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• A systematic framework is built for decision-making model of second life batteries.
• Data-driven models and Monte Carlo method are applied to simulate the module-level aging performance of

second life batteries.
• An economic model is integrated with aging model to evaluate the price of retired batteries under different

second life applications.
• The decision between recycling and reusing is made upon various second life use cases.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4484966

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



A Decision-Making Model for Retired Li-ion Batteries
Jihan Zhuanga,c,∗, Amadeus Bachb, Bruis H. C. van Vlijmena,c, Stefan J. Reichelsteinb,d,
William Chueha, Simona Onorie,∗∗ and Sally M. Bensone,∗∗

aMaterials Science and Engineering Department, Stanford University, 450 Serra Mall, Stanford, 94305, California, United States
bMannheim Institute for Sustainable Energy Studies, University of Mannheim, Mannheim, Germany
cSLAC National Accelerator Laboratory, Menlo Park, 94025, California, United States
dGraduate School of Business, Stanford University, Stanford, 94305, California, United States
eEnergy Science and Engineering Department, Stanford University, 450 Serra Mall, Stanford, 94305, California, United States

A R T I C L E I N F O
Keywords:
Second life battery
Decision-making model
Data-driven model
Module-level aging model

A B S T R A C T
The growth of electric vehicles (EVs) has raised concerns about the disposition of their batteries
once they reach their end of life. Currently, recycling is regarded as the potential solution for
retired Li-ion batteries (LIBs). However, these LIBs still retain around 80% of their original
capacity, which can be repurposed for other energy storage system (ESS) applications in their
"second life" before recycling. Yet, there is no guidance for deciding whether to reuse or recycle
them. Here, we propose developing a decision-making model that evaluates retired batteries
from both technical and economic perspectives. We develop data-driven models and combine
them with an equivalent circuit model (ECM) to build module-level aging models. Simulations
show that limiting the State of Charge (SOC) operating range and charge current in second life
applications can extend the lifetime of LIBs. Upon when and how to use the battery in second
life, the simulated lifetime is between 1-6 years. From an economic perspective, we find that the
most profitable application is frequency regulation, which has a value of 273.4$ 𝑘𝑊 ℎ−1. We
present a comprehensive comparison of different end-of-life strategies to demonstrate the most
economically way to handle a retired battery.

1. Introduction
The issue of global energy sustainability is one of the most significant challenges facing humanity today.

Transportation alone accounts for 28% of worldwide energy consumption, highlighting the critical need for clean
and efficient transportation solutions noa (a). Electric vehicles (EVs) represent a promising solution to address this
issue, but managing retired EV batteries remains a challenge. By 2030, the widespread adoption of EVs is expected to
generate a surplus of 100-200 gigawatt-hours of batteries that no longer meet the necessary specifications for continued
use in EVs Zhu, Mathews, Ren, Li, Cogswell, Xing, Sedlatschek, Kantareddy, Yi, Gao, Xia, Zhou, Wierzbicki and
Bazant (2021). While recycling these batteries and extracting raw materials is the most established approach Chen, Ma,
Chen, Arsenault, Karlson, Simon and Wang (2019), the current recycling capacity is limited. Companies like Li-Cycle
aims to recycle only 35 kilo-tonnes of batteries by 2030 Li-Cylce, far below the projected 80 kilo-tonnes of retired
lithium-ion batteries in 2030 JEAN KUMAGAI. In addition, the LIBs in Tesla cars exhibit only a 10% degradation
even after 200,000 miles Justin Westbrook, indicating the batteries remain healthy when other components may start
to deteriorate after 10 years of service. Consequently, directly recycling the batteries after the EV service may not
always be the optimal choice in this scenario. To find an alternative solution, researchers are exploring the potential
to reuse retired batteries in Energy Storage Systems (ESS) as their second life applications Zhu et al. (2021). This
approach can reduce battery costs, extend the lifespan of these batteries, and thus provide a sustainable solution to
the circular economy. Furthermore, second life batteries (SLBs) could serve as a cheaper source of electricity, aiding
developing countries in improving their quality of life and electrifying their industries in a more sustainable way
Kebir, Leonard, Downey, Jones, Rabie, Bhagavathy and Hirmer, thereby promoting equity and helping them achieve
net-carbon-emission goals.
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In recent years, research articles and industrial reports have explored the economical feasibility of SLBs for ESSs.
Baumann et al. Baumann, Rohr and Lienkamp and Seger et al. Seger, Thivel and Riu have attempted to address the
technical challenges of SLBs, including lifetime estimation using battery aging models. Other studies have focused
on the economic viability of SLBs, analyzing repurposing costs and price estimation Mathews, Xu, He, Barreto,
Buonassisi and Peters; Börner, Frieges, Späth, Spütz, Heimes, Sauer and Li; Sun, Chipperfield, Kiaee and Wills
(2018). Furthermore, commercial companies such as Toyota noa (b) and Mercedes Duarte have launched demonstration
projects to assess the economical feasibility of SLB. Nonetheless, the recycling versus reusing debate is still ongoing,
given the lack of experimental data and model proofing. No comprehensive decision-making model exists for the end-
of-life strategy for different retired Li-ion batteries, considering both technical and economic perspectives. As discussed
in a recent review paper, the authors pointed out that the most common and urgent demand is to have a comprehensive
battery evaluation tool and a battery passport Zhu et al. (2021), which refers to a battery dataset containing the battery
chemistry and usage profile. To address this gap, our paper proposes a novel decision-making model that can hopefully
solve the ongoing debate between recycling and reusing of SLBs. Our model also calls for the implementation of battery
passport in United States.
1.1. The aging model for second life battery

