0..*1

0..*

FSI

1..*

Figure 5.8: Metadata object model

First, we explain how partitions are grouped into Natix instances. Then, we describe the
Master Segment, which contains information about all the segments of a partition, and
how the extents belonging to each segment are stored. The Master Segment for some
segments also contains information necessary to operate on the segments object collection,
for example a B-Tree root node pointer. The Free Extent Segment is described next, which
manages all the extents on a partition that do not belong to a segment. The section is
concluded by a discussion of the Free Space Inventory (FSI), which aids the segments
in distribution of objects on pages, by storing information about which pages do already
contain objects and how much free space they have left.

5.6.2 Partition Information

An Instance of Natix is a set of partitions with pairwise different partition numbers, which
satifies the condition that all physical object references stored on any partition in the set
refer to other partitions in the set.

An instance is specified by an external configuration file which lists all partitions, their
types, and physical locations.

Every time a new partition is created or destroyed using the partition manager, the
configuration file is updated.

44 CHAPTER 5. STORAGE

5.6.3 Master Segment

Every partition contains a Master Segment. This is a TID Slotted Page Segment whose
records describe the segments available on the partition.

Records in the master segment are of one of three record types: segment descriptors,
extent tables, or page maps.

Segment Descriptors

Each segment descriptor describes the attributes of one segment, such as the segment’s
name, type, and whether it is recoverable. It also contains references to the Extent Table
and Page Map of the segment.

The RID of a segment descriptor may be used as a unique SegmentID, and segment
descriptors are never moved because they only contain fixed-size attributes.

The Master Segment always contains page 0 of a partition, and the Master Segment
descriptor has the RID

�
����������� , where � is the partition number. This allows to mount a

partition without having to search all of its pages for the master segment.
Different segment types may have extra attributes in the segment descriptor which are

necessary to access their object collections. For example, a DirectMap segment stores its
slot size in its descriptor, and a B-Tree needs to remember the root node address.

Extent Tables

Extent Table records are used to materialize the association between a segment and its
pages.

Each extent table consists of a sequence of pairs
� � � � , each describing an extent of

length
�

starting at page

which belongs to the segment. The extents are sorted by the start
page number. This not only allows efficient extent table modifications, but also makes it
easy to scan all constituent pages of a segment in physical order.

The extent tables are of variable size and may have to be moved to separate pages when
they grow. The TID concept handles such relocations.

During insertion and removal of extents, entries are merged if possible to keep the table
small.

Currently, the size of an extent table in Natix is limited to the page size. For 8K pages,
this means that a segment may only comprise 512 extents. Since newly acquired extents
for a segment get larger with time, this is not a severe limitation. It would also be simple
to devise a multi-page B-Tree like management structure for extent tables, should the need
arise.

Page Map

If dense, segment-local logical page numbers are required for a segment, a logical page
number map is also stored. The order of pages in the Extent Table cannot be used for
logical page mapping, as extents are removed and inserted, causing new pages to appear
before older pages in the extent tables.

5.6. PHYSICAL METADATA MANAGEMENT 45

The page number map contains pairs
� � �!� � , which mean that the logical pages starting

at
�

are mapped to physical pages starting at � . The table is ordered by increasing logical
page number, allowing binary search for a logical page number. The size of each physically
contiguous block of logical page numbers can be determined by subtracting the value of

�

from the
�

value in the following entry.
The remarks about the size limit of extent tables also apply to page number maps.

5.6.4 Free Extent Segment

The Free Extent Segment maintains all the extents on a partition that currently do not belong
to any segment.

The Free Extent Segment is organized as a regular segment whose extents are all free
extents of the partition. The contents of the segment’s pages are not used. The interface
allows to efficiently find and remove an extent of a given size from the segment, and to add
extents to the segment once they are removed from other segments.

5.6.5 Free Space Inventory

To facilitate intra-segment free space management, a Free Space Inventory (FSI) is used.
This special segment type allows to store and quickly access a small (4-Bit) value for every
page in a partition. For a partition with

�
pages and page size � , only

�
� � pages are needed

to store the complete FSI. This tremendeously reduces I/O overhead for a free space search
within the segment. Most existing DBMS possess such a data structure [65, 55].

All of the FSI management is handled by the segment class hierarchy. No other system
modules are involved. The actual meaning of the 4-Bit-values depends on the segment
type. Usually, the FSI at least contains information about whether a page has already been
formatted, or is still uninitialized.

We will now give some details on the FSI Segment itself, then describe the FSI infras-
tructure provided in the segment base class, and finally exemplify FSI usage in a concrete
segment type, the Slotted Page Segment.

FSI Segment Interface

The FSI Segment has an array-like interface which allows to read and write FSI values for
any given page. Apart from simple read/write access, methods are provided to search a
range of pages for ones with a specified range of FSI values, and to atomically test-and-set
FSI values.

Automatic Maintenance

The segment base class simplifies FSI management for concrete segment types by provid-
ing a framework (using the Strategy pattern described in Gamma et al. [30]) which only
makes it necessary to refine two small methods to keep the FSI in sync with the data pages’
contents.

46 CHAPTER 5. STORAGE

The first method to refine is the fsiBitsFor() method from the segment base class
(Section 5.5.1). Given a page interpreter, a concrete segment type must return the FSI value
it wants to use for that page.

The other method to refine is the initialization method of the segment’s PageOb-
jectFactory. It is called by the buffer manager whenever a page was loaded into the
buffer and an initialized page interpreter is needed for that page. Apart from provid-
ing the interpreter pointer as described in Section 5.3, the factory must initialize the
recordedFreeSpaceInfo() value of the page interpreter (Section 5.4) with the cur-
rent FSI value of the page. To avoid extra I/O, the current value is not read from the FSI
segment, but calculated from the current page state using fsiBitsFor().

After a page was modified and unfix() is called, the segment base class
checks whether the newly calculated fsiBitsFor() result is different from
recordedFreeSpaceInfo(). If so, the FSI segment is updated. This mechanism
already provides the necessary synchronization. Since a page update requires an exclusive
latch, the order of FSI updates is the same as the order of the original updates.

Allocation and Deallocation

To avoid unnecessary I/O, it is desirable to know which pages of a segment actually contain
meaningful data. When a page is used for the first time, it is unnecessary to load it into
memory, any buffer frame can be assigned to it instead. Also, if no relevant data is on a
page any more, it is not necessary to write it back to disk.

While each concrete segment type could use its own scheme to detect properly format-
ted pages and meaningful pages, they currently all use the facilities offered by the segment
base class.

The default scheme reserves two values from the
� � possible FSI values for each page.

The value 0 designates a page that is not used and may not be considered formatted. The
value 1 is used for a page that is in the process of being allocated and formatted, but may
not be used yet. All other values may be used by the concrete segment implementation as
desired.

Segment growth When the grow() method of a segment is called and a new extent is
added to the segment, all FSI values for the new pages are initialized to 0.

Also, the new extent is rembered as the freshExtent in the segment’s main memory
object.

Allocation When a new page is requested by a call to allocatePage(), the segment
looks for an unallocated page. The pages described by the segment’s freshExtent are
searched first. Then, the extents in the extent table are searched from last to first.

For each extent, the FSI segments range search is employed to find a page with FSI
value 0. The FSI segments testAndSet() call is used to set it to 1, indicating that it is
going to be formatted. If this call fails because some other thread is trying to allocate the
page, the search is continued. If no page is found, a new extent is requested from the free

5.6. PHYSICAL METADATA MANAGEMENT 47

extent pool. If the page was taken from freshExtent, the freshExtent is shrinked
accordingly. The PID of the newly allocated page is returned.

A concrete segment implementation may then call getFrame() to obtain a buffer
frame for the page, and format it. The 1 value in the FSI prohibits any other thread to get
a frame and format the same page in between the first thread’s allocatePage() and
getFrame() calls, avoiding extra latches or locks to synchronize allocation, as needed
for example by Mohan et al. [65]. If there was no special value for allocated, but unformat-
ted pages, then other threads might think the page is already formatted, and fetch() it
before the original thread had a chance to getFrame() and format() the page.

The domain of the recordedFreeSpaceInfo field is a superset of the
actually assigned FSI values. Currently, Natix uses 4-Bit FSI values and
recordedFreeSpaceInfo is 8 bit wide. When formatting a new page, the
recordedFreeSpace info of the page interpreter is set to a value outside the range
normally used by FSI management. This causes the FSI update mechanism to trigger when
the newly allocated page is unfixed, and to update the FSI from 1 to the proper value. The
FSI value is not updated until the page is unfixed and the allocating thread has completed
its work on the new page. This avoids blocking other threads which would otherwise find
the newly formatted page and try to insert records on it while the original thread is still
updating it. This is especially advantageous in SMP systems.

Deallocation When a delete operation leaves behind a completely empty page, the seg-
ment may set the page interpreter’s invalid flag (Section 5.4). When the unfix()
call is invoked for an invalid page, it’s FSI value is set to 0 and the buffer manager’s
invalidateUnfix() routine is called, which drops the page from the buffer without
writing it.

Shrinking segments Before a segment’s extent is returned to the Free Extent Segment,
all its pages’ FSI values are set to

�
, to prevent other threads from allocating pages from

the extent which is currently being removed.

Slotted Page Segment Free Space Management

The Slotted Page Segments use a simple mapping from free space on a page to FSI values.
As explained above, if the page is free, the FSI value is 0. If the page is being allocated,
the value is 1. If a page is formatted and more than half of the page is free, the FSI value is

�
. If less than half of the page is free, but at least one fourth of the page is free, � is used.

If at least one eigth of the page is free, � is used, and so on. This mapping allows to reflect
large and small amounts of free space with suitable accuracy.

When a new record has to be inserted, the segment first checks the provided hint page
(Figure 5.7) whether there is enough space. If not, the segments extents are scanned in
last-to-first order, using the FSI segment to search for a first-fit, i.e. a page which has at
least as much free space as the record size. First-fit is employed to reduce the I/O overhead
until a page is found. The designated page is fetched and an attempt to insert the record

48 CHAPTER 5. STORAGE

is performed. If it is not successful because some other thread has used the free space, the
search is continued.

The attempt to insert the record rechecks the FSI information for the page after the
fetch() call, because it is possible that the page was deallocated in between the FSI
search and the successful fetch() call. In this case, the page is immediately dropped
from the buffer and the search continues.

The FSI search is a hot spot of the system, and all segments of a partition compete
for the pages of the same FSI segment. To reduce contention the slotted page segment
maintains a small FSI cache, which contains the FSI values of the most recently updated
pages. Before searching the FSI segment, this segment-local cache is searched. When
searching the cache, a best-fit search is employed that starts with the largest matching FSI
value and successively decreases the desired FSI value until a page is found. This is done
because the segment can expect the pages in the FSI cache to be in the buffer as they have
been referenced not long ago.

While a page is fixed, it does not appear in the FSI cache, to prevent processors in SMP
systems from simultaneously trying to access the same page, causing one of them to block.

Usage of the FSI cache not only reduces the load on the FSI segment, but also increases
locality of page accesses, as it selects pages for update that have recently been in use.

Callers of the Slotted Page Segment may limit the free space search effort by providing
flags to the update calls. For example, the caller can request that a new page is to be
allocated for a new record, without doing free space search. It is also possible to limit the
search to the FSI cache before allocating a page, instead of performing a full-blown search
in the FSI segment.

5.7 XML Storage

One of the core segment types in Natix is the novel XML storage segment, which manages
a collection of XML documents. Before detailing the XML storage segment, we briefly
survey existing approaches to store XML documents.

Flat streams In this approach, the document trees are serialized into byte streams, for
example by means of a markup language. For large streams, some mechanism is used to
distribute the byte streams on disk pages. This can be a file system, or a BLOB manager in
a DBMS [4, 14, 52]. This method is very fast when storing or retrieving whole documents
or big continuous parts of documents. Accessing the documents’ structure is only possible
through parsing [1].

Metamodeling A different method is to model and store the documents or data trees
using some conventional DBMS and its data model [20, 29, 49, 56, 79, 82, 89, 91].

In this case, the interaction with structured databases in the same DBMS is easy. On
the other hand, reconstructing a whole document or parts of it is slower than in the previous
method. Other representations require complex mapping operations to reproduce a textual
representation [82], even duplicate elimination may be needed [20].

5.7. XML STORAGE 49

Mixed In general, the meta-modeling approach introduces additional layers in the DBMS
between the logical data and the physical data storage, slowing the system down. Conse-
quently, there are several attempts to merge the two ”pure” methods above. In redundancy-
based approaches, to get the best of both worlds, data is held in two redundant reposito-
ries, one flat and one metamodeled [96] (A similar approach is also proposed in Florescu
et al. [29] to speed up document export). Updates are propagated either way, or only al-
lowed in one of the repositories. This allows for fast retrieval, but leads to slow updates and
incurs significant overhead for consistency control. In hybrid approaches, a certain level
of detail of the data is configured as threshold. Structures coarser than this granularity live
in a structured part of the database, finer structures are stored in a ”flat object” part of the
database [7].

Natix native storage Natix uses a novel native storage format with the following dis-
tinguishing features: (1) Subtrees of the original XML document are stored together in
a single (physical) record (and, hence, are clustered). Thereby, (2) the inner structure of
the subtrees is retained. (3) To satisfy special application requirements, their clustering
requirements can be specified by a configuration matrix. Performance impacts of different
clusterings are evaluated in Section 5.8.

We now turn to the details on design and implementation of Natix’s XML storage. We
start with the logical document data model used by the XML segment to work with docu-
ments, and the storage format used by the XML page interpreters to work with document
fragments that fit on a page. Then, we show how the XML segment type maps logical
documents that are larger than a page to a set of document fragments possibly spread out
on different disk pages. Finally, we elaborate on the maintenance algorithm for this storage
format, explaining how to dynamically split records when trees grow, and how to tune the
maintenance algorithm for special access patterns.

5.7.1 Logical Object Model and Segment Interface

In the interface and implementation of our XML storage method, we use a simple labelled
tree model similar to existing semi-structured data models [13, 56, 70]. Our model sim-
plifies the implementation of our segment type and increases performance, as we replace
some string comparisons by integer comparisons. Since the mapping from XML to our
internal model is a simple injective function, there is very little overhead.

After describing our logical object model and the segment interface, we will show how
to map XML document nodes and tag names onto our model.

Logical Document Object Model

The XML segment’s interface allows to access an unordered set of trees. New nodes can
be inserted as children or siblings of existing nodes, and any node (including its induced
subtree) can be removed.

The individual documents are represented as ordered trees with non-leaf nodes labeled
with a symbol taken from an alphabet � Tags. In the current implementation, we use the set

50 CHAPTER 5. STORAGE

of integers � ����� � ��� # �
as � Tags.

Leaf nodes can, in addition to a symbol from � Tags, be labeled with arbitrarily long
strings over a different alphabet. In the current implementation, leaf nodes may be labeled
using Unicode strings.

Segment Interface

The interface used to access the labeled tree forest in an XML segment is shown in Fig-
ure 5.9.

Nodes can be addressed using a Node ID, or NID, which is a physical identifier consist-
ing of a page number, a slot number and an offset into the physical record. NIDs are not
stable against modification of the document tree.

To work with documents, the segment provides TreeNodeHandles, which represent ref-
erences to tree nodes. The data type used for tree labels is called DeclarationID. Apart
from navigation inside a tree, and content access, the segment also supports enumeration
of all documents in the forest using STL-like iterators [47].

Upon creation of a new document (using the first form of create()), the caller has
to assign a logical document ID which can then be efficiently retrieved for every node. The
second form of create() adds a node to an existing document by providing a reference
node and a relative insertion location (add as last child, as right sibling or as left sibling
of the reference node). The implementation of this function is detailed in Section 5.7.5.
If a document is modified, all existing TreeNodeHandles for the same document become
invalid, with the exception of the handle used to denote the point of insertion and the handle
of the newly created node.

5.7.2 Mapping XML to the Logical Object Model

A small wrapper class is used to map the XML model with its node types and attributes to
the simple tree model and vice versa. A sample tree for a document fragment is shown in
Figure 5.10.

Mapping XML Document Nodes to Logical Nodes

Elements are mapped one-to-one to tree nodes of the logical data model. Attributes are
mapped to child nodes of an additional attribute container child node, which is always the
first child of the element node the attributes belong to. Attributes, PCDATA, CDATA nodes
and comments are stored as leaf nodes, using reserved integer values as node label.

External entity references are expanded during import, while retaining the name of the
referenced entity as a special internal node.

Mapping XML Tags to Tree Labels

The wrapper uses a separate segment to map tag and attribute names to integers, which are
used as � Tags. All the documents in one XML segment share the same mapping, which

5.7. XML STORAGE 51

class SEG_XMLSegment : public SEG_SlottedPageSegment
{
public:
class TreeNodeHandle ;

TreeNodeHandle open(NID, bool exclusive);
static void release(const TreeNodeHandle &n);

NID nid(const TreeNodeHandle &) const;
const DocumentID &documentID(const TreeNodeHandle &) const;

bool isValid(const TreeNodeHandle &) const;
bool isEmpty(const TreeNodeHandle &) const;
bool isLiteral(const TreeNodeHandle &) const;
bool isLargeLiteral(const TreeNodeHandle &tnh) const
TreeNodeHandle child(const TreeNodeHandle &);
TreeNodeHandle child(const TreeNodeHandle &, uint32 n);
TreeNodeHandle lastChild(const TreeNodeHandle &);
TreeNodeHandle next(const TreeNodeHandle &);
TreeNodeHandle nextPreorder(const TreeNodeHandle &root,

const TreeNodeHandle &tnh);
TreeNodeHandle nextPreorder(const TreeNodeHandle &root,

const TreeNodeHandle &tnh,
int32 &navigation);

TreeNodeHandle prev(const TreeNodeHandle &);
TreeNodeHandle parent(const TreeNodeHandle &tnh);
void markModified(const TreeNodeHandle &tnh)
bool remove(TreeNodeHandle &);
DeclarationID declarationID(const TreeNodeHandle &tnh) const
uint32 contentSize(const TreeNodeHandle &tnh);
ptr_t contents(const TreeNodeHandle &tnh) const;
void contents(const TreeNodeHandle &tnh, ptr_t dest);

class documentIterator ;
documentIterator beginDocuments(bool exclusive, uint32 prefetch=0);
documentIterator endDocuments();

TreeNodeHandle create(const DocumentID &docid,
DeclarationID id,
bool leaf,
uint32 contentsize,
cptr_t content,
uint32 sizehint);

TreeNodeHandle create(TreeNodeHandle &,
InsertionLocation l,
DeclarationID,
bool leaf,
uint32 contentsize,
cptr_t content,
uint32 sizehint);

};

Figure 5.9: XML Segment Interface

52 CHAPTER 5. STORAGE

<SPEECH>
<SPEAKER character=’famous’>OTHELLO</SPEAKER>
<LINE>Let me see your eyes;</LINE>
<LINE>Look in my face.</LINE>
</SPEECH>

SPEECH

SPEAKER

AttrContainter

character
’famous’

PCDATA
OTHELLO

LINE

PCDATA
Let me see your eyes;

LINE

PCDATA
Look in my face.

Figure 5.10: A fragment of XML with its associated logical tree

makes query evaluation simpler and more efficient because the possible integer values for
a given tag or attribute name can be resolved once per query and stay the same for all
documents in the segment. We call the integer labels DeclarationIDs.

The interface of this so-called Declaration Table segment is shown in Figure 5.11.
It is derived from the regular slotted page segment and contains a relation with schema����� ���(� � ���*	������ � � ����� ������� � � � namespaceID � baseID � , where

qualified name is the tag name, possibly including a namespace prefix,

entry type indicates whether the entry describes an element type, attribute type, or a
namespaces,

namespaceID contains the DeclarationID of the namespace this entry belongs to, and

baseID contains the DeclarationID of an entry with the same tag name, but without a
namespace prefix.

In addition to simple insertions and lookups, the declaration table allows small queries
that result in DeclarationID sets. Such queries can return all DeclarationIDs for
a given tag name, namespace, and/or entry type. Wildcards can be specified in form of null
values, for example to express the query ”return all elements in a given namespace”.

Namespaces Namespaces can also be entered into the declaration table. There is one
entry for each namespace. The DeclarationID of this entry identifies the names-
pace. Every element or attribute entry in the table contains this DeclarationID as
namespaceID. For namespace entries, the namespace URL (see Section 2.2) is used as a
name, and the namespaceID is unused.

5.7. XML STORAGE 53

class SEG_DeclarationTable : public SEG_SlottedPageSegment
{
public:
class entryIterator;
enum EntryType
{

DET_UNDEFINED,
DET_ELEMENT,
DET_ATTRIBUTE,
DET_NAMESPACE

};
class DeclarationTableCB;
class TableEntry
{

friend class SEG_DeclarationTable;
cstring_t qname_mutable() const;

public:
DeclarationID declarationID() const;
DeclarationID baseID() const;
ccstring_t qname() const;
EntryType entryType() const;
DeclarationID namespaceID() const;

};

DeclarationTableCB *provideCB();
void releaseCB(DeclarationTableCB *cb);

DeclarationID addEntry(DeclarationTableCB *cb,
DeclarationID namespaceid,
ccstring_t qname,
EntryType entrytype
);

void removeEntry(DeclarationTableCB *cb);

TableEntry *resolve(DeclarationTableCB *cb, DeclarationID id);
DeclarationID getEntry(DeclarationTableCB *cb,

DeclarationID ns, ccstring_t qname, EntryType entrytype);
DeclarationID lookupEntry(DeclarationTableCB *cb,

DeclarationID ns, ccstring_t qname, EntryType entrytype);

class DeclarationSet;
DeclarationSet *queryBaseName(DeclarationTableCB *cb,

DeclarationID ns, ccstring_t qname, EntryType entrytype);
void releaseDeclarationSet(DeclarationTableCB *cb, DeclarationSet *cb);

};

Figure 5.11: Declaration table interface

54 CHAPTER 5. STORAGE

Due to the prefix notation for namespaces, every tag name can appear with several dif-
ferent qualified names, even in the same document. For each such combination of qualified
name and namespace, a separate entry in the table exists because the exact appearance of a
document must be recreatable. For every combination of unqualified tag name and names-
pace, there is exactly one normalized entry, which is the version of the tag without prefix.
All entries for that combination refer to this normalized entry with their baseID field.

Implementation Mapping from DeclarationID to entry is performed using a simple
array. Tuples of

� ��� ���(� � �!�*	������ � � ����� �� � � � � � ����� ������� � � � are mapped to a declarationID
using a hash table.

Queries are evaluated using scans of the tables. Since the buckets for the hash tables are
based on the prefixless part of the names, queries for all DeclarationIDs of a certain
tag in a certain namespace can be answered by simply scanning one hash bucket.

The result of such declaration table queries are sets of DeclarationIDs. The
predominant operation on such a set is a containment query, asking whether a certain
DeclarationID is present in the set. This is required for example when processing
an XPath node test (Section 2.3), where nodes qualify only when they have a certain tag
name. Since the tag name can appear with several different namespace prefixes, a node test
translates into a containment test for a DeclarationID set.

The sets are represented as simple integer arrays. Typical small ID sets occupy only
a single processor cache line. Thus, the common containment tests can be answered very
fast.

Caching Translation between names and IDs is a hot spot, especially during bulkload
or other update-heavy transactions, and during document export. The resulting dynamic
memory management and synchronization can easily dominate the processing time.

As a remedy, to interact with the declaration table, a caller must first obtain a Decla-
ration Table control block (provideCB()). All dynamic memory management is tied to
this control block. Result pointers point to objects in a special memory area which is valid
only until the control block is released. This reduces the burden on the dynamic memory
manager.

The declaration table also builds control-block-local translation tables in main memory,
which can be accessed without synchronization from a thread. Only if a local lookup fails,
the global tables are accessed using synchronization2.

This technique decreases the time spent for ID translation into insignificance.

2Removing single entries from the declratation table is not supportet yet. To do so, some kind of reference
counting would have to be introduced to ascertain that there are no documents any more using the deleted
entry. This is very expensive, and hence the declaration table is only completely erased when there are no
documents at all.

5.7. XML STORAGE 55

Logical tree

� �

� � �
�

�
�

�
�

�
�

���

Physical tree

���
� �

� �

��� ��	 ��

� �

� � �
�

� �

� �

��� �� ���

Figure 5.12: One possibility for distribution of logical nodes onto records

5.7.3 Physical Object Model

Typical XML trees may not fit on a single disk page. Hence, document trees must be
partitioned. Typical BLOB (binary large object) managers achieve this by splitting large
objects at arbitrary byte positions [4, 14, 52]. We feel that this approach wastes the available
structural information. Thus, we semantically split large documents based on their tree
structure.

We partition the tree into subtrees, in which Proxy nodes are used to refer to connected
subtrees not stored in the same record. Their contents is the RID of the record containing
the subtree they represent. Substituting all proxies by their respective subtrees reconstructs
the original data tree.

A sample is shown in Figure 5.12. To store the given logical tree (which, say, does not
fit on a page), the physical data tree is distributed over the three records

� � � � � and
�
� . Two

proxies (� � and � �) are used in the top level record. Two helper aggregate nodes (
� � and� �) have been added to the physical tree. They group the children below � � and � � into a

tree. Proxy and helper aggregate nodes are only needed to link together subtrees contained
in different records.

Physical nodes drawn as dashed ovals like the proxies � � �)� � and the helper aggregates� � � � � , needed only for the representation of large data trees, are called scaffolding nodes.
Nodes representing logical nodes (

� �) are called facade nodes. Only facade nodes are
visible to the caller of the XML segment interface.

The sample physical tree is only one possibility to store the given logical tree. More
possibilities exist since any edge of the logical tree can be represented by a proxy. Sec-
tions 5.7.7 and 5.7.5 describe how to partition logical trees into subtrees fitting on a page.
The following section will explain how the individual subtrees are materialized.

56 CHAPTER 5. STORAGE

5.7.4 XML Page Interpreter

To store a logical tree in our XML segment, we partition it into subtrees (see Section 5.7.3).
Each subtree is stored in a single record and, hence, must fit on a page. This section
describes the interface and storage format used for subtrees on a page, as implemented in
our XML page interpreters.

We first present a model of the subtree data, specify an interface to manipulate such
trees, and then provide details about the storage format.

Physical Subtree Model

Each subtree represents part of a logical tree as defined in Section 5.7.1. In addition to
leaves labelled with strings, physical subtrees also contain another kind of leaf node, which
is labelled with references to other subtrees.

Every subtree also has two additional attributes. A parent record RID points to the
parent subtree (if it exists), and a logical document ID field allows to determine which
document this subtree belongs to.

Classified by their contents, there are three types of nodes in subtrees:

Aggregate nodes represent inner nodes of the logical tree.

Literal nodes represent leaf nodes of the logical tree and contain text strings.

Proxy nodes are subtree leaf nodes which point to other records. They are used to link
trees together that were partitioned into subtrees (see 5.7.3).

Interface

In the XML Page Interpreter Interface (Figure 5.13), subtree nodes are addressed using a
combination of a Slot pointer, which denotes the subtree on the page, and a pointer to
the current main memory buffer location of the node. A direct pointer is used instead of
an offset into the slot to avoid extra computation steps when accessing the node. The slot
pointer could be derived from the node pointer, but is still required as argument to avoid a
lookup in the slot table of the page.

Mapping from slots to slot numbers, iterating over a page’s records and other elemen-
tary page functions are inherited from the Slotted Page interpreter, from which the XML
page interpreter is derived.

Updates The interface allows to create new subtrees (createStandalone()), create
nodes in subtrees (createEmbedded()), and remove nodes or complete subtrees
(remove()). New nodes are specified using their ContentType (Literal, Aggregate
or Proxy, see above), their LogicalType (node label), a facade flag (see next section),
and optionally some contents for leaves. When creating a new subtree, an arbitrary
documentID to which the subtree belongs and the parent RID may also be speci-
fied. While in general, no updates are allowed except removing and reinserting nodes,
subtree pointers form an exception to allow relocation of subtrees. Both the parent

5.7. XML STORAGE 57

class PGE_XMLPage : public PGE_RAL_SlottedPage
{
public:

typedef uint8 ContentType;
enum PhysicalNodeType ;

public:
virtual void format();
virtual ptr_t createStandalone(Slot *&s,

const RID &parent,
const DocumentID &id,
bool facade,
LogicalType lt,
ContentType ct,
uint16 contentsize,
cptr_t content=0);

virtual ptr_t createEmbedded(Slot *s,
ptr_t &node,
InsertionLocation il,
bool facade,
LogicalType lt,
ContentType ct,
uint16 contentsize,
cptr_t content=0);

virtual bool remove(Slot *s, ptr_t &node);
virtual void standaloneParent(Slot *,const RID &r);
virtual void proxyTarget(Slot *s, ptr_t,const RID &r);

const DocumentID &standaloneDocumentID(Slot *) const;
const RID &standaloneParent(Slot *) const;

ContentType contentType(Slot *, ptr_t) const;
LogicalType logicalType(Slot *, ptr_t) const;
bool hasContents(Slot *s, ptr_t) const;
bool isAggregate(Slot *s, ptr_t) const;
bool isEmbedded(Slot *s, ptr_t) const;
bool isFacade(Slot *s, ptr_t) const;
uint16 nodeSize(Slot *s, ptr_t) const;

ptr_t contents(Slot *s, ptr_t) const;
uint16 contentSize(Slot *s, ptr_t) const;
const RID &proxyTarget(Slot *s, ptr_t) const;

uint16 offset(Slot *,ptr_t) const;
ptr_t node(Slot *, uint16) const;
ptr_t rootNode(Slot *) const;

ptr_t parent(Slot *s,ptr_t) const;
ptr_t next(Slot *s,ptr_t) const;
ptr_t nextPreorder(Slot *s,ptr_t) const;
ptr_t nextPreorder(Slot *s,ptr_t, int32 &navigation) const;
ptr_t prev(Slot *s,ptr_t) const;
ptr_t child(Slot *s,ptr_t) const;
ptr_t findProxyFor(Slot *s,ptr_t,const RID &);

};

Figure 5.13: XML page interpreter interface

58 CHAPTER 5. STORAGE

A

B

C

PCDATA
Foobar D

Header A Header B Header C PCDATA header Foobar Header D

Figure 5.14: A small logical tree and its record representation

pointer (standaloneParent()) and proxy targets (proxyTarget()) may be
modified.

Attributes Access methods for subtree-level attributes (standaloneParent(),
standaloneDocumentID()) and node-level attributes exist.

Addressing The functions offset() and node() allow translation of current buffer
addresses to intra-record offsets to create NIDs. The rootNode() function returns
the address of a subtree’s root node.

Navigation The navigation functions allow to access the neighbors of a node in the tree
structure and to scan a subtree in preorder. The findProxyFor() function returns
the proxy with a given pointer value.

Implementation

The storage format for subtrees needs to be as compact as possible. Since we augment
the original XML data with additional structural information to allow navigation, there is
the danger of increasing the space requirements to a point where the positive effect of the
structural information is outweighed by the increased I/O overhead.

To keep our representation small and efficient, it is based on two main ideas.
First, we embed descendants into their ancestor nodes (Figure 5.14), and keep them

sorted in document order. As a result, we do not need to store child pointers, because an
internal node’s first child is located at the beginning of the internal node’s contents. We also
do not need additional ordering information, as the nodes are already sorted in preorder,
which is at the same time a very common access order when processing queries. Next
sibling pointers are also not required, as adding a node’s size to its start address gives the

5.7. XML STORAGE 59

next node in preorder. If that node points to the same parent, its the next sibling, otherwise
the node is the last child of its parent.

Second, for the individual subtrees, distances between nodes have an upper limit, the
page size. This optimizes the representation of the remaining intra-subtree pointers, as the
node size and parent pointers only consume 2 bytes each, if a typical page size smaller than
64K is used. Hence, a node header in Natix consists of a 3-Bit ContentType, a 2 byte node
size, a 2 byte parent pointer, and a 2 byte logical type. The remaining bits of the byte used
to hold the content type can be used to store the facade flag and other flags (for example, the
fresh flag for Subsidiary Logging, see Section 7.6). Together with an unused extra padding
byte this results in a header size of 8 byte for an embedded node.

Note that storing vanilla XML markup with only a 1-character tag name (<X> ����� </X>),
for example, already needs 7 bytes! On average, XML documents inside Natix consume
about as much space as XML documents stored as plain files in the file system.

5.7.5 Updating Documents

In this section, we present Natix’s algorithm for the dynamic maintenance of physical trees,
i.e. the implementation of the segment’s second create() call from Figure 5.9. The
principal problem addressed is that a record containing a subtree grows larger than a page.
In this case, the subtree has to be partitioned into several subtrees, each fitting on a page.
Scaffolding nodes (proxies and maybe aggregates) have to be introduced into the physical
tree to link the new records together.

To better understand the split algorithm, it is useful to view the partitioned tree as an
associative data structure for finding leaf nodes. We will first explain this metaphor and
afterwards use it to detail our algorithm. Possible extensions to the basic algorithm and a
flexible configuration mechanism to adapt it to special applications conclude this section.

Multiway Tree Representation of Records

A data tree that has been distributed over several records can be viewed as a multiway tree
with records as nodes. Each record contains a part of the logical data tree. In the example
in Figure 5.15,

�
� is blown up, hinting at the flat representation of the subtree inside record�

� . The references to the child records are proxy nodes.
If viewed this way, our partitioned tree resembles a B-Tree structure, as often used by

traditional large object managers. The particularity is that the “keys” are not taken from a
simple domain like integers or strings, but are based on structural features of the data tree.
Nevertheless, this analogy gives us a familiar framework to describe the algorithms used to
maintain the clustering of our records.

Algorithm for Tree Growth

Insertion into a Natix XML tree proceeds as follows. We determine the position where the
new node has to be inserted, and if the designated page does not have sufficient space, the
record is split. We explain the steps in detail.

60 CHAPTER 5. STORAGE

� �

� �

�
�

Proxy
Proxy Proxy��� ��� ���

� � �
�

� �

�
�

�
�

�
�

�	� � ��

Figure 5.15: Multiway tree representation of records

� �

��

�
�

� � �
�

� �

� � ��

�
�

� � �
�

�
�

�	�

�
�

�
�

Figure 5.16: Possibilities to insert a new node
���

into the physical tree

5.7. XML STORAGE 61

� �

� �

�
�

�
�

�
�

�
�

���

�
�

� �

� ��

� � � � � �

� � �
� � �

�

�

�

�

Figure 5.17: A record’s subtree before a split occurs

1. Determining the Insertion Location To insert a new node
� �

into the logical data tree
as a child node of

� � , it must be decided where in the physical tree the insert takes place.
In the presence of scaffolding nodes, there may exist several alternatives, as shown by the
dashed lines in Figure 5.16: the new node

���
can be inserted into

� �
,
�
� , or

�
� . In Natix, this

choice is determined by the split matrix (see below).

2. Splitting a record Having decided on the insertion location, it is possible that the
designated record’s disk page is full. First, the system tries to move the record to a page
with more free space. If this is not possible because the record as such exceeds the net page
capacity, the record is split by executing the following steps:

(a) Determining the separator Suppose that in Figure 5.16 we add
� �

to
�
� , which cannot

grow. Hence,
�
� must be split into at least two records

���
� and

��� �
� , and instead of � � in

the parent record
� �

, we need a separator with proxies pointing to the new records to
indicate where which part of the old record was moved.

In B-Trees, a median key partitioning the data elements into two subsets is chosen
as separator. In our XML segment, the data in the records are not one-dimensional,
but tree-structured. Our separators are paths from the subtree’s root to a node

	
.

The algorithm removes this path from the tree. The remaining forest of subtrees is
distributed onto new records.

Figure 5.17 shows the subtree of one record just before a split. It is partitioned into a
left partition � , a right partition � , and the separator 	 . This separator will be moved
up to the parent record, where it indicates into which records the descendant nodes
were moved as a result of the split operation.

The node
	

uniquely determines this partitioning (in the example,
	�
 � �

): The
separator 	
� � � � � ��� consists of the nodes on the path from

	
to the subtree’s root.

Note that
	

is excluded. The subtree induced by
	
, the subtrees of

	
’s right siblings,

and all subtrees below nodes that are right siblings of nodes in 	 comprise the right
partition (in the example, �
�� � � � � � ������� � � � � �). The remaining nodes comprise the
left partition (in the example, �
 � � ������� � � �).

62 CHAPTER 5. STORAGE

(a) ��� � ��� ��� � ���
� �

�
�

�
�

�
�

� �

�
�

� �

� ��
 � � � � � �
� � �

� � �

(b) � � �

	 � �
�

	 � 	
�

	
�

�
���� ���

(c)
� �

�
�

�
�

�
� � �

���

�
�

� �

� ��

� �

� � � � � �
� � �

� � �

 �
 �

�

�� �

Figure 5.18: Record assembly for the subtree from Figure 5.17

5.7. XML STORAGE 63

Hence, the split algorithm must find a node
	
, such that the resulting � and � are

of roughly equal size. Actually, the desired ratio between the sizes of � and � is a
configuration parameter (the split target), which can, for example, be set to achieve
very small � partitions to prevent degeneration of the tree if insertion is mainly on
the right side (as when creating a tree in pre-order from left to right). Another con-
figuration parameter available for fine-tuning is the split tolerance, which states how
much the algorithm may deviate from this ratio. Essentially, the split tolerance spec-
ifies a minimum size for

	
’s subtree. Subtrees smaller than this value are not split,

but completely moved into one partition to prevent fragmentation.

To determine
	
, the algorithm starts at the subtree’s root and recursively descends

into the child whose subtree contains the physical ”middle” (or the configured split
target) of the record. It stops when it reaches a leaf or when the size of the subtree in
which it is about to descend is smaller than allowed by the split tolerance parameter.

In the example in Figure 5.17, the size of the subtree below
� �

was smaller than
the split tolerance, otherwise the algorithm would have descended further and made	
 � �

part of the separator.

(b) Distributing the nodes onto records Consider the partitioning implied by node
	

� �
(Figure 5.17). The separator is removed from the old record’s subtree, as in Fig-

ure 5.18(a). In the resulting forest of subtrees, root nodes in the same partition that
were siblings in the original tree are grouped under one scaffolding aggregate. In Fig-
ure 5.18(c), this happened at nodes

� � and
� � . Each resulting subtree is then stored

in its own record. These new records (
� � ����� � � � �) are called partition records.

(c) Inserting the separator The separator is moved to the parent record — by recursively
calling the insertion procedure — where it replaces the proxy which referred to the
old, unsplit record. If there is no parent record, as in Figure 5.18(b), the separator
becomes the new root record of the tree. The edges connected to the nodes in the
partition records are replaced by proxies ��� . Since children with the same parent are
grouped in one scaffolding aggregate, for each level of the separator a maximum of
three nodes is needed, one proxy for the left partition record, one proxy for the right
partition record, and one separator node.

To avoid unnecessary scaffolding records, the algorithm considers two special cases:
First, if a partition record consists of just one proxy, the record is not created and the
proxy is inserted directly into the separator. Second, if the root node of the separator
is a scaffolding aggregate, it is disregarded, and the children of the separator root are
inserted in the parent record instead.

3. Inserting the new node Finally, the new node is inserted into its designated partition
record.

The splitting process operates as if the new node had already been inserted into the old
record’s subtree, for two reasons. First, this ensures enough free space on the disk page of

64 CHAPTER 5. STORAGE

the new node’s record. Second, this results in a preferable partitioning since it takes into
account the space needed by the new node when determining the separator.

5.7.6 The Split Matrix

It is not always desirable to leave full control over data distribution to the algorithm. Spe-
cial application requirements have to be considered. It should be possible to benefit from
knowledge about the application’s access patterns.

If parent-child navigation from one type of node to another type is frequent in an ap-
plication, we want to prevent the split algorithm from storing them in separate records. In
other contexts, we want certain kinds of subtrees to be always stored in a separate record,
for example to collect some kinds of information in their own physical database area or to
enhance concurrency.

To express preferences regarding the clustering of a node type with its parent node type,
we introduce a split matrix as an additional parameter to our algorithm:

The split matrix 	 consists of elements
 ��� � � ����� � Tags. The elements express the

desired clustering behavior of a node � with label � as children of a node
�

with label
�
:

 ���

���������	 ��������

� � is always kept as a stan-
dalone record and never
clustered with

�

� � is kept in the same record
with

�
as long as possible�������� the algorithm may decide

The algorithm as described above acts as if all elements of the split matrix were set to
the value other.

It is easily modified to respect the split matrix. When moving the separator to the parent,
all nodes � with label � under a parent

�
with label

�
are considered part of the separator

if
 ���
 � , and thus moved to the parent. If

 ���
 � , such nodes � are always created as
a standalone object and a proxy is inserted into

�
. In this case, � is never moved into its

parent as part of the separator, and treated like the root record for splitting purposes.
We also use the split matrix as the configuration parameter for determining the insertion

location of a new node (see Section 5.7.5): When a new node � (label �) should be inserted
as a child of node

�
(label

�
), then if

 ���
 � , � is inserted into the same record
�

. If ���
 �������� , then the node is inserted on the same record as one of its designated siblings
(wherever more free space exists). If

 ���
 � , � is stored as the root node of a new record
and treated as described above.

Finally, the Split Matrix is also obeyed during bulkloads. New subtrees are not only
created when the current subtree is full, but also when the Split Matrix dictates that the new
node has to be stored in a separate subtree.

The split matrix is an optional tuning parameter: It is not needed to store XML docu-
ments, it only provides a way to make certain access patterns of the application known to
the storage manager. The “default” split matrix used when nothing else has been specified
is the one with all entries set to the value other.

5.7. XML STORAGE 65

As a side effect, other approaches to store XML and semistructured data can be viewed
as instances of our algorithm with a certain form of the split matrix [48].

Another aspect we will not detail here is that concurrency control is based on physical
records [77], and by forcing certain elements or attributes to be stored in separate records,
they are effectively available as a granularity of locking.

5.7.7 Bulkloading Documents

The insertion of large amounts of data which is already available in a non-DBMS format is
called a bulkload operation. In conventional DBMS, bulkloads are often used to initialize a
database, for example when introducing an application to DBMS usage, or when converting
data from a different DBMS or storage format.

In an XBMS, importing documents from external sources is a very frequent operation,
as XML was designed as a data exchange format. Since a document consists of a large
number of individual nodes, every document import is essentially a small bulkload opera-
tion. Hence, an efficient bulkload support is crucial for XBMSs.

Bulkload Design

We base our design of the bulkload component on three goals, all of which are perfor-
mance-related.

1. The interface should closely match the typical output of XML parsers.

Since an XML parser is the most common source of imported XML documents, we
do not want to waste resources by requiring to change the data representation before
or while accessing the bulkload component, in addition to potential representation
changes for the actual transfer to the persistent storage format.

2. The mechanism should not require main memory proportional to the document size.

Linear memory usage would prohibit import of documents larger than main memory.
As a generalization, the total amount of concurrently importable documents would be
limited by available physical memory. Although today’s virtual memories are large,
using virtual memory would result in thrashing, negating the benefits of concurrency.

3. The produced storage layout should be efficient for typical workloads on documents.

We identify three subgoals.

(a) A dominant access pattern for document trees is the preorder traversal of sub-
trees induced by inner nodes. It is used when exporting documents and docu-
ment fragments to their textual representation. Query evaluation on XML doc-
uments typically also relies on preorder traversals, such as the evaluation of
XPath descendant and descendant-or-self axes. The default bulk-
load strategy therefore is to create a layout which adequately supports preorder
traversal.

66 CHAPTER 5. STORAGE

(b) Given a set of children, we assume that the access frequency of sibling nodes
decreases with their order. Typically, the leftmost children are accessed more
often than the last children. For example, to reach any child by position in its
sibling sequence, in Natix storage format, all left siblings of the target node
need to be visited. Hence, the likelihood of being stored in the same record as
the parent node should be higher for left siblings.

(c) Finally, the split matrix (Section 5.7.6) contains some information about typical
workloads. This information should be exploited.

4. The produced storage layout should have minimal space requirements.

The goals imply some kind of clustering algorithm that partitions a tree into a minimum
number of subtrees with limited size, which can then be used as Natix XML subtree records.

There are efficient clustering algorithms applicable to weighted tree structures [51, 54]
which consider the problem of creating a clustering of a tree which minimizes the number
of generated clusters. However, the generated clusters always have the following proper-
ties: (1) The weight of each cluster has an upper limit, which is a parameter of the algo-
rithms. The weight of a cluster is the sum of the weight of its nodes. (2) All nodes of a
cluster are connected.

Unfortunately, our storage format does not match well with these constraints on clus-
ters, because in our case (1) the storage cost of a cut edge is not � , as a cut edge causes
overhead in the form of a proxy node and a new physical record header, and (2) it is pos-
sible to put several different siblings into a single cluster, creating nonconnected partitions
of the tree.

There is another algorithm (Schkolnick [78]) which partitions hierarchical structures
based on access patterns. However, it does not enforce a size limit for clusters, and does
not consider nodes of different weight.

The clustering algorithm employed by Natix is described below.

Interface

Figure 5.19 shows the bulkload interface for XML segments.
The document tree to bulkload is ”described” to the segment in form of a sequence

of ”visit events” resulting from a depth-first search of the tree. The bulkload user signals
these events to the bulkload component by calling appropriate functions each time a node
is visited.

