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Abstract
Column type annotation is the task of annotating the columns of a relational table with the semantic type of the values
contained in each column. Column type annotation is an important pre-processing step for data search and data integration
in the context of data lakes. State-of-the-art column type annotation methods either rely on matching table columns to
properties of a knowledge graph or fine-tune pre-trained language models such as BERT for column type annotation. In this
work, we take a different approach and explore using ChatGPT for column type annotation. We evaluate different prompt
designs in zero- and few-shot settings and experiment with providing task definitions and detailed instructions to the model.
We further implement a two-step table annotation pipeline which first determines the class of the entities described in the
table and depending on this class asks ChatGPT to annotate columns using only the relevant subset of the overall vocabulary.
Using instructions as well as the two-step pipeline, ChatGPT reaches F1 scores of over 85% in zero- and one-shot setups. To
reach a similar F1 score a RoBERTa model needs to be fine-tuned with 356 examples. This comparison shows that ChatGPT
is able deliver competitive results for the column type annotation task given no or only a minimal amount of task-specific
demonstrations.
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1. Introduction
Table annotation refers to the task of discovering seman-
tic information about elements of a table such as columns,
relationship between columns, and entities contained in
table cells [1]1. The task of Column Type Annotation
(CTA) is a sub-task of table annotation which focuses on
annotating the columns of a relational table with the se-
mantic type of the values contained in each column given
a predefined set of semantic types. CTA is an important
pre-processing step for data search [2], knowledge base
completion [3], and data integration in the context of data
lakes [4]. Figure 1 shows a table describing restaurants.
A CTA method would examine the cell content and for
instance conclude that the first column should be anno-
tated with the semantic type “RestaurantName”, while
the third column containing payment methods would be
labeled as “PaymentAccepted”.

A wide range of CTA methods has been proposed in
the last years [1] : One line of work relies on linking the
entities in a table to a knowledge graph (KG) and deter-
mines the column types based on the types of the linked
entities afterwards [5]. A second line of work relies on
pre-trained language models (PLM) such as BERT [6] or
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Figure 1: Example table describing restaurants. The semantic
types that are assigned to each column by CTA are shown in
bold above the columns.

RoBERTa [7]. The models are either directly fine-tuned
for the CTA task [8] or are further pre-trained on tabular
data and fine-tuned for the CTA task afterwards [9, 10].
In order to reach good performance, most state-of-the-art
CTAmethods require significant amounts of task-specific
training data. Large language models (LLMs) [11] such
as GPT [12], ChatGPT [13], PaLM [14], or BLOOM [15]
have the potential to reduce the required amount of task-
specific training data, or make task-specific training data
even completely obsolete. Due to being pre-trained on
huge amounts of text as well as due to emergent effects re-
sulting from the model size [16], LLMs often have a better
zero- and few-shot performance compared to PLMs such
as BERT and are also more robust concerning unseen
examples [12].

Initial research on exploring the potential of LLMs for
data integration tasks, such as schema matching, entity
matching, data imputation, and value normalization was
conducted by Narayan et al. [17] and Jaimovitch-Lopez et
al. [18]. To the best of your knowledge, using LLMs for
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table annotation has not been explored yet. This paper
fills this gap with an initial, explorative study on using
ChatGPT [13] for column type annotation. More specifi-
cally, the contributions of this paper are the following:

1. We experiment with different prompt designs for
column type annotation using a subset of the
SOTAB benchmark [19].

2. We investigate the impact of providing step-by-
step instructions, using message roles, as well as
in-context learning on the performance of Chat-
GPT for the CTA task.

3. We propose a two-step annotation pipeline which
enables ChatGPT to deal with large semantic type
sets.

4. We compare the performance of ChatGPT to the
performance of RoBERTa [7] and DODUO [8],
a state-of-the-art CTA method, using different
amounts of training data.

