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Chapter

Introduction

Survey research in the social sciences is facing a conundrum: Response rates have
persistently declined for decades and across different countries (de Heer and de
Leeuw, 2002; de Leeuw et al., 2018). Not only does this development continuously
increase the fieldwork efforts necessary to obtain sufficient case numbers, making
surveys more expensive. It also raises doubts about validity of inferences drawn
about relevant target populations due to nonresponse bias. Consequently, ensuring
acceptable response rates constitutes a significant challenge of survey methodology.

Managing the length of a survey is a critical factor in optimizing response rates.
On the one hand, researchers may desire data that thoroughly cover all potentially
relevant aspects of the survey topic. On the other hand, this may lead to a lengthy,
burdensome survey that may discourage respondents, resulting in low response
rates (Dillman et al., 1993). Beyond that, response quality may suffer, with in-
creased breakoff and measurement error (Galesic and Bosnjak, 2009; Peytchev and
Peytcheva, 2017).

This is becoming even more relevant given the recent continual shift from tra-
ditional survey modes to self-administered online surveys. On the one hand, on-
line surveys are relatively inexpensive compared to other survey modes (e.g., Lozar
Manfreda et al., 2008), which helps contain the ever-increasing costs of conducting
a survey. On the other hand, online surveys have narrow limits in questionnaire
length due to a greater susceptibility for breakoffs (Peytchev, 2009; Tourangeau et

al., 2013, p. 52). Therefore, limiting survey length is considered especially impor-



tant for online surveys. Thus, by moving online, one may be forced to cut down on
the number of questions asked in a survey, potentially resulting in the cancellation

of important research projects due to limited resources.

1.1 Planned Missingness and Split Questionnaire

Designs

One idea proposed by previous research to resolve this issue is planned missing-
ness (e.g., Shoemaker, 1973; Raghunathan and Grizzle, 1995; Graham et al., 1996),
where each respondent receives only a subset of all questions rather than the entire
questionnaire. This results in shorter questionnaires for individual respondents but
also generates considerable amounts of planned missing data. Several approaches
to implement planned missingness in surveys have been developed building on
this notion. With multiple matrix sampling (Good, 1969, 1970; Shoemaker, 1973;
Munger and Loyd, 1988), each respondent is assigned a predefined number of ques-
tions from the entire questionnaire via simple random sampling. This can be com-
plemented by a so-called core module that is presented to each respondent (e.g.,
Munger and Loyd, 1988), containing items that are deemed essential and there-
fore need to be observed completely. Although effectively reducing questionnaire
length, this procedure may yield data in which some pairs of variables have no
overlapping observations, making it impossible to study their relationships.

The split questionnaire design (SQD; Raghunathan and Grizzle, 1995) and sim-
ilarly the 3-form design (Graham et al., 1996) are advancements of multiple matrix

sampling that solve this problem.!

Here, questions are allocated to one of sev-
eral modules (also called components). Then, a subset of two or more modules is
randomly assigned to each respondent. This modularization procedure limits the
number of different questionnaire forms and also ensures that there are pairwise
complete observations available for at least each bivariate relation of variables. Fig-
ure 1.1 illustrates this procedure in a fictional example survey with 24 items (dis-
played in the columns) and 20 respondents (displayed in the rows).> In this example,
each item is allocated to one of six modules. To ensure similar questionnaire length

for each questionnaire form, all modules contain the same number of items (four).

1Although this dissertation’s focus is on SQDs, note that there also are further, somewhat differ-
ent developments such as two-method measurement designs (Graham et al., 2006).

ZNote that this is a small-scale example to ease the reader’s understanding. In practice, SQD
surveys may cover much more items and respondents.
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Figure 1.1: Illustration of a split questionnaire design in a fictional example survey with
24 items and 20 respondents. Bullet points indicate an item is presented to a respondent.

The left-most module in Figure 1.1 is a core module, implying that all respondent
receive the items from this module. These might cover, for example, important so-
ciodemographic characteristics or central outcome variables of this data collection
project. The other five modules are split modules, with each respondent receiving
a randomly selected subset of these modules. In this example, each respondent re-
ceives three split modules plus the core module, resulting in 2 out of 6 modules
(or 8 out of 24 items) missing by design for each respondent. Hence, items in
split modules here have 40% planned missing data. Overall (i.e., including the core
module), 33% of all values in the data are missing by design, meaning that here the

questionnaire length is approximately reduced by a third.

1.2 Imputation of Planned Missing Data

Enormous amounts of planned missing data as displayed in Figure 1.1 can affect
the analyzability of the data. In this example, two items from different split mod-
ules have only 36% of the entire sample pairwise observed. This effect is especially
troublesome with multivariate analyses that include variables from multiple differ-
ent split modules. In this case, the case numbers available for the analysis may

quickly drop to zero.



To help with this issue, Raghunathan and Grizzle (1995) propose using multiple
imputation (Rubin, 1987; van Buuren, 2018) to complete the planned missing data.
Multiple imputation is a statistical technique that replaces each missing value in
a dataset by multiple values that are statistically plausible given the information
available in the observed data. To impute a target variable, an imputation model is
estimated based on a set of predictor variables. In doing so, multiple imputation
aims to preserve marginal distributions, the relations between variables, and the
uncertainty of the missing data. The resulting imputed datasets can then be analyzed
separately, with the resulting multiple estimates being pooled thereafter.

However, the imputation of planned missing social survey data comes with nu-
merous challenges. First, the estimation of imputation models relies on correlations
between the imputed variable and predictor variables, but correlations between vari-
ables in social survey data are often weak. Second, survey data is often categorical
rather than continuous, but categorical data is considered more difficult to impute
than continuous data (van Buuren, 2018, p. 91). Third, large proportions of missing
data need to be imputed. This implies that even small inaccuracies in the imputation
model can have significant effects on estimates after imputation. Furthermore, large
proportions of missing data also challenge the estimation of imputation models, as
this means they have to rely on very limited amounts of observed data.

Moreover, the imputation scenario itself could be a challenge. In an ideal case,
planned missing survey data may be imputed right away by the data-collecting re-
search institute for general research purposes in order to provide imputed data to
individual data users. This would take away burden from data users who might lack
the resources and training necessary to conduct multiple imputation by themselves.
Furthermore, the data-collecting institute may have the statistical expertise, field-
work knowledge, and the computational resources to set up a suitable imputation
procedure adequately taking into account the particular features of the data and of
the data collection process. This approach might also be the most efficient in terms
of financial costs, working hours, and energy consumption.

Yet, a general purpose imputation strategy makes the task of imputing planned
missing survey data even more difficult: In statistical theory, imputation models
must (at the very least) always include all analysis variables to preserve their re-
lation with the imputed variable (Meng, 1994). However, with a general purpose
imputation strategy, the analysis models typically are unknown. As this may mean
that in principle, all relations between variables could end up in an analysis model,

imputation models may need to cover all variables as predictors. This intensifies



issues with the estimation of imputation models: The imputation needs to deal with
a lot of predictors that need to be included simultaneously but also with very limited
observed data.

So far, there is little evidence on how well the multiple imputation of planned
missing data might work with actual social survey data under these circumstances.
Moreover, there is an imperative need for more research on different strategies how
to implement split questionnaire designs in social surveys to determine when and
how multiple imputation can be successfully applied with these data. This need
for research involves the whole process of implementing an SQD, starting with the
design of questionnaires up to the imputation and provision of the resulting data.

First, existing research often claims that it is essential to distribute highly cor-
related variables across different modules in order to ensure an adequate quality of
imputations (e.g., Raghunathan and Grizzle, 1995). However, there is little evidence
as to what extent this makes a difference for estimates with real social survey data,
which often lack particularly strong correlations.