This corresponds directly to parser interfaces such as SAX or libxml as described in
Section 2.4. These generate parsing events which correspond to a depth-first search of the
abstract syntax tree. Clients need to register callbacks with the parser which are invoked
when the associated event occurs. Each SAX event can be directly translated into a single
call of the bulkload interface3.

3Attributes are an exception, as they are delivered as a list together with the parent element. This is a
design error in the SAX interface.

5.7. XML STORAGE 67

class SEG_XMLSegment : public SEG_SlottedPageSegment
{
public:
[...]
class BulkloadContext;
BulkloadContext *beginBulkload(const DocumentID &doc, DeclarationID logt,

uint32 childcount, uint32 sizehint);
void beginInternalNode(BulkloadContext *context, DeclarationID lt, uint32 children);
void endInternalNode(BulkloadContext *context);
void addLiteralNode(BulkloadContext *context, DeclarationID lt,

uint32 contentsize, ptr_t content);
NID endBulkload(BulkloadContext *context);

[...]
};

Figure 5.19: XML segment interface

The first visit to the document root node initializes the bulkload (beginBulkload()),
and the second visit (endBulkload()) terminates the bulkload and returns the NID of
the stored root node. The beginBulkload() call allows to specify a size hint for the
document. For small documents, this allows to fit the document into a matching gap on an
already used page.

When visiting nonliteral nodes (beginInternalNode()) for the first time, the
caller may specify how many children the internal node has, if known. After all descendants
of the node have been added, endInternalNode() is called.

When visiting leaf nodes which are labeled with strings, addLiteralNode() is
called.

Implementation

Our algorithm is based on the one by Kundu et al. [51], which creates a clustering of a tree
with weighted nodes, where each cluster is connected and has at most weight � , and where
the number of clusters is minimal. We first describe the algorithm, and then explain how it
is modified for use in Natix.

Algorithm of Kundu et al. The algorithm pursues a bottom-up approach, successively
assigning clusters to nodes. A node is processed only after its sons have been processed.
Processing a node � guarantees that the weight of the subtree rooted at � is smaller than

� . The weight of a subtree is the sum of all weights of those nodes in the subtree which
have not been assigned to a cluster. While the subtree weight is larger than � , new clusters
are created for sons of � , each containing the subtree including the son and all descendant
nodes that are not yet assigned to a cluster. Partitions are created for the sons in order of
subtree weight, with the heaviest subtrees first. Once the subtree rooted at � has a weight
less than � , processing of � is finished. When this algorithm has reached the root node of a
tree, the resulting clusters are smaller than � , and a minimum number of clusters has been
generated (Refer to [51] for a proof).

68 CHAPTER 5. STORAGE

Suitability as bulkload algorithm Document bulkload is easily translated into a prob-
lem instance for the algorithm above. Document tree nodes have a weight proportional
to their space usage, clusters are stored as physical records, and the limit for the size of
a physical record is the system page size. The algorihm generates physical records in a
bottom-up manner, so that subtrees induced by some inner nodes are in as few physical
records as possible. This prepares preorder traversals of document fragments, as required
when exporting or traversing such subtrees when evaluating queries.

However, a bulkload algorithm for Natix needs to address some additional issues as
explained above:

1. We do not want to keep the whole document tree in memory.

2. There is an overhead weight associated with a physical record, because the stan-
dalone header and the proxy node in the referring record occupy space.

3. Neighbouring siblings can be assigned to the same physical record, amortizing the
overhead weight over several subtrees.

4. The leftmost siblings should have a higher probability of being clustered with their
parent.

The first item can easily be addressed, since the algorithm’s bottom-up approach does
never change a node’s assignment to a cluster. Hence, once a cluster has reached the record
size limit, it can be stored in a physical record on disk and the constituent nodes need not
be retained in main memory.

The second item has to be taken into account in the weight calculations of the algorithm
(see below).

The third item introduces another degree of freedom when processing nodes. Instead
of choosing the heaviest son first when creating new subtrees, it is now possible to create
an ”artificial” heaviest son by grouping consecutive siblings together into physical records.
This can be used to address item 4, to make clustering of leftmost sons with their parent
more likely. We can store some of the rightmost sons together in a separate physical record,
while keeping a heavier son further to the left in the same cluster as its parent.

The second and third items break the optimality proof of the algorithm when applied
to Natix, demoting it to a heuristic with respect to minimum number of records generated.
It is not clear how the bottom-up algorithm can be modified to retain optimality. If at all
possible, a combinatorical approach seems likely that would have to select the least costly
of all possible partitionings of records into clusters. We were not able to find an algorithm
to do this efficiently. Since efficiency is of great importance for document import, and the
heuristic algorithm explained below generates satisfying clusterings in all observed cases,
we consider an suboptimal clustering acceptable.

Natix bulkload algorithm We now explain the variant of the above algorithm used in
Natix. Instead of choosing the heaviest son to be assigned to a separate cluster from the
parent, Natix combines some of the rightmost, unassigned, consecutive children of the

5.7. XML STORAGE 69

void SEG_XMLSegment::beginInternalNode(BulkloadContext *context, DeclarationID id)
{
context->current()->appendNode(new BulkloadNode(id));

}

Figure 5.20: Code for beginInternalNode()

currently processed node and clusters them in physical records smaller than the size limit.
This amortizes the record overhead over several nodes. It also increases the likelihood of
the leftmost children to be clustered with the parent node.

The algorithm maintains a main-memory tree which consists of nodes that have not
been assigned to a cluster yet. The main-memory tree nodes are stored using native C++
pointers for parent references, and sets of child pointers in each node. The main-memory
tree also includes main-memory versions for proxies referencing subtrees which have al-
ready been assigned to clusters and moved to physical records. The worst-case size of this
main-memory tree is proportional to the height of the document tree, i.e. the maximal path
length from the root node to a leaf node in the document. This property is guaranteed by
keeping only a fixed weight limit of nodes on each level (see below).

In the beginning, bulkload starts with an empty main-memory tree. Every call to the
interface functions to construct the document either results in a new main-memory node,
or transfers some of the main-memory nodes to secondary memory by assigning them to a
cluster, or both.

To simplify the exposition, we only consider treatment of the
beginInternalNode() and endInternalNode() functions. Calls to
addLiteralNode() can be regarded as calls to beginInternalNode() im-
mediately followed by endInternalNode().

The beginInternalNode() code simply adds the new node to the main memory
tree (Figure 5.20). The node is buffered in this main-memory tree since it only can be
processed until its complete subtree has been described using the bulkload interface.

When endInternalNode() is called (Figure 5.21), the current node’s subtree has
been completely visited by the depth-first traversal, and it can be processed. The function
pruneCurrentCluster() is called to guarantee that the node’s subtree is smaller than
the physical record size limit. Then, the parent of the current node becomes the new current
node, and its weight is adjusted by the currently processed node’s subtree weight. Finally,
if the main memory tree below the current node has reached a certain constant limit, we
start to create physical records to reduce the amount of memory occupied by the bulkload.

Figure 5.22 shows code for the pruning of the main-memory tree. If the subtree below
the current node does not fit on a page when the standalone record header is taken into
account, then the children of the node are clustered into physical records until the size of the
main memory subtree falls below the limit. The IGNOREMATRIX identifier is explained
below.

During pruning of the tree, physical records are created which contain subtrees of the
main-memory tree. These main-memory subtrees are replaced with main-memory proxy

70 CHAPTER 5. STORAGE

void SEG_XMLSegment::endInternalNode(BulkloadContext *context)
{
BulkloadNode *processed=context->current();
pruneCurrentCluster(context);
context->current(processed->parent());
context->current()->addWeight(processed->weight());
if(context->current()->weight() > memoryLimit())

pruneCurrentCluster(context);
}

Figure 5.21: Code for endInternalNode()

void SEG_XMLSegment::pruneCurrentCluster(BulkloadContext *context)
{

BulkloadNode *current=context->current();

if(current->weight() + clusterOverhead() > recordSizeLimit())
clusterChildren(context, IGNOREMATRIX);

while(current->weight() + clusterOverhead() > recordSizeLimit())
clusterChildren(context, PARTITIONPROXIES);

}

Figure 5.22: Code for pruneCurrentCluster()

nodes. Therefore, even after creating clusters and removing the nodes from the main-
memory tree, the remaining proxy nodes may still cause the subtree to be larger than the
record size limit. Hence, the proxy nodes themselves are grouped into clusters and physical
records are created for them, possibly in several layers, until the subtree fits into the size
limit.

The clusterChildren() function (Figure 5.23) determines the cluster boundaries,
moves clustered subtrees into physical records, and replaces the subtrees with proxies in
the main-memory tree. Note that the grouping of child nodes into clusters proceeds from
right to left, to address item 4 by first selecting the rightmost nodes to put into a separate
record.

Instead of showing code, we will only briefly describe the lower-level func-
tions required by clusterChildren(). The findClusterBoundRight()
and findClusterBoundLeft() functions determine the interval of those chil-
dren of the current node that are to be included in a new physical record.
findClusterBoundRight() looks for nodes satisfying a predicate that depends on
the mode parameter. The search starts at the second argument lastsplit and contin-
ues to the left siblings. If mode == IGNOREMATRIX, then the predicate is true for all
non-proxy nodes. Otherwise, any node qualifies.

findClusterBoundLeft() moves further right starting from the rightmost node
of the new partition. It includes nodes into the interval while they satisfy the same pred-
icate as above, and while the closed interval of subtrees bounded by firstsplit and

5.7. XML STORAGE 71

void SEG_XMLSegment::clusterChildren(BulkloadContext *context, ClusterMode m)
{
BulkloadNode *current=context->current();
BulkloadNode *lastsplit=current->lastChild();

lastsplit=findClusterBoundRight(context,lastsplit,mode);

while(lastsplit!=0 &&
current->weight() + clusterOverhead() > recordSizeLimit())

{
BulkloadNode* firstsplit;
firstsplit=findClusterBoundLeft(context,lastsplit,mode);
RID target=createRecord(context,firstsplit,lastsplit,false);
BulkloadNode* nextsplit=firstsplit->leftSibling;
replaceWithProxy(context,current,firstsplit,lastsplit,target);
lastsplit=nextsplit;
lastsplit=findClusterBoundRight(context,lastsplit,mode);

}
}

Figure 5.23: Code for clusterChildren()

lastsplit still fits into a physical record.

createRecord() is straightforward and creates new subtree records from the main-
memory representations. If main-memory proxy nodes are included in the subtree, they are
inserted into the physical record, and their target record’s parent pointer is updated to refer
to the new physical record.

The last frame on which records were inserted is kept in the BulkloadContext
structure to avoid unnecessary free space searches (see insertRecordOnFrame() in
Section 5.5.3). If a new page is required, free space search is limited to the FSI cache to
keep bulkload free space searches efficient (Section 5.6.5).

replaceWithProxy() removes the main-memory representation of the subtrees
that have been moved to a record and inserts a proxy instead.

Memory management The main-memory representation consists of a large amount of
small objects. In the case of literals, these are even of variable size.

In spite of this, memory management is not expensive during bulkload. Memory is
allocated for the nodes during a depth-first traversal. In depth-first preorder, all nodes of
a subtree form a consecutive interval of nodes. This makes it possible for the bulkload
component to use a special memory management technique. The special memory manager
requests memory in blocks of constant size from the operating system, adding nodes to
blocks in depth-first preorder as they are delivered to the bulkload component. The order
in which the blocks are used is maintained in a list. When a subtree’s main memory repre-
sentation is no longer used, the interval of blocks which only contains nodes of this subtree
can be deallocated in a per-block fashion, without regarding the individual nodes on the
blocks.

72 CHAPTER 5. STORAGE

Split matrix The split matrix (Section 5.7.6) can easily be integrated into the algorithm.
First, we need an additional mode for the findClusterBoundRight() and

findClusterBoundLeft() functions, called OBEYMATRIX. Here, only nodes qual-
ify which do not have to be clustered to the parent node according to the split ma-
trix, i.e. for which

 �����
 � . In pruneCurrentCluster(), an additional call to
clusterChildren with this new mode is added before the first clusterChildren
call (Figure 5.22). For nodes which have to be clustered with the parent, this causes the
bulkload algorithm to split them into a separate physical record only if all other nodes have
been split already, and the subtree is still too large.

Second, we check at the end of the endInternalNode() function whether the cur-
rent node has to be stored in a separate physical record from its parent, i.e. for which ���
 � . In this case, we immediately create a new physical record for the node using
createRecord() and only insert a proxy to it into the main memory tree.

5.8 Evaluation

A systematic and comprehensive performance review of Natix, including comparisons with
other systems, while desirable, is beyond the scope of this work. However, in this section
we present experimental results to allow a first assessment of Natix overall performance.

We compare the performance of Natix with different settings of the Split Matrix, and
with some existing performance results from the literature. Since only few numbers can be
found about other systems so far, and few is known about the systems and approaches that
produced these numbers, they have to be interpreted with care.

In this section, we elaborate only on numbers measured for a configuration without
logging and recovery, please refer to Section 7.9 for experiments with enabled recovery
subsystem.

5.8.1 Environment

Hardware

The following measurements were performed on two different machines. The first was
equipped with an 1.5 GHz AMD Athlon processor and 512MB of RAM (Machine 1),
while the other had a Pentium III running at 600 MHz, also with 512MB RAM (Machine
2). The I/O subsystems employes Ultra Wide SCSI in both cases.

Software

As operating system, SuSE Linux with kernel version 2.4.18 was used. The Natix exe-
cutable was created using gcc 3.2 with full optimization.

5.8. EVALUATION 73

Natix Configuration

A single Natix partition was used, with 256000 pages of 8K each. It was accessed using
direct I/O, which means that the all operating system caching, readahead and disk schedul-
ing were disabled, and DMA to the Buffer Manager’s memory was enabled. The Buffer
Manager was configured to use 32000 pages of main memory, resulting in a buffer size of
256 MB.

Two different settings of the Split Matrix were examined. The first setting format uses
the value other for all entries of the split matrix, the second � (see Section 5.7.6). The
former clusters documents whereas the latter yields a storage format that stores one node
per record. This is somewhat similar to mappings of XML documents to relational and
object-oriented systems.

Document Collections

Two document collections were used in the performance measurements, and two additional
kinds of synthetic documents were used for special bulkload experiments.

The first collection is an XML rendering of the plays of William Shakespeare [8]. It
comprises 37 documents of total size around 8 MB, each about 200K in size. A scaling
factor of 6 was used, to enhance the measurability of queries with very short running time.
Hence, in total, 48MB of XML in 222 documents were used.

The second collection contains annotated peptide sequences of close to 5000 organ-
isms, with one document for each organism. Depending on how much is known about the
organisms and its complexity, the documents vary in size between 700 bytes and 15MB,
with a total size of 135MB. The average document size is 30K, the median document size
3K.

For the bulkload scalability measurements, we used synthetic documents, consisting of
a single tag name (test) which was nested 5 layers deep with a constant fanout for each
document. Different fanouts were used to create documents of varying size. The elements
of the lowest layer each had one text node as son, each containing a 58 byte string.

The comparison with other systems used a synthetic document of size 100MB, which
is detailed in Schmidt et al. [80].

5.8.2 Bulkload

Document Size Impact

In Table 5.1, the elapsed import time for bulkload of synthetic douments with various sizes
on machine 2 is shown. The total elapsed time was measured, including a full buffer flush
after importing the document. It does not include the time spent to initialize the database
structures.

The fanout for the document described in Section 5.8.1 was set to values between 5 and
16, resulting in documents between 200K and 75MB.

Figure 5.24 gives a graphical representation of the results.

74 CHAPTER 5. STORAGE

Fanout Document Size Elapsed time
5 227K 0.329s
6 560K 0.772s
7 1203K 1.622s
8 2336K 3.069s
9 4195K 5.535s

10 7085K 9.729s
11 11386K 15.289s
12 17562K 23.136s
13 26167K 33.826s
14 37856K 53.416s
15 53393K 72.269s
16 73659K 105.899s

Table 5.1: Import scalability

0 25000000 50000000 75000000 100000000
0

10

20

30

40

50

60

70

80

90

100

110

Document size (bytes)

E
la

ps
ed

 im
po

rt
 ti

m
e

(s
ec

on
ds

)

Figure 5.24: Import scalability graph

5.8. EVALUATION 75

Collection
 ���
 ���� ��� ���
 �

Bioml Elapsed Time 150.98 253.41
CPU Time 136.33 175.97
CPU% 90% 69%
Segment Size 26639 77932

Shakespeare Elapsed Time 29.12 50.26
CPU Time 20.31 36.14
CPU% 70% 72%
Segment Size 9028 26571

Table 5.2: Import performance (Times in seconds, sizes in pages)

We observe a nearly linear time behaviour of the bulkload algorithm, with an import
speed of about 700K/s. The bulkload algorithm appears to be scalable for a large range of
document sizes.

Storage Format Impact

Table 5.2 shows bulkload times and sizes for the two nonsynthetic document collections
from Section 5.8.1, taken on machine 1. Again, the times include a system shutdown after
import, to observe the time spent writing the dirty buffers to disk. The times do not include
system setup.

We make four main observations. First, the clustered format takes less total elapsed
time to load in all cases. Second, the clustered format consumes much less disk space.
The savings factor approaches three. Third, compared to the documents’ textual size, the
documents in the clustered format take about 1.5 times as much space (8K pages were
used). Fourth, the difference in elapsed time is not explained by the increased I/O load
for the single node format alone, as the CPU time needed to bulkload is also significantly
higher. The increased CPU time is caused by the larger amount of record insertions, since
in each case, the buffer manager must be accessed, including synchronization and address
translation overhead.

The I/O performance in the bulkloads is comparably low, between 8 and 16 MB per
second. This is due to the fact that Natix currently does not have a writing mechanism
which reorders writes to sequential order, and the measurements were performed using
direct I/O, bypassing the system I/O scheduler. Hence, although they could have been
sequential, most of the buffer writes resulted in random I/O, impacting the I/O rate.

Comparison with other systems

Published performance results for XBMS systems are rare and far between. The only
comparable numbers we could find were in Schmidt et al. [80]. They compare bulkload
performance for a 100MB synthetic XML document on various anonymous mass-storage
systems. We repeat some of their results in Table 5.3.

76 CHAPTER 5. STORAGE

System Bulkload time
(Seconds)

System A (from [80]) 414
System B (from [80]) 781
System C (from [80]) 548
Natix 215

Table 5.3: XML Bulkload Times for various systems

We limit our comparison to the disk-based systems, omitting their numbers for purely
main-memory based systems. The remaining systems are relational DBMS, and called
”System A”, ”System B” and ”System C” in the paper. No details about the employed
mappings from documents to relations are given, except that systems A and B do not require
a DTD, while system C requires to manually generate a relational schema from a DTD.

Table 5.3 also includes a measurement of Natix’s bulkload performance for the same
document. We used machine 1, which is very similar to the one described in Schmidt
et al. [80], except that it has less main memory (512MB compared to their 1 GB), and
a slightly faster processor (600Mhz compared to their 550Mhz). In this case, the Natix
configuration included full optimized transaction support (see Section 7.9 for more Natix
experiments with enabled recovery), and the time measured does include commit process-
ing and log flushing, but not the flushing of the buffer manager.

Although Natix outperforms the relational systems by factors between 1.9 and 3.6, few
is known about the exact configurations and techniques used to store XML in the relational
systems. Hence, it is unclear to what extent the numbers are comparable.

5.8.3 Queries

Queries

We evaluate three queries on both the Bioml and Shakespeare document collections. We
use the XPath language to specify the queries and explain them below.

Query 1 In XPath notation, the query evaluates the expression

/child::X/child::Y/child::Z/child::U

on all documents in the collection. As element names X,Y,Z,U we used spe-
cific names for each collection. For the Shakespeare collection, X=PLAY, Y=ACT,
Z=SCENE, and U=TITLE. Hence, the query returns the titles of all scenes in each
play. In the Bioml collection, X=bioml, Y=organism, Z=subunit, U=label. Here, the
query selects the internal names of all peptide sequence subunits for all organisms.

Query 2 This query evaluates the expression

strval(/child::X/child::Y/child::Z[pos()=last()])

5.8. EVALUATION 77

Storage Format
� ������� ���	��
 � ������

Collection Query Cold Hot Cold Hot
Cache Cache Cache Cache

Elapsed Time 12.65 0.46 21.19 3.25
Shakespeare Query 1 CPU Time 0.77 0.46 4.15 3.24

CPU% 6% 100% 20% 100%
Elapsed Time 3.28 0.02 6.18 0.05

Query 2 CPU Time 0.04 0.02 0.13 0.05
CPU% 1% 100% 2% 98%
Elapsed Time 14.73 3.74 59.36 42.25

Query 3 CPU Time 4.05 3.73 43.43 42.22
CPU% 27% 100% 73% 100%

Elapsed Time 9.99 0.23 16.66 1.24
Bioml Query 1 CPU Time 0.41 0.21 1.69 1.24

CPU% 4% 94% 10% 100%
Elapsed Time 8.91 0.97 15.63 2.30

Query 2 CPU Time 1.16 0.96 2.81 2.28
CPU% 13% 99% 17% 99%
Elapsed Time 27.78 4.97 84.47 84.64

Query 3 CPU Time 5.94 4.94 53.91 53.42
CPU% 21% 99% 64% 63%

Table 5.4: Query performance (Times in seconds)

78 CHAPTER 5. STORAGE

on all documents. The same tag names as above are used. This query returns the text
contents of the last scene, or the last subunit, for each play/organism.

Query 3 count(/descendant-or-self::V)

This query counts elements that occur very frequently in the document collection.
For the Shakespeare collection, it counts all (V=LINE) lines of all speeches given
in the play. In the Bioml collection, all db entry elements are counted, which
represent literature annotations for subsequences of the organism.

Execution Plans

This subsection briefly explains how the queries specified above were executed. We directly
wrote execution plans in the NVM internal language, without using a query compiler.

The execution plans below navigate between nodes by using primitives which operate
directly on the buffered representation of the tree in secondary storage. No representation
change to a main memory representation is performed.

Query 1 The query was executed using a leaf operator scanning over a list of root nodes
of the document collection (using the Document Directory, see Section 6.4). Then, a
chain of UnnestMap operators enumerated the children of each node which matched
the given tag name.

Without further detailing the involved operators, the execution plan has the effect of
five nested loops, where the first loop enumerates the document roots, the second
iterates over all children of nodes from the first loop which have an X tag name, and
so on.

Query 2 The execution plan is similar to the previous query. However, instead of enu-
merating all Z nodes, and retrieving their children, only the last Z children node is
selected. For this final node, a further UnnestMap loop then performs a depth-first
traversal of its subtree and concatenates the values of all text nodes found.

Query 3 Here, only a single UnnestMap operator is performed after the initial enumeration
of all document root nodes. It performs a depth-first traversal of the whole document
tree, returning all matching nodes, which are then counted by an additional operator.

Results

The evaluation times for the query were measured both with an empty cache, and with the
cache filled by a previous execution of the same query.

We emphasize some features of the collected data. First, if the clustered Natix data
format is used, query evaluation is always faster compared to the format where every node
is stored in a separate record. The clustered format outperforms the single node format by
an order of magnitude in some cases, and it is still 50% faster in the worst case. Likewise,
no matter which query or document collection, and whether the cache is hot or cold, the
clustered format requires less CPU time than the single node format. For CPU usage alone,

5.8. EVALUATION 79

the advantage of the clustered format can be higher than an order of magnitude. The I/O
portion of the query runtime is lower for the clustered format, even for Query 2, where only
a few nodes per document are traversed.

Note that the Bioml collection stored as single nodes did not fit in the cache due to the
high space requirements of separate records for each node. Hence, its performance is the
same for hot and cold caches.

80 CHAPTER 5. STORAGE

Chapter 6

Schema

Es gibt keine Ordnung der Dinge a priori.

–Ludwig Wittgenstein

Schemas are used to specify the logical and physical organization of an XML base.
Constraints for the logical structure of individual XML documents are specified using

Document Type Definitions (DTDs), or XSchema documents. Both of these languages are
dicussed in Section 6.1.

Natix allows to group documents into application-defined logical hierarchies. Just as re-
lational databases organize data into databases and relations to store tuples, Natix provides
repositories and document collections to store documents. Section 6.2 explains Natix’s
logical schema model, which describes how such collections and repositories are specified.

Section 6.3 presents the physical schema model. The physical schema controls the
mapping of document collections on physical media, including indexes and the split matrix.

The chapter concludes with Section 6.4, where we show how the schema model ele-
ments are materialized using the primitives provided by the storage engine (Chapter 5).

6.1 Document Schemas

By document schema, we mean a set of constraints on the contents of individual documents.
If a document satisfies the constraints put forth by a document schema, we say it is valid
with respect to the schema. Hence, a document schema defines a class of documents,
namely the class of documents that is valid with respect to the schema.

Meaningful constrains on documents can be classified by the degree of freedom they
constrain:

tag names It is often desirable to limit the allowed tag names in a class of documents.

attributes It is possible to limit the kinds of attributes elements with a certain tag name
may have, and to specify whether the attributes are mandatory or optional, and if they
have a default value when not explicitly given.

81

82 CHAPTER 6. SCHEMA

DTD XML Schema
tag names � �
attributes � �
content models � �

reuse –(1) �
inheritance – �

referential integrity � �
no. of key domains 1

�

data types
attributes � (2) �
text nodes – �
ranges – �
inheritance – �

Table 6.1: Document schema features

element content models These specify the allowed parent-child and sibling associations
which certain element types may form. For example, the content model may require
elements of type person to have a name and one ore more address elements as
children.

referential integrity Referential integrity constraints allow to specify that certain attribute
or element values are keys or key references. In valid documents, key references must
contain values that are existing keys in the document.

data types In certain attributes or PCDATA nodes, only a specific data type or range of
values, may be meaningful. A price tag should only contain a positive fixed-point
number, for example, and a weekday attribute may only contain names of week-
days.

There are two standardized schema specification languages, Document Type Definitions
(DTDs) [10] and XML Schemas [90, 5].

Table 6.1 shows which classes of constraints these languages support. The elemen-
tary constraints can be expressed using DTDs, which are based on a non-XML syntax for
backwards compatibility to SGML. Parts of content models often need to be reused (1),
for example both � short description � and � long description � tags use the
same content model to describe text layout. To factor commonalities between tags, XML
Schema allows to define reusable content model fragments, and allows tags to inherit and
extend content models of other tags. In DTDs, this can only be approximated using pa-
rameter entities, a textual replacement mechanism. The closest DTDs come to the concept
of a data type is the NMTOKEN attribute type (2), which specifies accepted value sets for
attributes. XML schema allows to specify data types for all literals in a document, and data
types can be also be numeric, inherit from each other, or be value ranges of a supertype.

6.2. LOGICAL SCHEMA MODEL 83

Figure 6.1: Logical schema model

We do not go into further details about document schemas, as currently the database
engine is not involved in document validation, but uses external validators for this purpose.
Natix only validates documents when they are added to a repository and does not check
during updates whether the resulting document is still valid. Revalidation of documents
must be triggered manually. Online validation during incremental updates is left as future
work. A basic idea in this context is the materialization of the validation automaton’s state
information in our storage engine, which would limit the necessary revalidation to small
granularities of a document.

6.2 Logical Schema Model

Figure 6.1 shows a UML model of the concepts used to structure the set of documents in a
Natix instance logically.

Each instance manages a set of repositories, where a repository is a set of document col-
lections. Usually, applications will use repositories to group together document collections
which are semantically related.

A document collection contains documents with similar contents. The number of differ-
ent schemas that can have conforming documents in the same collection is typically rather
small. Document collections are often used as input sets for queries.

Below, these concepts are elaborated on.

84 CHAPTER 6. SCHEMA

6.2.1 Repository

A repository typically contains documents relevant for a single application domain.
For example, in a Web Shop System, the product catalogs make up one repository, the

business reports are stored in a different repository, and the documents and templates used
as basis for the web appearance are stored in a third.

Typically, an application only accesses one document repository. In our example, cata-
log editors only access the catalog repository, as do tools used to generate special catalogs
for special opportunities, like seasonal sales. Web authoring tools work exclusively with
the web documents, while a management information system is primarily concerned with
business reports.

A few applications use more than one repository. In our example, this would be the
software generating the web pages in their final form that is sent to the customers. It needs
to access both the template documents and product catalogs and merges them to create
viewable pages.

Repositories are a granularity for authorization, concurrency control, and backup. For
example, only managers may access business reports, and web designers may only read,
but not update product catalogs.

All repositories in an instance have a unique name.

6.2.2 Document Collection

Document collections are unordered sets of documents. Typically, the documents in one
collection have a similiar structure and markup, although they do not need to conform
to the same document schema. Applications use document collections to group together
documents that are frequently processed as a unit, for example when evaluating queries. As
explained in Section 6.3, document collections also are a granularity of physical placement
control.

Document collections have a name which is unique among the document collections
of a repository.

In Natix, applications can announce to the XBMS which document schemas the docu-
ments added to the collection will conform to (accepts association in Figure 6.1). If the
validOnly flag is set, then documents are only added to the collections if they conform to
one of the specified schemas. Otherwise, all well-formed documents can be added to the
collection. It is required to store invalid documents, since there are applications of XBMS,
like web crawlers [11], which need to deal with many different sources of documents, some
of which may not use tools that enforce validity. Although invalid, such documents are in-
teresting for the users of the application.

Another property of document collections is whether they are frozen or not. A frozen
document collection may not have new document schemas associated with it. The frozen
property implies validOnly. This allows for the XBMS to select an optimized storage
format for a collection. For example, only for frozen document collections, techniques can
be applied which transform a fixed document schema into a relational schema [20, 29, 82].

6.3. PHYSICAL SCHEMA MODEL 85

Figure 6.2: Physical schema model

The transformation has as consequence that no documents that do not conform to such a
schema can be stored, and that schema evolution is expensive.

Natix does not use any of the cited methods, but has its own flexible XML storage
layout as outlined in Section 5.7. However, we feel that the conceptual schema model must
be flexible enough to incorporate schema-specific storage formats if necessary.

6.2.3 Documents

Individual documents have a name which is unique within their collection, and a stable ID
which is unique in the whole instance and does not change.

A document may have an associated document schema, to which it may conform or not
(valid flag).

In addition, a document is associated with a set of properties. Each property has a
name and a value. The name of a property is unique in the document’s set of properties.
The value can be a text string, or a well-formed XML document. Some of these properties
are system-maintained, such as creation date, while others are user-defined and can be
modified arbitrarily.

An example for a user-defined property is the MIME type, which is a classification of the
document contents. Natix’s WebDAV module (Section 4.3.3) annotates stored documents
with their MIME type, to make it available to the clients which can select suitable tools to
display or process the documents.

86 CHAPTER 6. SCHEMA

6.3 Physical Schema Model

Repositories and document collections can be associated with partitions to control the phys-
ical placement of the data. Further, by specifying a split matrix, clustering of document
parts can be controlled. Indexes can be specified to increase access speed.

A model for physical schema specification in Natix is presented in Figure 6.2. The
following subsections provide details on the components of the diagram.

6.3.1 Repository

Each repository has a master partition, which is the one on which it was originally cre-
ated. On this master partition, metainformation is stored including the available document
collections and their distribution on partitions.

Additional partitions may be added and removed from the repository (see below), but
the master partition may never be removed from the repository.

While a partition may contain documents of several document collections, each parti-
tion holds only data from exactly one repository. Thus, data from different repositories is
thus separated physically, to enhance concurrency and security.

6.3.2 Document Collection

For each document collection, it is possible to specify on which partitions its documents
may be stored. This concept is akin to the tablespaces used in many relational DBMS [16].
If all partitions assigned to a document collection are full, but further space is needed for
update operations, these operations fail until the administrator mounts and assigns addi-
tional partitions.

6.3.3 Split Matrix

For every document collection, a split matrix may be specified. Its effect is explained in
detail in Section 5.7.6.

The split matrix is stored as a set of objects which describe those coordinates in the
matrix which deviate from a value of other. The coordinates are given in form of element
or attribute names.

Hence, if no SplitMatrixElements are given for a document collection, the
update algorithms have full control over the placement of nodes. By introducing
SplitMatrixElements, some nodes can be clustered or separated from others.

6.3.4 Indexes

It is possible to create indexes for document collections, which accelerate access to docu-
ment nodes satisfying certain predicates.

Natix allows to specify two kinds of indexes, XPathIndex and FullTextIndex. A current
limitation of Natix is that indexes cannot span partitions. Instead, it must be specified

6.4. DETAILED DESIGN AND IMPLEMENTATION 87

for every index on which partition it is located. In addition, indexes are not maintained
automatically, but reindexing has to be triggered by applications or administrators.

XPathIndex

An XPathIndex is similar to an attribute index in a relational DBMS. Instead of a table and
a set of columns of that table, an XPathIndex is specified on a document collection and an
XPath expression.

For a given string � , an XPathIndex based on the XPath expression � allows for quick
retrieval of all the nodes � for which the XPath expression �
 �� � �!��" � � ��� � is true. By� ��� we mean the result of evaluating � with context node � . The result is converted to
a string, to have a single data type which can be used as the key for the index. Otherwise,
since XPath expressions can have arbitrary result types, including sets of nodes, it would
be difficult to use and implement the index structure.

Full Text Index

Given a word � , a full text index can generate a list of text nodes and/or attributes which
contain the word � .

6.4 Detailed Design and Implementation

The storage subsystem primitives available in Natix (Section 5) provide adequate means to
materialize instances of the schema models, as explained in the following.

6.4.1 Overview

In Figure 6.3, the data structures used to implement the logical and physical schemas are
shown.

To represent document collections, several segments are required. Their purpose and
their distribution on partitions is explained in Section 6.4.2. To quickly access documents
by their ID, a document directory data structure is used to map DocumentIDs to their
physical location (Section 6.4.3).

A repository’s schema is materialized using a catalog document collection (Section 6.4.4),
which also stores the association between collections and the constituent segments, and in-
formation about which schemas are accepted by a collection (Section 6.4.5).

6.4.2 Document Collection

Document collections are stored using a number of segments.

document tree The document tree itself is stored in an XML Segment. There is one XML
Segment for each collection on every partition assigned to the collection.

88 CHAPTER 6. SCHEMA

Figure 6.3: Implementation model

declaration table For every XML Segment storing a collection’s documents, there also
exists a declaration table segment on the same partition (documenttable), con-
taining the mapping between the tag names and the integers used to label the tree
nodes (Section 5.7.2). Separate declaration tables for each partition cause document
storage on each partition to be self-sufficient, making it possible to access and export
documents without having to access other partitions. While this results in a dupli-
cation of declaration table entries, the different declaration tables do not need to be
synchronized, as there is no need for DeclarationIDs for the same tag name to
be identical across partitions.

The design requires resolution of the used tag names to integers only once per parti-
tion, amortizing the resolution overhead over many documents.

properties The properties of a document are stored in a separate XML Segment on each
partition assigned to the collection. It contains exactly one property document tree
for each document, in which every property is stored as a subtree containing the
properties value. Thus, the efficient storage format for XML can not only be used for
the document contents, but for for XML-valued properties as well.

The document’s name is also considered a property and is stored in the property
document.

The property document also contains a backpointer to the document ID. Hence, all
documents of a collection on a specific partition can be efficiently enumerated by

6.4. DETAILED DESIGN AND IMPLEMENTATION 89

scanning the property documents, which are much smaller than the documents them-
selves.

The last partition on which documents for this collection have been stored is called the
active partition. When adding a new document to a collection, Natix attempts to store it
on the active partition first. If there is not enough space, then the other partitions assigned
to the collection are tried.

When adding a document, it is first inserted to the document directory (see below) to
obtain a DocumentID. Then, a property document is created, and finally, the document is
bulkloaded as explained in Section 5.7.7. If it is not already, the partition is then made the
active partition for the collection.

6.4.3 Document Directory

There is a document directory on every partition which contains XML document trees. It
contains information about all documents in the partition, including their physical location,
schema, validity and other properties. The DocumentID is used as a key to access a
document’s entry in the directory. All records in XML Segments contain a backpointer to
the DocumentID of the encompassing document (Section 5.7.4).

The design decision to have one document directory per partition, and not per reposi-
tory or per document collection, is based on the desire to localize the data structures used to
materialize documents. Repositories and document collections can be distributed over par-
titions. If the data structure mapping DocumentIDs to physical locations was distributed
arbitrarily, then even simple read access to a single document could result in cross-partition
I/O. If each document collection had its own document directory, or directories, then the
collection would have to be known and loaded to access a document. As consequences, an
additional level of indirection would be introduced, causing extra disk accesses to reach a
document given its ID, and the collection identifier would have to be included to address a
document in indices or other document references, wasting space.

The directory is implemented as a DirectMap segment (see Section 5.5.2). The slot and
unique numbers in the DirectMap segment, together with the partition number, are used as
DocumentID. Hence, the DocumentID is sufficient to locate a document within a Natix
instance. Even if a document is deleted, dangling external references can be detected using
the differing unique number.

Each DirectoryEntry contains the following fields

entryType Possible entry types are

document describes a document in this partition.

schema a schema document in this partition.

redirect a document that was once located on this partition, but has been moved to
another partition.

segmentID Contains the SegmentID (see Section 5.6.3) of the XML Segment in which
the document is stored.

90 CHAPTER 6. SCHEMA

documentNID Contains the NID of the document’s root node.

propertyNID Contains the NID of the property document tree’s root node (explained
in Section 6.4.2).

schemaID Contains the DocumentID of the document’s schema. May be 0.

In case of a redirect entry, this field contains the new documentID.

validity Is true when the document is valid with respect to the schema.

declarationTableID contains the SegmentID of the declaration table used to en-
code the document (Section 5.7.2).

The redirect entry type is used for a TID-like concept (see Section 5.5.3), when a
document grows but there is no longer enough free space on its partition. Except for this
case, a document directory entry only needs to be modified after creation only when it
becomes invalid due to an update operation, or when it is deleted.

6.4.4 Repository Catalog

The repository catalog is a document collection describing a repository’s schema.
It contains one document for each document collection in the repository, storing its

attributes (frozen, name, validOnly) and its associated segments’ SegmentIDs.
Thus, the repository catalog materializes the collection association from the logical
schema (Figure 6.1).

The SegmentIDs stored in the document represent the properties, documents,
and dectable associations from Figure 6.3. They also implicitly materialize the store
association from Figure 6.2, the set of partitions assigned to the collection. If a new parti-
tion is assigned to a collection, the document, property and declaration table segments are
created even if no documents are stored on the partition yet.

In addition, the repository catalog documents contain information about the split-
Matrix (Figure 6.2) configuration of the collections, and the active partition (Fig-
ure 6.1). The accept association from the logical schema is also stored in the catalog
(see Section 6.4.5).

The root document which describes the repository catalog itself, must be stored on
the master partition. It is always the first entry in the document directory for the master
partition, which makes it easy to locate. All other partitions assigned to collections of the
same repository contain as first entry in their document directories a redirect entry pointing
to the root document.

When opening a repository, all mounted partitions are scanned, dereferencing the first
document directory entry, until the root document of the repository is found.

This design is lightweight, robust and scalable for large instances. New partitions and
repositories can be introduced without exclusively locking some global data structure. Doc-
uments describing individual collections only need to be locked when partitions are added
or removed. Further, and more important, even if some of a repository’s partitions are not

6.4. DETAILED DESIGN AND IMPLEMENTATION 91

currently mounted, because of maintenance or hardware errors, work can continue on the
accessible data. Only the master partition needs to be readable to open a repository.

6.4.5 Document Schemas

Document schemas are treated like regular documents and are stored in a special collection,
as indicated by the schemacollection association in Figure 6.3.

As schemaID in the document directory, the schema documents use special reserved
DocumentID values indicating whether a DTD or an XML Schema document is present.

DTDs are first converted to an XML representation. Internal DTD fragments are also
converted to XML documents, but in addition are redundantly stored verbatim as a special
text node in the document for easier export.

The association accept from Figure 6.1 is materialized in the repository catalog doc-
ument for the document collection. For increased access speed, this information is cached
in the main memory objects used to access the document collections currently in use.

6.4.6 Indexes

Each index is stored using a single segment (hence the limitation to single partitions). An
XPathIndex is implemented using a BTreeSegment, while a FullTextIndex is implemented
using a special segment type [58].

6.4.7 Example

As an example for a materialized repository schema, we now list segments and objects
required to store a sample logical and physical schema for a repository called ’PaperNews’,
designed to manage documents for a small magazine.

The logical schema contains two document collections, called MyArticles and
ResearchMaterial. MyArticlesmay only hold documents conforming to the DTD
of the local authoring system, articlewriter.dtd, while there is no particular schema
associated with the ResearchMaterial collection.

There are two partitions in the physical schema, part1 and part2. Both are assigned
to ResearchMaterial, while documents for MyArticles may only be stored on
part2. part1 is the master partition of the repository.

In the MyArticles collection, only a single article document (newarticle.xml)
is stored, which is valid with respect to articlewriter.dtd, while
ResearchMaterial contains two (stockquotes04072002.sqx and
ciafactbook.xml), both of which are not associated with a document schema.

To materialize the repository schema, Natix creates a #catalog document collection
and a #schema document collection as described in Sections 6.4.4 and 6.4.5. By default,
these are assigned to the master partition part1.

The required segments to materialize the schema are listed in Figure 6.4. The segment
names comprise a type prefix (dd for document directory, and xd for XML data), the associ-
ated collection’s name, if any, and the repository name. The objects stored in the document

92 CHAPTER 6. SCHEMA

No Part. Type Name Purpose
0 part1 DirectMap dd:PaperNews DocumentDirectory for part1
1 part1 XML xd:#catalog:PaperNews Catalog document contents
2 part1 XML pd:#catalog:PaperNews Catalog document properties
3 part1 DecTable dt:#catalog:PaperNews tag names for 1+2
4 part1 XML xd:#schema:PaperNews Schema document contents
5 part1 XML pd:#schema:PaperNews Schema document properties
6 part1 DecTable dt:#schema:PaperNews tag names for 4+5
7 part1 XML xd:ResearchMaterial:PaperNews ResearchMaterial documents
8 part1 XML pd:ResearchMaterial:PaperNews ResearchMaterial properties
9 part1 DecTable dt:ResearchMaterial:PaperNews tag names for 7+8

10 part2 DirectMap dd:PaperNews DocumentDirectory for part2
11 part2 XML xd:ResearchMaterial:PaperNews ResearchMaterial documents
12 part2 XML pd:ResearchMaterial:PaperNews ResearchMaterial properties
13 part2 DecTable dt:ResearchMaterial:PaperNews tag names for 11+12
14 part2 XML xd:MyArticles:PaperNews MyArticles documents
15 part2 XML pd:MyArticles:PaperNews MyArticles properties
16 part2 DecTable dt:MyArticles:PaperNews tag names for 14+15

Figure 6.4: Segments required for example schema

Part. Segment Objects
part1 dd:PaperNews Entry for the #catalogmeta document

Entry for the #schemameta document
Entry for the ResearchMaterialmeta document
Entry for the MyArticlesmeta document
Entry for articlewriter.dtd
Entry for ciafactbook.xml

part1 xd:#catalog:PaperNews #catalog schema document tree
#schema schema document tree
ResearchMaterial schema document tree
MyArticles schema document tree

part1 xd:#schema:PaperNews articlewriter.dtd document tree
part1 xd:ResearchMaterial:PaperNews ciafactbook.xml document tree
part2 dd:PaperNews Redirect entry to #catalog collection document

Entry for stockquotes04072002.sqx
Entry for newarticle.xml

part2 xd:ResearchMaterial:PaperNews stockquotes04072002.sqx document tree
part2 xd:MyArticles:PaperNews newarticle.xml document tree

Figure 6.5: Segment contents

6.4. DETAILED DESIGN AND IMPLEMENTATION 93

segments and the document directory segments are shown in Figure 6.5. We do not show
the contents of the property and declaration table segments. The property documents con-
tain just the document names and no other properties by default, and the declaration tables’
contents are straightforward.

94 CHAPTER 6. SCHEMA

Chapter 7

Recovery

A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe,
percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a

camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a
canal – Panama!

–Guy Steele, Jr.

Enterprise-level data management is impossible without the transaction concept. Ad-
vanced concepts for versioning, workflow management and distributed processing all de-
pend on primitives based on the proven foundation of atomic, durable and isolated trans-
actions.

To be an effective tool for enterprise-level applications, Natix therefore must provide
transaction management for XML documents with the above-mentioned properties.

This chapter deals with the realization of the atomicity and durability properties of
transactions.

We state our goals for design and implementation of our recovery subsystem in Sec-
tion 7.1. This includes our assumptions about the used concurrency protocols because it is
impossible to design a recovery method without knowing what the allowed degrees of con-
currency are. The design and implementation of the concurrency controller itself is beyond
the scope of this work.

Natix uses an extended version of the well-known ARIES protocol [66] for recovery,
which is summarized afterwards, together with more recent extensions for two-level object
recovery (Section 7.2).

After outlining the architecture of the recovery subsystem (section 7.3) and showing
how it interacts with the storage subsystem, we thoroughly discuss the design details and
implementation issues in Section 7.4. Although much progress has been made on the the-
ory of database recovery, and the standard recovery protocols have been well-studied in
the last decades, implementing a recovery subsystem remains a complicated and easily un-
derestimated task. This becomes especially apparent when we discuss Natix’s metadata
recovery in Section 7.5, a topic that is usually ignored in the recovery literature.

