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Abstract

Rule learning approaches for knowledge graph
completion are efficient, interpretable and com-
petitive to purely neural models. The rule ag-
gregation problem is concerned with finding one
plausibility score for a candidate fact which was
simultaneously predicted by multiple rules. Al-
though the problem is ubiquitous, as data-driven
rule learning can result in noisy and large rule
sets, it is underrepresented in the literature and its
theoretical foundations have not been studied be-
fore in this context. In this work, we demonstrate
that existing aggregation approaches can be ex-
pressed as marginal inference operations over the
predicting rules. In particular, we show that the
common Max-aggregation strategy, which scores
candidates based on the rule with the highest con-
fidence, has a probabilistic interpretation. Finally,
we propose an efficient and overlooked baseline
which combines the previous strategies and is
competitive to computationally more expensive
approaches.

1. Introduction
A knowledge graph (KG) is a collection of relation(subject,
object) facts which can be used to compactly describe cer-
tain domains. KGs can be utilized for various downstream
applications such as drug repurposing (Liu et al., 2021) or
visual relationship detection (Baier et al., 2017). Most of
the real-world KGs are incomplete, which means that absent
facts are not necessarily false. The problem of knowledge
graph completion (KGC) aims to derive the missing facts
by using the information in the existing graph (Ruffinelli
et al., 2020; Rossi et al., 2021). The proposed model classes
in the literature are data-driven, e.g., a model might learn
the regularity that people which appear in movies tend to be
actors and can use it to make new predictions. Although the
dominating paradigm in the literature lies on models based
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on latent representation, a KG is symbolic by its nature.

Symbolic machine learning approaches for KGC employ
rule mining techniques and represent the KG with the raw
predicates which makes them inherently interpretable. In
regard to predictive performance they are shown to be com-
petitive to latent based approaches (Rossi et al., 2021) and
can achieve state-of-the-art results on large graphs (Meilicke
et al., 2023). To perform KGC with a symbolic approach, a
previously learned set of rules has to be applied to the KG to
derive plausibility scores for unseen target facts. Whenever
multiple rules predict a candidate fact, the question arises
of how to aggregate individual rules, as demonstrated in the
following running example.

Example 1.1. Consider the following clauses or rules.

c1 [0.64] : wf(X,Y)← internAt(X,Y)

c2 [0.44] : wf(X,Y)← studentAt(X,A), locIn(A,B), locIn(Y,B)

c3 [0.41] : wf(X,Y)← studentAt(X,A), cooperatesWith(A,Y)

Here wf represents the relation worksFor and locIn rep-
resents locatedIn. The numbers in brackets denote rule
confidences, i.e., the proportion of correct predictions on
a training KG. The first and third rule are quite intuitive.
The second rule expresses that a person might work for a
company if that company is located at the same place where
this person went to university. Now assume that all three
rules predict Anna to work for Google. The rule aggrega-
tion problem is concerned with finding a final score derived
from the three confidence values. The aggregation will also
reflect if, e.g., Anna is more likely to work at Google than a
person for which only the first two rules made the prediction.

While combining logical reasoning and probabilistic uncer-
tainty is a fundamental aspect of statistical relational learn-
ing (Muggleton et al., 1996; Kersting & De Raedt, 2001;
Richardson & Domingos, 2006), the aggregation problem
is often not expressed explicitly. Additionally, these ap-
proaches perform model theoretic entailment, which is too
expensive in our settings, as KGs can consist of a large
number of facts with millions of learned rules. Similarly,
in the field of association rule mining, rule quality is often
estimated for individual rules independently without con-
sidering the problem of aggregation (Galárraga et al., 2013;
Chen et al., 2016; Ortona et al., 2018; Fan et al., 2022).

The predictive quality of a mined rule set depends to a large
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extend on the aggregation decision and surprisingly there
exists a theoretical and empirical gap in the recent KGC liter-
ature between techniques to learn rules and their successful
application. To the best of our knowledge, there only exist
two recent works which are primarily concerned with the
aggregation problem for KGC (Ott et al., 2021; Betz et al.,
2022b). While they improve upon simple strategies, the
approaches are computationally expensive and theoretical
foundations are not discussed.

The goal of this work is to close this gap and to inspire
new research in this direction. We aim to achieve this by
developing the formal foundations of the problem and by
empirically analysing the practicality of existing approaches.
We present a probabilistic model in which the aggregation
reduces to performing marginal inference over a joint distri-
bution of the rules when rule marginals are approximated
with confidences (Section 4.1 and 4.3). With this formula-
tion we are able to show that the common Max-aggregation
strategy can be recovered from the model when the correla-
tion matrix of the rules is set to the upper Fréchet-Hoeffding
bound for the correlation of random variables (Section 4.4).
We then search for the simplest and most efficient way
to combine the assumptions made by common aggrega-
tion strategies. This leads to an efficient baseline, Noisy-or
top-h, which is competitive when taking into account the
performance-runtime trade-off (Section 5). Moreover, our
experiments show that the choice of the aggregation func-
tion has significant performance impacts and therefore it
deserves more attention in the context of rule-based KGC.

2. Related Work
While data-driven rule learning approaches for KGC are
often evaluated in comparison to embedding models, the
focus of this work is rule aggregation and we therefore
refer to the recent literature for an overview to latent-based
KGC (Rossi et al., 2021).

Rule mining approaches learn datalog rules from a KG. In
the context of association rule mining, AMIE (Galárraga
et al., 2013) and the respective improved versions
AMIE+ (Galárraga et al., 2015) and AMIE3 (Lajus et al.,
2020) show how to mine rules when data is incomplete.
AnyBURL (Meilicke et al., 2019) is the successor of
RuleN (Meilicke et al., 2018). It is shown to be competitive
to neural approaches (Rossi et al., 2021; Meilicke et al.,
2023) and it can be utilized to explain predictions made by
embedding models (Betz et al., 2022a). Other approaches
are tailored towards large graphs (Fan et al., 2022; Chen
et al., 2016) or to learn negative rules (Ortona et al., 2018).
There also exist attempts to improve rule quality by pro-
viding more advanced confidence computations (Galárraga
et al., 2013; Pellissier Tanon et al., 2017; Zupanc & Davis,
2018). The rule quality is evaluated by calculating the preci-

sion of the individual rules independent from the remaining
rules on a gold standard KG. For the resulting metrics, the
aggregation problem is irrelevant. In this work we regard
rule quality from the viewpoint of the predictions made by
the rules, which also allows comparisons to other model
classes.

