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Chapter
Introduction

1
Survey research in the social sciences is facing a conundrum: Response rates have
persistently declined for decades and across different countries (de Heer and de
Leeuw, 2002; de Leeuw et al., 2018). Not only does this development continuously
increase the fieldwork efforts necessary to obtain sufficient case numbers, making
surveys more expensive. It also raises doubts about validity of inferences drawn
about relevant target populations due to nonresponse bias. Consequently, ensuring
acceptable response rates constitutes a significant challenge of survey methodology.

Managing the length of a survey is a critical factor in optimizing response rates.
On the one hand, researchers may desire data that thoroughly cover all potentially
relevant aspects of the survey topic. On the other hand, this may lead to a lengthy,
burdensome survey that may discourage respondents, resulting in low response
rates (Dillman et al., 1993). Beyond that, response quality may suffer, with in-
creased breakoff and measurement error (Galesic and Bosnjak, 2009; Peytchev and
Peytcheva, 2017).

This is becoming even more relevant given the recent continual shift from tra-
ditional survey modes to self-administered online surveys. On the one hand, on-
line surveys are relatively inexpensive compared to other survey modes (e.g., Lozar
Manfreda et al., 2008), which helps contain the ever-increasing costs of conducting
a survey. On the other hand, online surveys have narrow limits in questionnaire
length due to a greater susceptibility for breakoffs (Peytchev, 2009; Tourangeau et
al., 2013, p. 52). Therefore, limiting survey length is considered especially impor-
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tant for online surveys. Thus, by moving online, one may be forced to cut down on
the number of questions asked in a survey, potentially resulting in the cancellation
of important research projects due to limited resources.

1.1 Planned Missingness and Split Questionnaire
Designs

One idea proposed by previous research to resolve this issue is planned missing-
ness (e.g., Shoemaker, 1973; Raghunathan and Grizzle, 1995; Graham et al., 1996),
where each respondent receives only a subset of all questions rather than the entire
questionnaire. This results in shorter questionnaires for individual respondents but
also generates considerable amounts of planned missing data. Several approaches
to implement planned missingness in surveys have been developed building on
this notion. With multiple matrix sampling (Good, 1969, 1970; Shoemaker, 1973;
Munger and Loyd, 1988), each respondent is assigned a predefined number of ques-
tions from the entire questionnaire via simple random sampling. This can be com-
plemented by a so-called core module that is presented to each respondent (e.g.,
Munger and Loyd, 1988), containing items that are deemed essential and there-
fore need to be observed completely. Although effectively reducing questionnaire
length, this procedure may yield data in which some pairs of variables have no
overlapping observations, making it impossible to study their relationships.

The split questionnaire design (SQD; Raghunathan and Grizzle, 1995) and sim-
ilarly the 3-form design (Graham et al., 1996) are advancements of multiple matrix
sampling that solve this problem.1 Here, questions are allocated to one of sev-
eral modules (also called components). Then, a subset of two or more modules is
randomly assigned to each respondent. This modularization procedure limits the
number of different questionnaire forms and also ensures that there are pairwise
complete observations available for at least each bivariate relation of variables. Fig-
ure 1.1 illustrates this procedure in a fictional example survey with 24 items (dis-
played in the columns) and 20 respondents (displayed in the rows).2 In this example,
each item is allocated to one of six modules. To ensure similar questionnaire length
for each questionnaire form, all modules contain the same number of items (four).

1Although this dissertation’s focus is on SQDs, note that there also are further, somewhat differ-
ent developments such as two-method measurement designs (Graham et al., 2006).

2Note that this is a small-scale example to ease the reader’s understanding. In practice, SQD
surveys may cover much more items and respondents.
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Module Core 1 2 3 4 5
Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Respondent 1 • • • • • • • • • • • • • • • •

Respondent 2 • • • • • • • • • • • • • • • •

Respondent 3 • • • • • • • • • • • • • • • •

Respondent 4 • • • • • • • • • • • • • • • •

Respondent 5 • • • • • • • • • • • • • • • •

Respondent 6 • • • • • • • • • • • • • • • •

Respondent 7 • • • • • • • • • • • • • • • •

Respondent 8 • • • • • • • • • • • • • • • •

Respondent 9 • • • • • • • • • • • • • • • •

Respondent 10 • • • • • • • • • • • • • • • •

Respondent 11 • • • • • • • • • • • • • • • •

Respondent 12 • • • • • • • • • • • • • • • •

Respondent 13 • • • • • • • • • • • • • • • •

Respondent 14 • • • • • • • • • • • • • • • •

Respondent 15 • • • • • • • • • • • • • • • •

Respondent 16 • • • • • • • • • • • • • • • •

Respondent 17 • • • • • • • • • • • • • • • •

Respondent 18 • • • • • • • • • • • • • • • •

Respondent 19 • • • • • • • • • • • • • • • •

Respondent 20 • • • • • • • • • • • • • • • •

Figure 1.1: Illustration of a split questionnaire design in a fictional example survey with
24 items and 20 respondents. Bullet points indicate an item is presented to a respondent.

The left-most module in Figure 1.1 is a core module, implying that all respondent
receive the items from this module. These might cover, for example, important so-
ciodemographic characteristics or central outcome variables of this data collection
project. The other five modules are split modules, with each respondent receiving
a randomly selected subset of these modules. In this example, each respondent re-
ceives three split modules plus the core module, resulting in 2 out of 6 modules
(or 8 out of 24 items) missing by design for each respondent. Hence, items in
split modules here have 40% planned missing data. Overall (i.e., including the core
module), 33% of all values in the data are missing by design, meaning that here the
questionnaire length is approximately reduced by a third.

1.2 Imputation of Planned Missing Data

Enormous amounts of planned missing data as displayed in Figure 1.1 can affect
the analyzability of the data. In this example, two items from different split mod-
ules have only 36% of the entire sample pairwise observed. This effect is especially
troublesome with multivariate analyses that include variables from multiple differ-
ent split modules. In this case, the case numbers available for the analysis may
quickly drop to zero.
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To help with this issue, Raghunathan and Grizzle (1995) propose using multiple
imputation (Rubin, 1987; van Buuren, 2018) to complete the planned missing data.
Multiple imputation is a statistical technique that replaces each missing value in
a dataset by multiple values that are statistically plausible given the information
available in the observed data. To impute a target variable, an imputation model is
estimated based on a set of predictor variables. In doing so, multiple imputation
aims to preserve marginal distributions, the relations between variables, and the
uncertainty of the missing data. The resulting imputed datasets can then be analyzed
separately, with the resulting multiple estimates being pooled thereafter.

However, the imputation of planned missing social survey data comes with nu-
merous challenges. First, the estimation of imputation models relies on correlations
between the imputed variable and predictor variables, but correlations between vari-
ables in social survey data are often weak. Second, survey data is often categorical
rather than continuous, but categorical data is considered more difficult to impute
than continuous data (van Buuren, 2018, p. 91). Third, large proportions of missing
data need to be imputed. This implies that even small inaccuracies in the imputation
model can have significant effects on estimates after imputation. Furthermore, large
proportions of missing data also challenge the estimation of imputation models, as
this means they have to rely on very limited amounts of observed data.

Moreover, the imputation scenario itself could be a challenge. In an ideal case,
planned missing survey data may be imputed right away by the data-collecting re-
search institute for general research purposes in order to provide imputed data to
individual data users. This would take away burden from data users who might lack
the resources and training necessary to conduct multiple imputation by themselves.
Furthermore, the data-collecting institute may have the statistical expertise, field-
work knowledge, and the computational resources to set up a suitable imputation
procedure adequately taking into account the particular features of the data and of
the data collection process. This approach might also be the most efficient in terms
of financial costs, working hours, and energy consumption.

Yet, a general purpose imputation strategy makes the task of imputing planned
missing survey data even more difficult: In statistical theory, imputation models
must (at the very least) always include all analysis variables to preserve their re-
lation with the imputed variable (Meng, 1994). However, with a general purpose
imputation strategy, the analysis models typically are unknown. As this may mean
that in principle, all relations between variables could end up in an analysis model,
imputation models may need to cover all variables as predictors. This intensifies
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issues with the estimation of imputation models: The imputation needs to deal with
a lot of predictors that need to be included simultaneously but also with very limited
observed data.

So far, there is little evidence on how well the multiple imputation of planned
missing data might work with actual social survey data under these circumstances.
Moreover, there is an imperative need for more research on different strategies how
to implement split questionnaire designs in social surveys to determine when and
how multiple imputation can be successfully applied with these data. This need
for research involves the whole process of implementing an SQD, starting with the
design of questionnaires up to the imputation and provision of the resulting data.

First, existing research often claims that it is essential to distribute highly cor-
related variables across different modules in order to ensure an adequate quality of
imputations (e.g., Raghunathan and Grizzle, 1995). However, there is little evidence
as to what extent this makes a difference for estimates with real social survey data,
which often lack particularly strong correlations.

Second, despite existing research on the performance of different imputation
procedures in general (e.g., Akande et al., 2017; Collins et al., 2001; Slade and
Naylor, 2020), we currently lack evidence on which imputation procedures may
perform satisfactorily specifically in imputing planned missing survey data. This is
especially the case for the enormous, far-reaching task of imputing data for general
research purposes.

Third, beyond the planned missing data that is usually missing completely at
random, surveys typically also exhibit some degree of potentially non-random item
nonresponse by the survey participants which needs to be imputed as well to miti-
gate nonresponse bias. However, there currently are no studies on how the combined
presence of planned missingness and item nonresponse affect imputation perfor-
mance, whether the imputation still manages to adjust for nonresponse bias under
these circumstances, and how item nonresponse should be taken into account in the
design of split questionnaires.

Finally, there currently is no systematic investigation of how estimates for a mul-
tivariate model may be affected by a general purpose imputation strategy compared
to an analysis-specific imputation strategy. However, such research is critical in or-
der to find best-practice procedures for implementing SQDs as well as to evaluate
the value of SQDs for social survey practice.
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1.3 Contribution of This Dissertation

This dissertation contributes to the research on SQDs and their imputation, address-
ing the overarching research question under which conditions accurate estimates
can be obtained in a social survey with an SQD in practice. Using a series of Monte
Carlo simulation studies based on real social survey data from the German Internet
Panel (GIP; Blom et al., 2015; Cornesse et al., 2021) and the European Social Sur-
vey (ESS; European Social Survey, 2018a,b,c), I examine the quality of univariate,
bivariate, and multivariate estimates after imputation. In doing so, I manipulate var-
ious features of the SQD survey and of the imputation procedure, dealing with the
research gaps discussed above.

This work improves the research community’s understanding of how multiple
imputation in surveys may perform in practice for SQD scenarios under realistic
conditions and with real data. Through this work, I identify appropriate strate-
gies for designing split questionnaires and imputing the resulting data. Moreover,
I outline the conditions necessary to enable acceptably accurate estimates in prac-
tice given state-of-the-art imputation routines. The following paragraphs provide a
more detailed synopsis of the four papers resulting from this research.

1.4 Synopsis of Papers in This Dissertation

1.4.1 Paper I: Split Questionnaire Designs for Online Surveys:
The Impact of Module Construction on Imputation
Quality

The first paper investigates the impact of module construction on the quality of
univariate and bivariate estimates after imputation in SQDs. In doing so, different
perspectives on module construction are taken into account. On the one hand, ques-
tionnaire developers may want to design a questionnaire that appears coherent and
easy to understand to respondents, and may therefore like to avoid frequent changes
in topics. In consequence, their preferred modularization strategy may be to con-
struct modules each containing only a single topic. On the other hand, Raghunathan
and Grizzle (1995) argue that highly correlated items should be systematically allo-
cated to different modules to ensure a good quality of imputations. Yet, in practice
highly correlated variables can usually be found mostly within the same survey
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topic. Following this logic, constructing modules covering all survey topics would
be a preferable option.

In a Monte Carlo simulation using data from the GIP waves 37 and 38 (Blom
et al., 2019a,b), SQDs are simulated by deleting values from the complete sample
data. Three module construction strategies are examined: Randomly constructed
modules, modules each covering a single survey topic, and modules covering di-
verse (all) survey topics. After multiple imputation of the simulated missing values,
univariate frequencies and bivariate Spearman correlations are estimated between
all variables in the data and compared to estimates based on the complete sam-
ple data.The main finding is that while random and diverse topics modules perform
very similarly, single topic modules lead to mostly less accurate estimates. Nonethe-
less, each of the modularization strategies results in some estimates—particularly
correlations—being severely biased.

1.4.2 Paper II: General Purpose Imputation of Planned Missing
Social Survey Data: Different Strategies and Their Effect
on Correlations

Following up on the finding that especially correlation estimates from SQD data
after imputation can turn out severely biased, in the second paper a wide range of
different imputation procedures are reviewed and tested in their accuracy regarding
Spearman correlation estimates. This entails both different imputation methods and
different predictor set specifications are being tested. With respect to the latter, two
strategies are tested that systematically exclude predictor variables with near-zero
correlations to the imputed variable from the imputation model. This builds on the
assumption that not reproducing near-null relationships would not harm estimates
after imputation too much (see also the concept of semi-compatibility, Bartlett et
al., 2015). Furthermore, partial least squares predictive mean matching is tested
as well as a more sophisticated technique to simplify predictor sets (Robitzsch et
al., 2016; Robitzsch and Grund, 2021). This technique uses partial least squares
regression to reduce the dimensionality of the predictor space before imputing the
data via predictive mean matching.

Again, a Monte Carlo simulation is applied using the same dataset as in Paper
I, simulating SQDs with random modules. Two major findings stand out. First,
several established imputation methods can result in strong biases in correlation es-
timates when imputing SQD data, especially generalized linear models for categori-
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cal data and classification trees. Second, combining predictive mean matching with
restricted predictor sets or partial least squares regression can help to reduce biases
in correlation estimates. These findings also highlight the challenge with imputing
multinomial variables, for which no satisfying solution appears to be available yet.

1.4.3 Paper III: The Performance of Multiple Imputation in
Social Surveys With Missing Data From Planned
Missingness and Item Nonresponse

So far, previous research (including the two preceding papers) considered only one
single source of missing data at once. In an SQD survey, however, different sources
of missing data entailing very different challenges can be expected to emerge. The
primary challenge of planned missing data, as discussed above, lies in its typically
large quantity in relation to the amount of observed data. In contrast, the primary
challenge of nonresponse by survey participants is that its missingness may not
emerge randomly (as is typically the case with planned missing data). Both kinds
of missingness combined may result in a large amount of missing data with a po-
tentially non-random, heterogeneous missingness mechanism: One part is missing
completely at random, while another part follows a distinct unknown mechanism.
This might interfere with the imputation in several ways: First, the larger and par-
tially uncontrollable amounts of missing data from both sources may further aggra-
vate issues with many values to be imputed but little data to support an imputation
model. Second, it needs to be investigated whether the imputation model can still
account for a heterogeneous missingness mechanism (as induced by the combined
presence of planned missingness and item nonresponse) in spite of relatively little
observed data and a large set of predictor variables.

In consequence, this paper provides another Monte Carlo simulation based on
the GIP dataset in which the accuracy of univariate frequency estimates and bi-
variate Spearman correlation estimates is examined under a wide range of different
scenarios. These cover the amount and mechanism of item nonresponse and the
amount of planned missing data. The simulation of item nonresponse mimics the
item nonresponse observed in the GIP as modeled through elastic net logistic re-
gressions. The results show that besides the item nonresponse potentially being
non-ignorable, the major challenge of item nonresponse in an SQD survey is that it
can increase the already large proportions of missing data from the SQD to such a
degree that estimates can turn out severely biased after imputation.
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1.4.4 Paper IV: Effects of General Purpose Imputations in
Planned Missing Survey Data on the Estimation of a
Multiple Regression Model: A Case Study

The final paper of this dissertation examines the effects of a general purpose impu-
tation strategy as compared to an analysis-specific imputation strategy based on a
case study of a multiple regression model from the social sciences literature (Safi,
2010). Here, I investigate two aspects in which general purpose imputation may
differ crucially from analysis-specific imputation: First, a general purpose imputa-
tion must preserve all relations in the data and therefore needs to include a lot of
predictor variables, while an analysis-specific imputation may have the flexibility to
restrict the predictor set quite heavily. Second, a general purpose imputation model
would usually be based on the entire survey sample, while an analysis-specific im-
putation model can be fitted to the specific analysis subsample (assuming they are
not the same).

I apply another Monte Carlo simulation study based on data from the ESS, in
which I again simulate SQDs with random modules by deleting observed values
from a complete dataset and subsequently estimate a regression model of general
life satisfaction on a wide range of regressors. In this context, I test the effect of (a)
using the gross survey sample vs. the net analysis sample to impute the data and
(b) defining imputation models using only the analysis variables vs. using varying
numbers of additional correlated and uncorrelated predictor variables. This analysis
shows that given adequate dimensionality reduction through partial least squares
regression, even adding additional uncorrelated predictor variables (i.e., variables
that are worthless for predicting the imputed variable) may have no adverse effects
on regression coefficients or standard errors. However, partly considerable biases
can occur when the analysis model sample and the imputation model sample are not
the same.

1.5 Lessons Learned and the Way Forward

In this dissertation, I investigate the performance of SQDs and multiple imputation
with real social survey data, covering the entire process from designing the ques-
tionnaires and planning the amount of missingness to imputing and providing the
data for data users. This reveals a multitude of important insights with implications
for future research.
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Imputing the planned missing data under real-data conditions (that is, enormous
amounts of missing data, predominantly low correlations and often categorical data)
turns out to be a challenge that can potentially be a substantial source of bias for
univariate and bivariate as well as multivariate estimates. These difficulties inten-
sify with a general purpose imputation strategy, which aims to preserve all relations
between variables (rather than only some specific relations of interest) and there-
fore often needs to include a vast number of variables into the imputation models.
Fortunately, however, suitable strategies for setting up an SQD and imputing the
resulting data can largely (though not completely) eliminate biases. These include:

• not using single-topic modules,

• avoiding too large amounts of missing data on each item,

• considering to allocate items with nominal levels of measurement to a core
module,

• using appropriate imputation procedures, such as partial least squares predic-
tive mean matching, and

• transparently communicating for which analyses the general-purpose imputed
data could be used and for which analyses an analysis-specific imputation is
required (this is the case especially for modeling non-continuous effects or
analysis models based on a subset of the entire survey sample).

Yet, even if researchers follow these recommendations, the imputation may still
remain some source of bias. Therefore, this work suggests that when designing a
survey, researchers should carefully weigh their expectations about the benefits of
an SQD in terms of response quality and cost savings against potential inaccuracies
from the imputation.

Beyond that, the remaining issues with imputing planned missing survey data
identified in this dissertation highlight the need for further research regarding the
design of SQDs and the imputation of the resulting data. For instance, future re-
search might further develop existing imputation procedures so that multinomial
data can be accounted for more appropriately. In addition, future research may also
focus on other aspects of SQDs that were out of scope for this thesis. These include,
for example, the effects of different modularization techniques on actual response
behavior. As such, empirical experimental research on SQDs may be needed in the
future, as simulation studies are not suitable to investigate real behavioral effects on
respondents.
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Chapter
Split Questionnaire Designs for Online

Surveys: The Impact of Module

Construction on Imputation Quality

2
Abstract

Established face-to-face surveys encounter increasing pressures to move online.
Such a mode-switch is accompanied with methodological challenges, including
the need to shorten the questionnaire that each respondent receives. Split ques-
tionnaire designs (SQDs) randomly assign respondents to different fractions of the
full questionnaire (modules) and, subsequently, impute the data that are missing by
design. Thereby, SQDs reduce the questionnaire length for each respondent. Al-
though some researchers have studied the theoretical implications of SQDs, we still
know little about their performance with real data, especially regarding potential
approaches to constructing questionnaire modules. In a Monte Carlo study with
real survey data, we simulate SQDs in three module-building approaches: random,
same topic, and diverse topics. We find that SQDs introduce bias and variability
in univariate and, especially, in bivariate distributions, particularly when modules

This paper is joint work with Annelies Blom, Christian Bruch, and Christof Wolf. A similar
version of this paper has been published in:
Axenfeld, J. B., Blom, A. G., Bruch, C., & Wolf, C. (2022). Split questionnaire designs for online
surveys: The impact ofmodule construction on imputation quality. Journal of Survey Statistics and
Methodology, 10(5), 1236–1262.
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are constructed with items of the same topic. However, single topic modules yield
better estimates for correlations between variables of the same topic.

2.1 Introduction

Surveys are an indispensable source of evidence in the social sciences. Many large-
scale face-to-face surveys like the General Social Survey (Smith et al., 2019) or the
British Social Attitudes survey (Curtice et al., 2019) stimulate scientific discourse
with high-quality data. However, face-to-face surveys are increasingly under pres-
sure due to decreasing response rates (de Leeuw et al., 2018) and increasing costs
(e.g., Roberts et al., 2014; Calinescu et al., 2013).

With close to universal internet coverage in Western countries (International
Telecommunication Union, 2019), online surveys have become a viable alternative
to face-to-face data collection in recent years. At considerably lower cost (e.g.,
Bianchi et al., 2017; Olson et al., 2021) several large-scale probability-based online
surveys have been established across the world (e.g., the KnowledgePanel (Ipsos,
2021) in the US, the LISS Panel in the Netherlands (Knoef and de Vos, 2009), and
the German Internet Panel (GIP; Blom et al., 2015)).

Consequently, survey projects face pressures to switch to the less expensive on-
line mode (e.g., Jäckle et al., 2015; Bianchi et al., 2017). However, there is one
major obstacle to moving face-to-face surveys online: Online surveys are typically
much shorter than those conducted face-to-face, because researchers worry about
higher breakoff rates (Galesic, 2006; Mavletova and Couper, 2015; Peytchev, 2009;
Revilla, 2017; Tourangeau et al., 2013, p. 52), lower response quality, and higher
measurement error (Galesic and Bosnjak, 2009; Peytchev and Peytcheva, 2017) in
lengthy online questionnaires. When asking directly, the median online survey re-
spondent reports that they would like to answer surveys of 25 minutes at maximum
(Revilla and Höhne, 2020). Many established face-to-face surveys, however, are
with approximately one hour considerably longer (Curtice et al., 2019, p. 257) and,
thus, would have to be shortened when moved online.

Split questionnaire designs (SQDs) may provide a solution to such obstacles. It
allocates the items of a given questionnaire to different modules and randomly as-
signs respondents to a subset of these modules. Data for the questions not presented
to a respondent are missing by design and can subsequently be imputed to allow for
applying conventional analysis techniques (Raghunathan and Grizzle, 1995).
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While SQDs theoretically provide an attractive solution to shortening online
questionnaires, little is still known about their practical implications. Importantly,
low variable correlations in real social survey data driven by multi-topic question-
naires and non-exact measurement may lead to biases and inefficiencies in the impu-
tation process: Imputation models rely fundamentally on information on the unob-
served data stored in the observed data. Due to generally low correlations, however,
observed data cannot contribute much information. Moreover, with SQDs large
proportions of the data are imputed, implying that poor imputations could severely
affect substantive analyses on the data. Consequently, preserving as much of the
scarce information as possible for the imputation is a major challenge for SQD
surveys. Otherwise, imputation models might fail to reproduce distributions and
relationships in the data, implying potentially inefficient and biased estimates.

In this paper, we therefore shed light on an important practical aspect of SQDs:
The construction of the questionnaire modules and its impact on the quality of the
imputed data (i.e., biases and variability of frequency and correlation estimates).
For a realistic examination of modularization strategies, this study relies on real
(non-synthetic) survey data to account for real-data challenges (e.g., low corre-
lations or skewed distributions). We test three modularization methods: random
modules (RM), where the questions are randomly allocated to modules, single topic
modules (STM), where each module contains only one questionnaire topic, and di-
verse topics modules (DTM), where the various topics of a questionnaire are spread
across several modules. We present findings from a Monte Carlo simulation that
examines how RM, STM and DTM affect imputation quality in real survey data.

2.2 Administration of Split Questionnaire Designs

2.2.1 Split Questionnaire Design (SQD)

SQD is a planned missing data method developed by Raghunathan and Grizzle
(1995) as an extension of matrix sampling (e.g., Shoemaker, 1973; Munger and
Loyd, 1988). Items are bundled to mutually exclusive packages called modules
(e.g., Raghunathan and Grizzle, 1995; Peytchev and Peytcheva, 2017). There may
be one core module containing especially important items that are administered to
all respondents (e.g., Raghunathan and Grizzle, 1995). Additionally, respondents
are randomly assigned to a subset of the remaining modules.
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Constructing modules instead of sampling items directly is an important as-
pect of SQD, guaranteeing sufficient pairwise observations for each pair of items
(Raghunathan and Grizzle, 1995; Rässler et al., 2002). To this end, every split ques-
tionnaire must contain two split modules at minimum, and all possible combinations
of split modules must be allowed to appear (Raghunathan and Grizzle, 1995). This
general procedure is the same independent of the modularization strategy.

SQDs produce so much missing data that often too few observed cases are avail-
able for conventional complete case analyses. As a solution, Raghunathan and Griz-
zle (1995) suggest multiple imputation (MI; Rubin, 1987) to impute values missing
by design.

2.2.2 Multiple Imputation (MI)

MI is a method for completing incomplete data matrices with plausible values to en-
able analyses on the full data (for a detailed overview, see Rubin, 1987; van Buuren,
2018). MI replaces missing values with values drawn from a posterior probability
density distribution. This distribution is obtained by an imputation model relying
on a set of predictor variables. Values are drawn multiple times to account for the
uncertainty of the missing values, generating multiple datasets with different im-
puted values. Data analyses are carried out on each dataset separately and estimates
are subsequently pooled using Rubin’s Rules (Rubin, 1987).

The challenge of MI lies in the reproduction of distributions and relationships
that would be observed in a complete dataset. In general, this challenge is best met
when the missing information is limited (Madley-Dowd et al., 2019) and correla-
tions between imputed and predictor variables are strong. However, correlations in
surveys are typically weak, and SQDs produce lots of missing data. The aim of
choosing a modularization strategy for SQDs is thus to maximize the information
that predictors provide on the variables to be imputed (Raghunathan and Grizzle,
1995). In practice this means that relatively highly correlated variables need to be
allocated to different modules to prevent them from being missing together.

2.2.3 Modularization Techniques

The module construction strategy may decisively shape the resulting SQD. First, as
described above, the imputation requires retaining as much information as possible,
i.e., correlated variables should be distributed across modules.
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Second, however, certain items should not be separated (Raghunathan and Griz-
zle, 1995; Rässler et al., 2002). For example, this can be motivated by the need
to maintain question filtering (see for instance Bishop et al., 1983; Kreuter et al.,
2011, for question-filter effects on data quality), prevent differential order effects
(e.g., McFarland, 1981; Silber et al., 2016), or limit frequent topic switches that
may raise respondent burden.

Finally, module construction must be feasible in real survey settings. Thus,
all information used during modularization must be available or obtainable before
data collection. Exact variable correlations, for example, are not available a priori;
instead we have to rely on previous surveys or collect this information during a pilot
study.

Thus, guidance on modularization will depend on how various perspectives are
weighted. Similar to Gonzalez and Eltinge (2007), we classify such different tech-
niques into three general strategies: RM, STM, and DTM. Figure 2.1 illustrates
these three strategies with a small example questionnaire.

Random modules (RM)

The upper part of Figure 2.1 shows one potential outcome when modules are con-
structed randomly in an example questionnaire. The questionnaire is a set Q of
questions described by the index q = 1, 2, . . . , Z, where Z is the total number of
questions in the questionnaire (in this example, Z = 9). All questions in Q belong
to mutually exclusive topics with each topic described by the index h = 1, 2, . . . , L,
where L is the total number of topics (here, L = 3). For RM, we want to randomly
allocate all questions to a fixed number M of split modules, which are mutually
exclusive and described by the set W with the index w = 1, 2, . . . , M denoting a
certain module. The number of modules M can in principle be set to any value
2 < M ≤ Z (in the example, we chose M = 3) so that each respondent can receive
at least 2 modules.

Furthermore, we suppose modules should be balanced in size so that all re-
spondents receive questionnaires of similar length (Rässler et al., 2002; Thomas
et al., 2006). Therefore, we determine uniform module sizes Bw = Z/M if
Z/M∈ N. If Z/M /∈ N, we create two different subsets of modules by ran-
domly drawing a subset V from the set of modules W that contains a number of
M (Z/M − ⌊Z/M⌋) modules. For these two subsets, we define different module
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Random modules

Single topic modules

Diverse topics modules

Topic 1 (h = 1) Topic 2 (h = 2) Topic 3 (h = 3)

Set of questions Q

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9

w = 1 w = 2 w = 3

q = 1 q = 2 q = 3q = 4 q = 5q = 6q = 7 q = 8 q = 9

Set of modules W

Set of questions Q

Topic 1 (h = 1) Topic 2 (h = 2) Topic 3 (h = 3)

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9

w = 1 w = 2 w = 3

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9

Set of modules W

Set of questions Q

Topic 1 (h = 1) Topic 2 (h = 2) Topic 3 (h = 3)

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9

w = 1 w = 2 w = 3

q = 1 q = 2 q = 3q = 4 q = 5 q = 6q = 7 q = 8 q = Z

Set of modules W

Figure 2.1: Illustration of modularization strategies.
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sizes:

Bw =

 ⌈Z/M⌉ if w ∈ V

⌊Z/M⌋ if w /∈ V
. (2.1)

This means each module w will receive a number of items Bw defined by either
the ceiling or floor value of the total number of items Z over the total number of
modules M , depending on whether the module was or was not in subset V . Then,
we randomly assign all questions in Q to the modules with sizes Bw, with each
question q having a probability of Bw/Z to be allocated to a module w before the
assignment of questions starts.

RM considers no survey information other than the number of questions Z and
the predetermined number of modules M . Consequently, imputation quality may
suffer, because correlated items are not systematically distributed across modules
optimally and could possibly amass within the same module by chance. From a
practitioner’s perspective, RM might not be optimal either, as question sequences
are ignored and hence, meaningful and consistent questionnaires cannot be guaran-
teed using RM.

Single topic modules (STM)

STM’s procedure is illustrated in the middle part of Figure 2.1, again with Z = 9
questions, L = 3 topics, and M = 3 modules. This is a fully deterministic process,
where all items of one topic h are allocated to the same single module w. However,
if one topic module contains considerably more (or more burdensome) questions
than the other topic modules, the large single topic module may be additionally
split to achieve balanced module lengths.

The key benefit of STM is that it avoids potential disruptions in the question-
naire structure. STM therefore seems to be the strategy of choice for many survey
practitioners, who seek to obtain questionnaires that appear meaningful and con-
sistent to respondents regarding its topics. Consequently, STM has many real-life
applications such as in the 2017 European Values Study (Luijkx et al., 2017) and
the 2012 PISA study (OECD, 2014, chap. 3).