95

96 CHAPTER 7. RECOVERY

Finally, we introduce some novel techniques which exploit certain opportunities to im-
prove logging and recovery performance. These techniques prove to be particularly effec-
tive with our XML storage format, although they are applicable in many other environ-
ments.

The new techniques are called subsidiary logging, annihilator undo, and selective restart
and are dealt with in Sections 7.6, 7.7 and 7.8, respectively.

7.1 Goals

Apart from the basic functional requirement to provide atomic and durable transactions to
applications, there are a number of goals that were important factors in the design of Natix’s
recovery subsystem.

They fall in two categories: Performance goals, and software engineering goals.
High performance is always of utmost importance for any database management sys-

tem, which is why performance related goals receive highest priority. When dealing with
recovery, there are several subgoals to consider, which have in common that it is easy for
the recovery subsystem to jeopardize performance improvement techniques in other parts
of the DBMS.

small overhead Recoverable operations put a strain on the DBMS because to allow recre-
ation of previous states requires that they must be stored in some way.

No matter if this is done using an operation log or using shadow copies [35], it means
that all data modified by a transaction must be copied to at least two locations, the
regular one and a location used by the recovery system to remember the old state.

By careless design, it is very easy to introduce additional representation changes and
copy operations on the data until it reaches its final locations.

Since such copy operations and representation changes are very expensive, we avoid
them wherever possible.

high concurrency Recovery should allow highly concurrent access to the data. A transac-
tion should not block other transactions if they do not conflict. We can identify the
following subgoals:

� Allow record-level locking. Note that even document-level locks may turn out
to be record-level locks because there may be several documents on a single
database page.

� Allow commutative operations on multi-page data structures to proceed concur-
rently. This is not only important for index structures, as in traditional DBMS,
but also for XML documents, if it becomes necessary for the system to support
several transactions which work on the same document concurrently.

parallel processing The previous goal is related to the concurrent execution of transac-
tions. In addition, concurrent threads of execution should be supported efficiently, not

7.1. GOALS 97

only because multi-threaded execution is a straight-forward way to implement con-
current transaction, but also because the computing power of symmetric-multiprocessing
(SMP) systems can only be exploited if concurrent threads can operate efficiently.

For example, access to the above-mentioned storage of old states (log or shadow
copy) must be synchronized. If the design of the recovery system does not allow for
high parallelism on the data structure used to store old states, all efforts undertaken in
the rest of the system to allow a high degree of update parallelism are futile because
the degree of update parallelism on the data structure is an upper bound for update
parallelism of the rest of the system.

XML support As we want to build a native XML DBMS, the typical access patterns when
dealing with XML documents must be supported efficiently.

Recalling the storage technique for XML presented in Section 5.7, this means we
must be able to deal with a few large records on each page, and sequences of up-
dates on the same record by one transaction. This contrasts with typical traditional
DBMSs, which deal with lots of small records on each page, and each transaction
only modifies a record ideally at most once. This also emphasizes the previous goal:
Since the typical update granularities for XML are documents and subtrees, which
are larger than the typical small relation rows, additional copy operations and repre-
sentation changes will considerably slow down an implementation.

On the other hand, the conventional access pattern must still be supported well, as
metadata and indices reside in more traditional structures.

In addition to the performance goals, there are goals which relate to the quality and
maintainability of the system. Transaction processing has a higher need for quality than
the rest of the system. Errors in the rest of the system are supposed to have less impact
because affected transactions can be aborted, and their changes are logged and can be
undone. Recovery subsystems, on the other hand, are complicated and very subtle in their
collaboration with the rest of the system.

Good software engineering can produce higher quality and maintainability. Therefore
we will reiterate some software engineering goals and their relation to Natix’s recovery
system:

extendibility The recovery subsystem should have an architecture that allows to introduce
new data types and recovery techniques. XML processing is still a young discipline,
and new storage and recovery techniques are bound to emerge.

loose coupling Too many dependencies between subsystems make software more difficult
to understand and less robust against changes and extensions.

By limiting the dependencies of the storage system to the recovery system, we fa-
cilitate nonrecoverable versions of Natix, allowing to stabilize the core functionality
first, without worrying about recovery effects.

By limiting the dependencies of the recovery system to the storage system, we sup-
port extendibility and more general code which is easier to understand.

98 CHAPTER 7. RECOVERY

By limiting the dependencies of the recovery system to the concurrency controller
to assumptions about the allowed degree of concurrency, we decrease the recovery
systems complexity, and increase its applicability in other environments. A prime
example for such a complicated dependency between recovery and concurrency con-
troller can be found in Mohan et al. [65].

reuse Reducing the total amount of code is another way to decrease the complexity of the
system. By factoring code and making it more general, it becomes simpler.

For recovery processing, a concrete example is regular processing and transaction re-
covery. If a transaction aborts and rolls back all its changes, this can be transformed
into a transaction that decided to apply inverse operations for all changes it intro-
duced, and then commits. The same code can be used for regular prcoessing and
undo processing. In Natix’s, we leverage such factorizations as much as possible.

The mentioned goals are contradictive. In database systems, it is often worth com-
promising the architecture for a significant performance improvement (Mohan et al. [63]
provide an excellent example for tight coupling of recovery and concurrency management
which tremendously improves performance). We will strive to find an architecture and in-
terfaces that fulfill the software engineering goals in spite of performance requirements,
either by evolution of the architecture, or by finding equally well performing alternatives
that result in less perturbation of the architecture.

7.2 Recovery Method Introduction

The recovery subsystem’s job is to ensure the atomicity and durability properties of the
DBMS. Atomicity means that either all or none of the modifications of a transaction are
reflected in the database state. Durability means that once a transaction commit has been
returned to the application, the modifications done by the transactions are not lost even if
the system crashes and the contents of main memory or disks are lost.

Among the different approaches to achieve atomicity and durability, the ARIES method
(Algorithm for Recovery and Isolation Exploiting Semantics [66]) has been established as a
reliable, extensible and maintainable tool to perform recovery. The amount of literature [69,
60, 76, 67, 61, 68, 64] on extensions and variations of ARIES corroborate the superiority
of its approach.

We give only a brief overview of ARIES and begin by establishing a model of our
system, defining the relevant vocabulary. Basic techniques for page-level recovery are
treated next. The concluding subsection explains how ARIES (and its generalizations) deal
with multi-page data structures that need recovery while allowing concurrent access by
more than one transaction.

7.2.1 System Model

We identify some properties of our storage engine (Chapter 5) and requirements which
motivate why ARIES is a suitable foundation for a recovery method. We list a number of

7.2. RECOVERY METHOD INTRODUCTION 99

different types of failure the storage system may suffer from, needing to be addressed by
recovery.

Application

From the view of the recovery system, the application program issues requests to begin
and terminate transactions, and to read or modify persistent data structures on behalf of
transactions it started. The application does not issue more than one request at a time per
transaction, and the requests may depend on results of previous requests.

Database

Haerder et al. [37] classify database management systems according to some dimensions
which affect the way they have to recover from failures.

Buffering We call the contents of the pages as stored on partitions the stable database.
When we consider the buffered database, we mean the pages’ contents as stored in the
buffer manager for buffered pages, and the contents of the pages on partitions for pages not
in the buffer.

Nonatomic, in-place updates The Natix buffer manager has a
��� �

mapping between
page numbers (PIDs) and physical storage locations. If a modified page is dropped from the
buffer, the new version is written directly to the original partition. Hence, it is not possible
to transfer updates of a transaction to the stable database in an atomic way.

noforce Noforce means that we do not write all pages modified by a transaction to disk
when this transaction commits. This would cause a very high random access I/O load on
the buffer manager, which contrasts with our goal to achieve high performance. In addition,
the buffer manager does not keep track which pages were modified by which transaction.
Since we use fine-grained locking, this would require dynamic storage management for an
� � �

mapping of transactions to modified pages, again harming performance.

steal In our storage engine, it is possible that some modified pages of not-yet-committed
transactions are written to the stable database. Our buffer manager does not base its re-
placement decisions on the transactions that have accessed certain pages. Doing so would
make the replacement algorithm much more complicated and would impair I/O perfor-
mance because scheduling of disk arms would be less effective when some pages may not
be written.

Failures

With a storage organization as explained above, we have to consider several types of failure
which must be addressed by recovery.

100 CHAPTER 7. RECOVERY

transaction failure A transaction may be aborted, for example because the user has pressed
some kind of ”cancel” button, or because a programming error in the application has
caused its thread of execution to be terminated, or because access conflicts like dead-
locks have caused the DBMS to terminate the transaction.

main memory loss If the system crashes, due to a power loss or a programming error
inside the database management system for example, the contents of main memory,
the buffered database, is lost, while the stable database is unharmed.

secondary memory loss A device error, a hard disk head crash for example, may cause
the stable database to be lost.

Recovery from each of the above-mentioned situations is assigned a level from 0 to 2:

R0 recovery considers how to undo a single transaction’s effects. This may require to
access both the stable and the buffered database, since updates of a transaction may
be stored on partitions before the transaction commits.

R1 recovery guarantees (1) that updates of transactions that did not commit before the sys-
tem crash are removed from the stable database, and (2) that all updates of committed
transactions are present in the stable database.

Special care must be taken of the fact that R1 recovery may be interrupted itself by a
main memory loss. To work properly, R1 recovery must be idempotent, i.e. it must
be possible to run R1 recovery several times on a crashed system state.

R2 recovery To recover from storage device failures, backups of the stable database must
be regularly made, and incoporated into the recovery subsystem.

We do not dicuss R2 recovery in the following to limit the amout of detail that has to
be presented.

7.2.2 Recovery for L0 Operations

We explain how ARIES implements R0 and R1 recovery in the case where objects do not
span several pages, and the granularity of locking is the object. In particular, this means that
objects are not modified by a transaction before all the transactions that have also modified
the same object have committed.

In this case, a transaction can be undone by applying reverse-order, page-level inverse
operations for all operations the transaction has performed. We call them L0 operations,
since the application of inverse operations occurs on the lowest level, the page.

Overview

ARIES records all updates made by every transaction in a log. This log is an ordered
collection of log records, as described below. Since we employ the steal policy in our
storage engine, the log needs to contain information about how to undo each update, to

7.2. RECOVERY METHOD INTRODUCTION 101

provide R0 recovery, and during R1 recovery to remove modifications that were stored
on stable storage by transactions that did not commit before a system crash. Because we
employ a noforce policy, during R1 recovery ARIES must be able to incorporate effects of
committed transactions that were not stored in the stable database before a crash. Hence,
the log must also include information about how to redo each update.

During R0 and R1 recovery, ARIES reads and interprets the log entries and reapplies
or reverses updates. A detailed decsription of the employed data structures and algorithms
follows.

The Log For each execution of an update operation on an object, a log record is created.
Log records are assigned a strictly monotonic increasing number called log sequence

number, or LSN. A special Null LSN value exists which is not used for any log record.
Log records are placed in a volatile buffer upon creation. At certain times, this buffered

log is transferred to nonvolatile storage. The part of the log that is stored on nonvolatile
storage is called the stable log. Transferring the buffered log to the stable log is called
flushing the log. A log record may only be flushed if all log records with a smaller LSN are
also part of the stable log afterwards.

ARIES log records contain the following fields

Type can be a regular update log record, compensation log record (CLR), commit log
record, abort log record, or checkpoint related log records (see below). An additional
log record type L1 subcommit log record is introduced in Section 7.2.3.

TransID Identifier of the transaction to which the log record belongs.

PrevLSN LSN of the previous record written by the same transaction, or Null if it is the
transaction’s first log record.

PID Identifies the page on which the update occured for update or compensation log
records.

UndoNxtLSN In compensation log records, it describes the next log record that has to be
undone after this log record was undone.

Data Contains information depending on the log record type.

For update and compensation log records, it contains redo information describing
which object on the page is affected, and how to redo the update. This information
may be stored either in a physical manner, by using an after image of the page or
parts of the page, or in a logical manner, by only storing the applied operation and its
parameters (”increase field

�
of record

�
by 3”). The latter kind of update log record,

which is physical to a page, but logical within the page, is called physiological log
record.

For regular update log records, the data also describes how to undo the update, i.e.
how to apply the inverse operation.

102 CHAPTER 7. RECOVERY

The log contains all the information necessary to make transactions durable because
if not all operations of a transaction have been stored in the stable database, the missing
updates can be redone using the stable log information. The log also contains all the infor-
mation to make transactions atomic because all stable database updates by partly executed
transactions can be undone using the information in the stable log.

Pages Each database page in ARIES contains a pageLSN. This field contains the LSN of
the most recent operation that modified the page. Since LSNs are monotonically increasing,
this allows for ARIES to determine the state of a page, i.e. whether certain updates are
applied to a page or not.

Dirty pages ARIES requires a dirty page table in main memory, containing the set of
pages that are different in the buffered database with respect to the stable database. For
each page that has been modified in the buffered database and that is not yet included in
the stable database, the dirty page table contains an entry (PID,RecLSN). The RecLSN
contains the first update operation on a page since it was last written to the stable database.

Modes of Operation To explain the operation of ARIES, it is helpful to divide the actions
of the DBMS into several modes of operation. The modes of operation are not phases
because some of them may be in effect concurrently. The modes of operation are not
modules, because support for them is distributed throughout the recovery subsystem.

The modes of operation are

Forward processing Regular operation, where transactions start, manipulate data, and
end.

Checkpointing When taking a checkpoint, the system records information in the log to
speed up restart processing.

Analysis When restarting the system, the log is analyzed to determine whether the system
has been properly shut down the last time round. If not, some transactions may
not have completed, and their changes need to be undone, while some completed
transactions may not have all of their modifications reflected in the database. Such
cases are detected by analysis, in which case R1 recovery is initiated, using some of
the information gathered during analysis.

Redo processing If R1 recovery is necessary, ARIES first performs redo processing, dur-
ing which the state of the database as of the time of the crash is reestablished. All
updates by all transactions in the log which have not been stored on disk are redone.
This includes all updates of incomplete transactions as well. This repeating of history
is central to the correct operation of ARIES.

Undo processing During undo processing, the system applies inverse operations for all
logged operations of one or more transactions. This is necessary for both R0 and R1
recovery, to ensure the atomicity of transactions. Undo processing is invoked after

7.2. RECOVERY METHOD INTRODUCTION 103

redo processing during restart to remove the effects of transactions that did not run
to completion, and during normal operation if a single transaction aborts.

Each of the modes of operation is the topic of a separate section below, explaining algo-
rithms and data structures necessary.

Forward Processing

We call regular system operation Forward Processing.
When a transaction starts, it is entered into the transaction table, and its lastLSN and

UndoNxtLSN fields in the transaction table are set to Null.
Every time a transaction performs an update to a page in the buffered database, a log

record describing the update is written to the buffered log. Performing and logging the
update must be atomic, i.e. it must be impossible that another transaction may access the
updated page before the update has been logged. The log record’s LSN is recorded in the
transaction’s lastLSN and UndoNxtLSN fields in the transaction table, and also in the
pageLSN field of the updated page.

If an operation
� � modifies a page � that was not in the dirty page table before, � is

inserted into the dirty page table. As RecLSN, the LSN of
� � ’s log record is used.

Before a page is written back to disk, the log is flushed up to the pageLSN to ensure
that all updates contained in the stable database have associated log records in the stable
log which describe how they can be undone. This is called Write-Ahead-Logging, or WAL
for short1.

Before a transaction commits, it writes a commit log record and flushes the log up to
that log record’s LSN. The transaction may only be considered comitted after the flush
operation is completed. This ensures durability of committed transactions.

A transaction is aborted by invoking Undo processing (see below) and writing an abort
log record. The log does not need to be flushed in this case.

Checkpointing

A checkpoint is taken by the system in regular intervals, after restart, and before shutdown.
During a checkpoint, information about the current system state is written to the log. When
the system restarts, log analysis (see below) uses the information from the last completed
checkpoint to limit the amount of log that has to be scanned to perform R1 recovery.

When a checkpoint is taken, ARIES first creates a begin checkpoint log record. Then,
log records describing the current dirty page table and the current transaction table are
written. The checkpoint is completed by an end checkpoint log record, and flushing the log
up to this record.

Finally, the LSN of the begin checkpoint record is stored at a well-known, absolute
position on stable storage.

1There are ambiguous definitions of WAL in the literature. Sometimes it includes flushing of the log
before a transaction commits, but in most cases WAL only refers to log flushes that precede writes of dirty
buffer pages. We use it in the latter sense.

104 CHAPTER 7. RECOVERY

While the checkpoint is processed, the normal operation of the system proceeds. Trans-
actions may continue to update pages, be created, or be terminated.

Analysis

After the system is restarted, the log is analyzed by scanning it from the most recent check-
point to the end. The LSN of the begin checkpoint record can be found in an absolute,
well-known location on stable storage.

Using the information from the checkpoint log records, the table of active transactions
and the dirty page table are reconstructured.

Then, for every log record, they are modified as follows: If an update log record or a
compensation log record is found for a page that is not yet in the dirty page table, the page
is inserted into the dirty page table, using the log record’s LSN as RecLSN. If a log record
is found for a transaction that is not yet contained in the transaction table, the transaction is
assigned an entry in the transaction table. If a commit or abort log record is encountered,
the associated transaction is removed from the transaction table. For regular log records,
the UndoNxtLSN field of the transaction is set to the log record’s LSN. For compensation
log records, it is set to the log record’s UndoNxtLSN value.

As a result, the analysis produces the dirty page table and transaction table as of the time
the system crashed. Updates on pages in the dirty page table may have been lost because
they have not been transferred to the stable database. Those updates may have to be redone.
All the transactions in the transaction table after analysis are incomplete transactions which
did not commit, and are called loser transactions. Updates of those transactions have to be
undone.

Redo Processing

Redo processing is invoked if the dirty page table is not empty after analysis.
The minimum of all RecLSN values in the dirty page table is used as redoLSN, and

determines the oldest log record that may have to be redone.
The log is scanned from that log record, and every time a regular or compensation log

record is read, it is first checked whether the affected page is in the dirty page table. If not,
updates on that page do not need to be redone. Otherwise, the log records LSN is verified
to be greater or equal to the RecLSN of the page in the dirty page table. If this is not the
case, we know that this log records update is already contained in the stable database. If the
update may have to be redone, the page is brought into the buffer, and it is checked whether
the pageLSN is greater than the log record’s LSN. If so, the update is already on the page.

Only if all the checks (dirty page table containment, RecLSN check, pageLSN check)
indicate the update has to be redone, it is reapplied to the page, and the pageLSN is set to
the log record’s LSN.

After the redo pass, all updates in the stable log are guaranteed to be contained in the
buffered database.

7.2. RECOVERY METHOD INTRODUCTION 105

Undo Processing

If a transaction aborts (R0 recovery), or if there are active transactions in the transaction
table after analysis (R1 recovery), then undo processing is required.

R0 Recovery When a single transaction needs to be undone, then ARIES scans its log
records in reverse order and undoes the changes.

The reverse scan of the log is a loop that examines the log record the transaction’s
UndoNxtLSN field points to, which is always the next log record that needs to be pro-
cessed.

Regular log records contain undo information necessary to apply the inverse operation
to the modified page. In addition to applying the inverse update, a log record is written. In
contrast to forward processing, this log record is not an update log record, but a compen-
sation log record without undo information. The UndoNxtLSN field of the compensation
log record is set to the undone log record’s prevLSN value. The pageLSN of the affected
page is set to the compensation log record’s LSN. The transaction’s UndoNxtLSN is set
to the log record’s prevLSN, and undo continues.

When encountering compensation log records, the log record does not contain undo
information and does not need to be undone. The transaction’s UndoNxtLSN is set to the
compensation log record’s UndoNxtLSN field, and undo continues.

The reverse chain of log records of the transaction is followed until the transaction is
completely undone, which is indicated by the pointer to the next log record to undo being
Null.

R1 Recovery After Redo processing, ARIES performs Undo processing for all loser
transactions. This Restart or R1 Recovery Undo processing is nearly the same as R0
Recovery Undo Processing as explained above. The only difference is that to undo all
transactions which are still in the transaction table, only one combined reverse log scan is
performed. Hence, in every step of the undo loop described above, processing continues
with the transaction whose UndoNxtLSN value is greatest.

7.2.3 Recovery for L1 Operations

We explain how ARIES can be extended to deal with L1 operations, which allow concurrent
modification of objects by several transactions.

Motivation

For some data structures in certain applications, the limited concurrency allowed by L0
operations is inacceptable. For example, suppose that every transaction which modifies a
B-Tree indexs needs to lock the index tree, or parts of the index tree, until the transaction
completes. Then all other transactions accessing the same index or part of the index are
blocked. For important, frequently used indices, this effectively results in a serialization of
the transactions.

106 CHAPTER 7. RECOVERY

The strict limits on concurrency imposed in the previous section are not necessary to
guarantee the serializability of the transactions. There are several possibilities to employ
locks beyond page-level read/write locks. These techniques exploit knowledge about the
object-level operation semantics [50, 81, 83] to allow a higher degree of concurrency while
still retaining serializability. For example, if two transactions �
 ��� � each add one key-value
pair to the index each, those operations commute as long as they do not affect the same key.
The end result, no matter in which order the two pairs are added, is an index containing
both key-value pairs. Both operations can be undone independently, and the order of their
application is not relevant.

Unfortunately, this is only true on a logical level. If such operations were allowed to be
performed concurrently, the L0 recovery method described in the previous section would
no longer work, since the B-Tree index is a dynamic multi-page data structure. Suppose
transaction � � adds the key-value pair

�
��� ����� � to the index leaf page � . Afterwards, � � tries

to insert
�

��� ��� � � , which causes � to be split into two pages, restructuring the inner nodes
of the tree and moving

�
� � ����� � to a newly allocated page � � . If � � now aborts, the update

log record written for the insertion of
�

��� ����� � can no longer be processed because undoing
it would try to remove

�
� � ����� � from page � , where it no longer resides. Even worse, if

another transaction � � had inserted
�

� � ��� � � on page � � after the split, then an abort of � �
would also remove ��� ’s update because � � would be deallocated as part of undo processing
for � � . ��� ’s update would be lost.

To allow increased concurrency on structures as B-Trees, we need to make the recovery
subsystem aware of the ”logical” level on which the operations commute. The operations
on the multi-page data structure level are called L1 operations, complementing the L0
operations on single pages.

Higher levels of concurrency could be supported if the recovery subsystem made it pos-
sible to logically undo L1 operations. Logical undo means that, upon undo, the multi-page
data structure is examined to determine which operations on which pages are necessary to
undo the update now, taking into account updates to the data structure that have occured
after the original modification, but before the undo.

Overview

Introducing L1 operations to the recovery subsystem is possible with only a limited amount
of additions to the methods outlined in Section 7.2.2.

Essentially, each L1 operation on a multi-page data structure is treated as a small sub-
transaction, which uses page-level (L0) log records to describe its updates. In its commit
log record, called subcommit log record, the subtransaction contains information about how
to logically undo the L1 operation. In addition, the subcommit log record points, using its
UndoNxtLSN pointer, to the last log record that was written before the L1 operation was
performed.

Now, the log contains enough information to redo the L1 operation, namely its con-
stituent L0 operation log records. It also contains the information to logically undo the
operation, in the L1 subcommit log record. The logical undo supersedes undo of the L0
operations which make up the L1 operation. Which log records have been superseded and

7.2. RECOVERY METHOD INTRODUCTION 107

must be skipped by regular L0 undo can be determined by using the subcommit log record’s
UndoNxtLSN.

A similar concept was already mentioned in the original ARIES paper [66] under the
name of nested top actions, for the case where the logical undo operation is the identity.
This was extended to B+-Trees in the ARIES/IM paper [67]. A more general treatment of
concurrency control and recovery on multiple levels can be found in Weikum et al. [93]. A
very elaborate exposition of the topic is part of Weikum et al. [94], on which much of our
terminology in the subsequent sections is based.

We now elaborate on the modifications necessary to make L1 recovery work in the
different modes of operation.

Forward Processing

Upon execution of an L1 operation, its page-level updates are logged as regular log records.
When the operation completes, a subcommit log record is written, containing information
about how to undo the L1 operation on the logical level.

For example, a transaction inserts a record
�

on database page � , writing a log record
with LSN

� � . It then updates an associated, unique index by adding a key-value pair
�

��� ����� � .
To do this, it first performs a search in the B+-Tree to find the page

�
on which key ��� has

to be placed. Since
�

has no free space left, it has to be split. The split occurs and regular
L0 log records are written to describe it. Then,

�
� ������� � is inserted on the now only half-full

�
, and a regular log record for this insertion is written. Finally, a subcommit log record for

the insertion of
�

� � ����� � is written. Undoing the insertion means to delete
�

� � ����� � from the
index. Since it is an unique index, ��� uniquely identifies the key-value pair. � � is sufficient
to find the key-value pair even if it has been moved to another page by the time an undo is
required. Hence, ��� is contained in the subcommit log record as logical undo information.
The UndoNxtLSN pointer of the subcommit log record is set to

� � .
The log does not need to be flushed to the subcommit log record because the subtrans-

action only needs to be durable if the parent transaction commits, in which case the log is
flushed anyway.

Checkpointing, Analysis

Recovery for L1 operations can use the same checkpoint and analysis algorithms as L0
recovery.

Redo Processing

The L0 records written during execution of the L1 operation already contain all the infor-
mation necessary to redo the L1 operation. Therefore, during redo, the L1 subcommit log
records are ignored, and the L0 records are redone as before.

Undo Processing

Undo processing for L0 log records proceeds as explained above.

108 CHAPTER 7. RECOVERY

When encountering an L1 subcommit log record, instead of undoing it on the page
level, a high-level inverse operation is invoked to undo the effects. For example, in our
B-Tree example from Forward processing above, the high-level inverse could simply be
the B-Tree delete operation for ��� . This operation then performs a new search on the tree
to find where the key-value pair associated with ��� is located, and deletes it. This works
even if � � was moved in the meantime.

As with L0 undo, the inverse operations need to be logged. However, the inverse op-
erations required for L0 undo can be regarded as atomic, i.e. either an operation has been
undone or not. For L1 operations, this is not the case. The inverse operation for an L1 oper-
ation is not necessarily atomic and may affect more than one page. This needs to be taken
into account in the undo algorithm because a system crash may leave a partially performed
inverse L1 operation behind.

undo partial inverse L1 operation It must be possible to undo partially executed inverse
L1 operations. Hence, not compensation log records, but regular log records are
written for the page-level operations performed on behalf of the inverse L1 operation.

redo of incomplete inverse L1 operation If undo of an L1 operation was incomplete be-
fore a crash, and the partial undo was itself undone by regular L0 recovery, the inverse
L1 operation must be redone on the logical level.

This requires that the first L0 log record written as part of the execution of the inverse
L1 operation has to be chained, using its nextUndoLSN field, to the subcommit
record of the L1 operation that is being undone.

L1 restart idempotence Because restart itself may be interrupted by a crash, it must be
able to run several times without undoing the same L1 operation more than once.
This is achieved by using compensation log records, similar to L0 undo. The com-
pensation log records for L1 operations are the subcommit log records of the asso-
ciated inverse L1 operation and must be linked to the operation that precedes the
forward L1 operation in the nextUndoLSN chain.

Note that undo of L1 operations with the above method violates a property of ARIES:
The log volume for repeated restarts is not bounded any more. Suppose a crash occurs
during undo of some L1 operation. The partial effects of the inverse L1 operation are
undone and the logical undo is retried, again causing log records to be written. If the undo
crashes again, then during the next restart there will again be compensation log records
and log records for the retried inverse L1 operation, possibly ad infinitum. This is not
acknowledged anywhere in the literature, and a solution does not yet exist.

7.3 Natix Recovery Architecture

The responsibilities for recovery are distributed over the system, and it is difficult to draw
a sharp line which separates the storage subsystem from the recovery subsystem. Some

7.3. NATIX RECOVERY ARCHITECTURE 109

classes perform tasks that are important for both subsystems, some are exclusively needed
for recovery and not for storage, and some are completely unaffected by recovery.

The following subsections will describe the involved classes’ responsibilities and how
they collaborate to provide correct and efficient recovery.

The description of each class or class hierarchy is structured according to the modes of
operation introduced in Section 7.2, namely Forward Processing, Checkpointing, Analysis,
Redo Processing, and Undo Processing. After the distribution of the responsibilities has
been outlined, the individual classes and interfaces are described in more detail, including
implementation aspects.

This structure is different from typical texts on database recovery, which group de-
scriptions not by class, but strictly by mode of operation. The classical way of exposition
is better suited to bring across recovery concepts, while we want to describe a recovery
architecture.

One of the main contributions of the first sections of this chapter is exactly this separa-
tion of the many different issues which have to be resolved for recovery into implementable
and understandable parts that have clear interfaces and can be extended and maintained.
The section’s structure was chosen to emphasize this important part of the design. When
introducing new concepts, in the final sections of this chapter, our focus will shift from
the architecture to a top-level view of the system operation, again following the traditional
outline of recovery.

The subsections for the individual classes and hierarchies are preceded by a short
overview which is intended to provide better orientation in the following text.

7.3.1 Overview

An overview of the Natix components that are involved in providing atomicity and dura-
bility of transactions is shown in Figure 7.1, which depicts the classes, class hierachies and
their call relationships in UML notation. UML class boxes whose name is followed by a �

represent base classes of important class hierarchies.
The Segments are large data structures used by the application to hold all persistent

user data. The segment operations are mapped on page-level operations which are executed
by calling Page Interpreters. For recovery, special page interpreters are used. During nor-
mal operation they create log records, and during undo, they interpret them. Page contents
are transferred between main memory and secondary memory in the partitions using the
buffer manager which also logs information about which pages are currently buffered.
The Transaction Manager manages the active transactions in the system2. Apart from
the segments, it is the only component directly called by the application, which uses the
transaction manager to group user operations in transactions. The transaction manager is
also used as a central storage location for per-transaction data. Finally, the LogManager

2It also serves as a storage manager for per-transaction data for all modules. This explains the dependency
of the segments on the transaction manager, which causes a dependency cycle. This is not problematic as the
segments only access the per-transaction data.

110 CHAPTER 7. RECOVERY

Segment � BufferManager

PageInterpreter � Log manager

Recovery managerTransaction manager

Partition �

Figure 7.1: Recovery Components

manages read and write access to the recovery log, storing all log records in special parti-
tions.

After briefly explaining the threading model of Natix recovery, we present the recovery
responsibilities of those classes that also belong to the storage subsystem and whose duties
for nonrecoverable operations were already detailed in Section 5. The additional classes
necessary exclusively for transaction management follow. The section is concluded by
sequence diagrams illustrating typical processes.

Explanations of critical dependencies between the classes are marked in the margin for
ease of reference.

7.3.2 Threading Model

The design of Natix’s recovery subsystem is based on the assumption that there is a
� � �

relationship between concurrent threads of execution and update transactions. Each thread
may only perform updates for one transaction, and each transaction has exactly one thread
doing its updates.

If several threads were executing on behalf of the same transaction, their access to
transaction-local data structures would have to be synchronized. Additional communica-
tion between the threads would be another consequence, as the threads would have to be
coordinated if one of them decided to terminate the transaction, or to take a savepoint.

On the other hand, it seems a reasonable constraint to have application designed such
that different threads always perform updates on behalf of different transactions.

Please note that in this model, for read-only transactions it is still possible to have more
than one thread. Synchronization of threads for read-only transactions is simpler than for

7.3. NATIX RECOVERY ARCHITECTURE 111

updaters. Since the recovery subsytem is not used by read-only transactions, we do not go
into further detail here.

7.3.3 Segments
Imple-
mentation
details in
section
7.4.4

The segment classes comprise, from the view of the recovery subsystem, the main inter-
action layer between the storage subsystem and the application program. As part of their

Application
� �

Segments

regular operations, application programs issue requests to modify or access the persistent
data structures managed by the segments.

The data structures provided by the segments are typically larger than a page. The
segments map operations on these data structures to operations on single pages, operate on
page interpreters to perform the page-level operations, and employ the buffer manager to Segments

� �

PageInterpretertransfer the pages between main memory and disk storage.

Segments
� �

BufferMgr

From the perspective of the recovery architecture, there are three kinds of segments:

Simple Recoverable Segments Logging and recovery for operations on pages is dealt
with by the page interpreters (see Section 7.3.4), which means that there is nearly
no recovery-specific code to implement for recoverable segment types. Hence, the
designer of a new multi-page persistent data structure can write a recoverable Natix
segment type for it without having to worry about recovery. Only the underlying
page interpreter must be capable of creating and interpreting log records.

Recoverable Segments With High Concurrency In Section 7.2.3, we explained why some-
times the desire for a high degree of concurrency requires to have operations on seg-
ments whose inverse operations are not described by the page-level inverse operations
of the original action’s execution. This kind of operations, called L1 operations, re-
quires special recovery code in the segments.

Nonrecoverable Segments are typically used as storage location for intermediate results
during query processing. Their contents need not to be recovered in case of a system
crash, and they never need to survive the transaction which created them.

Still, operations on nonrecoverable segments can involve the recovery subsystem,
if the segment is located on a partition together with recoverable segments. In that
case, the resources used by the nonrecoverable segment have to be released when
the creating transaction is undone. Section 7.5 deals with the necessary recovery
mechanisms.

Nonrecoverable segments are treated in Section 5.5. The responsibilities and collabo-
ration of the recoverable kinds of segments during the different modes of operation are as
follows:

Forward Processing

During forward processing, a recoverable segment must use a page interpreter class that
is capable of doing logging and recovery. Disregarding L1 operations, this is the only
difference between segments that support recovery and segments that do not.

112 CHAPTER 7. RECOVERY

If the segment provides L1 operations, during forward processing it has to parenthesize
every L1 operation with calls to the transaction manager, announcing the begin and end of
the L1 operation. This allows to do housekeeping in the transaction control block. DuringSegments

� �

TransactionMgr
the execution of the operation, page-level log records are generated as usual. In addition,
the segment must write an L1 subcommit log record containing logical undo information
after the operation has finished.

Checkpointing

Segments are notified when a checkpoint takes place, allowing them to write information
to disk that up to then was only maintained in main memory data structures for efficiency
reasons.

Examples include administrative information like logical page tables and free space
management information.

Redo Processing

The recovery manager forwards all log records that are associated with a segment and may
have to be redone to the corresponding segment object. Although possible, the recovery
manager does not forward the page-level log records directly to the page interpreters, but
delegates page-level redo to the segments instead. As a result, page updates are handled inRecoveryMgr

� �

Segments a uniform way during redo, undo and forward processing, including buffer management,
free space inventory updates and maybe additional main-memory cache management for
objects and metadata. This makes metadata recovery much simpler (see 7.5).

In case of a page-level log record for a page belonging to the segment, the segment
checks the on-disk version of the page whether it already contains the update, and if not,
forwards the log record to the corresponding page interpreter for redo.

L1 operations do not need special treatment during redo. Their effects are described by
page-level log records written during their execution, which are redone using regular redo
processing as above. The additional L1 subcommit records are only reuired for undo and
ignored during redo.

Undo Processing

Undo processing for segments is similar to redo processing, in that log records to be undone
are forwarded to the segment by the recovery manager.

For page-level log records, the only difference is that undo is unconditional: If an un-
doable log record is encountered while traversing the nextUndoLSN chain, it is not pos-
sible that the page already contains the undo operation. So undo log records are always
executed by forwarding them to the page interpreter.

L1 subcommit log records contain the information necessary to logically undo the L1
operation using segment operations. To undo an L1 operation, the segment just invokes
the inverse operation on itself, using the regular forward-processing functions to do so.

7.3. NATIX RECOVERY ARCHITECTURE 113

In Section 7.4.4 we describe how this causes correct log information to be written for the
inverse L1 operations during undo.

7.3.4 Page Interpreters Imple-
mentation
details in
section
7.4.5

The page interpreter classes are responsible for page-level physiological logging and re-
covery. They create and process all page-level log records.

The page interpreter maintains the pageLSN attribute on the page, and also has a mem-
ber attribute redoLSN that contains the LSN of the first update operation after the last
flush.

Forward Processing

Upon a call to an update method of the page interpreter, the operation is performed and a
log record describing it is written by calling the log manager. PageInterpreter

� �

LogManagerThe order of perfoming and logging the operation is arbitrary, as long as the buffer
manager latch on the data page is not released in between. Logging and performing the
operation may even be interleaved for performance reasons, for example to copy a before
image directly from the object to the log record, then modify the object, then copy the after
image directly from the object. The data page latch makes the whole action atomic from
the perspective of other users of the same page, and no further synchronization is required.

Page interpreters also have to perform write-ahead-logging: The buffer manager notifies
the page interpreter before a page is written to disk, so that the page interpreter can make BufferMgr

� �

PageInterpretersure the stable log contains all the log records associated with the page. The buffer manager
could directly instruct the log manager to flush the log, but since it invokes a dynamic
function on page interpreters before writing a page anyway (Section 5.4), we can avoid
introducing addititonal assumptions, dependencies and code for write-ahead-logging in the
buffer manager. Instead, we delegate them to the page interpreter, where a dependency to
the log manager and knowledge about recoverability of the page already exist. In addition,
sophisticated recovery techniques may require actions in addition to just flushing the log
before writing a page to disk, see Section 7.6.

Redo Processing

If a page-level operation has to be redone during restart recovery, the corresponding log
record is provided to the page interpreter via the segment. The page interpreter then reexe-
cutes the operation coded in the log record, but without writing a log record as in forward
processing.

The decision whether a log record needs redo is reached by the recovery manager and
the segment, and not by the page interpreter itself. This avoids duplicate code.

114 CHAPTER 7. RECOVERY

Undo Processing

Undo of a modifying operation proceeds similar to redo. The page interpreter is told by
the segment to undo a log record. The data necessary to apply the inverse operation is
extracted, and the inverse operation is executed using the regular methods that are also
employed during forward processing.

As result of using the regular forward-processing code to undo operations, log records
are written during undo. The log manager knows that undo is in progress and performs
proper nextUndoLSN chaining for compensation log records. Again, no code duplication
is necessary.

7.3.5 Buffer ManagerImple-
mentation
details in
section
7.4.6

The buffer manager controls the transfer of pages between main and secondary memory
in the form of partition object. Although ARIES is independent of the replacement strat-

BufferMgr
� �

Partition

egy used when caching pages, the buffer manager facilitates recovery by notifying other
components about page transfers between main and secondary memory, and by logging
information about the buffer contents during checkpoints. In contrast to ARIES, the set
of currently dirty pages, which have been modified compared to their on-disk version, is
not maintained in a separate data structure during forward processing. In Natix, the infor-
mation equivalent to ARIES’s dirty page table is maintained directly in the buffer frame
control blocks (Section 5.3).

Forward Processing

The buffer manager maintains the association between buffer contents and the correspond-
ing page interpreter (Section 5.3). In the case of recoverable page interpreters, this auto-
mates synchronization of operation execution and log record creation.

Before flushing a dirty page to disk, the buffer manager notifies the corresponding page
interpreter of the impending write operation to ensure write-ahead-logging.BufferMgr

� �

PageInterpreter The buffer manager also provides and logs information about dirty pages to assist redo
recovery and log truncation.

Checkpointing

When the recovery manager notifies the buffer manager of a checkpoint, the buffer manager
writes log records specifying the pages that are currently dirty.BufferMgr

� �

LogMgr

7.3.6 Recovery ManagerImple-
mentation
details in
section
7.4.8

The recovery manager orchestrates system activity during system restart and checkpointing.
After the application invokes the recovery manager in order to restart or checkpoint the
system, the recovery manager initializes the data structures and manager objects necessary
for the operation of the recovery subsystem.

7.3. NATIX RECOVERY ARCHITECTURE 115

Forward Processing

The recovery manager is not involved in regular system operations.

Checkpointing

A checkpoint is initiated by calling the checkpoint method of the recovery manager. The
recovery manager then notifies the buffer manager, partition manager, segment manager,
and transaction manager that a checkpoint is taking place, and each of them may write log RecoveryMgr

� �

Allrecords to describe their current state.
The recovery manager also writes begin and end checkpoint log records and instructs

the log manager to persistently store the checkpoint LSN.

Analysis

During restart analysis, the recovery manager follows the ARIES restart analysis algorithm
to determine the set of loser transactions and the set of dirty pages. This involves reading
the log anchor and performing a log scan starting at the last checkpoint. RecoveryMgr

� �

LogMgrThe transaction manager is notified of the loser transactions, which is necessary for
undo processing. RecoveryMgr

� �

TransactionMgr

Redo Processing

Restart redo is initiated by the recovery manager during restart. Following the standard
ARIES procedures, the systemRedoLSN is determined, a log scan starting at that LSN is
performed and all actions that are not recorded in permanent storage are redone.

The actual execution of redo actions is left to the segments (see above). The affected
segment is determined from the log record and opened. The log record is further processed
by forwarding it to the segment object. In case of page-level redo records, the recovery
manager checks whether the affected page is contained in the dirty page set before calling
the segment, avoiding to load segments and pages only to detect that the changes are stored
on disk already.

Undo Processing

During transaction and restart undo, the recovery manager performs a backward log scan
of the transaction(s) that has (have) to be undone.

Analogous to redo processing, the actual execution of the undo operations and writing
of compensation log entries is delegated to the segments.

In contrast to redo handling, where the log records are filtered according to the dirty
page set, the undo algorithm does not read page IDs from log records, but routes all log
records that affect segments to the appropriate segment object. Proper actions for both
segment-level (logical) undo and page-level undo are then taken by the segment.

116 CHAPTER 7. RECOVERY

7.3.7 Log ManagerImple-
mentation
details in
section
7.4.2

The log manager provides the routines to write and read log records, synchronizing access
of several threads that create and access log records in parallel.

It keeps part of the log buffered in main memory using a special log buffer manager,
and employs special partitions, log partitions, to store log records.LogMgr

� �

Partition The log manager maintains the mapping of log records to LSN (and its inverse), and
persistently stores the LSN of the most recent checkpoint.

Log truncation (see 7.2.2) is a responsibility of the log manager. Log truncation isLogMgr
� �

BufferMgr the process of marking log pages as no longer used, and hence reusable. It explains the
call dependencies to the buffer manager and the transaction manager, which are called toLogMgr

� �

BufferMgr

LogMgr
� �

TransactionMgr

determine how much of the log is required by a restart.

Forward Processing

During forward processing, the log manager is called whenever log records have to be
created. The log manager reserves space for the record in the log buffer and assigns an
LSN (log sequence number) which identifies the log record. Using information from the
transaction control block, the log manager chains records of the same transaction together
to allow efficient undo.

The address of the log record in the log buffer and its LSN are returned to the caller and
can then be used to write the log records content and to update any pageLSN fields etc.

The log manager provides calls to flush the log up to a certain LSN (as necessary for
force-at-commit and write-ahead-logging).

Checkpointing

The log manager maintains an anchor record, an absolute storage location where it stores
the LSN of the youngest checkpoint record and some additional administrative data.

Flushing of the anchor record to disk is triggered by the recovery manager.

Analysis, Redo Processing

During analysis and redo processing, the log manager is employed by the recovery manager
to perform a forward scan of the log.

Undo Processing

The log manager allows to access log records by specifying their LSN, which is necessary
when traversing the nextUndoLSN chain(s) during undo.

Log records are written during undo processing as well, since undo operations need to
log compensation log entries. Instead of chaining a log record to the previous log record
of the same transaction, the log manager detects if a transaction is rolling back, and in that
case properly points the nextUndoLSN field to the operation that has to be undone next,
as required by the ARIES protocol. As in forward processing, it is possible to override

7.3. NATIX RECOVERY ARCHITECTURE 117

the log manager’s choice for nextUndoLSN in certain situations, like L1 log records or
nested top actions.

The automatic nextUndoLSN chaining by the log manager supports code reuse in
recoverable page interpreters. They do not need additional code for performing and logging
operations during undo. Instead, they may use the regular forward processing functions to
undo operations, automatically generating compensation log records.

7.3.8 Transaction Manager Imple-
mentation
details in
section
7.4.7

Apart from the segment classes, the transaction manager is the only class that is directly
called by application programs.

Application
� �

TransactionMgr

The transaction manager maintains control structures for active transactions, called
transaction control blocks. Application programs use the transaction manager to group
their operations into (possibly nested) transactions. To indicate on behalf of which transac-
tion an operation is performed, applications have to give a transaction control block as one
of the arguments to their database operations.

The initiation of necessary actions when the state of a transaction changes is another
responsibility of the transaction manager.

Each active transaction has one transaction control block, serving as a central repository
for per-transaction information of the various transaction management components.

Apart from fields that contain the LSNs of the first and last written log records of the
transaction, each control block includes a pending actions list.

Pending actions in Natix are more generic than those of ARIES [66], which only allow
actions to be performed after commit. In Natix, the pending actions list contains sequences
of operations for a variety of changes in transaction state, for example before a transaction
commits, or before it establishes a savepoint. The pending actions list is a main memory
structure and is used to maintain other recovery components’ main memory structures. It
may not be used to store information necessary to undo operations of the transaction that
have been made durable (as the pending actions list may be lost in a crash). Examples for
its use include metadata recovery (see for example Section 7.5.3) and subsidiary logging
(Section 7.6).