Related branches of work combine latent and symbolic mod-
els in hybrid approaches (Guo et al., 2016; 2018; Garcı́a-
Durán & Niepert, 2018; Wu et al., 2022; Meilicke et al.,
2021). Moreover, some work propose differentiable rule
learning i.e., learning rules by solving a smooth optimiza-
tion problem (Yang et al., 2017; Sadeghian et al., 2019).
Rule mining and the aggregation are arguably coalesced in
one forward pass of a neural module. It has been shown,
nevertheless, that the rules extracted from the models might
not derive the same facts as the models themselves and
achieve a lower predictive performance (Tena Cucala et al.,
2022). Therefore, they might benefit from encapsulating
rule learning and the aggregation. A step in this direction is
made by RNNlogic (Qu et al., 2021), in which a neural rule
generator and a reasoning predictor operate independently.
The predictive performance of the resulting model, when
not augmented with embeddings, lacks, however, in regard
to purely symbolic models.

The combination of logic and uncertainty has a rich history
in the statistical relational learning literature. For instance,
Stochastic Logic Programs (Muggleton et al., 1996; Sato &
Kameya, 1997) and Bayesian Logic Programs (BLP) (Ker-
sting & De Raedt, 2001) augment inductive logic program-
ming (Muggleton & De Raedt, 1994) with probability se-
mantics. Rules are represented as conditional probabilities
and a joint probability distribution is modelled over the least
Herbrand base of the logic program. Here, the aggregation
problem becomes explicit. In particular, when multiple con-
ditionals have the same effect variable, they are collapsed
into one by the use of a combining rule. Nevertheless, this
heuristic is applied on top of the formal framework whereas
in this work we model the problem directly. A difficulty for
BLPs is that the probability distribution is only well defined
when the underlying graph does not contain cycles which is
quite unlikely in the context of KGC when millions of rules
are learned. Markov Logic Networks (MLNs) (Richardson
& Domingos, 2006) are proposed to overcome the cycle
problem as well as the requirement to define the ad hoc
combining rule. MLNs subsume many of the approaches
from the statistical learning literature. Each possible ground
fact is associated with a binary random variable and every
possible grounding of every rule with a weight and a binary
feature. The aggregation of clauses is performed implicit for
MLNs and can not be modelled easily. We show an example
regarding MLNs in the appendix of this work.

The focus of this work are settings where model theoretic
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entailment is not feasible. For instance, an MLN would
need to define 15k · 237 random variables on the dataset
FB15k-237 (Toutanova & Chen, 2015) and a feature for ev-
ery possible rule grounding with a ruleset size of 5 million.
Even if we would just calculate the immediate predictions
of the rules on this dataset, including storing some indices
for further processing, this would already take more than
600GB of memory. A similar note can be made for neural
theorem proofing, where the forward-chaining algorithm is
relaxed to a smooth differentiable function (Evans & Grefen-
stette, 2018; Rocktäschel & Riedel, 2017; Minervini et al.,
2020a;b). To the best of our knowledge, these approaches
have not shown yet to scale to datasets of the size used in our
experiments. This also holds for ProbLog (De Raedt et al.,
2007) which combines probabilistic inference with model
theoretic entailment and has the strongest resemblance to
our approach. We discuss the details in Section 4.4 and in
the appendix of this work.

The rule aggregation problem is discussed explicitly by
SAFRAN (Ott et al., 2021) where a clustering of the rules is
learned and by Betz et al. (2022b) who represent rules with
embeddings. These works show improvements in regard
to simple strategies but they do not consider a fundamental
treatment of the problem and the models are inefficient to
use, which will be demonstrated in the experimental section.

3. Background
3.1. Knowledge Graph Completion

A KG G is a set of relation(subject, object) triples or facts
with G ⊆ E × P × E where E denotes a set of entities and
P a set of binary predicates which we term relations. KGC
is concerned with finding unknown facts, given an input
or training KG G. In this work, we focus on the mostly
used evaluation protocols which are defined by ranking
based evaluation metrics. The derivations of this work are,
however, independent of the evaluation protocol as long as
scalar scores for candidate predictions are required.

The common practice is to split the graph into disjoint train-
ing, validation, and testing sets. After the training or min-
ing phase a model is evaluated by proposing answers to
queries formed from the facts in the test set. For each of
these evaluation facts a head query and a tail query are
formed. For example, from worksFor(Anna,Google) the
queries worksFor(Anna, ?) and worksFor(?, Google)
are formed, where worksFor is a relation and Anna and
Google are entities. A model has to propose candidate facts
for the tail query, e.g., worksFor(Anna, e1) and candidate
facts for the head query worksFor(e2, Google) for multi-
ple e1, e2 ∈ E . Each candidate fact is assigned with a score
such that for each direction a ranking of answers can be
formed. The metrics usually are presented with their filtered

versions, e.g., if e2 ̸= Anna but worksFor(e2, Google)
exists in one of the data splits, then it is removed from
from the ranking of the current query to not penalize the
model when it correctly ranks true answers on top posi-
tions. Performance is measured by the ranking position of
the respective true candidate worksFor(Anna,Google) in
both directions where the mean reciprocal rank (MRR) and
Hits@X being the most common evaluation metrics. The
definitions of the metrics can be found in the appendix.

3.2. Rules and Application

We let a c ∈ C̃ denote a logical clause, which we will term
rule throughout the work, where C̃ is a collection of clauses.
The c will later be indexed and represented by separate
random variables. The rules that we consider in this work
are of the form as given in the running example. They are
composed of variables and relations and they additionally
can contain entities as shown in the following example.

speaks(X,English)← livesIn(X,London)

We call speaks(X,English) the head of the rule and
livesIn(X,London) the body of the rule. The rules and
the KG can be described with a subset of Prolog, where
entities are constants, relations are predicates, rules are
clauses, and the facts of the KG are ground atoms where
we do not consider negation. We will use the rule learn-
ers AnyBURL (Meilicke et al., 2019) and AMIE3 (Lajus
et al., 2020) in our experimental section and we refer to
the respective works for further details, nevertheless, the
descriptions and derivations in this work are independent of
the particular syntax.

We define a substitution to be the expression obtained when
replacing the variables of the rules with entities from E .
For instance, for the first rule from the running example
with (X=Anna, Y=Google) we obtain the substitution
worksFor(Anna,Google)←internsAt(Anna,Google).
A detailed formalization is suppressed here for brevity.

Rule application refers to predicting previously unseen facts
given a set of rules and the input or training KG. We can
describe it compactly with the recently introduced concept
of one-step-entailment (Betz et al., 2022a). Let C̃ be a set of
rules and G a KG.
Definition 3.1 (One-step entailment |=1). The fact t is one-
step entailed by C̃ ∪ G, written as C̃ ∪ G |=1 t, iff there
is a rule in C̃ for which a substitution exists such that the
resulting body facts are in G and the head is equal to t.

Clearly, one-step entailment is weaker but more efficient
than model theoretic entailment. As mentioned before, we
focus on settings where general entailment is not feasible.
One-step-entailment implies entailment but not vice versa.1

1Note that |=1 is different to k̄-entailment which limits the
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In the context of KGC often the less formal notion of an
individual rule predicting a candidate is used which we can
now describe precisely.2

Definition 3.2 (Prediction). A rule c ∈ C̃ predicts a fact t
iff it individually one-step entails t, i.e., iff {c} ∪ G |=1 t.