The paper is organized as follows: Section 2 describes
the experimental setup. Section 3 sets a baseline by em-
ploying three simple prompts in a zero-shot setup. In
Section 4, we experiment with providing explicit instruc-
tions on how to perform CTA to the model; in Section
5, we experiment with using ChatGPT’s message roles;
in Section 6, we switch to a few-shot setup and explore
in-context learning for the CTA task. In Section 7, we
experiment with a two-step pipeline in order to cover
larger vocabularies. Section 8 compares our zero- and
few-shot results for ChatGPT to the results of a RoBERTa
model and DODUO. Section 9 discusses related work.

All data and code used in this paper are available at
the project github2 meaning that all experiments can be
replicated.

2. Experimental Setup
This section describes the dataset and the language model
that we use for the experiments and explains how we
calculate F1 based on the model’s answers.
Dataset. We use the SOTAB benchmark [19] for our

experiments. The SOTAB benchmark consists of tables
that have been extracted from different websites and
are annotated using terms from the schema.org vocab-
ulary3. The full test set of the benchmark consists of
15,040 columns and the full training set 130,471 columns
which are annotated using 91 different semantic types.
For our explorative study, we down sample SOTAB in
order to keep the cost of using ChatGPT via the OpenAI
API in an acceptable range4. For building our training
and test sets we select tables from the original training
2https://github.com/wbsg-uni-mannheim/TabAnnGPT
3https://schema.org/
4$0.002 per 1000 tokens. See https://openai.com/pricing

Table 1
Statistics of the SOTAB benchmark and the down-sampled
datasets.

Set Tables Columns Labels

SOTAB CTA
complete

Training 46,790 130,471 91
Test 7,026 15,040 91

Down-sampled
datasets

Training 62 356 32
Test 41 250 32

Table 2
Overview of the semantic types that are used for table anno-
tation in the experiments grouped by domain.

Domain Labels

Music Recording
MusicRecordingName, Duration,
ArtistName, AlbumName

Restaurants

RestaurantName, PriceRange,
AddressRegion, Country, Telephone,
PaymentAccepted, PostalCode,
Coordinate, DayOfWeek, Time,
RestaurantDescription, Review

Hotels

HotelName, PriceRange, Telephone,
FaxNumber, Country, Time,
PostalCode, AddressLocality, email,
LocationFeatureSpecification,
HotelDescription, Review, Rating,
PaymentAccepted, Photograph

Events

EventName, Date, DateTime,
EventStatusType, EventDescription,
EventAttendanceModeEnumeration,
Organization, Currency, Telephone

and test sets. The selected tables belong to four different
domains: music, hotels, events, and restaurants. We also
down sample the label space to consist of 32 semantic
types. Overall, we select 62 tables for our training set
containing 356 columns which are labeled with their se-
mantic types and 41 tables for the test set containing 250
labeled columns. We manually verify the annotations for
all chosen tables. The columns contain three different
types of values: textual, date and numerical values, with
textual being the most frequent type. Table 1 provides
statistics comparing the complete SOTAB benchmark
datasets and our down-sampled subsets. Table 2 lists the
semantic types that we use in the experiments. Note that
we require the models to be able to distinguish different
types of names, e.g. MusicRecordingName, Restaurant-
Name, HotelName, and EventName, as well as closely
related text columns such as entity description and entity
review.

Language Model. We use ChatGPT version “gpt-3.5-
turbo-0301” for our experiments. We use the Langchain
python package5 to access the model via the OpenAI API

5https://python.langchain.com/en/latest/

https://github.com/wbsg-uni-mannheim/TabAnnGPT
https://schema.org/
https://openai.com/pricing


and set the temperature parameter to 0 in order to lower
the variability of the answers given the same input.
Evaluation. We employ a multi-class problem setup

for column type annotation, meaning that each column
can be annotated with exactly one label. The metrics
used for the evaluation are precision, recall and micro-F1
score. We use the micro-F1 score that is less influenced
by the different number of examples for each label and
their individual performances. The model sometimes
answers using not exactly the requested terms but syn-
onyms of the requested terms. We manually collect such
synonyms from several test runs into a dictionary and
count answers that are contained in this dictionary as cor-
rect in the evaluation. Altogether, the dictionary contains
27 synonyms for the 32 labels. Example of synonyms
are: “Check-in Time” which can be mapped to the label
“Time” or “Amenities” which can be mapped to the label
“LocationFeatureSpecification”.