The transaction manager also maintains a system transaction. This transaction is always
active, and is never rolled back. It is used in those places where a transaction control
block is required for operations that are not associated with any application transaction, for
example when writing checkpoint log records. While it would be possible to implement a
second code path for all those components which can be used without a transaction control
block, doing so for only a few special cases seems to be a less elegant version than simply
using a system transaction control block.

Forward Processing

Application programs use the transaction manager to begin, commit and abort transactions,
to establish savepoints and perform partial rollbacks. The transaction manager writes log
records accordingly, and if a rollback is requested, it employs the recovery manager to TransactionMgr

� �

LogMgr

118 CHAPTER 7. RECOVERY

recreate a previous transaction state by means of the recovery manager’s undo routines.TransactionMgr
� �

RecoveryMgr

Checkpointing

During a checkpoint, the transaction manager will log the contents of the control blocks
of all active transactions, to allow for recreating them after a crash. The contents of the
pending actions list is not recorded in the transaction manager’s log records.

Analysis

As specified in the ARIES protocol, when encountering commit or abort records during
restart analysis, or when encountering a previously unknown transaction’s first log record,
the recovery manager instructs the transaction manager to allocate or release transactionRecoveryMgr

� �

TransactionMgr control blocks accordingly.
The recovery manager also forwards the checkpoint log records describing active trans-

actions to the transaction manager to allow for reconstruction of transaction control blocks
for the transactions that were active during the checkpoint.

As a result, at the end of restart analysis, all transactions that were still active when the
system crashed, and only those, will have a transaction control block.

Redo Processing

The transaction manager is not involved in redo processing, Since no log records or locks
are created. However, most low-level components require properly initialized transaction
control blocks to operate. To allow these components to be used during redo, the system
transaction’s control block is used.

Undo Processing

If a transaction was completely rolled back during redo processing, but no abort record was
found, the recovery manager properly aborts the transaction using the transaction manager,
resulting in an abort record being written.

All transaction control blocks are released at the end of the restart undo phase.

7.3.9 Control Flow Examples

To clarify control flow through the recovery subsystem, we present UML sequence dia-
grams showing the involved components and their interactions in three situations, forward
processing, transaction undo (R0 Recovery), and system restart.

Forward Processing

Figure 7.2 depicts the insertion of a record into a slotted page segment.
The application calls the segment (1). The segment finds a potential candidate page for

insertion in its main memory cache, which it fetches (2). However, the candidate page is not

7.3. NATIX RECOVERY ARCHITECTURE 119

Figure 7.2: Forward processing sequence diagram

120 CHAPTER 7. RECOVERY

in the buffer. Hence, another page must be replaced. In this case, the replaced page happens
to be a dirty page of the same segment. The buffer manager notifies the associated page
interpreter (3), which performs write-ahead-logging for the page (4). The page is written
to disk (5). Using the segment’s page factory, the page interpreter is deinitialized (6), (7).
The new page’s contents are read (8) from disk, and the segment’s page factory is called
to provide a recoverable page interpreter (9), which is initialized (10). This completes the
fetch operation. The segment now inserts the record on the page (11). The recoverable page
interpreter, in addition to modifying the page’s contents, creates a log record (12) using the
log manager, which notifies the transaction manager to access the transaction information
and maintain the undo LSN chain (13). The segment unfixes the page (14) and returns.

Transaction Undo

In Figure 7.3, the transaction from the previous example is aborted.
The applications requests the transaction abort (1) from the transaction manager, which

uses the recovery manager to actually undo the transaction’s updates (2). The recovery
manager performs a backward scan of the log records written by the transaction, starting
with the last written log record (3). It identifies the involved segment, and forwards the log
record to it (4). The segment fetches the affected page (5), which is already in the buffer.
The log record is further forwarded to the appropriate page interpreter (6), which calls its
regular forward processing routines to perform the inverse operation (7). A compensation
log record is automatically written (8), and the undo chain information for the transaction
is updated (9). The segment unfixes the page (10). For a longer transaction, the steps would
be repeated from (3), but in our example, only one log record needs to be undone. Finally,
the transaction manager cleans up the relevant per-transaction resources and returns.

System Restart

In the final example (Figure 7.4), we show some of the steps executed during a system
restart.

System restart is requested by system control (1), which uses the recovery manager to
perform the necessary actions. The first phase is restart analysis (2), during which a log
scan traverses the log from the starting point (3). The first log record reveals a transaction
which was formerly unknown to the recovery system. Hence, the transaction is registered
with the transaction manager (4). Further log records are scanned (5), (6), and the analysis
phase adapts its dirty page accordingly. Here, it turns out that the final operation of the
aborted transaction from our previous examples may not be stored on stable storage. At the
end of the analysis phase, the page (P2) is in the dirty page table, and the LSN of the log
record produced in step (8) of the previous example is the first log record that may need
redo. During redo (7), a second log scan starts at that log record (8), and it is forwarded
to the segment (9). The segment fetches the page into the buffer (10). Although the page
is not in the buffer yet, we leave out the steps required to provide a page interpreter for the
page to keep the diagram small. They are the same as in Section 7.3.9. After the buffer
manager returns, the segment verifies that the pageLSN is smaller than the log record’s

7.3. NATIX RECOVERY ARCHITECTURE 121

Figure 7.3: Transaction undo sequence diagram

122 CHAPTER 7. RECOVERY

Figure 7.4: Restart sequence diagram

7.4. DETAILED DESIGN AND IMPLEMENTATION 123

LSN. It is, and the log record is forwarded to the page interpreter (11). The page interpreter
uses a non-logging call to redo the operation (12), and updates the pageLSN. The page
is unfixed (13). No further log records need to be processed, and restart continues with
undo processing. However, since the single active transaction already was aborted, nothing
remains to be done.

7.4 Detailed Design and Implementation

The overall distribution of responsibilities and collaborations for recovery processing to
the different system components has been outlined above. In the following, we provide
details on interfaces and how the data structures and the communication of the classes are
implemented to yield optimal performance. There is few implementation-oriented recovery
literature. A lot of interesting details are not previously documented anywhere, making a
complete discussion of all issues a daunting task. We focus on the more unusual and subtle
parts and provide the basic material necessary to present them clearly.

Each subsection deals with one major class or class hierarchy in the recovery subsystem,
explains how the goals outlined in 7.1 affect the class, and identifies additional requirements
if they exist. General design principles of the class or hierarchy are derived, and a detailed
description of the C++ interfaces follows. A discussion of implementation details conclude
some subsections.

7.4.1 Log Records

Natix writes a recovery log which describes the actions of all update transactions using log
records.

Log Sequence Number

Each log record is assigned a log-sequence number (LSN) that is monotonically increasing
and can directly (without additional disk accesses) be mapped to the log records physical
location on disk. The mapping is maintained by the log manager (Section 7.4.2).

The LSN is a very important concept for recovery, as it accurately identifies states of
transactions, pages, and indeed the whole system. In the remainder of this chapter, several
special names for LSN-valued functions and variables are frequently used. Table 7.1 gives
an overview of their names, descriptions, transient/persistent storage locations. For reasons
of clarity3, we sometimes use other names than the original ARIES paper [66]. Wherever
there is an equivalent in ARIES, we give its name in the table.

Table 7.2 is an index referring to the sections which explain the LSN values in more
detail.

3 ����� which is always in the eye of the beholder. However, the name UndoNxtLSN is even used with two
different meanings in ARIES.

124 CHAPTER 7. RECOVERY

Name Function Description Storage ARIES
of name

anchorLSN log LSN of most recent checkpoint LM/LA —
annihilatorLSN object LSN of last complete before image V/V —
beginLSN log smallest LSN needed for restart LM/LA —
deletionLSN record LSN of record delete operation RC/RC —
flushLSN log Log is on disk up to this LSN LM/– —
nextUndoLSN log rec. Undo which log record next LR/LR prevLSN,

UndoNxtLSN
nextL1UndoLSN transact. Undo which L1 operation next TC/L —
oldestUndoLSN system Smallest transactionLSN TM/L —
pageLSN page Last update operation on page PC/PC pageLSN
redoLSN page First update operation after page write PI/L RecLSN
systemRedoLSN system Smallest redoLSN in system BM/L RedoLSN
transactionLSN transact. First log record written by transaction TC/L —
undoLSN transact. Last written record with undo info TC/L UndoNxtLSN

During rollback: Next log record to
undo

Transient/Persistent LSN Storage Locations

BM buffer manager
L log
LA log anchor record
LM log manager

LR log record
PC page contents
PI page interpreter
RC record contents

TC transaction control block
TM transaction manager
V varies by object type

Table 7.1: Special LSNs

Name Explained in Section(s)
anchorLSN 7.4.2
annihilatorLSN 7.7
beginLSN 7.4.2
deletionLSN 7.5.4
flushLSN 7.4.2
nextUndoLSN 7.2.2 (as PrevLSN,UndoNxtLSN),7.4.1, 7.4.2,7.4.7, 7.4.8
nextL1UndoLSN 7.4.7,7.4.8
oldestUndoLSN 7.4.7
pageLSN 7.2.2, 7.4.5
redoLSN 7.2.2 (as RecLSN), 7.4.5
systemRedoLSN 7.2.2 (as RedoLSN), 7.4.6
transactionLSN 7.4.7
undoLSN 7.2.2 (as UndoNxtLSN),7.4.7

Table 7.2: Special LSN Index

7.4. DETAILED DESIGN AND IMPLEMENTATION 125

enum REC_LogRecordKind;
class REC_LogRecord {
protected:

enum LogRecordFlags ;

public:
TransID transactionID() const;
void transactionID(TransID id);

REC_LogRecordKind kind() const;
void kind(REC_LogRecordKind lrk);

uint8 operationKind() const;
void operationKind(uint8 ok);

void clearFlags();
bool isUndo() const;
void setUndo(bool undo);
bool isRedo() const;
void setRedo(bool redo);

LSN nextUndoLSN() const;
void nextUndoLSN(LSN u);

};

Figure 7.5: Log record base class

Base Log Record

Natix log records consist of the following required fields at minimum.

transactionID() identifies the transaction that logged the update. To save space, this
ID is just an index into the transaction table of all active transactions. The full, unique
transactionLSN (refer to Section 7.4.7) is not necessary here, as the index to-
gether with the current log position is sufficient to uniquely identify a transaction
during normal and restart processing.

kind() identifies the general kind of log record and determines the general layout of
the information in the log record (see below). By general, we mean ”necessary for
the recovery manager to process the log record”. As the recovery manager often
forwards log records to other objects for further processing, we can hide some of the
log record internals to increase loose coupling.

operationKind() specifies further log record type and layout information, which is
not necessary for the recovery manager, but only for the ”end user” of the log record
(see below).

Flags describe whether the record contains redo-only, redo-undo, or undo-only informa-
tion.

126 CHAPTER 7. RECOVERY

class REC_LogRecordSegmentUpdate : public REC_LogRecord {
public:

void segmentID(const SegmentID &id);
const SegmentID &segmentID() const;

};
class REC_LogRecordPageUpdate : public REC_LogRecordSegmentUpdate {
public:

PID targetPID() const;
void targetPID(const PID &pid);

};
class REC_LogRecordFSIUpdate : public REC_LogRecord {
public:

PageNo start() const;
void start(PageNo p);
PageNo size() const;
void size(PageNo p);
uint8 value() const;
void value(uint8);

};
class REC_LogRecordBufferChange : public REC_LogRecord {
public:

void pageID(const PID &id);
const PID &pageID() const;

};
class REC_LogRecordActiveTransaction : public REC_LogRecord {
public:

LSN transactionLSN() const;
void transactionLSN(const LSN &);
LSN undoLSN() const;
void undoLSN(const LSN &);

};

Figure 7.6: Some log record classes

nextUndoLSN() points to the log record of the same transaction that has to be undone
after this log record in case of a rollback. Usually, this will be the previously written
log record of the same transaction which contains undo information.

Only in case of compensation log records (CLRs, Section 7.2.2), the nextUndoLSN
points to the operation logged before the operation this log record is an undo log
record for. In Section 7.7, we show another situation where the nextUndoLSN
chain of log records is not just the reverse sequence of log records of one transaction.

Note that compared to other ARIES implementations [66, 36, 94], Natix log records are
rather compact, as the LSN of log records is not stored in the records themselves, and only
one log record backward chain (nextUndoLSN()) is maintained instead of two or more.

Log Record Kinds

From the base log record class, special log record classes are derived. They encapsulate
the actual storage formats of the data. Some of them are shown in Figure 7.6, without the
details of their layout. Mapping between the log record kinds and respective classes used
to interpret the layout is illustrated in Table 7.3. This table also describes whether the log
record occurs in ARIES or not.

7.4. DETAILED DESIGN AND IMPLEMENTATION 127

Log Record Kind Log Record Class Explained Introduced
(also depends on operation kind) in Section in ARIES

SEGMENT UPDATE REC LogRecordSegmentUpdate 7.4.4 –
(or subclass)

PAGE UPDATE REC LogRecordPageUpdate 7.4.5 �

(or subclass)
FSIPAGE UPDATE REC LogRecordFSIUpdate 7.5.5 �

PAGE FORMAT REC LogRecordPageUpdate 7.5.6 �

COMMIT TRANSACTION REC LogRecord 7.4.7 �

ABORT TRANSACTION REC LogRecord 7.4.7 �

BEGIN CHECKPOINT REC LogRecord 7.4.8 �

BUFFERMGR REC LogRecordDirtyPages 7.4.6 �

or REC LogRecordBufferChange –
TRANSACTIONMGR REC LogRecordActiveTransaction 7.4.7 �

PARTITIONMGR REC LogRecordMountedPartition 7.5.1 (�)
END CHECKPOINT REC LogRecord 7.4.8 �

Table 7.3: Log record types and the associated classes

The log record’s kind() and operationKind() values (see above) determine
which class is used, as we do not want to store C++ dynamic type information [88]. Only
C++ static cast<> operators are used to obtain correctly typed pointers to log records.

The most frequently created log records are page-level log records (PAGE UPDATE).
The individual page interpreters (Section 7.4.5) each have special log record classes to
describe their updates, which are subclasses of REC LogRecordPageUpdate. The ap-
propriate class is a function of the segment class and the operationKind() of the log
record.

In some cases, segments need to write log records, too, to describe logical inverses
of highly concurrent L1 operations. Such log records of the kind SEGMENT UPDATE
also have segment-specific subclasses to access their contents, again depending on the log
record’s operationKind().

The buffer manager generates two operationKind()s of log records. During a
checkpoint, it writes the complete dirty page map to disk, and during forward processing,
it logs when pages are removed from the dirty page map by either a flush or by dropping
an invalid page from the buffer without writing it (Section 5.6.5). The dirty page map
modification log records do not use the REC LogRecordPageUpdate class as they do
not need to store a segmentID.

The records generated by the buffer, transaction and partition managers during check-
points are detailed in the sections specified in the table.

128 CHAPTER 7. RECOVERY

7.4.2 Log Manager

Nearly all components of the recovery subsystem are dependent on the log manager, either
because they read log records, or write log records, or both.

Buffering the Log

Log records are accessed in main memory for reading and writing and have to be transferred
to and from secondary memory in the form of partition objects. While the regular buffer
manager appears to cover similar functionality, log access behaviour differs from that of
regular data, and requirements for the regular buffer manager and the log buffer manager
are very different (Subsection 7.4.3).

Hence, the log is buffered using a special log buffer manager, which is a part of the log
manager. Further details on requirements, design and implementation of the log buffer can
be found in Subsection 7.4.3.

Flushing the Log

Synchroneous writing of the log when replacing pages or when committing transactions is
important to the correctness of ARIES. The log manager interface must support log flushing
up to a specified LSN.

There is a certain degree of freedom concerning when such a synchroneous call may
return to the caller. The last page that has to be flushed may not be completely filled with
log records. If the page is flushed immediately, then either no new log records may be
inserted on the same page, or it must be written again, causing several synchroneous I/Os
where only one would be required.

As a remedy, the log manager may delay the log flush operation and block the thread
requesting the log flush. Other transactions may concurrently add records to the partially
filled page. When it is full, the waiting thread is unblocked and the page is flushed. Even
longer delays can include more consecutive pages in a single write request, amortizing the
latency cost for I/O processing.

Transaction commits are the main reason for log flushes. The technique of delaying log
writes is therefore called group commit [31]. Log flushes due to Write-Ahead-Logging are
less frequent. By the time a page is replaced and has to be written to disk, associated log
records usually have been flushed as the updating transaction has already committed.

A group commit delay can be dynamically adapted to yield optimal throughput in an
environment with varying workloads [41]. This is not yet supported by Natix. However, if
only few transactions operate concurrently, or if a single transaction has special response
time requirements, group commit delays may be inacceptable. Hence, the interface has to
allow transaction-specific log flush behaviour.

Data Copy vs. Fix/Unfix

Creating a log record in Natix is done by two separate calls to the log manager, between
which the caller is supposed to fill in the log record header and data directly in the buffer

7.4. DETAILED DESIGN AND IMPLEMENTATION 129

location. To read a log record, the caller must use two calls to announce begin and end of a
read access, between which the caller may access the log record directly in the log buffer.

This minimizes the time spent in the log manager monitor (see Synchronization below),
and allows for multiple transactions to create and read log records in parallel. It also allows
to avoid data copy operations during read and write because the caller may access log
records directly in their buffer location. A disadvantage of Natix’s approach is that log
records may not span several disk pages. However, updates are logged on the page level.
Hence, no more than one page of data can be modified by a single operation, and update log
records typically do not get larger than a log page if the log page size is larger or equal to
the data page size. It is possible that before and after images require a combined log record
larger than the page size, in which case it is possible to write undo and redo information
into separate log records.

An alternative approach (described for example in Gray et al. [36]) is to require the log
record contents to be provided as arguments to a single log record creation call, allowing
log records to be larger than a page. This requires at least one additional copy operation to
move the log record contents from the caller’s buffer to the log manager’s buffer. Probably,
additional copy operations are required to assemble the log record in the caller’s buffer. The
authors argue that an interface which allows direct access to the log header is not modular
and dangerous in the presence of untrusted callers.

Apart from encapsulation, Gray and Reuter consider the necessity for a dedicated pro-
tocol with fix and unfix operations for the log a disadvantage, but without explaining why.

Their arguments are not strong. Apart from the fact that we are not designing a gen-
eral purpose transaction manager, but a specialized DBMS for XML which is unlikely to
integrate untrusted callers, the fix/unfix interface used by Natix is in fact the more general
approach. It hides the actual implementation, which could as well be one that internally
isolates the caller from the log and copies or transforms the log records before transferring
them to the actual log. The absence of a fix/unfix protocol would also require an extra copy
operation for read operations, causing a severe performance hit for transaction and restart
recovery.

Natix also makes it possible to assemble a log record in several increments, for example
to write the undo information first, then performing an operation, and then writing the redo
information. Gray and Reuter argue that such an approach will confuse restart processing
because restart may see incomplete log records. We prohibit this by not writing any log
page to disk before all log records on it are completed. Since we do not allow log records
larger than a page, we do not run into log buffer overflows when doing this, as long as there
is space for at least one log page per logging transaction in the buffer.

Log Manager Interface

Figure 7.7 shows part of the public interface of the log manager class. We will now explain
the methods grouped by purpose.

130 CHAPTER 7. RECOVERY

class LogManager {
public:
void startLogRecord(TaCB *tacb,

uint16 size,
bool withundo,
REC_LogRecord*& dest,
LogHandle &handle

);
void startSubcommitLogRecord(TaCB *tacb,

uint16 size,
bool withundo,

LSN nextundolsn,
REC_LogRecord*& dest,
LogHandle &handle

);
LSN log(const LogHandle &lh);

void flushLog(TaCB *,LSN flushlsn);
void flushLogComplete();
LSN flushLSN() const;

class iterator {
public:

iterator &operator ++ ();
void skipToLSN(LSN undolsn);

REC_LogRecord &operator *() const;
uint16 logRecordSize() const;
LSN lsn() const;

};

iterator find(LSN aLSN);
iterator end() const;

const PID& beginPID() const;
LSN beginLSN() const;
LSN anchorLSN() const;
void anchorLSN(LSN anch);
void writeAnchor();
void readAnchor();

};

Figure 7.7: Log manager interface excerpt

7.4. DETAILED DESIGN AND IMPLEMENTATION 131

Creating Log Records

startLogRecord() This method allocates space in the log for a new log record of the
specified transaction. The log record’s size, given as parameter, may not exceed the
log page size. The withundo flag determines whether the log record will participate
in the transaction’s nextUndoLSN chain.

The log manager returns the log record’s address in the log buffer (dest) and a
handle that allows the caller to notify the log manager once writing the record has
been completed.

The log record will not be initialized, except for its nextUndoLSN, which will be
filled in with the transaction control block’s undoLSN value. The undoLSN value
is set to the new log record’s LSN.

startSubcommitLogRecord() The method performs the same function as the pre-
vious method, but allows for the caller to provide a custom LSN to be used as
nextUndoLSN. This is necessary for L1 subcommit log records, see Section 7.4.4.

log() By using this method the creator of a log record may notify the log manager that
the log record has been completed and may be written to disk. It returns the LSN of
the newly created log record.

Flushing the Log

flushLog() flushes the log up to a specified LSN. The call may be delayed, for example
to wait for the last page to be filled completely to avoid multiple writing of the same
page, or to wait until a larger amount of log pages can be written with one I/O request.
The transaction control block is specified to control the delay behaviour on a per-
transaction basis.

flushLogComplete() flushes all log pages currently in the buffer. This call is used
when the system shuts down.

flushLSN() returns the highest LSN which is known to be on disk. The flushLSN is
stored because the log buffer manager only knows up to which page the log has been
written to disk, but not which individual log record was stored. When flushLog()
is used and group commit delays are not performed, the log manager may have to
write the same page several times, depending on which LSN is on disk already.

Reading Log Records

class iterator Read access to log records is performed using an iterator interface
based on the STL iterator concept [47].

Iterators reference log records, and as long as an iterator for a log record exists, it
may be accessed in the location returned by operator*(). Fixing and unfixing

132 CHAPTER 7. RECOVERY

the log page in the log buffer is handled by the iterator. Additional access functions
of iterators return the size and LSN of the current log record.

Backward scans through the log use the skipToLSN() functions, while forward
scans use operator++(), which advances the iterator to the log record with the
next highest LSN value.

find() returns an iterator for a given LSN.

Maintaining the Log Anchor

beginPID() is used to obtain the first log page containing relevant log record.

beginLSN() returns the LSN of the first record on the beginPID page. This value is
necessary to map LSNs to PIDs and vice versa. For details, see Section 7.4.2.

anchorLSN() The anchorLSN() functions are used by the recovery manager to de-
termine or announce the LSN of the last complete checkpoint taken by the system.
This value is made persistent by a call to writeAnchor() (see below).

writeAnchor() is used to make the current log anchor information durable in the cur-
rent log partitions master segment.

readAnchor() is called by the recovery manager to read the log anchor values from
disk.

Synchronization

The log manager is implemented as a monitor [44], which means that only one thread can
execute any of the log manager’s methods at any given time4.

The interface approach for accessing log records described above still allows for several
transactions to create log records in parallel, with several other transactions reading log
records concurrently, even from the same log pages.

Note that access to the logging-related fields (undoLSN, transactionLSN) in the
transaction control block is synchronized since accesses always originate from inside the
monitor.

Since log records are never modified, and each transaction is only interested in its own
log records, there can be no conflicting accesses between transactions, apart from allocat-
ing space for new log records, which is done sequentially in the startLogRecord monitor
methods.

During regular operation, the only reason why transactions need to read log records is
rollback. The transaction only follows its own nextUndoLSN chain, there is only one
thread executing on behalf of the transaction, and log records are never moved or modified.
Hence, there are no conflicting accesses here either.

4group commit is the only exception. With active group commit, log flushes may be delayed and other
threads may use the log manager until the log flush occurs.

7.4. DETAILED DESIGN AND IMPLEMENTATION 133

The above is only true on a logical level. In the implementation world, the log records
must be accessible in main memory. Since only part of the log is buffered in main memory,
replacement of pages in the log buffer must be synchronized between threads. Again, the
log buffer’s methods are only called from inside the log manager monitor, and no conflicts
can occur.

Physical Organization of the Log

Natix’s log is stored using regular partitions (Section 5.2). However, metadata organization
of log partitions differs from regular partitions (compare Section 5.6):

There is only one single-page master segment. The rest of the partition consists ex-
clusively of log pages without further fragmentation into segments. The descriptor of the
master segment contains type information indicating that this is a log partition which does
not have free space or user data segments.

The master segment also contains a log anchor record with log metainformation such
as the position of the last checkpoint (anchorLSN) and the current log begin in form of
beginPID and beginLSN. How these values are used, and how the end of the log can
be found is described below.

The log pages themselves are simple slotted pages, which are optimized for append-
only access, so that the slot descriptor only contains position and length of the record, but
no status information. There are also no free space data structures on the log pages.

The available log space is used in a circular fashion. Only a small part of the accessible
log pages hold active log records, i.e. those that are relevant for redo or undo. The window
of active log pages is bounded by the beginPID page and the last log page. New log
records are always inserted in the last log page, which is advanced to the next page if it
becomes full. Due to the fix/unfix interface to access log records, several log pages may
concurrently be written to because the last log page may be advanced even if not all log
record writes are completed.

The beginPID is advanced if the available log space is too low, and is then set to the
log page with the smallest LSN that is necessary for undo or redo. This process is called
log truncation (see below).

If the last available log page is used up, logging wraps around back to the first available
log page. By performing regular log truncation, it is ensure that the log never ”bites its own
tail” and there is always enough space to store potential compensation log records of all
active transactions. If there is a danger of log overflow, the system is stopped by aborting
all transactions, and more log space has to be allocated by the administrator.

To determine the end of the log (the last page which contains log records), on each
page the LSN of the first log record on that page is stored. While scanning the log during
analysis or redo, the log manager can then determine the end of the log by detecting the
first page with an LSN that is not the successor of the previous page’s LSN. To make the
system robust against garbage in newly allocated files, all pages are formatted with a Null
LSN when a log partition is created.

134 CHAPTER 7. RECOVERY

LSN Mapping

Natix’s LSNs are closely related to the log record’s physical position to allow for a quick
mapping. A Natix LSN consists of a pair

�
� � " ��� � � *�
����� � � where pageNo describes a

logical page number starting from 1 when the log is first initialized, and slotNo describes
a slot on that page. The pageNo is increased every time a new log page is used, even if
the log wraps around and reuses lower PIDs. Lexicographic ordering on the LSN tuple
provides the required ordering of LSNs.

The log anchor contains a beginPID and a beginLSN, describing the first physical
page ID of the current log partition, and the associated LSN. Mapping between PIDs and
LSNs is then performed by using the beginLSN/PID as base value, and adding the differ-
ence of the current page/LSN and the beginPID and LSN values. Some extra arithmetic
is required to take care of multiple log partitions and log wraparound, but mapping between
LSNs and PIDs is still very fast, taking only constant time, no matter how large the log is.

In order to save space, Natix does not store the LSN inside the log records. Only the
LSN of the first log record on each page is stored in the page header.

Log Truncation

The system must always be able to perform restart recovery. In the worst case of a system
crash where all transactions were uncommitted at the instant of the crash, this means there
must be enough log space to roll back all currently active transactions.

Natix uses a generous estimate of the required log space by reserving at least twice the
amount of log written by all active transactions.

Calculation of the required amount is based on the difference between the current
beginPID and the last log page.

The process of advancing the beginPID is called Log truncation. It is invoked regu-
larly, at least every time a checkpoint is taken.

The beginPID must point to the first page that contains relevant log records. Due to
committing transactions, flushed pages and recent checkpoints, the beginPID may point
to a location too far back in the log.

The currently required beginPID value is the smallest LSN of a log record required by
restart. If a mere recalculation of the currently required window of active log records does
not sufficiently advance the beginPID, then stale pages are flushed until the window of
active log records is again small enough. However, this only advances the beginPID if the
systemRedoLSN is smaller than the anchorLSN. The anchorLSN is only advanced
when a checkpoint takes place.

We therefore perform log truncation every time a checkpoint is taken (see
checkpoint(), Section 7.4.8). If this does not sufficently advance the beginPID, we
issue a warning message, indicating that log space is low. In this case the administrators
need to increase the checkpoint frequency or the available log space.

If the available log space is still lower than twice the amount of log written by all
active transactions, the system is shut down. If this is considered too harsh, it is possible
to take a softer approach by introducing a sequence of thresholds. Passing each threshold

7.4. DETAILED DESIGN AND IMPLEMENTATION 135

would invoke progressively more effective measures to reclaim log space. Such measures
include, in order of increasing impact, (1) disallow new transactions to begin (2) suspend
running transactions (3) abort the

�
oldest transactions, (4) shut the system down. But such

a proliferation of thresholds and effects make the systems behaviour more complex and
difficult to understand, increasing administration effort. Natix only has one threshold and
shuts down the system. We wanted to keep administration effort low, and the long-term
solution for problems with log space is to reconfigure the system anyway, for example by
adding more log space or allowing fewer concurrent transactions.

The following steps are performed to implement a log truncation:

1. Acquire log manager monitor mutex.

2. If already in log truncation mode, return immediately.

3. Go into log truncation mode by setting a flag. This avoids several threads to invoke
log truncation simulataneously and avoids warning messages if log truncation itself
tries to write log records.

4. Determine current anchorLSN (LSN of last checkpoint).

5. Determine current beginLSN.

6. Drop log manager monitor mutex because log truncation itself may take some time
and requires writing of page flush log records.

7. Determine oldestUndoLSN by calling transaction manager.

8. Determine systemRedoLSN by calling buffer manager.

9. Determine minimum of anchorLSN, oldestUndoLSN, systemRedoLSN, and
use as prospective new beginLSN.

10. If new beginLSN is sufficiently larger than old beginLSN or if it is not equal to
systemRedoLSN, skip to 13.

11. Flush the oldest page in the buffer manager.

12. Repeat from 8.

13. Reacquire log manager monitor lock.

14. Determine beginPID for new beginLSN.

15. Store Log Anchor Record (This can be left out if called from checkpoint, as the
checkpoint will write the log anchor anyway).

136 CHAPTER 7. RECOVERY

16. If the beginPID could not be advanced sufficiently, issue proper error messages
and perform system shutdowm while still in log truncation mode.

The log space will still be sufficient to write compensation log records for all active
transactions because log truncation fails immediately once the minimum threshold is
reached, and the threshold is sufficently generous.

17. Go back to normal mode.

18. Drop log manager monitor mutex.

Careful Writes

Sometimes, when log pages are flushed, the same log page may be written several times
because the flushLog() function flushed a non-full page. The log anchor record is also
written more than once.

The log manager must take care to guarantee that several writes of the same log-related
pages do not corrupt the pages if a system crash occurs during write. Since this topic has
been exhaustively treated in the literature (for example in Gray et al. [36]), we will not go
into details here.

7.4.3 Log Buffer

The log buffer is a part of the log manager and performs the transfer of log records from
memory to disk and vice versa.

Since our design choice is to implement fix/unfix interface for the log manager with
direct access to the log buffer locations for the log records, we have to take the resulting
requirements into account when designing the interface used to access the log buffer from
the log manager.

Most database recovery literature (including for example [36, 66, 94]) does not describe
a detailed protocol how to access the log buffer. The problem is considered trivial and
often reduced to suggesting some kind of ring buffer to allow appending log records and
sequentially writing them. This leaves open the question how the log buffer is employed
when reading log records during transaction rollback. Even when the rollback procedures
use private buffers for each transaction, some of the younger log records needed for rollback
may still reside in the log buffer for writing and there needs to be a protocol to access them
without conflicting with log writes that may happen simultaneously.

As a solution Gray et al. [36] propose to use an instance of the regular buffer manager as
log buffer, since it already contains the necessary protocol to synchronize multiple readers
and writers. We did not follow this approach in Natix, as the log buffer and the regular
buffer manager, due to properties of the recovery method and our design goals for high
performance, have very different access characteristics (Table 7.4).

These differences strongly suggest using an interface and an implementation for the log
buffer that are different from the regular buffer manager. The Natix design and implemen-
tation is presented in the following subsections.

7.4. DETAILED DESIGN AND IMPLEMENTATION 137

Regular Buffer Manager Log Buffer Manager
needs to synchronize associative ac-
cess to pages

only called from log manager, which
is a monitor

random access for write only sequential writes
arbitrary modifications of pages append only
only one writing thread per page multiple writing threads on the same

page
has to ensure write-ahead-logging
for data pages

log pages do not log updates

Table 7.4: Buffer manager vs. log buffer manager

Log Buffer Organization

The log buffer is similar to the regular buffer manager in that it contains a fixed set of
pages, and an associative access structure to find pages based on their PID. In contrast to
the regular buffer manager, these structures are not synchronized because the log buffer is
only called from the log manager, which is a monitor and hence does not allow concurrent
access.

The log buffer in Natix is organized as an array of buffer frames, each having a buffer
frame control block with two fix counters, one for the number of readers and one for the
number of writers. A frame is called fixed when at least one of the read or a write fix
counters is larger than zero. Otherwise, the frame is unfixed. Initially, all frames have both
fix counters set to 0.

The array is used as a ring buffer, where the role of current frame, i.e. the frame that
contains the current end of the log, cycles through the buffer.

Usually, a buffer ring contains consecutive pages, and the oldest page in the buffer is
contained in the next frame in the ring after the current frame, i.e. the frame in the array that
is reached by incrementing the current frame’s index by one and doing a modulo division
by the buffer capacity.

However, in our case, if a rollback is reading old log pages, some of the frames in the
ring may contain older, out-of order pages. When cycling the current frame through the
ring, those frames are skipped if there is still a thread that has a fix on them. The currently
unfixed pages are not chained, akin the LRU chain in the regular buffer manager. Instead,
the frame to hold the new current page is determined by advancing one frame at a time until
the next unfixed frame is found.

Log Buffer Interface

getNewPage() allocates a new frame in the log buffer without loading a page from
disk. The frame allocated is the next unfixed frame after the current frame. The
allocated frame is the new current frame afterwards. The frame’s write fix counter is
incremented.

138 CHAPTER 7. RECOVERY

class LogBuffer {
public:
class LogFrameCB {
public:

LogPage *page() const;
ptr_t contents() ;
bool isFixed() const;
bool hasPendingWrites() const;
bool isDirty() const;

};

LogFrameCB *getNewPage(const PID &pid);
LogFrameCB *getCurrentPage();
void getPageReadOnly(const PID &pid, LogFrameCB *&frame);

void releaseRead(LogFrameCB *frame);
void releaseWrite(LogFrameCB *frame);
void releaseReadInvalidate(LogFrameCB *frame);

void flushToPID(const PID &flushpid);
void flushToCurrent();

};

Figure 7.8: Log buffer interface excerpt

getCurrentPage() returns the current frame and increases its write fix counter.

getPageReadOnly() returns a frame control block for the specified page.

If the page is not in memory, the frame given as argument is replaced if that frame
is not fixed. Otherwise, the next unfixed frame in the ring after the current page is
replaced.

This allows for the recovery manager to reuse the frame used in an undo chain traver-
sal. Since undo frequently reaches far back into the log, not reusing the same frame
would contaminate the log buffer with a lot of old pages. In effect, this results in each
transaction rollback having a private log buffer page while still sharing log buffer
space if possible.

releaseRead() decrements the current read fix counter for the page.

releaseWrite() decrements the current write fix counter for the page.

releaseReadInvalidate() decrements the current read fix counter for the page and
invalidates the associated PID for that frame.

This call is used while searching for the end of the log during analysis. If a page with
out-of-order LSN in the page header is read, then the end of log has been passed. The
out-of-order page is the page behind the last log page and must be removed from the
buffer without writing it, as it does not contain meaningful log data.

7.4. DETAILED DESIGN AND IMPLEMENTATION 139

flushToPID() Writes all dirty pages from the chronologically first dirty page up to the
page with the PID given as argument back to disk. If the given PID is not in the
buffer or is not dirty, no operation is performed.

The log buffer remembers the last dirty page that was flushed to disk, to avoid a linear
search every time flushToPID is invoked. Scanning the buffer ring fowards, it writes
groups of dirty log pages that are consecutive in main memory to disk using the par-
tition’s writePages() call. Not all of the pages are consecutive in main memory,
because the buffer ring may wrap around, and because getPageReadOnly()may
have read some old pages into the buffer.

flushToCurrent() Writes all dirty pages back to disk.

Log Buffer Capacity Requirements

As a result of the design outlined above, there are some requirements for the capacity of
the log buffer.

During forward processing, it is possible that every transaction is concurrently writing
a log record. To allow this to happen, there must be one buffer frame for every transaction
because it is possible that every transaction writes a log record that consumes a whole buffer
frame. It would have been possible to employ multi-thread synchronization to suspend a
thread until an unfixed log frame is available for it to write its log record, but this would
have complicated the interaction between the log manager and the log buffer. We do not
consider a number of log frames equal to or larger than the number of allowed concurrent
transactions a serious drawback. Hence, we kept the interface of the log buffer simple,
assuming a sufficient number of available buffer frames.

During rollback, a transaction scans backwards through the log, reading its log records
and undoing them. Undoing the log records may result in compensation log records. Hence,
a transaction may simultaneously read from one and write to another log frame. This
adds the number of transactions rolling back concurrently to the number of required log
frames. It is possible to put an upper bound on the number of transactions rolling back
concurrently by putting some kind of semaphore into the recovery manager. In contrast
to the synchronization of free log frames in the previous paragraph, this would only add
internal synchronization to a single class.

Currently, Natix simply requires a log buffer capacity of at least twice as many log
buffer frames as allowed concurrent transactions.

7.4.4 Segments

We now describe in more detail how the segment classes perform logging and recovery. We
start with the mechanisms in the segment base class and then explain how a regular data
segment class can be made recoverable. A description of the framework for recovery of L1
operations concludes the section.

140 CHAPTER 7. RECOVERY

class SEG_Segment {
[...]

// persistent constrcutor
SEG_Segment(const Recipe &);
// persistent destructor
static void destroy(SEG_Segment *);

void undoLogRecord(StmtCB *stmtcb, BufferFrameCB *lastframe,
LogRecord *undorecord, uint16 logrecsize);

LSN redoLogRecord(BufferFrameCB *lastframe,
LogRecord *redorecord, uint16 logrecsize);

[...]
};

Figure 7.9: Segment base class recovery functions

Segment Base Class

For regular recovery, the segment base class in Natix offers two virtual functions, one for
redo and one for undo. They are called during processing of log records that belong to the
segment.

The default implementation of these functions demands the appropriate pages from the
buffer manager and then forwards the log records to the associated page interpreter.

The following is a description of the methods shown in Figure 7.9.

undoLogRecord() In addition to the log record, the undoLogRecord() function
receives the frame control block for the last processed page and a statement con-
trol block for the undo operation. Only if the frame contains a different page than
the target page of

� � 	������ � ����	 , the segment needs to unfix
�
���� � ��� � �

and fetch
� ��	������ � ����	 ’s target page. This minimizes the calls to the buffer manager if a series
of subsequent log records apply to the same page, which is likely especially if our
clustering XML storage format is used.

After establishing a main memory address for the page, the log record is forwarded
to the page interpreter by calling its undoLogRecord() function.

The virtual function undoLogRecord() only needs to be refined by derived classes
if they perform and log segment L1 operations, as described below.

redoLogRecord() To redo a log record, the segment instructs the buffer man-
ager to fetch the page, performing the same check for last used frame as the
undoLogRecord() function above. It then checks whether the page already
contains the log record’s update by inspecting the pageLSN. If the page does not
contain the update, the log record is forwarded to the page interpreter by calling
redoLogRecord() on the associated page interpreter (Section 7.4.5).

The current pageLSN is returned to the recovery manager to update the dirty page
map. In case the current log record’s update was already contained in the page, this

7.4. DETAILED DESIGN AND IMPLEMENTATION 141

allows for the recovery manager to avoid attempts to redo log records until the redo
log scan reaches the proper redoLSN for this page.

The virtual function redoLogRecord only needs to be refined if the segment writes
segment-level redo log records, which was not necessary for any encountered seg-
ment type in Natix. The redoLogRecord function is virtual only for reasons of sym-
metry and completeness.

Persistent Constructor, Persistent Destructor, grow() To enable metadata recovery for
segments, the segment base class also writes log records when a segment is created
on disk, destroyed, or when it grows. Treatment of these log records is described
in Section 7.5. Derived segment types do not need to change or add the metadata
recovery.

Adding Simple Recovery to a Segment Type

Segments have to make sure that the recovery versions of the page interpreters are used.
Since the segments use a factory class to create the page interpreters, the only code partic-
ular to recovery is initialization of the proper page interpreter factory when a recoverable
segment is opened. The actual code necessary to enable recovery for a segment type is
limited to about 5 lines in the segment constructor.

Adding Recovery to a High-Concurrency Segment Type

The following paragraphs describe a framework provided by Natix’s recovery subsystem,
which allows for relatively simple integration of object-level recovery techniques as ex-
plained in Section 7.2 to enable recovery for segments in which the same object may be
concurrently updated by several transactions. Operations on such objects, which cannot be
undone by applying the inverses of the original page updates, are called L1 operations.

In Natix we distinguish between two classes of L1 operations, segment L1 operations
and metadata L1 operations.

Segment L1 operations are necessary for regular segment types that support a high degree
of concurrency (e.g. B-Trees). Although the inverse of the operation on the segment
might not be correctly described by the page-level inverse operations, the inverse
of the L1 operation only affects pages of the original segment. Below, we describe
the framework which can be used to easily provide recovery for this kind of L1
operations.

Metadata L1 operations result from the fact that even operations that at first glance only
affect single pages sometimes need metadata maintenance, thus affecting more than
one page. Examples include free space inventory updates, where in addition to the
data page, a free space inventory page is updated; or segment growth, where not only
the segment metadata, but also the partition-level free extent table needs modifica-
tion. Since we definitely want high concurrency on the metadata structures, opera-
tions on them are L1 operations.

142 CHAPTER 7. RECOVERY

As in the examples just mentioned, metadata maintenance and recovery often affect
not only several pages, but several segments as well, and the interactions are quite
delicate and performance-sensitive. Hence, we do not provide a general framework
for metadata L1 recovery. While some of the recovery logic for metadata L1 opera-
tions can be implemented using segment L1 operations for metadata segment types,
a certain amount of special code is still necessary. Further details on recovery of
metadata L1 operations can be found in 7.5.

At this point, it is sufficient to say that metadata recovery is handled by the segment
base class. Apart from the segments for metadata implementation, none of Natix’s
segment types needs special metadata handling code.

Forward Processing The segment executes the L1 operation using its regular update
code, generating page-level log records in the process. The only difference is that the
execution of the L1 operation is surrounded by calls to the transaction manager indicating
begin and end of the L1 operation.

Figure 7.10 shows a code sample for a B-Tree insert call. For simplicity, we assume that
key-value pairs are given as memory address and size arguments, and the BTree segment
knows how to deal with the contents, including how to extract the key, and the value, and
how to compare keys.

Before executing an L1 operation, the segment calls initiateL1() on the transac-
tion manager to mark the begin of an L1 operation. The initiateL1() call returns an
LSN that marks the state of the transaction before the L1 operation.

After performing the L1 operation using its regular code (in the example, this hap-
pens inside regularInsertKV()), the transaction manager is notified by calling
notifyCompleteL1() (see Section 7.4.7). Then the segment writes a subcommit log
record containing the undo information necessary for the segment to logically undo the
operation. The segment instructs the log manager to use as nextUndoLSN for this record
the LSN returned by the initiateL1() call.

The regular undo chaining performed by the log manager will not be suitable for this
record, as the default behaviour is to set the nextUndoLSN field to the last log record
written by the transaction, in this case one of the log records that describe the L1 operation.

The correct record to undo after the subcommit record was undone is the one that was
written before the first log record of the L1 operation. This is the LSN returned from
intiateL1(), and since the log manager allows custom undo LSN chaining, we can use
it as nextUndoLSN when writing the L1 subcommit log record.

Undo Processing During undo processing, the recovery manager calls the segment
undoLogRecord() virtual function for every log record with a matching segmentID.

The segment base class implementation of the undoLogRecord function will forward
the log records on to the appropriate page interpreter. For a segment that logs L1 operations,
we have to refine the undoLogRecord function to deal with L1 undo. The refined function
processes regular page-level log records by calling the base class implementation function
as usual.

