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Abstract
We consider monotone inclusions defined on a Hilbert space where the operator is 
given by the sum of a maximal monotone operator T and a single-valued mono-
tone, Lipschitz continuous, and expectation-valued operator V. We draw motivation 
from the seminal work by Attouch and Cabot (Attouch in AMO 80:547–598, 2019, 
Attouch in MP 184: 243–287) on relaxed inertial methods for monotone inclusions 
and present a stochastic extension of the relaxed inertial forward–backward-for-
ward method. Facilitated by an online variance reduction strategy via a mini-batch 
approach, we show that our method produces a sequence that weakly converges to 
the solution set. Moreover, it is possible to estimate the rate at which the discrete 
velocity of the stochastic process vanishes. Under strong monotonicity, we demon-
strate strong convergence, and give a detailed assessment of the iteration and oracle 
complexity of the scheme. When the mini-batch is raised at a geometric (polyno-
mial) rate, the rate statement can be strengthened to a linear (suitable polynomial) 
rate while the oracle complexity of computing an �-solution improves to O(1∕�) . 
Importantly, the latter claim allows for possibly biased oracles, a key theoretical 
advancement allowing for far broader applicability. By defining a restricted gap 
function based on the Fitzpatrick function, we prove that the expected gap of an 
averaged sequence diminishes at a sublinear rate of O(1∕k) while the oracle com-
plexity of computing a suitably defined �-solution is O(1∕�1+a) where a > 1 . Numer-
ical results on two-stage games and an overlapping group Lasso problem illustrate 
the advantages of our method compared to competitors.
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1 Introduction

1.1  Problem formulation and motivation

A wide range of problems in areas such as optimization, variational inequalities, 
game theory, signal processing, or traffic theory, can be reduced to solving inclu-
sions involving set-valued operators in a Hilbert space � , i.e. to find a point x ∈ � 
such that 0 ∈ F(x) , where F ∶ 𝖧 → 2𝖧 is a set-valued operator. In many applications 
such inclusion problems display specific structure revealing that the operator F can 
be additively decomposed. This leads us to the main problem we consider in this 
paper.

Problem 1 Let � be a real separable Hilbert space with inner product ⟨⋅, ⋅⟩ and asso-
ciated norm ‖⋅‖ =

√⟨⋅, ⋅⟩ . Let T ∶ 𝖧 → 2𝖧 and V ∶ 𝖧 → 𝖧 be maximally monotone 
operators, such that V is L-Lipschitz continuous. The problem is to

We assume that Problem 1 is well-posed:

Assumption 1 � ≜ ���(F) ≠ ∅.

We are interested in the case where (MI) is solved by an iterative algorithm based 
on a stochastic oracle (SO) representation of the operator V. Specifically, when 
solving the problem, the algorithm calls to the SO. At each call, the SO receives as 
input a search point x ∈ � generated by the algorithm on the basis of past informa-
tion so far, and returns the output V̂(x, 𝜉) , where � is a random variable defined on 
some given probability space (Ω,F,ℙ) , taking values in a measurable set Ξ with 
law � = ℙ◦�−1 . In most parts of this paper, and the vast majority of contributions on 
stochastic variational problems in general, it is assumed that the output of the SO is 
unbiased,

Such stochastic inclusion problems arise in numerous problems of fundamental 
importance in mathematical optimization and equilibrium problems, either directly 
or through an appropriate reformulation. An excellent survey on the existing tech-
niques for solving problem (MI) can be found in [3] (in general Hilbert spaces) and 
[4] (in the finite-dimensional case).

1.2  Motivating examples

In what follows, we provide some motivating examples.

(MI)find x ∈ � such that 0 ∈ F(x) ≜ V(x) + T(x),

(1)V(x) = �
𝜉
[V̂(x, 𝜉)] = ∫Ξ

V̂(x, z) d�(z) ∀x ∈ �.
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Example 1 (Stochastic Convex Optimization) Let �1,�2 be separable Hilbert spaces. 
A large class of stochastic optimization problems, with wide range of applications in 
signal processing, machine learning and control, is given by

where h ∶ 𝖧1 → ℝ is a convex differentiable function with a Lipschitz con-
tinuous gradient ∇h , represented as h(u) = �

𝜉
[ĥ(u, 𝜉)] . f ∶ 𝖧1 → (−∞,∞] and 

g ∶ 𝖧2 → (−∞,∞] are proper, convex lower semi-continuous functions, and 
L ∶ 𝖧1 → 𝖧2 is a bounded linear operator. Problem (2) gains particular relevance in 
machine learning, where usually h(u) is a convex data fidelity term (e.g. a popula-
tion risk functional), and g(Lu) and f(u) embody penalty or regularization terms; see 
e.g. total variation [5], hierarchical variable selection [6, 7], and graph regulariza-
tion [8, 9]. Applications in control and engineering are given in [10, 11]. We refer 
to (2) as the primal problem. Using Fenchel-Rockafellar duality [3, ch.19], the dual 
problem of (2) is given by

where g∗ is the Fenchel conjugate of g and 
(f + h)∗(w) = f ∗◻h∗(w) = infu∈�1

{f ∗(u) + h∗(w − u)} represents the infimal convo-
lution of the functions f and h. Combining the primal problem (2) with its dual (3), 
we obtain the saddle-point problem

Following classical Karush-Kuhn-Tucker theory [12], the primal-dual optimality 
conditions associated with (4) are concisely represented by the following monotone 
inclusion: Find x̄ = (ū, v̄) ∈ �1 × �2 ≡ � such that

We may compactly summarize these conditions in terms of the zero-finding problem 
(MI) using the operators V and T, defined as

Note that the operator V ∶ 𝖧 → 𝖧 is the sum of a maximally monotone and a skew-
symmetric operator. Hence, in general, it is not cocoercive. Conditions on the data 
guaranteeing Assumption 1 are stated in [13].

Since h(u) is represented as an expected value, we need to appeal to simula-
tion based methods to evaluate its gradient. Also, significant computational speed-
ups can be made if we are able to sample the skew-symmetric linear operator 
(u, v) ↦ (L∗u,−Lu) in an efficient way. Hence, we assume that there exists a SO that 
can provide unbiased estimator to the gradient operators ∇h(u) and (L∗v,−Lu) . More 
specifically, given the current position x = (u, v) ∈ �1 × �2 , the oracle will output 
the random estimators Ĥ(u, 𝜉), L̂u(u, 𝜉), L̂v(v, 𝜉) such that

(2)min
u∈�1

{f (u) + h(u) + g(Lu)}

(3)min
v∈�2

{(f + h)∗(−L∗v) + g∗(v)},

(4)inf
u∈�1

sup
v∈�2

{f (u) + h(u) − g∗(v) + ⟨Lu, v⟩}.

(5)−L∗v̄ ∈ 𝜕f (ū) + ∇h(ū), and Lū ∈ 𝜕g∗(v̄).

V(u, v) ≜ (∇h(u) + L∗v,−Lu) and T(u, v) ≜ �f (u) × �g∗(v).
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This oracle feedback generates the random operator 
V̂(x, 𝜉) = (Ĥ(u, 𝜉) + L̂v(v, 𝜉),−L̂u(u, 𝜉)) , which allows us to approach the saddle-
point problem (4) via simulation-based techniques.

Example 2 (Stochastic variational inequality problems) There are a multitude of 
examples of monotone inclusion problems (MI) where the single-valued map V is 
not the gradient of a convex function. An important model class where this is the 
case is the stochastic variational inequality (SVI) problem. Due to their huge num-
ber of applications, SVI’s received enormous interest over the last several years from 
various communities [14–17]. This problem emerges when V(x) is represented as 
an expected value as in (1) and T(x) = �g(x) for some proper lower semi-continuous 
function g ∶ 𝖧 → (−∞,∞] . In this case, the resulting structured monotone inclusion 
problem can be equivalently stated as

An important and frequently studied special case of (6) arises if g is the indicator 
function of a given closed and convex subset � ⊂ � . In this cases the set-valued 
operator T becomes the normal cone map

This formulation includes many fundamental problems including fixed point prob-
lems, Nash equilibrium problems and complementarity problems [4]. Consequently, 
the equilibrium condition (6) reduces to

1.3  Contributions

Despite the advances in stochastic optimization and variational inequalities, the 
algorithmic treatment of general monotone inclusion problems under stochastic 
uncertainty is a largely unexplored field. This is rather surprising given the vast 
amount of applications of maximally monotone inclusions in control and engi-
neering, encompassing distributed computation of generalized Nash equilibria 
[18–20], traffic systems [21–23], and PDE-constrained optimization [24]. The first 
major aim of this manuscript is to introduce and investigate a relaxed inertial sto-
chastic forward-backward-forward (RISFBF) method, building on an operator split-
ting scheme originally due to Paul Tseng [25]. RISFBF produces three sequences 
{(Xk,Yk,Zk);k ∈ ℕ} , defined as

�
𝜉
[Ĥ(u, 𝜉)] = ∇h(u), �

𝜉
[L̂u(u, 𝜉)] = Lu, and �

𝜉
[L̂v(v, 𝜉)] = L∗v.

(6)find x̄ ∈ � s.t. ⟨V(x̄), x − x̄⟩ + g(x) − g(x̄) ≥ 0 ∀x ∈ �.

(7)T(x) = ��(x) ≜
��

p ∈ �� supy∈� ⟨y − x, p⟩ ≤ 0
�
if x ∈ �,

∅ else.

find x̄ ∈ � s.t. ⟨V(x̄), x − x̄⟩ ≥ 0 ∀x ∈ �.



469

1 3

Stochastic relaxed inertial forward‑backward‑forward…

The data involved in this scheme are explained as follows:

• Ak(Zk) and Bk(Yk) are random estimators of V obtained by consulting the SO at 
search points Zk and Yk , respectively;

• (�k)k∈ℕ is a sequence of non-negative numbers regulating the memory, or inertia 
of the method;

• (�k)k∈ℕ is a positive sequence of step-sizes;
• (�k)k∈ℕ is a non-negative relaxation sequence.

If �k = 0 and �k = 1 the above scheme reduces to the stochastic forward-backward-
forward method developed in [26, 27], with important applications in Gaussian 
communication networks [16] and dynamic user equilibrium problems [28]. How-
ever, even more connections to existing methods can be made.

Stochastic Extragradient If T = {0} , we obtain the inertial extragradient method

If �k = 0 , this reduces to a generalized extragradient method

recently introduced in [29].
Proximal Point Method If V = 0 , the method reduces to the well-known deter-

ministic proximal point algorithm [2], overlaid by inertial and relaxation effects. The 
scheme reads explicitly as

The list of our contributions reads as follows: 

 (i) Wide Applicability A key argument in favor of Tseng’s operator splitting 
method is that it is provably convergent when solving structured monotone 
inclusions of the type (MI), without imposing cocoercivity of the single-valued 
part V. This is a remarkable advantage relative to the perhaps more familiar 
and direct forward-backward splitting methods (aka projected (stochastic) gra-
dient descent in the potential case). In particular, our scheme is applicable to 
the primal-dual splitting described in Example 1.

(RISFBF)

Zk = Xk + �k(Xk − Xk−1),

Yk = J
�kT

(Zk − �kAk(Zk)),

Xk+1 = (1 − �k)Zk + �k[Yk + �k(Ak(Zk) − Bk(Yk))].

Zk = Xk + �k(Xk − Xk−1),

Yk = Zk − �kAk(Zk),

Xk+1 = Zk − �k�kBk(Yk).

Yk = Xk − �kAk(Xk),

Xk+1 = Xk − �k�kBk(Yk),

Zk = Xk + �k(Xk − Xk−1),

Xk+1 = (1 − �k)Zk + �kJ�kT (Zk).
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 (ii) Asymptotic guarantees We show that under suitable assumptions on the relaxa-
tion sequence (�k)k∈ℕ , the non-decreasing inertial sequence (�k)k∈ℕ , and step-
length sequence (�k)k∈ℕ , the generated stochastic process (Xk)k∈ℕ weakly 
almost surely converges to a random variable with values in � . Assuming 
demiregularity of the operators yields strong convergence in the real (possibly 
infinite-dimensional) Hilbert space.

 (iii) Non-asymptotic linear rate under strong monotonicity of V When V is strongly 
monotone, strong convergence of the last iterate is shown and the sequence 
admits a non-asymptotic linear rate of convergence without a conditional 
unbiasedness of the SO. In particular, we show that the iteration and oracle 
complexity of computing an �-solution is no worse than O(log(

1

�
)) and O(

1

�
) , 

respectively.
 (iv) Non-asymptotic sublinear rate under monotonicity of V When V is monotone, 

by leveraging the Fitzpatrick function [3, 30, 31] associated with the structured 
operator F = T + V  , we propose a restricted gap function. We then prove that 
the expected gap of an averaged sequence diminishes at the rate of O(

1

k
) . This 

allows us to derive an O(
1

�
) upper bound on the iteration complexity, and an 

O(
1

�2+�
) upper bound (for 𝛿 > 0) on the oracle complexity for computing an �

-solution.

The above listed contributions shed new light on a set of open questions, which we 
summarize below: 

 (i) Absence of rigorous asymptotics So far no aymptotic convergence guarantees 
have been available when considering relaxed inertial FBF schemes when T is 
maximally monotone and V is a single-valued monotone expectation-valued 
map.

 (ii) Unavailability of rate statements We are not aware of any known non-asymp-
totic rate guarantees for algorithms solving (MI) under stochastic uncertainty. 
A key barrier in monotone and stochastic regimes in developing such state-
ments has been in the availability of a residual function. Some recent progress 
in the special stochastic variational inequality case has been made by [26, 32, 
33], but the general Hilbert-space setting involving set-valued operators seems 
to be largely unexplored (we will say more in Sect. 1.4).

 (iii) Bias requirements A standard assumption in stochastic optimization is that 
the SO generates signals which are unbiased estimators of the deterministic 
operator V(x). Of course, the requirement that the noise process is unbiased 
may often fail to hold in practice. In the present Hilbert space setting this is in 
some sense even expected to be the rule rather than the exception, since most 
operators are derived from complicated dynamical systems or the optimiza-
tion method is applied to discretized formulations of the original problem. 
See the recent work [34, 35] for an interesting illustration in the context of 
PDE-constrained optimization. Some of our results go beyond the standard 
unbiasedness assumption.
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1.4  Related research

Understanding the role of inertial and relaxation effects in numerical schemes is a 
line of research which received enormous interest over the last two decades. Below, 
we try to give a brief overview about related algorithms.

Inertial, Relaxation, and Proximal schemes
In the context of convex optimization, Polyak [36] introduced the Heavy-ball 

method. This is a two-step method for minimizing a smooth convex function f. The 
algorithm reads as

The difference from the gradient method is that the base point of the gradient 
descent step is taken to be the extrapolated point Zk , instead of Xk . This small dif-
ference has the surprising consequence that (HB) attains optimal complexity guar-
antees for strongly convex functions with Lipschitz continuous gradients. Hence, 
(HB) resembles an optimal method [37]. The acceleration effects can be explained 
by writing the process entirely in terms of a single updating equation as

Choosing �k = 1 − ak�k and �k = �k�
2
k
 for �k a small parameter, we arrive at

This can be seen as a discrete-time approximation of the second-order dynamical 
system

introduced by [38]. Since then, it has received significant attention in the potential, 
as well as in the non-potential case (see e.g [39–41] for an appetizer). As pointed out 
in [42], if �(t) = 1 , the above system reduces to a continuous version of Nesterov’s 
fast gradient method [43]. Recently, [44] defined a stochastic version of the Heavy-
ball method.

Motivated by the development of such fast methods for convex optimization, 
Attouch and Cabot [1] studied a relaxed-inertial forward-backward algorithm, read-
ing as

(HB)
{

Zk = Xk + �k(Xk − Xk−1),

Xk+1 = Zk − �k∇f (Xk)

Xk+1 − 2Xk − Xk−1 + (1 − �k)(Xk − Xk−1) + �k∇f (Xk) = 0.

1

�
2
k

(Xk+1 − 2Xk − Xk−1) +
ak

�k

(Xk − Xk−1) + �k∇f (Xk) = 0.

ẍ(t) +
a

t
ẋ(t) + 𝛾(t)∇f (x(t)) = 0,

(RIFB)

⎧⎪⎨⎪⎩

Zk = Xk + �k(Xk − Xk−1),

Yk = J
�kT

(Zk − �kV(Zk))

Xk+1 = (1 − �k)Zk + �kYk.
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If V = 0 , this reduces to a relaxed inertial proximal point method analyzed by 
Attouch and Cabot [2]. If �k = 1 , an inertial forward-backward splitting method is 
recovered, first studied by Lorenz and Pock [45].

Convergence guarantees for the forward-backward splitting rely on the cocoer-
civity (inverse strong monotonicity) of the single-valued operator V. Example 1, in 
which V is given by a monotone plus a skew-symmetric linear operator, illustrates 
an important instance for which this assumption is not satisfied (see [46] for fur-
ther examples). A general-purpose operator splitting framework, relaxing the coco-
ercivity property, is the forward-backward-forward (FBF) method due to Tseng [25]. 
Inertial [47] and relaxed-inertial [48] versions of FBF have been developed. An all-
encompassing numerical scheme can be compactly described as

Weak and strong convergence under appropriate conditions on the involved oper-
ators and parameter sequences are established in [48], but no rate statements are 
given.

Related work on stochastic approximation Efforts in extending stochastic approx-
imation methods to variational inequality problems have considered standard projec-
tion schemes [14] for Lipschitz and strongly monotone operators. Extragradient and 
(more generally) mirror-prox algorithms [49, 50] can contend with merely mono-
tone operators, while iterative smoothing [51] schemes can cope with with the lack 
of Lipschitz continuity. It is worth noting that extragradient schemes have recently 
assumed relevance in the training of generative adversarial networks (GANS) [52, 
53]. Rate analysis for stochastic extragradient (SEG) have led to optimal rates for 
Lipschitz and monotone operators [50], as well as extensions to non-Lipschitzian 
[51] and pseudomonotone settings [32, 54]. To alleviate the computational com-
plexity single-projection schemes, such as the stochastic forward-backward-forward 
(SFBF) method [26, 27], as well as subgradient-extragradient and projected reflected 
algorithms [55] have been studied as well.

SFBF has been shown to be nearly optimal in terms of iteration and oracle com-
plexity, displaying significant empirical improvements compared to SEG. While the 
role of inertia in optimization is well documented, in stochastic splitting problems, 
the only contribution we are aware of is the work by Rosasco et  al. [56]. In that 
paper asymptotic guarantees for an inertial stochastic forward-backward (SFB) algo-
rithm are presented under the hypothesis that the operators V and T are maximally 
monotone and the single-valued operator V is cocoercive.

Variance reduction approaches Variance-reduction schemes address the deterio-
ration in convergence rate and the resulting poorer practical behavior via two com-
monly adopted avenues: 

 (i) If the single-valued part V appears as a finite-sum (see e.g. [52, 57]), variance-
reduction ideas from machine learning [58] can be used.

(RIFBF)

⎧
⎪⎨⎪⎩

Zk = Xk + �k(Xk − Xk−1),

Yk = J
�kT

(Zk − �kV(Zk)),

Xk+1 = (1 − �k)Zk + �k[Yk − �k(V(Yk) − V(Zk))].



473

1 3

Stochastic relaxed inertial forward‑backward‑forward…

 (ii) Mini-batch schemes that employ an increasing batch-size of gradients [59] 
lead to deterministic rates of convergence for stochastic strongly convex [60], 
convex [61], and nonconvex optimization [62], as well as for pseudo-monotone 
SVIs via extragradient [32], and splitting schemes [26].