However, STM may hinder imputation, because most variables on the same
topic may deliver the highest correlations but are clustered within rather than dis-
tributed across modules. Hence, while RM may trigger adverse scenarios for MI by
chance, STM will cause them by design.
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Diverse topics modules (DTM)

Finally, DTM purposefully assigns the most highly correlated variables to differ-
ent modules to optimize subsequent imputation. DTM constitutes a diverse group
of techniques that optimize SQDs (examples can be found in Rässler et al., 2002;
Thomas et al., 2006; Adigüzel and Wedel, 2008; Chipperfield and Steel, 2009, 2011;
Chipperfield et al., 2018; Imbriano, 2018). From an imputation perspective DTM
is attractive, because it maximizes the information available for the MI. However,
it contains a conundrum: To determine which variables are highly correlated, the
data must be available a priori, i.e., before fieldwork. Although some surveys can
draw on data from a pilot study, typically these correlations are unknown during
modularization. Therefore, this study uses a DTM approach proposed similarly by
Bahrami et al. (2014), which assumes that variables correlate more strongly when
they originate from questions on the same topic. This implies that all items from
a topic h should be evenly distributed over all M modules, such that highly corre-
lated variables will most likely end up in different modules. Since here the topics
serve only to identify potentially highly correlated items, practitioners could also
consider alternative ways to group highly correlated items other than topics (e.g.,
prior theoretical knowledge).

The bottom part of Figure 2.1 illustrates a potential outcome of this DTM ap-
proach. The procedure is a stratified random assignment, in which the topics de-
scribed by the index h = 1, 2, . . . , L serve as strata. Hence, RM is applied sepa-
rately within each topic h.

We first determine how many questions from a given topic h should end up in
each of the modules. This number of questions Bw,h is defined by Bw,h = Ah/M

if Ah/M∈ N in a topic h, where Ah is the number of questions in a topic h (in the
example, Ah = 3). In Figure 2.1, Bw,h = 1 for each w and h, so in each topic h

one question is allocated to each module w.
Otherwise, if Ah/M /∈ N in a topic h, we create two different subsets of mod-

ules by randomly drawing a subset Uh from the set of modules W that contains
a number of M (Ah/M − ⌊Ah/M⌋) modules. For these two subsets, we define
different topic-specific module sizes:

Bw,h =

 ⌈Ah/M⌉ if w ∈ Uh

⌊Ah/M⌋ if w /∈ Uh
(2.2)

Thus, from a given topic h, each module w will receive a number of items defined
by either the ceiling or floor value of the number of items in the topic Ah over
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the number of modules M , depending on whether module w was or was not in Uh.
Subsequently, we randomly assign Bw,h questions from a topic h to each module w.
We apply this procedure to each topic h, yielding modules constructed by stratified
random assignment.

Compared to RM, the stratification in DTM can make module sizes vary slightly
more. In our study, module sizes turn out constant (always equal to 10). How-
ever, practitioners may consider rejecting module structures with sizes that vary too
much.

Whereas RM may lead to an underrepresentation of some topics in some mod-
ules (in Figure 2.1 for example, module 1 contains no question from topic 2), DTM
obtained by stratified random assignment may eliminate the “unluckier” outcomes
of RM while requiring only heuristic information on the correlation structure.

2.2.4 Prior Research

Prior research into SQD imputation with real data can be grouped into two cat-
egories: Monte Carlo simulations investigating imputation quality with one spe-
cific modularization strategy (Bahrami et al., 2014; Raghunathan and Grizzle, 1995;
Thomas et al., 2006) and case studies that explore different modularization strate-
gies (Adigüzel and Wedel, 2008; Imbriano and Raghunathan, 2020; Rässler et al.,
2002).

From existing simulation studies we learn that “little is lost” regarding means
and standard errors (Raghunathan and Grizzle, 1995). Thomas et al. (2006) report
only small biases in means and regression coefficients but considerable precision
losses in simulated SQDs compared to complete surveys. Bahrami et al. (2014)
observe a small attenuation in most of their regression coefficients. As their MI
estimates are overall still mostly in line with complete data estimates, they evaluate
their design favorably in general.

Furthermore, three single-case (non-Monte Carlo) studies compare different
modularization strategies: Adigüzel and Wedel (2008) suggest that data-driven so-
lutions could retain more information than ad-hoc solutions. Additionally, Rässler
et al. (2002) briefly report a poorer imputation performance when split modules con-
sist of highly correlated items. Imbriano and Raghunathan (2020) compare different
SQDs in a longitudinal health survey context, manipulating whether respondents re-
ceive repeatedly the same topics or different topics each wave (whereby correlations
of one variable across waves are usually high). They find that univariate and regres-
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sion estimates are reproduced best when respondents receive different items each
wave (i.e., when highly correlated variables are separated).

To our knowledge, our study is the first to combine the application of Monte
Carlo simulations with examining different modularization strategies (RM, STM,
and DTM) using real survey data. Furthermore, it also goes beyond most existing
real-data evidence through investigating bivariate in addition to univariate measures
(e.g., Adigüzel and Wedel, 2008; Raghunathan and Grizzle, 1995, study 1).

2.3 Data and Methods

2.3.1 Data

Our study uses real data from an existing survey: the German Internet Panel (GIP), a
probability-based online panel of the German population (for details on recruitment
and response rates, see Blom et al., 2015, 2017; Cornesse et al., 2021). The GIP
is particularly suited, because it has a reasonably large number of cases (5,411)
and a multi-topic structure. The latter arises from independent research teams in
various areas of economics, political science, sociology, and data science feeding
questionnaires into the GIP to answer their respective research questions.

We used 61 variables from GIP waves 37 and 38 (Blom et al., 2019a,b). Ta-
ble 2.1 depicts the topics and number of variables selected and indicates whether
the variables were used in the core or split modules. The table also shows to which
module the variables were allocated with STM. All variables are discrete, most of
them ordinal or dichotomous, and seven variables in the core are nominal. Addi-
tional information on the wording of survey questions, field-time periods and re-
sponse rates is provided in Tables 2.A1 and 2.A2.

To pursue our research question of examining different modularization strate-
gies, we rely on imputed data of the planned missing SQD data. In order not to
confound the effects of this type of missing data with regular missing data, we re-
moved all unit and item nonresponse from the dataset. Consequently, participants
who did not respond to either wave 37 or 38 were excluded from the GIP dataset.
Furthermore, where possible, missing observations were matched to responses from
earlier waves (Blom et al., 2016a,b). Finally, the remaining item nonresponse was
replaced with single imputations using predictive mean matching (PMM) as imple-
mented in the mice package in R1 (van Buuren and Groothuis-Oudshoorn, 2011; R

1Other R packages used for this paper are: DescTools (Signorell et al., 2020), doMPI (Weston,
2017), dplyr (Wickham et al., 2019), faux (DeBruine, 2020), foreach (Microsoft and Weston, 2020),
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Table 2.1: Variables used in Monte Carlo simulation

Topic # variables SQD Origin STM
constituent allocation

Sociodemographics 10 core wave 37 core
Sampling cohort 1 core wave 37 core
Organization membership 10 split wave 37 module 1
Big Five personality traits 10 split wave 37 module 2
Lobbying in EU politics 10 split wave 38 module 3
Domestic and party politics 20 split wave 38 modules 4&5

Core Team, 2020), using all variables as predictors that have Spearman correlations
of |0.05| or stronger. The effects of this procedure on univariate frequencies and
correlations appear negligible, as both turn out extremely similar when calculated
without imputation (with pairwise deletion) and with imputation (for details, see
Figure 2.A1).

Finally, rarely observed categories with fewer than 100 cases were combined
into broader categories to avoid obtaining empty categories in the simulation. This
yielded a completely observed dataset with 4,061 cases as the population for our
simulation.

2.3.2 Variable Correlations Within and Between Topics

To consider the variable correlations in the data set, we calculate a Spearman corre-
lation matrix for the 50 split variables (see Figure 2.A2 for an illustration). Abso-
lute values of correlations range from 0.000 to 0.702 with 81.6% smaller than 0.10.
We further evaluate average absolute correlations within and between topics using
Fisher’s-Z transformation: Different-topic variable pairs tend to have weaker corre-
lations than same-topic variable pairs with an average correlation of 0.046 compared
to 0.162 (average correlations within topics are between 0.107 and 0.258). 45.3% of
within-topic correlations and 89.8% of between-topic correlations are below 0.10.

Finally, we take a glimpse at the correlations of variables of different modules.
The absolute Spearman correlations between variables of different modules are on
average 0.049 with STM, 0.070 with RM, and 0.072 with DTM.

ggcorrplot (Kassambara, 2019), MASS (Venables and Ripley, 2002), Matrix (Bates and Maechler,
2019), Rmpi (Yu, 2002), tidyverse (Wickham et al., 2019).
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2.3.3 Simulation of SQDs

We applied a Monte Carlo simulation, repeating modularization and imputation on
different samples over 1,007 simulation runs.2 Accordingly, we randomly drew
1,007 samples with each 2,000 respondents from our GIP population data. Unlike
single simulations, this procedure produces findings beyond anecdotal evidence by
ruling out random differences. The following paragraphs describe the steps taken
in each simulation run.

Generating module structures

To generate module structures, we implemented RM, STM and DTM as described
above in R. With each modularization technique, we create five split modules with
10 items each. This results in three module structures tested in each simulation run.
While the arrangement of variables with RM and DTM differs across simulation
runs due to their stochastic procedure, STMs are predefined (see Table 2.1) and
thus do not vary.

Creating reduced datasets

To generate SQD datasets, we randomly assigned three out of five split modules
plus the core module to each respondent in the sample. All possible combinations
of split modules had equal chances to appear (although empirical frequencies of
occurrence may vary randomly). All values from unassigned modules were deleted
from the sample data, generating reduced datasets with 67% of the original size.

Completing the reduced data

For all three strategies and in each simulation run, we applied MI with the mice

package in R with 40 imputations drawn after 15 iterations to complete the reduced
data. Like Rässler et al. (2002), we used PMM as imputation method, because a
small-scale test with one simulation run and RM showed enormous shifts in uni-
variate distributions and correlation sizes with the mice default methods (logistic
regression for binary variables, proportional odds logistic regression for ordinal
variables) but not with PMM (see Figure 2.B1 for details). This complies with prior
research revealing difficulties with imputation using categorical regression methods

2This number of simulation runs (1, 007) was favored over 1, 000 because and we had access
to 1, 008 processor cores (one core per simulation run, except for one consumed by setting up the
simulation).
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(van Buuren, 2018, p. 91; White et al., 2011; Wu et al., 2015) and recommending
PMM at least as a fallback option (van Buuren, 2018, p. 166; Koller-Meinfelder,
2009, pp. 48-68).

Small-scale tests also showed that restricting imputation models to predictor
variables with Spearman correlations stronger than |0.10| in the non-imputed SQD
data may lead to improved imputations. Thereby, imputation models include on
average between 2 and 22 predictors (median: 11). If no predictors are included in
a simulation run, we resort to unconditional hot-deck sampling. Also considering
that general recommendations are to include at most 15-25 (van Buuren, 2018) or
30-40 (Honaker and King, 2010) predictors, we proceeded with this approach. The
excluded variables’ correlations with the imputed variable are thereby assumed to
be zero. Hence, their strength may be underestimated after imputation, but these
underestimations should be small because the correlations are close to zero. Results
from an additional simulation that instead includes all variables as predictors can be
found in Figures 2.B2 and 2.B3, with substantively identical findings for the relative
performance of modularization strategies. Overall, these unrestricted predictor sets
yield much larger biases especially in univariate estimates. Bivariate estimates also
have a tendency towards more extreme biases. At the same time, many of the biases
that are very small with unrestricted predictor sets are slightly larger with restricted
predictor sets, because restricting predictor sets in this way implies slight biases in
very weak correlations.

Estimating distribution parameters

We examine how well univariate and bivariate distributions in the complete sample
data can be reproduced with the imputed data. In consequence, distribution param-
eters were estimated in each simulation run with the complete sample dataset and
with all imputed datasets. For each modularization strategy, the resulting estimates
were pooled using Rubin’s Rules. Consequently, for each parameter and in each
simulation run, we have one pooled estimate per strategy and, as a benchmark, one
estimate for the complete sample data.

To cover univariate distributions, we estimated relative univariate frequencies.
All split items in our simulation are available as categorical variables. The index c

describes a single category of any of these variables. We calculated relative univari-
ate frequencies for each variable category c in each simulation run s based on the
complete sample data (π̂complete

c,s ) and imputed data (π̂imputed
c,s ).
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For bivariate distributions we used Spearman correlations. We first generated
dummy variables for all categories of the seven nominal type variables in the core
module, increasing the total number of variables to 99. Then, Spearman correla-
tions ρ̂

complete
i,j,s for the complete sample data and ρ̂

imputed
i,j,s for the imputed data were

estimated in each simulation run s for each relevant unique pair of variables i, j.
We excluded all variable pairs that did not include at least one split module, that is,
imputed, variable.

2.3.4 Measures

The basis of our analyses is the deviation ∆̂ of imputed data estimates from complete-
data estimates in each simulation run s.3 For a frequency π̂c,s of a category c or
correlation ρ̂i,j,s of a variable pair i, j each simulation run s entails the following
operation:

∆̂ (π̂c,s ) = π̂imputed
c,s − π̂complete

c,s (2.3)

∆̂ (ρ̂i,j,s) = ρ̂
imputed
i,j,s − ρ̂

complete
i,j,s (2.4)

A positive value on ∆̂(π̂c,s) or ∆̂ (ρ̂i,j,s) means that the corresponding estimate has
been overestimated, whereas a negative value indicates an underestimation.

Bias

If a given estimate is Monte Carlo unbiased, we expect the average of its deviations ∆̂
over all simulation runs to be zero. In contrast, a positive (negative) average sug-
gests that the estimate is systematically overestimated (underestimated).

The Monte Carlo bias of a frequency estimate π̂c for a category c is obtained
through the average over its deviations in all S = 1, 007 simulation runs:

∆̂ (π̂c) =
1
S

S∑
s=1

∆̂ (π̂c,s) (2.5)

The Monte Carlo bias of a correlation estimate ρ̂i,j for variables i and j is:

∆̂ (ρ̂i,j) =
1
S

S∑
s=1

∆̂ (ρ̂i,j,s) (2.6)

3Dividing ∆̂ by the complete-data benchmark would yield percentage deviations. This study,
however, does not consider such a measure because it turned out unstable for the many correlations
near zero, as this implies dividing by numbers very close or equal to zero.
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Variability

Another important aspect of the quality of an estimate is its precision. In prac-
tice, this means that ideally standard errors are relatively small. The Monte Carlo
simulation allows to approximate the variance of a given point estimate through
taking the estimate’s variance over all simulation runs (e.g., Münnich and Rässler,
2005; Mashregi et al., 2014; Bruch, 2016). Because the point estimator of interest
is the deviation from the complete-sample estimate, we use the variance of these
deviations in Equations 2.3 and 2.4 instead of the variance of the frequency or cor-
relation estimates themselves. (In doing so, we focus more on the variance caused
by the SQD, but standard errors of the frequencies and correlation estimates as ap-
proximated through the simulation (see Figures 2.C1 and 2.C2) yield equivalent
findings.) Thus, for a frequency π̂ of a category c we measure the variability of de-
viations across all simulation runs from the average deviation through the standard
deviation of deviations (SDD) σ̂

{
∆̂(π̂c)

}
:

σ̂
{

∆̂(π̂c)
}
=

√√√√ 1
S − 1

S∑
s=1

{∆̂ (π̂c,s) − ∆̂ (π̂c)}2. (2.7)

Correspondingly, σ̂
{

∆̂(ρ̂i,j)
}

is the SDD for a correlation ρ̂ of two variables i and
j:

σ̂
{

∆̂(ρ̂i,j)
}
=

√√√√ 1
S − 1

S∑
s=1

{∆̂ (ρ̂i,j,s) − ∆̂ (ρ̂i,j)}2 (2.8)

An SDD equal to zero means that imputed and complete data produce identical
estimates in each simulation run net of systematic bias, while larger SDDs corre-
spond to more uncertain estimates. Hence, a modularization technique that obtains
small biases and SDDs will yield high imputation quality. However, since RM and
DTM rely on a stochastic procedure, this additional source of randomness may in-
crease the estimates’ variability.

2.3.5 Evaluation Strategy

As we generate a huge number of imputation quality measures (297 for frequencies
and 3,675 for correlations), we need to condense the information displayed in our
results. Therefore, we produce one summary graph each for univariate and bivariate
biases and SDDs. We combine this evaluation of general patterns with additional



29

analyses on specific sets of variable pairs to gain more insight into potential differ-
ences between variable pairs.

We focus on two aspects: First, we provide additional analyses restricted to
variable pairs that were used in all their respective imputation models throughout
the simulation, because whether a variable is included in an imputation model may
decisively determine if its correlation to the imputed variable can be estimated cor-
rectly.

Second, we perform separate analyses for correlations based on within-topic
and different-topic variable pairs. Depending on the modularization strategy, this
difference has important consequences: For instance, consider a correlation of two
variables within the same topic. With STM, the two variables are always in the same
module, implying all cases are either pairwise observed or unobserved. Therefore,
the imputation can rely on many commonly observed values, but we must impute
both variables for all other cases. With DTM, however, the variables tend to end
up in different modules. Consequently, there are relatively few pairwise observed
cases, but many cases where only one of both variables must be imputed. Thus, two
variables may have systematically different bivariate missing data patterns depend-
ing on the modularization strategy.

2.4 Results

2.4.1 Univariate Frequencies

Figure 2.2 displays the distribution of average Monte Carlo biases of univariate
frequencies for the imputed data for RM (first boxplot), STM (second boxplot), and
DTM (third boxplot). The rug plots in the second section of Figure 2.2 show the
complete distribution of biases for the three strategies (same order). Each data point
represents the average bias of one variable category over all simulation runs.

Many biases concentrate closely around zero. With RM and DTM 80% of biases
range from −0.002 to +0.002. However, some frequencies have stronger biases:
The largest biases are −0.006 and +0.006 with RM and −0.005 and +0.005 with
DTM. Biases are larger with STM, where 80% of biases range from −0.004 to
+0.003 with outliers of up to ±0.014.

Figure 2.3 summarizes the sizes of SDDs for the imputed frequencies with box-
plots and rugs in the same fashion as for biases. Again, each data point represents
the SDD of a certain category’s frequency. Although small SDDs would be prefer-
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Figure 2.2: Average biases for 297 univariate frequencies according to equation 5, by
modularization technique: Random modules (RM), single topic modules (STM), and di-
verse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

able, unlike average biases they cannot be expected to approach zero. Like with
the biases, the differences between RM and DTM are negligible. At the same time,
SDDs with STM tend to be somewhat larger than with RM and DTM. For example,
the largest SDD with STM is 0.011, while it is 0.010 with RM and DTM.

2.4.2 Bivariate Correlations

Figure 2.4 displays the distribution of average Monte Carlo biases of bivariate cor-
relations for the imputed data for RM (first boxplot), STM (second boxplot), and
DTM (third boxplot). The rug plots show the complete distribution of biases for
the three strategies (same order). Each data point represents an average bias for one
variable pair over all simulation runs.

With both RM and DTM 50% of average biases range from −0.006 to +0.006,
90% from −0.017 to +0.017, and the most extreme bias is 0.082. Note that these
are absolute measures, thus some correlations are highly biased. The outlier with a
value of 0.082, for example, belongs to a correlation that is −0.065 in the complete
data and on average, +0.017 in the imputed data. Hence, it is overestimated by
126%, entailing a sign change. The second-most extreme bias is −0.081 (with
RM) with a correlation of 0.206 in the complete data and on average, 0.125 in
the imputed data, suggesting it was underestimated by 39%. Furthermore, the rug
plots also show some average biases in the area closely around zero. STM has
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Figure 2.3: Standard deviations of deviations (SDDs) of 297 univariate frequencies ac-
cording to equation 7, by modularization technique: Random modules (RM), single topic
modules (STM), and diverse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

Figure 2.4: Average biases of 3,675 bivariate correlations according to equation 6, by
modularization technique: Random modules (RM), single topic modules (STM), and di-
verse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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Figure 2.5: Standard deviations of deviations (SDDs) of 3,675 bivariate correlations ac-
cording to equation 8, by modularization technique: Random modules (RM), single topic
modules (STM), and diverse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

a different pattern: 50% range from −0.007 to +0.008 and 90% from −0.020 to
+0.020. Furthermore, STM produces fewer extreme outliers larger than ±0.050
(three correlations) than RM (six correlations) and DTM (eight correlations).

Figure 2.5 summarizes the SDDs for Spearman correlations. STM tends to
produce larger SDDs than RM and DTM, with boxes visibly shifted to the right.
Again, however, STM yields fewer extreme outliers: The largest SDD with STM is
0.050, while the largest SDDs with RM and DTM are 0.074 and 0.075.

Analysis by topic

To further investigate effects of the modularization on biases in bivariate correla-
tions, Figure 2.6 shows the distributions of average biases, separately for correla-
tions between variables of different topics (on the left) and correlations between
variables of the same topic (on the right).

For different-topic correlations 50% of average biases with RM and DTM are
between −0.008 and +0.009. Biases with STM are larger with 50% between
−0.010 and +0.013. The strongest biases are 0.037 with RM and DTM and 0.048
with STM.

For within-topic correlations 50% of average biases with RM and DTM are
between −0.015 and +0.005 and 50% of biases with STM between −0.009 and
+0.007. STM leads to fewer extreme biases of larger than ±0.050 (two with STM,
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Figure 2.6: Average biases of 3,675 bivariate correlations according to equation 6, sepa-
rating correlations of variables of different vs. same topics, by modularization technique:
Random modules (RM), single topic modules (STM), and diverse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

five with RM, and six with DTM). Correspondingly, the strongest biases with RM
and DTM are 0.082 but only 0.055 with STM.

In addition, within-topic correlations seem to be underestimated: With RM,
66.7% of within-topic correlations have biases smaller than zero, 60.0% with STM
and 68.0% with DTM.

Figure 2.7 shows the sizes of SDDs for different-topic and within-topic corre-
lations. For different-topic correlations, small SDDs are again less common with
STM than with RM or DTM: With RM and DTM, the majority of SDDs are smaller
than 0.020, while with STM, the majority of SDDs are larger than 0.020. For same-
topic correlations, however, STM tends to produce smaller SDDs.

Subset by representation in the imputation models

Figure 2.8 displays average biases exclusively for variable pairs included in each
imputation model throughout the simulation. Note that this subset covers only a
small fraction (72 correlations) of all correlations. These correlations are generally
stronger, as imputation models only included correlations stronger than 0.10. Even
in this subset, biases are still different from zero. This underscores the challenges
of SQDs for the imputation. Again, correlations in both graphs tend to be under-
estimated. For different-topic correlations, all correlations are underestimated and



34

Figure 2.7: Standard deviations of deviations (SDDs) of 3,675 bivariate correlations ac-
cording to equation 8, separating correlations of variables in different vs. same topics, by
modularization technique: Random modules (RM), single topic modules (STM), and di-
verse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

73.2% (RM and DTM) and 71.4% (STM) of same-topic correlations are underesti-
mated.

50% of biases of different-topic correlations are between −0.019 and −0.014
with RM and DTM (STM: −0.026 and −0.013). The most extreme biases are
−0.025 (RM), −0.036 (STM) and −0.023 (DTM). For same-topic correlations 50%
of the biases are between −0.021 and +0.005 with RM, −0.012 and +0.002 with
STM, and −0.021 and +0.004 with DTM. The most extreme biases are +0.055
(RM), −0.027 (STM), and +0.061 (DTM).

SDDs are displayed in Figure 2.9. STM clearly produces larger SDDs for
different-topic correlations ranging from 0.026 to 0.033 whereas SDDs with RM
range from 0.023 to 0.026 and SDDs with DTM from 0.022 to 0.026. For within-
topic correlations STM leads to smaller SDDs than RM and DTM ranging from
0.012 to 0.025, while SDDs with RM range from 0.019 to 0.042 and with DTM
from 0.018 to 0.043.

2.4.3 Alternative Correlation Structures

In contrast to our expectations, DTM and RM generally performed similarly. Po-
tentially, the lack of high correlations even within topics may have prevented such
an effect. To test this hypothesis, we applied two additional simulations (using the
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Figure 2.8: Average biases of 72 bivariate correlations according to Equation 6 for cor-
relations represented in every imputation model throughout the simulation, separately for
correlations of variables of different vs. same topics, by modularization technique: Ran-
dom modules (RM), single topic modules (STM), and diverse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

Figure 2.9: Standard deviations of deviations (SDDs) of 72 bivariate correlations accord-
ing to equation 8, for correlations represented in every imputation model throughout the
simulation, separately for correlations of variables in different vs. same topics, by mod-
ularization technique: Random modules (RM), single topic modules (STM), and diverse
topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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same procedure as with the main simulation) with synthetic data. Here, we main-
tained the univariate distributions found in the GIP dataset but manipulated corre-
lation structures to assess whether DTM outperforms RM when there is one highly
correlated predictor within the same topic for each imputed variable (see appendix
D for a description of the data-generating process). Scenario 1 (control condition)
largely adopts the original correlation structure but with maximum correlations of
|0.20|. Scenario 2 is the same except for one same-topic correlation per imputed
variable increased towards ±0.90.

Results (see appendix Figures 2.D1 through 2.D4) indeed show somewhat small"-
er biases and SDDs with DTM than with RM for scenario 2, while STM performs
exceptionally poorly. However, even in this extreme scenario DTM’s advantage
over RM remains quite small. Scenario 1 largely replicates the findings from the
main simulation study, with STM producing somewhat larger biases and SDDs than
RM and DTM, which perform similarly.

2.5 Summary

In this paper, we simulated the impact of different modularization strategies on
imputation quality in an SQD. By using real data from a probability-based online
survey, our goal was to test approaches to implementing SQDs under realistic con-
ditions, characterized by a large number of variables with many missing cases to be
imputed using a wide range of relatively weakly correlated predictor variables that
are partially missing themselves.

The evidence suggests that univariate frequencies tend to be slightly biased.
More concerning are our results concerning bivariate relationships captured by cor-
relations. Although some biases are small, others are comparatively large. This
observation holds for all examined modularization strategies, among within-topic
correlations and different-topic correlations as well as for correlations included in
all imputation models.

Thereby, correlations tend to be attenuated. Most correlations that are positive
in the population data have biases smaller than zero (RM: 81.0 %; STM: 81.0%;
DTM: 81.5%). However, most correlations that are negative in the population data
have biases larger than zero (RM: 84.2%; STM: 86.1%; DTM: 83.9%). (Note that
overestimating a truly negative correlation implies a loss in correlation strength.)

Overall, we find that STM leads to larger biases and variability in estimates
than RM and DTM. This effect is most pronounced for frequencies but holds for
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correlations in the overall pattern as well. However, STM performs better than
RM and DTM for same-topic correlations, suggesting that correlations with more
pairwise observed cases (here: correlations based on variables in the same module)
can be estimated with higher quality.

2.6 Conclusions

We draw several conclusions: First, modularization strategies affect imputation
quality. Overall, STM produced estimates with larger biases and variability com-
pared to RM and DTM. Thus, from a statistical perspective, modules should be de-
signed heterogeneously regarding topics. This concurs with the notion that strongly
correlated items should not be allocated to the same module (Raghunathan and Griz-
zle, 1995; Rässler et al., 2002). Though STM may be a solution when analyses are
conducted within one topic only and thus do not require imputation.

Second, results for RM and DTM hardly differed. As suggested by the ad-
ditional synthetic data simulations, DTM might outperform RM in different data
scenarios if for instance, one correlation per imputed variable within the same topic
was considerably increased. However, even these effects were small, potentially be-
cause the probability for some highly correlated variable pair to end up in the same
module is already quite small with RM.

However, DTM might also have insufficiently exploited the correlation struc-
ture. To test this, we applied the modified cluster analysis technique for modulariza-
tion developed by Rässler et al. (2002) on our (original) population data, a method
that minimizes correlations within modules. The resulting average between-module
correlation was 0.073 (compared to 0.072 with DTM and 0.070 with RM). Thus, the
added value of such data-driven methods may be limited for settings with low vari-
able correlations.

Third, differences between modularization strategies were detectable, but av-
erage biases and variability seem to differ more between estimates for different
categories or variable pairs than between modularization strategies. This suggests
independent of modularization strategy, items in split modules should be designed
well-suited for imputation. Additionally, modularization strategy might also affect
response quality, as for example, topic switches would be more frequent with DTM
than with STM. Thus, we encourage future research into response effects to com-
plement our findings.



38

Finally, imputation remains a great challenge for SQD data. Especially rela-
tionships between variables are not fully retained. This finding is compatible with
Bahrami et al. (2014), who report small downwards slants in regression estimates.
Perhaps, further restricting the number of predictors in the imputation models may
help more, but the more the model is restricted, the larger will be the risk of under-
estimating relevant relationships. Thus, future research should further investigate
on how SQD data can be imputed in real-data contexts.

This study has some limitations. First, our findings may be sensitive to changes
in the data context. For example, surveys with more items could aggravate problems
with the complexity of imputation models.

Second, alternative imputation strategies could change the results. Although we
do not expect differences in the relative performance of modularization strategies,
future research should explore how different imputation strategies generally affect
imputation quality for SQDs.

Third, our research should be extended to testing the performance of multivari-
ate models. This was beyond the scope of this paper. However, the biases in bi-
variate correlations revealed by our simulation suggest that multivariate coefficients
may also be biased. Therefore, future research would benefit the state of the art by
running simulations of SQD on real data with models commonly found in the social
science literature.

Fourth, our analyses ignored item nonresponse in the data caused by respondent
behavior. Again, for our purposes, this was out of scope. However, we look forward
to future research that investigates how missingness by SQD and item nonresponse
differentially affect analyses and may be best imputed.

Fifth, simulating reduced data (rather than implementing an SQD in a real sur-
vey) does not allow to examine response behavior with different SQDs. Again, we
encourage future research on this.

We anticipate that with the continued growth in online surveys, the pressure to
shorten questionnaires with SQD will increase, too. Our study, however, demon-
strates the challenges to the imputation of SQD data. We show that the choice of
modularization strategy may alleviate some of these challenges. Moreover, our find-
ings stress the need for further exploration of how existing SQD procedures may be
enhanced to fit the reality of social data and thereby ensure high data quality for
future surveys.
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A. Additional Information on the Data Used for the Simulation
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Figure 2.A1: Univariate frequencies and Spearman correlations before single imputation
(on the horizontal axis, based on pairwise deletion) versus after single imputation (on the
vertical axis) of item nonresponse in the population data.
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Figure 2.A2: Spearman correlations of GIP items used in the simulation.
Note: highest education degree, highest professional qualification, marital status, employment sta-

tus, residence state, and year of recruitment are nominal and thus their correlations allow
only for limited interpretation.



