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Abstract
To evaluate model fit in confirmatory factor analysis, researchers compare goodness-of-fit indices (GOFs) against fixed cutoff 
values (e.g., CFI > .950) derived from simulation studies. Methodologists have cautioned that cutoffs for GOFs are only valid 
for settings similar to the simulation scenarios from which cutoffs originated. Despite these warnings, fixed cutoffs for popular 
GOFs (i.e., χ2, χ2/df, CFI, RMSEA, SRMR) continue to be widely used in applied research. We (1) argue that the practice 
of using fixed cutoffs needs to be abandoned and (2) review time-honored and emerging alternatives to fixed cutoffs. We first 
present the most in-depth simulation study to date on the sensitivity of GOFs to model misspecification (i.e., misspecified 
factor dimensionality and unmodeled cross-loadings) and their susceptibility to further data and analysis characteristics (i.e., 
estimator, number of indicators, number and distribution of response options, loading magnitude, sample size, and factor 
correlation). We included all characteristics identified as influential in previous studies. Our simulation enabled us to replicate 
well-known influences on GOFs and establish hitherto unknown or underappreciated ones. In particular, the magnitude of the 
factor correlation turned out to moderate the effects of several characteristics on GOFs. Second, to address these problems, 
we discuss several strategies for assessing model fit that take the dependency of GOFs on the modeling context into account. 
We highlight tailored (or “dynamic”) cutoffs as a way forward. We provide convenient tables with scenario-specific cutoffs 
as well as regression formulae to predict cutoffs tailored to the empirical setting of interest.

Keywords Goodness-of-fit · Fit index · Ordered categorical data · Confirmatory factor analysis · Structural equation 
modeling

In social and behavioral science research, researchers 
commonly employ goodness-of-fit indices (GOFs) to 
evaluate the fit of latent variable models such as con-
firmatory factor analysis (CFA) models. The most widely 
used GOFs (e.g., Jackson et al., 2009) are the chi-square 
test statistic divided by the model degrees of freedom 
(χ2/df), the comparative fit index (CFI), the root mean 
square error of approximation (RMSEA), and the stand-
ardized root mean square residual (SRMR). In addition, 
researchers often rely on the traditional chi-square test 

statistic of exact model fit (χ2). Although strictly speak-
ing not a GOF but a formal test, researchers use χ2 in 
much the same way as they use GOFs (see also Jöreskog 
& Sörbom, 1993), which is why we henceforth simply 
subsume it under the same rubric.

Cutoffs for GOFs, on which researchers’ binary deci-
sions about accepting or rejecting a model rest, are based 
on simulation studies. Simulation studies represent highly 
controlled situations in which—different from the analysis 
of real data—researchers know and have control over the 
population (or data-generating) model. Having specified a 
data-generating population model, researchers determine 
(the size of) model misspecification in the analysis model. 
Then, they observe how GOFs respond to such misspeci-
fication by simulating many datasets from the population 
model and fitting an analysis model to each dataset. Based 
on the distribution of the resulting GOFs, researchers 
derive cutoffs for these GOFs so that a critical level of 
misspecification leads to model rejection. What constitutes 
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a “critical” level of misspecification and yields a reason-
able cutoff is an arbitrary decision (e.g., deeming a Type 
I error rate of 5% for a χ2-based decision “acceptable”).

In the past two decades, Hu and Bentler’s (1999) cut-
offs have been the most prominent and widely used ones. 
At the time of this writing, their article boasts more than 
95,000 citations on Google Scholar, making it one of the 
most highly cited articles across all social and behav-
ioral sciences. According to these authors, CFI ≥ .950, 
RMSEA ≤ .060, and SRMR ≤ .080 point to good model 
fit. More recently, Reußner (2019) and Rutkowski and 
Svetina (2014) proposed similar cutoffs. Bollen (1989) 
outlined that the observed χ2 value should not exceed a 
critical χ2 value, which varies with the model degrees 
of freedom and is based on statistical principles rather 
than derived from simulation studies (see Moshagen & 
Erdfelder, 2016, for additional thoughts about critical val-
ues). Ullman (2014) suggested that a ratio of χ2/df below 
2 indicates an empirically well-fitting model.

However, there are severe problems with relying on 
any of these fixed cutoffs for GOFs in model evaluation 
(e.g., McNeish & Wolf, 2023a, b). The key underlying 
issue is that simulation studies can only cover a limited 
set of scenarios (i.e., combinations of data and analysis 
characteristics). These scenarios are far from covering 
all possible combinations of data (e.g., distribution of 
response options) and analysis characteristics (e.g., the 
number of factors and the estimator) that researchers will 
encounter in applied settings. If GOFs reacted solely to 
model misspecification predictably and uniformly, the 
confines of simulation studies would not pose a major 
problem. If, by contrast, GOFs reacted not only to mis-
specification but also to other characteristics of the data 
and analysis, their validity for judging the model fit might 
be severely compromised. We henceforth refer to the 
undesirable dependence of GOFs on data and analysis 
characteristics (other than the model misspecification one 
seeks to detect) as susceptibility. We contrast it with the 
desirable sensitivity of GOFs to misspecification.