Current models for predicting Li-ion battery degradation are mostly focused on individual battery cells and their
first life Xiong, Li and Tian Lucu, Martinez-Laserna, Gandiaga and Camblong. These models can be categorized into
physics-based models Prada, Di Domenico, Creff, Bernard, Sauvant-Moynot and Huet,Pinson and Bazant ,Weaver,
Allam and Onori (2020), Arunachalam and Onori (2019), empirical models (including semi-empirical models) Chu,
Allam, Cordoba Arenas, Rizzoni and Onori (2020), Petit, Prada and Sauvant-Moynot (2016), Rechkemmer, Zang,
Zhang and Sawodny (2019), and data-based models Hu, Che, Lin and Onori (2021),Severson, Attia, Jin, Perkins, Jiang,
Yang, Chen, Aykol, Herring, Fraggedakis, Bazant, Harris, Chueh and Braatz,Attia, Grover, Jin, Severson, Markov,
Liao, Chen, Cheong, Perkins, Yang, Herring, Aykol, Harris, Braatz, Ermon and Chueh. In recent years, machine
learning (ML) models have gained significant attention in academia and industry due to high prediction accuracy
with low computational and labor costs Ng, Zhao, Yan, Conduit and Seh. However, with the inhomogeneity of cells in
a module, the uncertainty related to aging increases significantly as the battery degrades Tanim, Shirk, Bewley, Dufek
and Liaw,Johnen, Pitzen, Kamps, Kateri, Dechent and Sauer. In addressing the challenge of uncertainty in degradation,
probabilistic ML methods are widely applied Jones, Stimming and Lee, since most ML models are deterministic.
Gaussian process regression (GPR) is one of the stochastic methods that incorporates uncertainties into the prediction
process Richardson, Osborne and Howey (2017). More specifically, GPR calculates the probability distribution over
all admissible functions that fit the data, resulting in outputs that are not single values but rather a range of possible
values with uncertainties. This aligns perfectly with the nonlinear and complex nature of battery degradation. In the
literature, Yang et al. Yang, Zhang, Pan, Wang and Chen applied the GPR technique to estimate the battery SOH.
Another work from Liu et al. Liu, Hu, Wei, Li and Jiang also considered the temperature and depth of discharge
dependency in battery aging prediction and used the GPR model for battery SOH prediction. However, for second-life
applications, the cost of disassembling retired batteries into cells is prohibitive Rallo, Benveniste, Gestoso and Amante.
Since additional factors affect module degradation, such as electrical configuration, cell inhomogeneity, and cell-to-
cell thermal interactions Tanim et al., it is essential to develop effective simulation tools for battery aging trajectory
predictions at the module level to assess battery module level degradation. To account for these factors, researchers
have attempted to integrate various physical models and simulate the aging performance of battery modules. Xia et al.
Xia, Wang, Ren, Tao, Lu, Tian, Hu, Wang, Su, Chong, Jin and Lin (a),Xia, Yang, Wang, Ren, Sun, Feng and Qian (b)
introduced a multi-physical model that combined electrochemical, thermal, fluid dynamics, and series-parallel circuit
models. The authors also discussed the optimal method for balancing state-of-health (SOH) to prolong the lifespan of
battery modules and packs. In a recent study Seger et al. a simple empirical model was proposed for second-life battery
cells, to analyze how individual cell uncertainties could impact the module’s capacity. Although a module-level model
for SLBs was not established in Seger et al., it highlighted the need to consider the effects of cell uncertainties on the
module level while developing aging models.
1.2. The economic model for second life battery

It is essential to demonstrate the profitability of using SLBs for specific applications by estimating their fair
market value using a reliable method. Many previous studies have explored different cases of SLBs usage. For
instance, Neubauer et al. Neubauer, Pesaran, Williams, Ferry and Eyer (b),Neubauer, Smith, Wood and Pesaran (a)
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conducted early technoeconomic research on SLBs and evaluated the revenues obtained from various applications
using the estimated battery price of 132$ 𝑘𝑊 ℎ−1. In Debnath, Ahmad and Habibi, Debnath et al. analyzed a different
use of second life batteries as power backup for generation assets and demonstrated under certain conditions, the
corresponding revenues would suppose a payback period of c.a. 1.5 years for the SLBs.

However, a recent study Börner et al. suggested that it was unnecessary to transfer SLBs into stationary storage
systems related to the grid, since they might not be suitable for daily cycle demand, and the new battery price was low
compared to the high repurposing cost. The results and conclusions presented in the literature vary significantly based
on different applications, jurisdictions, and estimation models.
1.3. Article objective and structure

Based on previous research in the field, it is evident that scholars have approached the topic of retired Li-ion
batteries from multiple perspectives, including aging models and economic analysis. However, despite the abundance
of research, a comprehensive decision-making framework doesn’t exist for retired Li-ion batteries. This paper proposes
a decision-making model that integrates an aging prediction model and an economic evaluation model. The proposed
model aims to provide researchers and industry professionals with a better understanding of SLBs’ degradation and the
various end-of-life strategies for retired Li-ion batteries. The novelty of this work is in three aspects: 1) our work first
proposed a systematic model framework to evaluate retired Li-ion batteries for different second life applications; 2) the
aging model we developed works for battery modules and packs, while most of the current aging prediction models
are focused on cell-level; 3) the uncertainties in battery degradation is also well considered in our model, which would
greatly affect the economic value of retired batteries and further impact the end-of-life decision.

This paper is structured as follows: Section 2 outlines the methodology used in this study. Section 3 provides a
detailed explanation of our modeling approach for cell- and module-level prediction models, as well as the economic
model. Section 4 presents the results of our prediction model at both the module and cell levels, along with the economic
value calculated by our economic model. Finally, Section 5 concludes this work and suggests future research directions.