88

B. Alternative Imputation Strategies

Figure 2.B1: Deviations of MI estimates from complete-sample estimates (Equations 2.3
and 2.4) by imputation method: (proportional odds) logistic regression vs. predictive mean
matching.

Note: Based on a single test simulation run with n = 2,000 and random modularization.
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Figure 2.B2: Average biases for 297 univariate frequencies according to equation 5 with
imputation model predictor sets including only variables with correlations stronger than
|0.10| vs. all variables, by modularization technique: Random modules (RM), single topic
modules (STM), and diverse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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Figure 2.B3: Average biases for 3,675 bivariate correlations according to equation 6 with
imputation model predictor sets including only variables with correlations stronger than
|0.10| vs. all variables, by modularization technique. Random modules (RM), single topic
modules (STM), and diverse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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C. Standard Errors of Estimates in the Simulation

Figure 2.C1: Standard errors of 297 univariate frequencies, by imputation model pre-
dictor set and modularization technique. Random modules (RM), single topic modules
(STM), and diverse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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Figure 2.C2: Standard errors of 3,675 bivariate correlations, by imputation model pre-
dictor set and modularization technique. Random modules (RM), single topic modules
(STM), and diverse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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D. Generation of and Results for Two Synthetic GIP Datasets
With and Without High Correlations Within Topics

For additional simulations on the question how higher correlations within topics
may affect imputation quality with the three modularization strategies, we generated
two synthetic datasets based on the GIP, one with correlations no larger than 0.20
(scenario 1) and another with some correlations considerably increased within the
same topic (scenario 2), according to the following data-generating procedure:

1. Estimate the Pearson correlation matrix for the GIP dataset as well as univari-
ate distributions for all variables in the GIP.

2. Apply the Fisher’s Z transformation on the correlation matrix.

3. Modify the transformed correlation matrix:

a. Replace correlations larger than 0.20 (or smaller than −0.20) by 0.20
(−0.20) to generate data without high correlations.

b. Only with scenario 2: Replace one same-topic correlation per variable
by 0.90 (−0.90 if the correlation was negative before). Respective vari-
able pairs are selected by their order in the data: Starting with the 11th

variable (representing the first split item in the data), highly correlated
variable pairs are variables 11 and 12, variables 13 and 14, etc. until
variable 61.

4. Apply the inverse Fisher’s Z transformation on the modified correlation ma-
trix.

5. Find the nearest positive-definite correlation matrix for the modified correla-
tion matrix using the nearPD (Bates and Maechler, 2019) algorithm in R.

6. Generate a standard multivariate normal dataset based on the modified cor-
relation matrix with 100,000 cases using rnorm_multi (DeBruine, 2020) in
R.

7. Make the data categorical: For each variable, order the continuous values by
size and assign a categorical value to it based on the quantile distribution of
the respective categorical variable in the real observed GIP dataset. Through
this procedure, the univariate distributions from the real GIP dataset are pre-
served in the synthetic data. At the same time, correlations decrease to some
extent due to the concomitant information loss.
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Figure 2.D1: Average biases for each 297 univariate frequencies according to equation
5 in two simulation studies on synthetic data with low correlations within the same topic
(scenario “Low”) and high correlations within the same topic (scenario “High”), by mod-
ularization technique: Random modules (RM), single topic modules (STM), and diverse
topics modules (DTM).
Note: Based on two Monte Carlo simulations with each 1,007 runs on 2,000 cases (40% missing

data) each.
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Figure 2.D2: Standard deviations of deviations for each 297 univariate frequencies ac-
cording to equation 7 in two simulation studies on synthetic data with low correlations
within the same topic (scenario “Low”) and high correlations within the same topic (sce-
nario “High”), by modularization technique: Random modules (RM), single topic modules
(STM), and diverse topics modules (DTM).
Note: Based on two Monte Carlo simulations with each 1,007 runs on 2,000 cases (40% missing

data) each.
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Figure 2.D3: Average biases for each 3,675 bivariate correlations according to equation
6 in two simulation studies on synthetic data with low correlations within the same topic
(scenario “Low”) and high correlations within the same topic (scenario “High”), by mod-
ularization technique: Random modules (RM), single topic modules (STM), and diverse
topics modules (DTM).
Note: Based on two Monte Carlo simulations with each 1,007 runs on 2,000 cases (40% missing

data) each.
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Figure 2.D4: Standard deviations of deviations (SDDs) for each 3,675 bivariate correla-
tions according to equation 8 in two simulation studies on synthetic data with low correla-
tions within the same topic (scenario “Low”) and high correlations within the same topic
(scenario “High”), by modularization technique: Random modules (RM), single topic
modules (STM), and diverse topics modules (DTM).
Note: Based on two Monte Carlo simulations with each 1,007 runs on 2,000 cases (40% missing

data) each.



Chapter
General Purpose Imputation of Planned

Missing Social Survey Data: Different

Strategies and Their Effect on Correlations

3
Abstract

Planned missing survey data, for example stemming from split questionnaire de-
signs, are becoming increasingly common in survey research, making imputation
indispensable to obtain reasonably analyzable data. However, these data can be dif-
ficult to impute due to low correlations, many predictors, and limited sample sizes
to support imputation models. This paper presents findings from a Monte Carlo
simulation, in which we investigate the accuracy of correlations after multiple im-
putation using different imputation methods and predictor set specifications based
on data from the German Internet Panel (GIP). The results show that strategies
that simplify the imputation exercise (such as predictive mean matching with di-
mensionality reduction or restricted predictor sets, linear regression models, or the
multivariate normal model without transformation) perform well, while especially
generalized linear models for categorical data, classification trees, and imputation
models with many predictor variables lead to strong biases.

This paper is joint work with Christian Bruch, and Christof Wolf. A similar version of this paper
has been published in:
Axenfeld, J. B., Bruch, C. & Wolf, C. (2022). General-purpose imputation of planned missing social
survey data: Different strategies and their effect on correlations. Statistics Surveys, 16: 182-209.
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3.1 Introduction

Long questionnaires pose a serious threat to the quality of survey data, triggering
low response rates and poor response quality (Galesic and Bosnjak, 2009; Peytchev
and Peytcheva, 2017). Recently, survey projects such as the PISA 2012 context
questionnaire (OECD, 2014, pp. 48-58) or the European Values Study (Luijkx et
al., 2021) have attempted to overcome this problem with methods such as the split
questionnaire design (SQD) (Raghunathan and Grizzle, 1995). In an SQD survey, a
long questionnaire is split into different overlapping, shorter questionnaires. Conse-
quently, respondents receive only a part of the full questionnaire while all bivariate
combinations of variables and their covariances are observed. Obviously, this re-
sults in a large amount of planned missing data (i.e., data that intentionally remain
unobserved). As a result, dropping the incomplete cases from the analysis (listwise
deletion) is usually unfeasible with SQD data, since in SQDs fully observed cases
are rare or nonexistent. Therefore, SQD surveys require appropriate methods to
deal with the intentionally unobserved data.

Multiple imputation (MI; Rubin, 1987) is one of the state of the art methods for
handling missing data. Based on an imputation model, MI replaces missing values
with multiple potential values drawn from the joint distribution of the data. Given
an adequately specified imputation model, data imputed via MI can be analyzed
through standard statistical techniques. Yet, from a practical perspective the re-
sponsibility of imputing SQD data cannot easily be shifted to the data user, as only
a minority of users are experts for imputation. Furthermore, it can be argued that in
the interest of transparent, replicable and cumulative research it would be beneficial
if researchers were able to work with the same imputed data. This means that it
could be beneficial if the data is published with imputed data for general research
purposes, giving data users with different substantive interests a reliable basis for
their analysis. However, as we argue in the following paragraphs, more research is
needed to determine which imputation strategies can adequately handle such data
scenarios in practice.

A general purpose imputation of SQD data faces the following challenges: First,
imputation models ideally should cover all variable relations studied in an analysis
model. If variable relations that are omitted in the imputation are included in an
analysis model, they will be biased towards zero unless the true relationship is equal
to zero (Bartlett et al., 2015). For our scenario of a general purpose imputation this
means using all available variables as predictors, because they may be included in
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a researcher’s substantive analysis model. However, to impute large numbers of
variables with large predictor sets, large samples are needed. This often will not be
the case for SQD.

Second, because analyses of SQD data largely rely on imputed data, the selec-
tion of the imputation strategy is crucial, for even minor misspecifications in the
imputation model could significantly damage the estimates.

Third, noisy data and especially low correlations are common features of social
surveys, even though the exact conditions may vary depending on a survey’s content
and measurement scales. This complicates the definition of accurate imputation
models since SQD data typically will contain only limited information that can be
utilized for imputation.

In sum, an adequate imputation strategy must deal with potentially huge pre-
dictor sets but limited sample sizes, comparatively little information input, and the
threat to distort relations in the overall data. Chapter 2 of this dissertation shows
that especially relationships between variables (more so than univariate distribu-
tions) can turn out considerably biased in imputed SQD data. In another real-data
simulation of an SQD, Bahrami et al. (2014) report regression coefficients with
complete and imputed SQD data, also revealing systematic biases in most coeffi-
cients. Hence, it is necessary to evaluate which simplifying assumptions must be
made in the imputation regarding both the predictor set and the imputation method.

To answer our question how planned missing data from an SQD survey can be
imputed as a service for the research community independent of a specific purpose
of analysis, we evaluate different imputation strategies (methods and predictor set
specifications) in their ability to reproduce relations in the data. To this end, we
present findings from a Monte Carlo study simulating planned missing data from an
SQD based on real survey data that we subsequently impute.

This paper proceeds as follows: In Section 3.2, we discuss the theory on planned
missing data and MI as well as different imputation methods. Section 3.3 explains
our data and method. In Section 3.4, we describe our results for the different strate-
gies, first for strong and then for weak relationships between variables. Section 3.5
concludes with a discussion of the implications and limitations of this study.
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3.2 Imputation of Planned Missing Survey Data

3.2.1 Planned Missing Data

Planned missing data occur when items are intentionally removed from question-
naires for specific groups of (usually) randomly selected respondents to shorten
questionnaires and reduce respondent burden. In a simple planned missing data
design each respondent is assigned to a predetermined number of items randomly
selected from the complete questionnaire (Munger and Loyd, 1988; Shoemaker,
1973). The split questionnaire design (Raghunathan and Grizzle, 1995; Graham
et al., 1996) is a modification of this procedure and involves allocating items to
distinct split modules and subsequently randomly assigning each respondent to a
subset of two or more split modules. In addition, a core module with particularly
important items can be assigned to all participants to avoid planned missing data on
these items.

SQDs result in a fixed share of planned missing data corresponding to the mod-
ules omitted by design. For example, with a questionnaire split into five modules
of equal length, assigning three modules to each respondent produces 40% planned
missing data. As a result, researchers wanting to analyze variables from different
split modules will oftentimes end up with an empty dataset.

In consequence, Raghunathan and Grizzle (1995) and Graham et al. (1996)
propose completing the missing data via MI (see also Adigüzel and Wedel, 2008;
Bahrami et al., 2014; Imbriano and Raghunathan, 2020; Peytchev and Peytcheva,
2017; Rässler et al., 2002; Thomas et al., 2006). However, as discussed in the pre-
vious section, this may be challenging in practice: Large proportions of the data
have to be imputed, making the quality of results particularly susceptible to mis-
specifications of the imputation models. A further challenge is the large number of
variables in the predictor set of the imputation models in relation to the relatively
small sample sizes. Furthermore, predominantly low correlations may also mean
that the uncertainty of imputed values remains high, and many potential predictors
do not improve the imputation but only add complexity to the model.

3.2.2 Imputation

The past decades have produced developments that allow for properly dealing with
missing data by replacing them with several plausible values through multiple im-
putation (Rubin, 1987; van Buuren, 2018). To understand MI, suppose we have a
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variable Y that contains both observed values and planned missing values identi-
fied by vector Z = {0; 1}, where 1 indicates that a value is observed and 0 that
it is missing. Our scenario assumes that all missing data Y |(Z = 0) is planned
as described above and thus missing completely at random (MCAR). MI aims to
replace Y |(Z = 0) with m potential values that are plausible given a matrix of
predictor variables X (van Buuren, 2018, pp. 19-20). To this end, we rely on an
imputation model that estimates the conditional probability distribution of Y given
X using an adequate imputation method, accounting for all variable relationships
as well as noise in the data and parameter uncertainty (van Buuren, 2018, pp. 65-
68). Multiple imputed values are drawn randomly from this conditional distribution
for each missing value, generating m independently imputed datasets (van Buuren,
2018, p. 67). With a properly specified model, the imputed data should reproduce
the relationships between variables as well as uncertainty about these relationships
and about the true unobserved values (Rubin, 1987, pp. 12-16).

To analyze imputed data, estimates can be calculated separately for each of the
m datasets with standard methods for complete data (Rubin, 1987, p. 12). Subse-
quently, these estimates are combined into a single estimate using Rubin’s Rules
(Rubin, 1987; van Buuren, 2018, pp. 145-147), yielding one combined estimator
for each estimated parameter.

3.2.3 Predictors Included in Imputation Models

An important decision in MI is what to include in the set of predictor variables X .
The general recommendation is to include at least all variables that will be analyzed
in a model together with the imputed variable unless their true relationship is zero
(Bartlett et al., 2015). Because we are interested in imputing data as a service to
other researchers, we do not know which models will be applied to the data. In this
situation, including all variables as predictors of the missing variable, and thereby
using as much information as possible, may theoretically be the best option.

However, including all variables is often not feasible in practice (Nicoletti and
Peracchi, 2006; van Buuren, 2018, pp. 167-170, 259-271; White et al., 2011). Each
additional variable included in X makes the task of modeling the distribution of Y

conditional on X more complex. At some point, the sample would not be sufficient
anymore to support a reliable estimation of this conditional distribution. Therefore,
common recommendations are to use at most 15 to 25 (van Buuren, 2018) or 30 to
40 (Honaker and King, , 2010) variables in imputation models. This is particularly
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important because otherwise, unattainably huge increases in sample sizes would be
necessary.

In case predictor sets need to be restricted during the imputation of planned
missing data, we argue that predictors should cover at least all variables that are
substantively correlated with Y . These variables are essential to reduce the uncer-
tainty of the imputations (van Buuren et al., 1999), as they contribute to the variance
of the imputed variable. Under MCAR, imputation models excluding variables that
are not correlated with Y may also be the most reasonable choice regarding their
potential use in analysis models because there is no relationship to be preserved by
the imputation.

In this study we consider both restricted and unrestricted predictor set specifi-
cations.

3.2.4 Imputation Methods

To model the conditional distribution of Y through X , we need an adequate imputa-
tion method. In the following, we discuss several established methods, which differ
both in their distributional assumptions regarding the imputed variable and in how
its relationship to the predictor variables X is modeled.

Linear regression models (LRM)

First, linear regression can be used for MI (Rubin, 1987, pp. 166-167; van Buuren,
2018, pp. 67-74) if Y is continuous. However, since social research often treats
ordinal variables as continuous, especially if the number of categories is high (see
Wu and Leung, 2017, for a broader discussion and simulation), researchers might
also consider LRM as a method to impute ordinal planned missing survey data.

To impute data using Bayesian LRM (van Buuren, 2018, p. 67), a linear model
of Y conditional on X is specified:

Y = Xβ + ϵ , (3.1)

where β is a vector of Bayesian estimates of the regression coefficients for the
predictor variables in X and ϵ represents the residuals. Accordingly, the posterior
distribution P (Y |X)|(Z = 1) can be estimated, from which imputations are ran-
domly drawn. In an alternative frequentist setting, imputations can be calculated by
adding an error drawn from the normal distribution of errors to a bootstrapped point
estimate of Y (van Buuren, 2018, p. 67).
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This procedure is associated with strong model assumptions. First, residuals
are assumed to be normally distributed. With primarily categorical survey data, the
normality assumption is likely violated. If this assumption does not hold, some
authors recommend transformation techniques to approximate normality (Honaker
et al., 2011; Lee and Carlin, 2010) while others show that outcomes can be biased
with transformed variables as well (see for example von Hippel, 2013).

Furthermore, linear regression does not account for restrictions such as discrete
scales or logical bounds (Long, 1997), potentially leading to implausible imputa-
tions (White et al., 2011; van Buuren, 2018, p. 78; von Hippel, 2013). For example,
if Y is an ordinal, Likert scale–based variable defined for integers from 0 to 10, non-
integer and potentially even negative imputations would be obtained. Although the
analysis results are not necessarily negatively affected by implausible imputations
(Allison, 2005; von Hippel, 2009, 2013), imputed data with lots of implausible val-
ues may be considered inappropriate for publication, and standard analysis methods
for categorical variables would most likely fail with data imputed by LRM.

In addition, all predictors are included as linear terms. This requires their actual
relationship with Y to be exclusively linear as well. If there are any additional
relationships in the data, say quadratic or interaction effects, these must be explicitly
specified in the model (Seaman et al., 2012; von Hippel, 2009).

While possibly oversimplifying the relationship between predictors and imputed
variables, LRM have the clear advantage of only needing one parameter (the regres-
sion coefficient) to describe the relationship of a predictor with an outcome. This
relatively simple imputation task facilitates the estimation of many relationships
considering the practical problems with the imputation described above. In contrast,
methods that attempt to address categorical data specifically or model non-linear re-
lationships require more parameters for the same set of variables.

Categorical regression models (CRMs)

To circumvent some of the theoretical disadvantages of LRM, we might consider
using categorical regression models (CRMs; Brand, 1999; Rubin, 1987, pp. 169-
170; van Buuren et al., 2006) from the general class of generalized linear models
(GLMs). To accommodate the estimation of non-normal outcomes such as categor-
ical variables, LRMs are generalized through

Y = g(Xβ) , (3.2)



105

where g stands for a link function that depends on the assumed distribution of Y .
A simple example for a CRM is logistic regression for estimating the probability of
Y = 1 in binary variables, where g stands for the logit function

Pr(Y = 1) = eXβ

1 + eXβ
. (3.3)

In this way, the non-normal distribution of categorical outcomes can be accounted
for. As a result, CRMs with a correct specification of Y ’s discrete distribution allow
for directly drawing imputations that stick to empirically possible values. However,
we still assume that all effects of X on the transformed Y variable will be linear, so
non-linear relationships must be explicitly modeled, like with LRM. Similarly, we
assume error terms to follow a predefined distribution, meaning that the imputation
quality could be impaired if these restrictive distributional assumptions do not hold.

CRMs can also cause new problems if the sample size is small, since modeling
categories instead of the variables themselves increases the complexity of the im-
putation model. Accordingly, van Buuren (2018, p. 91) notes that the “imputation
of categorical data is more difficult than continuous data”. As a rule of thumb, at
least about ten cases per predictor category times outcome category are required for
CRM to produce stable estimates (van Belle, 2002, p. 87; van Buuren, 2018, p. 91).
As categorical predictors are usually represented as dummy variables, this means
thousands of respondents would be required to impute a variable with ten categories
only using one predictor with equally ten categories. Correspondingly, in a simi-
lar context White et al. (2011) report that they have found particularly structures
with several nominal variables “challenging to work with” when imputing them by
multinomial logistic regression. Furthermore, Wu et al. (2015) observe that LRMs
outperform CRMs in various scenarios with binary and ordinal variables.

Predictive mean matching (PMM)

Another common method used in MI is predictive mean matching (PMM; Little,
1988; Rubin, 1986). PMM is a two-stage method: First, a regression is applied to
the data. However, instead of drawing imputations directly, predicted values Ŷ are
calculated and a real observed Y value is drawn from a set of donors with similar Ŷ .
Extensions of this method add bootstrapping, propensity score matching as a special
case for categorical variables, and an alternative to draw imputations weighted by
distance instead of randomly from the donor set (Koller-Meinfelder, 2009; Siddique
and Belin, 2008).
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This solves several problems of conventional regression methods. First, im-
putations do not take impossible values, as all imputed values are taken from real
observations on other cases. Second, although all effects are still expected to be lin-
ear, evidence shows that PMM is quite robust against violations of this assumption
(Koller-Meinfelder, 2009; Morris et al., 2014; van Buuren, 2018, pp. 77-79). How-
ever, model misspecifications can still result in biases (Koller-Meinfelder, 2009;
Morris et al., 2014; Seaman et al., 2012). For example, interaction effects must be
specified explicitly (Seaman et al., 2012). Moreover, when missing cases do not
have enough potential donors nearby, PMM resorts to more distant donors to draw
imputed values, which may also result in bias (Kleinke, 2018).

Partial least squares PMM (PLS-PMM)

Although PMM relaxes some assumptions on the imputation, large numbers of po-
tential predictors could still be a problem. Robitzsch and Grund (2021) implement
partial least squares (PLS) regression (de Jong, 1993; Mevik and Wehrens, 2007)
as a two-step method to reduce the dimensionality of the predictor space before im-
puting the data. In a first step, PLS regression is used to extract a predetermined
number of k components of X that describe the maximum possible covariance of
X and Y (de Jong, 1993). These PLS components are uncorrelated latent variables
optimized to predict Y and ordered by decreasing importance for predicting Y . In
the second step, missing values are imputed (by default, with PMM) using the k

components as predictor set rather than the original data.
Such an approach suggests unique advantages over other methods. First, by us-

ing comparatively few PLS components for the imputation rather than many original
predictors X , the number of parameters in the model is reduced. At the same time,
most of the information on Y is preserved, as the PLS components were extracted
from X specifically to predict Y . Second, substituting the original variables X by
their (uncorrelated) PLS components also removes potential multicollinearity (al-
though due to the rather small correlations, multicollinearity should be low). Third,
by using PMM to draw imputations based on the PLS components, only empiri-
cally possible values are imputed. Thus, PLS-PMM might help preserve informa-
tion considering that the data context supposedly requires restricting the number of
parameters because of the limited case numbers and large amounts of missing data
to deal with.

However, PLS-PMM may also introduce new difficulties, particularly due to
potential information loss caused by dimensionality reduction. Extracting only k
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PLS components from X means that some other information in X will be ignored
in the imputation. If this ignored part of X still contains additional information on
Y , corresponding relationships would be to some extent lost. In consequence, k

should ideally be set such that all relevant information on the covariance between
X and Y is included in the imputation, that is, a potential k + 1-th component must
not provide any substantial further information on Y . Furthermore, PLS-PMM still
assumes that all relationships in the data are linear. Thus, non-linear terms such as
interactions must be explicitly specified in the PLS model.

Classification and regression trees (CART)

Finally, we could also decide to drop all assumptions about distributions and re-
lationships in the data, choosing an algorithm that attempts to learn about these
features. Classification and regression trees (CART), as described by Breiman et
al. (1984), have shown to be a relatively simple method for this purpose (Burgette
and Reiter, 2010; Doove et al., 2014). Other tree-based algorithms such as random
forests work similarly, but often go beyond CART by combining estimates of vari-
ous trees (see, for example, Shah et al., 2014), making them quite computationally
demanding.

CART creates a decision tree predicting Y by repeatedly partitioning the data
into two subregions along the values of the predictor variables. After having started
with an unconditional estimate of Y (i.e., the mean or mode, depending on whether
Y is continuous or categorical), a cut-off point on a variable in X is chosen and Y is
estimated separately below and above the cut-off point (i.e., with two mean or mode
values). In doing so, as many possible cut-off points as possible are tested and the
one that optimizes the goodness of fit is chosen. For example, for categorical Y

this means the cut-off point that reduces entropy the most is accepted. After that,
the same procedure starts again separately within both subregions, leading to the
data being cut into four subregions in total. This procedure is repeated again and
again, creating smaller and smaller subregions, and stops only when (a) an external
stopping criterion is reached, (b) the goodness of fit cannot be further improved,
or (c) there are not enough data left for another cut, thereby eventually reaching a
terminal node. To impute a missing value, an observed value can be randomly drawn
from one of the observed cases in the same terminal node (van Buuren, 2018, p. 86).

CART’s main advantage is that it accounts for all kinds of relationships (in-
cluding interactions) automatically without the need to specify a functional form.
Furthermore, it generates plausible imputations by drawing observations from the
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same terminal node. Thus, CART seems ideal for a general purpose imputation, as
it provides imputations that make intuitive sense and is agnostic to the functional
form of data users’ eventual analysis models. Some evidence also suggests that
CART outperforms CRM and PMM especially in reproducing complex relation-
ships (Akande et al., 2017; Burgette and Reiter, 2010; Doove et al., 2014). Slade
and Naylor (2020) observe a similar performance of CART and correctly specified
PMM.

However, large predictor sets might create particularly severe problems for
CART. Remember that CART stops partitioning a subregion of the data when not
enough data are available to support another split. As one imputed value must be
randomly drawn from a pool of several potential donors in the terminal node, several
(say, five) cases must be left in each terminal node. However, if this node size limit
is reached before all relevant predictor variables are accounted for, the remaining
ones are implicitly omitted from the imputation.

For example, suppose we have 1, 600 observed cases on Y . On average, each
repeated cut divides the average case numbers remaining in each subregion by two.
For simplicity, suppose that these two subregions are always equally large. Con-
sequently, we would reach terminal nodes after only eight successive cuts, with
1, 600/28 = 6.25 cases per subregion. Thus, including more than eight predictor
variables would mean that some are necessarily omitted in the imputation. Further-
more, even eight predictors would only work in the unlikely case that one binary
cut per predictor variable suffices to represent all its relationship with Y . For in-
stance, Doove et al. (2014) observe particular problems with reproducing linear
main effects, arguing that such structures likely require several consecutive cuts per
variable. Effectively, we might thus end up with only a few predictors sufficiently
utilized by CART.

CART could thus run into problems even with relatively large samples: Assume
we quadruple the sample in our example survey, yielding 6, 400 observed cases.
Even this would only allow for two more cuts on average (ten cuts in total). Thus,
we may face a curse of dimensionality problem (Bellman, 1961), in which adding
more predictors requires an exponential growth in case numbers. In consequence,
CART implicitly assumes that only a few predictors in X really determine Y and
all other predictors are negligible.

In this context, generally low but non-zero correlations as commonly found in
survey data could even exacerbate such problems. First, CART might face difficul-
ties in identifying optimal cut-off points due to high uncertainty in the data. Fur-
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thermore, in a data context in which predictive information on Y is not primarily
stored in a few strong correlations but in many different weak correlations, much in-
formation on Y may be lost in the imputation when the selected imputation method
limits the number of predictors so strictly.

3.2.5 Imputing Multivariate Missing Data

With planned missing data as produced by an SQD, missing data is usually obtained
not on one but on many variables. This means that, when imputing a variable Y

with missing values, there will also be missing values in X . To deal with such mul-
tivariate missing data, one can apply the previously discussed imputation methods
for each variable consecutively via fully conditional specification (FCS; sometimes
also referred to as multiple imputation by chained equations) or alternatively, use
joint modeling (JM) as a holistic method instead of integrating univariate imputation
methods.

JM is the classical application of MI described by Rubin (1987). It entails
modeling the joint distribution of multivariate missing data in a single multivariate
model (van Buuren, 2018, pp. 112, 115-119). This requires an explicit assump-
tion about the true distribution that applies to all variables in the imputation model.
Usually, a multivariate normal distribution is assumed, and variables violating nor-
mality are often transformed (Honaker et al., 2011; Schafer, 1999). This normality
assumption must hold for all (transformed) variables in the model alike. After esti-
mating the multivariate distribution parameters, imputations can be drawn directly
from the distribution.

FCS has been developed more recently (Brand, 1999; van Buuren et al., 2006;
van Buuren, 2018) and divides the multivariate imputation task into multiple uni-
variate imputation tasks that are processed one after the other. In doing so, an
implicit joint distribution is approximated without having to specify it explicitly. To
this end, an imputation model with relevant predictors is defined for each variable
to be imputed, describing the conditional distribution of this variable. Predictors
can either be fully observed or contain missing values that are imputed themselves.
Furthermore, an imputation method (such as CART, PMM, etc.) is also specified
for each variable to be imputed.

The FCS algorithm (van Buuren, 2018, pp. 120-121) iterates over all conditional
distributions to impute the missing values. This means imputation models for each
imputed variable are repeatedly run one after the other, eventually imputing the
whole data. The first run starts with random draws from Y |(Z = 1). Then, the
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first variable with missing values is imputed on the basis of the predictors, which
rely on observed data completed by the random starting values. In doing so, the
initial random imputations on this variable are replaced. Then the second variable
is imputed, followed by the third, and so on, until all initial random imputations
are replaced. Subsequently, the procedure starts again with the previously imputed
values, imputing the first, second, third, etc. variable. This is repeated for a number
of iterations to reach convergence, each time replacing the imputations from the
former iteration. When a predictor variable has imputed values itself, imputation
models always use its latest imputed version throughout the iterations.

JM and FCS are different in some respects. JM has a more bottom-up theoretical
justification and is computationally faster, while FCS offers much more flexibility
(van Buuren, 2018, pp. 130-131): distributions must only be defined univariately
for the imputed variables instead of an overarching multivariate distribution. This
allows for using different imputation methods (for example, accounting for different
levels of measurement) as well as different predictor sets for each imputed variable.
In this study, we test both JM and FCS strategies, but due to the gains in flexibility,
we mostly rely on FCS.

3.3 Data and Methods

To test the different imputation strategies for their ability to reproduce relationships
in planned missing data, we apply a Monte Carlo simulation based on real survey
data. This section describes the preparation of the data, simulation setup, and mea-
sures.

3.3.1 Data

We use data from two survey waves of the German Internet Panel (GIP), a
probability-based online panel of the general population in Germany (Blom et al.,
2015, 2017, 2019a,b; Cornesse et al., 2021). The dataset includes 61 variables with
items on the respondents’ sociodemographic information and sampling cohort, or-
ganization membership, Big Five personality traits, lobbying in EU politics, domes-
tic and party politics (this is the same dataset as used in Chapter 2).

Because our focus is on the evaluation of strategies to impute planned miss-
ing data stemming from split questionnaire designs, we removed all non-planned
missing data (nonresponse) from the dataset. This is necessary to ensure that the
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reported effects of imputing planned missing data are not confounded by impu-
tations for other missing data. To deal with unit nonresponse, we restricted our
sample to respondents who took part in both waves of the GIP (dropping 1, 390 out
of 5, 411 cases). Next, we had to deal with item nonresponse. Some item nonre-
sponse could be matched with responses from earlier waves (Blom et al., 2016a,b).
The remaining item nonresponse (on average 167 values or 4% per item) was im-
puted with single imputations in R (R Core Team, 2021) via mice (van Buuren and
Groothuis-Oudshoorn, 2011),1 using PMM including all variables with Spearman
correlations stronger than |0.05|. This procedure had negligible effects on correla-
tions and marginal distributions in this dataset (see Figure 2.A1).