Second, despite existing research on the performance of different imputation
procedures in general (e.g., Akande et al., 2017; Collins et al., 2001; Slade and
Naylor, 2020), we currently lack evidence on which imputation procedures may
perform satisfactorily specifically in imputing planned missing survey data. This is
especially the case for the enormous, far-reaching task of imputing data for general
research purposes.

Third, beyond the planned missing data that is usually missing completely at
random, surveys typically also exhibit some degree of potentially non-random item
nonresponse by the survey participants which needs to be imputed as well to miti-
gate nonresponse bias. However, there currently are no studies on how the combined
presence of planned missingness and item nonresponse affect imputation perfor-
mance, whether the imputation still manages to adjust for nonresponse bias under
these circumstances, and how item nonresponse should be taken into account in the
design of split questionnaires.

Finally, there currently is no systematic investigation of how estimates for a mul-
tivariate model may be affected by a general purpose imputation strategy compared
to an analysis-specific imputation strategy. However, such research is critical in or-
der to find best-practice procedures for implementing SQDs as well as to evaluate

the value of SQDs for social survey practice.



1.3 Contribution of This Dissertation

This dissertation contributes to the research on SQDs and their imputation, address-
ing the overarching research question under which conditions accurate estimates
can be obtained in a social survey with an SQD in practice. Using a series of Monte
Carlo simulation studies based on real social survey data from the German Internet
Panel (GIP; Blom et al., 2015; Cornesse et al., 2021) and the European Social Sur-
vey (ESS; European Social Survey, 2018a,b,c), I examine the quality of univariate,
bivariate, and multivariate estimates after imputation. In doing so, I manipulate var-
ious features of the SQD survey and of the imputation procedure, dealing with the
research gaps discussed above.

This work improves the research community’s understanding of how multiple
imputation in surveys may perform in practice for SQD scenarios under realistic
conditions and with real data. Through this work, I identify appropriate strate-
gies for designing split questionnaires and imputing the resulting data. Moreover,
I outline the conditions necessary to enable acceptably accurate estimates in prac-
tice given state-of-the-art imputation routines. The following paragraphs provide a

more detailed synopsis of the four papers resulting from this research.

1.4 Synopsis of Papers in This Dissertation

1.4.1 Paper I: Split Questionnaire Designs for Online Surveys:
The Impact of Module Construction on Imputation
Quality

The first paper investigates the impact of module construction on the quality of
univariate and bivariate estimates after imputation in SQDs. In doing so, different
perspectives on module construction are taken into account. On the one hand, ques-
tionnaire developers may want to design a questionnaire that appears coherent and
easy to understand to respondents, and may therefore like to avoid frequent changes
in topics. In consequence, their preferred modularization strategy may be to con-
struct modules each containing only a single topic. On the other hand, Raghunathan
and Grizzle (1995) argue that highly correlated items should be systematically allo-
cated to different modules to ensure a good quality of imputations. Yet, in practice

highly correlated variables can usually be found mostly within the same survey



topic. Following this logic, constructing modules covering all survey topics would
be a preferable option.

In a Monte Carlo simulation using data from the GIP waves 37 and 38 (Blom
et al., 2019a,b), SQDs are simulated by deleting values from the complete sample
data. Three module construction strategies are examined: Randomly constructed
modules, modules each covering a single survey topic, and modules covering di-
verse (all) survey topics. After multiple imputation of the simulated missing values,
univariate frequencies and bivariate Spearman correlations are estimated between
all variables in the data and compared to estimates based on the complete sam-
ple data.The main finding is that while random and diverse topics modules perform
very similarly, single topic modules lead to mostly less accurate estimates. Nonethe-
less, each of the modularization strategies results in some estimates—particularly

correlations—being severely biased.

1.4.2 Paper II: General Purpose Imputation of Planned Missing
Social Survey Data: Different Strategies and Their Effect

on Correlations

Following up on the finding that especially correlation estimates from SQD data
after imputation can turn out severely biased, in the second paper a wide range of
different imputation procedures are reviewed and tested in their accuracy regarding
Spearman correlation estimates. This entails both different imputation methods and
different predictor set specifications are being tested. With respect to the latter, two
strategies are tested that systematically exclude predictor variables with near-zero
correlations to the imputed variable from the imputation model. This builds on the
assumption that not reproducing near-null relationships would not harm estimates
after imputation too much (see also the concept of semi-compatibility, Bartlett et
al., 2015). Furthermore, partial least squares predictive mean matching is tested
as well as a more sophisticated technique to simplify predictor sets (Robitzsch et
al., 2016; Robitzsch and Grund, 2021). This technique uses partial least squares
regression to reduce the dimensionality of the predictor space before imputing the
data via predictive mean matching.

Again, a Monte Carlo simulation is applied using the same dataset as in Paper
I, simulating SQDs with random modules. Two major findings stand out. First,
several established imputation methods can result in strong biases in correlation es-

timates when imputing SQD data, especially generalized linear models for categori-



cal data and classification trees. Second, combining predictive mean matching with
restricted predictor sets or partial least squares regression can help to reduce biases
in correlation estimates. These findings also highlight the challenge with imputing

multinomial variables, for which no satisfying solution appears to be available yet.

1.4.3 Paper III: The Performance of Multiple Imputation in
Social Surveys With Missing Data From Planned

Missingness and Item Nonresponse

So far, previous research (including the two preceding papers) considered only one
single source of missing data at once. In an SQD survey, however, different sources
of missing data entailing very different challenges can be expected to emerge. The
primary challenge of planned missing data, as discussed above, lies in its typically
large quantity in relation to the amount of observed data. In contrast, the primary
challenge of nonresponse by survey participants is that its missingness may not
emerge randomly (as is typically the case with planned missing data). Both kinds
of missingness combined may result in a large amount of missing data with a po-
tentially non-random, heterogeneous missingness mechanism: One part is missing
completely at random, while another part follows a distinct unknown mechanism.
This might interfere with the imputation in several ways: First, the larger and par-
tially uncontrollable amounts of missing data from both sources may further aggra-
vate issues with many values to be imputed but little data to support an imputation
model. Second, it needs to be investigated whether the imputation model can still
account for a heterogeneous missingness mechanism (as induced by the combined
presence of planned missingness and item nonresponse) in spite of relatively little
observed data and a large set of predictor variables.

In consequence, this paper provides another Monte Carlo simulation based on
the GIP dataset in which the accuracy of univariate frequency estimates and bi-
variate Spearman correlation estimates is examined under a wide range of different
scenarios. These cover the amount and mechanism of item nonresponse and the
amount of planned missing data. The simulation of item nonresponse mimics the
item nonresponse observed in the GIP as modeled through elastic net logistic re-
gressions. The results show that besides the item nonresponse potentially being
non-ignorable, the major challenge of item nonresponse in an SQD survey is that it
can increase the already large proportions of missing data from the SQD to such a

degree that estimates can turn out severely biased after imputation.



1.4.4 Paper IV: Effects of General Purpose Imputations in
Planned Missing Survey Data on the Estimation of a
Multiple Regression Model: A Case Study

The final paper of this dissertation examines the effects of a general purpose impu-
tation strategy as compared to an analysis-specific imputation strategy based on a
case study of a multiple regression model from the social sciences literature (Safi,
2010). Here, I investigate two aspects in which general purpose imputation may
differ crucially from analysis-specific imputation: First, a general purpose imputa-
tion must preserve all relations in the data and therefore needs to include a lot of
predictor variables, while an analysis-specific imputation may have the flexibility to
restrict the predictor set quite heavily. Second, a general purpose imputation model
would usually be based on the entire survey sample, while an analysis-specific im-
putation model can be fitted to the specific analysis subsample (assuming they are
not the same).