In terms of run-time, improvements in iteration complexities achieved by mini-batch 
approaches are significant; e.g. in strongly monotone regimes, the iteration complex-
ity improves from O(

1

�
) to O(ln(

1

�
)) [27, 55]. Beyond run-time advantages, such ave-

nues provide asymptotic and rate guarantees under possibly weaker assumptions on 
the problem as well as the oracle; in particular, mini-batch schemes allow for possi-
bly biased oracles and state-dependency of the noise [55]. Concerns about the sam-
pling burdens are, in our opinion, often overstated since such schemes are meant to 
provide �-solutions; e.g. if � = 10−3 and the obtained rate is O(1∕k) , then the batch-
size mk = ⌊ka⌋ where a > 1 , implying that the batch-sizes are O(103a) , a relatively 
modest requirement, given the advances in computing.

Outline The remainder of the paper is organized in five sections. After dispens-
ing with the preliminaries in Sect. 2, we present the (RISFBF) scheme in Sect. 3. 
Asymptotic and rate statements are developed in Sect. 4 and preliminary numerics 
are presented in Sect. 5. We conclude with some brief remarks in Sect. 6. Technical 
results are collected in Appendix 1.

2  Preliminaries

Throughout, � is a real separable Hilbert space with scalar product ⟨⋅, ⋅⟩ , norm 
‖⋅‖ , and Borel �-algebra B . The symbols → and ⇀ denote strong and weak con-
vergence, respectively. Id ∶ 𝖧 → 𝖧 denotes the identity operator on � . Stochastic 
uncertainty is modeled on a complete probability space (Ω,F,ℙ) , endowed with 
a filtration 𝔽 = (Fk)k∈ℕ0

 . By means of the Kolmogorov extension theorem, we 
assume that (Ω,F,ℙ) is large enough so that all random variables we work with 
are defined on this space. A �-valued random variable is a measurable function 
X ∶ (Ω,F) → (𝖧,B) . Let G ⊂ F  be a given sub-sigma algebra. The conditional 
expecation of the random variable X is denoted by �(X|G) . If A ⊂ G ⊂ F  , the tower-
property says that

We denote by �0(� ) the set of sequences of real-valued random variables (�k)k∈ℕ 
such that, for every k ∈ ℕ , �k is Fk-measurable. For p ∈ [1,∞] , we set

We denote the set of summable non-negative sequences by �1
+
(ℕ).

We now collect some concepts from monotone operator theory. For more details, we 
refer the reader to [3]. Let F ∶ 𝖧 → 2𝖧 be a set-valued operator. Its domain and graph 

�[�(X|G)|A] = �[�(X|A)|G] = �(X|A).

�
p(𝔽 ) ≜

{
(𝜉k)k∈ℕ ∈ �

0(𝔽 )|∑
k≥1

||𝜉k||p < ∞ ℙ-a.s.

}
.
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are defined as domF ≜ {x ∈ �|F(x) ≠ ∅}, and gr (F) ≜ {(x, u) ∈ � × �|u ∈ F(x)}, 
respectively. A single-valued operator C ∶ 𝖧 → 𝖧 is cocoercive if there exists 𝛽 > 0 
such that ⟨C(x) − C(y), x − y⟩ ≥ �‖C(x) − C(y)‖2 . A set-valued operator F ∶ 𝖧 → 2𝖧 
is called monotone if

The set of zeros of F, denoted by ���(T) , defined as ���(F) ≜ {x ∈ �|0 ∈ T(x)} . 
The inverse of F is F−1 ∶ 𝖧 → 2𝖧, u ↦ F−1(u) = {x ∈ 𝖧|u ∈ F(x)} . The resolvent 
of F is JF ≜ ( Id + F)−1. If F is maximally monotone, then JF is a single-valued 
map. We also need the classical notion of demiregularity of an operator.

Definition 1 An operator F ∶ 𝖧 → 2𝖧 is demiregular at x ∈ dom (F) if for every 
sequence {(yn, un)}n∈ℕ ⊂ gr (F) and every u ∈ F(y) , we have

The notion of demiregularity captures various properties typically used to estab-
lish strong convergence of dynamical systems. [10] exhibits a large class of possibly 
set-valued operators F which are demiregular. In particular, demiregularity holds if 
F is uniformly or strongly monotone, or when F is the subdifferential of a uniformly 
convex lower semi-continuous function f. We often use the Young inequality

3  Algorithm

Our aim is to solve the monotone inclusion problem (MI) under the following 
assumption:

Assumption 2 Consider Problem  1. The set-valued operator T ∶ 𝖧 → 2𝖧 is maxi-
mally monotone with an efficiently computable resolvent. The single-valued opera-
tor V ∶ 𝖧 → 𝖧 is maximally monotone and L-Lipschitz continuous ( L > 0) with full 
domain domV = �.

Assumption 2 guarantees that the operator F = T + V  is maximally monotone [3, 
Corolllary 24.4].

For numerical tractability, we make a finite-dimensional noise assumption, com-
mon to stochastic optimization problems in (possibly infinite-dimensional) Hilbert 
spaces [63].1

(8)⟨v − w, x − y⟩ ≥ 0 ∀(x, v), (y,w) ∈ gr (F).

[yn ⇀ y, vn → v] ⇒ yn → y.

(9)ab ≤ a2

2�
+

�b2

2
(a, b ∈ ℝ).

1 Our analysis does not rely on this assumption. It is made here only for concreteness and because it is 
the most prevalent one in applications.
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Assumption 3 (Finite-dimensional noise) All randomness can be described via a 
finite dimensional random variable � ∶ (Ω,F) → (Ξ, E) , where Ξ ⊆ ℝ

d is a measur-
able set with Borel sigma algebra E . The law of the random variable � is denoted by 
� , i.e. �(Γ) ≜ ℙ({� ∈ Ω|�(�) ∈ Γ}) for all Γ ∈ E.

To access new information about the values of the operator V(x), we adopt a sto-
chastic approximation (SA) approach where samples are accessed iteratively and 
online: At each iteration, we assume to have access to a stochastic oracle (SO) which 
generates some estimate on the value of the deterministic operator V(x) when the 
current position is x. This information is obtained by drawing an iid sample form the 
law � . These fresh samples are then used in the numerical algorithm after an initial 
extrapolation step delivering the point Zk = Xk + �k(Xk − Xk−1) , for some extrapola-
tion coefficient �k ∈ [0, 1] . Departing from Zk , we call the SO to retrieve the mini-
batch estimator with sample rate mk ∈ ℕ:

�
k
≜ (�

(1)

k
,… , �

(m
k
)

k
) is the data sample employed by the SO to return the estimator 

Ak(Zk) . Subsequently we perform a forward-backward update with step size 𝜆k > 0:

In the final updates, a second independent call of the SO is made, using the data set 
�k = (�

(1)

k
,… , �

(mk)

k
) , yielding the estimator

and the new state

This iterative procedure generates a stochastic process {(Zk, Yk,Xk)}k∈ℕ , defining the 
relaxed inertial stochastic forward-backward-forward (RISFBF) scheme. A pseu-
docode is given as Algorithm 1 below.

(10)Ak(Zk,𝜔) ≜ 1

mk

mk∑
t=1

V̂(Zk, 𝜉
(t)

k
(𝜔)).

(11)Yk = J
�kT

(
Zk − �kAk(Zk)

)
.

(12)Bk(Yk,𝜔) ≜ 1

mk

mk∑
t=1

V̂(Yk, 𝜂
(t)

k
(𝜔)),

(13)Xk+1 = (1 − �k)Zk + �k

[
Yk + �k(Ak(Zk) − Bk(Yk))

]
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Note that RISFBF is still conceptual since we have not explained how the 
sequences (�k)k∈ℕ, (�k)k∈ℕ and (�k)k∈ℕ should be chosen. We will make this precise 
in our complexity analysis, starting in Sect. 4.

3.1  Equivalent form of RISFBF

We can collect the sequential updates of RISFBF as the fixed-point iteration

where Φk,� ∶ 𝖧 × Ω → 𝖧 is the time-varying map given by

Formulating the algorithm in this specific way establishes the connection between 
RISFBF and the heavy-ball system. Indeed, combining the iterations in (15) in one, 
we get a second-order difference equations, closely resembling the structure present 
in (HB):

Also, it reveals the Markovian nature of the process (Xk)k∈ℕ ; It is clear from the for-
mulation (15) that Xk is Markov with respect to the sigma-algebra �({X0,… ,Xk−1}).

(14)X̄k =

K�
k=1

𝜌kYk∑K

k=1
𝜌k

(15)
{

Zk = Xk + �k(Xk − Xk−1),

Xk+1 = Zk − �kΦk,�k
(Zk)

Φk,�(x,�) ≜ x − �Ak(x,�) − ( Id � − �Bk(⋅,�))◦J�T◦( Id � − �Ak(⋅,�))(x).

1

�k

(Xk+1 − 2Xk − Xk−1) +
(1 − �k)

�k

(Xk − Xk−1) + Φk,�k
(Xk + �k(Xk − Xk−1)) = 0.
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3.2  Assumptions on the stochastic oracle

In order to tame the stochastic uncertainty in RISFBF, we need to impose some 
assumptions on the distributional properties of the random fields (Ak(x))k∈ℕ and 
(Bk(x))k∈ℕ . One crucial statistic we need to control is the SO variance. Define the 
oracle error at a point x ∈ � as

Assumption 4 (Oracle Noise) We say that the SO 

 (i) is conditionally unbiased if �
�
[�(x, �)|x] = 0 for all x ∈ �;

 (ii) enjoys a uniform variance bound: �
�
[‖�(x, �)‖2�x] ≤ �

2 for some 𝜎 > 0 and all 
x ∈ �.

Define

The introduction of these two processes allows us to decompose the random estima-
tor into a mean component and a residual, so that

If Assumption  4(i) holds true then �[Wk|F̂k] = 0 = �[Uk|Fk] = 0 . Hence, under 
conditional unbiasedness, the processes {(Uk,Fk);k ∈ ℕ} and {(Wk, F̂k);k ∈ ℕ} 
are martingale difference sequences, where the filtrations are defined as 
F0 ≜ F̂0 ≜ F1 ≜ 𝜎(X0,X1) , and iteratively, for k ≥ 1,

Observe that Fk ⊆ F̂k ⊆ Fk+1 for all k ≥ 1 . The uniform variance bound, Assump-
tion 4(ii), ensures that the processes {(Uk,Fk);k ∈ ℕ}, {(Wk, F̂k);k ∈ ℕ} have finite 
second moment.

Remark 1 For deriving the stochastic estimates in the analysis to come, it is impor-
tant to emphasize that Xk is Fk-measurable for all k ≥ 0 , and Yk is F̂k-measurable.

The mini-batch sampling technology implies an online variance reduction effect, 
summarized in the next lemma, whose simple proof we omit.

Lemma 1 (Variance of the SO) Suppose Assumption 4 holds. Then for k ≥ 1,

(16)𝜀(x, 𝜉) ≜ V̂(x, 𝜉) − V(x).

Uk(�) ≜ 1

mk

mk∑
t=1

�(Zk(�), �
(t)

k
(�)), andWk(�) ≜ 1

mk

mk∑
t=1

�(Yk(�), �
(t)

k
(�)).

Ak(Zk) = V(Zk) + Uk, and Bk(Yk) = V(Yk) +Wk

F̂k ≜ 𝜎(X0,X1, 𝜉1, 𝜂1,… , 𝜂k−1, 𝜉k), Fk+1 ≜ 𝜎(X0,X1, 𝜉1, 𝜂1,… , 𝜉k, 𝜂k).

(17)𝔼[‖‖Wk
‖‖2|Fk] ≤ �

2

mk

and 𝔼[‖‖Uk
‖‖2|Fk] ≤ �

2

mk

, ℙ − a.s.
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We see that larger sampling rates lead to more precise point estimates of the sin-
gle-valued operator. This comes at the cost of more evaluations of the stochastic 
operator. Hence, any mini-batch approach faces a trade-off between the oracle com-
plexity and the iteration complexity. We want to use mini-batch estimators to achieve 
an online variance reduction scheme, motivating the next assumption.

Assumption 5 (Batch Size) The batch size sequence (mk)k∈ℕ is non-decreasing and 
satisfies 

∑∞

k=1

1

mk

< ∞.

4  Analysis

This section is organized into three subsections. The first subsection derives asymp-
totic convergence guarantees, while the second and third subsections provides lin-
ear and sublinear rate statements in strongly monotone and monotone regimes, 
respectively.

4.1  Asymptotic convergence

Given 𝜆 > 0 , we define the residual function for the monotone inclusion (MI) as

Clearly, for every 𝜆 > 0 , x ∈ 𝖲 ⇔ 𝗋𝖾𝗌
�
(x) = 0 . Hence, ���

�
(⋅) is a merit function for 

the monotone inclusion problem. To put this merit function into context, let us con-
sider the special case where T is the subdifferential of a lower semi-continuous con-
vex function g ∶ 𝖧 → (−∞,∞] , i.e. T = �g . In this case, the resolvent J

�T reduces to 
the well-known proximal-operator

In the potential case, where V(x) = ∇f (x) for some smooth convex function 
f ∶ 𝖧 → ℝ , the residual function is thus seen to be a constant multiple of the norm 
of the so-called gradient mapping ‖‖‖x − prox

�g(x − �V(x))
‖‖‖ , which is a standard 

merit function in convex [64] and stochastic [65, 66] optimization. We use this func-
tion to quantify the per-iteration progress of RISFBF. The main result of this subsec-
tion is the following.

Theorem  2 (Asymptotic Convergence) Let �̄�, �̄� ∈ (0, 1) be fixed parameters. Sup-
pose that Assumption 1-5 hold true. Let (�k)k∈ℕ be a non-decreasing sequence such 
that limk→∞ 𝛼k = �̄� . Let (�k)k∈ℕ be a converging sequence in (0, 1

4L
) such that 

limk→∞ �k = � ∈ (0,
1

4L
) . If 𝜌k =

5(1−�̄�)(1−�̄�)2

4(2𝛼2
k
−𝛼k+1)(1+L𝜆k)

 for all k ≥ 1 , then 

 (i) limk→∞ 𝗋𝖾𝗌
�k
(Zk) = 0 in L2(ℙ);

(18)���
�
(x) ≜ ‖‖x − J

�T (x − �V(x))‖‖.

prox
�g(x) ≜ argmin

u∈�

{�g(u) +
1

2
‖u − x‖2}.
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 (ii) the stochastic process (Xk)k∈ℕ generated by algorithm RISFBF weakly con-
verges to a �-valued limiting random variable X;

 (iii) 
∑∞

k=1

�
(1 − 𝛼k)

�
5(1−𝛼k

4𝜌k(1+L𝜆k)
− 1

�
− 2𝛼2

k

���Xk − Xk−1
��2 < ∞ ℙ-a.s.

We prove this Theorem via a sequence of technical Lemmas.

Lemma 3 For all k ≥ 1 , we have

Proof By definition,

where the last inequality uses the non-expansivity property of the resolvent operator. 
Rearranging terms gives the claimed result.   ◻

Next, for a given pair (p, p∗) ∈ gr (F) , we define the stochastic processes 
(ΔMk)k∈ℕ, (ΔNk(p, p

∗))k∈ℕ , and (�k)k∈ℕ as

Key to our analysis is the following energy bound on the evolution of the anchor 
sequence 

(‖‖Xk − p‖‖2
)
k∈ℕ

.

Lemma 4 (Fundamental Recursion) Let (Xk)k∈ℕ be the stochastic process generated 
by RISFBF with �k ∈ (0, 1) , 0 ≤ 𝜌k <

5

4(1+L𝜆k)
 , and �k ∈ (0, 1∕4L) . For all k ≥ 1 and 

(p, p∗) ∈ gr (F) , we have

(19)−‖‖Zk − Yk
‖‖2 ≤ �

2
k
‖‖Uk

‖‖2 − 1

2
���2

�k
(Zk).

1

2
���2

�k
(Zk) =

1

2

‖‖‖Zk − J
�kT

(Zk − �kV(Zk))
‖‖‖
2

=
1

2

‖‖‖Zk − Yk + J
�kT

(Zk − �kAk(Zk)) − J
�kT

(Zk − �kV(Zk))
‖‖‖
2

≤ ‖‖Zk − Yk
‖‖2 + ‖‖‖J�kT (Zk − �kAk(Zk)) − J

�kT
(Zk − �kV(Zk))

‖‖‖
2

≤ ‖‖Zk − Yk
‖‖2 + �

2
k
‖‖Uk

‖‖2,

(20)ΔMk ≜ 5�k�
2
k

2(1 + L�k)
‖‖�k‖‖2 +

�k�
2
k

2
‖‖Uk

‖‖2,

(21)ΔNk(p, p
∗) ≜ 2�k�k⟨Wk + p∗, p − Yk⟩, and

(22)�k ≜ Wk − Uk.
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Proof To simplify the notation, let us call Ak ≡ Ak(Zk) and Bk ≡ Bk(Yk) . We also 
introduce the intermediate update Rk ≜ Yk + �k(Ak − Bk) . For all k ≥ 0 , it holds true 
that

Since

Introducing the process (�k)k∈ℕ from eq. (22), the aforementioned set of inequalities 
reduces to

Hence,

But Yk + �kT(Yk) ∋ Zk − �kAk , implying that

��Xk+1 − p��2 ≤ (1 + �k)
��Xk − p��2 − �k

��Xk−1 − p��2 −
�k

4
���2

�k
(Zk)

+ ΔMk + ΔNk(p, p
∗) − 2�k�k⟨V(Yk) − V(p),Yk − p⟩

+ �k
��Xk − Xk−1

��2
�
2�k +

5(1 − �k)

4�k(1 + L�k)

�

− (1 − �k)

�
5

4�k(1 + L�k)
− 1

�
��Xk+1 − Xk

��2.

��Zk − p��2 =��Zk − Yk + Yk − Rk + Rk − p��2
=��Zk − Yk

��2 + ��Yk − Rk
��2 + ��Rk − p��2 + 2⟨Zk − Yk, Yk − p⟩

+ 2⟨Yk − Rk,Rk − p⟩
=��Zk − Yk

��2 + ��Yk − Rk
��2 + ��Rk − p��2 + 2⟨Zk − Yk, Yk − p⟩

+ 2⟨Yk − Rk,Rk − p⟩
=��Zk − Yk

��2 + ��Yk − Rk
��2 + ��Rk − p��2 + 2⟨Zk − Yk, Yk − p⟩

+ 2⟨Yk − Rk, Yk − p⟩ + 2⟨Yk − Rk,Rk − Yk⟩
=��Zk − Yk

��2 + ��Yk − Rk
��2 + ��Rk − p��2 + 2⟨Zk − Rk, Yk − p⟩

+ 2⟨Yk − Rk,Rk − Yk⟩
=��Zk − Yk

��2 − ��Yk − Rk
��2 + ��Rk − p��2 + 2⟨Zk − Rk, Yk − p⟩.

��Yk − Rk
��2 = �

2
k
��Bk(Yk) − Yk(Zk)

��2
≤ �

2
k
��V(Yk) − V(Zk) +Wk+1 − Uk+1

��2
≤ �

2
k
��V(Yk) − V(Zk)

��2 + �
2
k
��Wk − Uk

��2 + 2�2
k
⟨V(Yk) − V(Zk),Wk − Uk⟩

≤ L2�2
k
��Yk − Zk

��2 + �
2
k
��Wk − Uk

��2 + 2�2
k
⟨V(Yk) − V(Zk),Wk − Uk⟩

≤ 2L2�2
k
��Yk − Zk

��2 + 2�2
k
��Wk − Uk

��2.