In a next step, we recode variables with rare events to allow for an appropriate
imputation. This is because the simulation procedure reduces available sample sizes
considerably in all simulation runs, and hence the number of available observations
per category is much lower in the simulated SQD datasets than in the population.
Thus, categories containing fewer than 100 cases (2.5%) are combined into some-
what broader categories to provide the imputation with sufficient case numbers.

Our final dataset, which we will refer to as population dataset, contains 4, 061
cases and 61 items. All variables are categorical and contain no missing values.
From the 11 sociodemographic and sampling cohort variables, 1 variable is di-
chotomous, 7 are nominal with 3 to 12 categories, and 3 are ordinal with 5 to 12
categories. These are treated as core variables, which are complete and hence do
not have to be imputed. Of the remaining 50 variables, 44 are ordinal with 3 to
11 categories and 6 are dichotomous. These 50 variables are imputed during the
simulation.

3.3.2 Simulation of Planned Missing Data

To assess the performance of different imputation strategies with planned missing
data, we simulate the implementation of a split questionnaire design in our popula-
tion data. To this end, we assume that the sociodemographic items and the sampling
cohort constitute a core module. The remaining 50 items would be allocated ran-
domly to five split modules with ten items each. Each respondent then receives the
core module and three out of five randomly assigned split modules. This results in

1Other R packages used for this paper (if not cited elsewhere) are: DescTools (Signorell et al.,
2020), doMPI (Weston, 2017), foreach (Microsoft and Weston, 2020), ggplot2 (Wickham, 2016),
haven (Wickham and Miller, 2019), MASS (Venables and Ripley, 2002), Rmpi (Yu, 2002), tidyr
(Wickham and Henry, 2019).
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a 33% reduction in questionnaire length, with approximately 40% (2/5 modules)
randomly missing data on each split item and no missing data on the core items.

Our simulation study picks up this scenario, repeating to simulate SQDs in 1,007
simulation runs using the bwHPC high performance computing infrastructure.2 In
each simulation run, this entails the following tasks:

1. drawing a random sample from the population data;

2. randomly allocating items to modules;

3. randomly assigning modules to respondents;

4. setting values for modules not assigned to missing, mimicking an SQD;

5. applying MI to the simulated planned missing data for each imputation strat-
egy, and

6. estimating Spearman correlations on the MI data to be compared against their
population benchmarks for each imputation strategy.

3.3.3 Imputation Strategies

In each simulation run, we test different imputation methods implemented in R.
We implement JM via Amelia (Honaker et al., 2011), a technique that draws from a
multivariate normal distribution modeled using the expectation–maximization algo-
rithm. With this method, we have the option to (correctly) declare our variables as
ordinal, which will make Amelia transform the initial continuous imputations into
discrete categories. However, forcing continuous values into integer imputations
can compromise the accuracy of estimates (Allison, 2005; Horton et al., 2003), so
Honaker et al. (2011, p. 16) suggest letting Amelia impute continuous values with-
out ordinal transformation, if feasible. However, this produces implausible imputa-
tions, which may be a problem if the data is to be published. In consequence, we
include both Amelia with transformed (JM-T) and with untransformed imputations
(JM-U) in our simulation.

Moreover, we use some FCS imputation methods implemented in mice (van
Buuren and Groothuis-Oudshoorn, 2011): the mice default (CRM, here: logistic
regression and ordinal logistic regression), norm (Bayesian LRM), pmm, and cart.

2The exact number of 1,007 simulation runs was used for computational reasons, as the simula-
tion ran parallelized on one processor for each run, and we had access to 1,008 processor cores (one
of them is consumed by setting up the simulation.
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Furthermore, we use pls (PLS-PMM) from the miceadds package (Robitzsch and
Grund, 2021), which includes 20 PLS components in the imputation. For these
FCS techniques we draw values after 10 iterations, because an initial test simulation
suggested that more iterations could not improve our estimates.

As a benchmark for poor imputations we include sample (also included in mice),
an unconditional hot deck sampling replacing missing values with randomly se-
lected observed values, to assess in how far the other methods outperform a purely
random replacement of missing values.

In the basic design, predictor sets include all variables in the data. Additionally,
two refinements with fewer predictors are implemented for all eligible imputation
methods. These two options exclude predictor variables with Spearman correla-
tions either weaker than |0.10| (option 1) or weaker than |0.20| (option 2) to the im-
puted variable and are applied to LRM, CRM, PMM, and CART. Amelia, as a JM
technique, does not allow for excluding different predictor variables per imputed
variable, and PLS applies a dimensionality reduction before imputation, generally
including all variables in X .

The correct specification of m to adequately represent the distribution of poten-
tial values for a missing value is subject to a lively debate. Sometimes, m = 5 may
suffice (see, for example, Schafer and Olsen, 1998), but depending on the data and
analysis purpose, m must often be considerably larger (Bodner, 2008; Graham et
al., 2007; von Hippel, 2020). In our study, we create m = 20 imputed datasets for
each imputation strategy because an initial test simulation suggested that results do
not improve with more imputations.

3.3.4 Measures

We compare different imputation strategies regarding how well they reproduce bi-
variate relationships based on Spearman correlations. For each pair of variables i, j

(with i ̸= j) in split modules, Spearman correlations ρi,j are calculated as bench-
marks based on the population data. With the imputed SQD data, Spearman cor-
relations ρ̂imputedi,j,s are estimated for the same variable pairs in each simulation run
s. This entails that Spearman correlations are estimated separately in each imputed
dataset and subsequently pooled through applying Fisher’s Z transformation on the
correlations, calculating the mean and transforming it back into a correlation (van
Buuren, 2018, p. 146).

The correlations turn out generally low in the population data, as is typically
the case with many surveys. Of the 1, 225 correlations, 85 (7%) are stronger than
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|0.20| with a maximum value of 0.70, 140 (11%) are stronger than |0.10| but at
most |0.20|, 248 (20%) are stronger than |0.05| but at most |0.10|, and 752 (61%)
are weaker than or equal to |0.05|. Thus, many variables are hardly correlated,
whereas few have relatively strong correlations.

In case ρ̂imputedi,j,s estimates ρi,j validly, we should observe that random differ-
ences between the MI estimate and its population benchmark average out over many
simulation runs. Therefore, we compute the (raw) Monte Carlo bias BiasMC of the
average MI estimate ρ̂imputedi,j over all simulation runs S,

BiasMC(ρ̂imputedi,j ) =
1
S

S∑
s=1

ρ̂imputedi,j,s − ρi,j , (3.4)

representing the average difference between MI estimates and the true correlation
benchmark. To obtain a more intuitive measure of bias, we can calculate the per-
centage bias by dividing the raw bias by the true correlation ρi,j and multiplying it
by 100:

%BiasMC(ρ̂imputedi,j ) =
BiasMC(ρ̂imputedi,j )

ρi,j
× 100 . (3.5)

The percentage bias indicates by how much percent the MI correlation is underesti-
mated or overestimated.

Percentage biases have the disadvantage that they are only meaningful for cor-
relations that are clearly different from zero: A ρi,j near zero in the denomina-
tor of Equation 3.5 can lead to exceedingly large relative deviations even when
the actual difference between estimate and benchmark is negligible. Further-
more, a ρi,j exactly equal to zero means a denominator equal to zero, making
%BiasMC(ρ̂imputedi,j ) impossible to calculate. In consequence, a reliable estima-
tion of the percentage bias is only feasible for correlations clearly different from
zero. This is especially relevant given that, as described before, correlations in our
population dataset tend to be weak. Accordingly, percentage biases work poorly
for the many very small correlations, for which we observe percentage biases up to
84, 606% with deviations that are often negligible in absolute size (as small abso-
lute deviations may be divided by much smaller correlations close to zero). Thus, to
analyze very small correlations in a meaningful way we resort to the raw bias as de-
fined in Equation 3.4, which does not share this problem. Observing that extremely
large percentage biases as just mentioned appear exclusively in correlations below
|0.05|, we therefore use the percentage bias for the 473 correlations stronger than
|0.05| and the raw bias for the 752 correlations equal or weaker than |0.05|.
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3.4 Results

We now discuss the performance of the implemented imputation strategies as mea-
sured by percentage and raw biases in Spearman correlations. First, we describe the
results for item pairs that have strong or moderate relationships in our population
data. In doing so, we concentrate on the relationships which have the most to lose
in terms of substantive relationships when the imputation fails. In this part, we also
include different predictor set specifications. Subsequently, for the sake of com-
pleteness, we also show the results for item pairs with weak or null relationships.

3.4.1 Item Pairs With Moderate or Strong Relationships

Figure 3.1 displays the average percentage biases in Spearman correlations for the
85 item pairs with moderate or strong relationships (stronger than |0.20| in the pop-
ulation data), broken down by imputation method and predictor set specification.
Each point displayed in a row represents the average bias over the 1, 007 simulation
runs for one specific variable pair. The boxplots condense the information given by
these point clouds that depict the average biases for the different variable pairs into
an aggregate image of how the Monte Carlo biases are distributed for each strat-
egy. In addition, the corresponding quantile distributions are shown in an appendix
(Table 3.A1).

First, the random imputations with unconditional hot-deck sampling lead to bi-
ases that concentrate at about −65%. Consequently, this is the approximate average
bias we could expect from a method that completely fails to incorporate relation-
ships in the imputation.

With LRM, biases are relatively small, with the central 50% (i.e., the area from
the first through the third quartile) of biases ranging from −6.8% to −2.6%. Some
outliers appear at both tails up to or slightly exceeding ±20%. Although most biases
are negative, many are close to zero. Excluding predictors correlated less than |0.10|
with the imputed variable (option 1) results in a shift to the right, suggesting weaker
biases: Here, the central 50% of biases range from −4.0% to +0.6%. Further
removing predictors correlated less than |0.20| with the imputed variable (option 2)
yields no additional improvement (the central 50% range from −4.2% to +0.7%).

CRM tends to produce strong biases. With an unrestricted predictor set, the
central 50% of biases range from −50.7% to −21.9%. We observe no biases closer
to zero than −10% but some biases stronger than −65%. Thus, all correlations
appear biased, with some even further from the truth than randomly imputed values.
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JM-T  -  unrestricted

CART  -        |r|>0.20
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Figure 3.1: Average percentage Monte Carlo biases of Spearman correlations for 85 item
pairs with moderate or strong relationships (true correlations stronger than |0.2|), by impu-
tation method and predictor set specification.

Note: Random = unconditional hot-deck sampling; LRM = linear regression model; CRM = cate-
gorical regression model; PMM = predictive mean matching; PLS-PMM = predictive mean
matching on partial least squares components; CART = classification and regression trees;
JM-T = joint modeling with transformed imputations; JM-U = joint modeling with untrans-
formed imputations.
Unrestricted = with all variables in the predictor set; |ρ| > 0.10/0.20 = with only predictors
with |ρ| > 0.10 / |ρ| > 0.20 in the predictor set; data-driven = 20 PLS components; none =
no predictors.
Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data)
each.
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Again, we observe some predictor set effects on biases shifting the distribution of
biases to the right: The central 50% of biases range from −32.5% to −5.6% (option
1) or from −31.6% to −2.7% (option 2). With both options, biases also have a
smaller tendency towards extreme values, with minimum values at about −60%.
Thus, CRM performs poorly with unrestricted predictor sets and improves a little
when we remove weak predictors, but even severely restricted predictor sets cannot
eliminate the biases, which are still mostly much stronger than −10%.

PMM performs better than CRM but, at least with unrestricted predictor sets,
shows still moderate biases, with the central 50% ranging from −13.5% to −10.5%
and no biases closer to zero than −6%. Only two biases exceed −20%, yet one
extreme outlier has a bias of −31.7%. These biases can be reduced considerably by
excluding weak predictors from the imputation models: The central 50% of biases
then range from −6.8% to −3.4% with option 1 or even from −5.4% to −2.0%
with option 2. Furthermore, both option 1 and option 2 make the extreme outlier
disappear, with the strongest biases being less pronounced than −20% in both cases.
Thus, we can obtain relatively accurate estimates with PMM, almost catching up
with JM-U when using restricted predictor sets.

With PLS-PMM most biases are even smaller, with the central 50% ranging
from −4.6% to +1.4%. Concurrently, we observe outliers mostly up to about ±20%
and one at +34.4%.

CART leads to relatively strong biases, although they are less pronounced than
with CRM: With unrestricted predictor sets, the central 50% of biases range from
−31.7% to −16.8%, with the strongest bias being −47.2%. Furthermore, only few
correlations are almost unbiased, with maximum values of +0.1%. Again, remov-
ing weak predictors from the imputation models yields an improvement. However,
the central 50% of biases still range from −27.2% to −12.3% with option 1 and
from −23.2% to −10.5% with option 2. However, with option 2, we also observe
two extreme biases with a minimum value of −63.3%. Thus, despite some improve-
ments with restricted predictor sets, CART in general performs poorly.

JM performs much better than CRM and CART but still leads to moderate bi-
ases when normal imputations are transformed to ordinal values (JM-T): The central
50% of biases range from −16.9% to −11.2%. We also observe outliers with some
biases stronger than −30%. There are no biases closer to zero than −5%, so correla-
tions appear quite universally biased. However, JM-U (i.e., declaring the variables
(incorrectly) as continuous) considerably reduces biases: The central 50% of bi-
ases range from −3.4% to +1.7%, with the most extreme outliers at about ±20%.
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Thus, despite some remaining biases, JM with untransformed imputations overall
performs well.

To sum up, strong correlations over |0.20| are best reproduced by PLS-PMM
and JM-U when the entire set of variables is considered in the imputation. PMM
and LRM approach their level of accuracy with predictor sets restricted to stronger
correlations. While CRM and CART perform exceptionally poorly, PMM with un-
restricted predictor sets and JM-T also produce systematically biased results.

3.4.2 Item Pairs With Weak or Null Relationships

Figure 3.2 displays the average percentage biases for the 388 item pairs that had
weak relationships in the population (between |0.05| and |0.20|), again for different
imputation methods. Alternatively, quantile distributions are given in Table 3.A2.
Restrictions of the predictor set are not presented here, as they exclude (some of)
the relationships under study from the imputation and thus produce biased estimates
per se. Apart from this, the information displayed in the graph is equivalent to
Figure 3.1, with point clouds and boxplots showing the distributions of biases for
each strategy.

In general, Figure 3.2 reproduces most patterns observed for strong relation-
ships. With random imputations, we still observe biases concentrating at about
−65%. Furthermore, JM-U, LRM and PLS-PMM yield the least biased estimates,
followed by PMM and JM-T, while CART and CRM have the strongest biases
among all methods (except for random imputations).

However, percentage biases tend to be more pronounced for these weak rela-
tionships than for the stronger relationships discussed in the previous Section 3.4.1.
CART and JM-T are particularly affected, with distributions visibly shifted away
from zero. Biases with the other strategies also appear slightly shifted to the neg-
ative, but primarily scatter more compared to strong relationships, causing an in-
creased prevalence of extreme biases. Correspondingly, biases considerably larger
than zero (i.e., positive percentage biases) occur with CRM, JM-T, JM-U, and PLS-
PMM, each with maximum values of about +60% or more. With CRM, some biases
also fall out of the display range defined between −100% and +100%: Ten correla-
tions have biases exceeding −100% with a minimum value of −119.8%. PLS-PMM
also has one bias out of display range (+106.6%).

Table 3.1 displays the quantile distribution of the absolute values of raw average
biases for the 752 relationships close to zero (weaker than |0.05| in the population)
for the different imputation methods. Due to the small true relationship strength,
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Figure 3.2: Average percentage Monte Carlo biases of Spearman correlations for 388
item pairs with weak relationships (true correlations weaker than |0.20| but stronger than
|0.05|), by imputation method.

See Note Figure 3.1.
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Table 3.1: Quantile distribution of absolute raw average Monte Carlo biases of Spearman
correlations for 752 item pairs with relationships close to zero (true correlations weaker
than |0.05|), by imputation method.

Min. 5% 25% 50% 75% 95% Max.
Random 0.000 0.001 0.006 0.012 0.021 0.03 0.033
LRM 0.000 0.000 0.001 0.003 0.006 0.014 0.039
CRM 0.000 0.001 0.004 0.009 0.017 0.035 0.056
PMM 0.000 0.000 0.002 0.004 0.007 0.013 0.027
PLS-PMM 0.000 0.000 0.002 0.004 0.008 0.018 0.045
CART 0.000 0.001 0.004 0.009 0.015 0.024 0.039
JM-T 0.000 0.000 0.002 0.005 0.009 0.016 0.024
JM-U 0.000 0.000 0.001 0.003 0.006 0.014 0.041

See Note Figure 3.1.

their raw biases are mostly small as well. We observe that random imputations
lead to biases between 0.000 and 0.033. In contrast, biases with other imputation
methods are mostly smaller, but all methods except JM-T and PMM have maxi-
mum values larger than those obtained with random imputations. Apart from that,
patterns with this kind of relationship again largely reproduce the findings above:
CRM and CART have comparatively large biases concentrating around 0.009. At
the other extreme we again have JM-U and LRM producing biases of only 0.003 at
the median, while JM-T, PMM and PLS-PMM show biases concentrating at around
0.004 and 0.005.

3.5 Discussion

As we described in the introduction, a general purpose imputation of planned miss-
ing data resulting from using a split questionnaire design holds special challenges.
They stem primarily from the large amount of missing data to be imputed on many
variables using many partially missing predictors, combined with survey-typical
features such as comparatively small sample sizes and low correlations. Using a
Monte Carlo simulation, we tested the accuracy of several imputation strategies
with real survey data. In doing so, we first analyzed correlations stronger than
|0.20| in the population data, and then turned to the weaker correlations. Overall,
the relative performance of imputation methods is similar in both cases.

Surprisingly, LRM performed exceptionally well, with mostly low biases in
Spearman correlations even with unrestricted predictor sets. This finding stands in



121

sharp contrast to statistical intuition suggesting that methods should account for the
variables’ levels of measurement, which raises the question of why LRM performed
so well. First, our data context characterized by low correlations and high uncer-
tainty, limited case numbers, and many potential predictors may have promoted
the use of simple methods that need comparably few data to efficiently estimate
relationships between all variables. Here, linear regression can excel because it es-
timates only one coefficient per predictor. Thus, LRM’s benefits due to simplicity
might have outweighed its disadvantages, such as assuming an incorrect level of
measurement and strict linearity in relationships. Second, although our data are
not continuous, they are at least binary or ordinal. Presumably, the performance of
LRM would quickly drop if we shifted our focus to non-ordered categorical data.
Third, LRM might perform well with reproducing the correlations covered by our
study but still fail with other types of relationships or estimates. Perhaps strongly
non-linear relationships were absent in our data, which would give LRM an ad-
vantage over competing methods. Furthermore, we must bear in mind that LRM
will inevitably destroy discrete distributions of categorical variables, leading to im-
plausible imputations. Hence, an LRM general purpose imputation would heavily
restrict data users in their analyses. For example, frequency counts or classification
models such as logistic regression would most likely fail. Consequently, we might
be tempted to round imputations to discrete values, but this practice has shown to
cause bias (for example, see Horton et al., 2003). Moreover, the assumption of
normally distributed error terms is unlikely to hold with LRM on categorical data.

CRM consistently showed a dissatisfactory performance under all the predictor
set specifications we studied. Some biases were even stronger than with random
imputations drawn without any predictor variables. This confirms earlier findings
reporting inaccuracies with similar methods (e.g., White et al., 2011; Wu et al.,
2015).

PMM was found to perform much better than CRM, even though unrestricted
predictor sets still lead to moderate biases. We showed that these biases were sig-
nificantly reduced by simplifying the imputation model. This could be done either
by removing predictors that are only weakly correlated with the imputed variable or
through dimensionality reduction (PLS-PMM), suggesting that an adequately spec-
ified imputation via PMM might work well.

CART performed poorly with all predictor set specifications, although better
than CRM. This finding is especially noteworthy considering that there is evidence
suggesting that CART may outperform other imputation methods, such as PMM
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(Doove et al., 2014). We suspect this is primarily due to the complex imputation
exercise of our planned missing data context, which is characterized by a limited
number of cases and many relevant but predominantly weakly correlated variables.
However, as CART has also been previously reported to be challenged specifically
by predicting linear relationships (Doove et al., 2014), future research could exam-
ine whether CART plays more to its strengths with non-continuous relationships.
Furthermore, future research might investigate whether other, more sophisticated
decision tree techniques (such as random forests) could provide an improvement
over CART that is sufficient to impute large amounts of planned missing survey
data from SQDs.

Joint modeling via Amelia showed moderate biases when we correctly specified
the measurement level as ordinal (JM-T), resulting in imputations transformed into
discrete categories. When we instead specified the level of measurement as contin-
uous (JM-U), we mostly got rid of these biases, similarly as with FCS via LRM, for
example. This is no coincidence, as “FCS using all linear regressions is identical to
imputation under the multivariate normal model” (van Buuren, 2018, p. 130). How-
ever, this means that both also share many disadvantages, especially as, in contrast
to JM-T, they lead to implausible imputations not matching the discrete distributions
and bounds of categorical variables.

For the imputation methods we analyzed, removing weak predictors leads to
more accurate estimates. However, this also involves a strong theoretical assump-
tion: Either the true relationship of imputed variable and predictor must be zero or
both variables must eventually not be analyzed together. In contrast, an analysis-
specific imputation could explicitly select predictors by whether they will be used
in an analysis model. Thus, an analysis-specific imputation could be expected to
yield a better estimation accuracy if neither part of the aforementioned assumption
holds.

PLS-PMM with a dimensionality reduction of the predictor space could show
a way out of this dilemma. This method allows to include all variables in the im-
putation with a performance comparable to solutions with restricted predictor sets.
Furthermore, PMM is in general more robust against violations of the normality
assumption than LRM (e.g., Koller-Meinfelder, 2009) and maintains the discrete
scale of the variables. In principle, with PLS-PMM we could also include non-
linear terms and interaction effects as predictors if they are highly correlated with
the imputed variable, enabling data users to explore phenomena beyond linear ef-
fects with their analysis models. Finally, PMM automatically generates plausible
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imputations, preserving categorical variables. For a general purpose imputation,
this is a significant advantage over methods such as JM-U and LRM, which per-
formed comparably well but produce implausible continuous imputations and thus
might not be considered optimal to impute data from a SQD for general usage.
Thus, PLS-PMM appears as the currently most promising approach for a general
purpose imputation of data from an SQD, being able to yield both plausible values
and produce only little bias in bivariate relationships in the data.

Future research should explore how the current implementation of PLS-PMM
can be refined to produce valid general purpose imputations of SQD data. For
example, one challenge is to find more theoretically or empirically justified methods
to set the number of PLS components used for imputation.

Moreover, in this study we focused on biases of Spearman correlations because
they have previously been found to be particularly adversely affected when imput-
ing data from an SQD (see Chapter 2), constituting a good target to measure the
performance of imputation strategies. However, further tests could focus more on
precision and coverage, as well as additional targets, such as regression coefficients.

Another aspect is how nonresponse by respondents interacts with the imputation
of SQD data, which we explicitly did not study here. This may be relevant not only
as nonresponse by respondents will increase the proportion of missing values, but
also because the resulting missing data might not be MCAR.

Future research should also test whether our findings hold under different data
contexts and parameter settings. On the one hand, data with a higher number of
strong correlations or considerably larger sample sizes could hypothetically yield
better results. On the other hand, challenges could grow with surveys having more
items (increasing the number of potential predictors) or primarily relying on nomi-
nal response scales (reducing the options regarding adequate imputation methods).
Continuing to focus particularly on the practical issues of imputing planned missing
survey data from SQDs will be crucial to ensure the future usability and validity of
data and the research stemming from these designs.
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Appendix

Quantile Distributions for the Information Displayed in Figures
3.1 and 3.2

Table 3.A1: Quantile distribution of average percentage Monte Carlo biases of Spear-
man correlations for 85 item pairs with moderate or strong relationships (true correlations
stronger than |0.20|), by imputation method and predictor set specification.

Method Predictor set Min. 5% 25% 50% 75% 95% Max.

Random None -65.5 -65.1 -64.8 -64.6 -64.4 -63.9 -63.5

LRM unrestricted -20.3 -14.0 -6.8 -4.5 -2.6 3.9 15.8

LRM |ρ| > 0.10 -17.8 -10.1 -4.0 -1.5 0.6 7.4 20.7

LRM |ρ| > 0.20 -25.5 -10.1 -4.2 -1.4 0.7 6.5 8.2

CRM unrestricted -81.2 -68.4 -50.7 -37.1 -21.9 -16.1 -11.9

CRM |ρ| > 0.10 -61.0 -50.3 -32.5 -14.3 -5.6 -1.8 0.2

CRM |ρ| > 0.20 -60.1 -50.3 -31.6 -14.5 -2.7 0.5 3.7

PMM unrestricted -31.7 -19.1 -13.5 -11.6 -10.5 -8.2 -6.6

PMM |ρ| > 0.10 -17.6 -9.6 -6.8 -5.0 -3.4 -1.7 3.0

PMM |ρ| > 0.20 -18.5 -12.0 -5.4 -3.2 -2.0 -0.7 2.0

PLS-PMM data-driven -20.1 -13.7 -4.5 -1.0 1.4 9.8 34.4

CART unrestricted -47.2 -40.9 -31.7 -27.0 -16.8 -3.9 0.1

CART |ρ| > 0.10 -42.4 -33.4 -27.2 -21.4 -12.3 -1.6 0.3

CART |ρ| > 0.20 -63.3 -34.5 -23.2 -19.1 -10.5 -1.1 0.4

JM-T unrestricted -35.5 -28.5 -16.9 -13.2 -11.2 -8.8 -5.5

JM-U unrestricted -17.0 -9.1 -3.4 -0.3 1.7 8.7 21.8

See Note Figure 3.1.
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Table 3.A2: Quantile distribution of average percentage Monte Carlo biases of Spear-
man correlations for 388 item pairs with weak relationships (true correlations weaker than
|0.20| but stronger than |0.05|), by imputation method.

Min. 5% 25% 50% 75% 95% Max.

Random -67.0 -65.4 -64.9 -64.5 -64.1 -63.6 -62.7

LRM -45.9 -24.6 -11.9 -5.9 -1.0 7.7 72.2

CRM -119.8 -89.7 -60.3 -41.2 -27.1 -14.3 -1.0

PMM -63.2 -29.9 -20.2 -15.6 -12.0 -5.6 16.8

PLS-PMM -44.8 -27.7 -14.6 -4.2 2.9 31.1 106.6

CART -79.9 -55.5 -45.1 -37.4 -29.3 -16.2 59.0

JM-T -54.8 -40.6 -28.9 -21.4 -15.9 -8.5 24.4

JM-U -44.2 -21.4 -7.9 -1.3 3.3 13.3 77.2

See Note Figure 3.1.



Chapter
The Performance of Multiple Imputation in

Social Surveys With Missing Data From

Planned Missingness and Item Nonresponse

4
Abstract

Designs using planned missingness, such as the split questionnaire design, are be-
coming more and more important in social survey research. To ensure an acceptable
questionnaire length, these approaches typically entail large amounts of planned
missing data, which can be imputed after data collection. However, social sur-
veys typically also include other types of missingness such as item nonresponse
by survey participants, which need to be imputed as well. This entails a complex
imputation task with amounts of missing data larger than initially planned and a
potentially non-random, heterogeneous mechanism. Yet, it remains to be studied
whether accurate multiple imputation estimates can be obtained in practice with
planned missingness and item nonresponse.

To deal with this research gap, we apply a Monte Carlo simulation study using
real social survey data. In this study, we simulate missing data based on item non-
response with different mechanisms and proportions of item nonresponse as well
as different proportions of planned missing data. We find that item nonresponse

This paper is joint work and based on a previously unpublished paper by Axenfeld, J. B., Bruch,
C., Wolf, C., & Blom, A. G.
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can jeopardize the quality of estimates after multiple imputation especially when
the total amount of missing data from both sources is high or when there is a con-
siderable proportion of item nonresponse that is missing not at random. Therefore,
from an imputation perspective, survey designers should incorporate their expecta-
tions about item nonresponse on each variable when designing surveys with planned
missing data.

4.1 Introduction

Survey designs using planned missingness are recently receiving a lot of attention in
social survey research. This is marked by a growing body of research, particularly
focusing on how to design the planned missingness patterns in such surveys (see for
instance Chapter 2 of this dissertation; Adigüzel and Wedel, 2008; Bahrami et al.,
2014; Imbriano and Raghunathan, 2020; Thomas et al., 2006). Increasingly, designs
with planned missingness are also being applied in large-scale social surveys, such
as the European Values Study 2017 (Luijkx et al., 2021) or the PISA 2012 context
questionnaire (OECD, 2014, pp. 48-58). Examples of planned missingness designs
are multiple matrix sampling (Shoemaker, 1973; Munger and Loyd, 1988), two-
method measurement designs (Graham et al., 2006), and the 3-form design (Graham
et al., 1996) or (similarly) the split questionnaire design (SQD; Raghunathan and
Grizzle, 1995).

The SQD entails leaving out items for each respondent based on a random pro-
cedure. This usually serves to shorten questionnaires for individual respondents,
considering that lengthy questionnaires can lead to reduced response rates, high
breakoff, and increased measurement error (Galesic and Bosnjak, 2009; Peytchev
and Peytcheva, 2017). This especially applies to self-administered online surveys
(Callegaro et al., 2015; de Leeuw, 2008), which increasingly tend to compete with
traditional face-to-face surveys.

The resulting planned missing data (PMD) is usually considered missing com-

pletely at random (MCAR). Yet, as all cases and most variables would be incom-
plete, simple pairwise deletion may often result in insufficient net sample sizes.
Thus, as proposed by Raghunathan and Grizzle (1995), missing data from SQDs
may need to be imputed.

Meanwhile, additional sources of missing data are typically present as well in
SQD surveys. In particular, item nonresponse (INR) by survey participants is a com-
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mon issue.1 Unlike unit nonresponse, INR has been found to be little responsive to
variations in survey length (Galesic and Bosnjak, 2009). Thus, we may expect that
INR constitutes a similar challenge to SQD and conventional surveys alike. This
also includes the potential for nonresponse bias, which would require appropriate
treatment (see, for example, Durrant, 2009; Frick and Grabka, 2005; Rässler and
Riphahn, 2006) through statistical techniques such as multiple imputation (MI; Ru-
bin, 1987; van Buuren, 2018). Yet, INR is often not considered explicitly in research
on imputing SQD survey data.