2. Methodology
2.1. Experimental dataset

The data used in this study was obtained from Vlijmen, Asinger, Lam, Cui, Ganapathi, Sun, Herring, Gopal, Geise,
Deng, Thaman, Kang, Trewartha, Anapolsky, Storey, Gent, Braatz and Chueh. The dataset consisted of battery cycling
data from 363 cylindrical Tesla cells, which utilized nickel-cobalt-aluminum (NCA) oxides as cathode materials and
silicon oxides with graphite as anode materials. The aging experiment utilized 218 different combinations of cycling
parameters. Each parameter was varied within certain ranges, as shown in Vlijmen et al. Figure S1. In this work,
six cycling parameters (i.e. charge current in two stages, discharge current, charge cutoff voltage, discharge cutoff
voltage, and constant voltage charge time), along with initial battery cell capacity and resistance values were selected
as input features for model training. Additionally, the battery lifetime was evaluated, using capacity throughput-based
equivalent full cycles (EFCs) Preger, Barkholtz, Fresquez, Campbell, Juba, Romàn-Kustas, Ferreira and Chalamala.
Each cell underwent a sequence of diagnostic test and aging cycle test at a constant temperature (25◦𝐶). Typically,
100 aging cycles were conducted between each diagnostic cycle. Figure 1 shows the graphic demonstration of the test
sequence. More details of these test protocols can be found in Vlijmen et al..
2.2. Decision-making model on end-of-life strategy

Figure 2 presents a comprehensive roadmap of the decision-making model for EOL strategies for retired Li-ion
batteries. This model can be applicable to both OEMs and battery repurposing companies. The process starts with
retired battery modules that are pre-disassembled from the original battery packs. The first step is to acquire the
battery passport, which contains the battery basic information (including chemistry and usage profile). After conducting
diagnostic tests, we can determine if the battery is qualified for reuse. The criteria of selecting qualified battery modules
for reuse is not discussed in this paper. Here, we are only focused on the batteries pass the first testing phase. In
the evaluation phase, the decision-making model is used to compare the values of the retired battery in all possible
scenarios. With available first-life battery data from battery passport, the prediction model can first estimate the RUL
of the retired battery in different second life use cases. The RUL can then be input into the economic model for further
assessment. In the last phase, based on the comparison between estimated SLB values under different scenarios and
recycling values, a decision can be made: reusing the batteries for second life application or direct recycling. If reusing
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Figure 1: The aging test sequence of Tesla cells in experiment: a) diagnostic test, b) aging cycle test.

Figure 2: The roadmap of decision-making model for retired LIBs, including three critical steps: 1) testing phase, 2)
evaluation phase, 3) application phase.

is preferred, the second life application with the highest value is output as the potential choice for the battery module.
The decision-making model consists of two sub-models, the module-level prediction model and the economic model,
which are introduced explicitly in the following section.
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3. Sub-models of Decision-making Model
3.1. Module-level Model Framework

The proposed module-level model comprises three main components: an equivalent circuit model (ECM), a GPR
model, and a series-parallel circuit model. The module-level model predicts the aging trajectory of LIBs in their first
and second life. Figure 3 provides an overview of the framework of the module-level model. For a given second life
application, the power demand of the battery module is predefined. Using the module voltage measurements, the
required battery module current can be calculated using module power divided by module voltage. The series-parallel
circuit model is utilized to calculate the current flow across each cell of the battery module, depending on the module
connections. A first-order ECM evaluates the voltage of every cell, using the corresponding cell current as an input. The
outputs from the ECM and the cell current are then fed into the GPR model, which estimates the capacity degradation
and resistance increase for all cells in the module. Subsequently, the series-parallel circuit model computes the module’s
capacity based on the capacity of each cell. During each simulation step, the parameters (capacity and resistance of each
cell) in the ECM get updated for the next simulation step. Additionally, the voltage of the cell is utilized to calculate the
module voltage and then update the input current to the battery module. As a result, the proposed model can simulate
the battery module degradation.

Figure 3: The framework of module-level degradation model, which consists of ECM, cell-level aging model and series-
parallel circuit model.

3.2. First Order Equivalent Circuit Model
ECM is commonly utilized in modeling the dynamic behavior of a battery, owing to its swift execution time,

inherent simplicity, and relatively high accuracy Tran, Mathew, Janhunen, Panchal, Raahemifar, Fraser and Fowler
(2021). In this study, the first-order ECM is chosen for its simplicity. The model structure is shown in Figure 3.
More details of ECM can refer to Ahmed, Gazzarri, Onori, Habibi, Jackey, Rzemien, Tjong and LeSage. All the
parameters in ECM can be identified by Hybrid Pulse Power Characterization (HPPC) test at different SOC values
Nemes, Maria CIORNEI, Ruba and Martis.
3.3. Gaussian Process Regression Model Structure

We develop our multi-step prediction model based on previous literature Liu et al., Takahashi, Allam and Onori
(2023), as shown in Figure 4. The experimental data is used for model training. The input of the model is the
combination of previous capacity data and the six cycling parameters, and the corresponding output is the capacity at
time 𝑡 + 𝑘. More specifically, the input and output vector are expressed in Equation 1 and Equation 2.
Jihan Zhuang et al.: Preprint submitted to Elsevier Page 5 of 18
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[𝐶𝑎𝑝𝑐𝑒𝑙𝑙(𝑡 − 𝑐), ...𝐶𝑎𝑝𝑐𝑒𝑙𝑙(𝑡), 𝐶𝑐ℎ𝑎𝑟𝑔𝑒, 𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 𝑉𝑐ℎ𝑎𝑟𝑔𝑒, 𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 𝑡𝐶𝑉 𝑐ℎ𝑎𝑟𝑔𝑒] (1)

[𝐶𝑎𝑝𝑐𝑒𝑙𝑙(𝑡 + 𝑘), 𝑆𝑇𝐷(𝑡 + 𝑘)] (2)
In each recursion time step, e.g. at time 𝑡, the predicted capacity value is 𝐶𝑎𝑝𝑐𝑒𝑙𝑙(𝑡 + 1). This predicted value is also
used to update the input vector for next step prediction, until it reaches to the time 𝑡 + 𝑘. All further capacity values
during the time 𝑡 and time 𝑡 + 𝑘 can be obtained accordingly. In our work, we choose the Matern covariance function
as the kernel function, as it was effective in different regression cases such as Richardson, Osborne and Howey. More
modeling details can refer to this work Takahashi et al. (2023).

Figure 4: The structure of iterative cell-level GPR model for capacity prediction.

However, the GPR model usually requires a significant amount of computational time for training when facing a
large dataset. To reduce the complexity of the GPR model, we implement a technique called bagging or bootstrapping.
This involves creating 𝑚 different bags of size 𝑛 by randomly sampling from the whole dataset with replacement. More
details about bagging can also refer to this work Takahashi et al. (2023).