‖‖Yk − Rk
‖‖2 ≤ 2L2�2

k
‖‖Yk − Zk

‖‖2 + 2�2
k
‖‖�k‖‖2.

��Zk − p��2 ≥ (1 − 2L2�2
k
)��Zk − Yk

��2 − 2�2
k
���k��2 + ��Rk − p��2 + 2⟨Zk − Rk, Yk − p⟩.
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Pick (p, p∗) ∈ gr (F) , so that p∗ − V(p) ∈ T(p) . Then, the monotonicity of T yields 
the estimate

This is equivalent to

This implies that

Hence, we obtain the following,

Rearranging terms, we arrive at the following bound on ‖‖Rk − p‖‖2:

Next, we observe that ‖‖Xk+1 − p‖‖2 may be bounded as follows.

We may then derive a bound on the expression in (25),

1

�k

(Zk − Yk − �kAk) ∈ T(Yk).

⟨
1

�k

(Zk − Yk − �kAk) − p∗ + V(p),Yk − p

⟩
≥ 0.

(23)

�
1

�k

(Zk − Rk − �kBk) − p∗ + V(p),Yk − p

�
≥ 0,

or ⟨Zk − Rk, Yk − p⟩ ≥ �k⟨Wk + p∗, Yk − p⟩ + �k⟨V(Yk) − V(p),Yk − p⟩.

⟨Zk − Rk, Yk − x∗⟩ ≥ �k⟨Wk, Yk − x∗⟩.

��Zk − p��2 ≥ (1 − 2L2�2
k
)��Yk − Zk

��2 + ��Rk − p��2 − 2�2
k
���k��2

+ 2�k⟨Wk + p∗, Yk − p⟩ + 2�k⟨V(Yk) − V(p),Yk − p⟩.

(24)

��Rk − p��2 ≤��Zk − p��2 − (1 − 2L2�2
k
)��Yk − Zk

��2 + 2�2
k
���k��2 + 2�k⟨Wk + p∗, p − Yk⟩

+ 2�k⟨V(Yk) − V(p), p − Yk⟩

(25)

��Xk+1 − p��2 = ��(1 − �k)Zk + �kRk − p��2
= ��(1 − �k)(Zk − p) − �k(Rk − p)��2
= (1 − �k)

2��Zk − p��2 + �
2
k
��Rk − p��2 − 2�k(1 − �k)⟨Zk − p,Rk − p⟩

= (1 − �k)
��Zk − p��2 − �k(1 − �k)

��Zk − p��2
+ �k

��Rk − p��2 − �k(1 − �k)
��Rk − p��2

+ 2�k(1 − �k)⟨Zk − p,Rk − p⟩
= (1 − �k)

��Zk − p��2 + �k
��Rk − p��2 − �k(1 − �k)

��Rk − Zk
��2

= (1 − �k)
��Zk − p��2 + �k

��Rk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2.
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By invoking (19), we arrive at the estimate

Furthermore,

which implies that

Multiplying both sides by �k(1∕2−2L�k)
1+L�k

 , a positive scalar since �k ∈ (0,
1

4L
) , we obtain

Rearranging terms, and noting that (1∕2 − 2L�k)(1 + L�k) ≤ 1∕2 − 2L2�2
k
 , the above 

estimate becomes

(26)

(1 − �k)
��Zk − p��2 + �k

��Rk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2

≤ ��Zk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2 − �k(1 − 2L2�2

k
)��Zk − Yk

��2

+ 2�2
k
�k
���k��2 − 2�k�k⟨Wk + p∗, Yk − p⟩ + 2�k�k⟨V(Yk) − V(p), p − Yk⟩

(27)

= ��Zk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2 − �k(1∕2 − 2L2�2

k
)��Zk − Yk

��2

+ 2�2
k
�k
���k��2 − 2�k�k⟨Wk + p∗, Yk − p⟩

−
�k

2
��Yk − Zk

��2 + 2�k�k⟨V(Yk) − V(p), p − Yk⟩.

��Xk+1 − p��2 ≤ ��Zk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2 + 2�2�k

���k��2

− 2�k�k⟨Wk + p∗, Yk − p⟩
− �k(1∕2 − 2L2�2

k
)��Yk − Zk

��2 −
�k

4
���2

�k
(Zk)

+
�k�

2
k

2
��Uk

��2 + 2�k�k⟨V(Yk) − V(p), p − Yk⟩.

1

�k

‖‖Xk+1 − Zk
‖‖ = ‖‖Rk − Zk

‖‖ ≤ ‖‖Rk − Yk
‖‖ + ‖‖Yk − Zk

‖‖
≤ �k

‖‖Bk − Ak
‖‖ + ‖‖Yk − Zk

‖‖
≤ (1 + L�k)

‖‖Yk − Zk
‖‖ + �k

‖‖�k‖‖,

(28)
1

2�2
k

‖‖Xk+1 − Zk
‖‖2 ≤ (1 + L�k)

2‖‖Yk − Zk
‖‖2 + �

2
k
‖‖�k‖‖2.

(29)

1∕2 − 2L�k

2�k(1 + L�k)
‖‖Xk+1 − Zk

‖‖2 ≤ �k(1∕2 − 2L�k)(1 + L�k)
‖‖Yk − Zk

‖‖2

+
�
2
k
�k(1∕2 − 2L�k)

1 + L�k

‖‖�k‖‖2.
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Substituting this bound into the first majorization of the anchor process ‖‖Xk+1 − p‖‖2 , 
we see

Observe that

and Lemma 16 gives

By hypothesis, �k, �k, �k are defined such that 5∕2−2𝜌k(1+L𝜆k)
2𝜌k(1+L𝜆k)

> 0 . Then, using both of 
these relations in the last estimate for ‖‖Xk+1 − p‖‖2 , we arrive at

(30)

−�k(1∕2 − 2L2�2
k
)‖‖Yk − Zk

‖‖2 ≤ −
1∕2 − 2L�k

2�k(1 + L�k)
‖‖Xk+1 − Zk

‖‖2

+
�k�

2
k
(1∕2 − 2L�k)

1 + L�k

‖‖�k‖‖2.

��Xk+1 − p��2 ≤ ��Zk − p��2 −
�
1 − �k

�k

+
1∕2 − 2L�k

2�k(1 + L�k)

�
��Xk+1 − Zk

��2

+ �k�
2
k
���k��2

�
2 +

1∕2 − 2L�k

1 + L�k

�
+ 2�k�k⟨V(Yk) − V(p), p − Yk⟩

− 2�k�k⟨Wk + p∗, Yk − p⟩ − �k

4
���2

�k
(Zk) +

�k�
2
k

2
��Uk

��2

= ��Zk − p��2 −
�k

4
���2

�k
(Zk) +

�k�
2
k

2
��Uk

��2 − 2�k�k⟨Wk + p∗, Yk − p⟩

−
5∕2 − 2�k(1 + L�k)

2�k(1 + L�k)
��Xk+1 − Zk

��2

+
5�k�

2
k

2(1 + L�k)
���k��2 + 2�k�k⟨V(Yk) − V(p), p − Yk⟩.

(31)
‖‖Xk+1 − Zk

‖‖2 = ‖‖(Xk+1 − Xk) − �k(Xk − Xk−1)
‖‖2

≥ (1 − �k)
‖‖Xk+1 − Xk

‖‖2 + (�2
k
− �k)

‖‖Xk − Xk−1
‖‖2,

(32)
‖‖Zk − p‖‖2 = (1 + �k)

‖‖Xk − p‖‖2 − �k
‖‖Xk−1 − p‖‖2 + �k(1 + �k)

‖‖Xk − Xk−1
‖‖2.

��Xk+1 − p��2 ≤ (1 + �k)
��Xk − p��2 − �k

��Xk−1 − p��2 + �k(1 + �k)
��Xk − Xk−1

��2
− 2�k�k

�
Wk+1 + p∗, Yk − p

�

−
�k

4
���2

�k
(Zk) +

5�k�
2
k

2(1 + L�k)
���k��2

+
�k�

2
k

2
��Uk

��2 + 2�k�k⟨V(Yk) − V(p), p − Yk⟩

−

�
5

4�k(1 + L�k)
− 1

��
(1 − �k)

��Xk+1 − Xk
��2 + (�2

k
− �k)

��Xk − Xk−1
��2
�
.
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Using the respective definitions of the stochastic increments ΔMk,ΔNk(p, p
∗) in (20) 

and (21), we arrive at

  ◻

Recall that Yk is F̂k-measurable. By the law of iterated expectations, we therefore 
see

for all (p, p∗) ∈ gr (F) . Observe that if we choose (p, 0) ∈ gr (F) , meaning that 
p ∈ � , then ΔNk(p, 0) ≡ ΔNk(p) is a martingale difference sequence. Furthermore, 
for all k ≥ 1,

where �k ≜ �
2
k

(
10�k

1+L�k
+

�k

2

)
.

To prove the a.s. convergence of the stochastic process (Xk)k∈ℕ , we rely on the fol-
lowing preparations. Motivated by the analysis of deterministic inertial schemes, we 
are interested in a regime under which �k is non-decreasing.

For a fixed reference point p ∈ � , define the anchor sequences 
�k(p) ≜ 1

2
‖‖Xk − p‖‖2 , and the energy sequence Δk ≜ 1

2
‖‖Xk − Xk−1

‖‖2. In terms of 
these sequences, we can rearrange the fundamental recursion from Lemma  4 to 
obtain

For a given pair (p, p∗) ∈ gr (F) , define

(33)

��Xk+1 − p��2 ≤ (1 + �k)
��Xk − p��2 − �k

��Xk−1 − p��2 −
�k

4
���2

�k
(Zk)

+ ΔMk + ΔNk(p, p
∗) − 2�k�k⟨V(Yk) − V(p),Yk − p⟩

+ �k
��Xk − Xk−1

��2
�
2�k +

5(1 − �k)

4�k(1 + L�k)

�

− (1 − �k)

�
5

4�k(1 + L�k)
− 1

�
��Xk+1 − Xk

��2.

�[ΔNk(p, p
∗)�Fk] = �

�
�[ΔNk(p, p

∗)�F̂k]�Fk

�
= 2𝜌k𝜆k�[⟨p∗, p − Yk⟩�Fk],

(34)

�[ΔMk|Fk] ≤ 5�k�
2
k

1 + L�k
�[‖‖Wk

‖‖2|Fk] + �
2
k

(
5�k

1 + L�k
+

�k

2

)
�[‖‖Uk

‖‖2|Fk] ≤ �k�
2

mk

,

�k+1(p)−�k�k(p) − (1 − �k)

�
5

4�k(1 + L�k)
− 1

�
Δk+1 ≤ �k(p) − �k�k−1(p)

− (1 − �k)

�
5

4�k(1 + L�k)
− 1

�
Δk +

1

2
ΔMk +

1

2
ΔNk(p, p

∗)

− �k�k⟨V(Yk) − V(p),Yk − p⟩ + Δk

�
2�2

k
+ (1 − �k)

�
1 −

5(1 − �k)

4�k(1 + L�k)

��

−
�k

8
���2

�k
(Zk).
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Then, in terms of the sequence

and using the monotonicity of V, guaranteeing that ⟨V(Yk) − V(p),Yk − p⟩ ≥ 0 , we 
get

Defining

we arrive at

Our aim is to use Qk(p) as a suitable energy function for RISFBF. For that to work, 
we need to identify a specific parameter sequence pair (�k, �k) so that �k ≥ 0 and 
�k ≥ 0 , taking the following design criteria into account: 

1. 𝛼k ∈ (0, �̄�] ⊂ (0, 1) for all k ≥ 1;
2. �k is non-decreasing with 

Incorporating these two restrictions on the inertia parameter �k , we are left with the 
following constraints:

To identify a constellation of parameters (�k, �k) satisfying these two conditions, 
define

Then,

(35)Qk(p) ≜ �k(p) − �k�k−1(p) + (1 − �k)

(
5

4�k(1 + L�k)
− 1

)
Δk.

(36)

�k+1 ≜ (1 − �k)

(
5

4�k(1 + L�k)
− 1

)
− (1 − �k+1)

(
5

4�k+1(1 + L�k+1)
− 1

)
,

Qk+1(p) ≤ Qk(p) −
�k

8
���2

�k
(Zk) +

1

2
ΔMk +

1

2
ΔNk(p, p

∗) + (�k − �k+1)�k(p)

+

[
2�2

k
+ (1 − �k)

(
1 −

5(1 − �k)

4�k(1 + L�k)

)]
Δk − �k+1Δk+1.

�k ≜ �k

8
���2

�k
(Zk) −

[
2�2

k
+ (1 − �k)

(
1 −

5(1 − �k)

4�k(1 + L�k)

)]
Δk,

(37)
Qk+1(p) ≤ Qk(p) − �k +

1

2
ΔMk +

1

2
ΔNk(p, p

∗) + (�k − �k+1)�k(p) − �k+1Δk+1.

(38)sup
k≥1

𝛼k = �̄�, and inf
k≥1 𝛼k > 0.

(39)�k ≥ 0 and 2�2
k
+ (1 − �k)

(
1 −

5(1 − �k)

4�k(1 + L�k)

)
≤ 0.

(40)hk(x, y) ≜ (1 − x)

(
5

4y(1 + L�k)
− 1

)
.
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which gives

Solving this condition for �k reveals that 1

�k

≥ 4(2�2
k
−�k+1)(1+L�k)

5(1−�k)
2

. Using the design 
condition 𝛼k ≤ �̄� < 1 , we need to choose the relaxation parameter �k so that 
�k ≤ 5(1−�k)

2

4(1+L�k)(2�
2
k
−�k+1)

 . This suggests to use the relaxation sequence 

𝜌k = 𝜌k(𝛼k, 𝜆k) ≜ 5(1−�̄�)(1−�̄�)2

4(1+L𝜆k)(2𝛼
2
k
−𝛼k+1)

 . It remains to verify that with this choice we can 
guarantee �k ≥ 0. This can be deduced as follows: Recalling (40), we get

In particular, we note that if f (𝛼) ≜ (1−𝛼)(2𝛼2−𝛼+1)

(1−�̄�)(1−�̄�)2
+ 𝛼 − 1 , then

We consider two cases:
Case 1: �̄� ≤ 1∕2 . In this case

Case 2: 1∕2 < �̄� < 1 . In this case

Thus, f (�) is decreasing in 𝛼 ∈ (0, �̄�] , where 0 < �̄� < 1.
Using these relations, we see that (37) reduces to

where �k ≥ 0 . This is the basis for our proof of Theorem 2.

Proof of Theorem 2 We start with (i). Consider (42), with the special choice p∗ = 0 , 
so that p ∈ � . Taking conditional expectations on both sides of this inequality, we 
arrive at

0 ≥ 2�2
k
− (1 − �k)

(
hk(�k, �k) + (1 − �k) − 1

)

= 2�2
k
+ �k(1 − �k) − (1 − �k)hk(�k, �k)

= �k(1 + �k) − (1 − �k)hk(�k, �k),

(41)hk(�k, �k) ≥ �k(1 + �k)

1 − �k

.

hk(𝛼k, 𝜌k) = (1 − 𝛼k)
(

5

4𝜌k(1+L𝜆)
− 1

)
=

(1−𝛼k)(2𝛼
2
k
−𝛼k+1)

(1−�̄�)(1−�̄�)2
+ 𝛼k − 1.

f �(𝛼) =
(1−𝛼)(4𝛼−1)−(2𝛼2−𝛼+1)

(1−�̄�)(1−�̄�)2
+ 1 =

−6𝛼2+6𝛼−2+(1−�̄�)(1−�̄�)2

(1−�̄�)(1−�̄�)2
=

−6(𝛼−
1

2
)2−

1

2
+(1−�̄�)(1−�̄�)2

(1−�̄�)(1−�̄�)2

f �(𝛼) ≤ −6(�̄�−
1

2
)2−

1

2
+(1−�̄�)(1−�̄�)2

(1−�̄�)(1−�̄�)2
≤ −5�̄�2 + 4�̄� − 1

(1 − �̄�)(1 − �̄�)2
< 0.

f �(𝛼) ≤ −6(1∕2 − 1∕2)2 − 1∕2 + (1 − �̄�)(1 − �̄�)2

(1 − �̄�)(1 − �̄�)2
≤ −1∕2 + (1 − �̄�)(1 − 1∕2)2

(1 − �̄�)(1 − �̄�)2
< 0.

(42)Qk+1(p) ≤ Qk(p) − �k +
1

2
ΔMk +

1

2
ΔNk(p, p

∗),

�[Qk+1(p)|Fk] ≤ Qk(p) − �k + �k,
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where �k ≜ �k�
2

2mk

 . By design of the relaxation sequence �k , we see that

Since limk→∞ �k = � ∈ (0, 1∕4L) , and limk→∞ 𝛼k = �̄� ∈ (0, 1) , we conclude that the 
sequence (�k)k∈ℕ is bounded. Consequently, thanks to Assumption 5, the sequence 
(�k)k∈ℕ is in �1

+
(ℕ) . We next claim that Qk(p) ≥ 0 . To verify this, note that

where the first and second inequality uses �̄� < 1 and 𝛼k ≤ �̄� ∈ (0, 1) , the third ine-
quality makes use of the Young inequality: 
1−a

2a
‖‖Xk − p‖‖2 + a

2(1−a)
‖‖Xk − Xk−1

‖‖2 ≥ ‖‖Xk − p‖‖ ⋅ ‖‖Xk − Xk−1
‖‖ . Finally, the fourth 

inequality uses the triangle inequality ‖‖Xk−1 − p‖‖ ≤ ‖‖Xk − Xk−1
‖‖ + ‖‖Xk − p‖‖ . 

Lemma  17 readily yields the existence of an a.s. finite limiting random variable 
Q∞(p) such that Qk(p) → Q∞(p) , ℙ-a.s., and (�k)k∈ℕ ∈ �1

+
(𝔽 ) . Since �k → � , we get 

limk→∞ 𝜌k =
5(1−�̄�)(1−�̄�)2

4(1+L𝜆)(2�̄�2+1−�̄�)
 . Hence,

�k = 𝜆
2
k

(
10𝜌k

1 + L𝜆k
+

𝜌k

2

)
= 𝜆

2
k

(
10

1 + L𝜆k
+

1

2

)
5(1 − �̄�)

4(2𝛼2
k
− 𝛼k + 1)(1 + L𝜆k)

.

Qk(p) =
1

2
‖‖Xk − p‖‖2 −

𝛼k

2
‖‖Xk−1 − p‖‖2 +

(1 − 𝛼k)

2

(
5

4𝜌k(1 + L𝜆k)
− 1

)
‖‖Xk − Xk−1

‖‖2

=
1

2
‖‖Xk − p‖‖2 +

(
(1 − 𝛼k)(2𝛼

2
k
+ 1 − 𝛼k)

(1 − �̄�)(1 − �̄�)2
− 1 + 𝛼k

)
1

2
‖‖Xk − Xk−1

‖‖2

−
𝛼k

2
‖‖Xk−1 − p‖‖2

≥ 1

2
‖‖Xk − p‖‖2 +

(
(1 − 𝛼k)(𝛼

2
k
+ 1 − 𝛼k)

(1 − �̄�)(1 − �̄�)2
− 1 + 𝛼k

)
1

2
‖‖Xk − Xk−1

‖‖2

−
𝛼k

2
‖‖Xk−1 − p‖‖2

≥ 1

2
‖‖Xk − p‖‖2 +

(
(1 − 𝛼k)(𝛼

2
k
+ 1 − 𝛼k)

(1 − 𝛼k)
2

− 1 + 𝛼k

)
1

2
‖‖Xk − Xk−1

‖‖2

−
𝛼k

2
‖‖Xk−1 − p‖‖2

= (𝛼k + (1 − 𝛼k))
‖‖Xk − p‖‖2 +

(
𝛼k +

𝛼
2
k

1 − 𝛼k

)
‖‖Xk − Xk−1

‖‖2

− 𝛼k
‖‖Xk−1 − p‖‖2

≥ 𝛼k

2

(‖‖Xk − p‖‖2 + ‖‖Xk − Xk−1
‖‖2
)

−
𝛼k

2
‖‖Xk−1 − p‖‖2 + 𝛼k

‖‖Xk − p‖‖ ⋅ ‖‖Xk − Xk−1
‖‖

≥ 𝛼k

2

(‖‖Xk − p‖‖ + ‖‖Xk − Xk−1
‖‖
)2

−
𝛼k

2
‖‖Xk−1 − p‖‖2 ≥ 0.
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ℙ-a.s. We conclude that limk→∞ 𝗋𝖾𝗌2
�k
(Zk) = 0 , ℙ-a.s..