A realistic scenario of imputing SQD survey data has to take different types of
missingness into account: PMD by the design and INR by the participants. These
two types of missingness combined may cause an adverse scenario for the imputa-
tion: First, both types of missingness may in combination sum up to a very large
overall proportion of missing data. On the one hand, this is because a consider-
able reduction in questionnaire length requires an equivalent amount of PMD. On
the other hand, INR can unexpectedly cause considerable amounts of missingness
because participants’ response behavior is not under the control of the survey de-
signer. Second, INR by participants may occur non-randomly, potentially causing
nonresponse bias. In consequence, imputation models need to account for a po-
tentially heterogeneous, non-random missingness mechanism for a potentially very
large amount of missing data. This is important also because the resulting low case
numbers available for the imputation model might hamper its capacity to account
for the variables relevant for the response mechanism. Consequently, both types of
missingness combined in a survey might adversely affect estimates after imputing
the data. All this implies that future implementations of SQDs in social surveys
may depend crucially on appropriate research telling if and under which conditions
accurate estimates can be obtained. Existing research on imputing SQD survey data
does not provide such inference.

We contribute to this research gap by investigating how the simultaneous oc-
currence of PMD and INR in social surveys affects estimates after imputation. In
doing so, we seek to determine to what extent SQDs might still constitute a useful
tool for social surveys when additional INR is factored in. We also examine if the
imputation is able to deal with bias introduced by INR in such a situation.

In this paper, we use a Monte Carlo simulation study based on real social survey
data. We vary the proportion of PMD, the proportion of INR, and the mechanism

1Note that our definition of INR in the following does not include planned missingness, i.e. we
restrict the definition to cases where participants fail to deliver a response to a question assigned to
them.
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producing the INR. We investigate the accuracy of univariate frequency and bivari-
ate correlation estimates after imputation in the different scenarios.

4.2 Theory

Assume we have a survey with 1, 2, . . . , i, . . . , n respondents and 1, 2, . . . , j, . . . , k

variables yielding an n × k data matrix X with observations on a variable j identi-
fied by the vector x⃗j = {x1,j , x2,j , . . . , xi,j , ..., xn,j}. Some values in X are miss-
ing, with Z being the missingness indicator matrix of the same dimensionality as X

identifying missing observations by 1 and available observations by 0.

4.2.1 Missingness Mechanisms

Missing data can have different effects on the analysis of survey data depending
on the missingness mechanism. There are three types of missingness mechanisms
(Rubin, 1976; Little and Rubin, 2020): missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR).

In the MCAR condition all observations have the same probability of being
missing independent of any observed or relevant unobserved data. Consequently,
the missingness does not introduce bias to analyses of the data. Hence, such data can
in principle be analyzed using only the complete cases. However, this strategy may
yield small case numbers if there is a relevant share of missing data. Thus, MCAR
may not directly introduce bias but can cause difficulties through the consequential
loss of cases for the analysis.

If the missing data are MAR, the missingness Z may depend on any observed
data X|(Z = 0) but not on the missing data X|(Z = 1). In this situation, dropping
incomplete cases from the analysis may result in biased estimates. Yet, we may still
obtain unbiased and approximately efficient estimates through appropriate methods
such as MI (Rubin, 1987), which model the missingness mechanism for x⃗j based
on the information in the other variables, X−j .

Under MNAR, by contrast, Z depends on the missing data X|(Z = 1) itself
or other unobserved parameters even after conditioning on X|(Z = 0). This ap-
plies especially if the missing data in a variable j depends on x⃗j , i.e., the concerned
variable itself. In this situation, conventional imputation procedures relying only
on conditioning on X|(Z = 0) may be invalid (van Buuren, 2018). It obviously is
not possible to condition on X|(Z = 1) either, since this information is missing.
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This can be resolved through specialized MNAR imputation procedures that intro-
duce external information on the selection into Z = 1 to the imputation model. For
instance, imputed values can be shifted upwards or downwards to match a known
distribution (pattern-mixture models; Glynn et al., 1986) or prespecified response
weights can be used (selection models; Heckman, 1976; for a detailed discussion
of both methods, see Little, 2009). Another approach by Carpenter et al. (2007)
proposes weighting the multiple estimates for a parameter produced by MI in order
to correct for a MNAR mechanism. However, for social survey data such exter-
nal information is often not available. Therefore, research practice often relies on
more pragmatic approaches. When the MAR assumption is questionable, it is often
suggested to use imputation procedures for MAR mechanisms but include as much
information predictive of the missingness as possible into the imputation model to
reduce bias in estimates (Collins et al., 2001; van Buuren, 2018, p. 165). Con-
sequently, our study assumes that no external information on the missing data is
available.

4.2.2 Planned Missing Data (PMD)

Our study supposes that missing data in X stems from two sources: INR by partic-
ipants and PMD from an SQD.

PMD emerge by intentionally administering only parts of the complete ques-
tionnaire to each respondent (in the following described by the PMD indica-
tor matrix Zψ (identifying planned-missing observations by 1 and not-planned-
missing observations by 0) with PMD on a variable j identified by z⃗ψj =

zψ1,j , zψ2,j , ..., zψi,j , ..., zψn,j). The SQD, specifically, proceeds by allocating all items to
modules. One of these modules may be a so-called core module, which is assigned
to all respondents. Of the remaining modules (subsequently called split modules),
a subset of two or more modules is assigned randomly to each respondent. In con-
sequence, respondents receive only the items from the modules assigned to them.
Due to the random assignment, the PMD are usually MCAR.

SQDs may yield large amounts of missing data for each respondent and on all
variables excluding the core. This is because a meaningful reduction in question-
naire length presupposes a large amount of questions remaining unasked: Reducing
the number of items presented to each respondent by 50%, for example, requires
overall 50% PMD. This also leaves all cases and all split module variables observed
incompletely. As a result, analysis strategies relying only on the complete cases
may end up with an insufficient number of cases or no cases at all. In consequence,
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Raghunathan and Grizzle (1995) propose imputing PMD to obtain analyzable data
from SQDs.

4.2.3 Item Nonresponse (INR)

INR in surveys occurs when a sample unit participates in the survey but does not
answer a specific item. In the following, we let the INR indicator matrix Zω (identi-
fying observations missing through INR by 1 and observations not missing through
INR by 0) denote data missing through INR, with z⃗ωj = zω1,j , zω2,j , ..., zωi,j , ..., zωn,j
identifying the INR on a variable j. In presence of PMD, zωi,j is defined only if
zψi,j = 0, leaving zωi,j missing whenever zψi,j = 1.

There can be various causes for INR: Respondents may not understand the ques-
tion, not know or be sure about the correct response, lack motivation to form an
opinion, forget to respond, refuse to answer a sensitive question, or their response
may get lost due to an error during data collection or processing (Bech and Kris-
tensen, 2009; Berinsky, 2008; de Leuw et al., 2003; Montagni et al., 2019; Shoe-
maker et al., 2002). Correspondingly, various missingness mechanisms generating
INR are worth considering.

MCAR is a particularly strong assumption which may be realistic for INR only
in specific exceptions. For example, data losses at coding or data processing could
result in MCAR. Usually, however, social survey research considers the MCAR
assumption untenable (de Leuw et al., 2003; Durrant, 2009).

MAR often appears as a more realistic assumption since it allows the INR to
depend on respondent characteristics: INR generally occurs more often among
respondents that are older (Bech and Kristensen, 2009; Blumenberg et al., 2018;
Callens and Loosveldt, 2018; Eliott et al., 2005; Klein et al., 2011; Meitinger and
Johnson, 2020; Messer et al., 2012), less educated (Blumenberg et al., 2018; Cal-
lens and Loosveldt, 2018; Meitinger and Johnson, 2020; Messer et al., 2012), be-
long to a (particularly ethnic) minority group (Eliott et al., 2005; Klein et al., 2011;
Meitinger and Johnson, 2020) or are not that interested in the survey topic (Cal-
lens and Loosveldt, 2018; Kmetty and Stefkovics, 2021). INR rates can also differ
considerably between geographic regions (Callens and Loosveldt, 2018; Bech and
Kristensen, 2009). Yet, the role of respondent characteristics for INR often varies
between different questions and surveys: Some surveys report higher INR among
women than men (Bech and Kristensen, 2009; Callens and Loosveldt, 2018; Eliott
et al., 2005; Klein et al., 2011; Meitinger and Johnson, 2020; Washington Commu-
nity Survey, see Messer et al., 2012). Some surveys show a negative association
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between income and INR (Klein et al., 2011), while others show no clear associa-
tion, especially in online surveys (Messer et al., 2012). There may be additional,
potentially unknown variables that are associated with the INR on a variable. How-
ever, the MAR assumption is reasonable only if one is confident that all variables
relevant for the nonresponse mechanism are available in the observed data.

INR can also result from a MNAR mechanism. This may occur when re-
spondents deem their potential answer sensitive or socially undesirable (Copas and
Farewell, 1998; de Leuw et al., 2003; Rässler and Riphahn, 2006; Tourangeau and
Yan, 2007). For example, respondents with high income tend to refuse reporting
their income (see for example Rässler and Riphahn, 2006; Yan et al., 2010).

4.2.4 Imputation

Imputation in general refers to the approach of replacing missing values X|(Z =

1) with non-missing values from an imputation model. This allows for applying
standard complete data analysis methods on the completed data.

MI (Rubin, 1987; van Buuren, 2018) is one of the current state of the art pro-
cedures for imputation. It aims to both preserve relations in the data and ensure
variability. To impute univariate missing data in a variable j using MI, for each
missing value a number of m (multiple) imputations are drawn based on an impu-
tation model. This imputation model estimates the distribution of x⃗j conditional on
other variables in X−j using a pre-specified imputation method. Drawing m impu-
tations from the conditional distribution yields m imputed datasets and m varying
imputed values for each missing value. These multiple datasets are then analyzed
separately and the resulting estimates pooled into combined estimates according to
Rubin’s rules (Rubin, 1987; see also van Buuren, 2018, pp. 145-147).

For multivariate missing data, a common solution is MI by fully conditional
specification (FCS; van Buuren et al., 2006). This approach relies on looping
through different imputation models that impute missing data in each variable sep-
arately. For each variable to be imputed, this involves specifying an imputation
method and the relevant predictor variables.

The general procedure of FCS is as follows: We initially replace all missing
values by starting values randomly drawn from the marginal distributions of the
variables to be imputed. Then we impute the first variable, x⃗1, based on the ob-
served data and initial starting values of the predictor variables, replacing the initial
starting values in x⃗1 by the new imputed ones. We proceed by imputing x⃗2 using
the observed and imputed values in x⃗1 (provided that x⃗1 is in the predictor set) and
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the observed and initial starting values in the remaining predictor variables, replac-
ing the initial starting values in x⃗2 by new imputed ones. This continues until all
variables in X are imputed. Subsequently, we repeat this procedure with the pre-
viously imputed values instead of the initial starting values: Again, we begin with
imputing x⃗1, x⃗2 up to x⃗k and steadily replace the old imputations by new ones.
This looping procedure is repeated for a small (prespecified) number of iterations
for convergence, after which the final imputations are drawn. To create m multiple
imputations, this entire procedure is repeated m times.

When both PMD and INR appear in a survey, the imputation task might be af-
fected adversely. As described above, SQD surveys tend to generate PMD already
at large scale. In practice, this could lead to enormous proportions of missing data
in total, since the amount of INR is not under the researchers’ deliberate control.
This is important because it means the imputation model may need to rely on lit-
tle observed data. Especially for the imputation of INR this is far from ideal since
we would prefer to have as much information on the missing data and its mecha-
nism as possible. Furthermore, more missing data also means a larger impact of
imputed values on the estimation, suggesting greater potential for bias from a poor
imputation model.

As noted above, an additional challenge may be that PMD and INR may stem
from different missingness mechanisms (MCAR and potentially not MCAR). In
this context, one might want to account for the different nature of both types of
missingness. This would mean to impute a variable j conditional on z⃗ωj or z⃗ψj
(for example, by imputing both types of missingness separately). However, in our
view this is not meaningful. First, separate imputation models for INR and PMD
would likely have to rely on the same observed data X|(Z = 0) that neither expe-
rienced planned missingness nor INR, as we only have observations on xi,j when
zωi,j = zψi,j = 0. Moreover, being affected by INR (z⃗ωj = 1), the remaining available
data x⃗j |(z⃗j = 0) may not be subject to a randomness comparable to the PMD any-
more without conditioning on the variables determining the INR. Thus, an attempt
to impute x⃗j |(z⃗ψj = 1) separate from x⃗j |(z⃗ωj = 1) cannot legitimately be consid-
ered MCAR. Finally, even if these challenges were overcome, imputation models
conditioning on z⃗ωj or z⃗ψj would likely imply considerably more model parameters
to be estimated or (in case of separate models) considerably smaller case numbers.
This might be difficult considering we have limited case numbers available but po-
tentially many predictor variables to consider. Therefore, for each variable to be
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imputed we build one imputation model imputing all missing values together based
on Z without conditioning on Zψ or Zω.

Thus, we may face a complex missing data problem with (a) potentially very
large proportions of missing data and (b) a potentially complex, heterogeneous
missingness mechanism. This complicated missingness mechanism needs to be
represented in one single imputation model per variable. This model needs to in-
clude all variables predicting the INR despite a potential lack of available cases to
support such an extensive model. Thus, the question is how well the imputation can
reproduce relevant data structures in spite of these challenges.

4.3 Data and Methods

To examine the impact of INR and PMD on estimates after imputation, we apply
a Monte Carlo (MC) simulation study using real social survey data.2 To allow for
a realistic simulation of INR, we first investigate how frequently INR occurs and
identify its determinants in the survey dataset that subsequently serves as population
data for the simulation study. In each simulation run we draw a random sample
from this population dataset and use the information from the preliminary analysis
to simulate INR using a procedure similar to Enderle et al. (2013). We also simulate
PMD from an SQD with random modules (see Chapter 2). Thus, each simulation
run involves stochastically generating both PMD and INR. Through this repeated
procedure, we can measure robustly to what extent estimates from our data would
be MC biased depending on different PMD and INR scenarios.

4.3.1 Data

The population dataset for this study stems from the German Internet Panel (GIP;
Blom et al., 2015; Cornesse et al., 2022), an online panel survey of the German
general population. We use items from waves 37 and 38 (Blom et al., 2019a,b) pri-
marily on sociodemographic characteristics, political opinions, organization mem-

2All analyses in this paper are carried out in R (R Core Team, 2021) using the following packages
(if not cited elsewhere): DescTools (Signorell et al., 2020), doMPI (Weston, 2017), dplyr (Wickham
et al., 2021), foreach (Microsoft and Weston, 2020), ggplot2 (Wickham, 2016), glmnet (Friedman
et al., 2010), gridExtra (Auguie, 2017), haven (Wickham and Miller, 2019), MASS (Venables and
Ripley, 2002), and Rmpi (Yu , 2002). The R code is available as supplementary material to this
paper for replication purposes.
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bership and the Big Five personality traits. Thereby, we obtain a dataset with 61
variables (see Chapters 2 and 3) that are all categorical, mostly ordinal or binary.3

In the MC study, all missing data need to be simulated stochastically. Thus,
we need an initially fully observed dataset. To this end, we exclude all unit nonre-
spondents from the data, reducing the number of cases to 4,061. Furthermore, we
complement some further missing values with data from waves 1 and 13 (Blom et
al., 2016a,b). Finally, we single-impute the remaining INR using predictive mean
matching.

Beyond that, we combine rare events in variables (i.e., categories with < 100
cases) into broader categories. This is necessary because observed case numbers in
each simulation run are up to 6.3 times smaller than in the population.

4.3.2 MC Simulation Procedure

In this study, for each parameter specification, the following tasks are repeated over
1,007 simulation runs:

1. draw a simple random sample of 2,000 respondents from the GIP population
data

2. simulate PMD, Zψ

3. simulate missing data by INR, Zω

4. complete all the missing data using MI

5. obtain estimates with the completed (imputed and observed) data

Using this procedure, we manipulate (a) the proportion of PMD, (b) the proportion
of INR, and (c) the missingness mechanism of the INR. The following paragraphs
expand on steps (2) through (5) of the simulation procedure.

Simulating PMD

We simulate PMD according to an SQD. For doing so, all items are allocated to
modules. 11 sociodemographic items constitute a core module, which is assigned
to all respondents. In each simulation run, the remaining 50 items are randomly dis-
tributed to five split modules of each 10 items. Each respondent receives a random

3This is the same dataset as used in the previous two chapters.
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subset of these five split modules. Accordingly, all the PMD are MCAR. We ma-
nipulate the proportion of PMD by varying how many split modules are assigned
to each respondent: either two, three, four, or all five split modules. This results
in either 60%, 40%, 20%, or no PMD in the split modules, while the core module
remains completely observed.

Simulating INR

We simulate INR based on the real INR in the GIP. A preliminary analysis shows
that overall, 5% of the GIP data are missing due to INR (excluding the sociode-
mographic items, which are almost completely observed). INR propensities vary
heavily by item, ranging from 1% to 19%. Furthermore, to determine how INR
propensities vary by survey participant, we estimate elastic net logistic regression
models (Zou and Hastie, 2005) of the variables’ INR indicators on all other vari-
ables in the dataset. This provides us estimated nonresponse propensities specific
for each observation in the population data. More detailed information on the pre-
liminary analysis can be found in Appendix A.

These nonresponse propensities are used for simulating INR: We draw val-
ues from a uniform distribution U(0; 1) and set a value missing if its nonresponse
propensity is larger than the value drawn from U(0; 1) (see Enderle et al., 2013).

We implement four scenarios with different proportions of INR: one with INR
approximately as frequent as in the GIP (overall proportion of INR in the split mod-
ules: 5%), and three with INR two times (10%), three times (15%), or four times
(20%) as frequent as in the GIP. The sociodemographic core module and further
six variables in the split modules remain completely observed, as they show no
noteworthy INR. As in the real data, the proportions of INR vary considerably by
variable with a minimum of 0% and a maximum of 19% (considering the scenario
with overall 5% INR).

Hence, the total proportion of missing data in the simulation study depends on
the combination of INR and PMD. To illustrate this, Table 4.1 depicts the combined
overall proportion of missing data from both simulation steps for the various scenar-
ios. Accordingly, our simulation scenarios cover overall proportions of missing data
ranging from 0% to 68%. This table again highlights why INR and PMD cannot
clearly be separated in the imputation: 60% PMD and 20% INR, for instance, do not
result in 80% but 68% missing data. Hence, there is a 12% overlap of observations
that would be missing both by design and nonresponse.
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Table 4.1: Overall proportion of missing data in split modules by simulation scenario.

Proportion of PMD
0% 20% 40% 60%

Proportion of INR 0% 0% 20% 40% 60%
5% 5% 24% 43% 62%
10% 10% 28% 46% 64%
15% 15% 32% 49% 66%
20% 20% 36% 52% 68%

We also implement different potential nonresponse mechanisms (MCAR, MAR,
and MNAR) through adapting the nonresponse propensities.

Under MCAR, INR occurs purely by random chance. Thus, each variable j has
nonresponse propensities equal to the proportion of INR on variable j (not varying
between respondents). For larger proportions of INR, the propensities are multiplied
by 2, 3, or 4. In principle, this procedure can lead to nonresponse propensities larger
than 1. However, since all variables in the GIP dataset have proportions of INR
smaller than 25%, this is not the case here.

Under MAR, the nonresponse in a variable j depends on data in other variables
in X−j . Thus, for a MAR scenario with INR as frequent as in the GIP, we use
the nonresponse propensities estimated in the preliminary analysis using logistic
regression models . For the scenarios with more INR, we manipulate the intercepts
of these models increasing them such that the resulting propensities turn out two,
three, or four times larger on average.

Yet, the MAR mechanism in our data might be too modest to differ substan-
tially from an MCAR scenario. This is why we also consider an amplified MAR
mechanism. In these scenarios, we multiply the regression coefficients of the logis-
tic models by 2 and subsequently adjust the intercepts such that the proportion of
INR on each variable remains the same as in the GIP-like MAR scenarios. Under
MNAR, we assume that INR on variable j depends only on variable j itself. For
this, we set up the following MNAR model

p(zωi,j = 1) = eγ
j
0+γ

j
1xi,j

1 + eγ
j
0+γ

j
1xi,j

(4.1)

where γj0 is the intercept and γj1 is the regression coefficient of x⃗j determining the
INR in a variable j. In doing so, γj0 and γj1 are specified such that the mean and the
standard deviation of the nonresponse propensities are approximately the same as
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under the (GIP-like) MAR scenario. For the scenarios with more INR, the intercept
γj0 is adjusted as described in the MAR scenario.

In consequence, we end up with 4 + 4 × 4 × 4 = 68 simulation scenarios:

• four scenarios with varying prevalence of PMD (0%, 20%, 40%, 60% PMD)
without INR, plus

• four scenarios with varying prevalence of INR (5%, 10%, 15%, 20%), times

• four missingness mechanisms for INR (MCAR, GIP-like MAR, amplified
MAR, MNAR), times

• four scenarios with varying prevalence of PMD (0%, 20%, 40%, 60%).

Imputation

The missing data are imputed using the mice and miceadds packages (van Buuren
and Groothuis-Oudshoorn, 2011; Robitzsch and Grund, 2021) with 20 imputations
drawn after 10 iterations. In doing so, we use predictive mean matching with dimen-
sionality reduction of the predictor space through a partial least squares regression
(Robitzsch et al., 2016). We opt for this method because it can deal with a sam-
ple size of 2,000 without dropping some of the many potentially relevant predictor
variables from imputation models. Correspondingly, this approach has shown to
perform comparatively well with the data at hand compared to alternative tech-
niques, such as logistic regression models and classification and regression trees
(see Chapter 3).

Estimation

To examine the imputation’s ability to preserve distributions and relations in the
data with the various scenarios, in each simulation run and for each scenario we
calculate two types of MI estimates:

• Univariate frequencies for all 285 categories of all 44 variables with INR

• Bivariate Spearman correlations between all 88 pairs of variables that have a
correlation of 0.2 or stronger in the original population data and feature INR
on at least one of the two variables.

For this purpose, these measures are calculated separately in each of the 20 imputed
datasets and subsequently pooled according to Rubin’s rules.
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In order to evaluate the accuracy of a frequency or correlation estimate, we
calculate its percentage MC bias. This entails the following operation:

%BiasMC(θ̂) = 100 × 1
S

S∑
s=1

(θ̂s − θ)//θ (4.2)

where s refers to one of 1, 2, . . . , S simulation runs, θ̂s is a pooled MI estimate in
simulation run s, and θ is the true population benchmark for this estimate.

4.4 Results

4.4.1 Univariate Frequencies

Figure 4.1 displays the percentage MC biases averaged over all simulation runs
for each univariate frequency estimate (displayed on the horizontal axis) under the
different INR and PMD scenarios. Each of the displayed data points refers to the
average bias of one specific category of a variable. To simplify the analysis, box-
plots are drawn over the average biases. For each mechanism, Figure 4.1 shows
several of these plots referring to the percentage biases obtained with different pro-
portions of INR and PMD. In addition, the exact numbers for the percentage biases
discussed below are displayed in an appendix (Table 4.B1).

Note that, mathematically, all percentage biases for univariate frequencies have
a lower limit at −100% (because frequencies cannot be negative) but upper limits
often exceeding +100%, depending on the size of the frequency (1/θ − 1). Thus,
the phenomenon that Figure 4.1 tends to depict more pronounced percentage biases
in the positive than in the negative results from their calculation and represents no
finding in itself.

The first boxplot in Figure 4.1 depicts percentage MC biases when no missing
data at all occurs (and consequently, no data are imputed). Correspondingly, all
biases are approximately zero. The following three boxplots show the percentage
MC biases for 20%, 40%, and 60% PMD (still without INR). We can observe biases
increasing with increasing shares of PMD, even without INR: The central 50% of
biases (that is, 25% of biases are smaller and another 25% are larger) range from
−0.1% to +0.3% with 20% PMD, from −0.7% to +1.6% with 40% PMD, and
from −1.4% to +4.5% with 60% PMD.

The plots beneath show the results for 5%, 10%, 15%, and 20% INR that is
MCAR, again separately for 0%, 20%, 40%, and 60% PMD. Each of these INR sce-
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narios replicates the finding that percentage MC biases increase with more PMD.
Similarly, it also shows that biases increase with the proportion of INR despite the
MCAR mechanism. With 60% PMD, for example, the central 50% of biases range
from −1.4% to +4.5% when there is no INR, from −1.4% to +5.3% with 5% INR,
from −1.6% to +6.2% with 10% INR, from −1.7% to +7.6% with 15% INR, and
from −2.1% to +8.9% with 20% INR. In comparison to the scenarios without INR,
we also observe that percentage biases for a few categories take extreme values.
This is because the prevalence of INR varies heavily between variables. For exam-
ple, in the most extreme scenario (60% PMD and 20% INR), three extreme outliers
with percentage biases of each more than 70% stand out. These refer to categories
at the tails of the variables CE38256 and CE38260, which have the highest pro-
portions of INR (in the scenario with 20% INR and 60% PMD 68% of cases are
unobserved).

The subsequent plots show the results for INR that is MAR and as frequent as in
the GIP or according to the amplified mechanism. The general patterns observed be-
fore recur in both scenarios: Percentage MC biases increase with larger proportions
of both PMD and INR. Yet, INR appears to cause somewhat larger biases under
MAR than under MCAR, especially with the amplified MAR mechanism. In the
20% INR scenario with no PMD, for instance, the central 50% of biases range from
−1.2% to +1.1% for the GIP-like MAR mechanism and from −1.7% to +1.6%
for the amplified MAR mechanism, as opposed to −0.3% to +0.3% for the MCAR
mechanism. Interestingly, the presence of PMD (although in general yielding in-
creased biases) seems to attenuate the effect of the INR mechanism to some extent:
In the most extreme scenario with 60% PMD and 20% INR, the central 50% of per-
centage biases range from −2.1% to +8.9% under MCAR, from −2.4% to +8.7%
under GIP-like MAR, and from −2.7% to +8.9% under amplified MAR. Hence,
under 60% PMD and 20% INR the amplified MAR mechanism increases the range
of the central 50% of biases by only 0.6 percentage points compared to MCAR, as
opposed to 2.7 percentage points under 0% PMD and 20% INR.

For INR that is MNAR (displayed in the bottom of Figure 4.1), we observe a
different pattern. The percentage MC biases generally are much larger than under
MCAR or MAR (note that the scale of the horizontal axis for MNAR differs from
the rest because otherwise, many biases would fall out of display range). For exam-
ple, the central 50% of biases with 40% PMD and 20% INR range from −26.0%
to +14.1% under MNAR, as opposed to −2.8% to +5.2% under amplified MAR,
−1.9% to +5.0% under GIP-like MAR, and −1.3% to +4.3% under MCAR. In



148

consequence, we observe some extreme cases with larger proportions of INR (15%
and 20%), with some frequencies being biased upwards by more than ±100%. This
indicates that some categories of variables are not observed at all throughout the
simulation due to the MNAR mechanism.

Due to the large effect of the INR under MNAR, the proportion of PMD affects
the accuracy of estimates less than under the other mechanisms. With 10% INR, for
example, the central 50% of percentage MC biases range from −9.6% to +6.1%
when there is no PMD, from −10.4% to +6.3% with 20% PMD, from −9.6% to
+6.5% with 40% PMD, and from −8.4% to +9.4% with 60% PMD.

4.4.2 Bivariate Correlations

Figure 4.2 shows the results for the average percentage MC biases of bivariate
Spearman correlations that are larger than 0.2 in the population data. In doing so, it
follows the same structure as Figure 4.1. Here, each data point refers to the Monte
Carlo bias of the correlation of one variable pair. Unlike Figure 4.1, Figure 4.2
also covers values below −100%, as correlations can be both positive and negative.
Again, exact numbers for the percentage biases are also displayed in the appendix
(Table 4.B2).

As for the univariate frequencies, we can observe percentage MC biases increase
with increasing proportions of PMD, with a clear tendency towards underestimating
relationships between variables. This effect is especially severe for the scenario with
the highest share of PMD: Considering the scenarios without INR, the central 50%
of biases range from −1.7% to +0.0% with 20% PMD, from −5.0% to +0.3%
with 40% PMD, and from −18.2 to −11.5% with 60% PMD. Thus, the results
are slightly different for frequencies and correlations: Given large proportions of
PMD, almost all correlations are considerably biased downwards, while at least
some frequencies still have percentage biases close to zero (see Figure 4.1).

Again, increasing proportions of INR also yield increasing percentage MC bi-
ases, even under MCAR. For each of the INR mechanisms, the largest biases emerge
when the proportions of both PMD and INR is high. For example, with 60% PMD
and 20% INR that is MCAR, the central 50% of biases range from −48.0% to
−35.2%, as opposed to from −18.2 to −11.5% with 60% PMD but no INR. This
means that biases are roughly doubled in size despite the total proportion of missing
data increases only from 60% to 68% (see Table 4.1).

We also observe a slight tendency towards increasing percentage MC biases
when the INR is MAR (GIP-like or amplified, respectively) as compared to MCAR.
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Figure 4.1: Average percentage Monte Carlo biases of univariate frequency estimates for
285 categories of 44 variables, by response mechanism and proportions of item nonre-
sponse and planned missing data.
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases each.
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However, the differences are much less pronounced as with the frequency estimates.
With 20% INR and 40% PMD, for example, the central 50% of biases range from
−21.4% to −8.1% under amplified MAR and from −22.5% to −8.4% under the
GIP-like MAR, as opposed to −22.2% to −7.7% under MCAR.

For INR that is MNAR, we again observe some tendency towards larger percent-
age MC biases compared to both the MCAR and MAR scenarios. With 20% INR
and no PMD, for example, the central 50% of biases range from −6.3% to +1.5%
under MNAR, as opposed to −6.1% to +0.1% under amplified MAR, −4.8% to
+0.1% under GIP-like MAR, and −4.0% to −0.3% under MCAR. However, this
effect is less pronounced and less clear than with the frequency estimates. There
also tend to be more MC biases in the area around zero than under the MAR sce-
narios. This suggests that in this simulation study, MNAR affects some correla-
tions considerably while leaving others largely intact. Apart from that, we again
observe some extreme biases exceeding −100% with 15% or 20% INR that is
MNAR, implying that the direction of these relationships reverses systematically
due to the INR. These extreme biases occur primarily in the correlation of the vari-
ables BG38001 and BG38002, which have the strongest variability in nonresponse
propensities throughout all variables due to their good nonresponse model fit in the
preliminary analysis.