7.4. DETAILED DESIGN AND IMPLEMENTATION 143

void SEG_BTreeSegment::insertKV(StmtCB *cb,ptr_t keyvaluepair, uint16 keyvaluesize) {
TRN_TransactionManager *trnmgr=cb->getTransactionManager();

LSN beforelsn=trnmgr->initiateL1(cb->getTaCB());
regularInsertKV(cb,keyvaluepair);
trnmgr->notifyCompleteL1(cb->getTaCB(), beforelsn);

logInsert(cb, keyvaluepair, beforelsn);
}

void SEG_BTreeSegment::logInsert(StmtCB *cb,
ptr_t keyvaluepair,
uint16 keyvaluesize,
LSN beforelsn) {

TaCB *tacb=cb->getTaCB();
REC_LogManager *logmgr=stmtcb->getLogManager();
REC_LogRecord *lr;

uint16 logrecsize=sizeof(BTreeInsertionLogRecord)+
keyvaluesize);

bool undoable=!tacb->isL1UndoInProgress();

// get log record location
REC_LogManager::LogHandle logrec;
logmgr->startSubcommitLogRecord(tacb,

logrecsize,
undoable,
beforelsn,
lr,
logrec);

BTreeInsertLogRecord *blr=
static_cast<BTreeInsertLogRecord*>(lr);

// fill in log record header fields
blr->kind(REC_LRK_SEGMENT_UPDATE);
blr->segmentID(segment()->id());
blr->operationKind(SEG_OPER_BTREE_INSERTRECORD);

memcpy(blr->contents(),keyvaluepair,keyvaluesize);

// finish log record creation and update LSN fields
logmgr->log(logrec);

}

Figure 7.10: Performing L1 operations

144 CHAPTER 7. RECOVERY

void SEG_BTreeSegment::undoLogRecord(StmtCB *stmtcb,
BufferFrameCB *lastframe,
LogRecord *undorecord,
uint16 logrecsize) {

if(undorecord->kind() == REC_LRK_SEGMENT_UPDATE) {
switch(undorecord->operationKind()) {

case SEG_OPER_BTREE_DELETE: {
BTreeDeleteLogRecord *blr=

static_cast<BTreeDeleteLogRecord*>(lr);

insertKV(stmtcb, blr->contents(), blr->keyValueSize());

return;
}

[... other L1 operations for B-Trees...]

default:
break;

}
}

// process non-L1 log records by invoking base class
SEG_Segment::undoLogRecord(stmtcb,lastframe,undorecord,logrecsize);

}

Figure 7.11: Undoing L1 operations

On encountering L1 subcommit records, however, the function must call the appropriate
segment-level inverse operation of the segment, using the undo information supplied in the
subcommit log record.

The regular segment-level inverse operation usually is a regular function of the seg-
ment’s data structure interface. For example, in a B-Tree segment, a subcommit log record
generate by deleteKV() (delete key-value pair) will be undone by calling the segment-
level inverse insertKV() operation on the segment (Figure 7.11).

Using the regular high-level functions for undo will automatically cause the logical
undo operation to be an L1 operation itself, as required by the object-recovery protocol
outlined in Section 7.2.

Execution of the inverse L1 operation is a subtransaction which again has special re-
quirements with respect to nextUndoLSN chaining. However, the segment announces
begin and end of the inverse L1 operations as during forward processing. In Figure 7.11,
this occurs for example in the call to insertKV() (refer again to Figure 7.10). When
initiateL1() and notifyCompleteL1() are called from insertKV(), the re-
covery and transaction managers know that high-level undo is taking place. They can en-
sure that the transaction control block is set up in a way that causes correct nextUndoLSN
chaining for the inverse L1 operation (refer to sections 7.4.7 and 7.4.8 for details).

It is not necessary for the segment code to call special segment-level undo functions for
L1 undo. The only difference is that when writing L1 subcommit records, the segments
need not include logical undo information if L1 undo is in progress, which is indicated by
the isL1UndoInProgress flag.

7.4. DETAILED DESIGN AND IMPLEMENTATION 145

Redo Processing Nothing needs to be changed for redo processing in segments with L1
operations. The L1 subcommit log record may be ignored because the necessary steps
to redo an L1 operation are described by the page-level log records written during the
execution of the operation.

Analysis and Checkpointing There is nothing that a high-concurrency segment needs to
change for redo processing, analysis or checkpointing.

More Concurrency

The framework described above allows for transactions to concurrently modify multi-page
data structures in a recoverable way, while keeping the code necessary for recovery sepa-
rated from the actual modification of the data structure.

However, the fact that every undo operation can no longer be performed on the page-
level, but has to be undone on the logical level, imposes limits on concurrency during
undo. For example, in a B-Tree, undoing an insert operation using the above framework
will cause a new search for the key to be deleted, including locking for the upper levels of
the tree. This may prove too expensive for some applications, especially since operations
that modify the structure of the tree must hold exclusive locks also on higher tree levels,
even if these locks are not held until the transaction commits.

Further concurrency can be achieved by implementing specialized methods like
ARIES/IM [67] for B-Trees, or ARIES/LHS [61] for persistent hash tables. Their approach
is to annotate the data structure itself with information about ongoing concurrent structural
modification. This requires recovery-specific interfaces for page interpreters, and segment-
level code where recovery logic and data structure modification are not separated. Undo
processing does not use the regular forward processing code. The simple code structure
outlined above, where data structure modifying code is simply parenthesized by recovery
calls, is no longer possible.

Still, implementation of such methods is simplified by our framework and can make
use of the provided infrastructure methods to maintain log records and transaction con-
trol blocks. Also, note that Natix’s recovery manager is not affected by methods like
ARIES/IM. To implement them, it is sufficient to define and refine methods of the seg-
ment and page interpreters, keeping the overhead and complexity localized.

7.4.5 Page Interpreters

The page interpreters form the largest component of the recovery subsystem, containing
about half of the total code necessary for recovery.

The following subsections elaborate on the design and implementation issues related to
recoverable page interpreters. We first explain the basic design pattern used to integrate the
recoverable page interpreters. The required modifications to the page interpreter base class
are discussed next, followed by a list of requirements for the interfaces of data types that
are to be made recoverable. Finally, some implementation issues for concrete data types
are reviewed.

146 CHAPTER 7. RECOVERY

PageInterpreterBase

RecoverablePageInterpreter

AlignSlottedPage

NoalignSlottedPage

RecoAlignSlottedPage

RecoNoalignSlottedPage

Figure 7.12: Two parallel page interpreter hierarchies

Page Interpreter Class Hierarchy Design

The design for integrating recoverable page interpreters takes an object-oriented approach.
By defining an interface for a given data type and deriving different versions of page in-
terpreters for that interface, it is possible to encapsulate recovery in the page interpreters.
The page interpreters’ callers, the segments, do not interact differently with recoverable
and non-recoverable pages. The only difference is that, as a side effect, recoverable page
interpreters write log records during forward processing.

Recoverable page interpreters must implement two interfaces, however. The first is the
interface of the stored data type, derived from the common page interpreter base class, and
the second is the interface for common page-level recovery functionality, such as mainte-
nance of pageLSN and redoLSN, and write-ahead logging.

We have to select one of the interfaces as the root of our hierarchy. Multiple inheritance
is no solution, not only because compiler incompatibilities and problems often surface with
uncommonly used features as multiple inheritance. The main reason we do not want to use
multiple inheritance is that we would need at least two page interpreter pointers in the frame
control block, one to the virtual function table implementing the regular page interpreter
base class, and one for the virtual function table implementing the recovery functionality.

The design alternatives for the page interpreter hierarchy are as follows:

two parallel hierarchies (Figure 7.12). We can have a common base class for the recover-
able page interpreters, with an attached inheritance tree that mirrors the regular page
interpreter tree.

abstract data type interface class (Figure 7.13). There is an explicit abstract base class
for each data type, from which both the regular and the recoverable version are de-
rived.

derive recoverable from regular versions (Figure 7.14). We use the regular classes as
base classes for the recoverable versions.

7.4. DETAILED DESIGN AND IMPLEMENTATION 147

PageInterpreterBase

AbstractSlottedPage

NoalignSlottedPage

AlignSlottedPage

RecoNoalignSlottedPage

RecoAlignSlottedPage

Figure 7.13: Abstract data type interface

PageInterpreterBase

NoalignSlottedPage

AlignSlottedPage

RecoverableSlottedPage � AlignSlottedPage �

RecoverableSlottedPage � NoalignSlottedPage �

Figure 7.14: Derive recoverable from regular

148 CHAPTER 7. RECOVERY

The first alternative introduces a common base class for all recoverable pages. This factors
functionality common for all recoverable pages (like redoLSN storage). While this is
a nice property, this class hierarchy design is inappropriate because the recoverable and
nonrecoverable versions cannot be used from the segments in a uniform way because the
common base class for them does not contain the type-specific interface used to access the
page’s contents. As a consequence, only the last two approaches are viable.

In Natix the last alternative was chosen over the second because the recovery func-
tionality is an addition to the regular functionality, and not an alternative – the original
functionality, storing the data, is still required. The simplest way to integrate it is to inherit
from the original class.

A way to implement a hierachy in the style proposed by the second alternative would be
to factor the original functionality into its own class, for example called StorageLayout.
This class would then be used as part of both the recoverable and nonrecoverable page in-
terpreter variants. However, this aggegration-based approach would result in a lot of del-
egation, where the page interpreter classes have lots of redirecting one-line function calls
to StorageLayout. In turn, StorageLayout would need a back pointer to the page
interpreter to access the core page interpreter infrastructure. In short, breaking the tight
coupling between the page interpreter object and the implemented data type would make
the code unnecessarily large and harder to understand and maintain.

That is why the third design alternative, deriving the recoverable from the regular page
interpreters, was chosen in Natix.

For data types that have several alternative page interpreter implementations even with-
out recovery, this requires to derive a recovery version from each of the regular implementa-
tions, although the recovery functionality is identical. One example in Natix are the slotted
pages, which have two implementations for the same interface. The first stores records
directly next to each other, while the other aligns the records. The recovery code for both
versions is identical. To avoid code duplication in such cases, the C++ template mechanism
is used. The recoverable version is specified with the regular implementation as template
parameter.

Page Interpreter Base Class

As a result of the design pattern for our page interpreter class hierarchy, functionality com-
mon to all recoverable classes has to be located in the page interpreter base class (Fig-
ure 7.15), in order to allow for the recovery algorithms to treat the recoverable pages in a
uniform way, and allow for dynamic linking where needed.

pageLSN() These functions allow to access to the associated page’s pageLSN. While
every page interpreter class may choose to implement a different storage location
somewehere in the page contents, the base page interpreter provides a standard han-
dling which uses the first 8 bytes of the page content to hold the pageLSN.

redoLSN The redoLSN is an attribute of the page interpreter class and is not stored on
the page itself, containing the LSN of the first operation that modified the page since

7.4. DETAILED DESIGN AND IMPLEMENTATION 149

class PGE_Page {
[...]

virtual void pageLSN(LSN);
virtual LSN pageLSN() const;
virtual void redoLSN(LSN);
virtual LSN redoLSN() const;
virtual void logLSN(LSN);
virtual void redoLogRecord(StmtCB *, LSN, LogRecord*, uint16 recordsize);
virtual void undoLogRecord(StmtCB *, LogRecord *, uint16 recordsize);
virtual void prepareWrite(GloCB *);

[...]
};

Figure 7.15: Page interpreter recovery functions

it was last written to disk. It is null for unmodified pages. It is set to null after a page
has been loaded, and it is modified by the logLSN() function below. Flushing a
page to disk also resets the redoLSN.

logLSN() This call is used by recoverable page interpreters after a log record for the
page has been created. It updates the pageLSN with the log record’s LSN. If the
redoLSN is null, it is also set to the new LSN.

redoLogRecord() This is a virtual function that is called by the segment (see 7.4.4)
during redo for every log record for the page whose update is not yet contained in the
page. It does nothing in the default implementation.

undoLogRecord() This is a virtual function that is called by the segment during undo
for every log record which updated the page and requires undo. It does nothing in
the default implementation.

prepareWrite() This function is called by the buffer manager before the page is writ-
ten back to disk. The existing base definition of the function as explained in Sec-
tion 5.4 does not need to be changed.

Page Interpreter Interface Requirements

To augment a data type with recovery, some basic requirements must be fulfilled by the
page interpreter’s interface. Most data type interfaces conform to the requirements without
modification, and for the others the necessary changes are usually limited.

virtual update functions We want recoverability to be transparent from the segments’
perspective. This is achieved through dynamic binding, as a common interface is
used for recoverable and nonrecoverable page interpreters for the same data type.
Therefore, all functions used to update the data structures on the page need to be
virtual. The recoverable version of a page interpreter has to refine them to write log
records.

150 CHAPTER 7. RECOVERY

existence of the inverse To allow for proper undo, every operation on the page interpreter
must have its exact inverse operation available in the interface of the class. While
this seems obvious, this is usually the point where existing page interpreters have to
be modified to allow for recovery.

For example, for slotted pages the inverse operation for record deletion on a slotted
page is record insertion. But since the slot number is used to identify the record, we
must have a record insertion routine that inserts a record into a specified slot, while
the regular insertRecord() function performs a search for a free slot. To allow
recovery for slotted pages, an insertRecordHere function is necessary to allow undo.

Sometimes it is not desirable to export such functions as public, because their
usage may violate invariants of the data structure if called outside the undo pro-
cess. Since undo is implemented in a derived class, such function can be made
protected.

bounded in-place updates Avoidance of data copy operations is a popular guideline to
achieve optimal performance. For page interpreter update interfaces, this means that
instead of requiring the caller to provide new object contents as argument to update
function calls, a buffer memory location is returned where the object’s contents are
going to be located. Then the caller can construct or modify the object in place.
Constructing it in a separate buffer and then performing an expensive copy operation
is not necessary.

Since the new contents were never announced to the page interpreter, it is impossible
to log the operation, as a proper after image is essential for a complete description.

We therefore require that such in-place update interfaces always include some kind
of completion call which announces that construction of the new object contents is
complete.

Recoverable Page Interpreters

The implementation of a recoverable page interpreter is simple, once the requirements
stated above are met.

The page interpreter has to log all updates and refine the functions to interpret the log
records during redo and undo. In addition, the page interpreter has to trigger write-ahead
logging before a page is flushed to disk.

In the following, we illustrate the design and implementation issues by adding samples
from the implementation of the deleteRecord() operation on slotted pages.

Logging updates Every time an update method is called, the page interpreter executes
the desired update operation using the respective method of the base class. In addition, it
calls the log manager to create a log record that describes the operation.

The log record contains information about the physical location of the update (segment
and page ID), an operation code, stating which operation was invoked, and the logical

7.4. DETAILED DESIGN AND IMPLEMENTATION 151

void PGE_RAL_LogSlottedPage::deleteRecord(StmtCB *stmtcb, Slot*slot) {
// log delete operation
logDeleteRecord(stmtcb, slot);

// call nonlogging base class to perform operation
PGE_RAL_SlottedPage::deleteRecord(stmtcb, slot);

}

inline void PGE_RAL_LogSlottedPage::logDeleteRecord(StmtCB *stmtcb, Slot *slot) {
TaCB *tacb=stmtcb->getTaCB();
REC_LogManager *logmgr=stmtcb->getLogManager();
REC_LogRecord *lr;

uint16 logrecsize=sizeof(SlottedPageUpdateLogRecord);
bool undoable=!tacb->isL0UndoInProgress();

// determine whether before image needed
if(undoable)

logrecsize+=slot->size();

// get log record location
REC_LogManager::LogHandle logrec;
logmgr->startLogRecord(tacb, logrecsize, undoable, lr, logrec);

SlottedPageUpdateLogRecord *plr=
static_cast<SlottedPageUpdateLogRecord*>(lr);

// fill in log record header fields
plr->kind(REC_LRK_PAGE_UPDATE);
plr->targetPID(pid());
plr->segmentID(segment()->id());
plr->operationKind(PGE_OPER_SLOTTEDPAGE_DELETERECORD);
plr->slotNo(slotNo(slot));
plr->setRedo(true);
plr->setUndo(undoable);

if(undoable)
{ // include before image from buffer

memcpy(plr->contents(),slot->contents(),slot->size());
}

// finish log record creation and update LSN fields
logLSN(logmgr->log(logrec));

}

Figure 7.16: Code for logging record deletions

152 CHAPTER 7. RECOVERY

location within the page (e.g. slot number). For undoable operations, a before image of the
object is stored in the log record, and for redoable operations, an after image is included.

The log manager returns an LSN for the log record, which is stored in the page’s con-
tents as pageLSN.

A code sample for record deletion on slotted pages is shown in Figure 7.16. After
initializing a new log record by calling the log manager, the appropriate log record fields
are filled. Some transformation from main-memory to durable formats is necessary, in this
case for the slot. For performance reasons, it is addressed using its main memory address
in the page’s slot table. In the log record, the slot number is used instead, since the main
memory address may not be the same when the log record is interpreted later.

In the example, the after image is empty, but for undoable records a before image is
needed. To create it directly from the record’s contents in the buffer, the operation is
logged before the actual execution of the operation. This is not a problem because the
page is latched and is only accessible by other callers after the operation is both logged and
executed. Undoable log records are those which are not created during undo, as explained
below under undo processing.

The code sample in Figure 7.16 uses the asynchronous interface to the log manager,
which is elaborated on in Section 7.4.2. The second call to the log manager on the last line
returns the log records LSN, which is then written as pageLSN and possibly as redoLSN
by the call to logLSN().

The page interpreter may also decide to distribute redo and undo information for an
operation onto two records. In that case, the undo information log record must precede the
redo information log record. Otherwise, if the system crashes and only the redo log record
was stored on disk, it is unable to undo the operation.

A typical case where the undo and redo information is distributed over two records is
for bounded in-place updates as described in the previous section. The call that initiates the
in-place update generates an undo-only log record, while the call that terminates the update
writes a redo-only log record. In this way, the log record creation time is not extended over
the complete in-place update time, nor is it necessary to buffer the before image somewhere
until the operation is terminated and the log record can be written.

Redo Processing The recoverable page interpreters must refine the redoLogRecord to
allow for the processing of log records during redo.

The implementation usually consists of a simple switch statement which extracts the
redo information from the log record and calls the appropriate update method of the non-
logging base class, as shown in Figure 7.17.

To correctly reflect the page state, the pageLSN and possibly redoLSN are set to the
LSN of the redone log record, which is given to redoLogRecord as an argument.

Undo Processing Analogous to redo processing, the page interpreter must refine
undoLogRecord() to process log records during undo (Sample Code in Figure 7.17).

The recoverable page interpreters use their own refined versions of the update function
calls to perform the update. This causes log records to be written. Log records written

7.4. DETAILED DESIGN AND IMPLEMENTATION 153

void PGE_RAL_LogSlottedPage::redoLogRecord(StmtCB *cb,
LSN redolsn,
REC_LogRecordPageUpdate *logr) {

SlottedPageUpdateLogRecord *logrec=
static_cast<SlottedPageUpdateLogRecord*>(logr);

[...]
switch(logrec->operationKind()) {
[...]

case PGE_OPER_SLOTTEDPAGE_DELETERECORD:
PGE_RAL_SlottedPage::deleteRecord(cb,slot(logrec->slotNo()));
break;

[...]
}
logLSN(redolsn);

}

Figure 7.17: Redo processing in page interpreters

void PGE_RAL_LogSlottedPage::undoLogRecord(StmtCB *stmtcb,
REC_LogRecordPageUpdate *logr,
uint16 logrecsize) {

SlottedPageUpdateLogRecord *logrec=
static_cast<SlottedPageUpdateLogRecord*>(logr);

switch(logrec->operationKind()) {
[...]
case PGE_OPER_SLOTTEDPAGE_DELETERECORD: {

Slot *sl=slot(logrec->slotNo());
cptr_t afterimage=logrec->contents();
insertRecordHere(sl,afterimage, logrec->afterSize());
break;

}
[...]

}
}

Figure 7.18: Undo processing in page interpreters

154 CHAPTER 7. RECOVERY

during undo are compensation log records. They do not need to contain undo information,
and have to be chained not to the last log record written by the transaction, but to the log
record that has to be undone next,

The update function (refer again to the sample in Figure 7.16) has to check the transac-
tion control block to see whether undo is in progress and compensation log records have to
be written instead of regular log records.

Page flush notification To adhere to the write-ahead-logging protocol, the system must
make sure that all log records created for a page have been safely flushed to disk before
flushing the page itself. In Natix, this is the responsibility of the recoverable page inter-
preter who has created the log records. Before the associated page is written to disk, the
buffer manager notifies the page interpreter by calling prepareWrite().

The decision not to have the recovery manager flush the log itself is due to the desire
for loose coupling. In the Natix architecture, the buffer manager does not need to know
about the precise representation of the log and the pageLSN inside the page interpreter,
and does not need to know whether a page is recoverable or not. The page interpreter may
also perform some housekeeping before the page is flushed. See Section 7.6 for an example
where this is used to optimize recovery performance for XML data.

In most cases, however, the refined prepareWrite() function of the page inter-
preter will just request a log flush up to the page’s pageLSN, by calling the log manager’s
flushLog() function.

Logical Logging

Some data types are implemented by extending the interface of an existing data type.
For example, the XML page interpreter class implementation is based on the slotted

page, and the XML page interpreter class is derived from the slotted page class, adding
XML-specific functions to the interface. The regular page interpreter functions are used to
implement most of the functionality of the new interface.

To create a recoverable XML page interpreter, it seems to be a clever idea to use the
template method described in the page interpreter class hierarchy design above. The re-
coverable XML page interpreter class is created by instantiating the template recoverable
slotted page interpreter class with the regular XML page interpreter class. This refines the
slotted page functions to their logging versions. As a result, calling XML update func-
tions will use the logging versions of the slotted page functions, creating log records in the
process.

While the approach above is possible, it will create more log information than neces-
sary, because all modifications to the record are logged on a ”physical” level. For example,
to maintain the local pointer structure in the XML subtree record, more than one part of the
record has to be modified if a new node is added, creating several log records.

If a special recoverable XML page interpreter is implemented instead, it can log the
modifications on the ”logical” level of the XML specific interface. Just logging the insertion
of a node will implicitly contain the necessary information to maintain the pointer structure,
resulting in a more compact log representation.

7.4. DETAILED DESIGN AND IMPLEMENTATION 155

It is also easier to devise advanced logging techniques if log records are used that know
about the logical operations on the data type (see Section 7.6).

In fact, ARIES itself was designed to Exploit Semantics by operation logging on pages
instead of logging operations against the ultimate underlying representation of a page: A
fixed size byte array.

7.4.6 Buffer Manager

Forward Processing

To support the correct operation of recovery, the buffer manager notifies each page inter-
preter by calling its prepareWrite() function before the associated page is written to
disk.

The page interpreter uses this notification call to enforce write-ahead-logging and pos-
sibly other, data type specific recovery actions, for example reserved space collection (Sec-
tion 7.5.4).

To support efficient recovery, the buffer manager writes log records after pages have
been flushed to disk so that they do not need to be examined by restart redo. The
log record kind for these log record is REC LRK BUFFERMGR, the operation kind is
REC OPER PAGEFLUSH, and the class REC LogRecordBufferChange is used. The
log records simply contain the PID of the flushed page. If a page is dropped from the buffer
manager without writing it because it was deallocated, this is also recorded in a log record
because redo work on the page then becomes unneccesary.

The buffer manager maintains the redoLSN field of the buffer frame control block. If
a page is newly installed in the buffer manager, and after a page has been written to disk,
the redoLSN field is set to null. Synchronization for accessing the redoLSN is coupled
to synchronization of the dirty flag for the page:

The redoLSN is set to an update operation’s LSN before the dirty flag is set and while
an exclusive latch on the page is held.

The redoLSN is cleared only after the dirty flag is cleared and while the hash bucket
containing the frame control block is locked using its mutex (refer to Section 5.3 for syn-
chronization of the dirty flag). The redoLSN may only be set from null to non-null and
from non-null to null. It is never updated from one non-null LSN to a different non-null
LSN. This protocol allows read access to redoLSN values without latches on the pages,
as explained below under checkpointing.

To support log truncation, the buffer manager provides a function that returns the
page in the buffer which has the smallest redoLSN value. This page’s LSN is called
systemRedoLSN. The log manager uses this function to make it possible to drop parts of
the log by flushing stale pages, see Section 7.4.2.

Checkpointing

When taking a checkpoint, the recovery manager calls the buffer manager’s
checkpoint() method. If a heavyweight checkpoint is desired, the recovery manager

156 CHAPTER 7. RECOVERY

will call the flush() method of the buffer manager first, to write all modified pages to
disk (Section 7.4.8).

The buffer manager will then write log records describing the dirty pages in the buffer.
For each dirty page, its PID and the redoLSN value are written to a log record.

The collection of dirty page information is performed in several increments to reduce
contention on the buffer manager and log manager because regular system operation con-
tinues in parallel to checkpointing. Each incremental step collects information about a fixed
number of hash buckets, locking the mutex for each hash bucket only once. Hence, lock-
ing of the buffer manager structures is minimized and mutexes are freed regularly. This
may cause some pages that got dirty during the checkpoint not be included in the buffer
manager’s checkpoint log record. Since the updates to those pages are logged between the
begin and end checkpoint log records, restart recovery will be able to deduct the dirty state
for the affected pages anyway (Section 7.4.8, page 169).

While the PID access hash table of the buffer manager needs to be accessed with syn-
chronization as explained in the previous paragraph, latching all of the individual pages dur-
ing every checkpoint would be very resource-intensive. Fortunately, although the redoLSN
values are modified by update operations on the page, it is not necessary to always latch the
pages themselves. The protocol to modify redoLSN, as explained above under forward
processing, allows to read redoLSN values in a conflict-free manner most of the time
without latching.

To obtain the redoLSN for a page during a checkpoint, the page’s dirty flag is checked
first.

If it is set, the redoLSN is read while still holding the associated hash bucket mutex.
It is not possible to have a conflict with a concurrent updater of the redoLSN because if
some other thread wants to clear the redoLSN and dirty flag, it needs to acquire the mutex
on the associated hash bucket, which the checkpoint code still holds. Apart from clearing it,
there are no other update operations on redoLSNs of dirty pages. Hence, there never are
conflicting updaters, and the obtained redoLSN value can be used without fear of conflict,
without latching the data pages.

Every time information about a fixed number of dirty pages has been collected, a single
log record describing them is completed. By having several dirty pages’ information share
a log record, logging overhead is reduced.

If the dirty flag is not set, then either the page is not dirty and the redoLSN value
is irrelevant, or the page is still latched and fixed by an updater who has not yet set the
dirty flag. The latter case can be detected by checking the fixcount and latch in the buffer
frame control block. Only if the dirty flag is not set and the page is fixed and latched in
exclusive mode, we give up the hash bucket mutex and request a shared latch for the page.
If the page is still not dirty, it may be ignored, otherwise it is included in a dirty page log
record as above. This limits the data page latching to a few unlikely conflict cases, without
requiring extra synchronization of redoLSN values as proposed for example by Mohan
et al. [66].

7.4. DETAILED DESIGN AND IMPLEMENTATION 157

7.4.7 Transaction Manager

The main job of the transaction manager is to provide an interface allowing applications
to initiate and terminate transactions and to mark transaction states as savepoints and to
reestablish them.

Hence, the first responsibility of the transaction manager is to allow applications to ob-
tain and release transaction control blocks, i.e. to provide transaction control block memory
management.

To avoid multiple fixed size per-transaction memory areas, the transaction control blocks
centrally store the per-transaction information of all system components in the recovery
subsystem. As a result, the second responsibility of the transaction manager is to provide
an interface for the other components to read and write their information. This includes no-
tification of transaction state changes, for example if the application requests to terminate,
savepoint or rollback the transaction.

We first briefly discuss requirements with regard to transaction control block manage-
ment and the notification mechanism, and then describe the interfaces to the transaction
manager for its different clients, namely the applications, the segments, the log manager
and the recovery manager.

Transaction Control Block Management

For the application, the address of its transaction control block sufficiently identifies a
transaction. To write log records, however, it must be possible to identify transactions in a
persistent way because after a crash the transaction control blocks might be at a different
memory location.

To support fast recovery, mapping the persistent identifier to the corresponding transac-
tion control block must be a fast operation.

To ease the design and implementation, it seems reasonable to provide an upper bound
to the number of concurrent transactions.

To allow internal system operations to be handled in a uniform way with application op-
erations, the transaction manager has to maintain a system transaction that never aborts and
is always active. This transaction control block is used to perform operations that require
transaction data structures but are not associated with a specific transaction. Examples in-
clude modification of system metadata structures, and writing log records for checkpoints.

Pending Actions

It must be possible for other components of the system to be notified when certain transaction-
related events occur.

For example, after a transaction commits, the partition manager must return partition
files to the operating system if a transaction has dropped a partition. This is only allowed
after the transaction commits because otherwise a rollback would need a complete before
image of the file to undo the drop.

In addition to such a basic pending action mechanism, which is already described in
ARIES [66], Natix needs to support more flexible notifications about transaction-related

158 CHAPTER 7. RECOVERY

events. For example, let us consider main memory structures that duplicate on-disk struc-
tures for performance reasons. Apart from physical metadata (Sections 5.6 and 7.5) and
the Physical Schema (Section 6), such structures are common with object-oriented data-
base interfaces, where an object graph is represented in a more C++-friendly fashion by
using C++ objects for nodes and main-memory pointers for edges. An XML example for
such an interface is the Document Object Model DOM (Section 2.4.1), as implemented in
the Xerces XML Parser [73].

If such an interface is used, it must be possible to perform recovery on it to keep it
consistent with the data in secondary memory. Therefore, the components containing such
data must be notified if the transaction aborts, commits or rolls back to a savepoint, in order
to maintain the main memory structures accordingly. This could be done using regular log
records, however, a main memory pending actions approach is more flexible and does not
put unnecessary extra load on a bottleneck ressource, in this case the log manager.

To capture the requirements discussed above, we introduce the concept of pending ac-
tions, which describe actions that have to be performed on certain events. For our purposes,
we need to be notified at the following occasions:

precommit Actions to perform before a transaction commits.

postcommit Actions to perform after a transaction commits.

subcommit Actions to perform before a transaction writes a subcommit log record, i.e.
before an L1 operation is completed.

savepoint Actions to perform before a savepoint is established.

rollback Actions to perform when the transaction rolls back to a specified LSN.

Note that often the same object requires notification on several events. For example, if a
transaction commits, a main memory object has to be written to disk, but if it aborts, the
same object has to be deleted instead. The implementation should be able to exploit this to
avoid excessive memory usage by the pending action mechanism.

Application Interface

beginTransaction() When a transaction is initiated, a transaction control block is
initialized and returned. If the maximum of concurrently allowed transactions is
already active, 0 is returned.

No transaction begin log record is written, as many transactions are read-only and do
not need recovery, and as a consequence no log records are necessary. For update
transactions, the first log record of a transaction is considered its begin transaction
log record.

commitTransaction() When the application requests a transaction commit, the trans-
action manager performs all precommit operations in the transactions pending ac-
tions list. Then, as described in section 7.2.2, a commit log record is written and the

7.4. DETAILED DESIGN AND IMPLEMENTATION 159

class TRN_TransactionManager {
public:
typedef LSN SaveID;

// called by application
TaCB *beginTransaction(SeCB *);
void commitTransaction(TaCB *);
void abortTransaction(TaCB *tacb);
SaveID saveTransaction(TaCB *tacb);
void rollbackTransaction(TaCB *t, SaveID s);

// called by segments with L1 operations
LSN initiateL1(TaCB *tacb)
void notifyCompleteL1(TaCB *tacb, LSN begin)

// called by log manager
LSN notifyNewLSN(TaCB *tcb, LSN newlsn)
LSN notifyNewUndoLSN(TaCB *tcb, LSN newlsn)

LSN oldestUndoLSN();
// called by recovery manager
void checkpoint(TaCB *tacb);
void analyzeLogRecord(StmtCB *stmt, REC_LogRecord *, uint16);

TaCB *provideTaCB(SeCB *, TransID, const LSN &first, const LSN ¤t);
void releaseTaCB(TaCB *);

void prepareL0Undo(TaCB *, LSN);
void prepareL1Undo(TaCB *, LSN);
void completeUndo(TaCB *);

uint32 getConcurrentTransactions() const;
TaCB *getTransaction(TransID id);
TaCB *getSystemTransaction();

};

Figure 7.19: Transaction manager interface

160 CHAPTER 7. RECOVERY

log manager is instructed to flush the log up to that record. Afterwards, the postcom-
mit pending actions are executed. Finally, the transaction control block is released.

abortTransaction() The transaction manager uses the undoTransaction call pro-
vided by the recovery manager to undo all the transaction’s updates. This also causes
all rollback actions in the pending actions list to be executed. A transaction abort log
record is written and the transaction control block is released.

saveTransaction() This call establishes a transaction savepoint.

The transaction manager first executes the savepoint actions in the pending actions
list. Then it consults the transaction control block to find out which operation lead to
the current transaction state and returns its LSN as a marker for the current transaction
state.

rollbackTransaction() This call allows to return to a previous transaction state by
giving the savepointLSN the transaction is supposed to roll back to.

First, all rollback actions in the pending actions list are executed which were added
after the specified savepoint was taken. Then, the recovery manager is called to undo
all operations on data structures that were performed after the savepoint was taken.

Transaction Control Blocks

The transaction conrol block’s interface is shown in Figure 7.20. The first part of the
interface deals with fixed-size per-transaction data and is described below, and the second
part deals with the pending actions mechanism, and is explained in the next subsection. We
start with a brief description of transaction control block management.

Since we only need a fixed number of transaction control blocks, they are preallo-
cated in one array when the transaction manager is constructed. We can use a small
integer index into that array as transactionID to identify transactions, allowing
very fast mapping from the transactionID onto transaction control blocks. This
transactionID can also be used as an identifier in log records because at any given
point in the log, the transactionID uniquely specifies a single transaction, although
the same transactionIDmay be reused many times during a system run. The position
in the log determines which transaction is referred to. We only have to make sure that
transactions are given their original transactionID during redo, which is not difficult
because the array of transaction control blocks and all modifications to it are recorded in
the log. This log information can be used to maintain the transaction array in the same state
as it was during Forward processing of any log record.

The currently unused control blocks are linked in a singly linked free list, using their
transactionID fields as link. Natix uses a 2-Byte integer to identify transactions.

getSeCB() returns the associated session control block.

getOutStream() returns the output stream for this transaction.

7.4. DETAILED DESIGN AND IMPLEMENTATION 161

class TaCB {
public:
SeCB* getSeCB() const;
std::ostream* getOutStream() const;
std::ostream* getErrStream() const;

TransID transactionID() const;
void transactionID(TransID tid);

LSN transactionLSN() const;
void transactionLSN(LSN lsn);
void currentLSN(LSN c);
LSN currentLSN() const;
void undoLSN(LSN c);
LSN undoLSN() const;
void nextL1UndoLSN(LSN c);
LSN nextL1UndoLSN() const;

void setL0UndoInProgress(bool f);
bool isL0UndoInProgress() const;

void setL1UndoInProgress(bool f);
bool isL1UndoInProgress() const;

class PendingAction {
public:

enum ProgressMode {
UNDEFINED,
DELETE_CONTINUE,
DELETE_STOP,
REMOVE_CONTINUE,
REMOVE_STOP,
KEEP_CONTINUE,
KEEP_STOP

};

virtual bool isSavepointMarker() const;
virtual ProgressMode precommit(TaCB*);
virtual ProgressMode subcommit(TaCB*);
virtual ProgressMode postcommit(TaCB*);
virtual ProgressMode savepoint(TaCB*);
virtual ProgressMode rollback(TaCB*,LSN targetLSN);

};

void lockPendingActions()
void unlockPendingActions()

void addPendingAction(PendingAction *);
void removePendingAction(PendingAction *);

};

Figure 7.20: Transaction control block interface

162 CHAPTER 7. RECOVERY

getErrStream() returns the error stream for this transaction.

transactionID() returns the current transactionID.

transactionLSN() returns the LSN of the first log record written by the transaction
and the Null LSN if the transaction didn’t write any log records yet.

The LSN of its first log record is also considered a unique and persistent identifier
for an update transaction.

currentLSN() returns the LSN of the last log record written by the transaction.

undoLSN() returns the LSN of the last undoable log record written by the transaction.

nextL1UndoLSN() During L1 undo returns the operation that has to be undone after
the current L1 undo operation is completed.

isL0UndoInProgess() returns true while L0 undo is being performed.

isL1UndoInProgess() returns true while L1 undo is being performed.

Pending Actions Interface

Pending Actions are managed using a variant of the observer pattern [30]. The pending
actions list is maintained in the transaction control block as a doubly linked list of objects
belonging to a class which is derived from the PendingAction base class.

A subsystem may create pending actions for a transaction by adding an object of a class
defined by the subsystem to the list. The derived class has to refine the methods for those
events it wants to be notified about. If the specified event occurs, the transaction manager
will invoke the appropriate methods on the objects in the list, beginning with the last object
and traversing the list backwards.

For example, if the partition manager wants to be notified after the transaction has com-
mitted to drop partition files, it uses an object of the DropPartition class which is derived
from PendingAction and has the postcommit() method refined.

Each such object may represent pending actions for more than one event. This re-
flects the fact that often several pending actions for the same object but different events
are necessary. In such cases, there is no need to allocate several small pending action ob-
jects. Instead, one object is sufficient which belongs to a class that has several refined event
methods.

addPendingAction() appends a pending action to the end of the list.

removePendingAction() removes a pending action from anywhere in the list.

precommit(), postcommit(), subcommit(), savepoint() these methods on
items in the list are called on each object on the pending action list before and after a
commit, and before a savepoint, respectively.

7.4. DETAILED DESIGN AND IMPLEMENTATION 163

They may return a ProgressMode value which determines how processing of the
pending action list proceeds. If the ProgressMode value contains CONTINUE,
the pending actions list is traversed further. If the ProgressMode value contains
STOP, the pending action list traversal stops.

The KEEP, REMOVE and DELETE values determine memory management. Items
returning KEEP stay in the list after they have been processed. items retuning RE-
MOVE are removed from the list, and DELETE items are removed and destroyed
using the C++ delete operator. This allows a flexible memory management for pend-
ing actions.

rollback() The rollback event method is called with a parameter specifying the save-
pointLSN. This can be used by derived classes to make their action dependent on
how far back in the log the rollback is going to go.

Segment Interface

High-concurrency segments need to store information about ongoing L1 operations for
each transaction (Section 7.4.4). The following calls represent the interface for this.

initiateL1() The segments use this call to indicate the begin of an L1 operation.
During forward processing, this will take a savepoint and return the savepoint LSN
as begin L1 marker.

During L1 undo processing (see Section 7.4.8 for more), this call returns the
nextL1UndoLSN field of the transaction control block.

notifyCompleteL1() This call is used by the segments to indicate the end of an L1
operation. It will cause the subcommit pending actions to be executed. During L1
undo, it resets it the L1 undo flag in the transaction control block to false and sets the
L0 undo flag back to true.

Log Manager Interface

The log manager calls the transaction manager to update the various LSN fields in the
transaction control block when new log records are written.

notifyNewLSN() Every time a transaction writes a redo only log record, the log man-
ager notifies the transaction manager of the new LSN. The LSN is stored in the trans-
action control block as last LSN written by that transaction. If the transaction has
not had any log records yet, the transactionLSN value in the transaction control
block is set to the log record’s LSN.

The current undoLSN of the transaction control block is returned and used by the
log manager to maintain the transactions nextUndoLSN chain in the log.

notifyNewUndoLSN() If a transaction writes an undoable log record, the log manager
calls this function. It is similar to notifyNewLSN, but in addition also updates the
undoLSN of the transaction to the record’s LSN.

164 CHAPTER 7. RECOVERY

oldestUndoLSN() The oldestUndoLSN is determined by computing the lowest
transactionLSN value of all transactions.

Callers of this function take advantage of the fact that no operation with a smaller
LSN is in danger of being undone. For example, when truncating the log, the log
manager needs to know how far back in the log potential undo processing runs may
reach. The log may not be truncated beyond this point, otherwise some transactions
may not be able to roll back. Section 7.5.4 will give another application, and yet
another appears in a paper by Mohan [63].

Recovery Manager Interface

The recovery manager needs to obtain and release transaction control blocks during restart
analysis and needs to maintain the LSN fields in transaction control blocks during undo:

provideTaCB() This call creates a new transaction control block with the given trans-
action ID, transactionLSN and undoLSN. It is used during analysis to recreate
transaction control blocks that have not been logged in a checkpoint.

releaseTaCB() is used to drop transaction control blocks during analysis if a termi-
nating log record (commit or abort) has been found. It is also used internally by the
transaction manager after abortTransaction() or commitTransaction()
are called.

checkpoint() is called during checkpoints and writes log records describing all cur-
rently active transactions.

For each transaction control block that is used, the transaction manager
writes one log record of kind() TRANSACTIONMGR using the class
REC LogRecordActiveTransaction (Figure 7.6).

analyzeLogRecord() is called during analysis to recreate transaction control blocks
for all transactions that were active during the checkpoint.

prepareL0Undo(),prepareL1Undo() are called before an L0 or L1 log record
is undone, respectively. The methods set the undo flags correctly and update the
undoLSN/nextL1UndoLSN fields in the control block.

completeUndo() terminates undo processing by resetting the undo flags.

7.4.8 Recovery Manager

The recovery manager is implemented as a stateless class whose interface allows to in-
voke the core recovery processes. These are transaction recovery, restart recovery, and
checkpointing. We describe the recovery manager’s interface (Figure 7.21) first and then
elaborate on some details of its implementation.

7.4. DETAILED DESIGN AND IMPLEMENTATION 165

enum REC_OperationKindCheckpoint {
REC_OPER_RMGR_CHECKPOINT_UNDEFINED =0,
REC_OPER_RMGR_CHECKPOINT_INITIAL ,
REC_OPER_RMGR_CHECKPOINT_RESTARTREDO,
REC_OPER_RMGR_CHECKPOINT_RESTART ,
REC_OPER_RMGR_CHECKPOINT_REGULAR ,
REC_OPER_RMGR_CHECKPOINT_SHUTDOWN

};

enum REC_CheckpointEffort {
REC_CHECKPOINT_UNDEFINED=0,
REC_CHECKPOINT_HEAVYWEIGHT=1,
REC_CHECKPOINT_LIGHTWEIGHT=2

};

typedef uint8 REC_CheckpointType;

class REC_RecoveryManager {
public:
static void undoTransaction(TaCB *tacb, LSN targetlsn);
static void abortAllActiveTransactions(TaCB *);
static TaCB * restart(GloCB *glocb);
static void checkpoint(TaCB *tacb,

REC_CheckpointType oper,
REC_CheckpointEffort effort);

};

Figure 7.21: Recovery manager public interface

166 CHAPTER 7. RECOVERY

undoTransaction() The undoTransaction function rolls back all changes made by
the specified transaction up to, but not including the operation specified by tar-
getLSN.

abortAllActiveTransactions() The abortAllActiveTransactions()
function rolls back all updates of all currently active transactions and removes the
transaction control blocks from the transaction manager. It is used during restart
undo and before system shutdown. The system transaction is given as parameter.

restart() The restart function initializes the recovery systems services. Necessary
restart recovery is performed by invoking the analysis, redo and undo phases. The
control block of the system transaction is returned.

checkpoint() Performs a system checkpoint. The system transaction is given as pa-
rameter, because log records written during the checkpoint will be associated with
the system transaction.

The CheckpointType specifies the reason for the checkpoint. Apart from regular
checkpoints during system operation, the system takes checkpoints after redo and
undo recovery during restart, and before system shutdown.

CheckpointEffort specifies whether a lightweight or a heavyweight checkpoint is re-
quired. A lightweight checkpoint only causes metadata written to disk that will make
restart recovery faster. A heavyweight checkpoint also flushes all dirty pages in the
buffer manager to disk.

Transaction Undo (R1 Recovery)

Leaving aside L1 operations, transaction undo is relatively simple (Figure 7.22). We de-
scribe the Natix implementation of transaction undo without L1 operations first, and then
explain how to support L1 operations.

A general design goal was to have as few recovery specific code as possible, which in
the undo context means we do not want to write special undo code for every segment type.
We rather strive to use the regular forward processing code to perform updates during undo
as well.

Regular L0 undo Starting from the current undoLSN in the transaction control block,
the undo chain of log records for the current transaction is traversed backwards using
the log manager. The next record of the chain is always pointed to by a log record’s
nextUndoLSN pointer.

For every L0 log record, undo is initiated by setting a flag in the transaction control
block indicating that L0 undo is in progress. This is done in the transaction manager’s
prepareL0Undo() function, and causes all page-level log records to be created as redo-
only compensation log records, as shown in the example in Section 7.4.5.

In the prepareL0Undo() method, the undoLSN field of the transaction control
block is maintained to contain the LSN of the log record that has to be undone next. The

7.4. DETAILED DESIGN AND IMPLEMENTATION 167

void REC_RecoveryManager::undoTransaction(TaCB *tacb,
LSN targetlsn) {

GloCB *glocb=tacb->getSeCB()->getGloCB();
REC_LogManager *logmgr=glocb->getLogManager();
SMR_SegmentManager *segmgr=glocb->getSegmentManager();
TRN_TransactionManager *trnmgr=glocb->getTransactionManager();

REC_LogManager::iterator logscan;
BufferFrameCB *undoframe=0;
SEG_Segment *undosegment=0;

if(!tacb->undoLSN().isNull()) {
logscan = logmgr->find(tacb->undoLSN());

while(targetlsn<tacb->undoLSN()) {
REC_LogRecord *logrec=logscan.logRecord();

if(logrec->isUndo()) {
switch(logrec->kind()) {

case REC_LRK_PAGE_UPDATE:
case REC_LRK_SEGMENT_UPDATE: {

REC_LogRecordSegmentUpdate *seglogrec;
seglogrec=static_cast<REC_LogRecordSegmentUpdate*>(logrec);

[... if different undosegment than last time,
unfix undoframe if fixed, and
open correct segment ...]

if(logrec->kind() == REC_LRK_SEGMENT_UPDATE)
trnmgr->prepareL1Undo(tacb,logrec->transUndoLSN());

else
trnmgr->prepareL0Undo(tacb,logrec->transUndoLSN());

undosegment->undoLogRecord(tacb, undoframe,
logscan.lsn(),
seglogrec,
logscan.logRecordSize());

}
break;

default: // ignore all others (e.g. CLRs)
break;

}
}

logscan.skipToLSN(tacb->undoLSN());
}

[... unfix the last modified data page and close the segment...]

trnmgr->completeUndo(tacb);
}

}

Figure 7.22: Recovery manager undo loop

168 CHAPTER 7. RECOVERY

log manager initializes the nextUndoLSN of undoable log records with the transaction
control block’s undoLSN by default. Hence, the segments and pages may use regular
logging operations to undo an operation, and proper compensation log record chaining is
carried out automatically.