For simplicity, we will write c |=1 t instead of {c}∪ G |=1 t,
where from the context the reference to the facts G will be
clear. The section concludes with an example.

Example 3.3 (cont.). Let ed, eu, and eg be entities in E . Let
t = wf(ed, eg) and assume that

G =

 cooperatesWith(eg, eu)
internAt(ed, eg)
studentAt(ed, eu)

 .

Consider the three rules from the running example. Then
the joint set of rules and every pairwise set of rules one-step
entail t while only the first and the third rule predict t.

3.3. Rule Aggregation

For the remainder of the work we assume that C̃ is a given
rulset that has been learned from the training graph G. Fur-
thermore, for a target triple t /∈ G we let Ct(G) denote the
set of rules that predicted t with respect to the KG G. For
performing KGC under any evaluation protocol a model
has to assign plausibility scores to candidate facts. For rule-
based KGC this requires the introduction of two additional
concepts, rule confidences and aggregation strategies.

3.3.1. CONFIDENCES

Rule confidences originate from the context of association
rule mining and we will now assume that each rule in C̃
is assigned with a confidence which can be calculated as
follows.

conf(c) =

∣∣{t′ | c |=1 t′ ∧ t′ ∈ G}
∣∣∣∣{t′ | c |=1 t′}

∣∣ (1)

Equation (1) is the vanilla confidence definition described in
many works (e.g., Galárraga et al., (2013)). The confidence
divides the number of all true predictions a rule makes by
the number of all predictions of the rule. Intuitively, we
could interpret this as the probability that the rule is true,
which will be discussed in later sections.

3.3.2. AGGREGATION STRATEGIES

In practical scenarios it rarely occurs that a candidate
fact is predicted by only one rule, i.e., then |Ct(G)| > 1.

number of constants used in entailment (Kuzelka et al., 2018).
2A formalization with the immediate consequence operator in

the logic programming context is likewise possible.

The rule aggregation problem, also termed joint predic-
tion (Galárraga et al., 2015), is concerned with defining a
function that maps the confidences of the rules that predicted
the candidate to a real valued score.

Note that the number of rules that predict a candidate fact
simultaneously can be large, as mentioned before, such that
rules are to some extend redundant. For instance, if the
second rule from the running example predicts Anna to
work for Google, the question arises whether the third rule
provides additional evidence for this prediction. The rules
make the prediction for seemingly similar reasons, as it is
more likely for an university and a company to cooperate
when they are located in the same location. In the following
the two most common aggregation strategies are defined.
Definition 3.4 (Max-Aggregation). The Max-Aggregation
score sM is calculated according to the rule with the high-
est confidence from the rules that predicted the candidate,
sM (t) = max{conf(c) | c ∈ Ct(G)}.

Max-aggregation was first used in the context of KGC by
Galárraga et al. (2015) and it was later adapted to Max+
aggregation (Meilicke et al., 2019) which allows for tie
handling. When the two predicting rules with the highest
confidences for two candidates are identical the candidates
are compared according to the rules with the second highest
confidence which is continued until the candidates can be
discriminated.
Definition 3.5 (Noisy-or aggregation). The Noisy-or score
sNO is calculated as the noisy-or product over the predict-
ing rules, sNO(t) = 1−

∏
c∈Ct(G)(1− conf(c)).

The Noisy-or product originates from Bayesian networks
where it is used to express independent causes (Pearl, 1988)
and it was proposed by Galárraga et al. (2015) for KGC.
Example 3.6 (cont). Let us assume that Anna is predicted
by all rules from the starting example to work for Google,
while Lisa is predicted by only the second and third rule
to work for Google. The Max-aggregation and Noisy-or
scores for Anna are 0.64 and 0.88, respectively. For Lisa
they are 0.44 and 0.67.

While the aggregation functions have the purpose of merg-
ing the various confidences into a final score, this value also
should be meaningful in the sense that a higher value for
one prediction should mean it is more likely than another
prediction.

4. Probabilistic and Efficient Rule Aggregation
In the following section we present the notation for the
probabilistic representation, subsequently we introduce the
inference model and show how the introduced rule aggrega-
tion functions can be recovered from the framework when
making certain dependency assumptions. Finally, we will
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present an efficient baseline, that combines these assump-
tions.

4.1. Representation

First, we enumerate the rules in C̃ with an index set Ĩ =
{1, ..., N} such that ci ∈ C̃ for i ∈ Ĩ . Each rule ci is
represented by a binary random variable R̃i which is also
indexed by Ĩ and has realisations r̃i ∈ {0, 1}. We let R̃
denote the random vector representing all rules and likewise
r̃ = (r̃i)i∈Ĩ ∈ {0, 1}N is the vector of realisations. For
brevity we write p(r̃) for p(R̃=r̃), that is, the probability
that R̃ takes value r̃.

For the rule aggregation problem the set of rules Ct(G) ⊆
C̃ that predict a target fact t based on G are of particular
relevance. Therefore, similar as above Ct(G) is enumerated
by I = {1, ..., k} and the random vector R with realisations
r = (rj)j∈I ∈ {0, 1}k represents the rules that predict the
target. Note that R represents a subset of all the rules and
this depends on t, however, to not clutter notation we not
write this explicit and the reference to t will be clear from
the context.

Moreover, we write pj or pi for the probability that a rule
is true, i.e., for the marginals p(Rj=1) or p(R̃i=1). We as-
sume that index sets are ordered according to the marginals,
e.g., pm ≥ pn when m ≤ n with m,n being indices. Facts
t are likewise represented as binary variables, here we over-
load notation for brevity and write p(t) for the probability
of a query triple to be true. For an observed triple t ∈ G we
set p(t) = 1.

4.2. Dealing with Uncertainty

To incorporate uncertainty into the prediction of new facts
we take the following approach. If we are certain that a rule
is true, then we deduce that a prediction it makes must be
also true. We can model this for all the learned rules with a
conditional distribution that conditions on the truth values
of the rules and the data.

p(t|̃r,G) =
{

1, if L(r̃) |=1 t
0, else, (2)

Here, L is a simple mapping that collects all rule objects in
C̃ whose realisation are one in r̃ and takes the union with G,
i.e.,

LG
Î
: r̃ 7→ LG

Î
(r̃) = {ci | r̃i = 1 and i ∈ Î} ∪ G. (3)

We drop, as shown in equation (2), the reference to the
index set Ĩ and G from L for readability. Clearly, if the
rules would not be associated with uncertainty evaluating
equation (2) would boil down to performing rule application
in regard to the correct rules. However, the truth values of
the rules cannot be observed from the data.

We have, on the other hand, an estimate that statistically
quantifies the uncertainty of the rules, the defined rule con-
fidences. A confidence may serve as an approximation for
the marginal probability that the respective rule is true, i.e.,
p(R̃i=1). However, we have to acknowledge that it is only
the marginal

∑
p(R̃i = 1, r̃−i), which sums over all real-

isations of the remaining rules, where r̃−i is the vector of
realisations with r̃i dropped.