In addition to the capacity degradation model, we apply the same method to develop a GPR model for resistance
increase during cell degradation. In LIBs, among the most important resistance components in the battery are ohmic
resistance and polarization resistance. The total resistance (𝑅𝑐𝑒𝑙𝑙,𝑖 ) of the cell is defined as the sum of these two
resistances, and is used in the model. We build the resistance increase model based on the same GPR model structure
by simply replacing the previous capacity data with 𝑅𝑐𝑒𝑙𝑙,𝑖 data. The predicted resistance value is updated with ECM
in every prediction step, along with the predicted capacity.

The models are evaluated on Root-Mean-Square Percent Error (RMSPE), Mean Absolute Percent Error (MAPE),
and coefficient of determination (𝑅2) with details in the Appendix.
3.4. Series-parallel Circuit Model

The series-parallel circuit model is established to calculate the current distribution and capacity of battery modules.
This is necessary because the internal resistance and operating conditions vary from cell to cell due to the heterogeneity
and cell connections of the battery module, resulting in effects of the different charging and discharging processes on
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cells and modules Xia et al. (a). In a series connection, cells in the module operate under the same current, and the
module voltage is the sum of all cells in series, as shown in Equation 3 and 4.

𝑉𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) =
𝑢
∑

𝑖=1
𝑉𝑐𝑒𝑙𝑙,𝑖(𝑡) (3)

𝐼𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) = 𝐼𝑐𝑒𝑙𝑙,1(𝑡) = 𝐼𝑐𝑒𝑙𝑙,2(𝑡) = ... = 𝐼𝑐𝑒𝑙𝑙,𝑢(𝑡) (4)
On the other hand, in a parallel connection, cells operate at the same voltage as the module, and the module current is
the sum of all currents into each cell, expressed in Equation 5 and 6.

𝑉𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) = 𝑉𝑐𝑒𝑙𝑙,1(𝑡) = 𝑉𝑐𝑒𝑙𝑙,2(𝑡) = ... = 𝑉𝑐𝑒𝑙𝑙,𝑣(𝑡) (5)

𝐼𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) =
𝑣
∑

𝑖=1
𝐼𝑐𝑒𝑙𝑙,𝑖(𝑡) (6)

Similarly, the module capacity can be calculated by cell capacities using this model. When the module has a series
connection, the module capacity is equal to the minimum capacity among all the cells in series (shown in Equation 7),
whereas for parallel connection, the module capacity is the sum of all the cells in parallel (shown in Equation 8).

𝐶𝑎𝑝𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) = min(𝐶𝑎𝑝𝑐𝑒𝑙𝑙,1(𝑡), 𝐶𝑎𝑝𝑐𝑒𝑙𝑙,2(𝑡), ..., 𝐶𝑎𝑝𝑐𝑒𝑙𝑙,𝑢(𝑡)) (7)

𝐶𝑎𝑝𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) =
𝑣
∑

𝑖=1
𝐶𝑎𝑝𝑐𝑒𝑙𝑙,𝑖(𝑡) (8)

3.5. Monte Carlo Simulation
In the context of battery module simulations, a single simulation cannot adequately capture the overall aging

behavior due to uncertainties stemming from input variables and model prediction errors. To address this, Monte Carlo
(MC) Simulation is introduced as a method to obtain statistics results of battery module degradation from multiple
simulation results. Some researchers have combined MC simulation with battery aging models in the literatureZhang,
Xiong, He and Pecht (2019),Tang, Zou, Yao, Lu, Xia and Gao (2019). In this study, the MC method is applied to account
for heterogeneity of individual cells within the whole battery module and analyze battery module-level aging behavior
through multiple simulations. Specifically, at the beginning, each cell in the module is randomly assigned a capacity
and a resistance value from two normal distributions, where the values of 𝜇𝑐 = 4.67, 𝜎𝑐 = 0.005, 𝜇𝑟 = 0.026, 𝑎𝑛𝑑𝜎𝑟 =
0.05 are calculated from experimental data Vlijmen et al.. During each simulation iteration, at each time step, the
mean and standard deviation of cells’ capacity and resistance values are predicted via the GPR models. The actual
𝐶𝑎𝑝𝑐𝑒𝑙𝑙,𝑖(𝑡) is then randomly chosen from the predicted capacity distribution, subject to a bounding condition that
𝐶𝑎𝑝𝑐𝑒𝑙𝑙,𝑖(𝑡) ≤ 𝐶𝑎𝑝𝑐𝑒𝑙𝑙,𝑖(𝑡 − 1). Similarly, the resistance of the cell is chosen from the predicted resistance distribution,
subject to the opposite bounding condition that 𝑅𝑐𝑒𝑙𝑙,𝑖(𝑡) ≥ 𝑅𝑐𝑒𝑙𝑙,𝑖(𝑡−1). These bounding conditions aree based on the
assumption that as battery degrades, the capacity of the battery will decrease and the resistance will increase. After
obtaining all the capacity values, Equation 7 and 8 are applied to calculate the overall capacity of the module in terms
of series/parallel connections. The resistance and capacity values of each cell are also used to update the parameters in
the ECM. This iterative process continued until the total capacity of the module reach the end-of-life condition, which
is set at 60% of its initial capacity for second life. We select 100 as the number of iterations for MC, with details in SI
Figure S5.
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3.6. Economic Model
The economic model developed in this work is based on the present value of future cash flows to calculate the

selling price of SLBs in different applications. Here, the selling price is the amount of money that buyers are willing
to pay for the SLBs in the open market. The model includes two components: the Fair Market Value (FMV), which
is the value a battery can provide regardless of its new or used condition, and the recycling value, which is calculated
based on metal prices and recycling technologies.

The FMV of the used battery module after repurposing is calculated by setting the 𝑁𝑃𝑉𝑛𝑒𝑤 and 𝑁𝑃𝑉𝑢𝑠𝑒𝑑 to be
the same. These two terms are calculated using Equation 9 and Equation 10, which take into account the predicted
lifetimes of new and used batteries from degradation model.