I apply another Monte Carlo simulation study based on data from the ESS, in
which I again simulate SQDs with random modules by deleting observed values
from a complete dataset and subsequently estimate a regression model of general
life satisfaction on a wide range of regressors. In this context, I test the effect of (a)
using the gross survey sample vs. the net analysis sample to impute the data and
(b) defining imputation models using only the analysis variables vs. using varying
numbers of additional correlated and uncorrelated predictor variables. This analysis
shows that given adequate dimensionality reduction through partial least squares
regression, even adding additional uncorrelated predictor variables (i.e., variables
that are worthless for predicting the imputed variable) may have no adverse effects
on regression coefficients or standard errors. However, partly considerable biases
can occur when the analysis model sample and the imputation model sample are not

the same.

1.5 Lessons Learned and the Way Forward

In this dissertation, I investigate the performance of SQDs and multiple imputation
with real social survey data, covering the entire process from designing the ques-
tionnaires and planning the amount of missingness to imputing and providing the
data for data users. This reveals a multitude of important insights with implications

for future research.
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Imputing the planned missing data under real-data conditions (that is, enormous
amounts of missing data, predominantly low correlations and often categorical data)
turns out to be a challenge that can potentially be a substantial source of bias for
univariate and bivariate as well as multivariate estimates. These difficulties inten-
sify with a general purpose imputation strategy, which aims to preserve all relations
between variables (rather than only some specific relations of interest) and there-
fore often needs to include a vast number of variables into the imputation models.
Fortunately, however, suitable strategies for setting up an SQD and imputing the

resulting data can largely (though not completely) eliminate biases. These include:
* not using single-topic modules,
* avoiding too large amounts of missing data on each item,

 considering to allocate items with nominal levels of measurement to a core

module,

* using appropriate imputation procedures, such as partial least squares predic-

tive mean matching, and

e transparently communicating for which analyses the general-purpose imputed
data could be used and for which analyses an analysis-specific imputation is
required (this is the case especially for modeling non-continuous effects or

analysis models based on a subset of the entire survey sample).

Yet, even if researchers follow these recommendations, the imputation may still
remain some source of bias. Therefore, this work suggests that when designing a
survey, researchers should carefully weigh their expectations about the benefits of
an SQD in terms of response quality and cost savings against potential inaccuracies
from the imputation.

Beyond that, the remaining issues with imputing planned missing survey data
identified in this dissertation highlight the need for further research regarding the
design of SQDs and the imputation of the resulting data. For instance, future re-
search might further develop existing imputation procedures so that multinomial
data can be accounted for more appropriately. In addition, future research may also
focus on other aspects of SQDs that were out of scope for this thesis. These include,
for example, the effects of different modularization techniques on actual response
behavior. As such, empirical experimental research on SQDs may be needed in the
future, as simulation studies are not suitable to investigate real behavioral effects on

respondents.
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Chapter

Split Questionnaire Designs for Online

Surveys: The Impact of Module

Construction on Imputation Quality

Abstract

Established face-to-face surveys encounter increasing pressures to move online.
Such a mode-switch is accompanied with methodological challenges, including
the need to shorten the questionnaire that each respondent receives. Split ques-
tionnaire designs (SQDs) randomly assign respondents to different fractions of the
full questionnaire (modules) and, subsequently, impute the data that are missing by
design. Thereby, SQDs reduce the questionnaire length for each respondent. Al-
though some researchers have studied the theoretical implications of SQDs, we still
know little about their performance with real data, especially regarding potential
approaches to constructing questionnaire modules. In a Monte Carlo study with
real survey data, we simulate SQDs in three module-building approaches: random,
same topic, and diverse topics. We find that SQDs introduce bias and variability

in univariate and, especially, in bivariate distributions, particularly when modules

This paper is joint work with Annelies Blom, Christian Bruch, and Christof Wolf. A similar
version of this paper has been published in:
Axenfeld, J. B., Blom, A. G., Bruch, C., & Wolf, C. (2022). Split questionnaire designs for online
surveys: The impact ofmodule construction on imputation quality. Journal of Survey Statistics and
Methodology, 10(5), 1236-1262.
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are constructed with items of the same topic. However, single topic modules yield

better estimates for correlations between variables of the same topic.

2.1 Introduction

Surveys are an indispensable source of evidence in the social sciences. Many large-
scale face-to-face surveys like the General Social Survey (Smith et al., 2019) or the
British Social Attitudes survey (Curtice et al., 2019) stimulate scientific discourse
with high-quality data. However, face-to-face surveys are increasingly under pres-
sure due to decreasing response rates (de Leeuw et al., 2018) and increasing costs
(e.g., Roberts et al., 2014; Calinescu et al., 2013).

With close to universal internet coverage in Western countries (International
Telecommunication Union, 2019), online surveys have become a viable alternative
to face-to-face data collection in recent years. At considerably lower cost (e.g.,
Bianchi et al., 2017; Olson et al., 2021) several large-scale probability-based online
surveys have been established across the world (e.g., the KnowledgePanel (Ipsos,
2021) in the US, the LISS Panel in the Netherlands (Knoef and de Vos, 2009), and
the German Internet Panel (GIP; Blom et al., 2015)).

Consequently, survey projects face pressures to switch to the less expensive on-
line mode (e.g., Jickle et al., 2015; Bianchi et al., 2017). However, there is one
major obstacle to moving face-to-face surveys online: Online surveys are typically
much shorter than those conducted face-to-face, because researchers worry about
higher breakoff rates (Galesic, 2006; Mavletova and Couper, 2015; Peytchev, 2009;
Revilla, 2017; Tourangeau et al., 2013, p. 52), lower response quality, and higher
measurement error (Galesic and Bosnjak, 2009; Peytchev and Peytcheva, 2017) in
lengthy online questionnaires. When asking directly, the median online survey re-
spondent reports that they would like to answer surveys of 25 minutes at maximum
(Revilla and Hohne, 2020). Many established face-to-face surveys, however, are
with approximately one hour considerably longer (Curtice et al., 2019, p. 257) and,
thus, would have to be shortened when moved online.

Split questionnaire designs (SQDs) may provide a solution to such obstacles. It
allocates the items of a given questionnaire to different modules and randomly as-
signs respondents to a subset of these modules. Data for the questions not presented
to a respondent are missing by design and can subsequently be imputed to allow for

applying conventional analysis techniques (Raghunathan and Grizzle, 1995).
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While SQDs theoretically provide an attractive solution to shortening online
questionnaires, little is still known about their practical implications. Importantly,
low variable correlations in real social survey data driven by multi-topic question-
naires and non-exact measurement may lead to biases and inefficiencies in the impu-
tation process: Imputation models rely fundamentally on information on the unob-
served data stored in the observed data. Due to generally low correlations, however,
observed data cannot contribute much information. Moreover, with SQDs large
proportions of the data are imputed, implying that poor imputations could severely
affect substantive analyses on the data. Consequently, preserving as much of the
scarce information as possible for the imputation is a major challenge for SQD
surveys. Otherwise, imputation models might fail to reproduce distributions and
relationships in the data, implying potentially inefficient and biased estimates.