For every log record, we extract the associated segment and open it. Then, the log
record is forwarded to the segment’s undoLogRecord function for processing.

We make sure that we do not unnecessarily open and close segments and fetch and
latch pages by caching main memory segment objects and frame control block pointers
between calls. In this way, if several updates operate in sequence on the same segment
and/or the same page, the segment is not closed and reopened, and the page is not unfixed
and refetched. This is hidden by comments in Figure 7.22 to avoid excessive source code
display.

L1 operation undo When encountering an L1 subcommit log record, as above the record
is forwarded to the segment for undo processing. The segment may then use its regular
segment-level operations to perform the logical inverse of the original action.

However, the performance of the segment-level inverse operation itself is an L1 op-
eration. There are some special requirements with respect to inverse L1 operation’s log
records (as explained in Section 7.2.3), and we need to set up the transaction control block
correctly to meet these requirements. The prepareL1Undo method of the transaction man-
ager performs maintenance of the transaction control block as follows.

undo partial inverse L1 operation We may not write compensation log records for the
L0 operations that are executed as part of the inverse L1 operation, but need to write
regular redo-undo records. For this reason, before the L1 log record is forwarded to
the segment, the L0 undo flag in the transaction control block is set to false.

As a result, the execution of the L1 operation logs undoable log records, and if an L1
operation is not completed before a crash, it is undone by regular restart L0 undo.

After the log record is undone, the L0 undo flag is set back to true.

redo of incomplete inverse L1 operation The first L0 log record that is written as part of
the execution of the inverse L1 operation has to be chained to the subcommit record
of the L1 operation that is being undone.

This is achieved by leaving the undoLSN in the transaction control block unchanged
before forwarding an L1 log record to a segment. That way, the undoLSN still points
to the L1 operation that is undone, and the first L0 log record written on behalf of the
inverse L1 operation will use that undoLSN as nextUndoLSN, as desired.

L1 restart idempotence To achieve restart idempotence for L1 operations, we store the
nextUndoLSN of the forward L1 operation in the nextL1UndoLSN attribute of
the transaction control block and set a flag indicating that L1 undo is in effect.

When the segment invokes the inverse L1 operation using a regular update method,
the initiateL1 call on the transaction manager that announces the begin of the inverse

7.4. DETAILED DESIGN AND IMPLEMENTATION 169

L1 operation will return the nextL1UndoLSN. As a result, the segment properly
sets the nextUndoLSN value of the inverse L1 operation’s subcommit record.

After the segment returns from the undoLogRecord call, we reset the L1 undo flag
back to false.

Abort All Transactions

While it is possible to abort all active transactions by calling the transaction managers
abortTransaction method for each transaction one after another, there is a more efficient
approach.

Transaction undo causes each transaction to scan its nextUndoLSN chain backwards.
The naive algorithm for aborting all transactions scans the log backwards multiple times,
resulting in repeated reads of the same log pages.

It is more efficient to only scan the log once and perform all transaction undo processing
in parallel. In each step of this algorithm, the largest undoLSN of all transactions still ac-
tive is determined and that log record is processed next, resulting in a backwards sequential
scan of the log.

To allow for system shutdown and restart undo to employ such a more
efficient implementation, the recovery manager provides the entry point
abortAllActiveTransactions().

System Restart

To initialize the recovery subsystem, the application calls the restart() method of the
recovery manager.

The recovery manager first reads the position of the last successful checkpoint from
the log partitions master segment by calling readAnchor() on the log manager. A log
analysis follows to see whether the system was properly shut down or a crash occured, and
whether there were any dirty pages or incomplete transactions when the system stopped.

If restart analysis finds dirty pages, restart redo is called to restore their contents as of
the time of the system crash. If any work is performed during restart redo, a lightweight
checkpoint is taken. This checkpoint will include information on the precise on-disk state
of the presumed dirty pages, speeding up following restarts. Since it is a lightweight check-
point, it does not significantly slow down restart.

If there were any incomplete transaction, restart undo processing is performed, rolling
back those transactions and logging the necessary operations. A further lightweight check-
point is taken after restart undo to provide future restarts with a system state that already
includes the necessary undo operations.

Analysis

During analysis, the recovery manager scans the log starting from the last begin checkpoint
record, which is obtained as anchorLSN from the log manager, to the end.

170 CHAPTER 7. RECOVERY

During the log scan, if operations of a transaction are encountered for a transaction
which is not yet known to the transaction manager, the recovery manager notifies it using
provideTaCB() and returns a transaction control block. Both transactionLSN and
undoLSN of this new transaction control block are set to the current log record’s LSN.
Afterwards, depending on the kind of log record, one of the following actions is performed:

page modifications The respective pages are inserted into the dirty page set. The dirty
page set is implemented as hash table mapping PIDs to their respective redoLSNs.

If the log record is undoable, the associated transaction control block’s undoLSN
is set to the log record’s LSN. Otherwise, the log record’s nextUndoLSN value is
stored as new undoLSN.

buffer manager checkpoint record The contained PIDs and their redoLSNs are also in-
serted into the dirty page set. If a page flush or evict records are encountered, the PID
is dropped from the dirty page set.

commit or abort records The respective transaction control block is released by calling
releaseTaCB() on the transaction manager.

active transaction log records were written by the transaction manager (Section 7.4.7)
using the REC LogRecordActiveTransaction log record class (see Fig-
ure 7.6). The recovery manager forwards to the transaction manager using its
analyzeLogRecord() call, which will install transaction control blocks for the
contained transactions.

At the end of the analysis phase, the dirty page set will contain all pages that may have
been dirty when the system crashed, and the transaction manager will have control blocks
for all loser transactions, whose undoLSN and transactionLSN fields are properly
initialized.

Restart Redo Processing

Redo processing determines the page from the dirty page set with the smallest redoLSN,
called systemRedoLSN. It then scans the log in forward direction starting from that LSN.

It determines the affected segment for each record and opens it if it is not already open
yet because it was also target of the previous log record.

In case of page-level log records, it is verified if the affected page is contained in the
dirty page table, and if so, the log record is forwarded to the segment. From the redoLo-
gRecord call to the segment, the current pageLSN for that page is returned. This pageLSN
is maintained in the dirty page set to skip redo of log records whose updates are already
contained on the page.

In case of segment-level log records, they are immediately forwarded to the segment.

Restart Undo Processing

Undo processing consists of a simple call to abortAllActiveTransactions().

7.5. METADATA RECOVERY 171

Checkpointing

When the recovery manager is instructed to take a checkpoint, it performs the following
actions in the order specified:

1. write a begin checkpoint log record

2. call the checkpoint method of the partition manager

3. call the checkpoint method of the transaction manager

4. if the checkpoint is supposed to be heavyweight, call the buffer manager’s flush
method

5. call the checkpoint method of the buffer manager

6. write an end checkpoint log record

7. update the transactionLSN value of the system transaction’s control block

8. truncate the log (truncateLog(), see Section 7.4.2)

9. flush the log up to the end checkpoint log record

10. notify the log manager of the new anchorLSN, which is the LSN of the begin check-
point log record, and instruct the log manager to write the anchorLSN to disk

Step 7 is necessary because the system transaction (Section 7.3.8) participates in the
determination of the oldestUndoLSN. To allow the log to be truncated, it is necessary
that this LSN is regularly moved forward.

7.5 Metadata Recovery

Physical metadata is the persistent metainformation required to access the storage engine’s
objects, such as partitions and segments. Metadata handling in Natix is explained in Sec-
tion 5.6.

A proper recovery subsystem has to incorporate support for metadata recovery. Since
Natix’s metadata is materialized using regular storage engine structures, basic metadata
recovery is mostly automatic.

However, access to the metadata structures needs to be highly concurrent. Locking
them until transaction completion can effectively seralize all transactions because metadata
access is fundamental to storage engine access.

High concurrency on data structures needs support by the recovery mechanism. We
have seen this in the context of L1 operations (see Sections 7.2.3, 7.3.3, and 7.4.4). This
section explains the issues raised by metadata recovery and discusses the solutions provided
in Natix.

172 CHAPTER 7. RECOVERY

7.5.1 Instance Metadata: Partitions

The set of partitions that makes up the current instance is defined in a configuration file
(Section 5.6.2).

The configuration file cannot be stored in any partition of the instance, as it is needed
to access the partitions in the first place. As a consequence, the recovery subsystem cannot
protect the configuration file against crashes.

Include Partition Metadata in the Log

To prevent the use of incorrect version of the configuration file, Natix records all partition
information in the log when taking a checkpoint. In addition, every time a new partition is
mounted or a partition is dropped, a log record with kind PARTITIONMGR is created.

The only information that must be correct in the configuration file is the partition infor-
mation for the log partition. Usually, even very old backup versions of the configuration
file contain the correct log partition. Even if no backup is available, the reconstruction of a
simple configuration file pointing to the log partition is rather simple.

The configuration file can still be used to add partitions to the system, as the system uses
the superset of all partitions found in config and log entries. A conflict exists if there are
partition numbers which have different physical partitions assigned to them in the config
file and the log. If there is a conflict between the information in the log and the config
file, the system prints an error message explaining the problem, and refuses to mount the
partitions in the configuration file.

Undo Processing for Dropped Partitions

Destroying partitions is a special situation, as we do not want to record before images for
all pages in all dropped partitions. However, the transaction dropping the partitions might
abort, making undo of the partition destroy operations necessary.

ARIES [21, 66] uses a pending actions concept, to defer the actual operation of drop-
ping a partition until after the transaction commits. We use our pending action mechanism’s
postcommit() method (Section 7.4.7) in the same way5.

Implementation

Including the partition metadata in the log is achieved using the same observer mechanism
as explained in Section 5.2.

The recovery subsystem instantiates its own partition observer object using a derived
class, and registers it with the partition manager. Every time after a partition is created or
destroyed, the observer object is called by the partition manager, a log record is written
describing the partition and the log is flushed up to this log record. During a checkpoint,

5For ease of exposition, we do not discuss how to guarantee the durability of a partition drop. The partition
drop operation is written to the log after the commit record, and thus could be lost. See Dey et al. [21] for
details and a solution.

7.5. METADATA RECOVERY 173

log records are generated for all mounted partitions. Before a partition is dropped from the
system, all its pages currently in the buffer are flushed.

During startup, the coniguration file is only read until a log partitition is found. Only
this log partition is mounted, and system restart proceeds. During restart analysis, the
partition log records found in the log are processed, mounting or removing partitions from
the current instance.

After restart is completed, the remaining entries in the configuration file are read, and
potential conflicts are reported. New partitions in the configuration file are mounted us-
ing regular calls, causing log records to be written, preventing information about the new
partitions to be lost if the configuration file is lost.

Note that if a partition was dropped, and the same partition number was assigned to
a different partition afterwards, this does not cause problems for the recovery mechanism
in the event of a crash. No log records from the first lifetime of the partition number are
redone on the second partition, as all the old partition’s pages were flushed before it was
unmounted, and because format log records for the pages in the new partition are used (see
Section 7.5.6). Since information about the new partition is contained in the stable log
before it is used, there is also no conflict if the configuration file does not yet include the
new partition.

7.5.2 Partition Metadata: Master Segment

Every partition holds a master segment which contains information about the different seg-
ments stored on the partition (Section 5.6.3).

Master Segment Recovery

The Master Segment must always be a recoverable segment. This is necessary to have
correct metadata for the segments when recovery is performed on them. It is also necessary
to have recovery on the metadata of nonrecoverable segments, because such segments,
which are typically used for temporary results in query processing, use up free space of the
partition, which must be returned to the system in case of a crash.

The master segment is implemented as a simple slotted page segment, where each
record describes metadata of one segment. The most important record types in the master
segment are the segment descriptors and the extent tables (Section 5.6.3). Recovery for
segment descriptors is straightforward. We now describe how extent tables are treated by
recovery.

Extent Table Recovery

The master segment contains records which describe the extents belonging to each segment,
the so-called extent table of the segment. New extents are added to a segment by modifying
its extent table record.

Access to the extent table needs to be concurrent: If a segment grows due to updates
of one transaction, other transactions need to be able to use the new pages, even if the

174 CHAPTER 7. RECOVERY

transaction which caused the segment to grow has not yet committed.
Should this transaction roll back, other transactions may already have used the new ex-

tent(s). Hence, an extent once added to a segment may not be removed, except if concurrent
updates are somehow suspended, for example by a segment-level exclusive lock.

As a consequence, the grow()-operation on segments becomes an L1 operation (refer
to Section 7.3.3) of the master segment:

Growing a segment consists of removing the free space from the partitions free space
pool and adding it to the extent table. By combining all these operations into one L1
operation that has the null operation as its logical inverse, we achieve the desired result: If
the system crashes before the grow operation is finished, already performed modifications
are rolled back, but once completed, a segment growth is not undone by transaction undo.
This is the same as a so-called nested top action, as described by Mohan et al. [66].

But if segment growth was never undone, a problem would occur if the transaction
that grew a segment was also its creator. If such a transaction rolled back, the segment
would not exist any more, but the associated extents would. This inconsistent state has to
be prevented by the recovery system.

Natix solves this problem by making segment creation also an L1 operation. As the
logical inverse of segment creation we define segment destruction. By segment desctruc-
tion, we mean not only deletion of the master segment records of the segment, which would
be the physical inverse operation. Instead, segment destruction includes release of all ex-
tents allocated by the segment. This is implemented in the master segment using the L1
operation framework (Section 7.4.4).

As a result, during undo of the segment-creating transaction, not only those extents
are removed with which the segment was initially created, but all extents of the segment,
including those that were added later in the transaction.

7.5.3 Partition Metadata: Free Extents

On every non-log partition, there exists a Free Extent Segment that manages the extents on
the partition that currently do not belong to any segment.

Updates to the free extent segment need to be highly concurrent, as the free extent pool
of a partition is used for all segments on that partition. This raises a couple of issues related
to recovery that are discussed in the following.

Free Extent Merging

The Free Extent segment optimizes storage by merging adjacent extents. For example,
suppose a transaction � � adds an extent of 1000 pages starting at page 123 to the free
extent segment, which already contains a free extent of 23 pages starting at page 100. After
the add operation, the two extents are merged into one free extent of 1023 pages starting at
page 100.

Due to this merging, if a certain free extent was modified by one transaction, it must
be possible for another transaction to modify it before the first transaction commits. As
an extreme example, at the beginning there is only one free extent (the whole partition),

7.5. METADATA RECOVERY 175

and it is not practicable to defer concurrent transaction execution until the free space is
fragmented into several extents. Hence, in Natix, only short duration exclusive locks are
used to synchronize consumption of free extents.

The lock on the free extent table is not held until transaction commit. As a result, if the
data structure employed to implement the free extent segment is larger than a page, then
plain page-level physiological undo is a problem. The reasion is that inverse actions on the
free extent segment are not necessarily the inverse of the original actions. As an example,
assume transaction �
 consumed 50 pages starting at page 50, changing an existing free
extent of length 73 starting at page 50 into a free extent of 23 pages starting at page 100.
Now � � consumes 3 pages starting at page 100, leaving a free extent of 20 pages starting
at page 103. If �
 were to rollback, it could not simply apply the inverse operation of its
original update, as � � has meanwhile changed the free extent data structure.

The solution is to use L1 operations for updates to the free extent table (for treatment of
segment L1 operations refer to Section 7.3.3). By defining logical undo that can determine
how to merge free extents properly, correct recovery can be provided.

Deferred Release of Extents

Another problem with free extents occurs when a transaction �
 adds an extent to a parti-
tion’s free extent pool and then rolls back. If another transaction � � has consumed some of
this free extent, �
 cannot reclaim its pages without aborting � � .

To avoid this situation, extents are not immediately freed, but only during commit pro-
cessing:

When during forward processing an extent is supposed to be returned to the free extent
pool, it is remembered in the transaction control block, using a precommit() pending
action (Section 7.4.7).

Upon transaction commit, all extents stored in the transaction control block are added
to the free extent segment, and the free extent segment and its page interpreters write log
records for the operations. To prohibit other transactions from using the space before the
transaction commits, the free extent segment is locked in exclusive mode during the add
operations. This prohibits concurrent access to the free space segment, but only for a
short time, as the free space modifications are performed right before commit processing is
complete and the transaction releases its locks anyway.

After adding the free extents, the commit record is written and the log is flushed as
usual.

Should the transaction abort, the list of free extents in the transaction control block is
discarded, and if the abort occured during commit processing, free extents that already have
been added to the free extent segment are removed as a result of normal transaction undo.

If the transaction aborts after the free extent has been added to the free extent table, the
free extent table lock must be held at least until the free extent update has been undone.

This procedure is robust against crashes at any point:
Crashes during forward processing will make the transaction a loser transaction during

restart. Its free space updates will not be executed, as they were buffered in the transaction
control block and therefore did not survive the crash. If some of the updates had already

176 CHAPTER 7. RECOVERY

been performed before the crash, and already made it to stable storage, they are undone as
part of the normal restart undo processing.

If the transaction commits, the free extent segment changes are recorded in the stable
log and thus are reexecuted during redo processing if they were not stored on disk.

7.5.4 Page Metadata: Reserved Space

In the previous section, the problem of freeing space from a transaction that may abort and
thus need to reclaim that space was discussed on the partition level. The same problem also
occurs at the page level:

Fine-grained locking on physical records within a page allows a transaction � � to use
up space that resulted from a record delete operation of another transaction � � . If � � aborts,
it needs to use the previously freed space to undo the delete, but that space is already used
by ��� , and the undo cannot take place.

Always Employing L1 Operations

L1 operations provide a solution for this. They allow to define undo operations that are
not the page-level inverse operations of the original actions (Section 7.2.3). One could
define every page-level operation an L1 operation whose logical undo operation included
relocation of the record should the undo fail due to a full page. The problem seems to be
solved. But there are two serious drawbacks:

First, although space acquisition for the undo operation is delegated to the segment
level, it may still fail, making the undo impossible. Second, since the record is moved, all
references to the record have to be updated as well, which in the presence of large indices
may be very costly. Using a TID-like concept does not work here, as undo would still
require some space on the page to store the new record location and its slot information.

Space Reservation

The problem can be solved without prevention of concurrent page updates by not immedi-
ately freeing space, but merely marking it reserved [53, 65]. Disallowing space-consuming
operations of other transactions to reuse this reserved space until the reserving transaction
commits guarantee that undo operations can always succeed.

This is what free extent management, as explained in the previous section, does when
it records the extents that have to be freed as pending actions in the transaction control
block, as explained in the previous section. The reserved space here is maintained in a
main memory structure. Making the reserved space available to the system after commit
is not costly in terms of resources because the number of extents freed by a transaction is
usually limited, as an extent refers not to individual data items, but to a large set of pages.
In addition, freeing extents is not a frequent operation (databases usually grow).

7.5. METADATA RECOVERY 177

Classification of Page Space Reservation Techniques

Collecting reserved space on individual pages, however, requires a more thorough analysis
and design, as record deletion and shrink operations are very frequent and the number of
objects (pages) affected may be very large.

We now discuss the different general approaches to collect reserved space and then
describe the method for reserved space on pages used in Natix.

We classify methods for reserved space collection into three categories:

Eager collection Upon commit, all pages on which the transaction reserved space for undo
are visited and the space is freed.

Lazy collection Space is freed at some point after the transaction has committed.

Different strategies on when exactly space collection is performed include:

Explicit An explicit reorganization transaction regularly passes over the database
and collects reserved space.

On-the-fly Regular transactions collect space during their normal activities. Trans-
actions that update a page anyway can, as additional activity, mark space free
that is no longer reserved.

Discussion of the techniques Eager collection is easy to implement. As an example, it is
used by free extent management as described in the previous section, where all free extents
are added to the free extent segment when a transaction commits.

The number of deleted records and affected pages per transaction can be very large. In
general, it is not feasible to keep a main memory structure remembering all reserved space
on all updated data pages and to revisit them on commit. Not only would the main memory
structure be large and expensive to maintain, but transactions that have working sets larger
than the buffer could actually double their I/O time, as they have to revisit every data page.
In addition, successful transactions require extra CPU time to perform the space collection
at commit.

Similarly, explicit collection is easy to implement, but expensive. The reorganiziation
transaction must make a pass over the whole database, or alternatively use the recovery log
to analyze which pages possibly contain reserved space. The pages have to be reloaded
and rewritten, putting additional load on the system. The decision when to invoke the
reorganization is difficult to reach, and increases administration effort for the system.

On-the-fly Collection in Natix

The drawbacks of the two approaches considered above make them undesirable for usage
in a scalable DBMS.

Hence, Natix uses the on-the-fly approach to collecting reserved space on pages. Our
method allows for amortizing the costs of space collection in a way that greatly reduces
impact on system performance. On the other hand, it is more difficult to implement and

178 CHAPTER 7. RECOVERY

needs additional fields on each page, at least one reserved space counter and an LSN field.
To improve performance, it also can be configured to use additional space in the page
interpreter objects as follows.

To do accounting for reserved space, a reservedSpaceTable is kept per page.
The reservedSpaceTable comprises a configurable, fixed number

�
of pairs� � ����� *� � � �!� � � 	 � � ����*��� � �*	 	 � � � � � , indicating how much space was reserved by trans-

actions that started with or after the given LSN. The transactionLSN is the first
LSN written by the transaction, which uniquely identifies each update transaction (Sec-
tion 7.4.7). Some

�
of the

�
pairs (with

��� � � �
) are stored in the page’s con-

tents, while the rest is stored only transiently in the page interpreter. The table is ordered
from the youngest to the oldest transactionLSN, and the

�
entries with the youngest

transactionLSN are stored on the page.
Reserved space for a transaction is added by adding it to all entries with the same

or a greater transactionLSN. If less than
�

entries exist in the table, in addition to
updating existing entries, a new entry with the current transactionLSN is created.
Before trying to add a new entry, if

�
entries already exist and the updating transaction’s

transactionLSN is larger than all the existing LSNs in the reservedSpaceTable,
the oldest entry in the table is dropped.

When a transaction consumes reserved space, that amount of space is subtracted from
all entries with the same or a larger transactionLSN. Afterwards, all entries with a
reservedSpace value of 0 are dropped.

In addition, the page’s contents contains a new counter markedSpace akin to free
and unused (see Section 5.4).

After a brief review of existing on-the-fly space collecting techniques, we explain how
Natix maintains the reservedSpaceTable and markedSpace in the different modes
of operation.

Related Work

A similar on-the-fly space-reserving scheme is presented in Lindsay et al. [53]. A config-
uration akin to the special case

�
 � � �
 �
of Natix’s method is described. Only the

youngest transaction can reclaim reserved space already during forward processing.
In Mohan et al. [65], instead of transaction identifiers on the page, the concurrency

controller is used to store information about which transactions have reserved space on a
page. By requesting special space reservation locks in non-blocking mode, a transaction
can find out whether some other transaction still has reserved space on a page, or whether
the space can be regarded as free. Flags on the page mark whether memory areas are
reserved or not.

Detailed Description

Forward Processing The actions that affect reserved space on a page are space-reserving
operations (deleting records or part of a record), space-consuming operations (inserting or
extending records) and reserved space collection. We now describe those actions in detail:

7.5. METADATA RECOVERY 179

Space reservation If a transaction causes a record to shrink, first a shrink log record con-
taining the before image of the removed section of the record is written. Afterwards,
the shrink operation is performed, and the size of the removed part of the record is
added to the reservedSpaceTable,

as described above.

Record deletes are not actually performed, instead records are only marked deleted
by setting a slot flag and storing the transactionLSN of the deleting transaction
(called deletionLSN) at the beginning of the record. This prevents other transactions
from consuming the space necessary to undo the deletion, since the slot is still marked
occupied and the space it refers to may not be collected by garbage collection.

Only the part of the record that is overwritten by the deletionLSN is stored as
before image in the delete log record. Hence, a side effect of this method is that it
keeps record deletion log records small. The size of the record is also added to the
reservedSpaceTable as described above. The sum of the sizes of all records
that are marked deleted is maintained in markedSpace.

Reserved Space Collection The page interpreters have an additional method to initiate
reserved space collection. Reserved space collection is performed in two steps:

1. For records that are marked deleted, it is checked whether their deletionLSN
is older than the oldestUndoLSN (see Section 7.4.7), meaning that the delet-
ing transaction has committed. If yes, the record can actually be deleted without
writing a log record.

� ��� � �*	 	 � � � � is decreased accordingly.

2. All space from entries in the reservedSpaceTable that have a
transactionLSN earlier than the oldestUndoLSN can be removed from
the table, adjusting the remaining entries by subtracting from them the re-
servedSpace amount of the youngest entry that was dropped.

Since entries from the reservedSpaceTable can be dropped to keep the ta-
ble small for efficiency reasons, some space remains reserved although it could
be collected already. Reserved space by transactions that are older than the
smallest transactionLSN in the reservedSpaceTable cannot be ex-
actly associated with a single transaction. This space is kept reserved until
the reserving transaction aborts or until oldestUndoLSN is larger than the
smallest transactionLSN in the table. We tolerate this because this waste
of space is bounded (since there can not be more reserved space than the page
size. At some point either the shrink operations have reserved all the space, and
no further updates on the page occur, or some space is reclaimed).

Also note that, although the oldest entries are dropped from the table, which
loses some of the information about which transactions reserved space, no
amount of reserved space gets lost, since reserved amounts are cumulated in all
younger entries as well. This also applies to entries that are lost because they
have not been stored persistently (if

� � �
, not the whole reservedSpaceTable

is stored on stable storage when the page gets evicted from the buffer).

180 CHAPTER 7. RECOVERY

Space-consumption When a space consuming operation fails because not enough free
space is available, reserved space collection is performed and the operation is retried.
Only if the operation still fails, regular garbage collection is attempted before failure
is returned to the caller.

For space-consuming operations, it is desirable that transactions can reuse space they
have reserved themselves. In order to safely reuse space, it is necessary to know
how much space was reserved by the current transaction. This information can be
obtained by looking at the reservedSpaceTable: Subtracting from the entry with the
consuming transaction’s transactionLSN the amount stored in the adjacent older
entry, and also subtracting

� ��� � �*	 	 � � � � (as records that are marked deleted may not
be reused, see below), yields the amount of reserved space that can be reused by the
current transaction.

If there is no entry for the current transaction, or it is the oldest entry in the re-
servedSpaceTable, this information is lost, and reserved space cannot be reclaimed
by the reserving transaction. Only operations that take place after the reserving trans-
action commits can reclaim the reserved space. So, only the youngest

� # �
trans-

actions with updates on the page can reclaim space this way. This is not a severe
limitation, as this mechanism is mainly intended to efficiently support a short se-
quence of grow/shrink updates on one record by the same transaction, as they occur
as a result of the XML operations described in Section 5.7.5.

A transaction cannot reuse space it reserved by deleting a whole record, although
using the deletionLSN, it would be simple to verify that a record was deleted by
the same transaction that now tries to consume space on the page. But because small
log records for deletions are used, after completely removing the record, there is no
before image of the deleted record, which is required to undo the deletion.

If reusing space of completely deleted records is a serious performance advantage for
an application, this can be enabled either

1. during record deletion, by writing deletion records with a complete before im-
age, or

2. during the space consuming operation, by writing a special reclaim log record
that really deletes a record that has only been marked deleted, including a full
before image in the record.

Reusing deleted record space will reduce extra data page I/O only if the pages with
deleted records are not reused before they get removed from main memory. On the
other hand, reusing deleted record space will increase CPU usage and I/O in any
case, as record contents have to be copied to log records and written to the log. Natix
therefore does not reuse space of deleted records.

Space-consuming operations include in their log records the amount of consumed
reserved space to allow correct undo of reserved space information (see below under
undo processing).

7.5. METADATA RECOVERY 181

After describing the page-level methods for dealing with reserved space, we also have
to pay attention to how reserved space on the pages affects metadata of the segment. For
efficiency reasons, the segments keep redundant information about page free space infor-
mation in the Free Space Inventory, see Section 5.6.5. The FSI takes reserved space into
account as follows:

The FSI value for a page is determined as if the reserved space was unused space.
This results in those pages being chosen as targets for record insertion, leading to regular
reserved space collections during normal operation.

If too many record insertions fail because of reserved space, it is possible to delay at-
tempts to insert new records: While the information in the Free Space Inventory segment
is calculated to include reserved space as free space, the Free Space Inventory Cache (Sec-
tion 5.6.5) is updated in a way that counts reserved space as occupied (this is hinted at in
McAuliffe et al. [55]). As a result, pages with reserved space are only targets for record
insertion when there is enough unreserved space, or when they have dropped out of the FSI
cache and the cache cannot satisfy a space request. This decreases the frequency of repeated
unsuccessful insertion attempts while retaining on-the-fly reserved space collection.

Analysis and redo Analysis does not require special handling of intra-page space ma-
nagement. Neither does redo, which treats reserved space in the same way as forward
processing.

Undo Processing During undo of a record deletion, the before image in the log record
is used to restore the record contents that was overwritten by the deletionLSN, and
the delete flag is cleared. The record size is removed from the reservedSpaceTable and
subtracted from markedSpace.

Other space-reserving operations are undone using their space-consuming counterparts
as during forward processing. The only difference is that these space-consuming undo
operations always consume reserved space instead of regular free space, even if there is no
entry in the reservedSpaceTable for the transaction any more. This is correct because the
transaction must have reserved the space it is now reclaiming.

Undo of space-consuming operations has to take into account that a rollback is never
undone, so undo of a space consumption is not always a space reservation:

Record insertions are undone by deleting them without reserving space. A redo-only
deletion compensation log record without before image is written.

Other space-consuming operations during undo are treated in the same way as their
space-reserving counterparts in forward processing, with the exception that not the full
consumed amount is reserved during undo, but only the amount of reserved space they
consumed, as recorded in the log record (refer to Forward Processing for space-consuming
operations above). If the space-consuming operation did not use any reserved space, then
the reserved space table is not modified at all.

182 CHAPTER 7. RECOVERY

7.5.5 Segment Metadata: Free Space Inventory

The segments maintain a persistent Free Space Inventory (FSI) for their pages, see Sec-
tion 5.6.5. FSI information needs to be precise not only for performance reasons, but also
for correctness, as it is the base for decisions about overwriting or ignoring the contents of
certain pages (see Section 7.5.6). Hence, proper recovery is necessary.

We will first present possible approaches to FSI recovery, and discuss their pros and
cons. Then we will describe how FSI recovery is done in Natix.

Existing Approaches to FSI Recovery

We will first outline how FSI is dealt with in the classical ARIES line of papers. Then we
describe FSI recovery as an application of object-level recovery techniques as presented in
7.2.3, treating data page and FSI update pairs as subtransactions.

FSI recovery in classic ARIES The approach followed by Mohan et al. [65, 66] is to
treat the FSI as regular data, by logging updates on FSI pages and performing analysis,
redo and undo during restart and transaction recovery. Their motivation is “to avoid special
handling of the recovery of FSIPs during redo and undo, and also to provide recovery
independence” [66].

Actually, due to fine-grained locking on data pages, and due to its derived nature, FSI
data is subtly different from ordinary data or indices in terms of recovery.

Fine-grained locking allows for several transactions to modify records on the same data
page, and some of them may roll back while others do not. In this case, undo log records
with before images are not a correct source of undo information for FSI pages.

Consider the following example: A transaction � � consumes 15% of a page’s space, so
that the free space on the page changes from 55% free to 40% free. This causes the FSI
information for that page to change from “more than 50% free” to “more than 25% free”.
Another transaction ��� consumes another 10%, but does not need to change the FSI data.
Now � � rolls back. If it were to change the FSI information back to its original value of
“more than 50% free”, this would be incorrect, as the current page state is 45% free.

The correct behaviour for forward processing is achieved by logging FSI updates as
redo-only log records after logging the data page update.

During undo the FSI value for the data page is recalculated to see whether an FSI
update is necessary, and if yes, an FSI compensation log record is written before the data
page update. This delicate log ordering dependency is needed to ensure that the update
to the FSI and the data page update are treated as an atomic action also during restart
recovery [65]. This means that undo processing requires special code for FSI processing.
Although the authors of the method themselves consider special recovery code for free
space management to be undesirable, they can only avoid it during redo, introducing special
FSI undo code.

FSI recovery using L1 operations We will now propose a straightforward way to also
avoid special undo code for the method above by applying object-level recovery techniques.

7.5. METADATA RECOVERY 183

We will then discuss the shortcomings of this approach.
By treating the combination of a data page and an FSI update as a single L1 operation

with logical undo, the desired result is obtained as well: The data and metadata updates are
atomic, and undo does not need to be the inverse operation of the original action.

This could be implemented by always (during forward and undo processing) writing an
undo-redo FSI log record with before image first (instead of just a redo-only FSI record),
followed by an L1 subcommit log record describing the data page update.

In case restart recovery sees the FSI update, but does not see the subcommit record, the
old FSI value is restored. In contrast to the example for forward processing in the previous
section, the before image in the FSI log record is always correct: If a crash occurs, there
can be no later committed updates on the page, otherwise the log would have been flushed
and both the FSI and the data page log record would be visible to restart recovery. No other
log records can be written for the same data page between the FSI log record and the data
page log record, because the data page latch is held until both log records are written (refer
to Section 5.6.5). Hence, the FSI before image is always correct for restart undo when the
crash occurs before the L1 subcommit log record is written.

If the subcommit log record is encountered by restart undo, it triggers logical undo
which undoes the data page update and determines the correct FSI value even in the pres-
ence of other committed updates on the page.

Discussion The problem with this L1 operation approach to FSI recovery, and also with
the special undo code from Mohan et al. [65] as described above, lies in the fact that the
FSI log record has to be written before the data page log record, which forces the order of
performing and logging the data page operation, as follows. To determine the FSI value that
should be logged, the operation is performed and the new FSI value calculated. Then the
FSI log record is written, and afterwards the data page log record is written. This disallows
certain optimizations, and introduces additional dependencies between the page interpreter
and the segment modules.

For example, we sometimes would like to write the log record before actually perform-
ing an operation. In that case we can write the before image using the current contents
of the record, avoiding at least one copy operation. Using the asynchroneous interface of
the log manager (Section 7.4.2), we can even surround the operation execution with the
log record’s creation, writing the before image before performing the operation and the
after image after performing the operation to the same log record. Avoiding data copying
like this is not possible if we need to write FSI log records before the operation, unless
the page interpreters provide methods to predict the free space value change caused by an
operation. Then, it would be possible to first determine whether to log an FSI change and
logging it before performing the operation. But, depending on implementation, it is very
much possible that predicting an exact change of free space is as performance intensive
as actually performing the operation, e.g. when data compression is involved. CPU usage
would double in this case.

We now dicuss the architectural consequences of the approaches above and see that
in addition to lowering performance, the approaches above would make the system more

184 CHAPTER 7. RECOVERY

complex.
Natix’s storage system architecture (Section 5.1) is designed in a way that keeps the

modules for intra-page data structures, the page interpreters, separate from the modules for
inter-page data structures, the segments. In addition, segments in general do not need
to know if, and how, intra-page data structures are different for recoverable and non-
recoverable segments.

FSI management belongs to the segment module, as segments use the FSI to find a
page that can hold a certain amount of data. To implement the approach above, we either
have to add some FSI code to the pages, distributing the knowledge about FSI management
over two modules, or we need to add code to all the segments, calling the page interpreters
differently in the case of undo.

This is even more undesirable from a software engineering point of view than adding
special recovery code for free space management, as the special undo code has to be added
to every type of segment and/or page that is supported by the system. This results in two
very similar, but subtly different pieces of code in all classes that implement persistent
multi-page data structures, whereas special FSI recovery code would only need to be added
to the segment base class.

Another argument against treating FSI updates as simple data updates originates in the
fact that FSI information is critical to system performance (that’s why it exists in the first
place). As a consequence, the FSI information is cached (see Section 5.6.5, and McAuliffe
et al. [55]). If maintenance of this cache is desired during recovery, we need to treat the
FSI updates in a special way to update the main-memory segment data structures.

In the last paragraphs, we have argued that special FSI recovery code is necessary, and
why the approaches using a special order for FSI log record are not desirable for our system.
We will now elaborate on Natix’s approach.

Natix FSI Recovery

It turns out that, given Natix’s way of handling the Free Space Inventory, recovery handling
fits in quite naturally. Recall from the storage system architecture (Section 5.1), that the
segments control FSI management. When unfixing a page, i.e. after an update operation,
the segment checks whether the FSI value has changed, and if so, records the change in
the segments FSI cache and in the FSI segment. This leads to the key point of Natix’s FSI
recovery: All accesses to pages follow the fetch/do/unfix protocol, not only during forward
processing, but also during redo and undo processing.

As a result, FSI maintenance is automatic during undo. Since all operations are undone
for loser transactions, both during transaction recovery and restart undo, and pages are
unfixed just as during forward processing, the necessary FSI changes are automatically
performed.

Unfortunately this does not mean we can do away with FSI log records altogether: The
remaining problem is redo, as not all operations of a transaction are redone. We need to
write FSI log records for those cases where the correct page version was already on disk,
so the data page update is not redone. We need FSI update log records to perform redo for
the FSI pages. We also want to write FSI log records for R2 recovery, when only the FSI

7.5. METADATA RECOVERY 185

page was damaged on disk and needs recovery, but the associated data pages do not.
We now describe for the different modes of operation the additional steps which must

be taken to ensure proper FSI recovery in Natix.

Forward Processing During forward processing, all modifications to FSI pages are logged
as redo-only log records. This is done by just using logging FSI page interpreters, so neither
segments for concrete data types nor FSI segments need special FSI recovery code.

The normal fetch/do/unfix protocol of the segments is used, which automatically up-
dates the FSI during unfix. As a result, the data update log record always precedes the FSI
update for that page.

To facilitate redo recovery (see below), the segment stores FSI log records’ LSNs also
as the data pages’ pageLSNs (�). This guarantees that if a page is flushed to disk, its
associated free space information is available in the stable log. The data page update and
FSI log records are created during the same latch on the data page, so it is not possible that
the data page is stored on disk, and the FSI log record is not.

Undo Processing Undo processing also uses the fetch/do/unfix protocol, thus automati-
cally updating the FSI and writing log records. Note that in contrast to Mohan et al. [65],
the order in which data and FSI log record are created is the same during forward and undo
processing: The data log record always precedes the FSI log record.

The recovery manager updates the transaction control block during undo, recording
which LSN is currently undone and which LSN needs undo next. This information is used
by the log manager to automatically treat the log records generated during undo as CLRs,
and maintaining a proper nextUndoLSN chain (Section 7.4.2).

If an FSI log record is generated, its nextUndoLSN field must point to the same LSN
as the nextUndoLSN field of the data page CLR. As usual, the proper LSN value is
taken from the undoLSN field of the transaction control block. The FSI log record in our
implementation is written when the page is unfix()ed. The recovery manager only calls
unfix()when the current log record affects a different page from the last log record (refer
to Figure 7.22). Special care must be taken to avoid using a wrong nextUndoLSN value
because the transaction control block’s undoLSN value is modified by both the recovery
manager’s undo loop and the FSI log record creation.

Modification of undoLSN is done in the recovery manager using the
prepareLxUndo() calls. We make sure the proper value is used by performing
the prepareUndo calls which modify the undoLSN after pages are unfixed in the undo
loop (again, refer to Figure 7.22). This also causes an FSI log record during undo to be
written only once if a sequence of undos modifies the FSI value of the same page several
times.

In our protocol, the segment is used in the same way as during forward processing. This
has the beneficial side-effect that any main-memory cache structures for FSI management
used by the segment are automatically updated during undo.

Checkpointing Nothing is changed to regular FSI management during checkpointing.

186 CHAPTER 7. RECOVERY

Analysis When encountering FSI update log records, the affected FSI pages are included
in the dirty page map as usual.

Redo Processing The FSI update log records are used to redo FSI information if the
affected FSI page is dirty, as in case of regular data pages.

For all pages for which no redo is necessary because the data updates have already been
flushed to disk, proper FSI values are restored because their FSI values are contained in a
log record that was write-ahead-logged prior to flushing that page (see (�) above in Forward
Processing).

For all pages where redo is necessary, we may or may not have proper FSI log records.
There may have been a system crash after logging the data page update, but before logging
the FSI update. The FSI update seems lost at first glance, but we will now explain why the
FSI page is updated properlyanyway:

For those pages redo is performed again using the regular fetch()/do/unfix()
protocol. When the page is unfixed, the regular unfix() code automatically calculates
the correct FSI value and, if it changed due to the operation, the FSI segment is updated
accordingly. So the FSI page is updated properly, even if no FSI log record was found. As
an additional benefit, unfix() processing also updates the main memory FSI cache for
the segment. If a data page operation is followed by a proper FSI log record, no harm is
done, as the FSI redo is now just an identity operation.

To avoid having unfix() logging all the FSI operations a second time and to avoid
writing any log records during redo, we suspend FSI log record generation during the redo
phase.

We still need FSI log records, even if it seems that their contents can be derived from
the data page updates. In case the data page was flushed to disk, but the FSI page was not,
we need a log record causing the recovery manager to redo the FSI updates. This points
us to the only remaining problem with the approach described so far. What happens if the
system crashes again, after the FSI update was deduced from the data page update, and the
data page was flushed, but the FSI page was not? If there never was a log record for the FSI
update, it may be lost because during the next restart, the data page update is not redone,
and so the unfix operation cannot perform FSI maintenance.

We can fix this by writing the missing FSI log records after the redo phase: We augment
the dirty page table with a field

�
������ 	�� for each dirty page. During redo, we update this
field every time we find a FSI update log record for that page. After the redo phase, we
scan the dirty page table and check whether the current FSI value of the page, as stored in
the FSI segment, was encountered as FSI log record. If not, the FSI log record was missing
and is now appended to the log. After completing the scan, the system takes a checkpoint
and flushes the log, and the previously missing FSI log records are now durable.

As a last caveat, we may not flush any pages that have missing FSI log records before
redo is complete, because then we have not yet written the missing FSI updates. To require
page writes during redo, the buffer must be smaller than it was before the system crash.
This means that in addition to crashing the system, its configuration was changed before
restarting it, which is not a good idea anyway.

7.5. METADATA RECOVERY 187

7.5.6 Segment Metadata: Allocation and Deallocation of Pages

New, unused pages need to be formatted (Section 5.4). Newly allocated pages are not
loaded from disk, as they are overwritten during format anyway (Avoid read). Symmetri-
cally, pages that are empty are deallocated (marked as unformatted) and removed from the
buffer manager to avoid writing them back to disk (avoid write). These optimizations are
significant, as they can reduce I/O for update intensive operations by a factor of two6!

Recovery issues when avoiding I/O

1. The free space management info also reflects uncommitted record deletions. This
means that a page can be marked empty because all records on it have been deleted,
but since the transaction that deleted the records may roll back, it is possible that there
is information about reserved space stored on the page which may not be discarded.

2. On the other hand, if the page was deallocated and not written back to disk, and is
reallocated later, then the on-disk version of the page must not be used, as it still may
contain some deleted records.

3. Further issues with recovery while avoiding I/O for newly allocated pages are related
to redo. When a page in a partition was never loaded, the pageLSN value on the
disk is meaningless and may contain garbage values that prevent log records from
being redone. While this is avoidable by initializing new partitions’ pages with Null
pageLSNs, this simply substitutes I/Os when initializing the partition against I/Os
when using it later.

4. In addition, initializing partitions does not remedy another issue: PIDs may have
several ”lifetimes”. This happens, for example, if a page is deallocated and dropped
from the buffer, and later the same page number is reallocated, possibly even to
another segment. The partition number component of a PID is also affected, when
a whole partition is dropped from the system, and later the same partition number is
reused for another partition.

Thus, a lifetime of a PID are those operations in the log starting from and including
a format operation and ending at the last operation on the page either before the log
ends or before (not including) the next format operation.

In both cases, during redo there is the danger of applying log records with matching
PIDs from several different lifetimes of a page to a page state which is not compatible
with the operation. In particular, no log records from earlier lifetimes of the same PID
may be applied to the most recent version on disk, because the effect of the operations
is undefined and may even cause the system to crash because, for example, when the
page was not initialized at all on the new partition.

6Without avoiding I/O, in the worst case during a bulkload, each page is read once and written once. When
avoiding I/O, reading can be omitted, thus avoiding half of all I/O operations.

188 CHAPTER 7. RECOVERY

The above issues related to redo and uninitialized pageLSN values also apply to other
state-identifying information on the pages. Examples include the check bits as employed by
Mohan et al. [62], which are bits on each physical sector of a page used to detect if writes
of multi-sector pages were completed. They are toggled before each write operation, and
need well-defined initial values as well.