𝑁𝑃𝑉𝑛𝑒𝑤 =
𝑇𝑛𝑒𝑤
∑

𝑖=1

𝑁 ⋅ 𝑒 ⋅ 𝑝𝑗 ⋅ 𝜂 ⋅ 𝑆𝑂𝐻𝑖 ⋅𝐷𝑂𝐷𝑗

(1 + 𝑟)𝑖
− 𝑒 ⋅ 𝑉𝑒,𝑛𝑒𝑤 −𝑤 ⋅ 𝑉𝑤,𝑛𝑒𝑤 +

𝑃𝑟

(1 + 𝑟)𝑇𝑛𝑒𝑤
(9)

𝑁𝑃𝑉𝑢𝑠𝑒𝑑 =
𝑇𝑢𝑠𝑒𝑑
∑

𝑖=1

𝑁 ⋅ 𝑒 ⋅ 𝑝𝑗 ⋅ 𝜂 ⋅ 𝑆𝑂𝐻𝑖 ⋅𝐷𝑂𝐷𝑗

(1 + 𝑟)𝑖
− 𝑒 ⋅ (𝑉𝑒,𝑢𝑠𝑒𝑑 + 𝐶𝑟) +

𝑃𝑟

(1 + 𝑟)𝑇𝑢𝑠𝑒𝑑
(10)

𝑃𝑠𝑒𝑙𝑙𝑖𝑛𝑔,𝑢𝑠𝑒𝑑 = 𝑒 ⋅ (𝑉𝑒,𝑢𝑠𝑒𝑑 + 𝐶𝑟) (11)
The 𝑁𝑃𝑉𝑛𝑒𝑤 is determined by summing up the revenue generated by the new battery in a specific application
over its lifetime, along with the depreciated recycling value, and then subtracting the cost of the energy and power
components. Similarly, the 𝑁𝑃𝑉𝑢𝑠𝑒𝑑 is calculated using the same method, but without considering in the cost of the
power component. This is because the power component derived from EV batteries significantly surpasses the demands
of stationary storage power components. If the 𝑁𝑃𝑉𝑛𝑒𝑤 < 0 , then the 𝑁𝑃𝑉𝑢𝑠𝑒𝑑 is assumed to have a minimum value
of 0. In Equation 10, no costs for the power component are included as we assume that the power component of used
battery modules from electric cars is larger than the power requirements in a second life. Finally, the selling price of
the SLBs can be estimated by Equation 11.

The decision on whether to recycle the SLBs or use them in an application is based on the highest selling price
among the applications and the recycling price. If the selling price is less than the recycling price, the SLBs will be
directly recycled. Otherwise, the SLBs will be recommended for use in the application with the highest selling price.

4. Results and Discussions
4.1. Cell-level GPR Prediction Results

Table 1 summarizes the prediction performances of the cell-level GPR model, including results with different
numbers of capacity inputs using bagging technique. As shown in Figure 5, we can see that 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝑃𝐸 and
standard deviation decrease, as well as the 𝑅2 increases with larger numbers of capacity inputs. This indicates the GPR
model’s performance improves with increased number of capacity input. However, when we compare the bagged GPR
model performances of four and five capacity inputs, the difference is not significant. Therefore, we can conclude that
it is unnecessary to further increase the number of capacity inputs. For bagging technique, it is always beneficial to
have larger 𝑚 and 𝑛 values, as observed in SI Figure S1 and Figure S2. But excessively large 𝑚 and 𝑛 values can lead to
long training times, counter to the goal of reducing computation time. Here, we choose 𝑚 = 40 and 𝑛 = 50, as it shows
a good model performance and no significant differences are observed among different bagging setups (shown in SI
Table S1 ). Based on the foregoing analysis, we finally choose 5 previous capacities as one of the input parameters,
and the bagging parameters are set to be the combination of 𝑚 = 40, 𝑛 = 50. The results of train and test dataset for
selected model setup is shown in SI Figure S9.

We also apply the bagging technique to train a second GPR model for resistance increase prediction, and the
results are presented in Figure 6 and Table 2. As the number of resistance inputs increases, the model performances
are improved, with decreased𝑅𝑀𝑆𝑃𝐸,𝑀𝐴𝑃𝐸, standard deviation and increased𝑅2. We select five resistance inputs
and the bagging setup of 𝑚 = 40, 𝑛 = 50 for the model training and subsequent simulation processes. The results of
train and test dataset for selected model setup is shown in SI Figure S10.
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No. of Input 2 Input 3 Input 4 Input 5 Input
𝑅𝑀𝑆𝑃𝐸 (%) 5.47 5.13 4.00 3.56
𝑀𝐴𝑃𝐸 (%) 2.09 1.92 1.75 1.56

𝑅2 0.85 0.86 0.88 0.90
Standard deviation (mAh) 43.5 39.3 38.6 33.6

Table 1
Tabular summary of cell-level GPR model performances for capacity degradation.

Figure 5: Graphic summary of cell-level GPR model performances for capacity degradation: a) 𝑅𝑀𝑆𝑃𝐸 and 𝑀𝐴𝑃𝐸
results, b) 𝑅2 and standard deviation results.

No. of Input 2 Input 3 Input 4 Input 5 Input
𝑅𝑀𝑆𝑃𝐸 (%) 7.83 6.60 5.23 4.84
𝑀𝐴𝑃𝐸 (%) 5.99 5.00 3.80 3.35

𝑅2 0.77 0.83 0.84 0.90
Standard deviation (mOhm) 1.84 1.63 1.52 1.44

Table 2
Tabular summary of cell-level GPR model performances for resistance increase

4.2. Module-level Simulation Results
Considering the computational time of the model simulation and the most common commercial battery storage

products in the market (listed in SI Table S3 ), the battery module capacity is set to be 3.3𝑘𝑊 ℎ for simulation, which
can be approximated as a 14P14S connection, meaning that 14 cells connect in parallel first and then connect in series.
Table 3 is the summary of the approximated cycling profiles of battery modules from the actual demand profiles of
three use cases in Comello and Reichelstein, Sbordone, Bertini, Di Pietra, Falvo, Genovese and Martirano (2015),
Bauer, Nguyen, Jossen and Lygeros (2018). The approximation methods of each case are introduced explicitly in the
Appendix.