Compared to the results on univariate frequencies, the proportion of PMD ex-
hibits a larger effect on the accuracy of correlations under MNAR. With 20% INR
that is MNAR, for example, the central 50% of percentage MC biases range from
−6.3% to +1.6% when there is no PMD, from −11.1% to −1.14% with 20% PMD,
from −30.6% to −5.6% with 40% PMD, and from −54.8% to −32.7% with 60%
PMD.

4.5 Summary

In this paper, we have examined the accuracy of univariate frequency and bivariate
Spearman correlation estimates after imputation in data with two sources of miss-
ing data: planned missingness from an SQD and INR by survey participants. In
doing so, we have manipulated both the proportions of PMD and INR as well as the
mechanism causing the INR. Several major findings stand out:

First, the combined presence of INR and PMD in a social survey can affect the
estimation adversely. A major reason for this is that both types of missing data
combined increase the total proportion of missing data, challenging the imputation:



151

60% PMD

40% PMD

20% PMD

no PMD

−140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40

none

none

none

none

Percentage biases

P
ct

. o
f I

N
R

no INR

60% PMD

40% PMD

20% PMD

no PMD

−140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

Percentage biases

P
ct

. o
f I

N
R

MCAR

60% PMD

40% PMD

20% PMD

no PMD

−140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

Percentage biases

P
ct

. o
f I

N
R

MAR (GIP−like)

60% PMD

40% PMD

20% PMD

no PMD

−140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

Percentage biases

P
ct

. o
f I

N
R

MAR (amplified)

60% PMD

40% PMD

20% PMD

no PMD

−140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

20%
15%
10%

5%

Percentage biases

P
ct

. o
f I

N
R

MNAR

Figure 4.2: Average percentage Monte Carlo biases of bivariate Spearman correlation es-
timates for 88 variable pairs correlated by 0.2 or more in the population data, by response
mechanism and proportions of item nonresponse and planned missing data.
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases each.
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In our simulation study, large proportions of missing data led to large Monte Carlo
biases even if the INR is MCAR. In particular, rampant increases in Monte Carlo
biases emerged when the combined proportion of missing data from both sources
exceeded about 40%. Perhaps, this is caused by a lack of pairwise observations
available for the imputation model under large amounts of missingness: Whereas
40% PMD in two variables in different split modules would mean 36% of cases
being pairwise observed (given 0% nonresponse), 60% PMD would result in only
16% pairwise observed cases. Under all examined nonresponse mechanisms, many
frequency estimates (yet not necessarily all of them) turn out considerably overesti-
mated or underestimated when the proportion of missing data is high. Meanwhile,
correlation estimates appear especially severely affected by large amounts of miss-
ing data, being almost consistently shifted downwards with only few exceptions
having Monte Carlo biases close to zero.

Second, under the conditions of our simulation study, MAR caused only slightly
larger Monte Carlo biases than MCAR. The effects of INR under MCAR and MAR
even tended to converge the more PMD was introduced. Thus, in our simulation
study differences between MCAR and MAR appear only as a minor factor affecting
the quality of MI estimates, especially compared to the overall proportion of missing
data.

Third, under MNAR we observe different effects. In our simulation study, uni-
variate frequency estimates under MNAR were affected much more by the propor-
tion of INR than by the overall proportion of missing data. Thus, the amount of
PMD had hardly an effect on univariate frequency estimates. This is presumably
because the imputation could not deal adequately with this nonresponse mecha-
nism. For correlations, though, the effect of MNAR over MAR and MCAR was
rather small, and the overall amount of missing data also had a considerable im-
pact on the quality of estimates. We could imagine that in the real world this may
especially depend on the specific data context, considering that real-world MNAR
mechanisms might sometimes affect correlations more directly than in this simula-
tion study. Yet, despite the result that both MNAR nonresponse and large amounts
of PMD may cause estimation problems, the combination of both effects seems not
to create any further damage beyond (at worst) adding up.

Fourth, in all scenarios the estimates for a few categories or correlations were
affected substantially more by INR than most others. These outliers appear because,
as our preliminary analysis of real INR in the GIP data showed, INR varies heavily
between items both in its prevalence and dependence on other variables in the data.



153

4.6 Discussion

This study has certain limitations but may also allow some important conclusions
for future research. Both aspects deserve broader discussion here.

The most important limitation is that the study’s findings rely on a simulation
based on specific social survey data. Therefore, their external validity may depend
on how similar real data-collection scenarios would be to our simulation setup.
Through relying on real social survey data and the INR observed in this dataset,
we attempted to create a realistic environment. Nevertheless, INR in the real world
could work differently. For example, unlike modeled in this study, INR could follow
non-linear mechanisms (see for example Collins et al., 2001). Furthermore, INR
was modeled separately for each item based on the other variables in the dataset.
In reality, though, INR could also depend on the combination of several variables.
This might explain why effects appeared weaker for correlations than for univariate
frequencies. All these issues might affect real world applications of imputation, po-
tentially making it harder to model missingness mechanisms accurately than in this
study.

Furthermore, the variables in our dataset were discrete. In continuous variables,
by contrast, single outliers could have considerable leverage on correlation esti-
mates. Therefore, MNAR mechanisms in continuous variables might potentially
affect correlation estimates more severely than found in this study. Moreover, we
treated INR as a single uniform missing data source. Yet, in real surveys there are
different subtypes of INR (e.g., refusals, data collection errors, etc.) that might be-
have differently regarding their response mechanism (see, for example, Shoemaker
et al., 2002). Apart from all that, response mechanisms could also behave differ-
ently in surveys on different substantive topics. Therefore, this study should be
replicated with different data in the future.

Furthermore, our study focuses on INR as one of several manifestations of miss-
ing data that commonly occur in social surveys. Other important sources of missing
data, such as unit nonresponse, were out of scope. However, we encourage future
research on how these other missing data sources in surveys interact with the impu-
tation of PMD.

A final limitation is that we examined the accuracy of univariate and bivariate
but not multivariate estimates. Yet, for substantive researchers the performance
of multivariate models under different planned missingness scenarios may also be
highly relevant. Thus, future research should address this issue as well.
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Our findings may also guide future research in several other ways. First of all,
they allow some direct conclusions for survey design. In particular, survey design-
ers are recommended to carefully evaluate how much PMD is necessary and not
introduce more than that, considering that the quality of estimates tends to plum-
met when the proportion of missing data becomes too large. This is especially the
case for items that can be expected to produce considerable amounts of INR. In
such items, to allow for an appropriate imputation one may consider reducing the
proportion of PMD or allocating them to the core module.

Similarly, it seems particularly important in SQD surveys to keep INR at a low
level. For example, this is especially relevant considering the way modules are
constructed. For instance, earlier research shows that items of one topic should
be allocated to different split questionnaire forms rather than all to the same in
order to support the imputation (see Chapter 2 of this dissertation; Imbriano and
Raghunathan, 2020; Raghunathan and Grizzle, 1995). It is still an open empirical
question how (and if so, when) this would affect INR rates or response quality in
general compared to procedures allocating items of one topic to the same question-
naire form. Therefore, future research should investigate this issue, such that INR
can be taken into account when designing split questionnaires.

Interactions between SQDs and the participants’ response behavior may also
play a role in evaluating the costs and benefits of an SQD for a specific survey. By
reducing respondent burden in terms of questionnaire length, SQDs are supposed to
decrease unit nonresponse, breakoff, and measurement error (Galesic and Bosnjak,
2009; Peytchev and Peytcheva, 2017) at the cost of additional planned missingness
(Graham et al., 1996; Raghunathan and Grizzle, 1995; Peytchev and Peytcheva,
2017). This notion highlights key empirical questions for survey researchers con-
sidering to implement an SQD in a survey: How much PMD is needed to obviate a
given amount of unit nonresponse, breakoff, or measurement error? Is the averted
nonresponse considered MNAR, or is it MCAR or MAR? For example, on the one
hand, if introducing a limited amount of PMD can prevent a considerable amount
of unit nonresponse that is MNAR, the benefits of the SQD may outweigh its costs.
On the other hand, if large amounts of PMD can inhibit relatively little nonresponse
that can also be expected to be MAR, the opposite may be the case. To allow rea-
sonable claims about the expectable usefulness of an SQD for a specific survey,
however, our study would need to be replicated with a broad variety of different
survey datasets first. Furthermore, experimental research would be needed to inves-
tigate if and how different strategies to design split questionnaires affect response
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behavior. First evidence on this domain shows differences in respondents’ evalua-
tion of split questionnaires with more versus less frequent switches between topics
(Adigüzel and Wedel, 2008). Despite the need for more research, this simulation
study may provide a first piece of evidence to help researchers assess to what extent
an SQD might make sense for a given survey.
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Appendix

Appendix A. Preliminary Analysis: INR in the GIP Data

In order to attempt a realistic simulation of INR, an initial analysis investigates
prevalence and determinants of the original INR in the GIP dataset. It reveals that
overall, the GIP dataset has not very much INR. However, this varies considerably
by item (see Table A.1 for the detailed numbers): Some items (like the sociodemo-
graphic characteristics) have no or miniscule INR. Meanwhile, some other items
(especially on political opinions) have considerably more INR up to 19%. When
ignoring the sociodemographic characteristics, the average prevalence of INR is
5%.

To investigate the determinants of INR of a variable j in our GIP population
dataset, we estimate regression models of the INR indicator variable z⃗ωj of variable
j on all other variables X−j . This procedure is applied to outcome variables with
more than 25 cases of INR (thereby excluding all sociodemographic variables and
six of the remaining variables).

To select the most relevant predictors, we first estimate logistic elastic net re-
gressions (Zou and Hastie, 2005) using the glmnet package (Friedman et al., 2010)
with cross-validated λ parameters. We set α = 1.00, meaning that we use only the
lasso penalty (and no ridge penalty). For some outcome variables the lasso regres-
sion failed to converge. In this case, we set α = 0.95 (or α = 0.90 if it fails again).
This means we get closer to a ridge regression, but there remains a predominant
lasso penalty for variable selection. Figure 4.A1 shows which variables are selected
as predictors for each variable with missing values by INR.

Subsequently, we apply conventional logistic regressions of the nonresponse
indicator variable z⃗ωj on the previously selected predictor variables. This serves
to obtain models with valid effect sizes predicting INR for all the variables in the
data. The median Efron’s R2 of these models is 0.08. Some outcome variables
have R2 values considerably under 0.10, potentially in part because many of these
variables have little INR. Larger R2 values (mostly between 0.10 and 0.15) can
be found for some political-opinion items, in which INR is more prevalent. The
largest R2 values refer to two items on the perceived influence of lobbying over
EU and German domestic politics (BG38001 with R2 = 0.33 and BG38002 with
R2 = 0.35). Efron’s R2 values for all outcome variables can also be found in
Figure 4.A1.



163

Using these logistic models, we calculate nonresponse propensities p for each
observation i in variable j:

p(zωi,j = 1) = eL
j
i

1 + eL
j
i

(4.3)

with Lji being the log-odds of INR for the (i, j)-th element of X according to the
logistic regression of the j-th outcome variable (z⃗ωj ) on predictor variables in X( −
j), estimated with the linear index

Lji = βj0 + βj1xi,1 + βj2xi,2 + ... + βjj−1xi,j−1 + βjj+1xi,j+1 + ... + βjkxi,k (4.4)

where βj0 is the regression intercept and βj1 is the regression coefficient of predictor
variable x⃗1 (and βj2 the regression coefficient of predictor variable x⃗2, etc.). In these
models, the coefficients for variables excluded by the elastic net regression are set
to zero.

Figure 4.A2 plots the predicted nonresponse propensities (on the vertical axis)
and the observed response behaviour (black = item nonresponse, gray = response)
for four exemplar variables. All four graphs show rather small nonresponse propen-
sities for most respondents, but rather large nonresponse propensities for a few. As
can be expected, most of the observations with real INR seem to have rather high
nonresponse propensities. The nonresponse propensities show more variation in
BG38001 and BG38002, which is most likely because of the relatively good model
fit.
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Table 4.A1: Prevalence of data missing through item nonresponse in the GIP data.

Topic Item Number of Percentage share

missing values of missing values

Sociodemographic gender_18 0 0%

& sampling cohort year_of_birth_cat_18 1 0%

educ_school_18 1 0%

educ_job_18 0 0%

marital_status_18 21 1%

number_hh_members_18 15 0%

occupation_18 19 0%

german_citizenship_18 1 0%

internet_usage_18 12 0%

state_18 17 0%

sample 0 0%

Organization AA37027 35 1%

membership AA37028 35 1%

AA37029 35 1%

AA37030 34 1%

AA37031 36 1%

AA37032 35 1%

AA37033 37 1%

AA37034 35 1%

AA37035 37 1%

AA37036 189 5%

Big 5 personality AAxx044 26 1%

traits AAxx045 26 1%

AAxx046 27 1%

AAxx047 26 1%

AAxx048 27 1%

AAxx049 28 1%

AAxx050 27 1%

AAxx051 26 1%

AAxx052 27 1%

AAxx053 26 1%

Lobbying in EU BG38001 419 10%

politics BG38002 341 8%
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BG38006_a 23 1%

BG38006_b 23 1%

BG38006_c 23 1%

BG38006_d 23 1%

BG38006_e 23 1%

BG38006_f 23 1%

BG38007 529 13%

BG38009 657 16%

Domestic and CE38153 235 6%

party politics CE38154 292 7%

CE38155 349 9%

CE38156 694 17%

CE38312 489 12%

CE38347 218 5%

CE38348 221 5%

CE38350 219 5%

CE38351 245 6%

CE38352 198 5%

CE38056 148 4%

CE38250 223 5%

CE38252 288 7%

CE38254 320 8%

CE38256 764 19%

CE38258 416 10%

CE38260 782 19%

CE38262 570 14%

CE38280 347 9%

CE38329 205 5%

Total 10168 4%
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Figure 4.A1: Predictors (on the vertical axis) for item nonresponse on the variables in the
GIP data (on the horizontal axis) as selected by elastic net regressions (gray = selected;
white = not selected).
Note: The sociodemographic variables and sampling cohort as well as BG38006_a, BG38006_-

b, BG38006_c, BG38006_d, BG38006_e, and BG38006_f each have fewer than 25 values
missing by item nonresponse and are therefore excluded from the analysis. The plot displays
only predictor variables that were selected for at least one item nonresponse model.
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Figure 4.A2: Efron’s R2 values of the item nonresponse models, by outcome variable.
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Figure 4.A3: Distribution of predicted nonresponse propensities by actually ob-
served nonresponse in the GIP data for four exemplary variables: BG38001, BG38002,
AA370027, and CE38260.
Note: BG38001 and BG38002 have modest proportions of INR but the comparatively best model

fit among all variables; AA37027 has only a small proportion of INR and a relatively poor
model fit of R2 = 0.02; and CE38260 has the highest proportion of INR, R2 = 0.15.
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Appendix B. Results of the Simulation Study in Tabular Form

Table 4.B1: Quantile distribution of average percentage Monte Carlo biases of univari-
ate frequency estimates for 285 categories of 44 variables, by response mechanism and
proportions of item nonresponse and planned missing data.

INR %PMD %INR Quantile

mechanism Min. 5% 25% 50% 75% 95% Max.

- 0 0 -0.9 -0.2 -0.1 0.0 0.1 0.3 0.4

20 0 -1.5 -0.3 -0.1 0.0 0.3 0.9 2.0

40 0 -1.9 -1.2 -0.7 0.0 1.6 4.7 9.3

60 0 -6.0 -2.9 -1.4 0.2 4.5 15.6 23.8

MCAR 0 5 -0.8 -0.3 -0.1 0.0 0.1 0.4 1.1

0 10 -0.8 -0.3 -0.1 0.0 0.2 0.7 1.9

0 15 -1.7 -0.6 -0.1 0.0 0.2 1.4 5.8

0 20 -9.1 -2.3 -0.3 0.0 0.3 5.1 37.1

20 5 -1.0 -0.5 -0.2 0.0 0.6 1.3 2.3

20 10 -1.5 -0.8 -0.3 0.0 0.6 1.9 5.3

20 15 -4.3 -1.6 -0.4 0.0 0.9 3.7 16.5

20 20 -13.1 -3.8 -0.9 0.0 1.9 8.8 53.3

40 5 -2.5 -1.7 -1.0 0.0 2.3 6.9 11.4

40 10 -4.5 -2.4 -1.2 0.0 2.9 8.6 20.3

40 15 -8.9 -3.5 -1.3 0.0 3.5 11.7 34.6

40 20 -17.6 -5.1 -1.3 0.4 4.3 14.0 62.7

60 5 -5.9 -3.2 -1.4 0.6 5.3 16.5 24.5

60 10 -8.2 -3.8 -1.6 0.8 6.2 17.5 29.7

60 15 -13.6 -4.3 -1.7 0.9 7.6 19.6 46.4

60 20 -25.3 -7.0 -2.1 1.0 8.9 25.7 89.4

MAR 0 5 -6.4 -1.1 -0.3 0.0 0.3 1.2 5.0

(GIP-like) 0 10 -11.6 -2.1 -0.5 0.0 0.5 2.2 11.1

0 15 -15.3 -2.9 -0.7 0.0 0.8 3.4 16.3

0 20 -18.5 -4.3 -1.2 0.0 1.1 6.1 41.3

20 5 -7.0 -1.2 -0.3 0.0 0.7 1.9 6.1

20 10 -12.7 -2.1 -0.5 0.1 1.0 3.0 14.2

20 15 -16.6 -3.4 -0.8 0.2 1.4 5.1 23.4

20 20 -18.4 -6.1 -1.3 0.1 2.4 11.3 65.6

40 5 -8.4 -2.4 -1.1 0.1 2.4 7.0 12.3

40 10 -12.9 -3.7 -1.3 0.0 3.3 9.3 20.8

40 15 -13.9 -5.1 -1.7 0.0 4.6 12.9 35.6
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40 20 -19.3 -6.8 -1.9 0.1 5.0 18.3 71.7

60 5 -5.8 -3.1 -1.5 0.4 4.8 16.7 24.4

60 10 -9.7 -4.1 -1.8 0.5 6.5 18.5 28.5

60 15 -14.1 -5.8 -2.4 0.6 7.9 20.9 46.6

60 20 -26.6 -8.7 -2.4 0.7 8.7 27.3 93.1

MAR 0 5 -11.6 -2.3 -0.5 0.0 0.5 1.8 11.4

(stronger) 0 10 -16.6 -3.8 -0.9 0.0 0.9 3.6 21.1

0 15 -24.1 -4.9 -1.3 0.0 1.2 5.0 19.2

0 20 -31.7 -6.3 -1.7 0.0 1.6 8.2 51.4

20 5 -11.6 -2.1 -0.5 0.1 0.9 2.3 13.4

20 10 -19.4 -3.8 -0.8 0.1 1.2 4.0 19.6

20 15 -26.1 -5.1 -1.5 0.3 1.7 6.0 23.9

20 20 -26.6 -8.6 -2.4 0.1 2.7 14.6 90.1

40 5 -12.1 -2.7 -1.1 0.1 2.4 7.3 12.7

40 10 -21.3 -4.5 -1.5 0.2 3.7 9.9 23.2

40 15 -24.8 -6.3 -1.8 0.0 4.5 13.3 46.3

40 20 -25.8 -9.0 -2.8 0.4 5.2 20.3 93.6

60 5 -11.0 -3.9 -1.8 0.5 5.1 16.3 24.1

60 10 -17.9 -4.9 -2.0 0.5 6.5 18.7 32.4

60 15 -21.4 -7.0 -2.4 0.5 7.8 20.8 57.4

60 20 -28.4 -11.3 -2.7 0.5 8.9 30.3 111.9

MNAR 0 5 -41.7 -26.3 -3.6 0.5 3.1 9.1 15.9

0 10 -73.0 -45.8 -9.6 0.8 6.1 20.1 41.1

0 15 -100.0 -58.3 -17.4 1.1 9.4 32.3 79.3

0 20 -100.0 -62.8 -25.4 1.1 13.0 44.4 169.1

20 5 -41.2 -26.1 -4.0 0.5 3.1 9.1 16.1

20 10 -72.7 -45.7 -10.4 0.9 6.3 21.1 41.1

20 15 -100.0 -56.9 -17.8 0.9 9.6 32.3 84.5

20 20 -100.0 -60.6 -25.8 0.8 13.3 47.8 188.5

40 5 -38.2 -23.0 -3.1 0.8 3.3 11.3 22.3

40 10 -70.5 -40.9 -9.6 0.5 6.5 23.4 54.3

40 15 -100.0 -51.2 -17.2 0.5 10.6 38.4 105.6

40 20 -100.0 -59.7 -26 0.6 14.1 48.6 198.8

60 5 -35.5 -19.1 -3.9 1.2 5.9 17.2 33.0

60 10 -67.1 -38.5 -8.4 1.5 9.4 26.6 64.6

60 15 -100.0 -50.6 -15.4 1.7 13.3 43.0 118.2

60 20 -100.0 -57.6 -24.2 0.8 16.5 51.9 218.9

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases each.
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Table 4.B2: Quantile distribution of average percentage Monte Carlo biases of Spearman
correlation estimates for 88 variable pairs correlated by 0.2 or more in the population data,
by response mechanism and proportions of item nonresponse and planned missing data.

INR %PMD %INR Quantile

mechanism Min. 5% 25% 50% 75% 95% Max.

- 0 0 -0.5 -0.2 -0.1 0.0 0.1 0.3 0.4

20 0 -5.8 -3.4 -1.7 -0.7 0.0 1.8 5.3

40 0 -12.8 -9.9 -5.0 -2.1 0.3 4.4 20.8

60 0 -30.2 -26.0 -18.2 -15.1 -11.5 -3.6 40.3

MCAR 0 5 -3.2 -1.6 -0.5 -0.2 0.0 0.7 2.4

0 10 -6.7 -3.4 -1.2 -0.5 0.1 1.2 4.6

0 15 -9.7 -5.3 -2.1 -0.9 0.1 2.2 6.5

0 20 -15.4 -9.8 -4.0 -1.7 -0.3 2.0 7.6

20 5 -7.5 -5.1 -2.5 -0.9 0.2 2.8 6.6

20 10 -10.5 -7.2 -3.3 -1.3 0.3 3.2 8.0

20 15 -13.4 -9.6 -5.2 -1.7 -0.1 3.9 8.0

20 20 -23.2 -18.2 -10.8 -5.2 -2.2 2.2 10.9

40 5 -14.6 -12.0 -6.3 -2.9 -0.5 4.2 25.5

40 10 -18.5 -15.0 -8.3 -4.6 -1.9 5.0 28.6

40 15 -22.5 -19.5 -12 -8.1 -4.6 3.1 34.0

40 20 -50.6 -36.8 -22.2 -12.1 -7.7 -0.4 31.9

60 5 -33.6 -30 -22.9 -20.3 -16.8 -4.1 32.4

60 10 -38.9 -35.2 -31.2 -25.5 -22.3 -4.3 23.6

60 15 -54.8 -50.4 -39.3 -31.8 -27.9 -6.0 12.1

60 20 -82.0 -69.1 -48.0 -38.7 -35.2 -10.7 11.6

MAR 0 5 -5.8 -2.7 -1.1 -0.5 0.1 1.5 3.6

(GIP-like) 0 10 -9.2 -4.6 -2.1 -1.0 0.1 3.1 7.0

0 15 -11.4 -7.8 -3.2 -1.6 0.1 4.3 10.6

0 20 -20.9 -12.6 -4.5 -2.6 0.1 6.2 12.8

20 5 -8.2 -4.7 -2.6 -1.8 0.0 2.4 4.8

20 10 -11.4 -6.2 -4.0 -2.1 -0.1 4.1 7.9

20 15 -13.5 -10.7 -5.3 -2.9 0.1 5.0 10.8

20 20 -30.7 -21.6 -9.5 -6.4 -1.5 3.1 9.4

40 5 -16.8 -11.1 -6.5 -2.7 -0.7 4.4 23.1

40 10 -19.8 -13.8 -9.3 -4.9 -1.7 3.9 28.5

40 15 -25.9 -20.2 -13.8 -9.5 -4.4 1.2 32.5

40 20 -53.5 -35.8 -22.6 -15.1 -8.4 -0.4 32.1
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60 5 -34.6 -30.2 -23.2 -20.3 -17.8 -3.5 31.9

60 10 -44.4 -38.4 -30.6 -26.7 -22.5 -4.4 27.5

60 15 -56.3 -51.3 -39.6 -33.0 -29.1 -6.6 14.6

60 20 -83.9 -68.4 -50.1 -40.2 -36.1 -11 12.6

MAR 0 5 -11.7 -4.2 -1.6 -0.7 0.1 1.2 4.9

(stronger) 0 10 -19.0 -9.3 -3.1 -1.4 0.1 2.3 9.2

0 15 -24.9 -13.9 -4.3 -2.3 0.5 4.1 14.1

0 20 -29.7 -18.1 -6.1 -3.4 0.1 5.6 15.0

20 5 -14.7 -6.8 -3.3 -2.0 -0.1 3.1 6.2

20 10 -22.9 -12.9 -5.0 -3.1 -0.3 3.1 10.2

20 15 -27.0 -19.7 -6.2 -3.9 -0.7 4.0 13.8

20 20 -41.8 -32.4 -11 -7.4 -2.6 4.1 8.5

40 5 -20.4 -11.9 -7.5 -3.9 -0.9 4.7 22.6

40 10 -38.3 -22.7 -10.2 -6.5 -2.3 4.8 26.3

40 15 -53.3 -29.5 -13.9 -9.6 -4.2 3.3 31.2

40 20 -62.9 -46.9 -21.4 -15.0 -8.1 0.3 31.7

60 5 -46.2 -33.0 -24.0 -21.0 -17.3 -3.1 35.5

60 10 -61.2 -44.7 -30.5 -26.8 -22.0 -3.9 27.9

60 15 -70.7 -54.9 -37.9 -32.5 -27.7 -6.3 15.7

60 20 -83.0 -68.9 -49.8 -39.9 -35.4 -10.7 10.8

MNAR 0 5 -35.4 -7.5 -1.6 -0.2 0.7 2.3 5.6

0 10 -78.2 -18.3 -2.8 -0.6 1.1 4.4 8.9

0 15 -119.3 -30.8 -4.8 -0.7 1.4 6.9 9.6

0 20 -135.6 -35.9 -6.3 -0.9 1.6 9.0 12.0

20 5 -38.9 -8.3 -2.8 -0.9 0.0 1.7 2.9

20 10 -79.6 -17.7 -4.0 -1.5 0.4 3.0 4.7

20 15 -121.5 -32.3 -6.0 -1.5 0.6 5.4 8.0

20 20 -135.3 -39.2 -11.1 -3.9 -1.1 7.3 13.0

40 5 -41.8 -15.3 -5.5 -2.9 -1.0 1.9 24.7

40 10 -82.2 -23.5 -8.5 -4.7 -2.5 1.8 28.1

40 15 -121.0 -38.4 -12.8 -7.5 -3.5 1.3 33.2

40 20 -126.6 -45.4 -30.6 -11.3 -5.6 2.9 31.7

60 5 -54.4 -33.9 -23.9 -20.1 -16.6 -4.1 32.8

60 10 -87.8 -41.4 -33.5 -26.1 -21.4 -4.4 24.2

60 15 -111.7 -53.6 -43.5 -32.8 -26.1 -6.8 14.0

60 20 -113.7 -73.3 -54.8 -38.8 -32.7 -12.0 12.3

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases each.



Chapter
Effects of General Purpose Imputations in

Planned Missing Survey Data on the

Estimation of a Multiple Regression Model:

A Case Study

5
Abstract

Survey designs using planned missingness, such as the split questionnaire design,
are increasingly adopted in social survey research to reduce response quality issues
with too long questionnaires. This entails leaving out some items of the question-
naire for each respondent based on a random procedure, trading shorter question-
naires for considerable amounts of planned missing data. In consequence, espe-
cially multivariate analyses relying only on available cases are prone to fail due to
too small case numbers. Often, methods such as multiple imputation may therefore
be needed to analyze such data. Yet, it is an unsettled issue whether the imputation
should be carried out by the data-collecting research institute once for all research
objectives or by the individual researchers each for their specific research objective.
While the former may ease the analysis for data users, the latter allows to tailor the
imputation model to the specific analysis model, which might improve the quality
of estimates. In particular, an analysis-specific imputation model can be restricted
to the analysis sample and to specific variables of interest.

This chapter is single-authored work.
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In a simulation study based on data from the European Social Survey, I exam-
ine the performance of a multivariate model from the social sciences literature with
split questionnaire design data that are imputed using partial least squares predictive
mean matching. In doing so, I investigate the effects of a general purpose imputa-
tion compared to an analysis-specific imputation. Given this imputation method,
the results indicate no beneficial effects of restricting imputation models regarding
the number of variables included even if they are not correlated with the analysis
variables. However, I also find that analysis-specific imputations may yield more
accurate estimates than general purpose imputations when the sample of the impu-
tation model and the analysis sample are not congruent.

5.1 Introduction

Lengthy questionnaires can be a significant challenge in social survey research.
They tend to reduce response rates and increase survey breakoff and measurement
error (see for example Galesic and Bosnjak, 2009; Peytchev and Peytcheva, 2017).
Furthermore, more and more surveys are using the online mode, which is cheaper
than traditional face-to-face interviewing (Bianchi et al., 2017; Olson et al., 2021).
However, online surveys typically also need to be shorter due to high breakoff rates
(Galesic and Bosnjak, 2009; Tourangeau et al., 2013, p. 52). Thus, social surveys
face pressures to shorten questionnaires while also collecting data on all topics rel-
evant to its research purpose.

One way to encounter this issue may be planned missing data designs such as the
split questionnaire design (SQD; Raghunathan and Grizzle, 1995). The SQD entails
allocating all survey items to mutually exclusive modules and randomly assigning
only a subset of these modules to each respondent. This allows to collect data on a
large set of items while ensuring relatively short questionnaires for each individual
respondent.

However, this means that shorter questionnaires come at the price of having
large amounts of planned missing data. This may be a problem especially when
researchers want to estimate multivariate models based on data from SQDs: Delet-
ing observations with incomplete data and running a complete case analysis would
usually result in very small or empty analysis samples.

Therefore, to make data from SQDs analyzable, Raghunathan and Grizzle
(1995) propose using multiple imputation (MI; Rubin, 1987; van Buuren, 2018).
This procedure allows to replace the missing values with multiple values that would
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be statistically plausible based on an imputation model. This entails creating multi-
ple complete datasets with varying imputed values. These datasets can be analyzed
separately using standard complete data analysis techniques, after which the single
estimates from each dataset are combined into an aggregate estimate using Rubin’s
rules (Rubin, 1987).