The last paragraph makes the difference to the viewpoint
of association rule mining explicit. In fact, we assume
that p(R̃i=1) is potentially influenced by an underlying
joint distribution. For instance, the confidence of the
rule c2 of the running example might be influenced by
the confidence of c3 through the second term in the sum
p(R̃2=1) = p(R̃2=1, R̃3=0) + p(R̃2=1, R̃3=1). There-
fore, for fact prediction associated with uncertainty we have
to take into account the joint distribution over the rules
which will be discussed in the next section.

4.3. Inference for Target Facts

We want to calculate the probability that an unknown tar-
get fact t /∈ G is true, given the known triples, i.e., we
seek to compute p(t|G). However, we cannot observe the
truth values r̃ of the rules from the data and we therefore
choose a standard approach regarding such settings, i.e., we
marginalize over all possible rule realisations,

p(t|G) =
∑

r̃∈{0,1}N

p(t|̃r,G)p(r̃|G). (4)

Where we set p(t|̃r,G) to equation (2). We can simply
calculate p(t|̃r,G) by collecting all rules that are one in r̃
and subsequently evaluate if one of these rules predicts the
target, i.e., performing rule application. The distribution
p(r̃|G) seems to be more problematic. It defines the joint
distribution over all N rules, given the data, including the
rules that did not predict t. Rule aggregation, however, was
defined with only the k rules that predicted a candidate.
We will argue in the following proposition that under one-
step entailment for calculating p(t|G) it is indeed sufficient
also under the probabilistic model to exclusively take into
account the rules R with realisations r that predicted t.

Proposition 4.1. Under a one-step entailment regime, i.e.,
using equation (2) for p(t|̃r,G), and a global distribution
p(r̃|G) we have that

p(t|G) =
∑

r∈{0,1}k

p(t|r,G)p(r|G). (5)

The proof is in the appendix. Instead of using the global
distribution we can focus directly on performing marginal
inference p(r|G) with respect to the rules that predicted
t. Although marginal inference can equally be expensive,
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the complexity can be reduced if the joint distribution is
specified accordingly and if some parameters of the joint are
known such as the individual rule marginals. Additionally,
it might even be beneficial to model p(r|G) directly.

Note that Proposition (4.1) would not hold if we would
consider general model theoretic entailment. Finally, by the
definition of equation (2) and one-step entailment it is easy
to see that the query probability is the probability that at
least one rule from R is true.

Proposition 4.2. For the query probability it holds that

p(t|G) = p
(∑
j∈I

Rj ≥ 1 | G
)
. (6)

Proof. We write out p(t|r,G) in equation (5) and then drop
the one term that is zero. The proposition follows from the
definition of one-step-entailment as L(r) one-step entails
the target if at least one component of r is one. That means
the probabilities of all realisations where at least one rule is
true are summed up.

We will henceforth refer to calculating p(t|G) under the
previous derivations when mentioning the inference model
and we conclude the section with an example.

Example 4.3 (cont). Lisa is predicted by the two rules c2
and c3 to work for Google. Assuming that we know the joint
distribution over all rules, we can calculate the probability
that Lisa works for Google by querying the joint distribution
for the probability that at least one of c2 and c3 is true.

4.4. Recovering Aggregation Functions

We will demonstrate in this section that the inference model
leads to the different aggregation strategies depending on the
assumed joint distribution when marginals are approximated
with the rule confidences. Therefore we assume for the
following derivations p(R̃i=1) = conf(ci) for i ∈ Ĩ .

4.4.1. PROBABILISTIC MAX-AGGREGATION

Max-aggregation was introduced in the literature as a com-
putational heuristic (Galárraga et al., 2015), it was fur-
ther described as accounting for strong rule dependencies
without providing a detailed treatment (Meilicke et al.,
2019), or it was even described with assuming fact inde-
pendence (Svatoš et al., 2020). We will now introduce the
Fréchet-Hoeffding bound which will help us to achieve a for-
mal derivation. It limits the possible association, expressed
as correlation, of two random variables (Joe, 1997). Let pi
and pj be the marginal probabilities for two Bernoulli vari-
ables, then it holds for the correlation ρij that ρij ≤ U(i, j)
where

U(i, j) = min

{(
pi(1−pj)
pj(1−pi)

)1/2

,

(
pj(1−pi)
pi(1−pj)

)1/2 }
. (7)

Example 4.4 (cont). Let p1 = 0.64 and p2 = 0.44 then
U(1, 2) ≈ 0.66. Whereas for p3 = 0.41, U(2, 3) ≈ 0.94.

While the configuration of the marginals in Example 4.4
allows for complex dependencies in regard to the joint distri-
bution, they are not compatible with complete dependence
as this would require unit correlation. Interestingly, equa-
tion (7) suffices to specify a joint distribution p(r̃|G) such
that the inference model from Section 4.3 performs Max-
aggregation.
Theorem 4.5. If for the correlation matrix Ω ∈
[−1, 1](N,N) with entries ρij for all i, j it holds that ρij =
U(i, j) then a unique distribution for p(r̃|G) is induced such
that p(t|G) = sM (t).

We will show the proof for the case where k = 2 rules
predicted the candidate here briefly and the general case
can be found in the appendix. Let pī = 1 − pi and
let, e.g., pīj = p(Ri=0, Rj=1|G) and likewise for the
remaining realisations. Further note for the correlation
ρij =

pij−pipj

σ̃iσ̃j
where σ̃ is the respective standard deviation.

Proof (k=2). Following Propositions (4.1) and (4.2), p(t|G)
is equivalent to querying the joint distribution marginally
for p(ri + rj ≥ 1) assuming ci and cj predicted the target.
We here assume the global distribution exists and is unique.
It therefore suffices to show that

max {pi, pj} = pīj + pij̄ + pij .

Assume w.l.o.g. that pi ≥ pj . Then after plugging in U(i, j)
into ρij and solving for pij , we obtain pij = pj . However,
by definition of the marginal it holds that pj = pij + pīj
and therefore pīj = 0. Then we have,

max {pi, pj} = max {pij̄ + pij , pīj + pij}
= max {pij̄ + pij , pij}
= pij̄ + pij

= pīj + pij̄ + pij .

Example 4.6 (cont). For p1 = 0.64 and p2 = 0.44 we
obtain p12 = 0.44, p1̄2 = 0, and p12̄ = p1 − p2 = 0.2,
leading to p(t|G) = 0 ·p1̄2̄+1 ·p12+1 ·p12̄+1 ·p1̄2 = 0.64.

We have specified a unique multivariate Bernoulli distribu-
tion p(r̃|G) by simply defining a correlation matrix. Clearly
setting the N2 values of the correlation matrix is in general
not sufficient for defining a distribution that has 2N parame-
ters and also not every correlation matrix is admissible in
the first place (Huber & Marić, 2019).