The susceptibility to data and analysis characteristics 
of GOFs is not a hypothetical concern. Although GOFs 
were designed to detect and quantify (degrees of) model 
misspecification and to ideally not depend on any data or 
analysis characteristic (Schermelleh-Engel et al., 2003), 
they apparently do, as identified in several studies (for 
an overview, see Niemand & Mai, 2018). Therefore, 
established cutoffs for GOFs are valid only in empirical 
settings (i.e., combinations of data and analysis charac-
teristics) that closely resemble the scenarios covered by 
the simulations from which these cutoffs were derived. 
The range of scenarios covered by existing simulations is 
dwarfed by the diversity and complexity of empirical set-
tings encountered in research applications. For example, 

in their seminal paper that led to the now canonical cutoffs 
for GOFs, Hu and Bentler (1999) simulated data from a 
three-factor model with five indicators per factor. They 
fit models to these data that were either correctly speci-
fied or misspecified (either by omitting cross-loadings or 
omitting factor covariances). Although these population 
models were consistent with their goal to study the sensi-
tivity of GOFs to misspecification and the susceptibility 
of GOFs to other characteristics, it is obvious that their 
findings cannot be easily generalized to one-factor models 
for which omitted cross-loadings or factor covariances do 
not even exist (see also McNeish & Wolf, 2023b). As this 
example illustrates, cutoffs for GOFs may lack external 
validity—applying the same set of cutoffs indifferently to 
many different empirical settings may mislead research-
ers and promote erroneous inferences about model fit and 
substantive questions attached to the model.

Unfortunately, current reporting practice shows that 
researchers apply cutoffs rather uniformly, even in the pres-
ence of data or analysis characteristics that can differ mark-
edly from the ones in the simulation studies (for an over-
view, see Jackson et al., 2009; McNeish & Wolf, 2023a). It 
appears that repeatedly voiced concerns against overgener-
alizations of cutoffs have gone largely unheeded (e.g., Heene 
et al., 2011; Markland, 2007; Marsh et al., 2004; McNeish 
& Wolf, 2023a; Niemand & Mai, 2018; Nye & Drasgow, 
2011). The widespread—in fact, near-universal—practice 
of relying on (fixed) cutoffs for GOFs in model evalua-
tion is alarming, given the lingering uncertainty about the 
applicability of fixed cutoffs for GOFs to scenarios hitherto 
uncharted by simulation studies.

Just how problematic is the practice of using fixed cut-
offs for GOFs? And what alternatives to fixed cutoffs can 
researchers use? We surmise that a lack of awareness both 
about the serious problems with fixed cutoffs and about 
the availability of alternative approaches contributes to 
the abiding use of fixed cutoffs. In our study, we therefore 
review extant evidence on the susceptibilities of GOFs 
to data and analysis characteristics. We then present an 
extensive simulation study that integrates, replicates, and 
extends previous simulation studies and represents the 
most in-depth simulation on the sensitivity and suscep-
tibility of GOFs to date. This simulation reinforces the 
conclusion that cutoffs cannot be easily generalized to 
arbitrary analytical scenarios, such that fixed cutoffs are 
likely invalid in most situations. We then review several 
time-honored and promising emerging alternatives for 
model fit evaluation that do not rely on fixed cutoffs. We 
argue that cutoffs must be tailored to the empirical setting 
of interest. Based on the large-scale simulation study, we 
generated user-friendly tables with scenario-specific cut-
offs and developed regression formulae to predict cutoffs 
for an empirical setting of interest.



Behavior Research Methods 

1 3

Susceptibilities of GOFs to data and analysis 
characteristics: A review of previous findings

GOFs are intended to enable evaluations of model fit, specifi-
cally, to help detect non-negligible model misspecification.1 
However, as previous investigations have shown, GOFs are 
susceptible to a multitude of data and analysis characteris-
tics other than the model misspecification they are meant to 
detect (e.g., Beauducel & Herzberg, 2006).2 These charac-
teristics include the sample size (e.g., DiStefano et al., 2019), 
type of estimator (e.g., Xia & Yang, 2019), the number of 
indicators3 (e.g., Kenny & McCoach, 2003), number and dis-
tribution of response options (e.g., Xia & Yang, 2018), the 
magnitude of factor loadings (e.g., Heene et al., 2011), and 
the factor correlation (e.g., Beauducel & Wittmann, 2005).