We also simulate two real life scenarios for each use case. The first scenario involves LIBs received from the same
first life application but retired at different SOH. The second scenario involve LIBs received from different first life
applications with the same SOH. To simulate these scenarios, we assume the initial end-of-first-life points at 90%,
85%, and 80% SOH, and select three distinguished cell aging data from the experiment as different first life histories.
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Figure 6: Graphic summary of cell-level GPR model performances for resistance increase: a) 𝑅𝑀𝑆𝑃𝐸 and 𝑀𝐴𝑃𝐸 results,
b) 𝑅2 and standard deviation results.

Use cases Charge current SOC operating
range

Constant voltage
charge time Discharge current

Residential
application with
photovoltaic(PV)
system

C/5 10-90% 90 min C/5

EV charging station C/2 20-80% 90 min C/2
Frequency regulation C/5 30-50% 30 min C/5

Table 3
Cycling conditions of battery modules in different second life applications.

First life history (cell
number in experiment) Charge current SOC operating

range
Constant voltage
charge time Discharge current

Case 1 (173) C/2 0-90% 90 min C/2
Case 2 (250) C/5 0-90% 30 min 2C
Case 3 (148) 1C 0-90% 90 min 1C

Table 4
Experimental cycling conditions of SLB modules in different first life histories.

In all simulation scenarios, we adopt experimental data as the initial input and subsequently simulate the degradation
of battery modules in their second life.
4.2.1. Effects of different second life duty profiles

Figure 7 presents the simulation results of three use cases with different duty profiles. Figures 7 (a-c) show the
simulation results of a battery with the same first life history but different second life starting points and duty profiles.
The initial capacity inputs for these three figures are selected from experimental data of cell number 173, whose cycling
conditions are listed in Table 4, Case 1. In each figure, the starting points of the second life are kept the same for the
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three second life duty profiles, which are 90%, 85%, and 80% SOH, respectively. From all three figures, it is evident
that a battery module undergoing different second life duty profiles would have diverse aging patterns, especially in
Figure 7 (a). In this figure, the battery module used in a frequency regulation application has the longest lifetime,
approximately 800 EFCs in its second life, while in the residential application, the battery module lasts for only around
400 EFCs in its second life. However, the difference becomes less noticeable if the battery is used after reaching 80%
SOH. As shown in Figure 7 (c), the lifetime difference between the two applications decreases to 100 EFCs, and the
degradation curves become more similar. This indicates that the second life starting points also play a crucial role in
battery second life, which is observed in SI Figure S8.

Limiting the SOC operating range can extend the lifetime of second life batteries, based on the simulation results
of battery modules used in frequency regulation and residential applications. However, the effect of limiting the SOC
operating range gradually diminishes as the battery ages. In contrast, the current has less impact on the battery aging in
second life compared to the SOC operating range. This is demonstrated by the comparison of the case of EV charging
station, which has a higher current but a smaller SOC operating range profile, and the case of residential application,
which has a lower current but a larger SOC operating range profile, in Figure 7 (a). In summary, the effects of different
second life duty profiles are noticeable and also related to the starting points of second life. Moreover, limiting the
SOC operating range is found to be more beneficial than decreasing the current in second life applications.

Figure 7: Simulation results showing distinguished battery module-level aging curves in different second life applications.
Each subfigure corresponds to a different second life starting point: a) 90% SOH, b) 85% SOH, and c) 80% SOH. In each
figure, different colors represent different second life applications.

4.2.2. Effects of different first life histories
Three cell cycling data are selected as usage profiles for different first life applications, as shown in Table 4. Figure

8 (a-c) represents the SLB degradation behaviors of different first life histories and second life starting points. Batteries
with different first life histories exhibit completely distinct aging behaviors in their second lives, regardless of when
they are transferred from their original applications to second life applications. Upon closer examination of each figure,
we also notice that batteries subjected to larger charge currents in their first life exhibit faster degradation in both their
first and second lives, as indicated by the degradation curves of Case 1 and Case 2 in Figure 8 (a-c). However, discharge
currents has a significantly lesser impact on battery degradation. In Case 2, the battery has a higher discharge current
in first life, but experiences less degradation compared to other two cases. These results suggest that optimizing the
charge current can reduce battery degradation and extend battery lifetime for both first and second life.

In addition, when the second life starting point is at 90% SOH, the lifetime difference between Case 1 and 3 in
second life is 289 EFCs, but it drops to 189 EFCs when the starting point is at 80% SOH. These results demonstrate
that first life histories and second life starting points have a correlated effect on battery second life degradation. The
lower the starting point, the less difference there is between the batteries from different first life histories. Similarly, a
correlated effect is observed between different second life duty profiles and first life histories, as shown in SI Figure
S6. The more intensive the second life duty profiles, the less discrepancy there is between different first life histories.
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Figure 8: Simulation results of battery module-level degradation in frequency regulation application with different first life
histories. Each subfigure corresponds to a different second life starting point: a) 90% SOH, b) 85% SOH, and c) 80%
SOH. Different colors correspond to different first life histories.

4.3. Economic Model Simulation Result and Decision-making Process
Once the module-level prediction model has been established, an economic model that takes the predicted lifetime