For research practice, one could imagine a scenario in which the data would be
imputed by the data-collecting research institute to provide readily analyzable data
to data users. Otherwise, each data user working on the data would be required
to undertake an imputation by themselves. Thus, a general purpose imputation ap-
proach carried out once by the data-collecting research institute may save limited
resources and also ensure that researchers who are not able to impute the data them-
selves are not excluded from using the data. However, imputing such data all at once
appropriately for general research purposes may be challenging due to the need for
universal applicability of the imputed data: The imputation needs to reproduce all
relationships in the data rather than only those that are of interest for a specific
research objective. Specifically, a general purpose imputation approach needs to
always include all observations and all variables in the imputation model, while an
analysis-specific imputation strategy provides the flexibility to exclude irrelevant
variables and observations not used in the analysis from the imputation model.

Thus, it needs to be examined how imputing social survey data from an SQD
for general research purposes may affect the estimation. This includes investigat-
ing whether similarly accurate estimates can be obtained with imputation models
(a) based on the gross survey sample or restricted to the analysis sample and (b)
based on all variables in the data or restricted to the analysis variables. For research
practice, this question will be crucial for evaluating if and under which conditions a
general purpose imputation strategy for planned missing social survey data makes
sense or if each data user would always need to impute the data on their own.

Moreover, a thorough analysis of this issue needs to rely on a realistic, sub-
stantive multivariate model and real (rather than synthetic) social survey data. This
is relevant because real multivariate models as found in the substantive literature
can be quite complex and real social survey data is not always ideally suited for
imputation. By contrast, previous research has dealt mostly with simple univari-
ate or bivariate estimates (Chapters 2, 3, and 4 of this dissertation; Peytchev and
Peytcheva, 2017; Raghunathan and Grizzle, 1995; Rässler et al., 2002; Thomas et
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al., 2006), with simple ad hoc multivariate models (Bahrami et al., 2014; Thomas
et al., 2006), or with synthetic data (e.g., Raghunathan and Grizzle, 1995).1

In this paper, I report findings from a Monte Carlo simulation study, in which
I estimate a multivariate model borrowed from the social sciences literature (Safi,
2010) using split questionnaire designs simulated in originally complete social sur-
vey data. In doing so, I compare the quality of estimates after imputation based on
data restricted versus data not restricted to the analysis sample. Furthermore, I ma-
nipulate the number of variables in the dataset as well as the strength of correlations
among them. The findings suggest that by using suitable imputation procedures, the
model estimates and conclusions can be reproduced largely even with large num-
bers of covariates in the dataset. However, when the analysis is restricted to a subset
of the gross sample, analysis-specific imputations may outperform general purpose
imputations in accuracy.

5.2 Theory

5.2.1 Split Questionnaire Designs in Social Surveys

The phenomenon that long surveys jeopardize data quality is well-documented in
survey research. First, there is a negative correlation between the questionnaire
length announced to respondents and initial response rates (Crawford et al., 2001;
Walston et al., 2006). Second, long questionnaires result in more breakoff (Galesic,
2006; Galesic and Bosnjak, 2009). Finally, long questionnaires also increase mea-
surement error (Peytchev and Peytcheva, 2017). Altogether, this may often mean
that potentially important questions need to be removed from the questionnaire to
ensure an adequate data quality.

Planned missing data designs, such as the SQD (Raghunathan and Grizzle,
1995), aim to overcome this issue by systematically leaving out different items for
each respondent. The SQD procedure (Raghunathan and Grizzle, 1995), in particu-
lar, entails:

1. Allocating all survey items to one of three or more mutually exclusive mod-
ules (for different techniques how to construct these modules, see Chapter
2 of this dissertation; Bahrami et al., 2014; Bahrami, 2020; Imbriano, 2018;
Rässler et al., 2002; Thomas et al., 2006).

1An exception is Imbriano (2018, pp. 49-54), who provides a short description of regression
analyses using the Health and Retirement Study.
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2. Assigning each respondent to a random subset of two or more of these mod-
ules.

3. Delivering only the items from the assigned modules to each participant. This
yields planned missing data on all items of the non-assigned modules.

This implies that to attain a significant reduction in questionnaire length, much
of the data will be missing. Moreover, the planned missingness typically affects all
cases and most variables in the dataset. In consequence, sample sizes especially for
multivariate analyses may often be insufficient when relying only on the available
cases.

5.2.2 Multiple Imputation

As a solution, Raghunathan and Grizzle (1995) propose using MI (Rubin, 1987;
van Buuren, 2018) to complete the partially missing datasets from SQD surveys.
MI is a procedure in which missing values are replaced by a predefined number of
m multiple imputed values based on an imputation model. For multivariate missing
data, one can define distinct imputation models for each variable to be imputed.
These imputation models are then repeatedly run one after another in an iterative
fashion (this procedure is known as fully conditional specification; see Brand, 1999;
van Buuren et al., 2006). In consequence, MI generates m complete datasets with
varying imputed values.

To analyze the imputed data, conventional complete data analysis techniques
can be applied separately to each imputed dataset. Subsequently, the resulting m

estimates for each imputed dataset are pooled into an aggregate estimate using Ru-
bin’s rules (Rubin, 1987). Thus, once properly imputed, the completed SQD data
may in principle be used for a wide range of analyses and analysis methods, even
if the analysis objectives are unknown during the imputation (e.g., Bahrami et al.,
2014, p. 22).

It is important to be aware of the challenges associated with the imputation of
social survey data. First, correlations in social survey data tend to be mostly weak.
This means that the predictive power of imputation models may often turn out weak
as well. Second, social surveys often include many categorical variables. This
limits the set of imputation methods from which to choose, as many methods are
developed primarily for continuous data. Van Buuren (2018, p. 91) also notes that
categorical variables are more difficult to impute than continuous variables, as con-
ventional imputation methods need enormous case numbers to accurately impute
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data with many categories. This is especially challenging due to the large pro-
portions of missing data in SQD surveys, as this limits the sample sizes available
for the imputation model even further. Correspondingly, a simulation study shows
considerable biases particularly when proportions of missing data exceed 40% (see
Chapter 4).

These difficulties make constructing accurate imputation models particularly
essential for the quality of imputations in an SQD survey and the consequential
substantive estimates. This is particularly important because in SQD surveys the
imputations can have a big impact on the estimation due to the large proportion of
data to be imputed. For that purpose, one needs to specify the relevant predictor
variables and select an appropriate imputation method that estimates the imputed
variable using the predictor variables.

Predictor variables in imputation models can serve various purposes: to reduce
uncertainty in the imputations, to reduce potential bias from a non-random miss-
ingness mechanism, and to preserve their relations to the imputed variable in the
imputed data for subsequent analyses. To cover as much information as possible
on all these domains, the original recommendation is to include all variables avail-
able in the dataset as predictors (e.g., Rubin, 1996). However, including too many
predictor variables may in practice cause problems with estimating the imputation
model given that sample sizes are limited (van Buuren, 2018, pp.167-170, 259-271;
White et al., 2011), potentially leading to bias in the substantive estimates (Hardt et
al., 2012). Therefore, it is often suggested to exclude irrelevant predictor variables
from imputation models (for example, van Buuren et al., 1999).

Regarding imputation methods, researchers have to choose from a wide variety
of approaches. In particular, the imputation method must suit the properties of the
imputed variable, such as its level of measurement (for a more general discussion
of different imputation methods, see for example van Buuren, 2018; Murray, 2018).
Previous research has shown that some established methods such as ordinal logistic
regression may fail to deliver appropriate results with SQD data (see Chapter 3).
Similarly, Bahrami et al. (2014) also report downward biases in regression coeffi-
cients with standard imputation methods (predictive mean matching for continuous
variables and ordinal and polytomous logistic regression for categorical variables).

Meanwhile, methods that limit the amount of parameters to be estimated in the
imputation model performed more favorably (see Chapter 3). This applies particu-
larly to partial least squares predictive mean matching (PLS-PMM; see Robitzsch
et al., 2016), which could reduce Monte Carlo biases decisively. This multi-step
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procedure first involves estimating a partial least squares (PLS) regression (see for
example de Jong, 1993) of the imputed variable on all predictor variables to extract
a predefined number of PLS components optimized to predict the outcome variable.
Then, these PLS components are used as predictors in a predictive mean matching
(PMM; see Little, 1988; Rubin, 1986) imputation model, in which predictive val-
ues for the imputed variable are estimated using a regression model. Subsequently,
cases with missing values on the imputed variable are matched to a set of nearest
neighbors with observed values based on the previously estimated predictive values.
Finally, one of the observed values of the nearest neighbors is drawn by random as
an imputation for the missing value. Thereby, all variables in the data can be in-
cluded in the imputation models despite limited sample sizes.

Being originally developed for continuous data, standard PMM methods can be
used for ordinal and dichotomous outcome variables as well (Koller-Meinfelder,
2009, pp. 48-68; van Buuren, 2018, p. 166). However, this does not apply to
nominal data with more than two categories, for which no adaptation of PLS-PMM
has been developed yet.

For nominal data with more than two categories, classification trees (Breiman et
al., 1984; Burgette and Reiter, 2010; Doove et al., 2014) seem to be the best option
currently available (see Chapter 3). This simple non-parametric technique repeat-
edly splits the data binarily into subregions along the values of predictor variables
(e.g., individuals over vs. under 60 years old) that are locally optimal for predicting
the outcome variable. This leads to smaller and smaller subregions the more splits
are applied. When a minimum subregion size is reached, missing values are im-
puted by randomly drawing an observed value from the same final subregion. Since
this procedure does not necessarily account for all relations in the data adequately
due to limited sample sizes, however, this method can still result in moderate biases
(see Chapter 3).

5.2.3 General Purpose vs. Analysis-Specific Imputation of
Planned Missing Data

For imputing planned missing social survey data, two possible scenarios may be
considered: The data could either be imputed by the institute administering the
survey or by the individual researchers analyzing it.

In the first scenario, multiple imputation would most likely be applied only once
with a broad scope (van Buuren, 2018, p. 46) for the imputed data to be delivered
to researchers for general research purposes. This may appear promising from a
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research-pragmatic perspective: An appropriate imputation of missing data can be
computationally intensive, cumbersome for the individual researcher, and may re-
quire specialized training in the first place. Thus, a general purpose imputation strat-
egy may save resources compared to imputation applied over and over by individual
researchers with a narrow scope (van Buuren, 2018, p. 46) for their specific anal-
yses: It reduces financial costs as well as energy consumption and lets researchers
focus more on their substantive research.

Meanwhile, relying on the individual researchers to impute the data may ex-
clude researchers who are not able to implement imputation by themselves. More-
over, due to a lack of resources or training, they might adopt inappropriate imputa-
tion strategies. The data-collecting research institute, by contrast, could acquire or
might already have computational resources and experts for imputation within their
organization.

However, properly imputing data with a broad scope is more difficult than with
a narrow scope: Imputation models “perform best when the analysis objectives are
known” (Peytchev and Peytcheva, 2017, p. 367). With a general purpose imputation
strategy, however, analysis objectives are usually unknown. In this regard, the main
issue is congeniality (Meng, 1994). An imputation model is considered congenial
only if it is at least as general as the analysis model, hence covering all relations
between variables within the analysis model with the same or less strict modeling
assumptions. If the imputation model is not congenial, estimates of interest may be
inaccurate (Bartlett et al., 2015; Meng, 1994). A general purpose imputation model,
however, needs to ensure congeniality not only for one given analysis model, but
for all possible analysis models—and must therefore cover all relations between
variables in the data adequately.

Thus, in a general purpose imputation all variables need to be adequately in-
cluded as predictors in the imputation model. While this may be problematic for
many imputation methods, through dimensionality reduction PLS-PMM could in
principle include a huge number of parameters without breaking down. However,
it has not been tested yet whether estimates stay equally accurate with increasing
numbers of predictors that might actually not improve the imputation model. Fur-
thermore, due to the underlying regression model, PLS-PMM might have difficul-
ties preserving non-linear relations particularly when they are not continuous.

Restrictions of the analysis sample (e.g., excluding certain age groups) may
be another factor potentially jeopardizing the congeniality under a general purpose
imputation strategy. Excluding cases from the analysis may behave implicitly as
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if the analysis conditioned on an additional variable (i.e., being vs. not being in
the analysis sample): The model’s coefficients are estimated only for observations
within the analysis sample. This is analogous to including interaction terms between
all analysis model predictors and the additional variable. Therefore, in a strict sense
a fully congenial general purpose imputation model would need to account for each
possible analysis subset of the survey sample. As this is clearly not possible in
practice, more realistic solutions would need to be considered. For instance, the
PLS-PMM implementation by Robitzsch and Grund (2021) provides researchers
with an option to include interaction terms of two variables into the PLS model
if its correlation to the imputed variable exceeds a pre-specified value. Thereby,
the imputation model might be able to account for differential effects in different
subgroups of the sample. At the same time, including only interaction terms with
a certain correlation may help to prevent overfitting. Meanwhile, not including
interaction terms with an effect equal to zero may not yield bias in estimates after
imputation (Bartlett et al., 2015).

5.3 Data and Methods

To test the accuracy of model estimates properly, I perform a Monte Carlo simula-
tion with the real survey data that was originally used for estimating the model in
question.2 This simulation study repeats the following major steps in each simula-
tion run:

1. Draw a random sample of cases from the full survey dataset, which is used as
a population dataset for this study.

2. Simulate SQD survey data using the sample previously drawn from the pop-
ulation.

3. Apply MI to the simulated SQD data.

4. Estimate the multivariate model based (a) on the imputed SQD data and (b)
on the complete sample data (for comparison).

2The analyses for this paper are primarily carried out in R (R Core Team, 2021) using the follow-
ing packages (if not cited elsewhere in this paper): DescTools (Signorell et al., 2020), doMPI (We-
ston, 2017), dplyr (Wickham et al., 2021), foreach (Microsoft and Weston, 2020), ggplot2 (Wick-
ham, 2016), haven (Wickham and Miller, 2021), MASS (Venables and Ripley, 2002), Rmpi (Yu ,
2002). Some data preparation has been done in Stata 14 (sta2016).
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Before expanding on the steps of the simulation study listed above, the follow-
ing paragraphs describe the examined multivariate model and the data preparation.

5.3.1 Analysis Model

This paper draws on an analysis model from the research article “Immigrants’ Life
Satisfaction in Europe: Between Assimilation and Discrimination” by Safi (2010),
published in the European Sociological Review. Using data from the first three
rounds of the European Social Survey (ESS), Safi studies the life satisfaction of
first and second generation immigrants.

The ESS is a probability-based social survey that collects data on a broad range
of topics such as political opinion, social trust, subjective well-being, national iden-
tity, and religion in a biennial cross-section of the population over 15 years old in
more than 21 European countries. For her analysis, Safi (2010) uses the ESS rounds
1 through 3 data (European Social Survey Round 1 Data, 2002; European Social
Survey Round 2 Data, 2004; European Social Survey Round 3 Data, 2006; for
the questionnaire documentation see European Social Survey, 2018a,2018b,2018c),
which were collected between 2002 and 2007.

The paper by Safi (2010) serves the purpose of the study intended here excep-
tionally well for several reasons. First, it empirically investigates a research ques-
tion highly relevant for the social sciences using data from a well-established social
survey. Second, it has an exceptionally large analysis sample of almost 60,000 cases
that can be used as a population dataset for a Monte Carlo simulation. This is es-
pecially important to preserve sufficient statistical power for the analysis model in
the simulation, which relies on random samples drawn from the population dataset
in each individual simulation run. Third, the complexity of this analysis model
is exemplary for survey research in the social sciences: Analysis variables can be
combinations of different survey variables (e.g., interaction effects) as well as cate-
gorized or transformed versions of the original survey variables.

5.3.2 Definition of Variables

The definition of the analysis variables mostly follows Safi (2010). The ESS item
on respondents’ general life satisfaction serves as the central outcome variable of a
linear regression model. Life satisfaction is measured on an eleven-point scale and,
as in Safi (2010), interpreted as a continuous variable.
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The main predictor variable for life satisfaction is the respondents’ immigrant
status. In the ESS, all respondents were presented three items asking if they them-
selves, their mother or their father were born abroad. Thereby, four classes of
respondents are differentiated: natives (i.e., neither respondent nor parents born
abroad), first generation immigrants (i.e., respondent born abroad), second genera-
tion immigrants (i.e., both parents born abroad, but not the respondents themselves),
and 2.5 generation immigrants (i.e., only one parent born abroad).

The wide range of control variables used to account for a potential confounding
of the main effects covers some socio-demographic items. Gender is included as a
dummy variable with male being the reference category. The originally continuous
age variable is categorized into a factor with four age groups: respondents under 28
years old (reference category), 28 to 40 years old, 40 to 55 years old, and 55 to 65
years old. Years of education are included untransformed as a continuous variable.
Furthermore, a family life factor variable with four categories is constructed as a
combination of three original survey variables (having a partner, having children
currently living in the household, and having had children in the household in the
past): respondents that have neither partner nor children (reference category), re-
spondents that have children but no partner, respondents that have a partner but no
children, and respondents that have both partner and children.

Beyond that, two socio-economic control variables are included as well. The
annual income, originally measured in deciles, is simplified into four categories:
below 18,000 Euros (the reference category), 18,000 to 30,000 Euros, 30,000 to
60,000 Euros, and more than 60,000 Euros. Safi (2010) also includes a leftover
category for respondents with missing income data. As this procedure is highly im-
practical in an imputation context, in this study I single-impute these missing values
using PMM. The effects of this procedure on the model coefficients (except for the
leftover category that is now omitted) are very limited (see appendix Table 5.A1).
A further control variable on the respondents’ employment status is deducted from
three survey items: whether respondents were unemployed the past seven days (yes
or no), if they have been unemployed in the past three months (yes or no), and an
item on the respondents’ occupation using the ISCO-88 classification (Elias, 1997).
These are combined into a four-category variable: Those who were unemployed
in the last seven days, those who are currently employed but were previously un-
employed during the past three months, those who are continuously employed in
the previous three months in professional or managerial positions, and a reference
category with all other continuously employed individuals.
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Another control variable is the respondents’ subjective health, a variable with
five categories (very good, good, fair, bad, and very bad) that is included as a factor
variable. The analysis also includes dummies for each country (with France serving
as reference category) and ESS round 2 and 3 (with round 1 being the reference
category) as further control variables.

Cases that are incomplete with respect to the analysis variables are removed
from the dataset. As already described, an exception is made here for the annual
income variable, in which missing observations are single-imputed. Another ex-
ception is the ISCO-88 variable, in which missing values are interpreted as an ad-
ditional category to account for the fact that not everyone has an occupation. I
also refrain from imputing the whole four-digit ISCO-88 variable in the simula-
tion, as this would mean there are thousands of categories with many empty cells
to be imputed. Therefore, I confine the imputation to the one-digit ISCO-88 major
occupational groups.

5.3.3 Preparation of Population Data for the Simulation

To test whether it makes a difference to impute the whole data or only the analysis
data, two population datasets are created: The first one is the analysis population
to which the analysis model attempts to infer. In line with Safi (2010), this popu-
lation is restricted to data from Austria, Belgium, France, Denmark, Germany, the
Netherlands, Norway, the United Kingdom, Sweden, Switzerland, Portugal, Spain,
and Ireland. Furthermore, this population excludes all respondents under 18 or over
65. This results in an analysis population of n = 58,399. The second population
dataset is the out-of-analysis population. This dataset includes all the remaining
cases, i.e., the respondents from all other countries and those younger than 18 or
older than 65 (n = 65,751).

To examine the effect of additional items in the survey beyond those related
to the analysis, I simulate additional normally distributed variables attached to the
analysis population dataset. In doing so, I consider three different scenarios, in
which these additional variables are not correlated or strongly correlated to the
analysis variables. Consequently, each of the additional variables is designed to
correlate to one of the original analysis variables by r = 0.00 or r = 0.60. Through
this procedure, I include scenarios with 16, 32, and 48 additional variables. An ad-
ditional scenario with moderate correlations (r = 0.30) can be found in appendix
B (see Figures 5.B1 and 5.B1), showing results generally ranging in between the
other two scenarios.
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5.3.4 Population Model

Table 5.1 displays the regression coefficients of interest in this study with their
standard errors as observed in the analysis population data. Coefficients for the
country and wave dummies are also included in the model, but not examined in the
simulation study (and thus not included in Table 5.1 either). For the full model, see
Table 5.A1 in Appendix A.

This population model provides the benchmarks for examining the imputed
SQD data. In this model, migrant status is associated with lower life satisfac-
tion. This effect is the most pronounced for first generation migrants (−0.233 scale
points), somewhat reduced for second generation migrants (−0.172), and almost
vanishes for generation 2.5 migrants (−0.048). Most control variables also clearly
have non-zero effects on life satisfaction (exceptions are the dummies for the ESS
rounds and the combination of continuous employment in professional or manage-
rial occupations, which have effects close to zero). There are also some notable
non-linear effects. Most prominently, age has a U-shaped effect on life satisfaction.
Furthermore, having children has a slightly positive effect for couples but a negative
effect for singles.

5.3.5 Samples From the Population

In each simulation run, I randomly draw an analysis sample of 5,000 from the anal-
ysis population dataset. This sample data is used to simulate and impute SQD data
and to estimate the regression model. Results of an additional simulation with
smaller sample sizes (2,500) can be found in Appendix C (Figures 5.C1-5.C6),
yielding the same overall conclusions as the main simulation study.

To investigate effects of an imputation model sample incongruent to the anal-
ysis sample, I also implement a scenario in which I append an additional sample
of 5,633 from the out-of-analysis population to the analysis population sample. In
doing so, I maintain the size ratio of the analysis and out-of-analysis datasets in
the sample data. Based on these samples, I simulate SQDs and impute the corre-
sponding planned missing data as if they were one dataset. The regression model,
however, is estimated using only the (imputed) analysis sample data.
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Table 5.1: Coefficients of interest as observed in the analysis population data with stan-
dard errors, obtained from a linear regression of general life satisfaction.

Variable Coefficient Standard
error

Migrant status (ref: native)
Gen. 1 migrant -0.233 * 0.027
Gen. 2 migrant -0.172 * 0.055
Gen. 2.5 migrant -0.048 n.s. 0.034

Gender
(ref:
male)

Female 0.147 * 0.015
Age (ref: <28)

28-40 -0.229 * 0.025
40-55 -0.287 * 0.026
>55 0.008 n.s. 0.028

Years of education 0.007 * 0.002
Family status (ref: single w/o children)

Single parent -0.270 * 0.029
Childless couple 0.293 * 0.029
Couple with children 0.358 * 0.023

Income (ref: <18k)
18k-30k 0.311 * 0.022
30k-60k 0.493 * 0.023
>60k 0.563 * 0.030

Employment (ref: employed)
Currently unemployed -1.056 * 0.033
Unemployed in past 3 months -0.334 * 0.020
Employed: professional/managerial 0.019 n.s. 0.020

Health (ref: very good)
good -0.477 * 0.018
fair -1.086 * 0.023
bad -1.953 * 0.041
very bad -3.055 * 0.091

Note: * = significant on a 5% level; n.s. = not significant.
This model also controls for countries and ESS rounds. The coefficients for these variables are listed in the ap-
pendix, Table 5.A1.
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5.3.6 Simulation and Imputation of SQD Data

I simulate SQDs based on the sample data by randomly allocating each original sur-
vey item to one of eight evenly large modules. The variables for the respondents’
country of residence and ESS round are exempted from this procedure, as they
would be known in advance for all respondents. Each respondent is randomly as-
signed to five out of the eight modules. By dropping all data from the non-assigned
modules, this results in 37.5% missing data on each questionnaire item.

The simulated SQD data are imputed using the mice package (van Buuren and
Groothuis-Oudshoorn, 2011) with 20 imputations drawn for each missing value af-
ter 10 iterations. For most variables, PLS-PMM as implemented in the miceadds

package (Robitzsch and Grund, 2021) with 20 PLS components included in the
imputation model is used as imputation method. Interaction terms of predictor
variables are included into the PLS model if their absolute correlations to the im-
puted variable exceed 0.1. Classification trees are used as imputation method for
the ISCO-88 variable, which is the only non-binary nominal variable with missing
data in this study. As a non-parametric method, classification trees do not require
an explicit specification of interaction terms.

5.3.7 Measures

After the imputation, the analysis model is estimated in each of the 20 imputed
datasets. The model coefficients and standard errors are combined using Rubin’s
rules.

The first central measure represents the percentage biases of the 21 combined
regression coefficients of interest:

%BiasMC
(
β̂

imputed
i

)
= 100 × 1

S

S∑
s=1

(
β̂

imputed
i,s − βi

)
βi

, (5.1)

where βi is the i-th regression coefficient of the analysis model in the population,
β̂

imputed
i,s is the i-th regression coefficient estimate in a Monte Carlo sample s after

MI, and S is the total number of simulation runs.
Another measure tests to what extent standard errors increase with imputed SQD

data compared to standard errors based on the complete sample, in which no SQD
has been applied and all data are observed. To this end, I take the average percentage
difference of standard error estimates compared to standard errors obtained from
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complete samples:
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, (5.2)

where σ̂
imputed
i,s is the standard error estimate for the i-th coefficient in a simulation

run s after imputation and σ̂
complete
i,s is the standard error estimate for the i-th coef-

ficient in a simulation run s based on the complete sample data in this simulation
run.

5.4 Results

5.4.1 Effects of Incongruent Imputation Models

Figure 5.1 shows the results of the simulation study for the accuracy of the regres-
sion coefficient estimates depending on whether the imputation model relied on the
gross sample or the net analysis sample, which excludes cases not used in the anal-
ysis.

Overall, some coefficients are reproduced well, while others have substantial
biases. When data are imputed using the net analysis sample, small biases (less
than ±5%) are obtained especially for the income dummies and good, fair and bad
health. Furthermore, biases up to ±10% are observed for first and second gener-
ation immigrants, gender, couples with children, current and previous unemploy-
ment. Large biases occur especially in the two middle age dummies (−42% and
−45%), single parents and childless couples (−30% and 23%), and for employment
in professional and managerial occupations (−67%). Note, however, that the latter
coefficient is very small in the population (0.019), so its bias is not big in absolute
terms.

The majority of estimates appear more accurate with imputations relying on the
net sample rather than the gross sample. This applies specifically to the coefficients
for first generation and second generation immigrants, all age categories, years of
education, all income categories, couples with children, current unemployment, un-
employment within the past three months, and fair health. This is especially appar-
ent in the years of education coefficient, which already has a moderate bias in the
net sample scenario but is reduced by 98% in the gross sample scenario. Further-
more, while the age effect is not well captured in either scenario, the gross sample
scenario yields glaringly inaccurate estimates: The effects of the two middle age
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Figure 5.1: Percentage Monte Carlo biases of regression coefficient estimates using (a)
the net analysis sample or (b) the gross sample. Solid vertical lines indicate the population
benchmarks.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (net analysis sample) or

5,000 + 5,633 = 10,633 cases (gross sample) (each 37.5% missing data).

groups are underestimated both by about 71% and 80%, and the initially very small
effect for the higher age group (originally 0.008) is overestimated by 1884%. This
distorts the originally U-shaped effect substantially, now showing almost no effect
for the younger and middle age groups and a steep increase in life satisfaction for
the oldest age group. Meanwhile, five coefficients are estimated somewhat more
accurately based on the gross sample: gender, single parents, childless couples, em-
ployment in managerial or professional occupations, and bad health. Furthermore,
three coefficients have a similar bias in both scenarios: 2.5 generation immigrants,
good health, and very bad health.

Figure 5.2 displays the average percentage increase in standard errors due to the
SQD compared to model estimates obtained with the complete sample data, again
depending on whether the imputation relied on gross or net samples. Expectedly, the
SQD yields a substantial increase in standard errors due to the planned missing data.
These average increases range from 32% to 81% across the different coefficients
and scenarios.
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Figure 5.2: Percentage increase in standard errors with imputed SQD data compared to
complete sample data, based on imputation models using (a) the net analysis sample or (b)
the gross sample.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (net analysis sample) or

5,000 + 5,633 = 10,633 cases (gross sample) (each 37.5% missing data).

Increases in standard errors are consistently more pronounced for the net sample
scenario than for the gross sample scenario. However, this increase varies by co-
efficient, ranging from a 5 percentage points (first generation immigrants) to more
substantial increases of up to 19 percentage points (income 30-60k).

5.4.2 Effects of Additional Covariates

Figure 5.3 displays the percentage biases of coefficient estimates obtained with
SQDs comprising only the analysis variables (i.e., the net analysis sample scenario
from the previous section) versus those with SQDs including 16, 32, or 48 addi-
tional variables that are not correlated with the analysis variables. Figure 5.4 does
the same, except here each of the additional variables is designed to correlate by
0.60 to one of the analysis variables.

Figure 5.3 shows that coefficients are not substantially affected by additional
uncorrelated variables in the imputation model. Only minor differences can be ob-
served: the biases of gender, the three income dummies, current unemployment, and
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good health slightly increase with increasing numbers of variables in the dataset.
Apart from gender and current unemployment, however, these increases are very
small. The other coefficients have biases that are either mostly constant across the
scenarios (the two middle age groups, single parents, couples with children), show
no clear pattern towards an increase or decrease with increasing numbers of vari-
ables (the immigration dummies, age over 55, education, childless couples), or even
a slight tendency towards less bias when the number of variables increases (previous
unemployment, bad health, and very bad health).

With the correlated additional variables (Figure 5.4), many biases tend to de-
crease with increasing numbers of variables in the dataset (generation 2.5 immi-
grants, gender, the middle age categories, single parents, childless couples, fair
health, and very bad health). The other biases remain constant (couples with chil-
dren) or show no clear patterns (first generation and second generation immigrants,
age over 55, education, the income dummies, current unemployment, employment
in professional and managerial occupations, good health, and bad health). No coef-
ficient shows a bias increasing with higher numbers of variables.

Figure 5.5 displays the percentage increase in standard errors with SQDs com-
prising only the analysis variables (i.e., the net analysis sample scenario from the
previous section) versus those with SQDs including 16, 32, or 48 additional vari-
ables that are not correlated with each other. It shows no major effects of the number
of variables on standard errors. Surprisingly, however, increases in standard errors
appear slightly less pronounced the more variables are added.

Figure 5.6 does the same for the additional variables correlated to the analysis
variables by 0.60. As expected, standard errors increase less the more variables
are added to the data. For example, while standard error estimates for the first
generation migrants coefficient increase at the median by 48% without additional
variables, they increase by only 23% at the median with 48 additional variables.
The only exception is the standard error for the second generation immigrants coef-
ficient, which shows no such pattern with increasing numbers of variables.