Moreover, the impact of these characteristics on GOFs 
differs between correctly specified and misspecified mod-
els—which we review in detail here. For correctly specified 
models, GOFs (i.e., χ2, χ2/df, CFI, RMSEA, and SRMR) 
typically signaled better model fit with increasing sam-
ple size (e.g., Beauducel & Herzberg, 2006; Chen et al., 
2008; DiStefano et al., 2019; Kenny et al., 2015; Sharma 
et al., 2005; Shi et al., 2019). Likewise, GOFs (i.e., CFI 
and SRMR) of correctly specified models pointed to better 
fit with a higher magnitude of factor loadings (and a lower 
magnitude of residual variances; Beierl et al., 2018; Heene 
et al., 2011; Shi et al., 2019). GOFs (i.e., CFI, RMSEA, 
and SRMR) also signaled better model fit with symmetric 

instead of asymmetric response distributions (Reußner, 
2019). The influence of the number of indicators on GOFs 
of correctly specified models interacted with the sample 
size: At small sample sizes (e.g., N = 100), GOFs (i.e., χ2/df, 
CFI, and RMSEA) indicated worse model fit when indica-
tors of similar psychometric quality were added (Kenny & 
McCoach, 2003; see also Sharma et al., 2005; Shi et al., 
2019). At large sample sizes (N = 1000), GOFs (i.e., χ2/df 
and RMSEA) pointed to better model fit as the number 
of indicators increased (only CFI was no longer affected; 
Kenny & McCoach, 2003). Per statistical definition, χ2 
increases when adding indicators without further restrictions 
to the model (Bollen, 1989). Only the magnitude of factor 
covariance/correlation in correctly specified multidimen-
sional models seemed to be a model characteristic to which 
GOFs (i.e., χ2, CFI, RMSEA, and SRMR) are impervious 
(Beauducel & Herzberg, 2006; Beierl et al., 2018).

For misspecified models, studies found that GOFs (i.e., 
χ2, χ2/df, CFI, and SRMR4) typically signaled worse model 
fit with an increasing number of indicators (yet vice versa for 
RMSEA, e.g., DiStefano et al., 2019; Kenny & McCoach, 
2003; Savalei, 2012; Shi & Maydeu-Olivares, 2020; Shi 
et al., 2019). Likewise, GOFs (i.e., χ2, RMSEA, and SRMR) 
of misspecified models showed worse model fit with a higher 
magnitude of factor loadings (and a lower magnitude of 
residual variances)—CFI reacted inconsistently across stud-
ies (Beierl et al., 2018; Hancock & Mueller, 2011; Heene 
et al., 2011; McNeish et al., 2018; Shi et al., 2019; Shi & 
Maydeu-Olivares, 2020; Shi et al., 2018b ; cf. Moshagen & 
Auerswald, 2018, who kept the degree of misspecification 
and residual error variances constant). GOFs of misspecified 
models also signaled worse model fit when the response dis-
tribution was symmetric compared to asymmetric distribu-
tions (Reußner, 2019; Xia & Yang, 2018).5 Similarly, GOFs 
(i.e., χ2 and SRMR) of models with uncorrelated factors 
pointed to worse fit than with correlated factors for specific 
misspecification (i.e., with unmodeled cross-loadings that 
all have the same sign; Beauducel & Wittmann, 2005). The 
influence of the sample size on GOFs of misspecified models 
was mixed: χ2, χ2/df, and RMSEA indicated worse model fit 

1 Researchers often assume that GOFs can detect all types of mis-
specification. As Hayduk (2014) demonstrated, χ2, which is incorpo-
rated in χ2/df, CFI, and RMSEA, cannot detect any misspecification 
in certain constellations of population and analysis models. The anal-
ysis model may appear to fit perfectly, although a different population 
model has generated the data. We hereby acknowledge the general 
notion of close-fitting models that may be seriously misspecified.
2 We term the influences of data and analysis characteristics on GOFs as 
“problems” or “susceptibilities,” even though many of these are natural 
(and sometimes even desirable) consequences of the statistical proper-
ties of GOFs. In particular, the dependence of χ2 on sample size is read-
ily comprehensible. As a strict and formal test, rather than a GOF, χ2 
depends on the model degrees of freedom. Per definition, the power of 
χ2 to detect model misspecification increases as the sample size grows 
(e.g., Moshagen & Erdfelder, 2016). From the perspective of researchers, 
it would be desirable for GOFs to quantify the degree of model misspeci-
fication across many data and analysis characteristics, irrespective of 
other considerations such as sample size or other empirical features. That 
is, ideally, GOFs should exclusively reflect model misspecification—any 
other influences on GOFs are undesirable (e.g., Schermelleh-Engel et al., 
2003). Therefore, we label any influences on GOFs other than misspecifi-
cation as “problematic” from a researcher’s perspective.
3 Adding indicators to the model is a common way to vary the model 
complexity. Beauducel and Herzberg (2006) and Fan and Sivo (2007), 
for instance, varied the model complexity by changing the number of 
indicators and the number of factors. Moshagen (2012) and Shi et al. 
(2018a) showed that the number of indicators rather than the number 
of factors drove the effect of model complexity on resulting model fit.