4.4.2. NOISY-OR AGGREGATION

To derive Noisy-or aggregation we have to make an assump-
tion about the joint distribution that goes beyond pairwise
interactions.
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Proposition 4.7. If the N rules in p(R̃|G) are mutually
independent then p(t|G) = sNO(t).

It is trivial to derive the Noisy-or product from the inference
model under the independence assumption and the proof is
shown in the appendix for completeness.

The independence assumption of Noisy-or aggregation re-
veals the connection of the model from section 4.3 to
ProbLog (De Raedt et al., 2007). ProbLog assigns prob-
abilities to logic programs and inference is performed by
aggregating all programs that logically entail a query by
assuming individual probabilities are independent. Two re-
sults are shown in the appendix that make the connection to
the derivations here explicit. First, if the logical semantics of
ProbLog would be substituted with one-step entailment than
it would perform Noisy-or aggregation. Second if we setup
a ProbLog program with the rules C̃, the fact probability
would be always equal or larger than the Noisy-or probabil-
ity. Note that the computational complexity of reasoning,
as discussed earlier, here also applies. Finally, aggregating
all the predicting rules with the Noisy-or product might not
optimal in the context of data-driven rule learning where
millions of rules can be partially redundant, which will be
shown in the experimental section.

4.5. Mixing Assumptions

Both of the aggregation approaches derived in Section 4.4
make strong assumptions in regard to the dependence struc-
ture of the joint distribution over the rules. Clearly this can
lead to an overestimation or underestimation of the final
probability when the assumptions fail. Intuitively, this gives
rise to mixture distributions that make assumptions between
mutual independence and maximal correlation. Along these
lines, previous work proposes models that can express both
approaches as their special cases. These models are ex-
pensive to use, however, as they learn a clustering of all
rules (Ott et al., 2021) or represent rules with latent embed-
dings (Betz et al., 2022b). We will now present a simple
approach that is overlooked in the literature so far which
likewise operates in between both assumptions.

Definition 4.8. (Noisy-or top-h) Let I∗ ⊆ I be the subset of
indices for the h predicting rules with the highest marginals.
The Noisy-or top-h aggregation strategy calculates the final
score according to s(t)NOh = 1−

∏
j∈I∗(1− conf(cj)).

The correlation assumption is revealed when considering
that for decreasing h the approach converges to Max-
aggregation which is stated more compactly in the final
proposition of this section.

Proposition 4.9. For the score calculated with noisy-or
top-h we have that sM (t) ≤ sNOh(t) ≤ sNO(t) where the
equalities are achieved for h = 1 and h = k, respectively.

The proposition immediately follows from the definitions of
the approaches. Furthermore, instead of setting one value
for h we can exploit the mixture property more finegrained
and set the value independently for relations and query-
directions which will be discussed in the next section.

5. Experiments
The goal of our experimental section is to analyse the predic-
tive performance of the existing aggregation approaches, to
evaluate how to efficiently exploit the overlooked Noisy-or
top-h approach, and to give a potential user an overview
about the performance-speed trade-off regarding more com-
plex approaches. We abstain from comparing against the
general KGC literature which is not the focus of this work.
The competitiveness of rule-based approaches is discussed
in many works and we refer to the recent literature for a sum-
mary (Rossi et al., 2021; Sadeghian et al., 2019; Meilicke
et al., 2023).

5.1. Experimental Settings

We evaluate the aggregation techniques on the most com-
mon KGs from the KGC community. We use FB15k-
237 (Toutanova & Chen, 2015), WNRR (Dettmers et al.,
2018), Codex-M (Safavi & Koutra, 2020), and Yago3-
10 (Dettmers et al., 2018). The datasets are downloaded
from the LibKGE library (Broscheit et al., 2020) and we use
the same train, valid, testing splits as used throughout the lit-
erature as well as the exact same evaluation protocol (Rossi
et al., 2021) which is described in Section 3.1.

We use AnyBURL (Meilicke et al., 2019) and AMIE3 (Lajus
et al., 2020) to mine the rulsets C̃. For AnyBURL we use
the same rulesets as used by Meilicke et al. (2021). For
AMIE3 we tried to find the best possible hyperparameter
configuration regarding the results (see appendix).

We compare Max (MAX), Max+ (MAX+), Noisy-or (NO),
and Noisy-or top-h aggregation (NO top-h). For Noisy-
or top-h we investigate how one global value h = 5 per-
forms over all datasets and we additionally search for the
best parameter on the validation set for the relations and
query directions independently (NO top-h∗) as described
in Section 4.5. For AnyBURL we search over the val-
ues h ∈ {1, 4 . . . 10} where for h=1 we use MAX+. For
AMIE3 we additionally include h=k as AMIE3 learned
smaller rulesets and overall a smaller number of rules pre-
dict the query candidates. We also include the two works
concerned with the aggregation problem, SAFRAN (Ott
et al., 2021) and the supervised sparse aggregator (SV) pro-
posed by Betz et al. (2022b). We provide wall-clock times
(Table 2) of the approaches for the larger datasets and the
rulesets of AnyBURL. Further experimental details, the
used server architecture, dataset statistics, and the overall
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FB15k-237 WNRR Codex-M Yago3-10

Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR

A
ny

B
U

R
L

MAX 0.236 0.496 0.321 0.442 0.561 0.482 0.240 0.443 0.309 0.394 0.640 0.477
MAX+ 0.246 0.506 0.331 0.457 0.574 0.497 0.248 0.452 0.317 0.498 0.691 0.566
NO 0.251 0.499 0.333 0.391 0.560 0.446 0.219 0.427 0.290 0.367 0.628 0.456
NO top-5 0.260 0.524 0.347 0.458 0.578 0.499 0.243 0.461 0.317 0.486 0.697 0.560
NO top-h∗ 0.263 0.524 0.349 0.459 0.578 0.499 0.253 0.464 0.326 0.498 0.698 0.568

SAFRAN 0.272 0.524 0.357 0.459 0.578 0.502 0.254 0.458 0.325 0.491 0.693 0.564
SV 0.266 0.526 0.352 0.459 0.574 0.499 0.266 0.467 0.335 - - -

A
M

IE
3

MAX 0.167 0.384 0.236 0.414 0.511 0.445 0.191 0.383 0.255 0.350 0.592 0.431
MAX+ 0.178 0.394 0.247 0.419 0.514 0.450 0.198 0.395 0.263 0.395 0.622 0.473
NO 0.209 0.430 0.284 0.377 0.513 0.424 0.190 0.390 0.257 0.345 0.615 0.439
NO top-5 0.199 0.425 0.273 0.380 0.513 0.426 0.197 0.401 0.266 0.360 0.622 0.452
NO top-h∗ 0.217 0.439 0.292 0.419 0.514 0.450 0.199 0.407 0.269 0.401 0.625 0.479

Table 1: Results for the joint filtered MRR and Hits@X with rules from AnyBURL or AMIE
.

number of learned rules can be found in the appendix of the
work.