In this paper, we therefore shed light on an important practical aspect of SQDs:
The construction of the questionnaire modules and its impact on the quality of the
imputed data (i.e., biases and variability of frequency and correlation estimates).
For a realistic examination of modularization strategies, this study relies on real
(non-synthetic) survey data to account for real-data challenges (e.g., low corre-
lations or skewed distributions). We test three modularization methods: random
modules (RM), where the questions are randomly allocated to modules, single topic
modules (STM), where each module contains only one questionnaire topic, and di-
verse topics modules (DTM), where the various topics of a questionnaire are spread
across several modules. We present findings from a Monte Carlo simulation that

examines how RM, STM and DTM affect imputation quality in real survey data.

2.2 Administration of Split Questionnaire Designs

2.2.1 Split Questionnaire Design (SQD)

SQD is a planned missing data method developed by Raghunathan and Grizzle
(1995) as an extension of matrix sampling (e.g., Shoemaker, 1973; Munger and
Loyd, 1988). Items are bundled to mutually exclusive packages called modules
(e.g., Raghunathan and Grizzle, 1995; Peytchev and Peytcheva, 2017). There may
be one core module containing especially important items that are administered to
all respondents (e.g., Raghunathan and Grizzle, 1995). Additionally, respondents
are randomly assigned to a subset of the remaining modules.
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Constructing modules instead of sampling items directly is an important as-
pect of SQD, guaranteeing sufficient pairwise observations for each pair of items
(Raghunathan and Grizzle, 1995; Réssler et al., 2002). To this end, every split ques-
tionnaire must contain two split modules at minimum, and all possible combinations
of split modules must be allowed to appear (Raghunathan and Grizzle, 1995). This
general procedure is the same independent of the modularization strategy.

SQDs produce so much missing data that often too few observed cases are avail-
able for conventional complete case analyses. As a solution, Raghunathan and Griz-
zle (1995) suggest multiple imputation (MI; Rubin, 1987) to impute values missing
by design.

2.2.2 Multiple Imputation (MI)

Ml is a method for completing incomplete data matrices with plausible values to en-
able analyses on the full data (for a detailed overview, see Rubin, 1987; van Buuren,
2018). MI replaces missing values with values drawn from a posterior probability
density distribution. This distribution is obtained by an imputation model relying
on a set of predictor variables. Values are drawn multiple times to account for the
uncertainty of the missing values, generating multiple datasets with different im-
puted values. Data analyses are carried out on each dataset separately and estimates
are subsequently pooled using Rubin’s Rules (Rubin, 1987).

The challenge of MI lies in the reproduction of distributions and relationships
that would be observed in a complete dataset. In general, this challenge is best met
when the missing information is limited (Madley-Dowd et al., 2019) and correla-
tions between imputed and predictor variables are strong. However, correlations in
surveys are typically weak, and SQDs produce lots of missing data. The aim of
choosing a modularization strategy for SQDs is thus to maximize the information
that predictors provide on the variables to be imputed (Raghunathan and Grizzle,
1995). In practice this means that relatively highly correlated variables need to be

allocated to different modules to prevent them from being missing together.

2.2.3 Modularization Techniques

The module construction strategy may decisively shape the resulting SQD. First, as
described above, the imputation requires retaining as much information as possible,

i.e., correlated variables should be distributed across modules.
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Second, however, certain items should not be separated (Raghunathan and Griz-
zle, 1995; Rissler et al., 2002). For example, this can be motivated by the need
to maintain question filtering (see for instance Bishop et al., 1983; Kreuter et al.,
2011, for question-filter effects on data quality), prevent differential order effects
(e.g., McFarland, 1981; Silber et al., 2016), or limit frequent topic switches that
may raise respondent burden.

Finally, module construction must be feasible in real survey settings. Thus,
all information used during modularization must be available or obtainable before
data collection. Exact variable correlations, for example, are not available a priori;
instead we have to rely on previous surveys or collect this information during a pilot
study.

Thus, guidance on modularization will depend on how various perspectives are
weighted. Similar to Gonzalez and Eltinge (2007), we classify such different tech-
niques into three general strategies: RM, STM, and DTM. Figure 2.1 illustrates

these three strategies with a small example questionnaire.

Random modules (RM)

The upper part of Figure 2.1 shows one potential outcome when modules are con-
structed randomly in an example questionnaire. The questionnaire is a set () of
questions described by the index ¢ = 1,2,..., 7, where Z is the total number of
questions in the questionnaire (in this example, Z = 9). All questions in () belong
to mutually exclusive topics with each topic described by the index h = 1,2,..., L,
where L is the total number of topics (here, L = 3). For RM, we want to randomly
allocate all questions to a fixed number M of split modules, which are mutually
exclusive and described by the set W with the index w = 1,2,..., M denoting a
certain module. The number of modules M can in principle be set to any value
2 < M < Z (in the example, we chose M = 3) so that each respondent can receive
at least 2 modules.

Furthermore, we suppose modules should be balanced in size so that all re-
spondents receive questionnaires of similar length (Rissler et al., 2002; Thomas
et al., 2006). Therefore, we determine uniform module sizes B, = Z/M if
Z/MeIN. If Z/M¢ N, we create two different subsets of modules by ran-
domly drawing a subset V' from the set of modules W that contains a number of
M (Z/M — | Z/M]) modules. For these two subsets, we define different module
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This means each module w will receive a number of items B,, defined by either
the ceiling or floor value of the total number of items Z over the total number of
modules M, depending on whether the module was or was not in subset V. Then,
we randomly assign all questions in () to the modules with sizes B,,, with each
question ¢ having a probability of B,,/Z to be allocated to a module w before the
assignment of questions starts.

RM considers no survey information other than the number of questions Z and
the predetermined number of modules /. Consequently, imputation quality may
suffer, because correlated items are not systematically distributed across modules
optimally and could possibly amass within the same module by chance. From a
practitioner’s perspective, RM might not be optimal either, as question sequences
are ignored and hence, meaningful and consistent questionnaires cannot be guaran-
teed using RM.

Single topic modules (STM)

STM’s procedure is illustrated in the middle part of Figure 2.1, again with Z = 9
questions, L = 3 topics, and M = 3 modules. This is a fully deterministic process,
where all items of one topic h are allocated to the same single module w. However,
if one topic module contains considerably more (or more burdensome) questions
than the other topic modules, the large single topic module may be additionally
split to achieve balanced module lengths.

The key benefit of STM is that it avoids potential disruptions in the question-
naire structure. STM therefore seems to be the strategy of choice for many survey
practitioners, who seek to obtain questionnaires that appear meaningful and con-
sistent to respondents regarding its topics. Consequently, STM has many real-life
applications such as in the 2017 European Values Study (Luijkx et al., 2017) and
the 2012 PISA study (OECD, 2014, chap. 3).

However, STM may hinder imputation, because most variables on the same
topic may deliver the highest correlations but are clustered within rather than dis-
tributed across modules. Hence, while RM may trigger adverse scenarios for MI by

chance, STM will cause them by design.



21

Diverse topics modules (DTM)

Finally, DTM purposefully assigns the most highly correlated variables to differ-
ent modules to optimize subsequent imputation. DTM constitutes a diverse group
of techniques that optimize SQDs (examples can be found in Réssler et al., 2002;
Thomas et al., 2006; Adigiizel and Wedel, 2008; Chipperfield and Steel, 2009, 2011;
Chipperfield et al., 2018; Imbriano, 2018). From an imputation perspective DTM
is attractive, because it maximizes the information available for the MI. However,
it contains a conundrum: To determine which variables are highly correlated, the
data must be available a priori, i.e., before fieldwork. Although some surveys can
draw on data from a pilot study, typically these correlations are unknown during
modularization. Therefore, this study uses a DTM approach proposed similarly by
Bahrami et al. (2014), which assumes that variables correlate more strongly when
they originate from questions on the same topic. This implies that all items from
a topic h should be evenly distributed over all M modules, such that highly corre-
lated variables will most likely end up in different modules. Since here the topics
serve only to identify potentially highly correlated items, practitioners could also
consider alternative ways to group highly correlated items other than topics (e.g.,
prior theoretical knowledge).