4 Shi et al. (2018b) only found the effect of model size on SRMR for models 
with unmodeled cross-loadings but not misspecified factor dimensionality.
5 In particular, Reußner (2019) found that CFI, RMSEA, and SRMR 
were susceptible to the type of the response distribution when using 
estimators that assume multivariate normal and continous data (i.e., 
maximum likelihood, ML). For estimators that make no assumption 
about the underlying response distribution (i.e., diagonally weighted 
least squares, DWLS), Xia and Yang (2018) mathematically demon-
strated that the number and distribution of response options directly 
influence GOFs (i.e., χ2, χ2/df, CFI, and RMSEA). Both characteristics 
determine the precision of polychoric correlations that feature in the fit 
function of DWLS and the mean and variance adjustment (WLSMV) 
of the χ2 test statistic, which transfers to χ2/df, CFI, and RMSEA.
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with increasing sample size, whereas CFI and SRMR sug-
gested better model fit (e.g., Beauducel & Wittmann, 2005; 
DiStefano et al., 2019; Nye & Drasgow, 2011).

GOFs also depended directly on the estimator used. 
Researchers frequently apply maximum likelihood (ML; 
Bollen, 1989) or its robust cousin MLR that corrects the χ2 
test statistic and standard errors of ML-estimated parameters 
for non-normality (Muthén & Muthén, 1998-2017; Yuan & 
Bentler, 2000). Both estimate parameters based on unstand-
ardized covariances or Pearson correlations. Diagonally 
weighted least squares (DWLS) based on polychoric cor-
relations or the corresponding mean- and variance-adjusted 
(WLSMV) χ2 test statistic (and standard errors) are less 
common (Muthén, 1984; Muthén et al., 1997). However, 
WLS estimators are gaining relevance as more and more 
researchers note their utility and suitability for analyzing 
ordered-categorical data, such as data from rating scales 
with few response options only (for an overview of the 
estimation procedures, see Li, 2016). In simulations, the 
DWLS-/WLSMV-based GOFs (i.e., χ2, CFI, and RMSEA) 
generally pointed to better model fit than ML-based ones 
(Beauducel & Herzberg, 2006; Nye & Drasgow, 2011; Xia 
& Yang, 2019) for correctly specified and misspecified 
models.6 For SRMR, the effect was reversed for correctly 
specified models; it indicated worse fit with DWLS than ML 
(Beauducel & Herzberg, 2006). The type of estimator also 
moderated other influences: DWLS/WLSMV-based GOFs 
(i.e., χ2, χ2/df, CFI, and RMSEA) generally suggested worse 
fit with a higher (compared to a lower) number of response 
options in both correctly specified and misspecified models 
(Beauducel & Herzberg, 2006; Xia & Yang, 2018).

In sum, previous simulation studies provide ample evidence 
that GOFs are susceptible to extraneous influences (other than 
misspecification). Moreover, GOFs sometimes behave differ-
ently in correctly specified compared to misspecified models, 
and different data and analysis characteristics may interact in 
complex and unforeseen ways. However, no prior simulation 
study has investigated all aforementioned influences on GOFs 
in conjunction. Instead, most researchers focused on one or two 
characteristics thought to impact GOFs. For instance, research 
has repeatedly investigated the effects of different magnitudes 
of factor loadings on GOFs (e.g., Beierl et al., 2018; Heene 
et al., 2011; Shi et al., 2019). Research has also often investi-
gated the effects of the number of response options and type 
of estimator on GOFs in tandem (e.g., Xia & Yang, 2019).