5.2. Results

Table 1 shows performance results and Table 2 shows run-
times for the rules from AnyBURL. Despite the fact that the
datasets are quite different NO top-5 performs surprisingly
well and for the rules from AnyBURL it only falls short
for the h@1 and MRR metrics for Yago3-10 compared to
MAX+ while being faster on average and 1.6PP better on
FB15k-237. In general we observe nevertheless that the
best performing specification might be dataset specific, e.g.,
for the rules from AMIE3 NO performs best on FB15k-
237, however, the results for these rulesets are significantly
worse in general. A pragmatic approach is to simply learn
the best value for h on the validation set which, not sur-
prisingly, performs always as good or better as the second
best configuration although the improvement is sometimes
marginal.

Although SAFRAN and SV are superior on average in re-
gard to performance they are significantly slower. For in-
stance SAFRAN is outperformed on Codex-m by NO top-h∗

while running approximately 55 times longer and it is 0.8PP
better on FB15k-237 where it runs more than 100 times
longer. SV performs 0.3PP better on FB15k-237 while
being 180 times slower and it performs 0.9PP better on
Codex-M with a running time that is 13 times slower.

To conclude we observe that the aggregation method can
have significant impact on the overall performance of the
mined rulsets. Furthermore, when runtimes are a considera-
tion factor a simple approach might be the preferred choice
of aggregation.

Approach FB15k-237 Codex-M Yago3-10

MAX 1.1m 5.5m 4.1m
MAX+ 3.1m 10.4m 4.2m
Noisy-or 5.4m 25.0m 12.2m
Noisy-or top-5 1.5m 6.6m 4.3m
NO top-h∗ 13.9m 1.27h 1.01h

SAFRAN ≈24h ≈72h >72h
SV ≈42h ≈16.5h -

Table 2: Runtimes in minutes (m) our hours (h) with rules from
AnyBURL.

6. Conclusion
We have shown that the problem of rule aggregation for
KGC can be expressed with marginal inference over a joint
distribution over the rules. We provided probabilistic in-
terpretations for previously defined aggregation functions.
Subsequently we proposed a baseline that is slightly supe-
rior over previous simple methods while being efficient and
we found that more advanced models are expensive to use
while only providing a small boost in regard to predictive
performance. Future work might build on these foundations
by finding suitable ways of modelling the joint distribution
over the rules. For instance, rules could be grouped accord-
ing to syntactic similarity, distributions might be estimated
from more advanced statistics such as pairwise confidences
or marginals could be approximated more rigorously.
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A. Proofs
Proof of Proposition 4.1. We show that to perform infer-
ence p(t|G) with the probabilistic model it is sufficient to
perform marginal inference on the global distribution with
respect to the rules that predicted the target candidate t.

p(t|G) =
∑

r̃∈{0,1}N

p(t|̃r,G)p(r̃|G) (8)

=
∑

r̃∈{0,1}N

L(r̃)|=1t

p(r̃|G) (9)

We will now split each r̃ into vectors r+ = (r̃j)j∈Ĩ, cj |=1t
,

the rules that predicted the target, and r− = (r̃i)i∈Ĩ, ci ̸|=1t

the rules that did not predict the target. Let r+||r− = r̃,
where || denotes vector concatenation. Now we can write
equation (9) as

∑
r+||r−∈{0,1}N

L(r+||r−)|=1t

p(r+, r−|G) (10)

=
∑

r+∈{0,1}k

L(r+)|=1t

∑
r−∈{0,1}N−k

L(r−) ̸|=1t

p(r+, r−|G). (11)

Observe that the inner sum contains all possible values of r−

as L(r−) ̸|=1 t does not put a constraint on r−. Continuing
from equation (11) we can therefore simply apply reverse
marginalization,

=
∑

r+∈{0,1}k

L(r+)|=1t

p(r+|G)

=
∑

r∈{0,1}k

p(t|r,G)p(r|G).

Proof of Theorem 4.5. This proof is a generalisa-
tion of the binary case from section 4.4.1. We first show that
under maximal correlation only very specific realisations of
R̃ have non-zero probability if the distribution exists. Once
this is established we show the existence and uniqueness
of p(R̃|G) and finally we derive the max-aggregation
score from the marginal inference that at least one of the
predicting rules is true. As previously we assume that out
of N rules k rules predicted the query triple t and that the
rule marginals are given. After we have specified p(R̃|G),
by Proposition 4.1 and 4.2, we have to show that

1− p(R = 0|G) = max
{
p(Ri = 1) | ci |=1 t and i ∈ I

}
,

(12)

where R is the random vector for the k rules that predicted
the query triple. We assume throughout the derivations the
N variables {R̃1, ..., R̃N} are ordered by Ĩ (and likewise
for I) such that R̃1 is the rule with the highest marginal.

First we pick two rules represented by R̃i, R̃j with pi ≥ pj
and i, j ∈ Ĩ . The correlation is defined as

ρij =
pij − pipj

σ̃iσ̃j
, (13)

Where pij = p(R̃i=1, R̃j=1|G). We now assume
ρij=U(i, j) for every pair i, j from Ĩ . We plug in the upper
bound (7) into (13) and solve for pij which leads to

pij = pj , (14)

i.e., we have the following equality∑
r̃−ij∈{0,1}N−2

p(R̃i=1, R̃j=1, r̃−ij |G) =

=
∑

r̃−j∈{0,1}N−1

p(R̃j=1, r̃−j |G), (15)

where r̃−j = (r̃i)i∈Ĩ\j is a vector of realisations with the
j’th component dropped from r̃ and equivalently r̃−ij =
(r̃s)s∈Ĩ\{i,j}. Each addend in the left hand side is contained
in the right hand side, subtracting the left hand side from
both sides of (15) yields a zero probability constraint:

0 =
∑

r−ij∈{0,1}N−2

p(R̃i = 0, R̃j = 1, r−ij |G). (16)

We are, in fact, interested in all the realisations that may be
different from zero after considering the constraints imposed
by all possible rule pairs. From equation (16) it follows that
p(R̃ = r̃|G) is not affected by the zero-constraint if for r̃

(r̃s = 0) =⇒ (r̃t = 0) ∀ t > s, (17)
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for s, t ∈ Ĩ . Note that each assignment r̃ ∈ {0, 1}N which
satisfies (17) is associated with a unique number of compo-
nents (rules) that are one.