3. Simple Prompts
Designing good prompts is the key challenge for success-
fully using LLMs for prediction tasks as the choice of for-
mulations [20] and even the choice of specific words [21]
can strongly affect model performance. In order to es-
tablish baselines, we evaluate three different approaches
to formulate simple prompts for the CTA task. The first
two prompts ask ChatGPT to determine the semantic
type of single columns contained in the table. The third
prompt instructs ChatGPT to determine the types of all
columns of the table at once. All three prompts start with
a guiding sentence that instructs the model to answer
according to the task given and in case that it does not
know the answer, it should reply with ”I don’t know”.
Column. The column prompt uses terminology di-

rectly related to the CTA task. The prompt starts with
a task description “Classify the column given to you into
one of these types which are seperated by comma”. The
task description is followed by the list of all the 32 types
in the labels set. Afterwards, the column that should be
annotated is included into the prompt. The column is
represented by the keyword “Column:” followed by the
concatenation of the column values in the first five rows
of a table. We use the word “Type:” to instruct the model
to predict the semantic type of the column. For each
test example, the prediction of the model in this case is
either a single word belonging to a label in the label set,
a word not contained in the label set or “I don’t know”.
An example of a prompt using the described format is
found in the upper part of Figure 2. The example shows
how the fourth column in the table in Figure 1 is passed
to ChatGPT. The blue box below the prompt contains
an example of an answer by ChatGPT, in this case the
correct semantic type time.

Text. In order to test whether ChatGPT performs bet-
ter if the CTA task is presented as a generic text classifi-
cation task, the second prompt uses generic terms related
to text classification. We formulate the task description
part of the prompt as “Classify the text given to you into
one of these classes that are separated with comma”, again
followed by the list of all semantic types. The test ex-
ample is again represented as the concatenation of the
column values of the first five rows. In this prompt, we
use the word “Class:” to instruct the model to return one
of the classes. An example of a prompt using the text
format is found in the middle of Figure 2.
Table. In addition to examining the content of the

column to be annotated itself, it is often also necessary
to consider the content of the other columns in a table
in order to assign the correct semantic type to a column.
In order to allow ChatGPT to exploit the context of a
column for its decisions as well as allowing the model to
consider dependencies between annotations, we include
complete tables, inputted row by row, into the prompt
and ask ChatGPT to annotate all columns of the table
at once. We formulate the task as “Classify the columns
of a given table with one of the following classes”. As
ChatGPT version “gpt-3.5-turbo-0301” has a token limit
of 4097 tokens, we select only the five first rows of a
table and turn the table into string format as follows:
we separate different cells with the notation “||” and we
divide different rows with the notation “\n” (e.g. Table 1
would be Column 1 || Column 2 || Column 3 || Column 4 ||
\nFriends Pizza || 2525 || Cash Visa MasterCard || 7:30 AM
||\n...). The prediction of the model in this case returns
a string separated with commas which contains in the
order of the columns the type prediction for all columns
in the input. In rare cases that the model replies with
full sentences, the label would be contained in quotation
marks, so we extract the text within the quotation marks
and check if the answer can be linked to our label set
using a dictionary. An example of a prompt using the
table format is found in the lower part of Figure 2.

Experimental Results. The results of querying Chat-
GPT for all 250 columns of the test set using the different
prompt formats can be found in the upper section of Ta-
ble 3. Both text and column formats achieve a similar
performance of 45-47% micro-F1 score, with text classifi-
cation performing approx. 1% better. The table format
scores roughly 8% less than the column format. This in-
dicates that ChatGPT was partly confused by the longer
input and the more complex task of annotating multiple
columns at once.