Avoiding I/O in ARIES

Two papers from the ARIES series [62, 65] provide techniques to address the issues raised
above.

Space Management using Concurrency Controller Whether or not a page is truly
empty, or may still have some uncommitted deleted records, is detected in Mohan
et al. [65] using a complicated method that uses the lock manager to record informa-
tion about reserved space. This solves issues 1 and 2 above.

The price of this technique are additional assumptions and call dependencies between
intra-page data structures and the system-wide concurreny controller. In particular,
now the Redo processing phase needs access to locking information to know whether
it needs to load a page or not.

Explicit Formatting In Mohan et al. [62], the authors propose to explicitly log format
actions. If a page is not loaded from disk, it must be formatted, and a format log
record must be written. During redo, format log records always cause a page to be
formatted without regarding its prior contents. This solves issue 3. It also simplifies
issue 2 during Redo processing, as now no locking information is required any more
to ignore the on-disk contents of a page.

Relevant Partition Lifetime Mohan et al. [62] propose to deal with issue 4 for the parti-
tion number7 case by storing in the first page of each partition the creationLSN.
This is the LSN of the operation with which the new partition was introduced. Redo
is only attempted for log records whose LSN is larger than creationLSN. To speed
up the comparison, the creationLSN is buffered in main memory for each parti-
tion. As an alternative, the authors suggest using the analysis pass to determine the
creationLSN and filter out undesired log records.

Use LSNs to Avoid Corruption Mohan et al. [62] address issue 4 for reallocated page
numbers by exploiting the pageLSN as during regular recovery. The pageLSN is
monotonic also across lifetimes of PIDs, and already guarantees that log records are
only applied if they are not yet contained in the page. Mohan et al. [62] propose to
simply redo all operations on a page that have not been stored on disk, including all
operations from previous lifetimes, and all format operations.

Note that this wastes resources by scanning the log far back into previous lifetimes of
a page, and by redoing operations that are going to be overwritten by a later format
operation.

7In ARIES, partitions are called files, and partition numbers are file names.

7.5. METADATA RECOVERY 189

The last item above contains the assumption that page writes are atomic. If they are
not, the sector containing the pageLSN may still be one from a previous write, while the
remaining sectors already have the values according to a more recent write. Hence, the
pageLSN indicates that a log record may be redone, while in fact the page is in a corrupt
state. Mohan et al. [62] describe a mechanism to detect such partial writes, which we do
not detail here. However, this mechanism depends on certain knowledge about the previous
on-disk state, every time a page is written, except before the very first write. For the last
item discussed above, this means that not only regular redo is performed for old lifetimes
of a page if a partial write occured. In addition, even R2 recovery from a backup copy may
be required, only to recover some check bits, while the redone changes will afterwards be
obliterated with a format operation!

Avoiding I/O in Natix

Goals Our goals for avoidance of I/O during page allocation/deallocation in Natix are
(1) to avoid additional assumptions and architectural dependencies between intra-page data
structures and the system-wide concurreny controller, (2) to prevent redo of changes for
old lifetimes of pages, (3) to avoid performing R2 recovery for old lifetimes, (4) to have
the same mechanism for the very first allocation of a page and for subsequent reallocations.
The approaches cited above have different mechanisms, making the code unnecessarily
complex.

Differences to ARIES This is achieved by the following modifications to the techniques
explained above:

1. The FSI values for formatted, but empty pages, for allocated, being unformatted, and
deallocated, free pages are pairwise different (Section 5.6.5).

2. Pages are not deallocated unless all transactions with pending delete operations on a
page have committed.

3. Deallocations are also logged.

4. The LSN of format operations on pages is used not only as pageLSN for the page,
but also as redoLSN.

We now elaborate on Natix’s method, before concluding the subsection with an expla-
nation why this method reaches our goals while addressing the raised issues.

Detailed Description As a result of record-level locking, undo of a page allocation is not
necessarily a page deallocation because another transaction might have added records to
the newly allocated page, in which case the page needs to stay allocated.

This points to the need for page allocations to be implemented as L1 operations, since
undo is not necessarily the inverse of the original action, and since a page allocation needs
to be atomic in that a page may not be marked formatted when it is not.

190 CHAPTER 7. RECOVERY

The avoidance of unnecessary I/O is not always possible with this scheme. Consider the
situation in which a page contains only records that are marked deleted, but the page is not
deallocated because its contents may be needed for undo processing. Now further assume
that the page is flushed to disk, and all transactions that deleted records on it commit. If the
page is reused later, it will be loaded into memory although it does not contain meaningful
data.

However, it is likely that the page will be reused before it is flushed to disk, in which
case no unnecessary I/O is performed. As an additional measure, when the page interpreter
is notified that the page is going to be written, it can perform reserved space collection. If
the page is completely empty afterwards, the page interpreter sets its isInvalid() flag,
and notifies the segment, which marks the page deallocated in the FSI. The buffer manager
detects, after calling prepareWrite(), that the page is now invalid and needs not to be
written.

Forward Processing

Allocation As mentioned above, page allocation is implemented as an L1 operation:

After the free space management routines of a segment have found a page which is
marked free in the FSI, that page is marked allocated and a FSI log record describing
the allocation is written. This log record is called the allocation log record, and is a
regular FSI log record with kind FSIPAGE UPDATE. The FSI value 1 used to mark
the page as allocated, being formatted prohibits other transactions to try to get a latch
on the page (as explained in Section 5.6).

A buffer frame is assigned to the PID, but the page is not loaded from disk. The buffer
frame is formatted by calling the page interpreter’s format routine. Then a format log
record is written by the segment (log record kind PAGE FORMAT), which is also the
L1 subcommit log record for the L1 allocation operation. Its nextUndoLSN points
to the transaction’s log record preceding the allocation log record.

The format log record does not cause the FSI to be updated to ”formatted” state.
Instead, the recordedFreeSpaceInfo() field in the page interpreter is set to
an invalid value, thus forcing an FSI update when the page is unfixed. Usually, this
FSI update will already include the first record insertion on the new page, which
occurs directly after the format operation, while the page is still fixed.

The format log record’s LSN is recorded as pageLSN of the newly formatted page,
and the redoLSN for that page is also set to the format log record’s LSN.

Deallocation If no more regular records and records that are marked deleted are present
on a page, it is evicted from the buffer manager, and this is also logged using an evict
log record. An evict log record is a log record of kind BUFFERMGR with operation
kind REC OPER BUFFERMGR EVICT.

Finally, the page is marked deallocated by setting the page’s FSI state, which is
logged using a log record of kind FSIPAGE UPDATE which we call deallocation
log record.

7.5. METADATA RECOVERY 191

Neither log record contains the page’s contents as before image, as we only allow
to unformat truly empty pages. The deallocation log record also does not update the
pageLSN, as the page is evicted from the buffer anyway.

Analysis

Allocation A format record causes the data page to be entered into the dirty pages map if it
is not already present, just as a regular page-level update log record. The format log
record’s LSN is used as redoLSN in the dirty pages map. The allocation log record
causes the FSI page to be included in the dirty pages map.

Deallocation If an evict log record is encountered during analysis, the page can safely be
dropped from the dirty pages table, as any redone operations would be thrown away
during redo anyway (See below).

Redo Processing

Allocation As during forward processing, we do not load a page before formatting it to
avoid unnecessary I/O. This means we do not have a pageLSN to compare and
check whether the update is already present during redo. This check is performed
in the segment’s redoLogRecord() function. For regular page-level update log
records, it loads a page and verifies that the given log record’s LSN is larger than the
pageLSN.

To avoid I/O during redo when encountering a format log record, the segment does
not use the fetch() call to acquire a main memory address for the page. Instead,
it uses the getFrame() call, which avoids I/O. After receiving the main memory
address, it does not compare the pageLSN — which may have any arbitrary value
because an arbitrary frame of the buffer manager is used — to the format log record’s
LSN.

If the redoLSN in the diry page map says the format can be redone, redo is per-
formed, without regarding the on-disk version of the page. Therefore, the algorithm
is robust against garbage on on-disk pages that look like a valid LSN and would
lead to incorrect redo, no matter if the garbage stems from an uninitialized page or a
partial page write.

Since the redoLSN is reset during format() in forward processing, any log en-
tries that occur before the format log record are not redone; those updates would be
overwritten by the format operation anyway.

This method sometimes redoes updates that may have been flushed to disk already:
Consider a page that first has been formatted, then updated by some operations and
then flushed to disk. Now a crash occurs and restart recovery takes place. If the
analysis phase results in the format log record’s LSN as redoLSN, then the page’s
on-disk version is not accessed during redo. Instead, getFrame() is used to get

192 CHAPTER 7. RECOVERY

a new buffer frame, which is formatted and all the update operations following the
format are redone although they were already on disk.

Occurences of this undesirable, though not incorrect, effect are reduced by logging
page flushes (see 7.4.6). On encountering a logged page flush during analysis, the
page is dropped from the dirty page map. During redo, the format and update oper-
ations are not repeated, the loaded version is used instead. Already stored updates
may still be repeated, but only if a crash occurs between the flush operation of the
page and the writing of the page’s flush log record. Even then, this is only hurting
performance if redo of the updates takes longer than loading the page (which can
take as long as several thousand machine instructions).

Redo of the allocation record is unnecessary, since the subsequent redo of the format
also sets the FSI value of the page to its correct state and would overwrite the redone
allocation record’s update anyway.

Deallocation When redoing the last record deletion on a page, updating the FSI value
and possibly evicting the page from the buffer are automatically performed because
the page interpreter marks itself invalid when it is completely empty. This is only
necessary when the last delete operation was logged, but the subsequent evict and
deallocation were not. Otherwise, the page is not in the dirty page map in the first
place.

Undo Processing

Allocation The allocation operation is an L1 operation, whose logical undo operation is
the empty operation: As explained above, other transactions may have added records
to the page, so deallocating the page may be incorrect.

Only if the L1 allocation operation was not completed before a crash, i.e. the allo-
cated state was recorded in the FSI on stable storage, but the format operation was
not, then the allocation is undone.

Regular deallocation of pages proceeds as part of normal undo processing of record
insertions: The undo operation for a record insertion is a record deletion. Since the
segments use their normal forward processing protocols during undo, we automati-
cally use the regular deallocation routine: If a page is completely empty after a record
deletion, the page is deallocated using the deallocation as described under forward
processing during unfix.

Deallocation When encountering a deallocation log record during undo, the segment per-
forms the same steps as for allocation during forward processing. This is necessary
because the following undo operations (which repopulate the page) assume that the
page is formatted and empty to allow undo of deletions on the page.

Note however, that undo of deallocations is rare, as pages are only deallocated by
regular transactions when page-level locking is in effect. Otherwise, the pages will
always still contain records that are marked deleted.

7.6. SUBSIDIARY LOGGING 193

The only case where deallocations are logged is when a page interpreter detects dur-
ing prepareWrite() that it is completely empty after it performed reserved space
collection. In this case, the page is deallocated instead of being written. However,
this deallocation is logged by the system transaction, which is never undone (Sec-
tion 7.3.8).

Evaluation

We reconsider the issues with avoiding I/O and recovery, brought up in the beginning of
this subsection, and show how they are addressed by our method.

1. Since Natix never marks a page as reallocatable in the FSI when there is any infor-
mation on it that may be required later, we know before allocating a page that it is
safe to ignore previous contents.

2. Since we explicitly mark pages as deallocated, we know when we may not use the
on-disk contents of a page.

3. Since we explicitly log format operations and unconditionally redo them, ignoring
previous page contents, there are no ”dangerous” values on pages that might com-
promise recovery.

4. Since we use the format operation’s LSN as redoLSN, we do not need to redo or
worry about previous lifetimes of a PID.

Our method also meets the goals we have set in addition to correct operation:

1. Recovery that avoids I/O does not require assumptions or dependencies between
modules in addition to those required by recovery that does not avoid I/O.

2. Redo only needs to scan and process log records from the last lifetime of a PID.

3. R2 recovery for prior lifetimes is unnecessary, and there is no need to store a parti-
tion’s creationLSN.

4. Allocation code is identical for the first and subsequent allocations of a page.

7.6 Subsidiary Logging

Conventional recovery systems that use logging follow the principle that every modification
operation is immediately preceded or followed by the creation of a log record for that
operation.

Operation usually means a single update primitive (like insert, delete, modify a record
or parts of a record). Immediately usually means before the operation returns to the caller.

In Natix, we relax both of these constraints. This boosts overall performance by reduc-
ing log size and increasing concurrency.

194 CHAPTER 7. RECOVERY

Suppose a given record is updated multiple times by the same transaction, which fre-
quently occurs when using the storage layout for XML documents as described in Sec-
tion 5.7, for example when a subtree is added node-by-node. In many cases, it is desirable
to log this composite update operation as one big operation, for example by creating only
one log record for the complete subtree insertion. Merging the log records would avoid the
overhead of log record headers for each node (which can be as much as 100% for small
nodes) and would reduce the number of serialized calls to the log manager, increasing con-
currency.

In the following, we will explain how Natix’s recovery architecture supports such log-
ging optimizations. We will also elaborate on the concrete implementation for the case of
XML data.

7.6.1 Page-level Subsidiary Logging

In Natix, physiological logging is completely delegated to the page interpreters. How the
page interpreters create log records and how those log records are interpreted during undo
and redo is up to the page interpreter.

A page interpreter has its own state for each memory-resident page, which it can use
to collect logging information without actually transferring them to the log manager, thus
keeping a private, subsidiary log. The interpreter may reorder, modify, or use some op-
timized representation for these private log entries before they are published to the log
manager, i.e. regularly written as log records. The remaining architecture and interfaces of
the system do not need to be changed.

Subsidiary Logs as Part of the Buffered Log

To retain recoverability, some rules have to be followed. Adhering to them will make the
subsidiary logs become part of the log buffer as far as correctness of the recovery process
is concerned. Although part of the log buffer is now stored in a different representation,
its effects for undo and redo processing are the same. Basically, the rules below cause a
sequence of operations by one transaction on one page to be treated by logging and recovery
as a single atomic update operation.

Write-Ahead-Logging To abide by the write-ahead-logging rule, the subsidiary log’s con-
tent has to be published to the regular log manager before writing a page to disk.

Force-At-Commit Likewise, all subsidiary log entries must be published to the regular
log manager before the transaction commits, to follow the force-at-commit rule.

Publish-before-Savepoints When the application requests an identifier in the form of a
savepointLSN for the system’s state to allow partial rollbacks, this savepointLSN
must include the operations in the subsidiary logs. For ease of implementation, we
publish all the subsidiary logs to the log manager before returning a savepointLSN.
Otherwise, we would have to introduce a means to identify the system state which
would have to include information about which subsidiary log records belong to the

7.6. SUBSIDIARY LOGGING 195

savepoint and which do not. This would require to introduce an interface to specify
savepoints to page interpreters, which would complicate the architecture.

Publish-Before-Owner-Change Before a transaction modifies a data page other than the
one currently owning the subsidiary log, we require that the the subsidiary log is
published to the log manager.

This is necessary to maintain a meaningful pageLSN value. In this way, modi-
fications by other transactions show up as an increased pageLSN value. Other-
wise, there might be modifications to the page that are not reflected in an increased
pageLSN value. Techniques that depend on proper pageLSN values, such as Com-
mitLSN [63], would not be applicable.

Subsidiary-Undo Every time a rollback is performed, all operations in subsidiary logs of
the transaction have to be undone. It does not matter to which savepoint the transac-
tion rolls back because the actions in the subsidiary logs have always happened after
the last savepoint, due to the Publish-Before-Savepoint rule.

Note that a Publish-Before-Checkpoint rule is not necessary. A checkpoint is used to
avoid a complete scan of the log during analysis. It records all active transactions at the
time of the checkpoint, and it records which dirty pages have log records in the log before
the checkpoint. The latter allows to determine how far back in the log redo processing has
to start.

However, the entries in subsidiary logs do not need to be found by redo processing. If
they are required at any point for redo processing, the subsidiary log will have been flushed
anyway, either by a Force-At-Commit or by a Write-Ahead-Logging action.

Implementation Framework

Implementation of the rules is rather straightforward in Natix’s architecture. The required
modifications are limited to the page interpreter class which is supposed to perform sub-
sidiary logging. It is possible to limit subsidiary logging to specific data types, or even
to operate simultaneously with and without subsidiary logging on the same data structure.
Apart from the page interpreter, no components in the system are affected, with the excep-
tion of additional synchronization for the transaction pending actions list, as explained in
the following subsection about synchronization.

Write-Ahead-Logging Since the buffer manager notifies page interpreters before their
associated page is written to disk, the page interpreter is able to guarantee Write-Ahead-
Logging. It first publishes the subsidiary log to the log manager, creating new log records
and increasing the pageLSN, and then flushes the log up to the new pageLSN.

Publish-Before-Commit, Publish-Before-Savepoint To publish the subsidiary logs to
the log manager before a commit occurs, all page interpreters that maintain a subsidiary
log add a pending action to the transaction control block (see Section 7.4.7). This pending

196 CHAPTER 7. RECOVERY

action is executed before the transaction commits, and causes the associated subsidiary
log to be published to the log manager. Likewise, publish-before-savepoint is enforced by
pending actions.

To avoid the creation of excessively many pending actions objects, just one object is
used for every page interpreter that maintains a subsidiary log. These objects are created
if a page interpreter begins to use a subsidiary log, and they belong to a class derived from
PendingAction. It has refined methods for precommit and savepoint, which publish the
entries in the subsidiary log and then remove the object from the pending action list.

Subsidiary-Undo To undo the entries in the subsidiary log in case of a rollback, the
rollback() method of the derived class for our pending action objects is also refined
and performs undo for all subsidiary log entries. There are no objects in the pending actions
list that do not require subsidiary undo, no matter to which savepoint we are rolling back,
since all subsidiary pending actions are removed from the pending actions list when a
savepoint is established.

No compensation log records have to be written for undo of subsidiary log entries.
As long as the entries are not published, there are no stable log entries that could survive
restart. Entries that do not survive restart cannot be redone more than once — they are not
even redone once — and thus do not need compensation log records.

Publish-Before-Owner-Change To detect if a different transaction is accessing the page,
the page interpreter must maintain a loggingTransaction field, containing the trans-
action control block of the transaction that currently owns the subsidiary log.

If, before writing a log record, the current transaction detects that it does not own the
subsidiary log, it flushes it before logging its own update.

Synchronization

As a result of the rules and implementation framework above, transactions write log records
for other transactions when a page is flushed or before a transaction tries to create log
records for a page which already has a subsidiary log owned by another transaction.

There are several areas where this causes data structures that were previously accessed
by one transaction only to be modified by several transactions concurrently. We will list
them together with an appropriate synchronization strategy.

Transaction control blocks Writing log records for other transactions does not cause mul-
tithreaded access conflicts for the transaction control block, because access to the
critical LSN fields in the transaction control block is serialized by the log manager
monitor lock.

Subsidiary log Access to the subsidiary logs itself can be synchronized by the data page
latch in the buffer manager and does not cause conflicts either.

Pending action list If a transaction publishes a subsidiary log due to a page flush or an
owner change, the transaction must modify the pending actions list of the owner

7.6. SUBSIDIARY LOGGING 197

transaction. Since other transactions including the owner transaction itself may be
concurrently modifying the pending actions list, we need to introduce additional syn-
chronization. An extra mutex in each transaction control block, serializing access to
the pending actions list, is employed.

The last item introduces a new problem, as now deadlocks are possible. When removing
a subsidiary log from the pending actions list, two synchronization objects are involved:
The data page latch protects the page contents and the subsidiary log, while the pending
action mutex protects the pending action list.

Unfortunately, in a naive implementation, these synchronization objects are not always
accessed in the same order.

� When a page is flushed or the owner of the subsidiary log changes, a transaction
holds the data page latch and tries to obtain the pending actions mutex to remove the
page from the list.

� When a transaction is committing, establishing a savepoint, or rolling back, it holds
the pending actions mutex while traversing the pending actions list and tries to obtain
the data page latches on the pages with subsidiary logs.

This may cause a deadlock, for example if a transaction � � is committing while another
transaction � � tries to publish one of � � ’s subsidiary logs.

In such situations, where we need to hold both synchronization objects at once, we
avoid deadlocks by forcing the order of requesting them. We never hold the pending actions
mutex while requesting a data page latch. Before requesting a data page latch, the pending
actions mutex is released. After successfully obtaining the data page latch, the pending ac-
tion mutex is again locked. While the transaction which is processing the PendingActions
list was waiting on the data page latch, some other transaction may have flushed the sub-
sidiary log. Therefore, after reacquiring the pending action mutex, it is checked whether
the subsidiary log on the data page is still present. If it is gone, nothing needs to be done,
otherwise the log is published as desired.

7.6.2 Application: XML-Page Subsidiary Logging

We describe how to employ the technique outlined in the previous section for a concrete
page interpreter class (namely XML pages) to improve performance for the logging version
of that class. Logging for XML data was the primary reason for introducing subsidiary
logging.

A typical update operation of Natix applications is the insertion of a subtree of nodes
into a document, either during initial document import or later while a document evolves.
The Natix storage format (Section 5.7) usually causes such a subtree insertion to be mapped
into a sequence of updates on a single record.

If every node insertion is logged using individual log records, every node will cause a
log header to be written. Recall that an element node with no children and no literal data
is stored using only 8 bytes of storage. A log header needs 32 bytes. For such a node

198 CHAPTER 7. RECOVERY

the amount of log generated is 5 times as large as the actual data. With regard to update
performance, this nullifies the effect of the compact storage format.

Since the updates are localized and can easily be expressed in terms of one single insert
operation to the record, logging this single operation would allow for amortizing the costs
for all the node insertions.

To achieve this, conventional recovery systems would require the application to con-
struct the subtree separately from the storage system and then add it with one insertion.
Apart from requiring additional copying of data, which is in conflict with our goal to do as
few representation changes as possible, the application would need to do some kind of dy-
namic memory management to maintain the intermediate representation. In addition, with
page-level physiological logging, only merging of update operations that affect the same
page is desirable, so applications would need to know about the mapping of the logical data
structures to pages, breaking down encapsulation.

Now we show how a subsidiary log inside the XML page interpreters allows to amor-
tize logging costs for subtree insertions, without requiring such a tight coupling of the
application to the storage subsystem.

Using the Page Contents as Subsidiary Log

The log entries for the subsidiary log are not explicitly stored. Instead, the XML page
interpreters reuse the data page as a representation for log records before publishing them
to the global log.

Using a flag called fresh in the node headers on the data page, new nodes/subtrees in
the page are marked. All information necessary to log the subtree insertion is available
inside the data page itself, except for the transaction id. Instead of logging node insertions
directly, the page interpreter only marks them as to-be-logged using the fresh flag.

Publishing the subsidiary log to the log manager then consists of a scan of the records
on the page. Every time a node is encountered that has the fresh flag set, a creation log
record for the subtree implied by that node is written (and the subtree is not traversed when
further scanning the nodes of that record). The after image for this log record is the subtree
as it is stored on the data page. The fresh flags are all cleared after publishing the subsidiary
log.

Even if the fresh subtrees are modified before their creation is logged, no further main-
tenance of the subsidiary log is required: If a node is deleted, the fresh flag in its header is
deleted as well, so no log record is written. If a node is modified, only the final version is
included in the log record.

If non-fresh subtrees are modified, we have to be careful before directly creating non-
subsidiary log records with the log manager. Since intra-record physical addressing is used
in log records, they can only be redone and undone correctly if the data record is in the
same state as it was when the operations were originally executed. Thus, we need to make
sure that all modifications in the subsidiary logs are published before any nonsubsidiary log
record for the same data record is created. So the log is not only published as outlined in
Section 7.6.1, but also when a node is modified that has its fresh flag not set.

While we have the after-image information for our subsidiary log entries, which is

7.6. SUBSIDIARY LOGGING 199

stored in the page contents, the transactionID to create a complete log record for the
subtrees is still missing. Note that we do not need any before images, as the net effect of
subsidiary logged updates is always an insert operation.

The transaction IDs are not stored in the data page’s contents. But as ex-
plained in the previous section, in page interpreters which do subsidiary logging we
need a loggingTransaction field anyway. We can use that field to obtain the
transactionID to be used in the log records.

Subsidiary Logging and L1 Operations

L1 operations, as explained in Section 7.4.4, are logged as a sequence of page-level log
records which is terminated by a L1 subcommit log record. There are two apparent prob-
lems with the combination of L1 operations and page-level subsidiary logging, as explained
in the next two paragraphs. These explanations are followed by the necessary steps to avoid
them.

Missing L0 updates With subsidiary logging, it is possible that some of the L0 updates
belonging to the L1 operation are stored inside a subsidiary log. In this case, if a subcommit
record was written, those updates would enter the global log at some point later in time.
Should the transaction abort, the L0 updates which were published after the subcommit
record are not skipped by the L1 subcommit record nextUndoLSN pointer, and hence
may be undone by regular L0 undo and not by logical L1 undo as desired, possibly causing
a corrupted database state.

Additional L0 updates It seems that subsidiary logging may also cause some L0 opera-
tions that do not belong to an L1 operation to become part of one.

If some L0 operations were only stored in a subsidiary log, and they are published to the
global log during the L1 operation due to a page flush operation or an owner change, then
they cannot be distinguished from those L0 operations that constitute the L1 operation.
During undo, those L0 operations would not be undone because they would be skipped
after undo of the L1 operation’s subcommit record.

Synchronizing subsidiary and global logs Both of the stated problems point to the need
to synchronize the subsidiary logs with the global log if L1 operations are involved. Since
subsidiary logging may reorder some log records of a transaction, and recovery of L1 op-
erations strongly depends on log ordering of related L0 records, subsidiary logs must be
published before an L1 operation commences and before it is completed. That way, all sub-
sidiary log entries that do not belong to the L1 operation are logged before its begin marker
LSN (returned from initiateL1 on the transaction manager), and all L0 operations that are
performed on behalf of the L1 operation are logged before its subcommit log record.

Fortunately, initiateL1() already takes a savepoint before returning the L1 oper-
ation’s begin LSN value (refer to Section 7.4.7). During a savepoint, all subsidiary log

200 CHAPTER 7. RECOVERY

Figure 7.23: Log records for an XML update transaction

records are published, so the log of our L1 operation will not be contaminated with earlier
L0 operations.

To publish subsidiary logs before an L1 operation is completed, we refine not only the
precommit() and savepoint()methods in our pending action objects, but also refine
the subcommit()method in the same way. Since the subcommit methods of all pending
actions are invoked upon calling notifyCompleteL1() on the transaction manager,
there are no subsidiary logs when the subcommit log record is written.

Subsidiary log effectiveness It should be pointed out that the efficiency of subsidiary
logging is severely hampered if the data structure which employs subsidiary logging is
modified exclusively by L1 operations. In such situations, when L1 subcommits happen
often, the subsidiary logs are published frequently, reducing the number of updates that
accumulate and can be treated more efficiently in the subsidiary log.

If L1 operations are used heavily on a data structure, it has to be carefully decided or
measured whether subsidiary logging is increasing performance or not. On the other hand,
it should be noted that L1 operations are not necessary if a multi-page data structure is
locked in its entirety, as it is frequently the case with XML documents.

In addition, subsidiary logging does not modify the on-disk data structures in any way.
Hence, it is possible to switch between regular and subsidiary logging during run-time,
even for pages of the same segment, depending on which lock granularity is used.

7.7 Annihilator Undo

Transaction undo often wastes CPU resources because more operations than necessary are
executed to recreate the state that is the desired result of a rollback.

For example, any update operations to a record that has been created by the same trans-
action do not need to be undone when the transaction is aborted, as the record is going to
be deleted as a result of transaction rollback anyway. Refer to Figure 7.23 which shows a
transaction’s control block and log records and their nextUndoLSN chain. During undo,
the records would be processed in the sequence � � � � ��� � � �

, starting from the undoLSN
in the transaction control block and traversing the nextUndoLSN chain. Looking at the

7.7. ANNIHILATOR UNDO 201

operations’ semantics, undo of records � and
�

would be sufficient, as undo of
�

would
delete record R1, implicitly undoing all changes to R1.

For our XML storage organization, creating a record and performing a series of updates
to the contained subtree afterwards is a typical update pattern for which we want to avoid
unnecessary overhead in case of undo.

7.7.1 Annihilators

We call undo operations that imply undo of other operations following them in the log
annihilators. For example, the undo of a record creation like log record 1 in the example
above is an annihilator, as it implies undo of all update operations that have been done to
the record.

For better undo performance, it is desirable to skip undo of operations implied by the
annihilators.

Natix realizes this to some extent. Let us recall from Section 7.4.1 that the
nextUndoLSN pointer of every log record points to the previous operation of that trans-
action requiring undo, which is taken from the transaction control block’s undoLSN field.
Redo-only records are skipped by the nextUndoLSN chain.

If we know that undo for an operation is never required because an annihilator exists,
as is the case when updating a subtree that has been created by the same transaction, then
the operation can be logged as a redo-only operation. This will prevent the operation from
entering then nextUndoLSN chain of that transaction, and it will not be undone explicitly,
but implicitly by its annihilator.

An additional advantage is that no undo information has to be included in the log record,
which further reduces the amount of log that is generated.

The situation is slightly complicated by partial rollbacks. Partial rollbacks might want
to reestablish an intermediate state of the transaction. Undo information is required in this
case even if annihilators exist because a partial rollback might not include the annihilator,
and the updates must be rolled back explicitly.

Let us now look at the way Natix exploits the optimization potential described above
for the special case of XML data.

7.7.2 XML Subtree Annihilators

The XML page interpreters augment the stored information for the subtree as follows: In
every XML subtree record header, an annihilator LSN and a transactionID are stored,
containing the LSN and transactionID of the last operation that logged a complete
before image of the subtree. Usually, this is the creation LSN of the record (with the implicit
”empty” before image), the annihilatorLSN is also set if for some other reason a log
record with a full before image of the subtree is logged.

The update operations for XML subtrees now check whether the stored
annihilatorLSN for the subtree that is going to be modified is greater or equal to
the last savepointLSN of the current transaction, and if the annihilator was performed by
the current transaction using the stored transactionID. If this test succeeds, there will

202 CHAPTER 7. RECOVERY

Figure 7.24: Undo chaining with check for annihilators

never be a rollback that does not include the annihilator operation. Hence, the update oper-
ation can be logged redo-only and will be skipped during undo.

Figure 7.24 shows the resulting undo chain after log records 1–5 from the example
in Figure 7.23 have been written, under the assumption that no savepoint is taken. The
annihilatorLSN for record R1 is the LSN of the creation record

�
. Because of the

annihilatorLSN checks during forward processing, the undo chain for the depicted
transaction is now ��� �

– no unnecessary undos are performed.
This technique can be beneficial not only for freshly created records. For example,

if an application knows that rolling back to a certain state is likely, as may be the case
for shopping-cart applications in eCommerce shops that will rollback to an empty shop-
ping cart when there are connection problems. Before every session, the application can
explicitly announce major impending modifications to a subtree (the shopping cart), caus-
ing a before image to be written and the annihilatorLSN to be set. The state of the
shopping cart before the session can easily be recreated by just one log record undo con-
taining a complete before image, no matter how many single operations were executed in
the meantime.

There are alternatives for the storage location of the annihilatorLSN, as reserving space
for a whole LSN might be considered too high a cost for the benefits of annihilator undo.

It is possible to store the annihilatorLSN in main-memory only, in the state of the
page interpreter object. This would disallow annihilator undo for updates that happen after
the page has been kicked out of the buffer and was fetched again by the same transaction,
which should be an unlikely event.

Another possibily is to store the annihilatorLSN for subtrees in the lock control
blocks of the corresponding object. We do not consider this a good solution, as it introduces
an additional dependency between the implementation of the recovery and synchronization
components, which makes the already complicated maintenance of those modules even
harder.

Please note that again, as with subsidiary logging explained in the previous section, the
annihilatorLSN concept is local in its consequences for the system. It can be decided
for every page interpreter class (i.e. data type) individually whether or not to support the

7.7. ANNIHILATOR UNDO 203

annihilator undo concept, without affecting or modifying other parts of the system.

7.7.3 Page Annihilators

Another possible annihilator is the deallocation of a page. If a page is deallocated during
undo, then it is not necessary to undo all updates to that page first.

Page-Level Locking

If page-level locking is employed, the inverse operation of a page allocation is a dealloca-
tion. If a transaction allocates a page, formats it and rolls back some time later, the page
will be deallocated, and it is unnecessary to undo record inserts and undos on the page first.

Implementation of page annihilators is simple in this case: Here, the
annihilatorLSN in this case is the LSN of the format log record. The format
log record’s LSN is already recorded for the page because it is always the redoLSN for
that page, which is stored in the buffer frame control block. We also store a flag in the
page interpreter that is set if the page was freshly formatted and not fetched into the buffer
from disk. Analogous to XML subtree annihilators, before logging an update on a freshly
formatted page, the page interpreter only needs to check whether the redoLSN is greater
or equal to the last savepointLSN, and if so, may log updates as redo-only.

As a result, undoing a large-volume bulkload transaction, for example one that loaded
a large document, would only be a matter of marking the new allocated pages unused. The
FSI pages that record allocation state are usually in the buffer. This means that undo of
importing documents or document collections which are much larger than the buffer would
not require any I/O at all.

Unfortunately, this only works if page-level locking is in effect. Otherwise, a page
that was formatted by some transaction may also contain records of other transactions,
even before the formatting transaction terminates. That is why the inverse operation of
allocation is not deallocation in Natix (refer to Section 7.5.6), but the null operation. Pages
are only deallocated if the last record is deleted.

Record-Level Locking

When record-level locking is employed, we can still use the redoLSN as
annihilatorLSN for the records created by the transaction that formatted the page.
We only have to define the logical inverse of page allocation as ”delete all records created
by the current transaction”. This would cause the undo of record creation for those records
for which no undo log records were generated because of the annihilator LSN. In addition,
if the current transaction was the only one that created records on the page, this will cause
the page to be deallocated as desired.

The only problem is to determine which records on a page were created by the current
transaction. The transaction that created a record is usually not stored with the record, and
doing so would be quite a waste of space.

204 CHAPTER 7. RECOVERY

We solve the problem by maintaining a field in the page interpreter that allows to de-
termine whether only one transaction has updated the page since it was brought into the
buffer or since it was formatted. Similar fields are also maintained by subsidiary logging
(see Section 7.6), and selective restart (see Section 7.8).

Using this information during record creation, we can mark records that were created
by the same transaction that also formatted the page. We use a flag in the slot information
to do this. If the redoLSN is greater or equal to the savepointLSN, we can write redo-only
log records after creating a marked record.

When a transaction encounters a deallocation log record, it then may delete all records
that have the flag described above.

Unfortunately, this makes it necessary to bring those pages into memory to check
whether there are marked records or not. While this technique is advantageous in com-
parison with undo processing without annihilators because it needs to process fewer log
records, it does not meet our goal to avoid data page I/O by just marking the pages deallo-
cated in the FSI.

Avoiding I/O

There are three avenues of approach to use page annihilators and to avoid I/O of annihilated
pages:

Exclusively locking new pages When using a multi-granularity locking method that in-
cludes pages as one level of granularity, it would be possible to exclusively lock
newly allocated pages, so that no other transaction would be able to use the page
until the allocating transaction has terminated. This would allow the inverse of page
allocation to be deallocation, and allow us to use page annihilators as with page-level
locking.

Note that this does not mean to use page-level locking all the time, but only for those
pages that were allocated by a transaction.

Defer FSI update Instead of deferring access to a freshly formatted data page by locking
it, it is also possible to defer FSI updates for newly allocated pages until transaction
termination.

Page allocation consists of several steps in Natix (refer to Section 7.5.6). After writ-
ing an FSI value marking the page ”allocated but unformatted”, the page is formatted,
and when the page is first unfixed after it is formatted, the FSI is updated to the final
value.

After the first FSI update which marks the page ”allocated but unformatted” no other
transaction will use the page until the second FSI update. This is because any trans-
action attempt to access such a page would be blocked by the data page latch which
is held by the allocating transaction. Hence, the FSI search ignores pages which are
marked ”allocated but unformatted” (Section 5.6.5).

Instead of updating the FSI after the first unfix, Natix can add a precommit()
pending action to the transaction control block, causing the FSI update to be written

7.8. SELECTIVE PROCESSING DURING RESTART 205

before commit. This will have the same effect as a page-level exclusive lock on the
page, i.e. prohibit updates on new pages by other transactions, but without blocking
the other transactions.

Again, inverse of page allocation is deallocation in such an environment, and the
page-level locking page annihilator technique can be used.

Store conflict pages in transaction control block The third method does not prohibit other
transactions from accessing the newly allocated page until the allocating transaction
terminates.

The page interpreters prepare for page level annihilators as described above for record-
level locking, marking records that were created by the allocating transaction and
writing redo-only log records for them.

By default, it is assumed that a newly allocated page was not accessed by another
transaction. Hence, pages are deallocated by marking them deallocated in the FSI.

Only if a different transaction also adds records to the page, the affected PID is stored
in a conflicting page set in the transaction control block. The inverse operation for
page allocation checks whether the page is a conflicting page, and if so, fetches the
page and removes only the marked records. If not, the default action of deallocating
the page without fetching it is invoked.

AnnihilatorLSN Storage Location

As above with XML subtree annihilatorLSNs in the page interpreter, since the redoLSN
is only remembered until the page is dropped from the buffer, annihilator undo can only be
performed for records that were created until the page is written back to disk. Otherwise,
the formatLSN would have to be recorded on the page’s contents. This may or may not be
acceptable for certain applications. By default, Natix only uses the redoLSN because in
that case we can reuse information that is maintained anyway by the system and thus incurs
lower cost for exploiting the annihilator technique.

7.8 Selective Processing During Restart

The ARIES protocol is designed around the redo-history paradigm, meaning that the com-
plete state of the buffered database is restored after a crash, including updates of loser
transactions. The redo pass that accomplishes this is followed by an unconditional undo
pass that undoes changes of loser transactions.

In the presence of fine-granularity locking, when multiple transactions may access the
same page concurrently, the redo-history method together with writing log records that
describe actions taken during undo (compensation log records, or CLRs) is necessary for
proper recovery. Unfortunately, this may cause pages that only contain updates by loser
transactions to be loaded and modified during restart, although their on-disk version (with-
out updates) already reflects their desired state as far as restart recovery is concerned.

206 CHAPTER 7. RECOVERY

If a large buffer is employed, and concurrent access to the same page by different trans-
actions is rare, ARIES’ restart performance is less than optimal, as it is likely that all
uncommitted updates were only in the buffer at the time of the crash, and thus no redo and
undo of loser transaction would be necessary.

In Natix, records used to store XML documents are frequently very large, so that each
page only contains very few records, reducing the amount of concurrent access to pages.
Since large buffers are also the rule and not the exception, we would like to improve on the
restart performance of our recovery system by avoiding redo (and undo) when possible.

7.8.1 Selective Redo in ARIES/RRH

There exists an extension to ARIES, called ARIES-RRH [69], that addresses this prob-
lem. Here, for pages that are updated with coarse-granularity locking, a special page-level-
locking flag is set in the log records. If during the redo pass log records of a loser transaction
are encountered which have the flag set, the log record is ignored by the redo phase. During
the latter undo phase, log records with the flag are only undone if the pageLSN indicates
that the log record’s update is really present on the page.

The procedure is complicated by the presence of CLRs. To facilitate media-recovery,
undo operations are logged using a CLR, even if they have not actually been performed
because the original operation was not redone in the first place. To allow to determine
whether a CLR needs to be redone during restart or is only necessary for R2 recovery,
CLRs receive an additional field undoneLSN that contains the LSN of the log record
whose undo caused the CLR to be written. Only if a page’s pageLSN lies between the
undoneLSN and the CLR’s LSN, the CLR needs to be redone.

In Natix, we wanted to avoid increasing the log record header by another LSN-sized
field, but we also wanted to benefit from avoidance of redo and undo when possible, without
having to employ page-level locking each time. Although Mohan et al. [69] also describe a
relaxed version of ARIES/RRH that in some situations allows selective redo and undo for
fine-granulartiy locking. However, it requires an additional analysis scan of the log. In the
remainder of the section, we explain our extension of the method used by ARIES/RRH.

7.8.2 Constraint for Correctness of Selective Redo

For selective redo in an ARIES-based recovery environment to work, it is not necessary that
page-level locking is in effect for the affected pages during forward processing. Instead,
it is sufficient that uncommitted updates of at most one transaction are present on affected
dirty pages.

Uncommitted updates of only one transaction per page are enforced by page-level lock-
ing, but may also happen with finer lock granularities. Especially when only a few large
records are on each page, as is the case with Natix XML storage, it is very likely even with
record-level locking that only one transaction has uncommitted updates on a dirty page.

Also note that transaction in this context includes Natix L1 operations, which are
atomic but non-durable subtransactions of the regular transactions. Since such transac-

7.8. SELECTIVE PROCESSING DURING RESTART 207

Previous dirty flag Old updaterLSN New updaterLSN
1 false any

� ����� *� � � ����� � 	 � �
� �

2 true
� �������� � � ����� � 	 � �

� � � ����� *� � � �!� � � 	 � �
� �

3 true � � �
	������� ��	�� � 	 � � ����� *� � � �!� � � 	 � �
� �

4 true �
 � � 	������� ��	�� � 	 � null
5 true null null

Table 7.5: Maintenance of updaterLSN

tions are not undone using the page-level physical inverses, undoing them by not redoing
their page-level actions is not correct.

Since we do not treat L1 operations as explicit transactions with a transactionID,
the remainder of this section can only be applied to segments without L1 operations. The
XML segment is one of them, as are regular slotted page segments.

7.8.3 Selective Processing of Regular Log Records

If there are only updates of one loser transaction on a page, we can skip redo of those
operations on the page that are going to be undone anyway. For log records that are not
compensation log records, the condition that only one loser transaction has updates on
the page is sufficient to avoid redo. How redo of such log records is avoided in Natix is
described below. Later, in Section 7.8.4 we will show how compensation log records are
treated.

To efficiently determine whether one or more than one uncomitted transactions have
updated a dirty page, we add an updaterLSN field to the main-memory page interpreter.
If only one uncommitted transaction has updated the page, the updaterLSN field contains
that transaction’s transactionLSN. Otherwise, the updaterLSN field is null.

We will first describe how the field is maintained during forward operation and analysis,
and then describe its usage during restart recovery.

Maintenance of the updaterLSN field

In case of record-level locking, when transaction � updates a page, its updaterLSN is
maintained as shown in Table 7.5. The first case describes what happens when a clean
page is updated for the first time: Only � has updates on the page. If � updates the page
again, nothing is changed (case 2). If the page only contains updates of one transaction that
already terminated, then � is the only transaction with uncommitted updates on the page
(case 3). If uncommitted updates by one other transaction may be present (case 4), the
updaterLSN is reset. If there are already several transactions with uncommitted updates
(case 5), we leave the updaterLSN field alone. Of course, case 2 takes precedence over
case 4.

In case of page level-locking, we can always set the updaterLSN to� ������*� � � ����� � 	 � �
� � , since all other transactions that accessed the same page must have

208 CHAPTER 7. RECOVERY

terminated.
During checkpoints, the updaterLSN for every page is included in the dirty page

checkpoint log records.
The dirty pages table that is built during the analysis phase contains the updaterLSN

in addition to the redoLSN. UpdaterLSN values of updates before the checkpoint are taken
from the dirty page log records. Updates following the checkpoint cause the updaterLSN
in the dirty page table to be maintained as shown in Table 7.5.

The dirty page table can now be used during restart redo to avoid redo on pages with
only updates of one loser transaction.

Redo Based on updaterLSN

When a page update by a loser transaction � is encountered during redo, the recovery man-
ager operates as usual. It first checks the dirty page table to see if the update is already
contained in the stable version of the page, based on the redoLSN. If the redoLSN indi-
cates that redo may be necessary, the decision whether to actually redo the update is also
based on the page’s updaterLSN from the dirty page table.

� If the updaterLSN is not equal to
� ����� *� � � ����� � 	 � �

� � , the update is redone as
usual.

This guarantees necessary redo on pages with updates of several transactions. It has
to be noted that ”redo as usual” implies checking of the actual pageLSN whether
the update is already present or not.

� If the updaterLSN is equal to
� ����� *� � � �!� � � 	 � �

� � , the update is not redone.

We do not redo the update because the update by loser transaction � would later be
undone anyway.

Selective Processing During Undo

Regular undo processing in ARIES relies on the assumption that history has been repeated
and all updates visible in the log are present in the buffered database state.

With selective processing during redo, this assumption no longer holds. Some records
may not have been redone, and as a result their respective undo operations must not be
performed.

Hence, the undo pass has to be modified to check whether the update described by a
certain log record is present on the page by comparing its LSN to the pageLSN. Only if
the update is present, i.e. the pageLSN is greater or equal to the log record’s LSN, undo
has to be performed. Otherwise, the log record’s operation does not need undo, as it was
not performed during restart redo.

In any case, a compensation log record is written. Although a CLR for an undo op-
eration that has not been performed is not needed during restart recovery, R2 recovery is
simpler when all redo log records for a given page can be redone unconditionally. If R2
recovery redoes all updates, then it also needs to redo all undos. Hence, CLRs must also be
written if the undo was not performed.