Our goal is to specify the parameters of p(R̃|G) that are non-
zero. From (17) we can observe that there are only N + 1
of these parameters left and we will therefore introduce
N + 1 variables. Let m ∈ {0, ..., N} and let zm denote the
probability for the assignment vector that has m ones and
satisfies (17) which we write as r̃(m), i.e., zm = p(r̃(m)|G).
In fact, r̃(m) ∈ {0, 1}N holds ones from the first component
until the m’th component and zeros starting from the m+
1’th component. It is easy to verify that now it holds for the
N marginals with i ∈ Ĩ that pi =

∑N
s=i zs and additionally

we use the probability constraint p0 =
∑N

s=0 zs = 1. With
these expressions we can set up an equation system

Az = p, (18)

where z is the variable vector with dimensionality N + 1,
A is an upper triangular coefficient matrix with all non-
zero entries being one, and p is the vector of marginals and
the probability constraint at the first entry. Given that A
is invertible we established uniqueness and we established
existence as the solution z = A−1p satisfies the probability
constraint

∑N
s=0 zs = 1 while all zm are between 0 and 1.

We will now derive the main result from (12). Plugging
in the expressions for the marginals in the right-hand side
of (12) yields

max
{ N∑

s=i

zs
∣∣ ci |=1 t and i ∈ I

}
=

N∑
s=s∗

zs , (19)

where s∗ = min{i | ci |=1 t and i ∈ I} corresponds
to the index for the rule with the highest marginal under
the predicting rules. For 1 − p(R=0|G) we have to sum
up all probabilities of realisations where at least one
of the predicting rules is one. Clearly this includes all
realisations where rs∗ is one which holds by construction
of the zm’s for every term in the sum on the right hand side
of equation (19). Now given that the remaining probabili-
ties are zero we have that

∑N
s=s∗ zs = 1−p(R = 0|G).

Proof of Proposition 4.7. We directly start with the
result from Proposition 4.1.

p(t|G) =
∑

r∈{0,1}k

p(t|r,G)p(r|G)

= 0 · p(R = 0|G) +
∑

r ̸=0∈{0,1}k

p(r|G)

= 1− p(R = 0|G)

= 1−
∏
j∈I

(
1− p(rj)

)

B. Evaluation Metrics
Let Ge be the test KG. For the target test fact q(c1, c2) let
rk(c1|c2, q) be the ranking position of the target in a filtered
ranking of candidate facts for the tail query q(c1, ?) and
likewise let rk(c2|q, c1) denote the filtered ranking position
for the head query. MRR and Hits@X are defined as:

MRR =
1

2|Ge|
∑

q(c1,c2)∈Ge

(
1

rk(c1|c2, q)
+

1

rk(c2|q, c1)

)
,

hits@X =
1

2|Ge|
∑

q(c1,c2)∈Ge

(
1
{
rk(c1|c2, q) ≤ X

}
+

+ 1
{
rk(c2|q, c1) ≤ X

})
.

C. Rule Aggregation and Reasoning with
Problog

The probability for a logic program P given a ProbLog
program T is defined as

p(P|T ) =
∏
xi∈P

p(xi)
∏

xj ̸∈P

(1− p(xj)), (20)

where T is a collection of definite clauses with assigned
probabilities. In the scope of this work when using the
ProbLog notation we can set T ∗ = {pi : ci | i ∈ Ĩ} ∪ {1 :
t′ | t′ ∈ G} to obtain the ProbLog program representing the
rules and the facts. If we, for instance, let ProbLog only
perform one-step entailment we obtain the following result.

Proposition C.1. For the probability p(t|T ∗) calculated
with ProbLog under a one-step entailment regime it holds
that p(t|T ∗) = sNO(t).

Proof of Proposition C.1. The query probability given the
ProbLog program T ∗, as defined above, is calculated as

p(t|T ∗) =
∑

r̃∈{0,1}N

p
(
t|L(r̃)

)
p
(
L(r̃)|T ∗) , (21)

where p(t|L(r̃)) is set to equation (2) by requirement
of the proposition and p(L(r̃)|T ) can be interpreted as
the probability of a logic program when treating rules
as logical clauses and facts as ground atoms. Note that
L(r̃) = {ci | r̃i = 1 and i ∈ Ĩ} ∪ G. Plugging in
equation (20) into equation (21) and rearranging leads to:
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∑
r̃∈{0,1}N

p(t|L(r̃))
∏

xi∈L(r̃)

p(xi)
∏

xj ̸∈L(r̃)

(1− p(xj))

=
∑

r̃∈{0,1}N

p(t|L(r̃))
∏

ci∈L(r̃)

p(r̃i)
∏

cj ̸∈L(r̃)

(1− p(r̃j))
∏
t∈G

p(t)

=
∑

r̃∈{0,1}N

p(t|L(r̃))
∏

ci∈L(r̃)

p(r̃i)
∏

cj ̸∈L(r̃)

(1− p(r̃j)) · 1

=
∑

r̃∈{0,1}N

p(t|L(r̃))p(r̃|G) .

The factorization of the logic program implies mutual
independence and therefore applying Propositions 4.1
and 4.7 leads to the Noisy-or product over the rules that
predicted t.

The next theorem shows the behaviour when using the full
ProbLog algorithm for rule aggregation.

Theorem C.2. For the query probability p(t|T ∗) calculated
by ProbLog it holds that p(t|T ∗) ≥ sNO(t).

We first sketch the proof here which is straightforward when
using Propositions C.1 and 4.1. The details are given below.
ProbLog sums the probabilities of all programs that entail
the target fact. This includes 1) the programs that entail and
one-step entail the query and 2) the programs that entail but
not one-step entail the query which is clearly larger or equal
than only aggregating 1) as done in Noisy-or aggregation.

Proof of Theorem C.2

As before let r̃ ∈ {0, 1}N be a vector of realisations. We
will now label different assignment vectors according to
their logical properties. Let r̃(e) ∈ {0, 1}N be an assign-
ment vector such that L(r̃(e)) entails but not one-step entails
the query and let r̃(o) ∈ {0, 1}N be the corresponding vec-
tor where L(r̃(o)) entails and one-step entails the query. Let
T ∗ denote the ProbLog program as defined above. For the
query probability under ProbLog we have

p(t|T ∗) =
∑

r̃∈{0,1}N

p̂
(
t|L(r̃)

)
p
(
L(r̃)|T ∗), (22)

where

p̂(t|L(r̃)) =
{

1, if L(r̃) |= t
0, else.