Because no prior simulation study has investigated all the 
aforementioned influences on GOFs in conjunction, it is not 

fully clear how susceptible GOFs are to the joint influences 
of these characteristics. The aforementioned characteristics 
may influence GOFs not only in the form of main effects 
but also through interactions (e.g., sample size × number 
of response options), which may attenuate or aggravate any 
known biases of GOFs. Further, it remains unknown which 
influences on GOFs, identified by prior simulations, would 
replicate when several data and analysis characteristics are 
considered jointly. Only an extensive simulation that jointly 
considers characteristics known to influence GOFs can pro-
vide such relevant insights: First, it integrates findings from 
previous studies and, thus, produces comprehensive, hitherto 
uninvestigated simulation scenarios. Second, it can repli-
cate and, thus, solidify previously known patterns. Third, 
it can identify previously unknown patterns (e.g., interac-
tion effects) and, thus, reveal the characteristics’ complex 
interplay. Thereby, the simulation study provides a more 
complete picture of the performance of GOFs in different 
scenarios. Although such studies soon reach a high level of 
complexity, replication-extension studies such as our exten-
sive simulation study are highly relevant and offer unique 
advantages for cumulative science (Bonett, 2012). Through 
the generalization of effect sizes across contexts (i.e., simu-
lation scenarios across studies), replication checks, and the 
investigation of moderation effects (i.e., interaction terms), 
replication-extension studies can expose misleading findings 
and too narrow inferences in earlier studies. This inspired us 
to carry out the extensive simulation study that we present 
in the following sections.

The present simulation

Aims of the simulation

We conducted a Monte Carlo simulation study (for more 
details on Monte Carlo simulations, see Boomsma, 2013) 
to integrate, replicate, and extend findings from previous 
simulations on GOFs. Focusing on CFA models, we inves-
tigated the joint impact of a wide range of data and analysis 
characteristics on GOFs. CFA models are among the most 
widely used latent variable models and form the basis for a 
wide range of applications, such as evaluating measurement 
instruments, testing structural theories of psychological con-
structs, and studying the relations among constructs.

Design of the simulation

To ensure its external validity, we designed our simulation 
to cover realistic scenarios typically encountered in social 
and behavioral science research. Each scenario comprised 
a population model with a different combination of charac-
teristics. For each scenario, we drew 1000 random samples 

6 Savalei (2020) proposed an analytical correction to DWLS-/
WLSMV-based GOFs to make them appear like ML-based ones, 
which has not yet been implemented in major statistical programs like 
R or Mplus.
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of varying size based on that population model. Addition-
ally, we incorporated a correctly specified or misspecified 
analysis model that we fit to each randomly sampled dataset 
employing different estimators.

We considered different combinations of data-generating 
(i.e., population) and analysis models to cover a breadth of 
constellations that may occur in real-world settings. In the 
first combination, the population model was either a one-
factor or correlated two-factor model. We fit a one-factor 
analysis model to data generated from both population mod-
els (i.e., one-factor and correlated two-factor models). Con-
sequently, each analysis model was either correctly specified 
or misspecified relative to the population model regarding 
factor dimensionality. We varied the factor correlations in 
the two-factor population model (r = .70, .50, or .30) to 
induce different sizes of misspecification in the one-factor 
analysis model. Thus, the misspecification induced by the 
different factor correlations in the population model (r = .70, 
.50, or .30) corresponded to a parameter difference of .30, 
.50, or .70, when viewed from the perspective of perfectly 
correlating factors (r = 1, representing essentially a single 
factor) in the analysis model. Figure 1 shows exemplary 

population and analysis models for these so-called factor 
dimensionality scenarios.

As a second combination, the two-factor population 
model either did not or did include cross-loadings on one 
factor. We consistently fit a two-factor analysis model with-
out any cross-loadings to data generated from both types of 
population models (i.e., without and with cross-loadings). 
Thus, each analysis model was either correctly specified 
or misspecified regarding the presence and magnitude of 
unmodeled cross-loadings. We stipulated that either 17% or 
33% of all indicators had cross-loadings. The cross-loadings 
had a standardized loading magnitude of either .20 or .30. 
This resulted in different proportions and magnitudes of 
model misspecification in the analysis models in which these 
cross-loadings went unmodeled. Figure 2 shows exemplary 
population and analysis models for these so-called cross-
loading scenarios.

In both combinations, we varied a total of six different 
data and analysis characteristics to which GOFs may be sus-
ceptible according to previous research: type of estimator, 
number of indicators, number of response options, distribu-
tion of response options, loading magnitude, and sample 

Fig. 1  Exemplary population and analysis models for the factor dimensionality scenario. Note. Models with six indicators for exemplary purposes
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size.7 With either correctly specified or misspecified two-
factor analysis models regarding cross-loadings in the popu-
lation model, we additionally varied the factor correlation 
(i.e., factors were either correlated or uncorrelated). The two 
factors of the population and analysis models were either 
allowed to correlate or forced to be uncorrelated. With either 
correctly specified or misspecified one-factor analysis mod-
els regarding factor dimensionality in the population model, 

we cannot vary the factor correlation in either population or 
analysis models. Thus, we only varied the factor correlation 
in a subset of scenarios (i.e., the cross-loading scenarios). 
Table 1 summarizes the different scenarios analyzed in this 
study—which were oriented upon typical settings encoun-
tered in empirical research.