The bottom part of Figure 2.1 illustrates a potential outcome of this DTM ap-
proach. The procedure is a stratified random assignment, in which the topics de-
scribed by the index h = 1,2,..., L serve as strata. Hence, RM is applied sepa-
rately within each topic h.

We first determine how many questions from a given topic & should end up in
each of the modules. This number of questions B, j is defined by B,, j, = Ay /M
if A,/ Mée N in a topic h, where Ay, is the number of questions in a topic & (in the
example, A, = 3). In Figure 2.1, B, , = 1 for each w and h, so in each topic h
one question is allocated to each module w.

Otherwise, if Ay /M¢ IN in a topic h, we create two different subsets of mod-
ules by randomly drawing a subset U, from the set of modules 1/ that contains
a number of M (A,/M — | Ap/M]) modules. For these two subsets, we define

different topic-specific module sizes:

_{ [Ap/ M| if weUy 22)

et [Ap/ M| if w & Uy

Thus, from a given topic h, each module w will receive a number of items defined

by either the ceiling or floor value of the number of items in the topic A; over
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the number of modules M, depending on whether module w was or was not in Uy,.
Subsequently, we randomly assign B,, , questions from a topic / to each module w.
We apply this procedure to each topic h, yielding modules constructed by stratified
random assignment.

Compared to RM, the stratification in DTM can make module sizes vary slightly
more. In our study, module sizes turn out constant (always equal to 10). How-
ever, practitioners may consider rejecting module structures with sizes that vary too
much.

Whereas RM may lead to an underrepresentation of some topics in some mod-
ules (in Figure 2.1 for example, module 1 contains no question from topic 2), DTM
obtained by stratified random assignment may eliminate the “unluckier”” outcomes

of RM while requiring only heuristic information on the correlation structure.

2.2.4 Prior Research

Prior research into SQD imputation with real data can be grouped into two cat-
egories: Monte Carlo simulations investigating imputation quality with one spe-
cific modularization strategy (Bahrami et al., 2014; Raghunathan and Grizzle, 1995;
Thomas et al., 2006) and case studies that explore different modularization strate-
gies (Adigiizel and Wedel, 2008; Imbriano and Raghunathan, 2020; Réssler et al.,
2002).

From existing simulation studies we learn that “little is lost” regarding means
and standard errors (Raghunathan and Grizzle, 1995). Thomas et al. (2006) report
only small biases in means and regression coefficients but considerable precision
losses in simulated SQDs compared to complete surveys. Bahrami et al. (2014)
observe a small attenuation in most of their regression coefficients. As their MI
estimates are overall still mostly in line with complete data estimates, they evaluate
their design favorably in general.

Furthermore, three single-case (non-Monte Carlo) studies compare different
modularization strategies: Adigiizel and Wedel (2008) suggest that data-driven so-
lutions could retain more information than ad-hoc solutions. Additionally, Rissler
et al. (2002) briefly report a poorer imputation performance when split modules con-
sist of highly correlated items. Imbriano and Raghunathan (2020) compare different
SQDs in a longitudinal health survey context, manipulating whether respondents re-
ceive repeatedly the same topics or different topics each wave (whereby correlations

of one variable across waves are usually high). They find that univariate and regres-
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sion estimates are reproduced best when respondents receive different items each
wave (i.e., when highly correlated variables are separated).

To our knowledge, our study is the first to combine the application of Monte
Carlo simulations with examining different modularization strategies (RM, STM,
and DTM) using real survey data. Furthermore, it also goes beyond most existing
real-data evidence through investigating bivariate in addition to univariate measures
(e.g., Adigiizel and Wedel, 2008; Raghunathan and Grizzle, 1995, study 1).

2.3 Data and Methods

2.3.1 Data

Our study uses real data from an existing survey: the German Internet Panel (GIP), a
probability-based online panel of the German population (for details on recruitment
and response rates, see Blom et al., 2015, 2017; Cornesse et al., 2021). The GIP
is particularly suited, because it has a reasonably large number of cases (5,411)
and a multi-topic structure. The latter arises from independent research teams in
various areas of economics, political science, sociology, and data science feeding
questionnaires into the GIP to answer their respective research questions.

We used 61 variables from GIP waves 37 and 38 (Blom et al., 2019a,b). Ta-
ble 2.1 depicts the topics and number of variables selected and indicates whether
the variables were used in the core or split modules. The table also shows to which
module the variables were allocated with STM. All variables are discrete, most of
them ordinal or dichotomous, and seven variables in the core are nominal. Addi-
tional information on the wording of survey questions, field-time periods and re-
sponse rates is provided in Tables 2.A1 and 2.A2.

To pursue our research question of examining different modularization strate-
gies, we rely on imputed data of the planned missing SQD data. In order not to
confound the effects of this type of missing data with regular missing data, we re-
moved all unit and item nonresponse from the dataset. Consequently, participants
who did not respond to either wave 37 or 38 were excluded from the GIP dataset.
Furthermore, where possible, missing observations were matched to responses from
earlier waves (Blom et al., 2016a,b). Finally, the remaining item nonresponse was
replaced with single imputations using predictive mean matching (PMM) as imple-

mented in the mice package in R! (van Buuren and Groothuis-Oudshoorn, 2011; R

I0ther R packages used for this paper are: DescTools (Signorell et al., 2020), doMPI (Weston,
2017), dplyr (Wickham et al., 2019), faux (DeBruine, 2020), foreach (Microsoft and Weston, 2020),
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Table 2.1: Variables used in Monte Carlo simulation

Topic # variables  SQD Origin ST™M
constituent allocation
Sociodemographics 10 core wave 37  core
Sampling cohort 1 core wave 37  core
Organization membership 10 split wave 37  module 1
Big Five personality traits 10 split wave 37  module 2
Lobbying in EU politics 10 split wave 38 module 3
Domestic and party politics 20 split wave 38  modules 4&5

Core Team, 2020), using all variables as predictors that have Spearman correlations
of |0.05] or stronger. The effects of this procedure on univariate frequencies and
correlations appear negligible, as both turn out extremely similar when calculated
without imputation (with pairwise deletion) and with imputation (for details, see
Figure 2.Al).

Finally, rarely observed categories with fewer than 100 cases were combined
into broader categories to avoid obtaining empty categories in the simulation. This
yielded a completely observed dataset with 4,061 cases as the population for our

simulation.

2.3.2 Variable Correlations Within and Between Topics

To consider the variable correlations in the data set, we calculate a Spearman corre-
lation matrix for the 50 split variables (see Figure 2.A2 for an illustration). Abso-
lute values of correlations range from 0.000 to 0.702 with 81.6% smaller than 0.10.
We further evaluate average absolute correlations within and between topics using
Fisher’s-Z transformation: Different-topic variable pairs tend to have weaker corre-
lations than same-topic variable pairs with an average correlation of 0.046 compared
to 0.162 (average correlations within topics are between 0.107 and 0.258). 45.3% of
within-topic correlations and 89.8% of between-topic correlations are below 0.10.