To prove (ii) observe that, since �̄� ∈ (0, 1) and limk→∞ 𝛼k = �̄� , it follows

Consequently, limk→∞
‖‖Xk − Xk−1

‖‖2 = 0 , ℙ-a.s., and 
(
�k(p) − �k�k−1(p)

)
k∈ℕ

 is 
almost surely bounded. Hence, for each � ∈ Ω , there exists a bounded random vari-
able C1(�) ∈ [0,∞) such that

Iterating this relation, using the fact that �̄� ∈ [0, 1) , we easily derive

Hence, (�k(p))k∈ℕ is a.s. bounded, which implies that (Xk)k∈ℕ is bounded  
ℙ-a.s. We next claim that (‖‖Xk − p‖‖)k∈ℕ converges to a [0,∞)-valued random  
variable ℙ-a.s. Indeed, take � ∈ Ω such that �k(p,�) ≡ �k(�) is bounded.  
Suppose there exists �1(�) ∈ [0,∞), �2(�) ∈ [0,∞) , and subsequences (�kj

(�))j∈ℕ 
and (�lj

(�))j∈ℕ such that �kj
(�) → �1(�) and 𝜙lj

(𝜔) → �2(𝜔) > �1(𝜔) . Then, 
limj→∞ Qkj

(p)(𝜔) = Q∞(p)(𝜔) = (1 − �̄�)�1(𝜔) < (1 − �̄�)�2(𝜔) = limj→∞ Qlj
(p)(𝜔) = Q∞(p)(𝜔) , a 

contradiction. It follows that �1(�) = �2(�) and, in turn, �k(�) → �(�) . Thus, for 
each p ∈ � , �k(p) → � ℙ-a.s.

Since we assume that � is separable, [67, Prop 2.3(iii)] guarantees that there 
exists a set Ω0 ∈ F  with ℙ(Ω0) = 1 , and, for every � ∈ Ω0 and every p ∈ � , the 
sequence (‖‖Xk(�) − p‖‖)k∈ℕ converges.

We next show that all weak limit points of (Xk)k∈ℕ are contained in � . Let � ∈ Ω 
such that (Xk(�))k∈ℕ is bounded. Thanks to [3, Lemma 2.45], we can find a weakly 
convergent subsequence (Xkj

(�))j∈ℕ with limit �(�) , i.e. for all u ∈ � we have 

limj→∞

�
Xkj

(�), u
�
= ⟨�(�), u⟩ . This implies

showing that Zkj (�) ⇀ �(�) . Along this weakly converging subsequence, define

Clearly, ���
�kj

(Zkj (�)) =
‖‖‖rkj (�)

‖‖‖ , so that limj→∞ rkj (�) = 0 . By definition

lim
k→∞

(
2�2

k
− (1 − �k)

(
1 −

5(1−�k)

4�k(1+L�k)

))‖‖Xk(�) − Xk−1(�)
‖‖2 = 0, and

lim
k→∞

�k

4
𝗋𝖾𝗌2

�k
(Zk(�)) = 0.

[
2𝛼2

k
+ (1 − 𝛼k)

(
1 −

5(1 − 𝛼k)

4𝜌k(1 + L𝜆k)

)]
≤ −�̄�

1 − �̄�

(2�̄�2 + 1 − �̄�) < 0.

𝜙k(p,𝜔) ≤ C1(𝜔) + 𝛼k𝜙k−1(p,𝜔) ≤ C1(𝜔) + �̄�𝜙k−1(p,𝜔) ∀k ≥ 1.

𝜙k(p,𝜔) ≤ C1(𝜔)

1 − �̄�

+ �̄�
k
𝜙1(p,𝜔).

lim
j→∞

�
Zkj (�), u

�
= lim

j→∞

�
Xkj

(�), u
�
+ lim

j→∞
�kj

�
Xkj

(�) − Xkj−1
(�), u

�
= ⟨�(�), u⟩,

rkj (�) ≜ Zkj (�) − J
�kj

T (Zkj (�) − �kj
V(Zkj(�))).
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Since V and F = T + V  are maximally monotone, their graphs are sequentially 
closed in the weak-strong topology �weak × �strong [3, Prop. 20.33(ii)]. Therefore, by 
the strong convergence of the sequence (rkj (�))j∈ℕ , we deduce weak convergence of 
the sequence (Zkj (�) − rkj (�),Zkj (�))j∈ℕ ⇀ (�(�),�(�)) . Therefore 1

�
rkj (�) − V(Zkj (�))

+V
(
Zkj (�) − rkj (�)

)
→ 0 . Hence, 0 ∈ (T + V)(�(�)) , showing that �(�) ∈ � . 

Invoking [67, Prop 2.3(iv)], we conclude that (Xk)k∈ℕ converges weakly ℙ-a.s to an �
-valued random variable.

We now establish (iii). Let qk ≜ �[Qk(p)] , so that (42) yields the recursion

By Assumption  5, and the definition of all sequences involved, we see that ∑∞

k=1
𝜓k < ∞ . Hence, a telescopian argument gives

Hence, for all k ≥ 1 , rearranging the above reveals

Letting k → ∞ , we conclude 
(
𝔼[�k]

)
k∈ℕ

∈ �1
+
(ℕ) . Classically, this implies �k → 0 ℙ

-a.s. By a simple majorization argument, we deduce that ℙ-a.s.

  ◻

Remark 2 The above result gives some indication of the balance between the inertial 
effect and the relaxation effect. Our analysis revealed that the maximal value of the 
relaxation parameter is 𝜌 ≤ 5(1−�̄�)(1−𝛼)2

4(1+L𝜆)(2𝛼2−𝛼+1)
 . This is closely aligned with the maximal 

relaxation value exhibited in Remark 2.13 of [2]. Specifically, the function 
�m(�, �) =

5(1−�)(1−�)2

4(1+L�)(2�2−�+1)
 . This function is decreasing in � . For this choice of param-

eters, one observes that for � → 0 we get � →
5(1−�)

4(1+L�)
 and for � → 1 it is observed 

� → 0.

1

�kj

rkj (�) − V(Zkj (�)) + V
(
Zkj (�) − rkj (�)

)
∈ F(Zkj (�) − rkj (�)).

qk ≤ qk−1 − �[�k] + �k.

qk − q0 =

k∑
i=1

(qi − qi−1) ≤ −

k∑
i=1

�[�i] +

k∑
i=1

�i ≤ −

k∑
i=1

�[�i] +

∞∑
i=1

�i.

k∑
i=1

�[𝜃i] ≤ q0 +

∞∑
i=1

𝜓i < ∞.

∞ >

∞∑
k=1

{
𝜌k

8
���2

𝜆k
(Zk) −

[
2𝛼2

k
+ (1 − 𝛼k)

(
1 −

5(1 − 𝛼k)

4𝜌k(1 + L𝜆k)

)]
Δk

}

≥
∞∑
k=1

[
(1 − 𝛼k)

(
5(1 − 𝛼k)

4𝜌k(1 + L𝜆k)
− 1

)
− 2𝛼2

k

]
Δk.
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As an immediate corollary of Theorem 2, we obtain a convergence result when 
all parameter sequences are constant.

Corollary 5 (Asymptotic convergence under constant inertia and relaxation) Let the 
same Assumptions as in Theorem 2 hold. Consider Algorithm RISFBF with the con-
stant parameter sequences �k ≡ � ∈ (0, 1), �k ≡ � ∈ (0,

1

4L
) and 

𝜌k = 𝜌 <
5(1−𝛼)2

4(1+L𝜆)(2𝛼2+1−𝛼)
 . Then (Xk)k∈ℕ converges weakly ℙ-a.s. to a limiting random 

variable with values in �.

In fact, the a.s. convergence with a larger �k is allowed as shown in the following 
corollary.

Corollary 6 (Asymptotic convergence under larger steplength) Let the same Assump-
tions as in Theorem 2 hold. Consider Algorithm RISFBF with the constant parame-
ter sequences �k ≡ � ∈ (0, 1), �k ≡ � ∈ (0,

1−�

2L
) and 𝜌k = 𝜌 <

(3−𝜈)(1−𝛼)2

2(1+L𝜆)(2𝛼2+1−𝛼)
 , where 

0 < 𝜈 < 1 . Then (Xk)k∈ℕ converges weakly ℙ-a.s. to a limiting random variable with 
values in �.

Proof First we make a slight modification to (27) that the following relation holds 
for 0 < 𝜈 < 1

Then similarly with (29), we multiply both sides of (28) by �k((1−�)−2L�k)
1+L�k

 , which is 
positive since �k ∈ (0,

1−�

2L
) . The convergence follows in a similar fashion to Theo-

rem 2.   ◻

Another corollary of Theorem 2 is a strong convergence result, assuming that F is 
demiregular (cf. Definition 1).

Corollary 7 (Strong Convergence under demiregularity) Let the same Assumptions 
as in Theorem 2 hold. If F = T + V  is demiregular, then (Xk)k∈ℕ converges strongly 
ℙ-a.s. to a �-valued random variable.

Proof Set ykj (�) ≜ Zkj (�) − rkj (�)
 , and ukj(�) ≜ 1

�
rkj (�) − V(Zkj(�)) + V(Zkj(�) − rkj (�)) . 

We know from the proof of Theorem  2 that ykj (�) ⇀ �(�) and ukj(�) → 0 . If 
F = T + V  is demiregular then ykj (�) → �(�) . Since we know rkj (�) → 0 , we con-
clude Zkj (�) → �(�) . Since Zk and Xk have the same limit points, it follows 
Xk → � .   ◻

(1 − �k)
��Zk − p��2 + �k

��Rk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2

≤ ��Zk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2 − �k((1 − �) − 2L2�2

k
)��Zk − Yk

��2

+ 2�2�k
���k��2 − 2�k�k⟨Wk + p∗, Yk − p⟩ − �k�

��Yk − Zk
��2 + 2�k�k⟨V(Yk) − V(p), p − Yk⟩.
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4.2  Linear convergence

In this section, we derive a linear convergence rate and prove strong convergence 
of the last iterate in the case where the single-valued operator V is strongly mono-
tone. Various linear convergence results in the context of stochastic approximation 
algorithms for solving fixed-point problems are reported in [68] in the context of 
the random sweeping processes. In a general structured monotone inclusion setting 
[69] derive rate statements for cocoercive mean operators in the context of forward-
backward splitting methods. More recently, Cui and Shanbhag [27] provide linear 
and sublinear rates of convergence for a variance-reduced inexact proximal-point 
scheme for both strongly monotone and monotone inclusion problems. However, to 
the best of our knowledge, our results are the first published for a stochastic operator 
splitting algorithm, featuring relaxation and inertial effects. Notably, this result does 
not require imposing Assumption 4(i) (i.e. the noise process be conditionally unbi-
ased.) Instead our derivations hold true under a weaker notion of an asymptotically 
unbiased SO.

Assumption 6 (Asymptotically unbiased SO) There exists a constant � > 0 such that

for all k ≥ 1.

This definition is rather mild and is imposed in many simulation-based optimiza-
tion schemes in finite dimensions. Amongst the more important ones is the simulta-
neous perturbation stochastic approximation (SPSA) method pioneered by Spall [70, 
71]. In this scheme, it is required that the gradient estimator satisfies an asymptotic 
unbiasedness requirement; in particular, the bias in the gradient estimator needs to 
diminish at a suitable rate to ensure asymptotic convergence. In fact, this setting 
has been investigated in detail in the context of stochastic Nash games [72]. Further 
examples for stochastic approximation schemes in a Hilbert-space setting obeying 
Assumption 6 are [73, 74] and [35]. We now discuss an example that further clari-
fies the requirements on the estimator.

Example 3 Let {V̂k(x, 𝜉)}k∈ℕ be a collection of independent random �-valued vector 
fields of the form V̂k(x, 𝜉) = V(x) + 𝜀k(x, 𝜉) such that

where �̂� > 0 and b̃ > 0 such that (Bk)k∈ℕ is an �-valued sequence satisfying 
‖Bk‖2 ≤ b̂2 in an a.s. sense. These statistics can be obtained as

(43)𝔼[‖‖Uk
‖‖2|Fk] ≤ �2

mk

and 𝔼[‖‖Wk
‖‖2|Fk] ≤ �2

mk

, ℙ − a.s.

𝔼
𝜉
[𝜀k(x, 𝜉)�x] =

Bk√
mk

and 𝔼
𝜉
[��𝜀k(x, 𝜉)��2�x] ≤ �̂�

2
ℙ − a.s.,
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Setting �2 ≜ �̂�
2 + b̂2 , we see that condition (43) holds. A similar estimate holds for 

the random noise ‖‖Wk
‖‖2.

Assumption 7 V ∶ 𝖧 → 𝖧 is �-strongly monotone ( 𝜇 > 0 ), i.e.

Combined with Assumption 1, strong monotonicity implies that � = {x̄} for some 
x̄ ∈ �.

Remark 3 In the context of a structured operator F = T + V  , the assump-
tion that the single-valued part V is strongly monotone can be done without loss 
of generality. Indeed, if instead T is assumed to be �-strongly monotone, then 
(V + � Id ) + (T − � Id ) is maximally monotone and Lipschitz continuous while 
Ṽ ≜ V + 𝜇 Id may be seen to be �-strongly monotone operator.

Our first result establishes a “perturbed linear convergence” rate on the anchor 
sequence 

(‖‖Xk − x̄‖‖2
)
k∈ℕ

 , similar to the one derived in [68, Corollary 3.2] in the 
context of randomized fixed point iterations.

Theorem 8 (Perturbed linear convergence) Consider RISFBF with X0 = X1 . Suppose 
Assumptions  1-3, Assumption 6 and Assumption  7 hold. Let � = {x̄} denotes the 
unique solution of (MI). Suppose 𝜆k ≡ 𝜆 ≤ min

{
a

2𝜇
, b𝜇,

1−a

2L̃

}
 , where 0 < a, b < 1 , 

L̃2 ≜ L2 +
1

2
 , �k ≡ � ≜ (1 − b)�� . Define ΔMk ≜ 2𝜌k

‖‖Wk
‖‖2 + (3−a)𝜌k𝜆

2
k

1+L̃𝜆k

‖‖�k‖‖2 . Let 

(�k)k∈ℕ be a non-decreasing sequence such that 0 < 𝛼k ≤ �̄� < 1 , and define 

𝜌k ≜ (3−a)(1−𝛼k)
2

2(2𝛼2
k
−0.5𝛼k+1)(1+L̃𝜆)

 for every k ∈ ℕ . Set

where q = 1 − �� ∈ (0, 1) , 𝜌 =
16(3−a)(1−�̄�)2

31(1+L̃𝜆)
 . Then the following hold: 

𝔼[��Uk
��2�Fk] = 𝔼

������
1

mk

mk�
t=1

𝜀t(Zk)
�����

2

�Fk

�

=
1

m2
k

mk�
t=1

𝔼[��𝜀t(Zk)��2�Fk] +
2

m2
k

mk�
t=1

�
l>t

𝔼[⟨𝜀t(Zk), 𝜀l(Zk)⟩�Fk]

≤ �̂�
2

mk

+
(mk − 1)

mk

��Bk
��2

mk

≤ �̂�
2 + b̂2

mk

ℙ − a.s.

(44)⟨V(x) − V(y), x − y⟩ ≥ �‖x − y‖2 ∀x, y ∈ domV = �.

(45)

Hk ≜ ‖‖Xk − x̄‖‖2 + (1 − 𝛼k)
(

3−a

2𝜌k(1+L̃𝜆)
− 1

)‖‖Xk − Xk−1
‖‖2 − 𝛼k

‖‖Xk−1 − x̄‖‖2,

ck ≜ �[ΔMk|Fk], and c̄k ≜
k∑

i=1

qk−i�[ci|F1],
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 (i) (c̄k)k∈ℕ ∈ �1
+
(ℕ).

 (ii) For all k ≥ 1

 In particular, this implies a perturbed linear rate of the sequence 
(‖Xk − x̄‖2)k∈ℕ as 

 (iii) 
∑∞

k=1
(1 − 𝛼k)

�
3−a

2𝜌k(1+L̃𝜆)
− 1

���Xk − Xk−1
��2 < ∞ ℙ-a.s..

Proof Our point of departure for the analysis under the stronger Assumption 7 is eq. 
(23), which becomes

Repeating the analysis of the previous section with reference point p = x̄ and 
p∗ = 0 , the unique solution of (MI), yields the bound

The triangle inequality ‖‖Zk − x̄‖‖2 ≤ 2‖‖Yk − Zk
‖‖2 + 2‖‖Yk − x̄‖‖2 gives

By (9), we have for all c > 0

Observe that this estimate is crucial in weakening the requirement of conditional 
unbiasedness. Choose c = �k

2
 to get

Assume that 𝜆k𝜇 ≤ a

2
< 1 . Then,

(46)�[Hk+1|F1] ≤ qkH1 + c̄k.

(47)�[‖‖Xk+1 − x̄‖‖2|F0] ≤ qk
(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2
)
+

2

1−�̄�
c̄k.

⟨Zk − Rk, Yk − p⟩ ≥ �k⟨Wk + p∗, Yk − p⟩ + �k�
��Yk − p��2 ∀(p, p∗) ∈ gr (F).

��Rk − x̄��2 ≤ ��Zk − x̄��2 − (1 − 2L2𝜆2
k
)��Yk − Zk

��2 + 2𝜆2
k
���k��2

+ 2𝜆k⟨Wk, x̄ − Yk⟩ − 2𝜆k𝜇
��x̄ − Yk

��2.

��Rk − x̄��2 ≤ ��Zk − x̄��2 − (1 − 2L2𝜆2
k
)��Yk − Zk

��2 + 2𝜆2
k
���k��2 + 2𝜆k⟨Wk, x̄ − Yk⟩

+ 2𝜆k𝜇
��Yk − Zk

��2 − 𝜆k𝜇
��Zk − x̄��2.

(48)
⟨Wk, x̄ − Yk⟩ ≤ 1

2c
��Wk

��2 + c

2
��Yk − x̄��2

≤ 1

2c
��Wk

��2 + c
���Zk − x̄��2 + ��Zk − Yk

��2
�
.