In our simulation study (see Table 1), all factors in the 
population models were normally distributed latent vari-
ables with unit variance. Observed indicators were also 
normally distributed with unit variance. Residual variances 
varied based on the population model parameters (i.e., load-
ings and, if applicable, factor correlation). We identified all 
analysis models by fixing the loading of the first indicator 
of each factor to unity. Unlike ML estimation, DWLS (and, 
accordingly, also WLSMV) include thresholds in the model 
parameterization that pertain to intermediate continuous 
latent response variables, which translate the use of response 
options depending on the standing of the latent response 
variable but also require identification themselves. To iden-
tify DWLS/WLSMV-based analysis models, we followed 
Millsap’s (2011) procedure in line with the theta parameteri-
zation. Unlike delta parameterization, which fixes the resid-
ual variances of the latent response variables to one, theta 

Fig. 2  Exemplary population and analysis models for the cross-loading scenarios. Note. Models with six indicators, correlated factors, and two 
cross-loadings (i.e., cross-loadings exist for 33% of all six indicators) for exemplary purposes

7 To obtain ordered categorical indicators and determine the shapes 
of the resulting response distributions (i.e., symmetric or asymmet-
ric), we cut the initially continuous data by setting different thresholds. 
To simulate a symmetric distribution of responses, we set thresh-
olds to produce different numbers of equidistant response options: 
three (thresholds/z-values: −0.75, +0.75; corresponding to frequen-
cies of: 23%, 54%, 23%), five (thresholds/z-values: −1.20, −0.40, 
+0.40, +1.20; frequencies: 12%, 23%, 31%, 23%, 12%), or seven 
(thresholds/z-values: −1.25, −0.75, −0.25, +0.25, +0.75, +1.25; 
frequencies: 11%, 12%, 18%, 20%, 18%, 12%, 11%). To simulate an 
asymmetric response distribution, we shifted these response options to 
thresholds/z-values of +0.00, +1.04 (frequencies: 50%, 35%, 15%) for 
the scenario with three response options; −0.39, +0.31, +0.74, +1.28 
(frequencies: 35%, 27%, 15%, 13%, 10%) for five response options; 
and −0.52, +0.00, +0.35, +0.64, +0.99, +1.40 (frequencies: 20%, 
20%, 15%, 15%, 10%, 10%, 10%) for seven response options.
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Table 1  Simulation scenarios

F1 first factor, F2 second factor, Var variance, λ factor loading, Cov covariance, N total number of datasets, n subset of datasets, NA not applica-
ble (i.e., scenario not tested or testable). a For all scenarios: Excess kurtosis ≈ −0.80. b We had to re-simulate data whenever cell frequencies for 
any response option of any indicator resulted in fewer than five data points, because DWLS/WLSMV can only estimate thresholds for response 
options that do contain observations. c Yuan and Bentler (2000) corrected χ2 test statistic

Realization 
For all population models: 
Factor variances = 1, Indicator variances = 1 
Residual variances = 1 − (Var(F1) × �

2

F1
+ Var(F2) × �

2

F2
+ 2 × �

F1 × �
F2 × Cov(F1,F2))

Replications = 1000

Characteristic (1) (2) Literature on typical set-
tings used for operation-
alizationFactor dimensionality Cross-loadings

Population model One-factor model Two-factor model Two-factor model Two-factor model 
with cross-loadings

Analysis model One-factor model One-factor model Two-factor model Two-factor model with-
out cross-loadings

Specification Correct Misspecified Correct Misspecified
Magnitude of  

misspecification
0 .30, .50, .70 0 .20, .30

Proportion of  
misspecification

0 1 0 .17, .33

Estimator ML, ML, ML, ML,
MLRc, MLRc, MLRc, MLRc,
DWLS, DWLS, DWLS, DWLS,
WLSMV WLSMV WLSMV WLSMV

Number of indicators 6, 12 6, 12 6, 12 6, 12 Rammstedt & Beierlein 
(2014)

Response options 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 Clark & Watson (2019); 
Simms et al. (2019)

Distribution of 
 responsesa

Symmetric Symmetric Symmetric Symmetric Blanca et al. (2013)
(skew=0.00), (skew=0.00), (skew=0.00), (skew=0.00),
Asymmetric Asymmetric Asymmetric Asymmetric
(skew=0.65) (skew=0.65) (skew=0.65) (skew=0.65)

Loading magnitude .40, .60, .80 .40, .60, .80 .40, .60, .80 .40, .60, .80 Soto & John (2017)
Sample size 200, 500, 2000 200, 500, 2000 200, 500, 2000 200, 500, 2000 Bilsky et al. (2011); 

Comrey & Lee (1992); 
Nießen et al. (2019)