When we plug in p̂(t|L(r̃)) then (22) becomes

p(t|T ∗) =
∑

r̃∈{0,1}N

L(r̃)|=t

p(L(r̃)|T ∗)

=
∑

r̃(e)∈{0,1}N

L(r(e))|=t

L(r(e) )̸|=1t

p(L(r̃(e))|T ∗)+

+
∑

r̃(o)∈{0,1}N

L(r̃(o))|=1t

p(L(r̃(o))|T ∗)

≥
∑

r̃(o)∈{0,1}N

L(r̃(o))|=1t

p(L(r̃(o))|T ∗)

=
∑

r̃∈{0,1}N

p
(
t|L(r̃)

)
p
(
L(r̃)|T ∗)

where it follows from Proposition C.1 that the last expres-
sion is the Noisy-or product under the program factorization
of ProbLog for p

(
L(r̃)|T ∗)

D. Rule Aggregation and MLNs
For an MLN query answering p(t|G) as in the main text
can be performed by marginal inference given some ev-
idence which is in our case the KG. Nevertheless we
start with a simple example with unary predicates. For
the MLN definitions we refer to the original publication.
Consider the two formulae smokes(X) → cancer(X)
and ill(X) → cancer(X), assume they have some con-
fidence conf1 and conf2. Now let the evidence be e =
{smokes(karl), ill(karl)} and we do not have any other
constant terms. Note that there are 23 possible worlds and
we seek to calculate p(cancer(karl)=1|e), i.e., the proba-
bility that Karl has cancer. We abuse notation slightly for
brevity. In particular we write p({a1, a2}) for the probabil-
ity of a world where ai is a true atom and all the remaining
possible atoms are false. And we write p(ai=1|e) for the
marginal probability that an atom is true given the evidence.

For instantiating a Markov Network, as each formula has
one possible grounding, we have two binary features f1, f2.
A feature is one if in a given world the respective formula
is satisfied. Assigning the confidences as weights is not
useful because of the exponential formulation, therefore we
set the feature weights to the log odds wi = ln confi

1−conf1

for i ∈ {1, 2}. Now assume conf1 = conf2 = 0.9. For
p({cancer(karl)}|e) we have

p(c(k) = 1|e) =
p
({

c(k), i(k), sm(k)
})

p
(
sm(k) = 1, i(k) = 1

)
Note that the denominator is a marginal that sums over all
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worlds where smokes(karl) and ill(karl) is true, therefore

p(c(k) = 1|e) =
p
({

c(k), i(k), sm(k)
})

p
({

c(k), i(k), sm(k)
})

+ p
({

i(k), sm(k)
})

=
exp (w1 + w2)Z

−1

exp (w1 + w2)Z−1 + exp (0)Z−1

= sigmoid(w1 + w2)

Plugging in the values for the weights results in 0.8581
which we also exactly recover when using the MLN solver
Rockit (Noessner et al., 2013) under exact marginal infer-
ence. Now consider the rules,

c1: married(X,Y )← engaged(X,Y )

c2: married(X,Y )← commonChild(X,Y )

c3: married(X,Y )← inLove(X,Y )

Assume the hypothetical confidences conf1 =
0.8, conf2 = 0.7, conf3 = 0.5. Fur-
ther assume the evidence KG G =
{inLove(a, b), commonChild(a, b), engaged(a, b)}
where a, b are constants. We want to calculate p(t = 1|G)
where t = married(a, b). If we use ProbLog with the
confidences we obtain p(t|G) = 0.97 which is here the
same as Noisy-or aggregation. Max-aggregation leads to
p(t|G) = 0.8 and using Max-group aggregation would be
in between depending on the grouping. When using the
log-odds for the MLN as above we obtain with Rockit
p(t|G) = 0.9032 which is again the sigmoid function
applied to the the sum of the log-odds.

Note that in these two examples the only form of reason-
ing in regard to the query fact is one-step entailment due
to the simplicity of the examples. This can be emulated
for MLN’s also for more complicated examples with the
common solvers by defining the rule bodies as observed
predicates. Note that additionally the log odds would be
weighted with each rule grounding regarding the rules that
predicted the query. Nevertheless the resulting aggregation
baseline would not perform well in the context of KGC as,
for instance, a rule with confidence of 0.4 and many ground-
ings would lead to a small value for the final probability.
However, note that, as we mentioned in the main text, a
MLN is a more general framework not based on one-step
entailment and expressing the aggregation problem requires
to make several non trivial decisions.

E. Experimental Details
We show dataset statistics and the overall number of learned
rules in Table 3 and 4. Further experimental details are
given in the following subsections.

Num facts |G|
Dataset |E| |P| Train Valid Test

FB15k-237 14 505 237 272 115 17 535 20 466
WNRR 40 559 11 86 835 3 034 3 134

Codex-M 17 050 51 185 584 10 310 10 311
Yago3-10 123 182 37 1 079 040 5 000 5 000

Table 3: Dataset summary statistics

Dataset AMIE AnyBURL
FB15k-237 983 546 5 084 903

WNRR 3426 97 329
Codex-M 179 898 7 409 385
Yago3-10 900 951 6 692 784

Table 4: Number of rules learned

E.1. Rule learning

For AnyBURL we use the rulesets provided in previous
work (Meilicke et al., 2021) except for Yago3-10 where we
learn with the default parameters for 3600 seconds with the
AnyBURL-JUNO version. For AMIE3 under the default
parameters only a few rules are learned so we adjusted
the parameters. When including rules with constants and
longer rules the approach does not terminate within a day
therefore we use one execution with rules of length one
including constants and one execution with longer rules
without constants and subsequently the rulsets are merged.
We show below the program execution with constants and
the second execution with longer rules.

j a v a − j a r amie . j a r t r a i n . t x t − c o n s t
− b i a s d e f a u l t −minhc 0 . 0 −minc
0 .001 −minpca 0 .001 −maxad 2

j a v a − j a r amie . j a r t r a i n . t x t − b i a s
d e f a u l t −minhc 0 . 0 −minc 0 .001
−minpca 0 .001 −maxad 4 −pm
s u p p o r t −mins 2

E.2. Implementation and Evaluation Details

Rule-based KGC uses commonly a parameter topX that
denotes how many candidate facts q(c1, c

∗) for the query
q(c1, ?) (likewise in head direction) should be predicted and
ranked. For all our experiments we set topX=200 but we
did not notice significant differences to using 100. When
two candidates are assigned to the same probability we
use random tie handling. The aggregation functions are
implemented under the AnyBURL-JUNO codebase. For
MAX+ we use the existing implementation. For Noisy-
or top-h we start predicting with the rule with the highest
marginal continuing with the second highest rule and we
stop when for topX candidates each one was predicted by
at least h rules. For Noisy-or we set h = k and for MAX
we set h = 1.
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E.3. Experiment Details and Execution

Our experiments are run on a CPU server with 768 GB RAM
and two Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz
cores with 40 logical cores each. For the standard exper-
iments we use the AnyBURL-JUNO codebase with 30
threads. For the Noisy-or top-h∗ approach we spawn in-
dividual processes with 15 threads each for every value of
h. The runtimes for the experiments are wall-clock times,
i.e., we measure the time before and after the execution on
each dataset. For SAFRAN we obtained runtime estimates
from the authors for FB15k-237 and Codex-m and we run
the approach (architecture as above) on Yago3-10 where
it did not terminate within 3 days. Runtimes for SV are
also obtained from the authors. Results for SAFRAN are
obtained from the authors where on FB15k-237 SAFRAN
is run in accordance to a newer AnyBURL version that does
not exploit the characteristic that connected entities in the
training set cannot form a fact in the test set. See Meilicke
et al. (2020) for a discussion. The results for SV are from
the respective publication.
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