‖‖Rk − x̄‖‖2 ≤ ‖‖Zk − x̄‖‖2 − (1 − 2L2𝜆2
k
)‖‖Yk − Zk

‖‖2 + 2𝜆2
k
‖‖�k‖‖2 + 2‖‖Wk

‖‖2 + 𝜆
2
k
‖‖x̄ − Zk

‖‖2
+ 2𝜆k𝜇

‖‖Yk − Zk
‖‖2 − 𝜆k𝜇

‖‖Zk − x̄‖‖2 + 𝜆
2
k
‖‖Zk − Yk

‖‖2
= (1 + 𝜆

2
k
− 𝜆k𝜇)

‖‖Zk − x̄‖‖2 + 2𝜆2
k
‖‖�k‖‖2 + 2‖‖Wk

‖‖2
− (1 − 2L2𝜆2

k
− 2𝜆k𝜇 − 𝜆

2
k
)‖‖Yk − Zk

‖‖2.
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where L̃2 ≜ L2 + 1∕2 . Moreover, choosing �k ≤ b� , we see

Using these bounds, we readily deduce for 0 < 𝜆k ≤ min{
a

2𝜇
, b𝜇} , that

Proceeding as in the derivation of eq. (30), one sees first that

and therefore,

Define �k = (1 − b)�k� . Using the equality (25),

1 − 2L2𝜆2
k
− 2𝜆k𝜇 − 𝜆

2
k
≥ (1 − a) − 2L2𝜆2

k
− 𝜆

2
k
= (1 − a) − 2L̃2𝜆2

k
,

1 + �
2
k
− �k� ≤ 1 − (1 − b)�k�.

(49)
‖‖Rk − x̄‖‖2 ≤ (

1 − (1 − b)𝜆k𝜇
)‖‖Zk − x̄‖‖2 −

(
(1 − a) − 2L̃2𝜆2

k

)‖‖Yk − Zk
‖‖2

+ 2𝜆2
k
‖‖�k‖‖2 + 2‖‖Wk

‖‖2.

1

2𝜌2
k

‖‖Xk+1 − Zk
‖‖2 ≤ (1 + L̃𝜆k)

2‖‖Yk − Zk
‖‖2 + 𝜆

2
k
‖‖�k‖‖2,

(50)

−𝜌k((1 − a) − 2L̃2𝜆2
k
)‖‖Yk − Zk

‖‖2 ≤ −
(1 − a) − 2L̃𝜆k

2𝜌k(1 + L̃𝜆k)
‖‖Xk+1 − Zk

‖‖2

+
𝜌k𝜆

2
k
((1 − a) − 2L̃𝜆k)

1 + L̃𝜆k

‖‖�k‖‖2.

��Xk+1 − x̄��2 = (1 − 𝜌k)
��Zk − x̄��2 + 𝜌k

��Rk − x̄��2 − 1−𝜌k

𝜌k

��Xk+1 − Zk
��2

(49)≤ (1 − 𝜌k𝜂k)
��Zk − x̄��2 − 1−𝜌k

𝜌k

��Xk+1 − Zk
��2 − 𝜌k((1 − a) − 2L̃2𝜆2

k
)��Zk − Yk

��2

+ 2𝜆2
k
𝜌k
���k��2 + 2𝜌k

��Wk
��2

(50)≤ (1 − 𝜌k𝜂k)
��Zk − x̄��2 − (3−a)−2𝜌k(1+L̃𝜆k)

2𝜌k(1+L̃𝜆k)
��Xk+1 − Zk

��2 + 2𝜌k
��Wk

��2 + (3−a)𝜌k𝜆
2
k

1+L̃𝜆k

���k��2
(32),(31)≤ (1 − 𝜌k𝜂k)[(1 + 𝛼k)

��Xk − x̄��2 − 𝛼k
��Xk−1 − x̄��2 + 𝛼k(1 + 𝛼k)

��Xk − Xk−1
��2]

−
(3−a)−2𝜌k(1+L̃𝜆k)

2𝜌k(1+L̃𝜆k)
[(1 − 𝛼k)

��Xk+1 − Xk
��2 + (𝛼2

k
− 𝛼k)

��Xk − Xk−1
��2]

+ 2𝜌k
��Wk

��2 + (3−a)𝜌k𝜆
2
k

(1+L̃𝜆k)
���k��2

≤ (1 + 𝛼k)(1 − 𝜌k𝜂k)‖Xk − x̄‖2 − 𝛼k(1 − 𝜌k𝜂k)‖Xk−1 − x̄‖2 + ΔMk

+ 𝛼k
��Xk − Xk−1

��2
�
(1 + 𝛼k)(1 − 𝜌k𝜂k) + (𝛼k − 1) +

(3−a)(1−𝛼k)

2𝜌k(1+L̃𝜆k)

�

− (1 − 𝛼k)
�

3−a

2𝜌k(1+L̃𝜆k)
− 1

���Xk+1 − Xk
��2,
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with stochastic error term ΔMk ≜ 2𝜌k
‖‖Wk

‖‖2 + (3−a)𝜌k𝜆
2
k

1+L̃𝜆k

‖‖�k‖‖2 . From here, it follows 
that

Since �k = � , and 𝜌k =
(3−a)(1−𝛼k)

2

2(2𝛼2
k
−0.5𝛼k+1)(1+L̃𝜆)

 , we claim that �k ≤ 1−�k

(1+4�k)�
 for 

� ≡ (1 − b)�� . Indeed,2

In particular, this implies ��k ∈ (0, 1) for all k ∈ ℕ . We then have

Next, we show that Hk ≥ 1−�̄�

2
‖Xk − x̄‖2 , for Hk defined in (45). This can be seen 

from the next string of inequalities:

(51)

��Xk+1 − x̄��2 + (1 − 𝛼
k
)
�

3−a

2𝜌
k
(1+L̃𝜆

k
)
− 1

���Xk+1 − X
k
��2 − 𝛼

k
‖X

k
− x̄‖2

≤ (1 − 𝜌
k
𝜂
k
)
���Xk

− x̄��2 + (1 − 𝛼
k
)
�

3−a

2𝜌
k
(1+L̃𝜆

k
)
− 1

���Xk
− X

k−1
��2 − 𝛼

k
‖X

k−1 − x̄‖2
�

−
�
(1 − 𝜌

k
𝜂
k
)(1 − 𝛼

k
)
�

3−a

2𝜌
k
(1+L̃𝜆

k
)
− 1

�

−𝛼
k

�
(1 + 𝛼

k
)(1 − 𝜌

k
𝜂
k
) + (𝛼

k
− 1) +

(3−a)(1−𝛼
k
)

2𝜌
k
(1+L̃𝜆

k
)

����Xk
− X

k−1
��2

− 𝛼
k
𝜌
k
𝜂
k
��Xk

− x̄��2 + ΔM
k

= (1 − 𝜌
k
𝜂
k
)
���Xk

− x̄��2 + (1 − 𝛼
k
)
�

3−a

2𝜌
k
(1+L̃𝜆

k
)
− 1

���Xk
− X

k−1
��2 − 𝛼

k
‖X

k−1 − x̄‖2
�

−
�
(1 − 𝛼

k
− 𝜌

k
𝜂
k
)
�

(3−a)(1−𝛼
k
)

2𝜌
k
(1+L̃𝜆

k
)
− 1

�
− 𝛼

2

k
(2 − 𝜌

k
𝜂
k
)
�

�����������������������������������������������������������������������������

≜Ĩ

��Xk
− X

k−1
��2 − 𝛼

k
𝜌
k
𝜂
k
��Xk

− x̄��2 + ΔM
k
.

1−𝛼k

(1+4𝛼k)𝜂

𝜌k

=
2(2𝛼2

k
−0.5𝛼k+1)(1+L̃𝜆)

(3−a)(1−𝛼k)(1+4𝛼k)𝜂
≥ 2(2𝛼2

k
−0.5𝛼k+1)(1+L̃𝜆)

(3−a)(1−𝛼k)(1+4𝛼k)
a

2
(1−b)

≥ 2⋅
31

32
⋅1

25

16
⋅1

=
31

25
> 1.

(52)

Ĩ = (1 − 𝛼k − 𝜌k𝜂)
(

(3−a)(1−𝛼k)

2𝜌k(1+L̃𝜆)
− 1

)
− 𝛼

2
k
(2 − 𝜌k𝜂)

≥ (
1 − 𝛼k −

1−𝛼k

1+4𝛼k

)(
2𝛼2

k
−0.5𝛼k+1

1−𝛼k
− 1

)
− 2𝛼2

k

=
(1−𝛼k)4𝛼k

1+4𝛼k
⋅
2𝛼2

k
+0.5𝛼k

1−𝛼k
−

2𝛼2
k
(1+4𝛼k)

1+4𝛼k

= 0.

2 To wit, the function x ↦ 2x
2 − 0.5x + 1 is attains a global minumum at x = 1∕8 , which gives the 

global lower bound 31/32. Furthermore, the function x ↦ (1 − x)(1 + 4x) attains a global maximum at 
x = 3∕8 , with corresponding value 25/16.



496 S. Cui et al.

1 3

In this derivation we have used the (9) to estimate 1−𝛼
k

2

‖‖Xk
− x̄‖‖2 + 2𝛼

2

k

1−𝛼
k

‖‖Xk
− X

k−1
‖‖2 ≥ 2𝛼

k
‖‖Xk

− x̄‖‖ ⋅ ‖‖Xk
− X

k−1
‖‖, and the specific choice 𝜌

k
=

(3−a)(1−𝛼
k
)2

2(2𝛼2
k
−

1

2
𝛼
k
+1)(1+L̃𝜆)

.

By recalling (51) and invoking (52), we are left with the stochastic recursion

where qk ≜ 1 − �k� and b̃k ≜ 𝛼k𝜌k𝜂k‖Xk − x̄‖2. Since 𝜌
k
=

(3−a)(1−𝛼
k
)2

2(2𝛼2
k
−

1

2
𝛼
k
+1)(1+L̃𝜆)

≥ 𝜌 =
16(3−a)(1−�̄�)2

31(1+L̃𝜆)
 

for every k, we have that qk ≤ q = 1 − �� for every k. Furthermore, 1 > 𝜂𝜌k ≥ 𝜂𝜌 , so 
that q ∈ (0, 1) . Taking conditional expectations on both sides on (53), we get

using the notation ck ≜ �[ΔMk|Fk] . Applying the operator �[⋅|Fk−1] and using the 
tower property of conditional expectations, this gives

Proceeding inductively, we see that

Hk =
��Xk − x̄��2 − 𝛼k

��Xk−1 − x̄��2 + (1 − 𝛼k)

�
3 − a

2𝜌k(1 + L̃𝜆)
− 1

�
‖Xk − Xk−1‖2

≥ ��Xk − x̄��2 +
�
(1 − 𝛼k)(2𝛼

2
k
+ 1 − 0.5𝛼k)

(1 − 𝛼k)
2

− 1 + 𝛼k

�
��Xk − Xk−1

��2

− 𝛼k
��Xk−1 − x̄��2

≥ ��Xk − x̄��2 +
�
(1 − 𝛼k)(2𝛼

2
k
+ 1 − 𝛼k)

(1 − 𝛼k)
2

− 1 + 𝛼k

�
��Xk − Xk−1

��2

− 𝛼k
��Xk−1 − x̄��2

=

�
𝛼k +

1 − 𝛼k

2

�
��Xk − x̄��2 +

�
𝛼k +

2𝛼2
k

1 − 𝛼k

�
��Xk − Xk−1

��2 − 𝛼k
��Xk−1 − x̄��2

+
1 − 𝛼k

2
��Xk − x̄��2

≥ 𝛼k

���Xk − x̄��2 + ��Xk − Xk−1
��2
�
− 𝛼k

��Xk−1 − x̄��2

+ 2𝛼k
��Xk − x̄�� ⋅ ��Xk − Xk−1

�� +
1 − 𝛼k

2
��Xk − x̄��2

≥ 𝛼k

���Xk − x̄�� + ��Xk − Xk−1
��
�2

− 𝛼k
��Xk−1 − x̄��2

+
1 − 𝛼k

2
��Xk − x̄��2 ≥ 1 − 𝛼k

2
��Xk − x̄��2

≥ 1 − �̄�

2
��Xk − x̄��2.

(53)Hk+1 ≤ qkHk − b̃k + ΔMk.

𝔼[Hk+1|Fk] + b̃k ≤ qHk + ck ℙ-a.s.

�[Hk+1|Fk−1] ≤ q2Hk−1 − q�[b̃k−1|Fk−1] − �[b̃k|Fk−1] + q�[ck−1|Fk−1] + �[ck|Fk−1].



497

1 3

Stochastic relaxed inertial forward‑backward‑forward…

This establishes eq. (46). To validate eq. (47), recall that we assume X1 = X0 , so that 
H1 = (1 − 𝛼1)

‖‖X1 − x̄‖‖2 . Furthermore, Hk+1 ≥ 1−�̄�

2
‖‖Xk+1 − x̄‖‖2 , so that

We now show that (c̄k)k∈ℕ ∈ �1
+
(ℕ) . Simple algebra, combined with Assumption 6, 

gives

Hence, since (�k)k∈ℕ is bounded, Assumption 5 gives limk→∞ ck = 0 a.s. Using again 
the tower property, we see �[ck|F1] = �

[
�(ck|Fk)|F1

] ≤ 𝜅
𝜌k�

2

mk

≤ 𝜅
�̄��2

mk

 , where 

𝜌k =
(3−a)(1−𝛼k)

2

2(2𝛼2
k
−

1

2
𝛼k+1)(1+L̃𝜆)

≤ �̄� =
3−a

2(1+L̃𝜆)
 for every k. Consequently, the discrete convolu-

tion 
�∑k−1

i=1
qk−i𝔼[ci�F1]

�
k∈ℕ

 is summable. Therefore 
∑

k≥1 �[Hk] < ∞ and 
∑

k≥1 �[b̃k] < ∞ . Clearly, this implies limk→∞ �[b̃k] = 0, and consequently the sub-
sequently stated two implication follow as well:

  ◻

Remark 4 It is worth remarking that the above proof does not rely on unbiasedness 
of the random estimators. The reason why we can lift this rather typical assumption 
lies in our application Young’s inequality in the estimate (48). The only assump-
tion needed is a summable oracle variance as formulated in Assumption 6 to get the 
above result working.

Remark 5 The above result illustrates again nicely the well-known trade-off between 
relaxation and inertial effects (cf. Remark 2). Indeed, up to constant factors, the cou-
pling between inertia and relaxation is expressed by the function � ↦

(1−�)2

2�2−
1

2
�+1

 . 

Basic calculus reveals that this function is decreasing for � increasing. In the extreme 
case when � ↑ 1 , it is necessary to let � ↓ 0 , and vice versa. When � → 0 then the 
limiting value of our specific relaxation policy is 3−a

1+L̃𝜆
 . In practical applications, it is 

�[Hk+1|F1] ≤ qkH1 +

k−1∑
i=1

qk−i�[ci|F1] = qkH1 + c̄k.

�[‖‖Xk+1 − x̄‖‖2|F1] ≤ qk
(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2
)
+

2

1 − �̄�

c̄k.

(54)

ck = �[ΔMk|Fk] ≤ 2𝜌k

(
1 +

(3 − a)𝜆2

1 + L̃𝜆

)
�[‖‖Wk

‖‖2|Fk] +
2(3 − a)𝜌k𝜆

2

1 + L̃𝜆
�[‖‖Uk

‖‖2|F1]

≤ 2�2𝜌k

mk

(
1 +

2(3 − a)𝜆2

1 + L̃𝜆

)
≡ 𝜌k�

2

mk

𝜅.

lim
k→∞

‖‖Xk − x̄‖‖ = 0 ℙ-a.s., and

∞∑
k=1

(1 − 𝛼k)
(

3−a

2𝜌k(1+L̃𝜆)
− 1

)‖‖Xk − Xk−1
‖‖2 < ∞ ℙ-a.s..
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advisable to choose b small in order to make q large. The value a must be calibrated 
in a disciplined way in order to allow for a sufficiently large step size � . This requires 
some knowledge of the condition number of the problem �∕L . As a heuristic argu-
ment, a good strategy, anticipating that b should be close to 0, is to set a

2𝜇
=

1−a

2L̃
 . 

This means a =
𝜇

L̃+𝜇
.

We obtain a full linear rate of convergence when a more aggressive sample rate is 
employed in the SO. We achieve such global linear rates, together with tuneable iter-
ation and oracle complexity estimates in two settings: First, we consider an aggres-
sive simulation strategy, where the sample size grows over time geometrically. Such 
a sampling frequency can be quite demanding in some applications. As an alterna-
tive, we then move on and consider a more modest simulation strategy under which 
only polynomial growth of the batch size is required. Whatever simulation strategy 
is adopted, key to the assessment of the iteration and oracle complexity is to bound 
the stopping time

In order to understand the definition of this stopping time, recall that RISFBF com-
putes the last iterate XK+1 by extrapolating between the current base point Zk and 
the correction step involving Yk + �K(Ak − Bk) , which requires 2mk iid realizations 
from the law � . In total, when executing the algorithm until the terminal time K

�
 , we 

therefore need to simulate 2
∑K

�

k=1
mk random variables. We now estimate the integer 

K
�
 under a geometric sampling strategy.

Proposition 9 (Non-asymptotic linear convergence under geometric sampling) Sup-
pose the conditions of Theorem 8 hold. Let p ∈ (0, 1), � = 2�̄��2

(
1 +

2(3−a)𝜆2

1+L̃𝜆

)
, and 

choose the sampling rate mk = ⌊p−k⌋ . Let p̂ ∈ (p, 1) , and define

Then, whenever p ≠ q , we see that

and whenever p = q,

In particular, the stochastic process (Xk)k∈ℕ converges strongly and ℙ-a.s. to the 
unique solution x̄ at a linear rate.

(55)K
𝜖
≜ inf{k ∈ ℕ| 𝔼

(‖‖Xk+1 − x̄‖‖2
) ≤ 𝜖}.

(56)C(p, q) ≜ 2(1−𝛼1)

1−�̄�
‖‖X1 − x̄‖‖2 + 4�

(1−�̄�)(1−min{p∕q,q∕p})
if p ≠ q, and

(57)Ĉ ≜ 2(1−𝛼1)

1−�̄�
‖‖X1 − x̄‖‖2 + 4�

(1−�̄�) exp(1) ln(p̂∕q)
if p = q.

�

(‖‖Xk+1 − x̄‖‖2
) ≤ C(p, q)max{p, q}k,

�

(‖‖Xk+1 − x̄‖‖2
) ≤ Ĉp̂k.
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Proof Departing from (53), ignoring the positive term b̃k from the right-hand side, 
and taking expectations on both sides leads to

where the equality follows from ck being deterministic. The sequence (ck)k∈ℕ is fur-
ther upper bounded by the following considerations: First, the relaxation sequence is 
bounded by 𝜌k ≤ �̄� =

3−a

2(1+L̃𝜆)
 ; Second, the sample rate is bounded by 

mk = ⌊p−k⌋ ≥ �
1

2
p−k

� ≥ 1

2
p−k . Using these facts, eq. (54) yields

where � = 2�̄��2
(
1 +

2(3−a)𝜆2

1+L̃𝜆

)
 . Iterating the recursion above, one readily sees that

Consequently, by recalling that h1 = (1 − 𝛼1)‖X1 − x̄‖2 and hk ≥ 1−�̄�

2
�(‖‖Xk − x̄‖‖2) , 

the bound (59) allows us to derive the recursion

We consider three cases. 

 (i) 0 < q < p < 1 : Defining �1 ≜ 2(1−𝛼1)

1−�̄�
‖‖X1 − x̄‖‖2 + 4�

(1−�̄�)(1−q∕p)
 , we obtain from 

(61) 

 (ii) 0 < p < q < 1 . Akin to (i) and defining �2 ≜ 2(1−𝛼1)

1−�̄�
‖‖X1 − x̄‖‖2 + 4�

(1−�̄�)(1−p∕q)
 , 

we arrive as above at the bound �(‖‖Xk − x̄‖‖2) ≤ qk�2.
 (iii) p = q < 1 . Choose p̂ ∈ (q, 1) and �3 ≜ 1

exp(1) ln(p̂∕q)
 , so that Lemma 18 yields 

kqk ≤ �3p̂
k for all k ≥ 1 . Therefore, plugging this estimate in eq. (61), we see 

(58)
1 − �̄�

2
�(‖‖Xk+1 − x̄‖‖2) ≤ hk+1 ≜ �(Hk+1) ≤ q�(Hk) + ck = qhk + ck,

(59)ck ≤ �k�
2
�

mk

≤ 2�pk ∀k ≥ 1,

(60)hk+1 ≤ qkh1 +

k∑
i=1

qk−ici ∀k ≥ 1.