7.8. SELECTIVE PROCESSING DURING RESTART 209

7.8.4 Selective Processing of Compensation Log Records

Compensation Log Records need a special treatment during restart redo, as they may need
to be redone even if the page contains only updates of exactly one loser transaction. If
the update undone by the CLR was already written to disk before the crash, then we may
not ignore the CLR, even if it belongs to the transaction with the page’s updaterLSN. On
the other hand, if the original update was not written, and ignored by the redo phase as
described above, then the CLR may not be redone, otherwise the page would get corrupted.

ARIES/RRH uses an undoneLSN field in the log record to determine during redo
whether a CLR’s original update is present or not. We avoid increasing the log record
header by such a field because this would mean to generate significantly more log only to
benefit in a special case of restart recovery.

In the following, we will describe how to use a flag that specifies whether a CLR is only
necessary for R2 recovery or also for restart recovery.

CLRs with Synchroneous Writes

Suppose that during forward processing, we always know for every LSN whether the result
of the associated operation was already written to disk or not. Such information could be
derived from the redoLSN of the affected page because all updates with an LSN smaller
than the redoLSN have been written to disk. We will also suppose that no updates occur
on a page while it is being written to disk, so that all operations with an LSN higher or
equal to the redoLSN definitely have not been written to disk.

In this case, we can already determine during forward processing if a CLR will be
required for R2 recovery only or if it may also have to be redone during restart. During
undo, when writing compensation log records for a log record with LSN

�
, we distinguish

two cases:

� If the page was written after the original operation and before the inverse operation
was applied (redoLSN � �

), then the CLR may be necessary during restart redo to
undo the operation.

In contrast to ARIES/RRH, we do not need to determine during redo whether the
original operation was written to disk or not, as we know already during forward pro-
cessing that it was written. By setting a flag in the CLR header, we instruct the redo
phase to perform ordinary redo processing of this record, even if the updaterLSN
of the page equals the transactionLSN of the CLR. The only thing we have to
check during redo is whether the inverse operation was also already written to disk
before the crash. But this is already part of the ordinary ARIES redo procedure: If
the pageLSN is greater than or equal to the CLR’s LSN, the inverse operation is
already present and nothing has to be done. Otherwise, we redo the CLR.

� If the page was not written between the execution of the original operation and the
undo operation (redoLSN �
 �

), then the CLR is only necessary for R2 recovery.

There will never be an on-disk version of the page that only contains the original
operation and not its inverse. The disk version either contains the effects of both

210 CHAPTER 7. RECOVERY

operations, if the page was written between the undo operation and the crash, or it
contains none of them, if the page was never written after the original update. In both
cases, the CLR will never be needed for restart redo, since it is only necessary when
the original is present on disk, but the inverse operation is not. We can set a flag in the
log record header accordingly, saying that this record only needs to be redone during
R2 recovery. This flag consumes much less space than a full-blown undoneLSN.

The flag may be used to avoid redo of a CLR only if the updaterLSN of the page
is not null. Otherwise, more than one transaction may have CLRs for that page, and
the regular ARIES redo procedure is employed, i.e. the CLR is redone as usual.

A drawback of this method is that certain knowledge about the on-disk state of a page is
required during forward processing. This disallows modification of a page while there is
a flush operation pending for the page. In many cases, this is not a problem, as pages
are latched in shared mode while they are flushed to disk. Hence, updates to pages with
pending flushes are prohibited anyway.

CLRs on Hot Pages

For hot pages that are updated very frequently, however, it is sometimes desirable to hold
the shared latch only for the time necessary to make a memory copy of the page, and then
doing the disk write operation asynchroneously from the memory copy. Normal update
processing can resume while the page is being flushed. Since the flush operation is asyn-
chroneous, it is possible that the redoLSN field does not yet contain the current on-disk
pageLSN, but a previously written version of the page. In this case, it is not possible to
use the redoLSN to determine whether CLRs can be marked media-recovery only.

To avoid having only very stale versions of hot pages on disk, which slows down restart
recovery, they have to be written to disk every now and then to advance their redoLSN
value. The pages’ higher availability for new updates compensates for the cost of making
an extra memory copy instead of writing them directly from the buffer.

One way of retaining selective redo also for hot pages would be to synchronize access to
the redoLSN field, and possibly delaying writing of CLRs until a page write is complete.
This would be complicated to implement and would introduce a dependency from the page
interpreter writing the log records to the buffer manager that synchronizes access to the
buffer. We therefore consider this approach unsuitable.

Natix employs the selective redo technique without undoneLSN field in log records
also on hot pages while avoiding stale disk versions of those pages, as follows.

Instead of copying the pages to another memory location and writing from there, a
redo-only log record with a full page image is created and the page’s redoLSN is set to
that log record’s LSN. This means that the page is ”flushed to the log”, and not to its original
location. Redo only needs to start at the full image redoLSN, as the full image contains
all previous updates.

With this method, the treatment of CLRs remains as described above. Should a full
image log record precede a CLR, the full image’s LSN is used as redoLSN to determine
during forward processing whether the CLR may be necessary for restart redo or only for

7.9. EVALUATION 211

Recovery Method
Collection Format No Recovery Regular Subsidiary

Bioml Clustered Elapsed Time 150.98 186.39 165.7
CPU Time 136.33 148.19 140.63
CPU% 90% 80% 85%
Log Size — 83484 29696

Single Elapsed Time 253.41 675.75 408.38
CPU Time 175.97 545.95 191.71
CPU% 69% 81% 47%
Log Size — 366354 118197

Shakespeare Clustered Elapsed Time 29.12 39.91 33.58
CPU Time 20.31 24.5 21.03
CPU% 70% 61% 63%
Log Size — 28322 9997

Single Elapsed Time 50.26 120.03 66.83
CPU Time 36.14 80.26 41.28
CPU% 72% 67% 62%
Log Size — 125592 40593

Table 7.6: Import Performance With Logging (Times in seconds)

R2 recovery. The ordering of the log records ensures that if the CLR is in the stable log,
the full image is also in the log.

The cost of this method is comparably low, since creating the log record and flushing
it costs a memory copy and a disk write, like the write-from-memory-copy technique de-
scribed above. In the log record case, the disk write may even be faster because log writes
are sequential. The remaining extra cost, namely storing the page at its original location,
only appears when the page is dropped from the buffer, which is by definition rare for a hot
page.

The disadvantage of this solution is that it makes the log a bottleneck for writing of hot
pages – hot pages of different partitions can not be written in parallel. Depending on the
number of hot pages and partitions, this may not always be acceptable.

7.9 Evaluation

We compare the performance of Natix’s recovery subsystem with and without Subsidiary
Logging when importing documents using different storage formats.

7.9.1 Environment

The environment and data used to measure Natix’s performance are identical to those used
to gather results about the storage engine (Section 5.8).

212 CHAPTER 7. RECOVERY

Both the Shakespeare and Bioml document collections were imported. The import
of each document represented a separate transaction. The experiments were performed
using the storage formats introduced in Section 5.8. One storage format clusters nodes into
physical records, while the other stores every node in a single record.

Three configurations of the recovery subsystem were examined. The first is a recaptit-
ulation of the results without recovery from Section 5.8.2. The second uses regular logging
while importing the documents. The third configuration enabled subsidiary logging during
import. The Log Buffer was configured to a capacity of 20 pages.

7.9.2 Results

Table 7.6 presents the required time to perform the import, and the amount of log produced.
We make the following observations. First, the time overhead for logging varies greatly,

between 10% and 150% compared to import with no logging. Second, subsidiary logging
significantly reduces the recovery overhead. It cuts the time spent for recovery by at least
50%. The CPU usage for recovery is 60%-80% lower with subsidiary logging, and log
generation is often reduced by a factor of three. Third, the clustered storage format causes
less recovery overhead, which is easily explained because the single node format needs to
write two log records for every node, one to add the node’s record and one to include it in
the children list of its parent node.

Finally, document import with both of our XML-specific optimizations enabled ourper-
forms document import with regular techniques by a factor of four with respect to elapsed
time, while producing an order of magnitude less log.

Chapter 8

Conclusion

Too many pieces of music finish too long after the end.

–Igor Stravinsky

This work investigates core techniques for XML Base Management Systems (XBMS).
XBMS are database management systems (DBMS) that are designated to process XML
document collections.

After presenting the XML language itself, query languages for XML, and application
programming interfaces to process it in Chapter 2, we analyze the requirements for XBMS
(Chapter 3).

We found that in principle, these requirements do not differ from those for DBMSs for
other kinds of data. However, due to the different data model, new query languages and the
incurred novel access profiles, regular DBMSs are not equipped to play the role of XBMS.
We have seen that simple XML add-on modules are no remedy. The need for special XML
support permeates the complete DBMS architecture.

In Chapter 4, we introduced Natix, a Native XBMS designed from the ground up for
XML processing. We gave an overview of its architecture, and presented some scenarios
and examples for its usage. Since a thorough discussion of all of Natix techniques and
modules is beyond the scope of this work, in the remaining chapters we focussed on the
fundamental modules, the storage engine, schema management, and recovery.

The storage engine is the single most important module in the system (Chapter 5).
In Natix, it provides a general state-of-the-art subsystem for transferring data from and
to persistent storage. It was engineered for extendibility, as the emergent area of XBMS
research will continue to produce novel storage techniques and optimizations, which have
to be incorporated.

On the basis of the extendible general framework, we developed a novel XML storage
format. We store connected subtrees of XML document trees in physical records smaller
than a page and use a very compact representation for subtrees in physical records. Bulk-
load and update algorithms were presented. Performance measurements demonstrated the
superiority of our approach compared with conventional storage organizations for trees,
during updates as well as during query processing.

213

214 CHAPTER 8. CONCLUSION

Chapter 6 was devoted to schema management. Natix allows to group documents into
logical hierarchies, and to specify constraints on the structure of documents within a col-
lection. Distribution of collections onto physical media is controlled by a physical schema
specification. We explain how the logical and physical schemas are implemented using the
storage primitives from Chapter 5.

As a final example how core technologies for XBMS are different from regular DBMS,
we reviewed Natix’s recovery subsystem in Chapter 7. It provides a general recovery frame-
work, which is as easily extendible as the storage engine, requires very little representa-
tion changes and copying of data, and incorporates sophisticated recovery mechanisms for
physical metadata. The physical records used for XML storage can become larger than
records in typical relational or object-oriented DBMS applications, and recovery needs
to take this into account. To this end, we introduced novel techniques. First, there is
Subsidiary Logging, which amortizes logging costs for many small node updates by using
larger log records. Annihilator Undo reduces undo overhead when our XML storage format
is used. Selective Restart increases system availability by speeding up restart. Performance
measurements show again that our techniques dramatically improve performance for XML
processing tasks.

Much remains to be done. There is still a gap between the functionality of a DBMS
for other kinds of data and an XBMS. Although our exposition was limited to the run-time
system, we have left many areas of research for XBMS untouched. We did not elaborate on
index structures and their applications and maintenance. Techniques for object managers
for DOM trees can be optimized, and it is unclear how efficient support of online revali-
dation after small updates can be implemented. Query execution was also omitted. These
areas of the run-time system leave much research issues related to XML, even without
examining query compilation and optimization, which are other large areas.

Bibliography

[1] Serge Abiteboul, Sophie Cluet, and Tova Milo. Querying and updating the file. In Very large
data bases, VLDB ’93: proceedings of the 19th International Conference on Very Large Data
Bases, pages 73–84, Dublin, Ireland, August 1993.

[2] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,
W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade,
and V. Watson. System R: A relational approach to database management. ACM Transactions
on Database Systems, 1(2):97–137, June 1976. Also published in/as: IBM, San Jose, Research
Report. No. RJ-1738, Feb. 1976. Reprinted in [86].

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers (URI): Generic
syntax. Technical Report RFC2396, The Internet Engineering Task Force, August 1999. URI
http://www.ietf.org/rfc/rfc2396.txt.

[4] Alexandros Biliris. An efficient database storage structure for large dynamic objects. In
Proceedings of the International Conference on Data Engineering, pages 301–308, 1992.

[5] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes. Technical report,
World Wide Web Consortium (W3C), May 2001. URI http://www.w3.org/TR/2001/
REC-xmlschema-2-20010502/.

[6] S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu.
XQuery 1.0: An XML query language. Technical report, World Wide Web Consortium, 2002.
W3C Working Draft 30 April 2002.

[7] Klemens B öhm, Karl Aberer, Erich J. Neuhold, and Xiaoya Yang. Structured document stor-
age and refined declarative and navigational access mechanisms in HyperStorM. VLDB Jour-
nal, 6(4):296–311, November 1997.

[8] Jon Bosak. The plays of shakespeare in XML. URI http://www.oasis-open.org/
cover/bosakShakespeare200.html. xml-devmessage, 1999.

[9] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML. Technical re-
port, World Wide Web Consortium (W3C), 1999. URI http://www.w3.org/TR/1999/
REC-xml-names-19990114.

[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible markup language
(xml) 1.0 (second edition). Technical report, World Wide Web Consortium (W3C), 2000. URI
http://www.w3.org/TR/2000/REC-xml-20001006.

215

216 BIBLIOGRAPHY

[11] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search en-
gine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[12] Peter Buneman. Semistructured data. In ACM, editor, PODS ’97. Proceedings of the Six-
teenth ACM SIG-SIGMOD-SIGART Symposium on Principles of Database Systems, May 12–
14, 1997, Tucson, Arizona, pages 117–121, New York, NY 10036, USA, 1997. ACM Press.

[13] Peter Buneman, Susan B. Davidson, and Dan Suciu. Programming constructs for unstructured
data. In Paolo Atzeni and Val Tannen, editors, Database Programming Languages (DBPL-
5), Proceedings of the Fifth International Workshop on Database Programming Languages,
Gubbio, Umbria, Italy, 6-8 September 1995, Electronic Workshops in Computing, page 12.
Springer, 1995.

[14] Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita. Object and
file management in the EXODUS extensible database system. In Proceedings of the 12th
International Conference on Very Large Data Bases, pages 91–100, Los Altos, California,
USA, 1986.

[15] Paolo Casarini and Luca Padovani. The gnome DOM engine. In Aggregated Proceedings for
the Extreme Markup Languages Conferences (2001-2002), 2001.

[16] Don Chamberlin. A Complete guide to DB2. Morgan Kaufmann, San Francisco, 1998.

[17] James Clark. XSL transformations (XSLT) version 1.0. Technical report, World Wide
Web Consortium (W3C), November 1999. URI http://www.w3.org/TR/1999/
REC-xslt-19991116.

[18] James Clark and Steve DeRose. XML path language (XPath) version 1.0. Technical re-
port, World Wide Web Consortium (W3C) Recommendation, 1999. URI http://www.
w3.org/TR/xpath.

[19] data ex machina. NatixFS technology demonstration, 2001.
available at http://www.data-ex-machina.de/download.html.

[20] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with STORED. In
Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data,
pages 431–442, Philadelphia, Pennsylvania, USA, June 1999.

[21] R. Dey, M. Shan, and I. Traiger. Method for dropping data sets. IBM Technical Disclosure
Bulletin, 25(11A):5453–5455, April 1983.

[22] J ürgen Dufner. Design and implementation of a Java-API for Natix. Master’s thesis, University
of Mannheim, Mannheim, Germany, January 2001. (in German).

[23] Wolfgang Effelsberg and Theo Haerder. Principles of database buffer management. ACM
Transactions on Database Systems, 9(4):560–595, December 1984.

[24] André Eickler, Carsten Andreas Gerlhof, and Donald Kossmann. A performance evaluation
of OID mapping techniques. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio,
editors, VLDB ’95: proceedings of the 21st International Conference on Very Large Data
Bases, Zurich, Switzerland, Sept. 11–15, 1995, pages 18–29, Los Altos, CA 94022, USA,
1995. Morgan Kaufmann Publishers.

BIBLIOGRAPHY 217

[25] T. Fiebig and G. Moerkotte. Algebraic XML construction in Natix. In Proceedings of the 2nd
International Conference on Web Information Systems Engineering (WISE’01), pages 212–
221, Kyoto, Japan, December 2001. IEEE Computer Society.

[26] T. Fiebig and G. Moerkotte. Evaluating queries on structure with extended access support
relations. In The World Wide Web and Databases, Third International Workshop WebDB 2000,
Dallas, Texas, USA, Maaay 18-19, 2000, Selected Papers, volume 1997 of Lecture Notes in
Computer Science. Springer, 2001.

[27] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia Neumann, Ro-
bert Schiele, and Till Westmann. Anatomy of a Native XML base management system. VLDB
Journal, page (to appear), 2003.

[28] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hyper-
text transfer protocol – http/1.1. Technical Report RFC2616, The Internet Engineering Task
Force, June 1999. URI http://www.ietf.org/rfc/rfc2616.txt.

[29] Daniela Florescu and Donald Kossmann. Storing and querying xml data using an rdmbs. IEEE
Data Engineering Bulletin, 22(3):27–34, 1999.

[30] Erich Gamma. Design patterns: elements of reusable object-oriented software. Addison-
Wesley professional computing series. Addison-Wesley, Reading, MA, USA, 1995. See book
review [71].

[31] D. Gawlick and D. Kinkade. Varieties of concurrency control in ims/vs fastpath. IEEE Data
Engineering Bulletin, 8(2):3–10, 1985.

[32] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. Http extensions for distributed
authoring – webdav. Technical Report RFC2518, Internet Engineering Task Force, February
1999. URI http://www.ietf.org/rfc/rfc2518.txt.

[33] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73–170, June 1993.

[34] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. Granularity of
locks in a large shared data base. In Douglas S. Kerr, editor, Proceedings of the International
Conference on Very Large Data Bases, Framingham, MA, USA, September 22–24, 1975, pages
428–451, New York, NY 10036, USA, 1975. ACM Press. ACM SIGMOD v. 1, no. 1, Septem-
ber 1975.

[35] Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond Lorie, Tom Price, Franco
Putzolu, and Irving Traiger. Recovery manager of the System R database manager. ACM
Computing Surveys, 13(2):223–242, June 1981.

[36] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco, CA 94104-3205, USA, 2000.

[37] Theo Haerder and Andreas Reuter. Principles of transaction oriented database recovery. ACM
Computing Surveys, 15(4):287–317, December 1983. Also published in/as: Res. R No. 50-82,
April 1982. Reprinted in M. Stonebraker, Readings in Database Systems, Morgan Kaufmann,
San Mateo, CA, 1988.

218 BIBLIOGRAPHY

[38] T. H ärder and E. Rahm. Datenbanksysteme: Konzepte und Techniken der Implementierung.
Springer, 2001.

[39] Elliotte Rusty Harold. Xom. URI http://www.cafeconleche.org/XOM/. Project
Web Site, 2002.

[40] Stefan Haustein and Aleksander Slominski. Common api for xml pull parsing. URI http:
//www.xmlpull.org. Project Web Site, 2002.

[41] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett, and A. Reuter. Group commit timers
and high volume transaction systems. In D. Gawlick, M. Haynie, and A. Reuter, editors,
Proceedings of the 2nd International Workshop on High Performance Transaction Systems,
volume 359 of LNCS, pages 301–328, Berlin, September 1989. Springer.

[42] S. Helmer, C.-C. Kanne, and G. Moerkotte. Isolation in XML bases. Technical Report Nr. 15,
Lehrstuhl f ür Praktische Informatik III, Universit ät Mannheim, 2001.

[43] S. Helmer, C.-C. Kanne, and G. Moerkotte. Optimized translation of XPath expressions
into algebraic expressions parameterized by programs containing navigational primitives. In
Proceedings of the 3nd International Conference on Web Information Systems Engineering
(WISE’02), page (to appear). IEEE Computer Society, 2002.

[44] C. A. R. Hoare. Monitors: An operating system structuring concept. Communications of
the ACM, 17(10):549–557, October 1974. Erratum in Communications of the ACM, Vol. 18,
No. 2 (February), p. 95, 1975. This paper contains one of the first solutions to the Dining
Philosophers problem.

[45] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike
Champion, and Steve Byrne. Document object model (DOM) level 2 core specification. Tech-
nical report, World Wide Web Consortium (W3C), 2000. URI http://www.w3.org/TR/
2000/REC-DOM-Level-2-Core-20001113/.

[46] Jason Hunter and Brett McLaughlin. The jdom project. URI http://www.jdom.org.
Project Web Site, 2002.

[47] Nicolai M. Josuttis. The C++ Standard Library: a tutorial and reference. Addison-Wesley,
Reading, MA, USA, 1999.

[48] Carl-Christian Kanne and Guido Moerkotte. Efficient storage of XML data. Technical Report
Nr. 8, Lehrstuhl f ür praktische Informatik III, Universit ät Mannheim, June 1999.

[49] M. Klettke and H. Meyer. XML and object-relational database systems — enhancing struc-
tural mappings based on statistics. In ACM SIGMOD Workshop on the Web and Databases
(WebDB), 2000.

[50] Henry F. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55–79,
January 1983.

[51] Sukhamay Kundu and Jayadev Misra. A linear tree partitioning algorithm. SIAM J. Comput.,
6(1):151–154, March 1977.

BIBLIOGRAPHY 219

[52] Tobin J. Lehman and Bruce G. Lindsay. The Starburst long field manager. In Proceedings
of the 15th International Conference on Very Large Data Bases, pages 375–383, Amsterdam,
The Netherlands, August 1989.

[53] B. G. Lindsay, C. Mohan, and M. H. Pirahesh. Method for reserving space needed for rollback
actions. IBM Technical Disclosure Bulletin, 29(6):2743–2746, November 1986.

[54] J. A. Lukes. Efficient algorithm for the partitioning of trees. IBM Journal of Research and
Development, 18(3):217–224, May 1974.

[55] Mark L. McAuliffe, Michael J. Carey, and Marvin H. Solomon. Towards effective and efficient
free space management. In Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, pages 389–400, Montreal, Canada, June 1996.

[56] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database manage-
ment system for semistructured data. SIGMOD Record, 26(3), 1997.

[57] David Megginson. SAX: A simple API for XML. Technical report, Megginson Technologies,
2001. URI http://www.saxproject.org/.

[58] Julia Mildenberger. A generic approach for document indexing: Design, implementation, and
evaluation. Master’s thesis, University of Mannheim, Mannheim, Germany, November 2001.
(in German).

[59] Guido Moerkotte. Incorporating XSL processing into database engines. In Proceedings of the
28th VLDB, 2002.

[60] C. Mohan. ARIES/KVL: A key-value locking method for concurrency control of multiaction
transactions operating on B-tree indexes. In Dennis McLeod, Ron Sacks-Davis, and H.-J
Schek, editors, Very large data bases: 16th International Conference on Very Large Data
Bases; August 13–16, 1990, Brisbane, Australia, pages 392–405, Los Altos, CA 94022, USA,
1990. Morgan Kaufmann Publishers.

[61] C. Mohan. ARIES/LHS: A concurrency control and recovery method using write-ahead log-
ging for linear hashing with separators. In Proceedings/Ninth International Conference on
Data Engineering, April 19–23, 1993, Vienna, Austria, page 243, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, April 1993. IEEE Computer Society Press.

[62] C. Mohan. Disk read-write optimizations and data integrity in transaction systems using write-
ahead logging. In Philip S. Yu and Arbee L. P. Chen, editors, Proceedings of the Eleventh
International Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, pages 324–
331. IEEE Computer Society, 1995.

[63] C. Mohan. Commit lsn: A novel and simple method for reducing locking and latching in
transaction processing systems. In Vijay Kumar, editor, Performance of Concurrency Control
Mechanisms in Centralized Database Systems, pages 307–335. Prentice-Hall, 1996.

[64] C. Mohan. Repeating history beyond ARIES. In Malcolm P. Atkinson, Maria E. Orlowska,
Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors, Proceedings of the
Twenty-fifth International Conference on Very Large Databases, Edinburgh, Scotland, UK,
7–10 September, 1999, pages 1–17, Los Altos, CA 94022, USA, 1999. Morgan Kaufmann
Publishers. Also known as VLDB’99.

220 BIBLIOGRAPHY

[65] C. Mohan and D. Haderle. Algorithms for flexible space management in transaction systems
supporting fine-granularity locking. Lecture Notes in Computer Science, 779:131–144, 1994.

[66] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES: A
transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Systems, 17(1):94–162, March 1992.

[67] C. Mohan and Frank Levine. Aries/im: An efficient and high concurrency index management
method using write-ahead logging. In Michael Stonebraker, editor, Proceedings of the 1992
ACM SIGMOD International Conference on Management of Data, San Diego, California,
June 2-5, 1992, pages 371–380. ACM Press, 1992.

[68] C. Mohan and I. Narang. ARIES/CSA: A method for database recovery in client-server archi-
tectures. SIGMOD Record (ACM Special Interest Group on Management of Data), 23(2):55–
66, June 1994.

[69] C. Mohan and Hamid Pirahesh. Aries-rrh: Restricted repeating of history in the aries trans-
action recovery method. In Proceedings of the Seventh International Conference on Data
Engineering, April 8-12, 1991, Kobe, Japan, pages 718–727. IEEE Computer Society, 1991.

[70] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange
across heterogeneous information sources. In Philip S. Yu and Arbee L. P. Chen, editors, Pro-
ceedings of the Eleventh International Conference on Data Engineering, March 6-10, 1995,
Taipei, Taiwan, pages 251–260. IEEE Computer Society, 1995.

[71] George Patapis. Design Patterns, Elements of Reusable Object-Oriented Software by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. C/C++ Users Journal,
13(10):78–??, October 1995. See [30].

[72] Apache XML Project. Xalan C++ version 1.4. URI http://xml.apache.org/
xalan-c/index.html/. Project Web Site, 2002.

[73] Apache XML Project. Xerces C++ parser. URI http://xml.apache.org/xerces-c/
index.html. Project Web Site, 2002.

[74] Apache XML Project. Xerces2 java parser. URI http://xml.apache.org/
xerces2-j/index.html. Project Web Site, 2002.

[75] The Apache HTTP Server Project. The apache http server project. URI http://httpd.
apache.org/. Project Web Site, 2002.

[76] Kurt Rothermel and C. Mohan. ARIES/NT: A recovery method based on write-ahead log-
ging for nested transactions. In P. M. G. (Petrus Maria Gerardus) Apers and Gio Wiederhold,
editors, Very large data bases: proceedings: proceedings of the Fifteenth International Con-
ference on Very Large Data Bases, August 22–25, 1989, Amsterdam, The Netherlands, pages
337–346, Los Altos, CA 94022, USA, 1989. Morgan Kaufmann Publishers.

[77] Robert Schiele. NatiXync: Synchronisation for XML database systems. Master’s thesis,
University of Mannheim, Mannheim, Germany, September 2001. (in German).

[78] Mario Schkolnick. A clustering algorithm for hierarchical structures. ACM Transactions on
Database Systems, 2(1):27–44, May 1977.

BIBLIOGRAPHY 221

[79] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage and re-
trieval of XML documents. In ACM SIGMOD Workshop on the Web and Databases (WebDB),
2000.

[80] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana Manolescu, and
Ralph Busse. Xmark: A benchmark for xml data management. In Proceedings of the 28th
International Conference on Very Large Data Bases, 2002.

[81] Peter M. Schwarz and Alfred Z. Spector. Synchronizing shared abstract types. ACM Transac-
tions on Computer Systems, 2(3):223–250, August 1984.

[82] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, and J.F. Naughton. Relational
databases for querying XML documents: Limitations and opportunities. In Proceedings of
the 25th International Conference on Very Large Data Bases, pages 302–314, Edinburgh,
Scotland, UK, 1999.

[83] Dennis Shasha and Nathan Goodman. Concurrent search structure algorithms. ACM Transac-
tions on Database Systems, 13(1):53–90, March 1988.

[84] Kimbro Staken. XML database API draft. Technical report, The XML:DB Initiative, 2001.
URI http://www.xmldb.org/xapi/xapi-draft.html.

[85] M. Stonebraker. Operating system support for database management. Communications of the
ACM, 24(7):412–418, July 1981. Reprinted in M. Stonebraker, Readings in Database Sys.,
Morgan Kaufmann, San Mateo, CA, 1988.

[86] Michael Stonebraker. Readings in Database Systems. Morgan Kaufmann Publishers, San
Francisco, CA 94104-3205, USA, 1988.

[87] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held. The design and imple-
mentation of INGRES. ACM Transactions on Database Systems, 1(3):189–222, September
1976. Reprinted in [86]. Also published in/as: UCB, Elec. Res. Lab, Memo No. ERL-M577,
Jan. 1976.

[88] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mas-
sachusetts, USA, third edition, 1997.

[89] B. Surjanto, N. Ritter, and H. Loeser. XML content management based on object-relational
database technology. In Proc. 1st Int. Conf. on Web Information Systems Engineering (WISE),
pages 64–73, 2000.

[90] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML schema
part 1: Structures. Technical report, World Wide Web Consortium (W3C), May 2001. URI
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[91] R. van Zwol, P.M.G. Apers, and A.N. Wilschut. Modeling and querying semistructured data
with MOA. In ICDT’99 Workshop on Query Processing for semistructured data, 1999.

[92] Daniel Veillard. The XML C library for gnome. URI http://xmlsoft.org/index.
html. Project Web Site, 2002.

222 BIBLIOGRAPHY

[93] Gerhard Weikum. Principles and realization strategies of multilevel transaction management.
ACM Transactions on Database Systems, 16(1):132–180, March 1991.

[94] Gerhard Weikum and Gottfried Vossen. Transactional information systems : theory, algo-
rithms and the practice of concurrency control and recovery. Morgan Kaufmann Publishers,
San Francisco, CA 94104-3205, USA, 2002.

[95] Gio Wiederhold. File organization for database design. McGraw-Hill computer science se-
ries; McGraw-Hill series in computer organization and architecture; McGraw-Hill series in
supercomputing and artificial intelligence; McGraw-Hill series in artificial intelligence. Mc-
Graw-Hill, New York, NY, USA, 1987.

[96] Tak W. Yan and Jurgen Annevelink. Integrating a structured-text retrieval system with an
object-oriented database system. In Very large data bases, VLDB ’94: proceedings of the 20th
International Conference on Very Large Data Bases, pages 740–749, Santiago, Chile, 1994.

Index

abort log record, 101
ABORT TRANSACTION, 127
abortAllActiveTransactions(), 166,

169, 170
abortTransaction(), 160, 164
accepts, 84
active, 89
active log record, 133
AddDocumentRequest, 27
Additional L0 updates, 199
addLiteralNode(), 67, 69
addPendingAction(), 162
after image, 101
Aggregate node, 56
allocatePage(), 38, 46, 47
Allocation, 38, 46, 187–193
allocation log record, 190
Analysis, 104, 115, 116, 118, 138, 145, 169,

181, 186, 191
Analysis and Checkpointing, 145
Analysis and redo, 181
analyzeLogRecord(), 164, 170
anchorLSN, 124, 132–135, 169
annihilator, 201
annihilatorLSN, 124, 201–203
ARIES, 123
ARIES protocol, 95, 98
atomic, 102
Atomicity, 98
attach(), 37
attribute container, 50

baseID, 52, 54
BEGIN CHECKPOINT, 127
beginBulkload(), 67
beginInternalNode(), 67, 69
beginLSN, 124, 132, 133, 135
beginPID, 132–136
beginTransaction(), 158

binary large object, 55
BLOB, 55
buffer manager, 31, 32, 37, 46, 99, 109, 111,

113–116, 124, 127, 128, 131, 135–
137, 140, 149, 154–156, 166, 170,
171, 187, 190, 191, 195, 196, 210

buffered database, 99
buffered log, 101
BUFFERMGR, 127, 190
bulkload, 65
BulkloadContext, 71

Careful Writes, 136
catalog, 87
character large object, 13
checkpoint, 36, 102, 103, 112, 114–116, 118,

134, 145, 155, 171, 185
checkpoint(), 134, 155, 164, 166
Checkpointing, 185
Checkpointing, Analysis, 107
CLOB, 13
close tag, 3
CLR, 101
clusterChildren(), 70, 71
clusterChildren, 72
clustering algorithm, 66
commit log record, 101, 103
COMMIT TRANSACTION, 127
commitTransaction(), 158, 164
compensation log record, 101
completeUndo(), 164
configuration matrix, 49
contents(), 34
context node, 4
create(), 50, 59
createEmbedded(), 56
createRecord(), 71, 72
createStandalone(), 56
creationLSN, 188, 193

223

224 INDEX

current frame, 137
currentLSN(), 162

Deallocation, 38, 47, 187–193
deallocation log record, 190
Declaration Table, 52
declaration table segment, 88
DeclarationID, 50, 52, 54, 88
declarationTableID, 90
deleteKV(), 144
deleteRecord(), 150
deletionLSN, 179
deletionLSN, 124, 179–181
dest, 131
detach(), 37
Dey, 172
direct I/O, 73
DirectMap segment, 39, 44, 89
dirty flag, 34, 36
dirty page table, 102, 114
document collection, 81, 83, 84
document directory, 87, 89, 89
Document Object Model, 12, 16
document schema, 81, 84
Document Type Definition, 4, 81, 82
DocumentID, 22, 87, 89–91
DocumentID, 50, 89
documentID, 56
documentNID, 90
DTD, 4, 81, 82, 91
Durability, 98
durable, 102

Eager collection, 177
element, 3
END CHECKPOINT, 127
endBulkload(), 67
endInternalNode(), 67, 69, 70, 72
entryType, 89
EvaluateXPathQuery, 29, 30
EvaluateXPathQueryTidy, 30
evict log record, 190
Explicit, 177
extent, 38, 43–46
Extent Table, 44, 44, 173

Facade node, 55

fetch(), 34, 47, 48, 186, 191
Fiebig, 26
find(), 132
findClusterBoundLeft(), 70, 72
findClusterBoundRight(), 70, 72
findProxyFor(), 58
firstsplit, 70
fix counters, 137
fixCount(), 35
fixCount()(), 34
fixed, 34, 137
Florescu, 49
flush(), 34, 156
flushing the log, 101
flushLog(), 131, 136, 154
flushLogComplete(), 131
flushLSN, 124, 131
flushToCurrent(), 139
flushToPID(), 139
format(), 37, 47, 191
format log record, 190
formatted, 37, 46
Forward Processing, 103, 107, 111, 113–118,

142, 155, 178, 185, 190
fragment, 22
FragmentDescriptor, 22
FragmentDescriptor, 29
free, 178
Free Extent Segment, 43, 45, 47, 174, 176
Free Space Inventory, 37, 39, 43, 45, 181, 182
freePages(), 38
fresh flag, 59
freshExtent, 46, 47
frozen, 84, 84
FSI, 39, 43, 45
FSI cache, 48
FSI recovery in classic ARIES, 182
FSI recovery using L1 operations, 182
FSI Segment, 45
fsiBitsFor(), 39, 46
FSIPAGE UPDATE, 127, 190
FullTextIndex, 86

Gamma, 45
getCurrentPage(), 138
getErrStream(), 162
getFrame(), 34, 47, 191

INDEX 225

getNewPage(), 137
getOutStream(), 160
getPageReadOnly(), 138, 139
getSeCB(), 160
Gray, 129, 136
Group commit, 132
group commit, 128, 131
grow(), 46, 174

Haerder, 99
headPosition(), 32
Helmer, 25, 26
hot page, 210
hybrid approaches, 49

in-place, 99
initiateL1(), 142, 144, 163, 199
insertKV(), 144
insertRecord(), 150
insertRecordOnFrame(), 71
Instance, 43, 43
instance, 83
intiateL1(), 142
invalid flag, 35, 37, 47
invalidatePartition(), 34
invalidateUnfix(), 34, 47
isDirty(), 34
isInvalid(), 37, 190
isL0UndoInProgess(), 162
isL1UndoInProgess, 162
isL1UndoInProgress, 144
iterator, 131

Java Native Interface, 23

key, 82
key reference, 82
kind(), 125, 127, 164
Kundu, 67

L0 operations, 100
L1 operation, 105, 106, 111, 127, 131, 141,

168, 174, 176, 199
metadata, 141
segment, 141

L1 operations, 171
L1 subcommit log record, 101, 168, 183, 190,

199

lastLSN, 103
lastsplit, 70, 71
latch, 36
Lazy collection, 177

Explicit, 177
On-the-fly, 177

lifetime, 173, 187, 187, 188, 189, 193
Lindsay, 178
Literal node, 56
Location Path, 4
Location Step, 4
Log, 101
log(), 131
log anchor record, 124, 133, 136
log buffer, 136
Log Buffer Interface, 137
Log Buffer Organization, 137
Log manager, 32
log manager, 124
log partition, 133
log record, 101, 123, 124
Log Sequence Number, 123
log sequence number, 101
Log truncation, 116, 133, 134, 155
log truncation, 134
Logging updates, 150
loggingTransaction, 196, 199
Logical document object model, 49
logLSN(), 149, 152
loser, 104
LSN, 101
LSN, 191
LSN Mapping, 134

main(), 29
markedSpace, 178, 179
markup vocabulary, 4
master partition, 86
Master Segment, 43, 44, 173
McAuliffe, 181, 184
Metadata L1 operation, 141
MIME type, 85
Missing L0 updates, 199
mode of operation, 102, 109
Mohan, 36, 47, 98, 156, 164, 174, 178, 183,

185, 188, 189, 206
monitor, 132

226 INDEX

name(), 32
name, 84, 85
namespaceID, 52
native, 17
nested top actions, 107
nextL1UndoLSN(), 162
nextL1UndoLSN, 124, 163, 164, 168, 169
nextUndoLSN, 108, 112, 114, 116, 117, 124,

126, 131, 132, 142, 144, 163, 166,
168–170, 185, 190, 199–201

NID, 50, 90
Node, 5
node(), 58
Node ID, 50
noforce, 99, 101
notifyCompleteL1(), 142, 144, 163, 200
notifyNewLSN(), 163
notifyNewUndoLSN(), 163

offset(), 58
oldestUndoLSN, 124, 135, 164, 171, 179
On-the-fly, 177
open tag, 3
OpenDocumentRequest, 27
operationKind(), 125, 127
operator*(), 131
operator++(), 132

Page flush notification, 154
page ID, 32
page interpreter, 32, 34, 36, 46, 47, 124, 145
page interpreter class hierarchy, 36, 146
Page Map, 44, 44
PAGE FORMAT, 127, 190
PAGE UPDATE, 127
PageInterpreter, 34
PageInterpreter, 34
PageInterpreterFactory, 35
pageLSN, 103–105, 113, 116, 120, 123, 124,

140, 146, 148, 149, 152, 154, 170,
185, 187–191, 195, 206, 208–210

pageLSN, 102
PageObjectFactory, 46
pageSize(), 32
parameter entities, 82
parent record, 56
parse(), 6

partition, 31, 32, 43, 133, 139
partition number, 32, 43, 172, 173, 187, 188
partition records, 63
PARTITIONMGR, 127, 172
partitionNo(), 32
pending action, 117, 158, 158, 160, 162, 163,

172
pending actions list, 117, 158, 162
PendingAction, 162
physical metadata, 41, 133, 158
Physical Schema, 41, 158
physiological log record, 101
PID, 32, 35, 99, 187
PID, 102
pid(), 34, 37
postcommit(), 162, 172
precommit(), 162, 175, 200, 204
prepareL0Undo(), 164, 166
prepareL1Undo(), 164
prepareLxUndo(), 185
prepareRead(), 37
prepareWrite(), 35, 37, 149, 154, 155,

190, 193
PrevLSN, 124
prevLSN, 105, 124
process(), 21, 29
ProgressMode, 163
property, 85
propertyNID, 90
provideCB(), 54
provideTaCB(), 164, 170
Proxy node, 55, 56
proxyTarget(), 58
pruneCurrentCluster(), 69, 70, 72
Publish-Before-Commit, 195
Publish-Before-Owner-Change, 196
Publish-Before-Savepoint, 195

R0 Recovery, 118
R0 recovery, 100, 100, 101, 102, 105
R1 recovery, 100, 100, 101–103, 105
R2 recovery, 100, 100, 184, 189, 193, 206,

208–211
readAnchor(), 132, 169
readPage(), 32
REC LogRecord, 127

INDEX 227

REC LogRecordActiveTransaction, 127,
164, 170

REC LogRecordBufferChange, 127, 155
REC LogRecordDirtyPages, 127
REC LogRecordFSIUpdate, 127
REC LogRecordMountedPartition, 127
REC LogRecordPageUpdate, 127
REC LogRecordSegmentUpdate, 127
REC LRK BUFFERMGR, 155
REC OPER BUFFERMGR EVICT, 190
REC OPER PAGEFLUSH, 155
RecLSN, 102–104, 124
record IDs, 40
recordedFreeSpace, 47
recordedFreeSpaceInfo(), 37, 46, 190
recordedFreeSpaceInfo, 47
recovery manager, 125
recycleSlot(), 40
Redo Processing, 104, 107, 112, 113, 115,

116, 118, 145, 152, 181, 186, 191
redoLogRecord(), 140, 149, 191
RedoLSN, 124
redoLSN, 104, 113, 124, 141, 146, 148, 149,

152, 155, 156, 170, 189–191, 193,
203–205, 208–210

redundancy-based approaches, 49
Regular L0 undo, 166
regularInsertKV(), 142
releaseRead(), 138
releaseReadInvalidate(), 138
releaseTaCB(), 164, 170
releaseWrite(), 138
remove(), 56
removePendingAction(), 162
replaceWithProxy(), 71
repository, 81, 83, 84
repository catalog, 90
request object, 21
Reserved Space, 176
Reserved Space Collection, 179
reservedSpaceTable, 178, 179
restart(), 166, 169
Restart Redo Processing, 170
result set, 4
retrieveSlot(), 40
RID, 40

rollback(), 163, 196
rollbackTransaction(), 160
root document, 90
rootNode(), 58

savepoint(), 162, 200
savepointLSN, 160
saveTransaction(), 160
Scaffolding node, 55
schema, 22
schemaID, 90, 91
Schiele, 25
Schkolnick, 66
Schmidt, 73, 75, 76
segment, 31, 34, 37, 43, 46
segment descriptor, 44
Segment Growth, 173
Segment growth, 46
Segment L1 operation, 141
SEGMENT UPDATE, 127
SegmentID, 44
SegmentID, 89, 90
segmentID, 89, 127
semantically split, 55
semi-structured data, 3
separator, 61
single node, 15
singleton, 21
size(), 32
skipToLSN(), 132
Slot, 56
slot number, 39
slots, 39
Slotted Page, 56
Slotted Page Segment, 40, 47
Slotted Pages, 40
Space Reservation, 176
split matrix, 64
split target, 63
split tolerance, 63
SplitMatrixElement, 86
stable database, 99
stable log, 101
standaloneDocumentID(), 58
standaloneParent(), 58
startLogRecord(), 131
startSubcommitLogRecord(), 131

228 INDEX

steal, 99, 100
Stonebraker, 32
StorageLayout, 148
subcommit(), 162, 200
subcommit log record, 106
subsidiary log, 194
Subsidiary log effectiveness, 200
Subsidiary Logging, 59
Subsidiary-Undo, 196
synchronizeWrites(), 32
System Restart, 120, 169
system transaction, 117, 157, 166, 171
systemRedoLSN, 124, 134, 135, 155, 170

tablespace, 86
TaCB, 117
tag name, 3
testAndSet(), 46
TID concept, 40, 41, 44
TID Slotted Page Segment, 41, 44
touch(), 34
transaction control block, 112, 117, 117, 118,

124, 131, 132, 144, 145, 157, 158,
160, 162–164, 166, 168, 170, 175,
176, 185, 195–197, 200, 201, 204,
205

transaction manager, 124
Transaction Undo, 120, 166
transactionID, 125, 160, 162, 199, 201,

207
transactionLSN, 124, 125, 132, 162–164,

170, 171, 178–180, 209
TRANSACTIONMGR, 127, 164
transformTree(), 27
transientFrame(), 34
transientFree(), 34
TreeNodeHandle, 50, 50
truncateLog(), 171

Undo Processing, 105, 107, 112, 114–116, 118,
142, 152, 172, 181, 185, 192

Undo processing
Restart, 170

undoLogRecord(), 140, 142, 149, 152
undoLSN, 124, 131, 132, 162–164, 166, 168–

170, 185, 200, 201
undoneLSN, 206, 209, 210

UndoNxtLSN, 103–107, 123, 124
undoTransaction(), 166
unfix(), 34, 35, 41, 46, 47, 185, 186
unfixed, 34, 137
unique(), 40
unique value, 40
unused, 178
update log record, 101
updaterLSN, 207–210
updateSlot(), 40

valid, 81
valid, 85
validity, 90
validOnly, 84, 84
view, 21, 22
view manager, 22

WAL, 103
weight of a subtree, 67
Weikum, 107
well-formed, 85
withundo, 131
Write-Ahead-Logging, 103, 128, 195
writeAnchor(), 132
writePage(), 32
writePages(), 32, 139

XBMS, 9
XML Base Management System, 1, 9
XML page interpreter, 56
XML Schema, 82
XML Segment, 48–72, 87–89
XPath, 4, 4, 5, 7, 8, 10, 12, 14–16, 26, 29, 65,

76, 87
XPathIndex, 86
XQuery, 5, 10, 12, 26
XSL transformations, 12
XSLT, 12

Statler: I guess all’s well that ends well.
Waldorf: I don’t care, as long as it ends.

–