4. Providing Explicit Instructions
Previous work has shown that supporting the model via
the prompt in decomposing a task into several steps can



Figure 2: Prompt examples for column, text, and table format

improve model performance [22]. Inspired by this work,
we experiment with providing step-by-step instructions
to ChatGPT on how to approach the CTA task: We ask
the model to first analyze the input is it given, afterwards
it should select the class/type that best represents the
meaning of the input, and should then reply with the cor-
responding class/type. We modify our original prompt
template by adding an instruction part after the task def-
inition. For the table format, an example of an extended
prompt is shown in Figure 3, while for the column and
text formats we list the instructions below:

• column: 1. Look at the column and the types
given to you. 2. Examine the values of the column.
3. Select a type that best represents the meaning

Table 3
Results for the three different prompt format in the zero-shot
setting: text, column and table. “+inst” indicates the experi-
ments where instructions were added, while “roles” indicates
the experiments in which the message roles were used. We
report precision (P), recall (R), and micro-F1 (F1) . The Δ F1
shows the difference between the micro-F1 score of our base-
line model (simple column format) to each experiment.

Format P R F1 Δ F1

column 47.70 31.25 45.85 -
text 46.38 33.97 47.02 +1.17
table 41.08 32.38 37.90 -7.95
column+inst 72.00 51.18 62.27 +16.42
text+inst 63.94 47.20 57.95 +12.10
table+inst 81.88 76.79 80.16 +34.31
column+inst+roles 86.99 69.95 78.61 +32.76
text+inst+roles 83.68 67.13 74.15 +28.30
table+inst+roles 85.91 82.01 85.25 +39.40

Figure 3: Instructions for the table format.

of the column. 4. Answer with the selected type.
• text: 1. Look at the text and the classes given to

you. 2. Examine the values of the text. 3. Select a
class that best represents the meaning of the text.
4. Answer with the selected class.

One of the important parts of these instructions in
regards to the table format is that we instruct the model
to generate a table out of the input that it has been given
before proceeding with classification. This instruction
was added with the motivation to make the model un-
derstand that it is working with a table and building the
table out of the input would give a better understanding



Figure 4: Message templates for the three formats.

of the rows and columns that the table is made of. The
model is also instructed in the last point about the desired
reply format in order to ease the parsing of the model’s
answers.
Experimental Results. The results of the experi-

ments including explicit instructions are provided in the
second part of Table 3 (indicated by the “+inst” notation).
We notice that by providing instructions to the model, the
performance increases by between 12 to 35% in micro-F1
score. The result that is impacted most by the instruc-
tions is the result for the table format which jumps to an
F1 score of 80%. The instruction to turn the input into
a table seems to help ChatGPT a lot in understanding
the table content. We also observe that given the in-
structions, the multi-column table annotation approach
clearly outperforms the two single column approaches
by 18 and 22% F1.

5. Using Message Roles
Chat models such as gpt-3.5-turbo and gpt-4 offer mes-
sage roles to distinguish between System, User, and AI
messages in a conversation. System messages are used
to set the general behavior of the model; user messages
are used by the user to pass a query or a task to the
model, and AI messages contain the responses of the
model6. The previous experiments did not use message
roles. In this section we test whether using message
roles improves the performance for the CTA task. As
illustrated in Figure 4, we use system messages to pass
task descriptions (see Section 3) and instructions (see
Section 4) to the model. We use a user message to pass
the actual annotation task to the model, which answers
with an AI message.

Experimental Results. The results of running the
experiments using the three base prompts from Section
3 together with the instructions from Section 4 and the
roles described above are presented in the lower part
of Table 3 (indicated with the word “roles”). From the
results, we can see an increase of 28% to 39% in micro-
F1 score compared to the column format baseline and
an increase of 5% to 16% compared to the results of the
instruction prompts presented in the middle section of

6https://platform.openai.com/docs/guides/chat

Figure 5: Example of one-shot table format messages. The
demonstration is shown in the white boxes using a user and
AI message.

the table. Thus, using the message roles offered by gpt-
3.5-turbo proved beneficial in all cases and we thus also
use them in the following experiments.