Finally, we take a glimpse at the correlations of variables of different modules.
The absolute Spearman correlations between variables of different modules are on
average 0.049 with STM, 0.070 with RM, and 0.072 with DTM.

ggcorrplot (Kassambara, 2019), MASS (Venables and Ripley, 2002), Matrix (Bates and Maechler,
2019), Rmpi (Yu, 2002), tidyverse (Wickham et al., 2019).
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2.3.3 Simulation of SQDs

We applied a Monte Carlo simulation, repeating modularization and imputation on
different samples over 1,007 simulation runs.> Accordingly, we randomly drew
1,007 samples with each 2,000 respondents from our GIP population data. Unlike
single simulations, this procedure produces findings beyond anecdotal evidence by
ruling out random differences. The following paragraphs describe the steps taken

in each simulation run.

Generating module structures

To generate module structures, we implemented RM, STM and DTM as described
above in R. With each modularization technique, we create five split modules with
10 items each. This results in three module structures tested in each simulation run.
While the arrangement of variables with RM and DTM differs across simulation
runs due to their stochastic procedure, STMs are predefined (see Table 2.1) and

thus do not vary.

Creating reduced datasets

To generate SQD datasets, we randomly assigned three out of five split modules
plus the core module to each respondent in the sample. All possible combinations
of split modules had equal chances to appear (although empirical frequencies of
occurrence may vary randomly). All values from unassigned modules were deleted

from the sample data, generating reduced datasets with 67% of the original size.

Completing the reduced data

For all three strategies and in each simulation run, we applied MI with the mice
package in R with 40 imputations drawn after 15 iterations to complete the reduced
data. Like Rissler et al. (2002), we used PMM as imputation method, because a
small-scale test with one simulation run and RM showed enormous shifts in uni-
variate distributions and correlation sizes with the mice default methods (logistic
regression for binary variables, proportional odds logistic regression for ordinal
variables) but not with PMM (see Figure 2.B1 for details). This complies with prior

research revealing difficulties with imputation using categorical regression methods

2This number of simulation runs (1,007) was favored over 1,000 because and we had access
to 1,008 processor cores (one core per simulation run, except for one consumed by setting up the
simulation).
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(van Buuren, 2018, p. 91; White et al., 2011; Wu et al., 2015) and recommending
PMM at least as a fallback option (van Buuren, 2018, p. 166; Koller-Meinfelder,
2009, pp. 48-68).

Small-scale tests also showed that restricting imputation models to predictor
variables with Spearman correlations stronger than |0.10| in the non-imputed SQD
data may lead to improved imputations. Thereby, imputation models include on
average between 2 and 22 predictors (median: 11). If no predictors are included in
a simulation run, we resort to unconditional hot-deck sampling. Also considering
that general recommendations are to include at most 15-25 (van Buuren, 2018) or
30-40 (Honaker and King, 2010) predictors, we proceeded with this approach. The
excluded variables’ correlations with the imputed variable are thereby assumed to
be zero. Hence, their strength may be underestimated after imputation, but these
underestimations should be small because the correlations are close to zero. Results
from an additional simulation that instead includes all variables as predictors can be
found in Figures 2.B2 and 2.B3, with substantively identical findings for the relative
performance of modularization strategies. Overall, these unrestricted predictor sets
yield much larger biases especially in univariate estimates. Bivariate estimates also
have a tendency towards more extreme biases. At the same time, many of the biases
that are very small with unrestricted predictor sets are slightly larger with restricted
predictor sets, because restricting predictor sets in this way implies slight biases in

very weak correlations.

Estimating distribution parameters

We examine how well univariate and bivariate distributions in the complete sample
data can be reproduced with the imputed data. In consequence, distribution param-
eters were estimated in each simulation run with the complete sample dataset and
with all imputed datasets. For each modularization strategy, the resulting estimates
were pooled using Rubin’s Rules. Consequently, for each parameter and in each
simulation run, we have one pooled estimate per strategy and, as a benchmark, one
estimate for the complete sample data.

To cover univariate distributions, we estimated relative univariate frequencies.
All split items in our simulation are available as categorical variables. The index ¢
describes a single category of any of these variables. We calculated relative univari-
ate frequencies for each variable category c in each simulation run s based on the

complete sample data (Fe2"P**®) and imputed data (72",
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For bivariate distributions we used Spearman correlations. We first generated
dummy variables for all categories of the seven nominal type variables in the core

module, increasing the total number of variables to 99. Then, Spearman correla-
~imputed

~complete
Pijs

tions p; ; o for the complete sample data and for the imputed data were
estimated in each simulation run s for each relevant unique pair of variables 1, j.
We excluded all variable pairs that did not include at least one split module, that is,

imputed, variable.

2.3.4 Measures

The basis of our analyses is the deviation A of imputed data estimates from complete-
data estimates in each simulation run s.> For a frequency Te,s of a category c or

correlation p; ; s of a variable pair 7, j each simulation run s entails the following

operation:
B ~ __ o~imputed _ ~complete 23
(71—078 ) - 7T-c,s 7z-c,s ( . )
N~ __ ~imputed ~complete
A(Pijs) = Pijs  — Pijs (2.4)

A positive value on ﬁ(?rc s)orA( pij,s) means that the corresponding estimate has

been overestimated, whereas a negative value indicates an underestimation.

Bias

If a given estimate is Monte Carlo unbiased, we expect the average of its deviations A
over all simulation runs to be zero. In contrast, a positive (negative) average sug-
gests that the estimate is systematically overestimated (underestimated).

The Monte Carlo bias of a frequency estimate 7. for a category c is obtained

through the average over its deviations in all S = 1, 007 simulation runs:

~ s
A7) == S A(Res) (2.5)

>

S o~
(Pig) = 3 > A (Pijs) (2.6)

3Dividing A by the complete-data benchmark would yield percentage deviations. This study,
however, does not consider such a measure because it turned out unstable for the many correlations
near zero, as this implies dividing by numbers very close or equal to zero.



28

Variability

Another important aspect of the quality of an estimate is its precision. In prac-
tice, this means that ideally standard errors are relatively small. The Monte Carlo
simulation allows to approximate the variance of a given point estimate through
taking the estimate’s variance over all simulation runs (e.g., Miinnich and Réissler,
2005; Mashregi et al., 2014; Bruch, 2016). Because the point estimator of interest
is the deviation from the complete-sample estimate, we use the variance of these
deviations in Equations 2.3 and 2.4 instead of the variance of the frequency or cor-
relation estimates themselves. (In doing so, we focus more on the variance caused
by the SQD, but standard errors of the frequencies and correlation estimates as ap-
proximated through the simulation (see Figures 2.C1 and 2.C2) yield equivalent
findings.) Thus, for a frequency 7 of a category ¢ we measure the variability of de-
viations across all simulation runs from the average deviation through the standard
deviation of deviations (SDD) & {3(7?0) }:

1 S

o {E(%c)} = \IS_ Z {5 (ﬁc,s) - E(ﬁc)}Q (2-7)

Correspondingly, o {ﬁ(ﬁ”)} is the SDD for a correlation p of two variables ¢ and
J:

P (R =~
7 {A(pig)} = \IS—1 ;{A (Pij,s) — B (Pij)}? (2.8)

An SDD equal to zero means that imputed and complete data produce identical
estimates in each simulation run net of systematic bias, while larger SDDs corre-
spond to more uncertain estimates. Hence, a modularization technique that obtains
small biases and SDDs will yield high imputation quality. However, since RM and
DTM rely on a stochastic procedure, this additional source of randomness may in-

crease the estimates’ variability.

2.3.5 Evaluation Strategy

As we generate a huge number of imputation quality measures (297 for frequencies
and 3,675 for correlations), we need to condense the information displayed in our
results. Therefore, we produce one summary graph each for univariate and bivariate

biases and SDDs. We combine this evaluation of general patterns with additional
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analyses on specific sets of variable pairs to gain more insight into potential differ-
ences between variable pairs.