(61)�

(‖‖Xk+1 − x̄‖‖2
) ≤ qk

(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2
)
+

4�

1 − �̄�

k∑
i=1

qk−ipi.

�(‖‖Xk+1 − x̄‖‖2) ≤ qk
(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2
)
+

4�

1 − �̄�

k∑
i=1

(q∕p)k−ipk ≤ �1p
k.

�(‖‖Xk − x̄‖‖2) ≤ qk
(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2
)
+

4�

1 − �̄�

k∑
i=1

qk

≤ p̂k
(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2
)
+

4�

1 − �̄�

�3p̂
k

= �4p̂
k,
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 after setting �4 ≜ 2(1−𝛼1)

1−�̄�
‖‖X1 − x̄‖‖2 + 4��3

1−�̄�
 . Collecting these three cases 

together, verifies the first part of the proposition.
  ◻

Proposition 10 (Oracle and Iteration Complexity under geometric sampling) Given 
𝜖 > 0 , define the stopping time K

�
 as in eq. (55). Define

and the same hypothesis as in Theorem 8 hold true. Then, K
�
≤ �

�
(p, q) = O(ln(�−1)) . 

The corresponding oracle complexity of RISFBF is upper bounded as 
2
∑�

�
(p,q)

i=1
mi = O

�
(1∕�)1+�(p,q)

�
 , where

Proof First, let us recall that the total oracle complexity of the method is assessed by

If p ≠ q define �
�
≡ �

�
(p, q) = ⌈ ln(C(p,q)�−1)

ln(1∕max{p,q})
⌉ . Then, �(‖‖‖X𝜏

𝜖
+1 − x̄

‖‖‖
2

) ≤ 𝜖 , and hence 
K
�
≤ �

�
 . We now compute

This gives the oracle complexity bound

If p = q , we can replicate this calculation, after setting 𝜏
𝜖
= ⌈ ln(𝜖−1Ĉ)

ln(1∕p̂)
⌉ . After so many 

iterations, we can be ensured that �(‖‖‖X𝜏
𝜖
+1 − x̄

‖‖‖
2

) ≤ 𝜖 , with an oracle complexity

  
◻

(62)𝜏
𝜖
(p, q) ≜

⎧
⎪⎨⎪⎩

⌈ ln(C(p,q)𝜖−1)

ln(1∕max{p,q})
⌉ if p ≠ q,

⌈ ln(Ĉ𝜖−1)

ln(1∕p̂)
⌉ if p = q

𝛿(p, q) ≜
⎧
⎪⎨⎪⎩

0 if p > q,
ln(p)

ln(q)
− 1 if p ∈ (0, q),

ln(p)

ln(p̂)
− 1 if p = q.

2

K
��

i=1

mi = 2

K
��

i=1

⌊p−i⌋ ≤ 2

K
��

i=1

p−i.

�
��

i=1

(1∕p)i =
1

p

(1∕p)
⌈ ln(C(p,q)�−1)

ln(1∕max{p,q})
⌉
− 1

1∕p − 1
≤ 1

p2

(1∕p)
ln(C(p,q)�−1)

ln(1∕max{p,q})

1∕p − 1

=

�
�
−1C(p, q)

�ln(1∕p)∕ ln(1∕max{p,q})

p(1 − p)
.

2

�
�∑

i=1

mi ≤ 2

(
�
−1C(p, q)

)ln(1∕p)∕ ln(1∕max{p,q})

p(1 − p)
.

2

𝜏
𝜖∑

i=1

mi ≤ 2

p̂(1 − p̂)

(
Ĉ

𝜖

)ln(p)∕ ln(p̂)

.
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To the best of our knowledge, the provided non-asymptotic linear convergence 
guarantee appears to be amongst the first in relaxed and inertial splitting algorithms. 
In particular, by leveraging the increasing nature of mini-batches, this result no 
longer requires the unbiasedness assumption on the SO, a crucial benefit of the pro-
posed scheme.

There may be settings where geometric growth of mk is challenging to adopt. 
To this end, we provide a result where the sampling rate is polynomial rather than 
geometric. A polynomial sampling rate arises if mk = ⌈ak(k + k0)

� + bk⌉ for some 
parameters ak, bk, 𝜃 > 0 . Such a regime has been adopted in related mini-batch 
approaches [75, 76]. This allows for modulating the growth rate by changing the 
exponent in the sampling rate. We begin by providing a supporting result. We make 
the specific choice ak = bk = 1 for all k ≥ 1 , and k0 = 0 , leaving essentially the expo-
nent 𝜃 > 0 as a free parameter in the design of the stochastic oracle.

Proposition 11 (Polynomial rate of convergence under polynomially increasing mk ) 
Suppose the conditions of Theorem  8 hold. Choose the sampling rate mk = ⌊k�⌋ 
where 𝜃 > 0 . Then, for any k ≥ 1,

Proof From the relation (60), we obtain

A standard bound based on the integral criterion for series with non-negative sum-
mands gives

The upper bounding integral can be evaluated using integration-by-parts, as follows:

(63)
�(‖‖Xk+1 − x̄‖‖2) ≤ qk

(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2 + 2

1 − �̄�

q−1 exp(2𝜃) − 1

1 − q

)

+
4�

(1 − �̄�)q ln(1∕q)
(k + 1)−𝜃

hk+1 ≤ qkh1 +

k�
i=1

qk−ici ≤ qkh1 + �

k�
i=1

qk−ii−�

= qk

�
h1 + �

k�
i=1

q−ii−�

�

= qk

�
h1 + �

⌈2�∕ ln(1∕q)⌉�
i=1

q−ii−� + �

k�
i=⌈2�∕ ln(1∕q)⌉+1

q−ii−�

�
.

k�
i=⌈2�∕ ln(1∕q)⌉+1

q−ii−� ≤ �
k+1

⌈2�∕ ln(1∕q)⌉
(1∕q)t

t�
dt.

∫
k+1

⌈2�∕ ln(1∕q)⌉
(1∕q)t

t�
dt = t�

et ln(1∕q)

ln(1∕q)
�t=k+1
t=⌈2�∕ ln(1∕q)⌉ + ∫

k+1

⌈2�∕ ln(1∕q)⌉
�t−(�+1)

et ln(1∕q)

ln(1∕q)
dt.



502 S. Cui et al.

1 3

Note that �

t ln(1∕q)
≤ 1

2
 when t ≥ ⌈2�∕ ln(1∕q)⌉ . Therefore, we can attain a simpler 

bound from the above by

Consequently,

Furthermore,

Note that (1∕q)2�∕ ln(1∕q) = (exp(ln(1∕q)))2�∕ ln(1∕q) = exp(2�) . Hence,

Plugging this into the opening string of inequalities shows

Since h1 = (1 − 𝛼1)
‖‖X1 − x̄‖‖2 and hk+1 ≥ 1−�̄�

2
�

(‖‖Xk+1 − x̄‖‖2
)
 , we finally arrive at 

the desired expression (63).   ◻

Proposition 12 (Oracle and Iteration complexity under polynomial sampling) 
Let all Assumptions as in Theorem 8 hold. Given 𝜖 > 0 , define K

�
 as in (55). Then 

the iteration and oracle complexity to obtain an �-solution are O(��−1∕�) and 
O(exp(�)��(1∕�)1+1∕�) , respectively.

Proof We first note that (k + 1)−� ≤ k−� for all k ≥ 1 . Hence, the bound established 
in Proposition 11 yields

�
k+1

⌈2�∕ ln(1∕q)⌉
(1∕q)t

t�
dt ≤ (1∕q)k+1

ln(1∕q)(k + 1)�
+

1

2 �
k+1

⌈2�∕ ln(1∕q)⌉
(1∕q)t

t�
dt

�
k+1

⌈2�∕ ln(1∕q)⌉
(1∕q)t

t�
dt ≤ 2(1∕q)k+1(k + 1)−�

ln(1∕q)
.

⌈2�∕ ln(1∕q)⌉�
i=1

q−ii−� ≤
⌈2�∕ ln(1∕q)⌉�

i=1

q−i =
1

q

(1∕q)⌈2�∕ ln(1∕q)⌉ − 1

1∕q − 1
≤ 1

q

(1∕q)2�∕ ln(1∕q)+1 − 1

1∕q − 1
.

⌈2�∕ ln(1∕q)⌉�
i=1

q−ii−� ≤ 1

q

q−1 exp(2�) − 1

1∕q − 1
=

q−1 exp(2�) − 1

1 − q
.

hk+1 ≤ qk

�
h1 + �

⌈2�∕ ln(1∕q)⌉�
i=1

q−i +
2�(1∕q)k+1(k + 1)−�

ln(1∕q)

�

≤ qk
�
h1 + �

q−1 exp(2�) − 1

1 − q
+

2�(1∕q)k+1(k + 1)−�

ln(1∕q)

�

= qk
�
h1 + �

q−1 exp(2�) − 1

1 − q

�
+

2�∕q

ln(1∕q)
(k + 1)−� .
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Consider the function �(t) ≜ t�qt for t > 0 . Then, straightforward calculus shows 
that �(t) is unimodal on (0,∞) , with unique maximum t∗ = �

ln(1∕q)
 and associated 

value �(t∗) = exp(−�)
(

�

ln(1∕q)

)
�

 . Hence, for all t > 0 , we have 

t�qt ≤ exp(−�)
(

�

ln(1∕q)

)
�

 , and consequently, qk ≤ exp(−�)
(

�

ln(1∕q)

)
�

k−� for all k ≥ 1 . 
This allows us to conclude

where

Then, for any k ≥ K
�
≜ ⌈(�q,�∕�)1∕�⌉ , we are ensured that �(‖‖Xk+1 − x̄‖‖2) ≤ 𝜀 . Since 

(�q,�)
1∕� = O(exp(−1)�) , we conclude that K

�
= O(��−1∕�) . The corresponding ora-

cle complexity is bounded as follows:

  ◻

Remark 6 It may be observed that if the � = 1 or mk = k , there is a worsening of 
the rate and complexity statements from their counterparts when the sampling rate 
is geometric; in particular, the iteration complexity worsens from O(ln(

1

�
)) to O(

1

�
) 

while the oracle complexity degrades from the optimal level of O(
1

�
) to O(

1

�2
) . But 

this deterioration comes with the advantage that the sampling rate is far slower and 
this may be of significant consequence in some applications.

�(‖‖Xk+1 − x̄‖‖2) ≤ qk
(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2 + 2

1 − �̄�

q−1 exp(2𝜃) − 1

1 − q

)

+
4�

(1 − �̄�)q ln(1∕q)
k−𝜃

�(‖‖Xk+1 − x̄‖‖2) ≤ exp(−𝜃)

(
𝜃

ln(1∕q)

)
𝜃

k−𝜃

(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2 + 2

1 − �̄�

q−1 exp(2𝜃) − 1

1 − q

)

+
4�

(1 − �̄�)q ln(1∕q)
k−𝜃 = �q,𝜃k

−𝜃 ,

(64)

�
q,𝜃 ≜ exp(−𝜃)

(
𝜃

ln(1∕q)

)
𝜃
(
2(1 − 𝛼1)

1 − �̄�

‖‖X1 − x̄‖‖2 + 2

1 − �̄�

q
−1 exp(2𝜃) − 1

1 − q

)

+
4�

(1 − �̄�)q ln(1∕q)

2

K
��

i=1

mi ≤ 2

K
��

i=1

i� ≤ 2�
K
�
+1

1

t� dt ≤ 2

1 + �

�
⌈�q,�

�

⌉1∕� + 1

�1+�

= O(exp(�)��(1∕�)1+1∕�).
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4.3  Rates in terms of merit functions

In this subsection we estimate the iteration and oracle complexity of RISFBF with 
the help of a suitably defined gap function. Generally, a gap function associated with 
the monotone inclusion problem (MI) is a function 𝖦𝖺𝗉 ∶ 𝖧 → ℝ such that (i) ��� is 
sign restricted on � ; and (ii) ���(x) = 0 if and only if x ∈ � . The Fitzpatrick function 
[3, 30, 31, 77] is a useful tool to construct gap functions associated with a set-valued 
operator F ∶ 𝖧 → 2𝖧 . It is defined as the function GF ∶ 𝖧 × 𝖧 → [−∞,∞] given by

This function allows us to recover the operator F, by means of the follow-
ing result (cf. [3, Prop. 20.58]): If F ∶ 𝖧 → 2𝖧 is maximally monotone, then 
GF(x, x

∗) ≥ ⟨x, x∗⟩ for all (x, x∗) ∈ � × � , with equality if and only if (x, x∗) ∈ gr (F) . 
In particular, gr (F) = {(x, x∗) ∈ � × �� GF(x, x

∗) ≥ ⟨x, x∗⟩} . In fact, it can be 
shown that the Fitzpatrick function is minimal in the family of convex functions 
f ∶ 𝖧 × 𝖧 → (−∞,∞] such that f (x, x∗) ≥ ⟨x, x∗⟩ for all (x, x∗) ∈ � × � , with equal-
ity if (x, x∗) ∈ gr (F) [77].

Our gap function for the structured monotone operator F = V + T  is derived from 
its Fitzpatrick function by setting ���(x) ≜ GF(x, 0) for x ∈ � . This reads explicitly 
as

It immediately follows from the definition that ���(x) ≥ 0 for all x ∈ � . It is also 
clear, that x ↦ 𝖦𝖺𝗉(x) is convex and lower semi-continuous and ���(x) = 0 if and 
only if x ∈ � = ���(F) . Let us give some concrete formulae for the gap function.

Example 4 (Variational Inequalities) We reconsider the problem described in Exam-
ple 2. Let V ∶ 𝖧 → 𝖧 be a maximally monotone and L-Lipschitz continuous map, 
and T(x) = ��(x) the normal cone of a given closed convex set � ⊂ � . Then, by 
[77, Prop. 3.3], the gap function (66) reduces to the well-known dual gap function, 
due to [78],

Example 5 (Convex Optimization) Reconsider the general non-smooth con-
vex optimization problem in Example  1, with primal objective function 
𝖧1 ∋ u ↦ f (u) + g(Lu) + h(u) . Let us introduce the convex-concave function

Define

(65)GF(x, x
∗) = ⟨x, x∗⟩ − inf

(y,y∗)∈ gr (F)
⟨x − y, x∗ − y∗⟩.

(66)

���(x) ≜ sup
(y,y∗)∈ gr (F)

⟨y∗, x − y⟩ = sup
p∈dom T

sup
p∗∈T(p)

⟨V(p) + p∗, x − p⟩ ∀x ∈ �.

���(x) = sup
p∈�

⟨V(p), x − p⟩.

L(u, v) ≜ f (u) + h(u) − g∗(v) + ⟨Lu, v⟩ ∀(u, v) ∈ �1 × �2.

(67)Γ(x�) ≜ sup
u∈�1,v∈�2

(
L(u�, v) − L(u, v�)

)
∀x� = (u�, v�) ∈ � = �1 × �2.
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It is easy to check that Γ(x�) ≥ 0 , and equality holds only for a primal-dual pair 
(saddle-point) x̄ ∈ � . Hence, Γ(⋅) is a gap function for the monotone inclusion 
derived from the Karush-Kuhn-Tucker conditions (5). In fact, the function (67) is a 
standard merit function for saddle-point problems (see e.g. [79]). To relate this gap 
function to the Fitzpatrick function, we exploit the maximally monotone operators 
V and T introduced Example 1. In terms of these mappings, first observe that for 
p = (ũ, ṽ), x = (u, v) we have

Since h is convex differentiable, the classical gradient inequality reads as 
h(u) − h(ũ) ≥ ⟨∇h(ũ), u − ũ⟩ . Using this estimate in the previous display shows

For p∗ = (ũ∗, ṽ∗) ∈ T(p) , we again employ convexity to get

Hence,

Therefore, we see

Hence,

It is clear from the definition that a convex gap function can be extended-valued 
and its domain is contingent on the boundedness properties of domT  . In the setting 
where T(x) is bounded for all x ∈ � , the gap function is clearly globally defined. 
However, the case where domT  is unbounded has to be handled with more care. 
There are potentially two approaches to cope with such a situation: One would be to 
introduce a perturbation-based termination criterion as defined in [80], and recently 
used in [81] to solve a class of structured stochastic variational inequality problems. 
The other solution strategy is based on the notion of restricted merit functions, first 
introduced in [82], and later on adopted in [83]. We follow the latter strategy.

Let xs ∈ dom T  denote an arbitrary reference point and D > 0 a suitable constant. 
Define the closed set � ≜ dom T ∩ {x ∈ �� ‖x − xs‖ ≤ D} , and the restricted gap 
function

⟨V(p), x − p⟩ = ⟨∇h(ũ), u − ũ⟩ + ⟨ṽ, Lu⟩ − ⟨Lũ, v⟩

⟨V(p), x − p⟩ ≤ h(u) − h(ũ) − ⟨Lũ, v⟩ + ⟨ṽ, Lu⟩.

f (u) ≥ f (ũ) + ⟨ũ∗, u − ũ⟩ ∀u ∈ H1,

g∗(v) ≥ g∗(ṽ) + ⟨ṽ∗, v − ṽ⟩ ∀v ∈ H2.

⟨ũ∗, u − ũ⟩ + ⟨ṽ∗, v − ṽ⟩ ≤ (f (u) − f (ũ)) + (g∗(v) − g∗(ṽ)).

⟨V(p) + p∗, x − p⟩ ≤ (f (u) + h(u) − g∗(ṽ) + ⟨ṽ, Lu⟩) − (f (ũ) + h(ũ) − g∗(v) + ⟨v,Lũ⟩)
= L(u, ṽ) − L(ũ, v).

���(x) = sup
(p,p∗)∈ gr (T)

⟨V(p) + p∗, x − p⟩ ≤ sup
(ũ,ṽ)∈�1×�2

(L(u, ṽ) − L(ũ, v)) = Γ(x).

(68)���(x��) ≜ sup{⟨y∗, x − y⟩�y ∈ �, y∗ ∈ F(y)}.
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Clearly, ���(x| dom T) = ���(x) . The following result explains in a precise way the 
meaning of the restricted gap function. It extends the variational case in [82, Lemma 
1] and [83, Lemma 3] to the general monotone inclusion case.

Lemma 13 Let � ⊂ � be nonempty closed and convex. The function 
𝖧 ∋ x ↦ 𝖦𝖺𝗉(x|𝖢) is well-defined and convex on � . For any x ∈ � we have 
���(x|�) ≥ 0 . Moreover, if x̄ ∈ � is a solution to (MI), then ���(x̄|�) = 0 . Moreo-
ver, if ���(x̄|�) = 0 for some x̄ ∈ dom T  such that ‖x̄ − xs‖ < D , then x̄ ∈ �.