and SOH of the module capacity as inputs can be used to evaluate the selling price in different use cases. The values
of model parameters are presented in SI Table S1. We simulate the selling prices of SLBs in three different second-
life use cases with different second-life starting points (80% and 90% SOH) and first-life histories (Case 2 for high
degradation and Case 3 for low degradation scenarios). Based on the price estimation in different scenarios, we can
then make decisions by comparing the selling prices of SLBs with recycling prices. The results are summarized in
Table 5. From Table 5, it is evident that the value of SLBs in residential applications is the lowest among the three
second life applications. This is primarily due to the intensive cycling profile of residential use, which results in a
shorter lifetime of the battery module, typically 1-3 years. Additionally, the unit revenue obtained from SLBs used
in residential applications is also relatively small. Therefore, if a battery has already degraded to 80% SOH, it is not
recommended to reuse it in a residential application. Instead, it would be better to either reuse it in other second life
applications or recycle it. In comparison, SLBs used in EV charging stations and frequency regulation have higher
selling prices. As shown in Table 5, for a retired battery module with a high degradation rate in its first life, the optimal
strategy is to reuse it in an EV charging station for a second life. If the battery has a low degradation rate in its first life,
it would be more beneficial to reuse it in a frequency regulation application. The highest selling price, i.e., $ 273.4$
𝑘𝑊 ℎ−1, is achieved when the SLBs are utilized in frequency regulation applications at 90% SOH with low capacity
degradation in the first life. This phenomenon can be explained by the fact that SLBs used in frequency regulation
applications have a longer lifetime, up to 6 years, but a lower unit revenue, whereas the unit revenue of SLBs used in
EV charging stations is higher but the battery can only last for a maximum of 3 years. Therefore, the value of SLBs is
mainly determined by their lifetime and unit revenue, but there is a trade-off between these two factors. For the three
selected applications, in most cases, reusing is preferred over recycling. However, for residential applications, recycling
is a better choice unless the received batteries have low degradation history and retired at 90% SOH. To summarize,
the decision-making process is case-dependent, which aligns with our initial assumptions. Generally, the guideline for
nickel-based LIBs is to leverage retired batteries in a second life application with higher unit revenue since the lifetime
is limited, and a less demanding application will not improve it much. Unless the battery is well-utilized and monitored
in its first life, i.e., degradation rate is controlled and minimized, and transferred into the second life at an early stage,
the battery can be used for a light-duty application for a long time to maximize its residual value.

5. Conclusion and Future Work
In this work, a novel decision-making model designed for retired Li-ion batteries was proposed. The results

demonstrate that the aging model is capable of predicting the lifetime range of retired Li-ion battery modules for
various second life applications. The simulated battery module exhibits a lifetime of 1-6 years, depending on the use
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Second life application Second life starting
SOH

First life degradation
scenario

Battery selling price
($ 𝑘𝑊 ℎ−1)

Residential application
90% High 45.2

low 92.7

80% High 23.5
low 28.3

EV charging station
90% High 211.7

low 227.9

80% High 109.7
low 112.4

Frequency regulation
90% High 159.3

low 273.4

80% High 101.2
low 114.5

Table 5
SLB selling prices under different scenarios. For each second life application, based on the battery first life degradation
case and SOH, the price is estimated by the economic model.

case. Consequently, the selling prices of SLBs vary between 23.5-273.4 $ 𝑘𝑊 ℎ−1 for different scenarios. Considering
the degradation uncertainties, the end-of-life strategy is determined by comparing the selling prices with the recycling
values under the best and worst scenarios. In general, reusing is preferred over recycling, particularly for leveraging
SLBs in EV charging stations, due to their high unit revenue in most cases. However, for certain scenarios of residential
applications, reusing is not profitable, and recycling appears to be a better option.

This work bridges the gap in the current research on second life batteries and provides a tool to decide whether
to recycle or reuse the retired Li-ion battery modules from EVs. We believe this model can be useful for both OEMs,
who want to know the selling values of their retired batteries, and recycling or repurposing companies, who try to find
profitable applications to allocate SLBs.

The forthcoming studies will aim to enhance the completeness of the model by incorporating a reliable thermal
model and incorporating additional experimental data from other chemical compositions, such as Lithium Iron
Phosphate (LFP). Moreover, the scope of our model analysis can be extended to encompass more potential second-life
applications, and actual user data from the energy storage market can be integrated to facilitate the emerging SLB
industry. Furthermore, it is crucial to take into account the market size of possible second-life applications during the
decision-making process. Once the market capacity for the most profitable application is met, the next best alternative
should be considered.
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Symbol Unit Explanation

𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 V The discharge cutoff voltage of cells in aging experiment
𝑉𝑐ℎ𝑎𝑟𝑔𝑒 V The charge cutoff voltage of cells in aging experiment
𝐶𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 C The discharge C-rate of cells in aging experiment
𝐶𝑐ℎ𝑎𝑟𝑔𝑒 C The charge C-rate of cells in aging experiment
𝑡𝐶𝑉 𝑐ℎ𝑎𝑟𝑔𝑒 minute The constant voltage charge time of cells in aging experiment
𝑐 Unitless The number of input capacity values in GPR model
𝑘 Unitless The total number of iterative prediction steps in GPR model
𝑆𝑇𝐷 Ah The standard deviation of cell capacity predicted by GPR model
𝐼𝑐𝑒𝑙𝑙,𝑖(𝑡) A The current of each individual cell in a module at time t
𝑉𝑐𝑒𝑙𝑙,𝑖(𝑡) V The voltage of each individual cell in a module at time t
𝐶𝑎𝑝𝑐𝑒𝑙𝑙,𝑖(𝑡) Ah The capacity of each individual cell in a module at time t
𝑅𝑐𝑒𝑙𝑙,𝑖(𝑡) Ω The resistance of each individual cell in a module at time t
𝐼𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) A The current of a battery module at time t
𝑉𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) V The voltage of a battery module at time t
𝐶𝑎𝑝𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) Ah The capacity of a battery module at time t
𝑃𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) kW The power demand of a battery module at time t
𝑢 Unitless The number of cells connected in series in a battery module
𝑣 Unitless The number of cells connected in parallel in a battery module
𝜇𝑐 Ah The mean of cell capacities before aging experiment
𝜎𝑐 Ah The standard deviation of cell capacities before aging experiment
𝜇𝑟 Ω The mean of cell resistance before aging experiment
𝜎𝑟 Ω The standard deviation of cell resistance before aging experiment
𝑚 Unitless The number of GPR submodels in bagging technique
𝑛 Unitless The number of training samples in bagging technique
𝑁𝑃𝑉𝑛𝑒𝑤 $ The net profit value of a new battery module
𝑁𝑃𝑉𝑢𝑠𝑒𝑑 $ The net profit value of a used battery module
𝑉𝑒,𝑛𝑒𝑤 $ ⋅ 𝑘𝑊 ℎ−1 System price of energy component for a new battery
𝑉𝑤,𝑛𝑒𝑤 $ ⋅ 𝑘𝑊 −1 System price of power component for a new battery
𝑉𝑒,𝑢𝑠𝑒𝑑 $ ⋅ 𝑘𝑊 ℎ−1 System price all components for a used battery
𝑤 kW Power of new battery
𝑒 kWh Energy storage capacity of a new battery
𝑝𝑗 $ The unit revenue of different second life applications per kWh stored
𝜂 Unitless Round-trip efficiency factor of the storage system