We focus on two aspects: First, we provide additional analyses restricted to
variable pairs that were used in all their respective imputation models throughout
the simulation, because whether a variable is included in an imputation model may
decisively determine if its correlation to the imputed variable can be estimated cor-
rectly.

Second, we perform separate analyses for correlations based on within-topic
and different-topic variable pairs. Depending on the modularization strategy, this
difference has important consequences: For instance, consider a correlation of two
variables within the same topic. With STM, the two variables are always in the same
module, implying all cases are either pairwise observed or unobserved. Therefore,
the imputation can rely on many commonly observed values, but we must impute
both variables for all other cases. With DTM, however, the variables tend to end
up in different modules. Consequently, there are relatively few pairwise observed
cases, but many cases where only one of both variables must be imputed. Thus, two
variables may have systematically different bivariate missing data patterns depend-

ing on the modularization strategy.

2.4 Results

2.4.1 Univariate Frequencies

Figure 2.2 displays the distribution of average Monte Carlo biases of univariate
frequencies for the imputed data for RM (first boxplot), STM (second boxplot), and
DTM (third boxplot). The rug plots in the second section of Figure 2.2 show the
complete distribution of biases for the three strategies (same order). Each data point
represents the average bias of one variable category over all simulation runs.

Many biases concentrate closely around zero. With RM and DTM 80% of biases
range from —0.002 to +0.002. However, some frequencies have stronger biases:
The largest biases are —0.006 and +-0.006 with RM and —0.005 and +0.005 with
DTM. Biases are larger with STM, where 80% of biases range from —0.004 to
+-0.003 with outliers of up to £0.014.

Figure 2.3 summarizes the sizes of SDDs for the imputed frequencies with box-
plots and rugs in the same fashion as for biases. Again, each data point represents
the SDD of a certain category’s frequency. Although small SDDs would be prefer-
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Figure 2.2: Average biases for 297 univariate frequencies according to equation 5, by
modularization technique: Random modules (RM), single topic modules (STM), and di-
verse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

able, unlike average biases they cannot be expected to approach zero. Like with
the biases, the differences between RM and DTM are negligible. At the same time,
SDDs with STM tend to be somewhat larger than with RM and DTM. For example,
the largest SDD with STM is 0.011, while it is 0.010 with RM and DTM.

2.4.2 Bivariate Correlations

Figure 2.4 displays the distribution of average Monte Carlo biases of bivariate cor-
relations for the imputed data for RM (first boxplot), STM (second boxplot), and
DTM (third boxplot). The rug plots show the complete distribution of biases for
the three strategies (same order). Each data point represents an average bias for one
variable pair over all simulation runs.

With both RM and DTM 50% of average biases range from —0.006 to +0.006,
90% from —0.017 to +0.017, and the most extreme bias is 0.082. Note that these
are absolute measures, thus some correlations are highly biased. The outlier with a
value of 0.082, for example, belongs to a correlation that is —0.065 in the complete
data and on average, +0.017 in the imputed data. Hence, it is overestimated by
126%, entailing a sign change. The second-most extreme bias is —0.081 (with
RM) with a correlation of 0.206 in the complete data and on average, 0.125 in
the imputed data, suggesting it was underestimated by 39%. Furthermore, the rug

plots also show some average biases in the area closely around zero. STM has
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Figure 2.3: Standard deviations of deviations (SDDs) of 297 univariate frequencies ac-
cording to equation 7, by modularization technique: Random modules (RM), single topic

modules (STM), and diverse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

RM - <] o000 «mmumm% -------------------------------- +-mnm@ooocn o o o

STM - o o u:no@mln‘l* ----------------------------------- %"m"mwmo °

DTM - ° ® ©0  ODOOO @ Cmmm---------oo-n--o] e e °
RM +
STM
DTM L T T T : T T T T T \‘ T T T T
-0.08 -0.06 -0.02 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Average bias

Figure 2.4: Average biases of 3,675 bivariate correlations according to equation 6, by
modularization technique: Random modules (RM), single topic modules (STM), and di-
verse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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Figure 2.5: Standard deviations of deviations (SDDs) of 3,675 bivariate correlations ac-
cording to equation 8, by modularization technique: Random modules (RM), single topic
modules (STM), and diverse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

a different pattern: 50% range from —0.007 to 4+-0.008 and 90% from —0.020 to
4-0.020. Furthermore, STM produces fewer extreme outliers larger than £0.050
(three correlations) than RM (six correlations) and DTM (eight correlations).

Figure 2.5 summarizes the SDDs for Spearman correlations. STM tends to
produce larger SDDs than RM and DTM, with boxes visibly shifted to the right.
Again, however, STM yields fewer extreme outliers: The largest SDD with STM is
0.050, while the largest SDDs with RM and DTM are 0.074 and 0.075.

Analysis by topic

To further investigate effects of the modularization on biases in bivariate correla-
tions, Figure 2.6 shows the distributions of average biases, separately for correla-
tions between variables of different topics (on the left) and correlations between
variables of the same topic (on the right).

For different-topic correlations 50% of average biases with RM and DTM are
between —0.008 and +0.009. Biases with STM are larger with 50% between
—0.010 and +-0.013. The strongest biases are 0.037 with RM and DTM and 0.048
with STM.

For within-topic correlations 50% of average biases with RM and DTM are
between —0.015 and +0.005 and 50% of biases with STM between —0.009 and
+0.007. STM leads to fewer extreme biases of larger than +0.050 (two with STM,
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Figure 2.6: Average biases of 3,675 bivariate correlations according to equation 6, sepa-
rating correlations of variables of different vs. same topics, by modularization technique:
Random modules (RM), single topic modules (STM), and diverse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

five with RM, and six with DTM). Correspondingly, the strongest biases with RM
and DTM are 0.082 but only 0.055 with STM.

In addition, within-topic correlations seem to be underestimated: With RM,
66.7% of within-topic correlations have biases smaller than zero, 60.0% with STM
and 68.0% with DTM.

Figure 2.7 shows the sizes of SDDs for different-topic and within-topic corre-
lations. For different-topic correlations, small SDDs are again less common with
STM than with RM or DTM: With RM and DTM, the majority of SDDs are smaller
than 0.020, while with STM, the majority of SDDs are larger than 0.020. For same-

topic correlations, however, STM tends to produce smaller SDDs.

Subset by representation in the imputation models

Figure 2.8 displays average biases exclusively for variable pairs included in each
imputation model throughout the simulation. Note that this subset covers only a
small fraction (72 correlations) of all correlations. These correlations are generally
stronger, as imputation models only included correlations stronger than 0.10. Even
in this subset, biases are still different from zero. This underscores the challenges
of SQDs for the imputation. Again, correlations in both graphs tend to be under-

estimated. For different-topic correlations, all correlations are underestimated and
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Figure 2.7: Standard deviations of deviations (SDDs) of 3,675 bivariate correlations ac-

cording to equation 8, separating correlations of variables in different vs. same topics, by
modularization technique: Random modules (RM), single topic modules (STM), and di-

verse topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

73.2% (RM and DTM) and 71.4% (STM) of same-topic correlations are underesti-
mated.

50% of biases of different-topic correlations are between —0.019 and —0.014
with RM and DTM (STM: —0.026 and —0.013). The most extreme biases are
—0.025 (RM), —0.036 (STM) and —0.023 (DTM). For same-topic correlations 50%
of the biases are between —0.021 and +0.005 with RM, —0.012 and +0.002 with
STM, and —0.021 and +0.004 with DTM. The most extreme biases are +0.055
(RM), —0.027 (STM), and +0.061 (DTM).