Factor correlation NA NA .00, .30 .00, .30 Groskurth et al. (2021); 
Kim et al. (2022); Lee 
& Cagle (2017); Soto 
& John (2017)

(factors not allowed 
vs. allowed to cor-
relate)

(factors not allowed vs. 
allowed to correlate)

Total number of  
scenarios

432 1296 864 3456
(n = 432,000) (n = 648,000) (n = 864,000) (n = 3,456,000)
1728 4320
(n = 1,728,000) (n = 4,320,000)
6048
(N = 6,048,000)

Resampled  datab 7%
Non-convergence 2%

(Final N = 5,956,844)
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parameterization scales the distribution of latent response 
variables by fixing their variances to one (Muthén & Aspa-
rouhov, 2002).

We considered the following GOFs: χ2 (Bollen, 1989) 
χ2/df, CFI (Bentler, 1990; see also Widaman & Thompson, 
2003), RMSEA (Steiger, 1990; see also Chen, 2007), and 
SRMR (Bentler, 1995; Hu & Bentler, 1999). Generally, GOF 
values closer to zero point to bad fit, except for CFI where 
values closer to one point to good fit. For interested readers, 
we included the computational details of GOFs in Additional 
File 1 of the Supplementary Online Material.

The final analysis contained GOFs for N = 5,956,844 
models that converged (non-converged models were culled). 
We used R 3.6.3 (R Core Team, 2020) for all analyses. All R 
packages we used are documented in our R code. Two pack-
ages were particularly central to our analyses: We generated 
data with MASS 7.3-53 (Venables & Ripley, 2002) and fit 
the analysis models to the data with lavaan 0.6-7 (Rosseel, 
2012). We took all GOFs from the lavaan output except for 
the script-based computation of χ2/df. For complete repro-
ducibility, we monitored the R package versions via renv 
0.12.2 (Ushey, 2020) and set random number generator 
seeds for the R code. We did not preregister the design and 
analysis of this non-empirical study. The full code is avail-
able on the Open Science Framework (OSF) at https:// osf. io/ 
e6kxa/? view_ only= 94603 4c00d ee431 897f6 7ca7d ed589 18.

Statistical analyses

The outcomes of interest were the sensitivity of GOFs to 
model misspecification and their susceptibility to influ-
ences other than model misspecification, such as the type 
of estimator or sample size. We analyzed the sensitivity and 
susceptibility via descriptive and inferential statistics along 
four main steps. First and foremost, we inspected the dis-
tributions of GOFs across the different scenarios. Second, 
we looked at zero-order correlations between the GOFs and 
simulation characteristics to get a first impression of their 
sensitivity and susceptibility. Third, we examined the char-
acteristics’ main and interaction effects on GOFs, including 
linear and quadratic terms, in multivariate regression.

The multivariate regression included two-way but not any 
higher-order interactions, for three reasons: First, technical 
restrictions prevented analyzing higher-level interactions. 
The biglm function from the biglm package in R (Lumley, 
2013) was designed to handle big data. However, the biglm 
function limits the number of independent variables, thereby 
restricting the number of interaction effects in complex mod-
els. A second, more substantive reason was that the purpose 
of running regression models was to solidify, from a multi-
variate perspective, and quantify the various influences on 
GOFs that simpler analysis (e.g., descriptive statistics) might 
suggest. Two-way interactions already suffice to demonstrate 

whether GOFs are subject to joint (and potentially more 
complex) influences of various characteristics. Yet another 
reason why we focused on two-way interactions is to pre-
serve straightforward interpretability and keep the exposition 
simple. Whereas two-way interactions are readily interpret-
able, three- or even four-way interactions would complicate 
matters beyond a point where they add much value.

Finally, we visually inspected selected major influences 
on GOFs. We selected those characteristics for visualization 
which appeared to have a large effect (or complex impact) on 
GOFs in the preceding analyses. The visualization permits 
an in-depth interpretation while compensating for the lack 
of higher-order interaction effects in the regression model.

Simulation results

Sensitivity of GOFs: Descriptive statistics

We first inspected how GOFs (i.e., χ2, χ2/df, CFI, RMSEA, 
and SRMR) were distributed across correctly specified and 
misspecified models in different scenarios (pooled across all 
the other relevant simulation characteristics). Figure 3 shows 
these distributions as violin plots for either correctly speci-
fied or misspecified models regarding factor dimensionality 
(i.e., one-factor analysis models for either a one-factor or 
two-factor population model). Similarly, Figure 4 shows dis-
tributions by the magnitude and proportion of cross-loadings 
in the population model that went unmodeled in the analysis 
model (i.e., two-factor analysis model for two-factor pop-
ulation model either without or with cross-loadings). We 
further split Fig. 4 into uncorrelated and correlated factor 
scenarios (factor correlation = .00 or .30) shown in Panels 
A and B, respectively. In Figs. 3 and 4, the Y-axis represents 
the relevant range of values for each GOF in its original met-
ric and direction. The X-axis represents different degrees of 
severity of the misspecification, with the correctly specified 
model as a point of reference shown in green. The black 
trace line horizontally connects the GOF medians from dif-
ferent scenarios to reflect trends. Tables A1 and A2 in Addi-
tional File 2 of the Supplementary Online Material provide 
detailed descriptive statistics.