6. In-Context Learning
The performance of LLMs can be improved by providing
them demonstrations of the task that they are supposed
to perform as part of the prompt [12]. We continue our ex-
periments by providing task demonstrations to the model.
Showing demonstrations (or training examples) to the
model is also known as few-shot learning, where shots
are the number of demonstrations shown. All previous
experiments were zero-shot experiments as no demon-
strations are shown to the model. We experiment with
a one-shot and a five-shot setup. A question that arises
in this case is how to choose which examples to show
to the model. Since in our setup CTA is a multi-class
classification problem, the training set is composed of
multiple examples per label. However, we can not pick
demonstrations by relevancy (e.g. show an example of
restaurant name for predicting a column about restau-
rant names) as this would leak information about the
ground truth labels. For this reason, we decide to pick
demonstrations randomly from the training set, without
considering the class of the entities described in the table.
In the case of column and text format, the demonstrations
follow the format of the test example and therefore are
columns represented by concatenating the values of the
first five rows of a table. For the table format an example
is a randomly chosen table containing the first five rows
of the original table.

As shown in Figure 5, we use a user message to present



Table 4
Average results over three runs for the three format types by
providing demonstrations. “shots=5” means that five demon-
stration are provided. The Δ F1 shows the difference between
the micro-F1 score of our baseline model (column format zero-
shot shown in the first line) to each experiment.

Format shots P R F1 Δ F1

column 0 47.70 31.25 45.85 -
column 1 88.70 82.02 84.57 +38.72
column 5 90.15 86.03 88.49 +42.64
text 1 81.96 71.89 75.16 +29.31
text 5 88.32 81.46 84.24 +38.29
table 1 88.67 84.81 88.44 +42.59
table 5 87.51 85.28 88.83 +42.98

the demonstration task to the model (first user message
in Figure 5) and an AI message to show the model the
expected answer, e.g. the ground truth labels represented
using the expected format (first AI message in Figure 5).
Afterwards, we present the actual test example using a
further user message (last user message in Figure 5).
Experimental Results. Table 4 presents the results

of running the experiments with prompts containing the
instructions, using message roles, and containing either
one or 5 demonstrations (1-shot or 5-shot). The reported
scores are averages of three runs as the demonstrations
are randomly picked at runtime. For all three formats the
inclusion of examples improves the performance of the
model by 29% to 42% compared to the zero-shot column
format baseline. Compared to the experiments using
instructions and roles (see lower part of Table 3), pro-
viding demonstrations increases the performance by a
further 1-10% F1 score. Generally, we notice that with
the increase of the number of shots (demonstrations) the
F1 score also improves with the exception of the table
format where we observe only a slight 0.39% increase
in the 5-shot case, which might result from the model
being confused by the length of the prompt including
5 tables. The highest increase was observed with the
column and text format in the 5-shot case where the per-
formance increases by 10%. Experiments with more than
five-shots were not conducted as the token limit of 4097
tokens was usually surpassed when showing more than
5 table demonstrations in the case of the table format.
In the zero-shot table format setting the average token
length of the prompt used for annotating one test exam-
ple is 550 tokens (without including the response from
the model). This increases to an average of 900 in the
one-shot setting and up to an average of 2320 when 5
table demonstrations are given.
Out-of-Vocabulary Answers. ChatGPT sometimes

ignores the instruction to use terms from the label space
but answers using different terms. For the zero-shot

prompts, on average 27 out of the 250 answers did not
exactly match the label space. Using the dictionary of
synonyms (see Section 2), on average 4 of these answers
could be mapped to one of the labels. The amount of
out-of-vocabulary answers decreases to an average of 12
out of 250 in the few-shot setting, where 6 of them could
be mapped to the label space.