Proof The convexity and non-negativity for x ∈ � of the restricted function is clear. 
Since ���(x|C) ≤ ���(x) for all x ∈ � , we see

To show the converse implication, suppose ���(x̄|�) = 0 for some x̄ ∈ � with 
‖x̄ − xs‖ < D . Without loss of generality we can choose x̄ ∈ � in this particular 
way, since we may choose the radius of the ball as large as desired. It follows that 
⟨y∗, x̄ − y⟩ ≤ 0 for all y ∈ �, y∗ ∈ F(y) . Hence, x̄ ∈ � is a Minty solution to the Gen-
eralized Variational inequality with maximally monotone operator F(x) + ��(x) . 
Since F is upper semi-continuous and monotone, Minty solutions coincide with 
Stampacchia solutions, implying that there exists x̄∗ ∈ F(x̄) such that ⟨x̄∗, y − x̄⟩ ≥ 0 
for all y ∈ � (see e.g. [84]). Consider now the gap program

This program is solved at y = x̄ , which is a point for which ‖x − xs‖ < D . Hence, the 
constraint can be removed, and we conclude ⟨x̄∗, y − x̄⟩ ≥ 0 for all y ∈ dom (F) . By 
monotonicity of F, it follows

Hence, ���(x̄) = 0 and we conclude x̄ ∈ � .   ◻

In order to state and prove our complexity results in terms of the proposed merit 
function, we start with the first preliminary result.

Lemma 14 Consider the sequence (Xk)k∈ℕ generated by RISFBF with the initial con-
dition X0 = X1 . Suppose �k = � ∈ (0, 1∕(2L)) for every k ∈ ℕ . Moreover, suppose 
(�k)k∈ℕ is a non-decreasing sequence such that 0 < 𝛼k ≤ �̄� < 1 , 𝜌k =

3(1−�̄�)2

2(2𝛼2
k
−𝛼k+1)(1+L𝜆)

 
for every k ∈ ℕ . Define

and for (p, p∗) ∈ gr (F) , we define ΔNk(p, p
∗) as in (21). Then, for all 

(p, p∗) ∈ gr (F) , we have

x̄ ∈ 𝖲 ⇔ 𝖦𝖺𝗉(x̄) = 0 ⇒ 𝖦𝖺𝗉(x̄|𝖢) = 0.

g�(x̄, x̄
∗) ≜ inf{⟨x̄∗, y − x̄⟩�y ∈ �}.

⟨y∗, y − x̄⟩ ≥ ⟨x̄∗, y − x̄⟩ ≥ 0 ∀(y, y∗) ∈ gr (F).

(69)ΔMk ≜ 3�k�
2
k

1 + L�k

‖‖�k‖‖2 +
�k�

2
k

2
‖‖Uk

‖‖2
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Proof For (p, p∗) ∈ gr (V + T) , we know from eq. (23)

where the last inequality uses the monotonicity of V. We first derive a recursion 
which is similar to the fundamental recursion in Lemma 4. Invoking (25) and (26), 
we get

Multiplying both sides of (28) and noting that (1 − 2L�k)(1 + L�k) ≤ 1 − 2L2�2
k
 , we 

obtain the following inequality

Inserting the above inequality to (71) and using the same fashion in deriving (33), 
we arrive at

Invoking the monotonicity of V and rearranging (72), it follows that

(70)
K�
k=1

2�k�⟨p∗, Yk − p⟩ ≤ (1 − �1)
��X1 − p��2 +

K�
k=1

ΔMk +

K�
k=1

ΔNk(p, 0).

⟨Zk − Rk, Yk − p⟩ ≥ �k⟨Wk + p∗, Yk − p⟩ + �k⟨V(Yk) − V(p),Yk − p⟩
≥ ⟨p∗, Yk − p⟩ + �k⟨Wk, Yk − p⟩,

(71)

��Xk+1 − p��2 ≤ ��Zk − p��2 −
1 − �k

�k

��Xk+1 − Zk
��2 + 2�2�k

���k��2

− 2�k�k⟨Wk + p∗, Yk − p⟩

− �k(1 − 2L2�2
k
)��Yk − Zk

��2 +
�k�

2
k

2
��Uk

��2 + 2�k�k⟨V(Yk) − V(p), p − Yk⟩.

−�k(1 − 2L2�2
k
)‖‖Yk − Zk

‖‖2 ≤ −
1 − 2L�k

2�k(1 + L�k)
‖‖Xk+1 − Zk

‖‖2 +
�k�

2
k
(1 − 2L�k)

1 + L�k

‖‖�k‖‖2.

(72)

��Xk+1 − p��2 ≤(1 + �k)
��Xk − p��2 − �k

��Xk−1 − p��2 + ΔMk

+ ΔNk(p, p
∗) − 2�k�k⟨V(Yk) − V(p),Yk − p⟩

+ �k
��Xk − Xk−1

��2
�
2�k +

3(1 − �k)

2�k(1 + L�k)

�

− (1 − �k)

�
3

2�k(1 + L�k)
− 1

�
��Xk+1 − Xk

��2.
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We define �k+1 as

and similarly with (36), we can show {�k} is non-increasing by choosing 
𝜌
k
=

3(1−�̄�)2

2(2𝛼2
k
−𝛼

k
+1)(1+L𝜆

k
)
 and �k ≡ � . Thus, (1 − �

k+1)
(

3

2�
k+1(1+L�k+1)

− 1

) ≤ (1 − �
k
)
(

3

2�
k
(1+L�

k
)
− 1

)
 . 

Together with �k+1 ≥ �k , the last inequality gives

Recall that ΔNk(p, p
∗) = ΔNk(p, 0) + 2�k�⟨p∗, p − Yk⟩ . Hence, after setting 

ΔNk(p, 0) = ΔNk(p) , rearranging the expression given in the previous display shows 
that

Summing over k = 1,… ,K , we obtain

‖Xk+1 − p‖2 + (1 − �k)
�

3

2�k(1+L�k)
− 1

�
‖Xk+1 − Xk‖2 − �k‖Xk − p‖2

≤ ‖Xk − p‖2 + (1 − �k)
�

3

2�k(1+L�k)
− 1

�
‖Xk − Xk−1‖2

− �k‖Xk−1 − p‖2 + ΔMk + ΔNk(p, p
∗)

+
�
2�2

k
+ (1 − �k)

�
1 −

3(1−�k)

2�k(1+L�k)

��

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

‖Xk − Xk−1‖2

≤ ‖Xk − p‖2 + (1 − �k)
�

3

2�k(1+L�k)
− 1

�
‖Xk − Xk−1‖2

− �k‖Xk−1 − p‖2 + ΔMk + ΔNk(p, p
∗).

�k+1 ≜ (1 − �k)

(
3

2�k(1 + L�k)
− 1

)
− (1 − �k+1)

(
3

2�k+1(1 + L�k+1)
− 1

)
,

‖Xk+1 − p‖2 + (1 − �k+1)
�

3

2�k+1(1+L�)
− 1

�
‖Xk+1 − Xk‖2 − �k+1‖Xk − p‖2

≤ ‖Xk − p‖2 + (1 − �k)
�

3

2�k(1+L�)
− 1

�
‖Xk − Xk−1‖2

− �k‖Xk−1 − p‖2 + ΔMk + ΔNk(p, p
∗).

2�k�⟨p∗, Yk − p⟩ ≤�Xk − p2 + (1 − �k)
�

3

2�k(1+L�)
− 1

�
Xk

−X2
k−1

− �kXk−1 − p2
�

−
�
Xk+1 − p2 + (1 − �k+1)

�
3

2�k+1(1+L�)
− 1

�
Xk+1

−X2
k
− �k+1Xk − p2

�
+ ΔMk + ΔNk(p)
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where we notice X1 = X0 in the last inequality.   ◻

Next, we derive a rate statement in terms of the gap function, using the averaged 
sequence

Theorem  15 (Rate and oracle complexity under monotonicity of V) Consider the 
sequence (Xk)k∈ℕ generated RISFBF. Suppose Assumptions 1-5 hold. Suppose 
mk ≜ ⌊ka⌋ and �k = � ∈ (0, 1∕(2L)) for every k ∈ ℕ where a > 1 . Suppose (�k)k∈ℕ is 
a non-decreasing sequence such that 0 < 𝛼k ≤ �̄� < 1 , 𝜌k =

3(1−�̄�)2

2(2𝛼2
k
−𝛼k+1)(1+L𝜆)

 for every 
k ∈ ℕ . Then the following hold for any K ∈ ℕ : 

 (i) �[���(X̄K|�)] ≤ O

(
1

K

)
.

 (ii) Given 𝜀 > 0 , define K
𝜀
≜ {k ∈ ℕ|𝔼[���(X̄k|�)] ≤ 𝜀} , then 

∑K
�

k=1
mk ≤ O

�
1

�1+a

�
.

The proof of this Theorem builds on an idea which is frequently used in the anal-
ysis of stochastic approximation algorithms, and can at least be traced back to the 
robust stochastic approximation approach of [49]. In order to bound the expectation 
of the gap function, we construct an auxiliary process which allows us to majorize 
the gap via a quantity which is independent of the reference points. Once this is 
achieved, a simple variance bound completes the result.

Proof of Theorem 15 We define an auxiliary process (Ψk)k∈ℕ such that

K�
k=1

2�k�⟨p∗, Yk − p⟩ ≤
K�
k=1

��
‖Xk − p‖2 + (1 − �k)

�
3

2�k(1+L�)
− 1

�
‖Xk

−Xk−1‖2 − �k‖Xk−1 − p‖2�

−
�
‖Xk+1 − p‖2 + (1 − �k+1)

�
3

2�k+1(1+L�)
− 1

�
‖Xk+1 − Xk‖2 − �k+1‖Xk − p‖2

��

+

K�
k=1

ΔMk +

K�
k=1

ΔNk(p)

≤ ‖X1 − p‖2 + (1 − �1)
�

3

2�1(1+L�)
− 1

�
‖X1 − X0‖2 − �1‖X0 − p‖2

+

K�
k=1

ΔMk +

K�
k=1

ΔNk(p)

= (1 − �1)‖X1 − p‖2 +
K�
k=1

ΔMk +

K�
k=1

ΔNk(p),

(73)X̄K ≜ ∑K

k=1
𝜌kYk∑K

k=1
𝜌k

.
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Then,

so that

Introducing the iterate Yk , the above implies

As ΔNk(p) = 2�k�k⟨Wk, p − Yk⟩ , this implies via a telescopian sum argument

Using Lemma 14 and setting �k ≡ � , for any (p, p∗) ∈ gr (F) it holds true that

Define �1 ≜ (1 − �1)
‖‖X1 − p‖‖2 , divide both sides by 

∑K

k=1
�k and using our defini-

tion of an ergodic average (73), this gives

Using the bound established in eq. (75), it follows

Choosing Ψ1, p ∈ � and introducing �2 ≜ �1 + 4D2 , we see that the above can be 
bounded by a random quantity which is independent of p:

Taking the supremum over pairs (p, p∗) such that p ∈ C and p∗ ∈ F(y) , it follows

(74)Ψk+1 ≜ Ψk + �k�kWk, Ψ1 ∈ dom (T).

��Ψk+1 − p��2 = ��(Ψk − p) + �k�kWk
��2 = ��Ψk − p��2 + �

2
k
�
2
k
��Wk

��2 + 2�k�k⟨Ψk − p,Wk⟩,

2�k�k⟨Wk, p − Ψk⟩ = ��Ψk − p��2 − ��Ψk+1 − p��2 + �
2
k
�
2
k
��Wk

��2.

2�k�k⟨Wk, p − Yk⟩ = 2�k�k⟨Wk, p − Ψk⟩ + 2�k�k⟨Wk,Ψk − Yk⟩
= ��Ψk − p��2 − ��Ψk+1 − p��2 + �

2
k
�
2
k
��Wk

��2 + 2�k�k⟨Wk,Ψk − Yk⟩.

(75)
K�
k=1

ΔNk(p) ≤ ��Ψ1 − p��2 +
K�
k=1

�
2
k
�
2
k
��Wk

��2 +
K�
k=1

2�k�k⟨Wk,Ψk − Yk⟩.

K�
k=1

2�k�⟨p∗, Yk − p⟩ ≤ (1 − �1)
��X1 − p��2 +

K�
k=1

ΔMk +

K�
k=1

ΔNk(p).

2𝜆
�
p∗, X̄K − p

� ≤ 1∑K

k=1
𝜌k

�
�1 +

K�
k=1

ΔMk +

K�
k=1

ΔNk(p)

�
.

2𝜆
�
p∗, X̄K − p

� ≤ 1∑K

k=1
𝜌k

�
�1 +

K�
k=1

ΔMk +
��Ψ1 − p��2

+

K�
k=1

𝜌
2
k
𝜆
2��Wk

��2 +
K�
k=1

2𝜌k𝜆⟨Wk,Ψk − Yk⟩
�

.

2𝜆
�
p∗, X̄K − p

� ≤ 1∑K

k=1
𝜌k

�
�2 +

K�
k=1

ΔMk +

K�
k=1

𝜌
2
k
𝜆
2��Wk

��2 +
K�
k=1

2𝜌k𝜆k⟨Wk,Ψk − Yk⟩
�

.
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In order to proceed, we bound the first moment of the process ΔMk in the same way 
as in (34), in order to get

Next, we take expectations on both sides of inequality (76), and use the bound (17), 
and �[⟨Wk,Ψk − Yk⟩] = �

�
�
�⟨Wk,Ψk − Yk⟩�F̂k

��
= 0. This yields

Since 𝛼k ↑ �̄� ∈ (0, 1) , we know that 𝜌k ≥ �̃� ≜ 3(1−�̄�2)

2(1+L𝜆)(2�̄�2+1)
 . Similarly, since 

2�2
k
− �k + 1 ≥ 7∕8 for all k, it follows 𝜌k ≤ �̄� ≜ 12(1−�̄�)2

7
 . Using this upper and lower 

bound on the relaxation sequence, we also see that �k ≤ 𝜆
2
(

12�̄�

1+L𝜆
+

�̄�

2

) ≡ �̄ , so that

where �3 ≜ �2

�̃�
+

1

�̃�

�
�̄𝜎2 + �̄�𝜆

2
𝜎
2
�∑∞

k=1

1

mk

 . Hence, defining the deterministic stop-
ping time K

𝜀
= {k ∈ ℕ|𝔼[���(X̄

k
|�)] ≤ 𝜀} , we see K

�
≥ �3

2��
=

�4

�
.

(ii). Suppose mk = ⌊ka⌋ , for a > 1 . Then the oracle complexity to compute an X̄K 
such that �[���(X̄k|�)] ≤ 𝜖 is bounded as

  ◻

Remark 7 In the prior result, we employ a sampling rate mk = ⌊ka⌋ where a > 1 . 
This achieves the optimal rate of convergence. In contrast, the authors in [32] 
employ a sampling rate, loosely given by mk = ⌊k1+a(ln(k))1+b⌋ where a > 0, b ≥ −1 
or a = 0, b > 0 . We observe that when a > 0 and b ≥ −1 , the mini-batch size grows 
faster than our proposed mk while it is comparable in the other case.

(76)

2𝜆���(X̄K��) ≤ �2∑K

k=1
𝜌k

+

∑K

k=1
ΔMk +

∑K

k=1
𝜌
2
k
𝜆
2��Wk

��2 +
∑K

k=1
2𝜌k𝜆k⟨Wk,Ψk − Yk⟩∑K

k=1
𝜌k

�[ΔMk|Fk] ≤ 6�k�
2
k

1 + L�k
�[‖‖Wk

‖‖2|Fk] + �
2
k

(
6�k

1 + L�k
+

�k�
2
k

2

)
�[‖‖Uk

‖‖2|Fk]

=

(
12�k�

2
k

1+L�k
�
2 +

�k�
2
k

2
�
2
)

mk

≜ �k�
2

mk

.

2𝜆�
�
���(X̄K��)

� ≤ �2∑K

k=1
𝜌k

+
1∑K

k=1
𝜌k

�
K�
k=1

�k𝜎
2

mk

+

K�
k=1

𝜌
2
k
𝜆
2 𝜎

2

mk

�
.

2𝜆�
[
���(X̄K|�)

] ≤ �2

�̃�K
+

1

�̃�K

(
�̄𝜎

2 + �̄�
2
𝜆
2
𝜎
2
) K∑

k=1

1

mk

≤ �3

K

K�
k=1

mk ≤
⌈(�4∕�)⌉�
k=1

mk ≤
⌈(�4∕�)⌉�
k=1

ka ≤ �
(�4∕�)+1

k=1

xadx ≤ ((�4∕�)+1)
a+1

a+1
≤ �

�4

�a+1

�
.
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5  Applications

In this section, we compare the proposed scheme with its SA counterparts on a class 
of monotone two-stage stochastic variational inequality problems (Sec.  5.1) and a 
supervised learning problem (Sec. 5.2) and discuss the resulting performance.

5.1  Two‑stage stochastic variational inequality problems

In this section, we describe some preliminary computational results obtained from 
Algorithm 1 when applied to a class of two-stage stochastic variational inequality 
problems, recently introduced by [85].

Consider an imperfectly competitive market with N firms playing a two-stage 
game. In the first stage, the firms decide upon their capacity level xi ∈ [li, ui] , antici-
pating the expected revenues to be obtained in the second stage in which they com-
pete by choosing quantities à la Cournot. The second-stage market is characterized 
by uncertainty as the per-unit cost hi(�i) is realized on the spot and cannot be antici-
pated. To compute an equilibrium in this game, we assume that each player is able 
to take stochastic recourse by determining production levels yi(�) , contingent on ran-
dom convex costs and capacity levels xi . In order to bring this into the terminology 
for our problem, let use define the feasible set for capacity decisions of firm i as 
Xi ≜ [li, ui] ⊂ ℝ+ . The joint profile of capacity decisions is denoted by an N-tuple 
x = (x1,… , xN) ∈ X ≜ ∏N

i=1
Xi = X  . The capacity choice of player i is then deter-

mined as a solution to the parametrized problem (Playi(x−i))

where ci ∶ Xi → ℝ+ is a L̃c
i
-smooth and convex cost function and p(⋅) denotes the 

inverse-demand function defined as p(X) = d − rX , d, r > 0 . The function Qi(⋅, �) 
denotes the optimal cost function of firm i in scenario � ∈ Ξ , assuming a value 
Qi(xi, �) when the capacity level xi is chosen. The recourse function �

�
[Qi(⋅, �)] 

denotes the expectation of the optimal value of the player i’s second stage problem 
and is defined as

A Nash equilibrium of this game is given by a tuple (x∗
1
,⋯ , x∗

N
) where 

x∗
i
solves ( Playi(x

∗
−i
)) for each i = 1, 2,… ,N . A simple computation shows that 

Qi(xi, �) = min{0, hi(�)xi} , and hence it is nonsmooth. In order to obtain a smoothed 
variant, we introduce Q�

i
(⋅, �i) , defined as

This is the value function of a quadratic program, requiring the maximization of 
an �-strongly concave function. Hence, Q�

i
(xi, �) is single-valued and ∇xi

Q
�

i
(⋅, �) is 

min
xi∈Xi

ci(xi) −
(
p(X)xi − �

�
[Qi(xi, �)]

)
, ( Playi(x−i))

Qi(xi, �) ≜ min{hi(�)yi(�)|yi(�) ∈ [0, xi]}

= max{�i(�)xi|�i(�) ≤ 0, hi(�) − �i(�) ≥ 0}. ( Reci(x−i))

Q
𝜖

i
(xi, 𝜉) ≜ max{xi𝜋i(𝜉) −

𝜖

2
(𝜋i(𝜉))

2|𝜋i(𝜉) ≤ 0,𝜋i(𝜉) ≤ hi(𝜉)}, 𝜖 > 0.
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1

�
-Lipschitz and �-strongly monotone [86, Prop.12.60] for all � ∈ Ξ . The latter is 

explicitly given by

Employing this smoothing strategy in our two-stage noncooperative game yields the 
individual decision problem

The necessary and sufficient equilibrium conditions of this �-smoothed game can be 
compactly represented as

and C, R, and D� are single-valued maps given by

We note that the interchange between the expectation and the gradient operator can 
be invoked based on smoothness requirements (cf. [87, Th.  7.47]). The problem 
(SGE� ) aligns perfectly with the structured inclusion (MI), in which T is a maxi-
mal monotone map and V is an expectation-valued maximally monotone map. In 
addition, we can quantify the Lipschitz constant of V as LV = LC + LR + L�

D
 ,where 

LC = max1≤i≤N L̃c
i
 , LR = r‖‖ Id + ��

⊤‖‖2 = r(N + 1) and L�
D
=

1

�
 . Here, Id is the 

N × N identity matrix, and � is the N × 1 vector consisting only of ones.
Problem parameters for 2-stage SVI. Our numerics are based on specifying 

N = 10 , r = 0.1 , and d = 1 . We consider four problem settings of LV ranging from 
10,⋯ , 104 (See Table 1). For each setting, the problem parameters are defined as 
follows. 