𝑆𝑂𝐻𝑖 Unitless Battery capacity state of health
𝐷𝑂𝐷𝑗 Unitless Battery state of charge operating range in different applications
𝑁 Unitless Number of charge and discharge cycles per year
𝑟 Unitless Discount rate
𝐶𝑟 $ ⋅ 𝑘𝑊 ℎ−1 Repurposing cost of used battery
𝑃𝑟 $ ⋅ 𝑘𝑊 ℎ−1 Recycling price of battery
𝑇𝑛𝑒𝑤 year Lifetime of the new battery from original SOH to 60% SOH
𝑇𝑢𝑠𝑒𝑑 year Lifetime of the used battery from original SOH to 60% SOH

Table 6
Nomenclature

8. Glossary
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A. Appendix
A.1. GPR Model evaluation metrics

In order to evaluate the GPR model performance, three performance metrics are chosen to compare with different
model settings. These indicators are calculated through both first life and second life of batteries, representing the model
performance over whole aging trajectories. Root-Mean-Square Percent Error (RMSPE) is one of the most popular
indicators to reflect the deviation between the predicted values and real values.

√

√

√

√
1
𝑁

⋅
𝑁
∑

𝑖=1
(
𝑦𝑖,𝑝𝑟𝑒𝑑
𝑦𝑖,𝑒𝑥𝑝

− 1)2 ⋅ 100% (12)

where 𝑦𝑖,𝑝𝑟𝑒𝑑 and 𝑦𝑖,𝑒𝑥𝑝 are the predicted value and experimental value in trainning or testing dataset respectively.
Another indicator is Mean Absolute Percent Error (MAPE), which reflects the actual deviation of the predicted values.
It is shown in Equation 13:

1
𝑁

𝑁
∑

𝑖=1
|

𝑦𝑖,𝑝𝑟𝑒𝑑
𝑦𝑖,𝑒𝑥𝑝

− 1| ⋅ 100% (13)

The last indicator is also very commonly used, which is called the coefficient of determination (𝑅2). It is a measure
that provides information about the goodness of fit of a model. The Equation 14 is used to calculate 𝑅2:

1 − 𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 −
∑𝑁

𝑖=1(𝑦𝑖,𝑝𝑟𝑒𝑑 − 𝑦𝑖,𝑒𝑥𝑝)2
∑𝑁

𝑖=1(𝑦𝑖,𝑝𝑟𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑛)2
(14)

where SSR stands for the sum squared regression and SST represents the total sum of squares of the given model. The
smaller the RMSPE and MPE, the more accurate the predicted results. However, 𝑅2 is between zero and one, and the
closer to one, the better the predicted results.
A.2. Second life application profile approximation details
A.2.1. Residential application combined with PV system

In Comello and Reichelstein, a typical daily pattern of household power demand is presented. The demand profile
illustrates that the battery is charged during the daytime when the PV system is functioning and discharged at night. To
simplify the analysis, we can assume that the battery undergoes one constant charge and discharge cycle per day. From
the demand profile example provided in Comello and Reichelstein Figure 2, we can also assume that the battery charges
and discharges completely roughly around 5 hours, which equals the minimum C-rate observed in the experiment (C/5).
The usage of battery is also 1 duty cycle per day based on this demand profile.
A.2.2. EV charging station application

Several previous studies have investigated the use of stationary lithium-ion batteries (SLBs) to provide peak shaving
services for electric vehicle (EV) charging stations Sbordone et al. (2015); Deng, Zhang, Luo and Mu (2021); Kamath,
Arsenault, Kim and Anctil. Typically, the battery provides power when the demand for EV charging exceeds the power
limit designated for the grid. In Sbordone et al. (2015), sampled test results of battery usage during the charging
process were provided. The demand profile for EV charging stations was shown to be dynamic and case-dependent.
By adjusting the power threshold, a control strategy proposed in Sbordone et al. (2015) can assume that the battery
would mostly operate in a designed pattern. Additionally, the SLB storage system is constrained not to exceed 80% of
its maximum power for protection purposes. Based on these two assumptions, Test Profile 2 in Sbordone et al. (2015)
can serve as a demonstration for our model simulation. The current withdrawn from the battery module is roughly equal
to C/2, and the state of charge (SOC) range is kept between 20% and 80%, which are common in EV charging station
applications Yang and Ribberink. The battery usage is also set to be 1 duty cycle per day. In real-world applications,
specific numerical values may be updated to suit a given use case.
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A.2.3. Frequency Regulation for Grid Application
In power systems, the frequency of the grid is affected by deviations between supply and demand Bauer et al.

(2018). An excess of generation results in an increase in frequency, while an excess of demand leads to a decrease in
frequency. The purpose of providing a frequency regulation service is to maintain balance between grid demand and
supply by compensating for deviations from the nominal frequency. To simulate the battery demand profile for our
model, we use the battery demand profile from Bauer et al. (2018). However, we must make several assumptions to
approximate this demand profile for use as the input for our model. According to the analysis in Bauer et al. (2018),
most of the currents extracted from a BESS fall within the range of −10𝐴 to 10𝐴 for a battery pack with a capacity of
300𝐴ℎ. This range is much smaller than the minimum C-rate (𝐶∕5) observed in our experiment; therefore, we select
𝐶∕5 as the charge and discharge C-rate for our simulation. Additionally, since the battery maintains its SOC within
a relatively narrow range, we choose the corresponding experimental voltages based on the upper and lower SOC
boundaries, which are 50% and 30% SOC, respectively, as reported in Bauer et al. (2018) Table 3. The usage of battery
according to Bauer et al. (2018) Table 1 is 5.73 EFCS per week, which is about 4 duty cycle per day.
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