7. Two-Step Pipeline
The task description of all prompts that we presented
so far contains the complete list of the semantic types
that should be used for the annotation (32 types in our
case). Other annotation use cases might involve larger
label spaces. For instance, the complete labels space of
the SOTAB CTA benchmark [19] consists of 91 semantic
types (see Table 1); the label space of the WikiTables
dataset [9] consists of 255 types. In order to prevent
needing to add the complete list of semantic types to the
prompts and therefore allowing the prompts to be used
with larger label spaces, we propose a two-step pipeline
which exploits schema information about the semantic
types that appear in tables belonging to different topical
domains (e.g. a hotel might have a phone number and an
address, but not a release date and an artist). The pipeline
uses two API calls: In the first step, we ask ChatGPT to
predict the topical domain of the table to be annotated
(e.g. music, hotels, restaurants, or events). In the second
step, we include only the subset of all labels which are
associated with the predicted domain to the task descrip-
tion and ask ChatGPT to annotate the columns of the
table using only these semantic types. By breaking the
label space in smaller spaces, we simplify the annota-
tion task as the model is presented with less and more
relevant labels to use for annotation. In the few-shot
setup, in the first step we show tables and their domains
as demonstrations, while in the second step we pick as
demonstrations only tables from the predicted domain.
An example of the two-step pipeline is shown in Figure
6.

Experimental Results. The results for the two-step
approach are summarized in Table 5. In all cases the
table classification is an easy task and achieves an F1
score higher than 95%. On average 1 error was made,
and it involved a Hotel table that was predicted as an
Event table. The hotel listed in this table contains the
word “Park” which seems to be a word that is also used
in Events.

The second step seems to achieve the highest perfor-
mance in the zero-shot setup. As in the previous table
format experiments (see Table 4) where we didn’t no-
tice a performance increase with the increase of demon-
strations, in this case as well we do not achieve higher
performance when showing the model 4 demonstrations.



Figure 6: Example of zero-shot setup for the two-step pipeline.

Table 5
Results for the two-step approach in zero- and few-shot setups.
“S1-F1” refers to the average micro-F1 score reached by the
first step and “S2-F1” refers to the average micro-F1 score
reached by the second step. The Δ F1 shows the difference
between the micro-F1 score of our baseline model (column
format zero-shot shown in the first line) to each experiment.

shots S1-F1 S2-P S2-R S2-F1 Δ F1
Baseline - 47.70 31.25 45.85 -

0 95.56 90.08 86.60 89.47 +43.62
1 95.56 90.08 83.65 88.85 +43.00
4 95.56 85.87 82.68 86.71 +40.86

The micro-F1 drops around 2% in the 4-shot setup. This
could be influenced by the quality/relatedness of table
demonstrations to the test table as well as the length of
the prompt. Looking in detail at F1 scores for specific la-
bels, ChatGPT predicts with 100% F1 the types Duration,
email, Country, currency, Coordinate, and Restaurant/-
name. Labels for which ChatGPT only reached F1 scores
below 70% include Photograph, Rating, LocationFeature-
Specification, and Time.

8. Comparison to Baselines
State of the art CTA methods [1] often rely on PLMs such
as BERT [6] and therefore require a significant amount
of task-specific training examples. In this section, we

Table 6
Baseline results using Random Forest, DODUO and RoBERTa
models. “shots” represents the number of demonstrations
with which a model was trained on. The ChatGPT results in
the first line correspond to the results of the zero-shot two-
step approach and the Δ F1 shows the difference in micro-F1
scores between the ChatGPT model and the other models.

Model shots P R F1 Δ F1

ChatGPT 0 90.08 86.60 89.47 -
Forest 159 38.36 43.75 46.15 -43.32
Forest 356 70.98 59.49 59.60 -29.87
RoBERTa 32 49.13 52.25 48.93 -40.54
RoBERTa 159 82.41 81.79 79.2 -10.27
RoBERTa 356 90.87 87.70 89.73 +0.26
RoBERTa 1600 87.59 87.60 86.79 -2.68
DODUO 356 1.95 48.92 6.37 -83.10
DODUO 1600 63.02 41.36 53.6 -35.87

compare the CTA results of ChatGPT to the results of
different baseline methods with respect to training data
efficiency. We choose three baselines that cover differ-
ent categories of machine learning methods: a Random
Forest baseline, a fine-tuned RoBERTa model [7], and
DODUO [8] a state of the art method for CTA as well as
column property annotation (CPA). DODUO fine-tunes
BERT [6] using multi-task learning.
Experimental Setup. For the Random Forest base-

line, we train the Random Forest using features generated
with TF-IDF and we perform hyperparameter tuning us-
ing cross validation on the training set. We fine-tune a
RoBERTa [7] model (roberta-base) using the simple se-
rialization method of concatenating all column values.
We fine-tune for 30 epochs using a learning rate of 5e-5,
a batch size of 32, and a maximum sequence length of
512. Finally, we experiment with DODUO [8] and use
its default parameters keeping the learning rate at 5e-5,
training for 30 epochs and using a maximum length of 32
for the sequence. We change the default batch size from
16 to 32.