 (i) Specification of hi(�). The cost parameters hi(�i) ≜ �i
 where �i ∼ �������[−5, 0] 

and i = 1,⋯ ,N.
 (ii) Specification of LV , LR, L�D , LC , and b̂1. Since ‖‖ Id + ��

⊤‖‖2 = 11 when N = 10 , 
LR = r‖‖ Id + ��

⊤‖‖ = 1.1 . Let � be defined as � = 10

LV
 and L�

D
=

1

�
=

LV

10
 . It fol-

lows that LC = LV − LR − L�
D
 and b̂1 = LC.

 (iii) Specification of ci(xi). The cost function ci is defined as ci(xi) =
1

2
b̂ix

2
i
+ aixi 

where a1,… , aN ∼ �������[2, 3] and b̂2,⋯ , b̂N ∼ �������[0, b̂1]. Further, 
a ≜ [a1,… , aN]

⊤ ∈ ℝ
N and B ≜ diag (b̂1,… , b̂N) is a diagonal matrix with 

nonnegative elements.

Algorithm specifications We compare Algorithm  1 (RISFBF) with a stochas-
tic forward-backward (SFB) scheme and a stochastic forward-backward-forward 

∇xi
Q

�

i
(xi, �) ≜ argmax{xi�i(�) −

�

2
(�i(�))

2|�i(�) ≤ 0,�i(�) ≤ hi(�)}.

(∀i ∈ {1,… ,N}) ∶ min
xi∈Xi

ci(xi) − p(X)xi + �
�
[Q�

i
(xi, �)]. ( Play�

i
(x−i))

0 ∈ F�(x) ≜ V�(x) + T(x), where

V�(x) = C(x) + R(x) + D�(x), and T(x) = � X(x), (SGE�)

C(x) ≜
⎛⎜⎜⎝

c�
1
(x1)

⋮

c�
N
(xN)

⎞⎟⎟⎠
, R(x) ≜ r(X1 + x) − d, and D�(x) ≜

⎛⎜⎜⎝

�
�
[∇x1

Q
�

1
(x1, �)]

⋮

�
�
[∇xN

Q
�

N
(xN , �)]

⎞⎟⎟⎠
.
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(SFBF) scheme. Solution quality is compared by estimating the residual function 
���(x) = ‖x − ΠX(x − �V�(x))‖ . All of the schemes were implemented in MATLAB 
on a PC with 16GB RAM and 6-Core Intel Core i7 processor (2.6GHz).

(i) (SFB): The (SFB) scheme is defined as the recursion

where V�(Xk) = �
�
[V̂�(Xk, �)] and �k =

1√
k
 . The operator ΠX[⋅] means the orthogo-

nal projection onto the set X  . Note that x0 is randomly generated in [0, 1]N.
(ii) (SFBF): The Variance-reduced stochastic modified forward-backward scheme 

we employ is defined by the updates

where Ak(Xk) =
1

mk

∑mk

t=1
V̂�(Xk, �k) , Bk(Yk) =

1

mk

∑mk

t=1
V̂�(Yk, �k) . We choose a con-

stant �k ≡ � =
1

4LV
 . We assume mk = ⌊k1.01⌋ for merely monotone problems and 

mk = ⌊1.01k⌋ for strongly monotone problems.
(iii) (RISFBF): In the implementation of Algorithm  1 we choose a constant 

steplength �k ≡ � =
1

4LV
 . In merely monotone settings, we utilize an increasing 

sequence �k = �0(1 −
1

k+1
) , where �0 = 0.1 , the relaxation parameter sequence �k 

defined as �k =
3(1−�0)

2

2(2�2
k
−�k+1)(1+LV�)

 , and mk = ⌊k1.01⌋ . In strongly monotone regimes, 
we choose a constant inertial parameter �k ≡ � = 0.1 , a constant relaxation parame-
ter �k ≡ � = 1 , and mk = ⌊1.01k⌋.

(SFB)Xk+1 ∶= ΠX

[
Xk − �kV̂

�(Xk, �k)
]
,

(SFBF)
{

Yk = ΠX[Xk − �kAk(Xk)],

Xk+1 = Yk − �k(Bk(Yk) − Ak(Xk)).

Fig. 1  Trajectories for (SFB), (SFBF), and (RISFBF) (left: monotone, right: s-monotone)
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In Fig. 1, we compare the three schemes under maximal monotonicity and strong 
monotonicity, respectively and examine their sensitivities to inertial and relaxation 
parameters. Both sets of plots are based on selecting LV = 102.

Key insights Several insights may be drawn from Table 1 and Figure 1. 

(a) First, from Table 1, one may conclude that on this class of problems, (RISFBF) 
and (SFBF) significantly outperform (SFB) schemes, which is less surprising 
given that both schemes employ an increasing mini-batch sizes, leading to per-
formance akin to that seen in deterministic schemes. We should note that when X  
is somewhat more complicated, the difference in run-times between SA schemes 
and mini-batch variants becomes more pronounced; in this instance, the set X  is 
relatively simple to project onto and there is little difference in run-time across 
the three schemes.

(b) Second, we observe that while both (SFBF) and (RISFBF) schemes can con-
tend with poorly conditioned problems, as seen by noting that as LV grows, 
their performance does not degenerate significantly in terms of empirical error; 
However, in both monotone and strongly monotone regimes, (RISFBF) provides 
consistently better solutions in terms of empirical error over (SFBF). Figure 1 
displays the range of trajectories obtained for differing relaxation and inertial 
parameters and in the instances considered, (RISFBF) shows consistent benefits 
over (SFBF).

(c) Third, since such schemes display geometric rates of convergence for strongly 
monotone inclusion problems, this improvement is reflected in terms of the 
empirical errors for strongly monotone vs monotone regimes.

Table 1  Comparison of (RISFBF) with (SFB) and (SFBF) under various Lipschitz constant

merely monotone, 20000 evaluations

L
V RISFBF SFBF SFB

error time CI error time CI error time CI

1e1 2.2e-4 2.7 [2.0e-4,2.5e-4] 1.6e-3 2.6 [1.3e-3,1.8e-3] 5.3e-2 2.7 [5.0e-2,5.7e-2]
1e2 2.7e-4 2.7 [2.5e-4,3.0e-4] 1.9e-3 2.6 [1.6e-3,2.1e-3] 6.1e-2 2.7 [5.8e-2,6.4e-2]
1e3 6.9e-4 2.7 [6.7e-3,7.1e-4] 2.2e-3 2.6 [2.0e-3,2.5e-3] 7.6e-2 2.5 [7.3e-2,7.9e-2]
1e4 2.7e-3 2.7 [2.5e-3,3.0e-3] 5.9e-3 2.6 [5.4e-3,6.2e-3] 9.4e-2 2.6 [9.0e-1,9.7e-1]

strongly monotone, 20000 evaluations

L
V RISFBF SFBF SFB

error time CI error time CI error time CI

1e1 1.5e-6 2.6 [1.3e-6,1.7e-6] 1.5e-5 2.6 [1.2e-5,1.7e-5] 2.9e-2 2.5 [2.7e-2,3.1e-2]
1e2 3.7e-6 2.6 [3.5e-6,3.9e-6] 3.6e-5 2.5 [3.3e-5,3.9e-5] 4.1e-2 2.5 [3.8e-2,4.4e-2]
1e3 4.5e-6 2.6 [4.3e-6,4.7e-6] 5.6e-5 2.5 [4.2e-6,4.7e-6] 5.5e-2 2.4 [5.2e-2,5.7e-2]
1e4 1.4e-5 2.6 [1.1e-5,1.7e-5] 7.4e-5 2.5 [7.1e-5,7.7e-5] 6.0e-2 2.5 [5.7e-2,6.3e-2]



516 S. Cui et al.

1 3

5.2  Supervised learning with group variable selection

Our second numerical example considers the following population risk formula-
tion of a composite absolute penalty (CAP) problem arising in supervised statistical 
learning [7]

where the feasible set W ⊆ ℝ
d is a Euclidean ball with W ≜ {w ∈ ℝ

d ∣ ‖w‖2 ≤ D} , 
� = (a, b) ∈ ℝ

d ×ℝ denotes the random variable consisting of a set of predictors a 
and output b. The parameter vector w is the sparse linear hypothesis to be learned. 
The sparsity structure of w is represented by group S ∈ 2{1,…,l} . When the groups in 
S do not overlap, 

∑
g∈S ‖wg‖2 is referred to as the group lasso penalty [6, 88]. When 

the groups in S form a partition of the set of predictors, then 
∑

g∈S ‖wg‖2 is a norm 
afflicted by singularities when some components wg are equal to zero. For any 
g ∈ {1,⋯ , l} , wg is a sparse vector constructed by components of x whose indices 
are in g , i.e., wg ∶= (wi)i∈g with few non-zero components in wg . Here, we assume 
that each group g ∈ S consists of k elements. Introduce the linear operator 
L ∶ ℝ

d → ℝ
k ×⋯×
⏟⏟⏟

l−times

ℝ
k , given by Lw = [�wg1

,… , �wgl
] . Let us also define

where �W(⋅) denotes the indicator function with respect to the set W . Then (CAP) 
becomes

This is clearly seen to be a special instance of the convex programming problem (2). 
Specifically, we let �1 = ℝ

d with the standard Euclidean norm, and 
�2 = ℝ

k ×⋯×
⏟⏟⏟

l−times

ℝ
k with the product norm

Since

the Fenchel-dual takes the form (3). Accordingly, a primal-dual pair for (CAP) is a 
root of the monotone inclusion (MI) with

(CAP)min
w∈W

1

2
�(a,b)[(a

⊤w − b)2] + 𝜂

�
g∈S

‖wg‖2,

Q = �
𝜉
[aa⊤], q = �

𝜉
[ab], c =

1

2
�
𝜉
[b2],

h(w) ≜ 1

2
w⊤Qw − w⊤q + c, and f (w) ≜ 𝛿W(w),

min
w∈ℝd

{h(w) + g(Lw) + f (w)}, where g(y1,… , yl) ≜
l∑

i=1

‖‖yi‖‖.

‖‖(y1,… , yl)
‖‖�2

≜
l∑

i=1

‖‖yi‖‖2.

g∗(v1,… , vl) =

l∑
i=1

�
𝔹(0,1)(vi) ∀v = (v1,… , vl) ∈ ℝ

k ×⋯×
⏟⏟⏟

l−times

ℝ
k,
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involving d + kl variables.
Problem parameters for (CAP) We simulated data with d = 82 , covered by 10 

groups of 10 variables with 2 variables of overlap between two successive groups: 
{1,… , 10}, {9,… , 18},… , {73,… , 82} . We assume the nonzeros of wtrue lie in the 
union of groups 4 and 5 and sampled from i.i.d. Gaussian variables. The operator 
V(w, v) is estimated by the mini-batch estimator using mk iid copies of the random 
input-output pair � = (a, b) ∈ ℝ

d ×ℝ . Specifically, we draw each coordinate of 
the random vector a from the standard Gaussian distribution �(0, 1) and generate 
b = a⊤wtrue + 𝜀 , for � ∼ �(0, �2

�
) . In the concrete experiment reported here, the error 

variance is taken as �
�
= 0.1 . In all instances, the regularization parameter is chosen 

as � = 10−4 . The accuracy of feature extraction of algorithm output w is evaluated 
by the relative error to the ground truth, defined as

Algorithm specifications We compare (RISFBF) with stochastic extragradient (SEG) 
and stochastic forward-backward-forward (SFBF) schemes and specify their algo-
rithm parameters. Again, all the schemes are run on MATLAB 2018b on a PC with 
16GB RAM and 6-Core Intel Core i7 processor (2.6×8GHz). 

 (i) (SEG): Set X ≜ W × dom (g∗) . The (SEG) scheme [32] utilizes the updates 

 where Ak(Xk) =
1

mk

∑mk

t=1
V(Xk, �k) , Bk(Yk) =

1

mk

∑mk

t=1
V(Yk, �k) . In this 

scheme, �k ≡ � is chosen to be 1

4LV
 ( LV is the Lipschitz constant of V). We 

assume mk =
⌊
k1.1

n

⌋
.

 (ii) (SFBF): We employ the algorithm parameters employed in (i). Specifically, 
we choose a constant �k ≡ � =

1

4LV
 and mk =

⌊
k1.1

n

⌋
.

V(w, v) = (∇h(w) + L∗v,−Lw) and T(w, v) ≜ �f (w) × �g∗(v)

‖w − wtrue‖2
‖wtrue‖2 .

(SEG)
Yk ∶= ΠX

[
Xk − �kAk(Xk)

]
,

Xk+1 ∶= ΠX

[
Xk − �kBk(Yk)

]
,

Table 2  The comparison of 
the RISFBF, SFBF and SEG 
algorithms in solving (CAP)

The relative error and CPU time in the table is the average results of 
20 runs

Iteration RISFBF SFBF SEG

N Rel. error CPU Rel. error CPU Rel. error CPU

v400 5.4e-1 0.1 34.6 0.1 34.7 0.1
v800 8.1e-3 0.5 1.1e-1 0.5 1.5e-1 0.5
1200 6.0e-3 1.1 2.4e-2 1.1 2.4e-2 1.1
1600 5.2e-3 2.0 2.0e-2 2.0 1.9e-2 2.0
2000 4.6e-3 3.1 1.6e-2 3.1 1.5e-2 3.1
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 (iii) (RISFBF): Here, we employ a constant step-length �k ≡ � =
1

4LV
 , an increasing 

sequence �k = �0(1 −
1

k+1
) , where �0 = 0.85 , a relaxation parameter sequence 

�k =
3(1−�0)

2

2(2�2
k
−�k+1)(1+LV�)

 , and assume mk =
⌊
k1.1

n

⌋
.

Insights We compare the performance of the schemes in Table 2 and observe that 
(RISFBF) outperforms its competitors others in extracting the underlying feature of 
the datasets. In Fig. 2, trajectories for (RISFBF), (SFBF) and (SEG) are presented 
where a consistent benefit of employing (RISFBF) can be seen for a range of choices 
of �0.

6  Conclusion

In a general structured monotone inclusion setting in Hilbert spaces, we introduce 
a relaxed inertial stochastic algorithm based on Tseng’s forward-backward-forward 
splitting method. Motivated by the gaps in convergence claims and rate statements 
in both deterministic and stochastic regimes, we develop a variance-reduced frame-
work and make the following contributions: (i) Asymptotic convergence guarantees 
are provided under both increasing and constant mini-batch sizes, the latter requir-
ing somewhat stronger assumptions on V; (ii) When V is monotone, rate statements 

Fig. 2  Trajectories for (SEG), (SFBF), and (RISFBF) for problem (CAP)
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provided in terms of a restricted gap function, inspired by the Fitzpatrick function 
for inclusions, show that the expected gap of an averaged sequence diminishes at the 
rate of O(1∕k) and oracle complexity of computing an �-solution is O(1∕�1+a) where 
a > 1 ; (iii) When V is strongly monotone, a non-asymptotic linear rate statement 
can be proven with an oracle complexity of O(log(1∕�)) of computing an �-solution. 
In addition, a perturbed linear rate is also developed. It is worth emphasizing that 
the rate statements in the strongly monotone regime accommodate the possibility 
of a biased stochastic oracle. Unfortunately, the growth rates in batch-size may be 
onerous in some situations, motivating the analysis of a polynomial growth rate in 
sample-size which is easily modulated. This leads to an associated polynomial rate 
of convergence.

Various open questions arise from our analysis. First, we exclusively focused on 
a variance reduction technique based on increasing mini-batches. From the point of 
view of computations and oracle complexity, this approach can become quite costly. 
Exploiting different variance reduction techniques, taking perhaps special structure 
of the single-valued operator V into account (as in [57]), has the potential of improv-
ing the computational complexity of our proposed method. At the same time, this 
will complicate the analysis of the variance of the stochastic estimators considerably 
and consequently, we leave this as an important question for future research.

Second, our analysis needs knowledge about the Lipschitz constant L. While in 
deterministic regimes, line search techniques have obviated such a need, such ave-
nues are far more challenging to adopt in stochastic regimes. Efforts to address this 
in variational regimes have centered around leveraging empirical process theory 
[33]. This remains a goal of future research. Another avenue emerges in applica-
tions where we can gain a reasonably good estimate about this quantity via some 
pre-processing of the data (see e.g. Section 6 in [62]). Developing such an adaptive 
framework robust to noise is an important topic for future research.

Appendix

Appendix A Auxiliary results

Lemma 16 For x, y ∈ � and scalars �, � ≥ 0 with � + � = 1 , it holds that

We recall the Minkowski inequality: For X, Y ∈ Lp(Ω,F,ℙ;�),G ⊆ F  and 
p ∈ [1,∞],

In the convergence analysis, we use the Robbins-Siegmund Lemma [38, Lemma 
11, pg. 50].

(A1)‖�x + �y‖2 = �‖x‖2 + �‖y‖2 − ��‖x − y‖2.

(A2)�[‖X + Y‖p�G]1∕p ≤ �[‖X‖p�G]1∕p + �[‖Y‖p�G]1∕p.
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Lemma 17 (Robbins-Siegmund) Let (Ω,F, 𝔽 = (Fn)n≥0,ℙ) be a discrete stochastic 
basis. Let (vn)n≥1, (un)n≥1 ∈ �0

+
(� ) and (�n)n≥1, (�n)n≥1 ∈ �1

+
(� ) be such that for all 

n ≥ 0,

Then (vn)n≥0 converges a.s. to a random variable v, and (un)n≥1 ∈ �1
+
(� ).

Lemma 18 Let z ≥ 0 and 0 < q < p < 1 . Then, if D ≥ 1

exp(1) ln(p∕q)
 , it holds true that 

zqz ≤ Dpz for all z ≥ 0.

Proof We want to find a positive constant Dmin > 0 such that 
Dmin exp(z ln(p)) = z exp(z ln(q)) for all z > 0 . Choosing D larger than this, gives a 
valid value. Rearranging, this is equivalent to D = z

(
q

p

)z ≥ 0 for all z ≥ 0 , or, which 
is still equivalent to ln(D) − ln(z) − z ln(q∕p) = 0. Define the extended-valued func-
tion f ∶ [0,∞) → [−∞,∞] by f (z) = ln(D) − ln(z) − ln(q∕p) if z > 0 , and f (z) = ∞ 
if z = 0 . Then, for all z > 0 , simple calculus show f �(z) = −1∕z − ln(q∕p) and 
f ��(z) = 1∕z2 . Hence, z ↦ f (z) is a convex function with a unique minimum 
z
min

=
1

ln(p∕q)
> 0 and a corresponding function value f (zmin) = ln(D) + ln(ln(p∕q)) + 1 . 

Hence, for D ≥ Dmin =
1

exp(1) ln(p∕q)
 , we see that f (zmin) > 0 , and thus zqz ≤ Dpz for 

all z ≥ 0 .   ◻
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