5.5 Summary

Using a simulation study with real survey data, I tested the potential effects of a
general purpose imputation of SQD data on the estimation of a multivariate regres-
sion model compared to an analysis-specific imputation. Such a general purpose
imputation would be bound to include all cases and all variables of the dataset into
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Figure 5.3: Percentage Monte Carlo biases of regression coefficient estimates based on
the net analysis sample, with either 0, 16, 32, or 48 additional uncorrelated variables in the
dataset to be considered in imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (37.5% missing data)

each.
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Figure 5.4: Percentage Monte Carlo biases of regression coefficient estimates based on
the net analysis sample, with either 0, 16, 32, or 48 additional variables in the dataset
highly correlated to the analysis variables (r = 0.60) to be considered in imputation mod-
els.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (37.5% missing data)

each.
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Figure 5.5: Percentage increase in standard errors with imputed SQD data compared to
complete sample data after multiple imputation based on the net analysis sample, with
either 0, 16, 32, or 48 additional uncorrelated variables in the dataset to be considered in
imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (37.5% missing data)

each.
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Figure 5.6: Percentage increase in standard errors with imputed SQD data compared to
complete sample data after multiple imputation based on the net analysis sample, with
either 0, 16, 32, or 48 additional variables in the dataset highly correlated to the analysis
variables (r = 0.60) in the dataset to be considered in imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (37.5% missing data)

each.
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the imputation models. Meanwhile, with an analysis-specific imputation one would
have some freedom to exclude certain cases or variables from the imputation models
insofar they are not part of the analysis model.

I found that given the PLS-PMM imputation procedure, the number of variables
in the data seems to pose no major problem for the estimation of the model after
imputing the SQD data. Regression coefficient and standard error estimates mostly
remain similar with increasing numbers of additional variables even if these vari-
ables are uncorrelated to the analysis variables. Furthermore, as suggested by the
imputation literature (see for example Collins et al., 2001; Raghunathan and Griz-
zle, 1995; Rubin, 1987, 1996), if the additional variables are correlated with the
analysis variables, they can help decrease the size of standard errors and thereby
reduce the uncertainty due to the planned missing data. Note, however, that this
advantage is not exclusively inherent to general purpose imputation: In research
practice, analysis-specific imputation strategies may also make use of preselected
highly correlated variables as predictors in the imputation model (e.g., van Buuren
et al., 1999).

Incongruent samples for the imputation model and analysis model turned out
considerably more challenging for a general purpose imputation. Estimates for
many of the regression coefficients were less accurate when imputations relied on
the gross sample rather than the net analysis sample, as the imputation is not strictly
congenial regarding the analysis model. Apparently, the strategy to include two-
way interactions of variables exceeding a correlation threshold did not manage to
recover all relevant differences between the gross sample and the analysis sample.
At the same time, imputations based on the gross sample also yielded smaller stan-
dard errors. Both effects combined could make general purpose imputations yield
particularly erroneous inference: Not only are coefficients inaccurate, but the com-
paratively small standard error estimates could mean that confidence intervals may
often not cover the true value.

Furthermore, estimating the non-continuous effect of age and (to a lesser extent)
the family status interaction of having a partner and having children proved difficult
in all imputation scenarios. This sheds light on a persistent issue with imputation
by predictive mean matching: It can only account for non-linearity as long as the
relation is still continuous, excluding for instance U and inverted-U shapes. There-
fore, when aiming to estimate such effects, an analysis-specific imputation might
be a preferable solution.
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In sum, this study suggests that for specific analyses a general purpose imputa-
tion strategy as examined here might work only under certain conditions: First, the
imputations may only be valid for analyses of the whole survey sample. For anal-
yses of specific subgroups within the sample, the data would need to be imputed
anew for this specific analysis sample. Second, due to the semiparametric imputa-
tion procedure, the extent to which non-continuous or interaction effects could be
modeled with this data is also very limited. Again, analyses of such effects would
require imputing the data anew, taking the functional form explicitly into account
in the imputation model.

5.6 Discussion

The findings from this study may have consequences on the imputation of planned
missing survey data. First, when one intends to supply readily analyzable survey
data with general purpose imputations for planned missingness, data users should
be carefully informed about how the imputed data may be analyzed. From the
context of this study, data users should be cautioned to, whenever possible, desist
from restricting the analysis sample and from estimating non-continuous effects.
Second, data users might be advised to carry out an analysis-specific imputation on
their own if they are confident in doing so, even when the data are delivered with
general purpose imputations.

In this regard, this study may as well have significance for other areas of re-
search than planned missing data designs. Oftentimes, large-scale social surveys
provide imputations in their published data for variables that suffer severe nonre-
sponse issues (see for example U.S. Census Bureau, 2022; Frick and Grabka, 2005).
Like in the present study, these imputations are intended for general research pur-
poses rather than a specific model of interest. For generating such imputations,
thus, there might be great value in testing their robustness against analysis sample
restrictions.

This study has some limitations. First, its findings rely on a simulation. Thus,
although the analysis variables are real survey data, the data were originally not
collected using a planned missing data design. Moreover, the other variables were
simulated based on a normal distribution to ensure controllable conditions in the
simulation study. Therefore, the imputation of real planned missing data might to
some extent behave differently. Second, this study is also confined to a single exem-
plary multivariate model. The findings obtained for this model are not necessarily
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representative of all other models that may be estimated based on imputed planned
missing survey data. This refers to aspects such as a model’s analysis method,
its variable relations of interest, and potential restrictions of the analysis sample.
Therefore, future research may want to extend the findings from this paper through
testing the performance of other types of analysis models with imputed planned
missing data.

Future research should also focus on further developing imputation procedures
to offset the problems that currently still exist with a general purpose imputation of
planned missing survey data. A first question may be how the need to model rela-
tions with and between lots of predictor variables can be reconciled with the need to
maintain non-continuous relationships. The former can be solved by the PLS-PMM
algorithm, while the latter would usually require non-parametric methods such as
decision tree learning techniques. A solution on this domain may help both to deal
with non-continuous effects and potential analysis sample restrictions. Moreover,
the good performance of PLS-PMM in this study regarding the number of variables
in the data emphasizes the need for an equivalent solution for imputing nominal
variables. As nominal variables are widespread in social surveys, advances on this
domain may be critical for the contribution of imputation for analyzing survey data
with planned missingness.
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Appendix

Appendix A: Regression Model in the Population, With Missing
Income Imputed or Included as an Additional Dummy

Table 5.A1: Population model: with missing income as separate income vs. single-
imputed income.

Variable Additional Single-

category imputed

Intercept 6.609 6.665

Migrant status (ref: native)

Gen. 1 migrant -0.233 -0.233

Gen. 2 migrant -0.188 -0.172

Gen. 2.5 migrant -0.046 -0.048

Country (ref: France)

Austria 0.965 0.961

Belgium 0.913 0.893

Switzerland 1.248 1.118

Germany 0.430 0.414

Denmark 1.732 1.700

Spain 0.978 0.992

Britain 0.509 0.480

Ireland 0.828 0.740

Netherlands 1.047 1.028

Norway 1.017 0.981

Portugal -0.409 -0.348

Sweden 1.212 1.185

ESS round (ref: round 1)

Round 2 -0.022 -0.018

Round 3 -0.012 -0.018

Gender (ref: male)

Female 0.148 0.147

Age (ref: <28)

28-40 -0.213 -0.229

40-55 -0.257 -0.287

>55 0.029 0.008

Years of education 0.009 0.007
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Variable Additional Single-

category imputed

Family status (ref: single w/o children)

Single parent -0.263 -0.270

Childless couple 0.323 0.293

Couple with children 0.387 0.358

Income (ref: <18k)

18k-30k 0.271 0.311

30k-60k 0.439 0.493

>60k 0.500 0.563

missing 0.294

Employment (ref: employed)

Currently unemployed -1.072 -1.056

Unemployed in past 3 months -0.323 -0.334

Employed:professional/managerial 0.040 0.019

Health (ref: very good)

good -0.477 -0.477

fair -1.088 -1.086

bad -1.954 -1.953

very bad -3.034 -3.055
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Appendix B: Additional Covariates With Moderate Correlations
to the Analysis Variables (r = 0.30)

Figure 5.B1: Percentage Monte Carlo biases of regression coefficient estimates based
on the net analysis sample, with either 0, 16, 32, or 48 additional variables in the dataset
highly correlated to the analysis variables (r = 0.30) to be considered in imputation mod-
els.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (37.5% missing data)

each.
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Figure 5.B2: Percentage increase in standard errors with imputed SQD data compared
to complete sample data after multiple imputation based on the net analysis sample, with
either 0, 16, 32, or 48 additional variables in the dataset highly correlated to the analysis
variables (r = 0.30) in the dataset to be considered in imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 5,000 cases (37.5% missing data)

each.
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Appendix C: Simulation With Smaller Samples (n = 2,500)

Figure 5.C1: Smaller samples: percentage Monte Carlo biases of regression coefficient
estimates using (a) the net analysis sample or (b) the gross sample. Solid vertical lines
indicate the population benchmarks.
Note: Based on a Monte Carlo simulation with 1,023 runs on 2,500 cases (net analysis sample) or

2,500 + 2,817 = 5,317 cases (gross sample) (each 37.5% missing data).
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Figure 5.C2: Smaller samples: percentage increase in standard errors with imputed SQD
data compared to complete sample data, based on imputation models using (a) the net
analysis sample or (b) the gross sample.
Note: Based on a Monte Carlo simulation with 1,023 runs on 2,500 cases (net analysis sample) or

2,500 + 2,817 = 5,317 cases (gross sample) (each 37.5% missing data).
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Figure 5.C3: Smaller samples: percentage Monte Carlo biases of regression coefficient
estimates based on the net analysis sample, with either 0, 16, 32, or 48 additional uncorre-
lated variables in the dataset to be considered in imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 2,500 cases (37.5% missing data)

each.
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Figure 5.C4: Smaller samples: percentage Monte Carlo biases of regression coefficient
estimates based on the net analysis sample, with either 0, 16, 32, or 48 additional variables
in the dataset highly correlated to the analysis variables (r = 0.60) to be considered in
imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 2,500 cases (37.5% missing data)

each.
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Figure 5.C5: Smaller samples: percentage increase in standard errors with imputed SQD
data compared to complete sample data after multiple imputation based on the net analysis
sample, with either 0, 16, 32, or 48 additional uncorrelated variables in the dataset to be
considered in imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 2,500 cases (37.5% missing data)

each.
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Figure 5.C6: Smaller samples: percentage increase in standard errors with imputed SQD
data compared to complete sample data after multiple imputation based on the net analysis
sample, with either 0, 16, 32, or 48 additional variables in the dataset highly correlated to
the analysis variables (r = 0.30) in the dataset to be considered in imputation models.
Note: Based on a Monte Carlo simulation with 1,023 runs on 2,500 cases (37.5% missing data)

each.
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Conclusion

6
In an era of declining response rates and staggering survey costs, survey research
is characterized by constant attempts to find sustainable ways for collecting high-
quality data at reasonable costs. Ever since lengthy questionnaires have been iden-
tified as one of the causes of low response rates (Heberlein and Baumgartner, 1978;
Dillman et al., 1993), limiting questionnaire length is commonly considered an im-
portant piece of this puzzle. With the more recent rise of self-administered online
surveys that are often considered especially responsive to lengthy questionnaires
(see for example Revilla and Höhne, 2020), the aspect of questionnaire length has
become even more relevant. If long questionnaires are cut down too much, however,
consequences for survey research could be serious as well. In this case, important
research projects may be rejected or canceled, in the long run obstructing the em-
pirical and theoretical advancement in the social sciences and related fields.

Approaches utilizing planned missingness, such as the split questionnaire de-
sign (Raghunathan and Grizzle, 1995), could play a role in resolving this conflict.
This is highlighted by large-scale implementations of such designs in the past years,
most prominently the PISA context questionnaire 2012 (OECD, 2014, chap. 3) and
the European Values Study 2017 (Luijkx et al., 2021). However, the data resulting
from these designs are often hard to analyze without proper missing data analysis
techniques. So far, there has been little research on how to design the split ques-
tionnaires and apply these missing data techniques with real social survey data such
that the estimates obtained with this data are satisfactorily accurate.
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Building on a series of Monte Carlo simulation studies, this dissertation ad-
dresses the effects of various methodological decisions associated with the imple-
mentation of split questionnaire designs in social surveys on the accuracy of esti-
mates. In doing so, I covered all the process from designing module structures for
the split questionnaires, to factoring in item nonresponse, and to determining viable
imputation strategies for the resulting missing data. The results highlight challenges
associated with split questionnaire designs as well as conditions and strategies under
which satisfactorily accurate estimates can be expected. In the conclusion of this
dissertation, I summarize the findings and discuss in more detail which situations
may facilitate an accurate estimation and map out where more research is needed
for the future.

6.1 Summaries of the Four Papers

6.1.1 Paper I

The first paper focused on how modules in a split questionnaire design may be con-
structed from the perspective of imputation quality. Three potential strategies were
compared: random modules, single topic modules, and diverse topics modules. The
expectation was that diverse topics modules would perform the most favorably, fol-
lowed by random modules and single topic modules.

Three major conclusions can be derived: First, as expected, single topic mod-
ules overall led to the poorest estimates, both regarding univariate frequencies and
bivariate correlations. Hence, with regard to the quality of imputations, modules
should be constructed in such a way that they cover not only one but different survey
topics. Second, there were almost no differences in performance between diverse
topics and random modules. We also found evidence that even if the within-topic
correlations were considerably stronger, the advantage of diverse topics modules
over random modules might still be very limited. This finding is especially strik-
ing because a large portion of the previous research on split questionnaire designs
specifically revolves around optimizing the allocation of items to modules beyond
random chance (Adigüzel and Wedel, 2008; Bahrami et al., 2014; Bahrami, 2020;
Chipperfield and Steel, 2009, 2011; Imbriano, 2018; Rässler et al., 2002; Thomas et
al., 2006). Furthermore, this is also important because optimization strategies often
require data collected in advance. Collecting this data specifically for this purpose
would likely be a costly endeavor that is probably not worth it. Third, contrary to
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the overall pattern, one set of estimands is estimated the most accurately with single
topic modules: correlations of two items of the same topic. This also is a novel find-
ing not anticipated by previous research. In consequence, questionnaire developers
might consider single topic modules if they are willing to assume that each subse-
quent analysis primarily covers only a single survey topic. In this case, however,
one might even be able to forgo the imputation of the planned missing data in many
instances, as all analysis variables would be located in the same module and hence
be either pairwise observed or completely unobserved for a given respondent.

6.1.2 Paper II

In the second paper, a wide range of different imputation procedures were examined
regarding their ability to reproduce correlations in data from a split questionnaire
design in a general purpose imputation scenario, including both different imputa-
tion methods and different predictor set specifications. This paper goes beyond
previously existing research on different imputation procedures (e.g., Akande et al.,
2017; Burgette and Reiter, 2010; Doove et al., 2014; Seaman et al., 2012; Slade
and Naylor, 2020; Wu and Leung, 2017) in various respects: First, it evaluates not
only a few but a wide variety of different state of the art imputation procedures,
providing a comprehensive and direct comparison of their performance. Second,
in contrast to the imputation scenario of most studies on imputation, this paper
deals with data specifically from a split questionnaire design and aims explicitly at
a general purpose imputation rather than confining the imputation to a small set of
variables. Finally, unlike most prior research, the Monte Carlo simulations rely on
real social survey data rather than simulated data. In doing so, the challenges of real
survey data are accounted for while maintaining the robustness of a Monte Carlo
simulation study.

The results show that in such a scenario several established imputation methods,
especially generalized linear models for categorical variables and classification and
regression trees, can lead to poor correlation estimates. This finding may be critical
information for researchers imputing data from split questionnaire designs in the
future: Generalized linear models are the default imputation method for categorical
data in many software implementations of multiple imputation, such as mice (van
Buuren and Groothuis-Oudshoorn, 2011). Furthermore, were it not for the findings
of this paper, tree-based imputation techniques may be a tempting technique for
a general purpose imputation: They claim to automatically model the data based
on the relevant predictor variables with all its linear and non-linear relations, and
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prior research not specifically tailored to the present imputation scenario generally
suggests a good performance of these techniques (Akande et al., 2017; Burgette and
Reiter, 2010; Doove et al., 2014).

Surprisingly, Bayesian linear regressions and joint modeling via the multivari-
ate normal distribution yielded comparably accurate estimates despite the data be-
ing ordered categorical (at least when not transforming the imputations to discrete
categorical values). Furthermore, simplifying imputation models through restrict-
ing predictor sets proved promising. This refers both to removing predictors with
near-zero correlations to the imputed variable and to partial least squares regression
reducing the dimensionality of the predictor space. These techniques worked espe-
cially well with predictive mean matching. In contrast to Bayesian linear regression
and joint modeling, these techniques also have the advantage that they preserve the
discrete scale of the categorical data.

The major conclusion from this paper is that to allow for a general purpose im-
putation strategy for missing survey data from split questionnaire designs to work
out, imputation models need to be simplified to some extent. This can be done by
choosing an “undemanding” imputation method such as Bayesian linear regression
or the multivariate normal model, which can describe the relation between two vari-
ables using only one coefficient. However, this is associated with strong normality
assumptions that are often unrealistic especially for categorical data, and they gen-
erate continuous imputations that are not compatible with the discrete scales of
categorical variables. This issue may be averted by using predictive mean matching
combined with predictor sets that are restricted to variables with clearly non-zero
correlations to the imputed variable. However, this relies on the strong assumption
that the removed predictors indeed have no relation at all to the imputed variable
in the real world (Bartlett et al., 2015). Partial least squares regression, in contrast,
relaxes this assumption, as it does not remove predictor variables from the imputa-
tion model per se. Thus, for imputing survey data from a split questionnaire design
for general research purposes, partial least squares predictive mean matching might
be the most promising procedure so far. This also suggests that future research may
focus on further developing this procedure, such as generalizing it to unordered cat-
egorical data or implementing more data-driven ways of determining the number of
partial least squares components included into the imputation model.
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6.1.3 Paper III

The third paper enhanced the previous simulations of planned missing data by tak-
ing into account the additional item nonresponse by survey participants. In doing
so, this study examines the accuracy of estimates under a wide range of scenarios,
implying the manipulation of the item nonresponse mechanism and of the propor-
tion of both planned missingness and item nonresponse.

The most important conclusion from this paper is that the combined proportions
of missing data jointly produced by item nonresponse and planned missingness may
lead to partly strong biases in univariate and bivariate estimates. This can be the case
even if the item nonresponse (like the planned missingness) is missing completely
at random. Especially combined proportions of missing data exceeding 40% proved
challenging. This finding is noteworthy, also because the literature on split question-
naire designs often reports reductions in questionnaire length that are significantly
higher, such as 50% (Bahrami et al., 2014), up to 60% (Raghunathan and Grizzle,
1995), or even up to 74% (Adigüzel and Wedel, 2008). Yet, readers should be aware
that this number may be specific to the data used for this study and should be eval-
uated with different data in the future. Moreover, as the level of item nonresponse
varies heavily between different items, some items (those with the highest amount
of item nonresponse) are more affected by large amounts of planned missingness
than others.

A less concerning finding from this paper is that the heterogeneity of the miss-
ingness mechanism as introduced by planned missingness and item nonresponse
occurring jointly seems not to be a particular problem. On the one hand, having
item nonresponse that is missing at random (instead of missing completely at ran-
dom) seems to increase biases only slightly, and this increase does not get larger
with increasing amounts of planned missing data. Item nonresponse that is missing
not at random, on the other hand, turns out to be a challenge irrespective of the
amount of planned missing data.

In consequence, the expected degree of item nonresponse on each item must
be taken into account in the process of designing split questionnaires. If an item
can be expected to show a considerable amount of item nonresponse, questionnaire
developers may be well advised to reduce the amount of planned missingness on
this item or even allocate it to a core module.



219

6.1.4 Paper IV

The fourth and final paper of this dissertation investigated the effects of a general
purpose imputation strategy on estimates compared to an analysis-specific imputa-
tion strategy given the procedures identified in the previous papers. Two central dif-
ferences of both strategies were highlighted: In contrast to analysis-specific impu-
tation, a general purpose imputation strategy offers neither the flexibility to restrict
the imputation to the analysis sample nor to the analysis variables. To compare the
effect of general purpose imputation with analysis-specific imputation on analysis
models, this paper also went beyond evaluating univariate and bivariate estimates
towards a case study using a multiple regression model from substantive social sci-
entific research. The results suggest no detrimental effect of larger numbers of
predictor variables in a general purpose imputation model, but partly considerable
biases when imputation model and analysis model are based on a different sample.
Furthermore, a non-continuous effect of age as well as a family status interaction
effect were not adequately reproduced in either of the scenarios.

This research provides evidence in which situations general purpose imputations
might work for social research based on a split questionnaire design and in which
situations an analysis-specific imputation strategy may be superior. In sum, general
purpose imputations can be expected to work well for analyses relying on the full
survey sample that attempt to model continuous effects only. Analysis-specific im-
putation therefore is preferable either when a subgroup of the whole survey sample
is to be analyzed, or if the estimated effects are expected to be strongly non-linear
(e.g., interaction effects, squared terms, dummification of continuous variables).
Moreover, this implies that if general purpose imputations are supplied by the data
provider, the documentation should emphasize clearly how the imputed data can be
used and in which cases data users would have to impute the data by themselves
tailored specifically to their analysis.

Yet, these conclusions relate to the status quo imputation procedures used in this
paper and should be considered subject to constant change. Specifically, the weak-
nesses of general purpose imputations revealed in this paper may trigger further
development in imputation procedures to overcome these obstacles. For instance, if
partial least squares predictive mean matching could be refined such that it allows
for detecting non-linear effects more accurately while maintaining its efficiency in
capturing linear effects, one might potentially be able to alleviate all the constraints
of general purpose imputations discussed above to some extent. At the same time, it
is important to remember that this analysis is a case study of only one multivariate
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model. In consequence, future research should also evaluate other types of analy-
sis models regarding the accuracy of general purpose imputations. For example, it
should be elaborated whether the conclusions from this study also hold in a logistic
regression model.

6.2 Contribution to the Literature

The present dissertation makes a significant contribution to our knowledge about
split questionnaire designs by addressing several gaps in previous research.

First, most previous research on split questionnaire designs and planned miss-
ingness had focused on the development of methods (e.g., Raghunathan and Grizzle,
1995; Rässler et al., 2002; Thomas et al., 2006; Adigüzel and Wedel, 2008; Bahrami
et al., 2014), but we had limited evidence on how these methods perform in the real
world with actual social survey data. In contrast, the present dissertation provides
a thorough examination of split questionnaire design techniques. To this end, using
Monte Carlo simulation studies and real social survey data allows evaluating such
techniques robustly while also accounting for the challenges of real data. In doing
so, this work contributes to closing the gap between methods development and ap-
plication in empirical research. Therefore, this dissertation significantly enhances
the current understanding of how well multiple imputation may perform in a con-
text with social survey data from a split questionnaire design in practice, especially
for general purpose imputation strategies.

Second, despite intense research activity regarding the development of meth-
ods and testing them using simulation techniques, previous research had offered
little comparison of how imputation performs with different methods and scenarios.
For instance, the few previously existing small-scale attempts to compare differ-
ent item-allocating strategies under real-data conditions had not involved evaluat-
ing estimates regarding their accuracy after imputation (see Adigüzel and Wedel,
2008; Rässler et al., 2002). Furthermore, while some previous research on imputa-
tion (such as Akande et al., 2017; Slade and Naylor, 2020; Wu and Leung, 2017)
had compared the performance of different imputation procedures in general, these
studies commonly do not account for the challenges and scenarios specific to so-
cial survey data from a split questionnaire design. This dissertation contributes to
closing this gap by thoroughly evaluating different modularization strategies, impu-
tation procedures, and scenarios regarding the amounts of planned missing data and
item nonresponse.
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This reveals under which conditions and strategies one may expect the impu-
tation to yield acceptable results: Modules should not consist of single topics, and
the overall proportion of missing data should be kept at moderate levels in spite of
the planned missingness. If these conditions are met, a general purpose imputa-
tion strategy may succeed with predictive mean matching if the imputation model is
simplified to some extent (e.g., through a partial-least-squares regression), and for
subsequent analyses that model continuous effects based on the whole survey sam-
ple. For more complex analyses that restrict the analysis sample or model strongly
non-continuous effects, an analysis-specific imputation may be needed.

Finally, this dissertation also contributes to the more general body of research
on multiple imputation. Most importantly, it provides a comprehensive performance
comparison of various imputation procedures using real survey data. This includes
one of the first empirical evaluations of partial least squares predictive mean match-
ing (Robitzsch et al., 2016; Robitzsch and Grund, 2021). Moreover, this disserta-
tion also demonstrates potential limitations of imputation models that have a “broad
scope” (van Buuren, 2018), such as general purpose imputation models, in a more
general context beyond planned missingness research. For example, when item non-
response is accounted for by providing data users with already imputed data (e.g.,
U.S. Census Bureau, 2022; Frick and Grabka, 2005), it might be worthwhile to think
about how estimates may be affected if data users restrict their analysis samples.
Therefore, this dissertation emphasizes the importance of transparent communica-
tion on this issue to ensure the value and integrity of social survey research with
imputed data.

6.3 Implications for Future Research

The findings obtained in this work contribute implications for future survey research
in a twofold manner: First, they may affect the way when and how one may choose
to implement planned missingness in a survey; and second, they may stimulate fur-
ther methodological research on the design and imputation of planned missingness
in surveys.

6.3.1 Future Implementations of Planned Missingness

First, the imputation of planned missing data in surveys has proved to be a chal-
lenging endeavor. Even with the most suitable imputation procedures, in practice
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the imputation can still be some source of bias for survey estimates. Therefore,
researchers who consider implementing a split questionnaire design (or similar ap-
proach) should carefully assess whether the expected benefits in response rates and
response quality are significant enough to make up for this additional challenge.

Second, when implementing a split questionnaire design with the aim of im-
puting the data subsequently, the module construction method should factor in the
subsequent imputation. Here, it is important to resist the intuitive notion of con-
structing modules along the boundaries of survey topics. Rather, modules should
cover a diverse range of the different survey topics to allow for an appropriate im-
putation. For instance, this could be achieved by randomly allocating items to mod-
ules. Meanwhile, the evidence of this work suggests no clear advantages of any
more sophisticated methods for optimizing modules with respect to the imputation.
Apart from this, in this dissertation, imputation procedures suitable for imputing
nominal variables have not performed favorably. Hence, researchers may consider
avoiding planned missing data on such items, for example by allocating them to a
core module.

Also in the planning stage of the data collection, researchers should make sure
that the split questionnaire design does not cause too many missing values per
variable. This primarily entails limiting the number of modules missing per ques-
tionnaire form. However, expectations about item nonresponse by the participants
should also be taken into account in this process, ensuring sufficient case numbers
even with unplanned missing data.

Finally, when the data are to be provided with general purpose imputations to
ease the analysis for data users, researchers involved in the imputation may take
account of some key findings from this work. Most importantly, a general pur-
pose imputation strategy would need to reduce complexity in imputation models to
some extent. At least for imputing ordered categorical data, partial least squares
predictive mean matching has shown promising behavior for this purpose in this
dissertation. Restricted predictor sets may be an alternative if one is willing to as-
sume that the near-zero correlations in the data correspond to true null relationships
in the population. Researchers should also take care to communicate clearly how
the imputed data can be analyzed. As discussed above, partial least squares predic-
tive mean matching ,for instance, works primarily well for estimating continuous
effects based on the whole survey sample. For estimating non-continuous effects
or analyzing a subgroup of the survey sample, data users would need to impute the
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data anew using an analysis-specific imputation strategy that includes the non-linear
terms explicitly in the imputation model.

6.3.2 Future Methodological Research

The findings and limitations of this dissertation may also help to direct the focus of
future methodological research on new important aspects.

First, all studies in this work are entirely simulation-based. This is a useful
strategy to isolate effects of different strategies under controllable conditions and
also ensures that clear and valid benchmarks exist for evaluating their performance.
However, simulations can never fully imitate the real world. Thus, it would be in-
triguing to see how the different strategies perform in real-world applications of split
questionnaire designs. This implies the need for experimental studies, for example
testing different modularization strategies against each other. Such a field study
may also include a proper investigation of the effects of different split questionnaire
designs on relevant response-related measures, such as response rates, breakoff, and
measurement error, and evaluate a split questionnaire design’s benefits on these do-
mains compared to the information loss from planned missingness.

Second, the findings obtained in this work might depend significantly on the
parameter settings of the simulation study. However, it is simply not feasible to
manipulate all possible dimensions at the same time. Perhaps most importantly,
this includes the data used for the analyses. Thus, the methodology of split ques-
tionnaire designs may benefit hugely from replications with different datasets or
diverging specifications regarding module construction and imputation procedures.
Future research may also cover new dimensions such as different definitions of core
modules or varying numbers of modules assigned to each participant.

Third, future research might also extend our knowledge about the performance
of split questionnaire designs with measures other than bias and variability of uni-
variate frequency estimates, bivariate Spearman correlation estimates, and multiple
regression estimates as used in this work. For example, future research may study
the accuracy of inference statistics with data from split questionnaire designs, such
as t tests or confidence intervals, in more detail.

Fourth, this dissertation demonstrates the need for further development in impu-
tation procedures for social survey data. This refers not only to imputation scenarios
with planned missing data, but more generally to survey data imputation scenarios
in which lots of predictor variables need to be accounted for. For instance, there is
a pressing need for more suitable imputation procedures for nominal data that can
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adequately preserve relations to other variables in such a demanding imputation
scenario. Future research may therefore explore whether partial least squares pre-
dictive mean matching or a related method can be generalized to categorical data.
Furthermore, even with ordinal or continuous data, detecting strongly non-linear re-
lations while also preserving all the linear relations in the data remains a challenge
for general purpose imputation strategies still to be resolved.

Fifth, the focus of this work is on the relatively simple case of non-hierarchical,
cross-sectional data. Especially longitudinal data may behave differently especially
regarding the imputation of planned missing data, since here the imputation needs to
account for relations between variables not only at one but multiple points of time.
Pioneering research on this domain has already been done by Imbriano and Raghu-
nathan (2020) particularly regarding the construction of modules with longitudinal
data. However, optimal strategies for the imputation of longitudinal or multilevel
planned missing data still need to be identified.

Finally, this dissertation has dealt with planned missing data from a multiple
imputation perspective. However, there are different methods for coping with miss-
ing data as well. In particular, future research might want to investigate to what
degree the findings from the present work can be generalized to other methods such
as single imputation or full information maximum likelihood techniques.
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