We experiment with different amounts of training ex-
amples for RoBERTa and DODUO, starting with a train-
ing set that contains 1 example per label (overall 32 ex-
amples) and going up to 50 training examples per label
(overall 1600 examples). The training sets with 32, 159
and 1600 examples are also sampled from the original
training set of the SOTAB CTA benchmark [19].
Baseline Results. The results of the baseline experi-

ments are shown in Table 6. For DODUO and RoBERTa,
we report the average of the results of three runs with dif-
ferent random seeds. The Random Forest baseline given
5 examples per label (159 examples in total) achieves a
micro-F1 of 46.15% and increasing the training exam-
ples the performance of the Random Forest increases.
However, when given all the training set that contains



356 examples overall, the Random Forest still performs
around 29% less than the zero-shot version of ChatGPT.
Fine-tuning a RoBERTa model on 32 training examples
(one example per label) results in 48.93% micro-F1, a
comparable performance to the Random Forest with 159
examples, but around 40% less than the zero-shot result of
the table format of ChatGPT. When trained on 356 shots,
the RoBERTa model increases to 89.73% which surpasses
the ChatGPT zero-shot setup table+inst+roles (85.25%, see
Table 3) and is comparable to the results of the zero-shot
two-step pipeline (89.47%, see Table 5). Given more train-
ing examples, the performance decreases again probably
due to the larger variety of tables that are contained in
this larger set. Looking at the results for the state of the
art method DODUO, we observe a lower performance
when trained with 32 shots compared to the RoBERTa
model. One of the reasons for this difference could be
that RoBERTa is trained on text sequences which we
also use for fine-tuning, so there is minimal difference
between the input format of pre-training and fine-tuning,
while for DODUO the serialization format changes to
a table format which could require more training data
to bridge the gap between pre-training and fine-tuning.
When training DODUO with 1600 shots, we start seeing
an increase in performance, but the difference to zero-
shot ChatGPT setup still remains large at around 35%
less micro-F1.

From the results, we can conclude that ChatGPT in a
zero-shot setup without any task-specific training exam-
ples is capable of reaching a CTA performance that is in
the same range as the performance of PLM-based meth-
ods given hundreds of task-specific training examples,
e.g. ChatGPT using the table+inst+roles prompt reaches
an F1 of 85.25% (see Table 3) while RoBERTa given 356
task-specific examples reaches an F1 of 89.73% (+4.48%).
The difference is shortened to 0.26% when the two-step
pipeline in a zero-shot setting is used. If ChatGPT is pro-
vided with a single demonstration the difference shrinks
to 1.29%, e.g. the single-shot table prompt reaches an
F1 of 88.44% (see Table 4). This conclusion is further
underlined by the fact that ChatGPT only uses 5 rows
of a table to reach a prediction, while RoBERTa uses on
average 37 rows and DODUO uses on average 12 rows.

9. Related Work
This section gives an overview of related work on table
annotation, data integration using large language models,
as well as prompt engineering.

Table Annotation and CTA. Table annotation meth-
ods employ a wide range of different techniques ranging
from statistical approaches to the more recent use of deep
learning and pre-trained language models. Earlier deep
learning methods like Sherlock [23] and SATO [24], use