SDDs are displayed in Figure 2.9. STM clearly produces larger SDDs for
different-topic correlations ranging from 0.026 to 0.033 whereas SDDs with RM
range from 0.023 to 0.026 and SDDs with DTM from 0.022 to 0.026. For within-
topic correlations STM leads to smaller SDDs than RM and DTM ranging from
0.012 to 0.025, while SDDs with RM range from 0.019 to 0.042 and with DTM
from 0.018 to 0.043.

2.4.3 Alternative Correlation Structures

In contrast to our expectations, DTM and RM generally performed similarly. Po-
tentially, the lack of high correlations even within topics may have prevented such

an effect. To test this hypothesis, we applied two additional simulations (using the
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Figure 2.8: Average biases of 72 bivariate correlations according to Equation 6 for cor-
relations represented in every imputation model throughout the simulation, separately for
correlations of variables of different vs. same topics, by modularization technique: Ran-
dom modules (RM), single topic modules (STM), and diverse topics modules (DTM).
Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.

Different-topic correlations Same-topic correlations

}[”{ }m{o l.
I- ot el
o | }|”{ o] }..m..{ . L

RM - e RM - R
STM - " STM | R |
DTM - i DTM - It
T T T T T T T T T T T T T T T T T T
0 0.01 0.02 003 004 005 006 007 0.08 0 0.01 002 003 004 005 006 0.07 0.08
Standard deviation of deviations Standard deviation of deviations

Figure 2.9: Standard deviations of deviations (SDDs) of 72 bivariate correlations accord-
ing to equation 8, for correlations represented in every imputation model throughout the
simulation, separately for correlations of variables in different vs. same topics, by mod-
ularization technique: Random modules (RM), single topic modules (STM), and diverse
topics modules (DTM).

Note: Based on a Monte Carlo simulation with 1,007 runs on 2,000 cases (40% missing data) each.
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same procedure as with the main simulation) with synthetic data. Here, we main-
tained the univariate distributions found in the GIP dataset but manipulated corre-
lation structures to assess whether DTM outperforms RM when there is one highly
correlated predictor within the same topic for each imputed variable (see appendix
D for a description of the data-generating process). Scenario 1 (control condition)
largely adopts the original correlation structure but with maximum correlations of
|0.20|. Scenario 2 is the same except for one same-topic correlation per imputed
variable increased towards +0.90.

Results (see appendix Figures 2.D1 through 2.D4) indeed show somewhat small"-
er biases and SDDs with DTM than with RM for scenario 2, while STM performs
exceptionally poorly. However, even in this extreme scenario DTM’s advantage
over RM remains quite small. Scenario 1 largely replicates the findings from the
main simulation study, with STM producing somewhat larger biases and SDDs than
RM and DTM, which perform similarly.

2.5 Summary

In this paper, we simulated the impact of different modularization strategies on
imputation quality in an SQD. By using real data from a probability-based online
survey, our goal was to test approaches to implementing SQDs under realistic con-
ditions, characterized by a large number of variables with many missing cases to be
imputed using a wide range of relatively weakly correlated predictor variables that
are partially missing themselves.

The evidence suggests that univariate frequencies tend to be slightly biased.
More concerning are our results concerning bivariate relationships captured by cor-
relations. Although some biases are small, others are comparatively large. This
observation holds for all examined modularization strategies, among within-topic
correlations and different-topic correlations as well as for correlations included in
all imputation models.

Thereby, correlations tend to be attenuated. Most correlations that are positive
in the population data have biases smaller than zero (RM: 81.0 %; STM: 81.0%;
DTM: 81.5%). However, most correlations that are negative in the population data
have biases larger than zero (RM: 84.2%; STM: 86.1%; DTM: 83.9%). (Note that
overestimating a truly negative correlation implies a loss in correlation strength.)

Overall, we find that STM leads to larger biases and variability in estimates

than RM and DTM. This effect is most pronounced for frequencies but holds for
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correlations in the overall pattern as well. However, STM performs better than
RM and DTM for same-topic correlations, suggesting that correlations with more
pairwise observed cases (here: correlations based on variables in the same module)

can be estimated with higher quality.

2.6 Conclusions

We draw several conclusions: First, modularization strategies affect imputation
quality. Overall, STM produced estimates with larger biases and variability com-
pared to RM and DTM. Thus, from a statistical perspective, modules should be de-
signed heterogeneously regarding topics. This concurs with the notion that strongly
correlated items should not be allocated to the same module (Raghunathan and Griz-
zle, 1995; Rissler et al., 2002). Though STM may be a solution when analyses are
conducted within one topic only and thus do not require imputation.

Second, results for RM and DTM hardly differed. As suggested by the ad-
ditional synthetic data simulations, DTM might outperform RM in different data
scenarios if for instance, one correlation per imputed variable within the same topic
was considerably increased. However, even these effects were small, potentially be-
cause the probability for some highly correlated variable pair to end up in the same
module is already quite small with RM.

However, DTM might also have insufficiently exploited the correlation struc-
ture. To test this, we applied the modified cluster analysis technique for modulariza-
tion developed by Réssler et al. (2002) on our (original) population data, a method
that minimizes correlations within modules. The resulting average between-module
correlation was 0.073 (compared to 0.072 with DTM and 0.070 with RM). Thus, the
added value of such data-driven methods may be limited for settings with low vari-
able correlations.

Third, differences between modularization strategies were detectable, but av-
erage biases and variability seem to differ more between estimates for different
categories or variable pairs than between modularization strategies. This suggests
independent of modularization strategy, items in split modules should be designed
well-suited for imputation. Additionally, modularization strategy might also affect
response quality, as for example, topic switches would be more frequent with DTM
than with STM. Thus, we encourage future research into response effects to com-

plement our findings.
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Finally, imputation remains a great challenge for SQD data. Especially rela-
tionships between variables are not fully retained. This finding is compatible with
Bahrami et al. (2014), who report small downwards slants in regression estimates.
Perhaps, further restricting the number of predictors in the imputation models may
help more, but the more the model is restricted, the larger will be the risk of under-
estimating relevant relationships. Thus, future research should further investigate
on how SQD data can be imputed in real-data contexts.

This study has some limitations. First, our findings may be sensitive to changes
in the data context. For example, surveys with more items could aggravate problems
with the complexity of imputation models.

Second, alternative imputation strategies could change the results. Although we
do not expect differences in the relative performance of modularization strategies,
future research should explore how different imputation strategies generally affect
imputation quality for SQDs.

Third, our research should be extended to testing the performance of multivari-
ate models. This was beyond the scope of this paper. However, the biases in bi-
variate correlations revealed by our simulation suggest that multivariate coefficients
may also be biased. Therefore, future research would benefit the state of the art by
running simulations of SQD on real data with models commonly found in the social
science literature.

Fourth, our analyses ignored item nonresponse in the data caused by respondent
behavior. Again, for our purposes, this was out of scope. However, we look forward
to future research that investigates how missingness by SQD and item nonresponse
differentially affect analyses and may be best imputed.

Fifth, simulating reduced data (rather than implementing an SQD in a real sur-
vey) does not allow to examine response behavior with different SQDs. Again, we
encourage future research on this.

We anticipate that with the continued growth in online surveys, the pressure to
shorten questionnaires with SQD will increase, too. Our study, however, demon-
strates the challenges to the imputation of SQD data. We show that the choice of
modularization strategy may alleviate some of these challenges. Moreover, our find-
ings stress the need for further exploration of how existing SQD procedures may be
enhanced to fit the reality of social data and thereby ensure high data quality for

future surveys.
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Univariate frequencies Spearman correlations
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