column statistics and character distributions as features
to their models. SATO is one of the first works to men-
tion the importance of using not only intra-table context
but also inter-table context by using topic vectors. TCN
[25] uses a multi-task model trained on CTA and column
relation prediction (CPA) that learns cell representations
based on cells from the same table and cells from other
tables. To predict the type of a column, the representa-
tions of the cells of one column are combined and passed
through a classifier. RECA [26] continues the idea of
using inter-table context by finding similar tables to the
input table and uses the information in these related ta-
bles to find the correct type of a column. DODUO [8]
is the state of the art method regarding CTA and CPA.
The authors fine-tune a BERT [6] model using multi-task
learning combining both tasks and introduce a new table
serialization approach which passes a complete table to
BERT by concatenating the content of all table columns.
A further line of research focuses on learning table rep-
resentations [27] and uses CTA as fine-tuning task for
evaluating the learned representations: TURL [9] further
pre-trains a TinyBERT [28] model on relational tables
using Masked Language Modeling like BERT andMasked
Entity Recovery as pre-training objectives to learn cell
representations. The method is evaluated in 6 down-
stream tasks, one of which is CTA. TABBIE [10] uses a
transformer-based [29] model to learn cell representa-
tions by using a cell corruption pre-training objective on
both row and column level.
Data Integration and LLMs. LLMs have recently

been employed to solve different tasks along the data
integration pipeline. Jaimovitch-Lopez et al. [18] ex-
plore the capability of LLMs to normalize different value
formats such as dates and units of measurement and
find that LLMs perform comparably with systems built
specifically for this task. Tang et al. [30] and Peeters
and Bizer [31] explore using GPT-3 and ChatGPT for en-
tity matching in zero- and few-shot setups. Narayan et
al. [17] conduct experiments with GPT-3 [12] for entity
matching, schema matching, data transformation, data
imputation and error detection. They find that in a few-
shot setting for all tasks, GPT-3 outperforms the state of
the art methods, but they also argue that LLMs are sen-
sible to differences in prompt formatting. Their schema
matching experiments are the closest related work to
the work presented in this paper. They experiment us-
ing the Synthea [32] dataset which includes schema data
for tables and provides around 29,638 correspondences
between them. They achieve an F1 score of 0.5% in a
zero-shot setting and 45.2% in a three-shot setting. Un-
fortunately, their prompt design for the schema matching
task isn’t included in the paper so we can’t compare it in
detail to our own prompt designs.
Prompt Engineering. There are many works that

experiment with prompt engineering [11, 33]. Wei et al.



[22] show how decomposing a task intomultiple subtasks
and using them as demonstrations in chain-of-thought
prompting helps LLMs to achieve better results for rea-
soning tasks. Honovich et al. [34] experiment with using
LLMs to generate instructions for various lexical and
semantic tasks. In this work, we also experiment with
human-written instructions with the difference that we
choose to give the model multi-step instructions inspired
by the chain-of-thought approach. Zhao et al. [20] exper-
iment with different prompt formats and discover that
the choice of training examples and the choice of their
ordering heavily influences the accuracy of the LLMs that
they experiment with. They further try to understand
what leads to these differences in accuracy and conclude
that these models can be biased towards the majority
class, towards the most recent training examples in the
prompt, and towards tokens that appear frequently in the
LLMs pre-training data. Closer to our work, in TabLLM
[35] the authors experiment with methods to serialize
tabular data in prompts and compare their best method to
deep learning and tree models. They find that represent-
ing columns using natural language sentences containing
the feature name and feature value, e.g. ‘The price is 8.00
USD’, gave them the best performance in the zero-shot
setup. Like these authors, we experiment with different
approaches to present table columns to ChatGPT.

10. Conclusion
This paper is the first to apply large language models for
the column type annotation task. We experiment with
different prompt designs and compare the performance of
ChatGPT to the performance of PLMs-based column type
annotation methods. We find ChatGPT to be much more
training data efficient, requiring only a single demonstra-
tion to reach a similar performance as PMLs trained with
hundreds of task-specific examples. In order to be able
to deal with large label sets, we proposed decomposing
the CTA task into a two-step pipeline consisting of first
predicting the type of a table and second predicting col-
umn types using only the relevant subset of the full label
set. As further work we plan to increase the difficulty of
the test set by adding especially challenging tables from
the SOTAB benchmark and to investigate how multi-step
LLM pipelines as well as fine-tuned PLMs deal with these
challenges.
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