As expected, all GOFs signaled worse model fit with 
increasing magnitudes of misspecification in Figs. 3 and 4, 
evidenced by medians shifting toward unfavorable fit val-
ues. That is, all GOFs detected the misspecification of factor 
dimensionality and the misspecification due to increasingly 
unmodeled cross-loadings.

However, in Fig. 4, there are distinct influences of the 
proportion of unmodeled cross-loadings on GOFs in uncor-
related and correlated factor scenarios. For uncorrelated 
factors, an increasing proportion of misspecification shifted 
the GOF distribution toward more unfavorable values. For 

https://osf.io/e6kxa/?view_only=946034c00dee431897f67ca7ded58918
https://osf.io/e6kxa/?view_only=946034c00dee431897f67ca7ded58918


Behavior Research Methods 

1 3

correlated factors, higher proportions of unmodeled cross-
loadings resulted in lower medians of each GOF distribu-
tion (as the zigzag trace line indicates). Consequently, as 
the number of indicators with unmodeled cross-loadings 
increased, GOFs tended to indicate better, not worse, model 
fit. We did not expect that pattern and, thus, attend to it in 
more detail in the Discussion.

Sensitivity and susceptibility of GOFs: Bivariate 
associations with characteristics

Next, we quantified how GOFs responded to the different 
characteristics in correctly specified and misspecified mod-
els. We computed Kendall’s tau-b to measure the bivariate 
association between each simulation characteristic and GOF 
to get a first impression of their sensitivity and susceptibil-
ity. The bivariate analysis revealed that GOFs were sensi-
tive to the magnitude of misspecification, as expected, but 
less so (or even not at all) sensitive to the proportion of 
misspecification (the latter when cross-loadings remained 
unmodeled). GOFs were also strongly susceptible to (i.e., 
associated with) several extraneous characteristics in cor-
rectly specified and misspecified models, especially the type 
of estimator, loading magnitude, sample size, and factor 
correlation. In misspecified models, correlations of GOFs 

with data and analysis characteristics were often larger than 
those with misspecification (especially with loading magni-
tude and factor correlation)—implying that misspecification 
remains hidden in certain scenarios. For space reasons, the 
bivariate analysis is not included here but in Additional File 
3 of the Supplementary Online Material.

Sensitivity and susceptibility of GOFs: Multivariate 
analysis with joint effects of characteristics

Then, for all GOFs, we examined the joint effects of the 
characteristics combined, including their two-way interac-
tion effects, in a regression analysis using a least squares 
estimator (Lumley, 2013; Miller, 1992). We modeled 
quadratic effects in addition to linear ones for independent 
variables with more than two levels. Table 2 summarizes 
the detailed regression results portrayed in Table A3 (for 
correctly specified models) and Table A4 (for misspeci-
fied models) in Additional File 4 of the Supplementary 
Online Material in terms of the direction of effects (not 
actual results or effect sizes). Table A5 in Additional File 
4 of the Supplementary Online Material compares the 
findings from Table 2 with ones already identified in the 
literature review. This comparison suggested that we (1) 
replicated and, thus, solidified several known influences, 

Fig. 3  Distribution of GOFs for scenarios with correctly specified and misspecified factor dimensionality through the manipulation of the factor 
correlation. Note. GOFs in their original metric and direction. Y-axis restricted to improve readability
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(2) extended research by identifying hitherto unknown or 
underappreciated influences, and (3) extended research by 
characteristics that were not as influential as previously 
assumed when jointly considering multiple characteristics 
in a multivariate analysis.

Correctly specified models Several columns in Table 2 sum-
marize the findings for correctly specified one- or two-factor 
models. Table 2 only presents relatively large effects from 
the regression analysis (i.e., relatively large unstandardized 
regression coefficients). After discussing large main effects, 

Fig. 4  Distribution of GOFs for scenarios with correctly speci-
fied and misspecified models through the manipulation of cross-
loadings. Note. X-axis levels refer to the magnitude of misspeci-

fication and proportion of misspecification, separated by a slash. 
GOFs in their original metric and direction. Y-axis restricted to 
improve readability
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we move on to discussing large interaction effects that only 
multivariate analysis can uncover. Finally, we report R2, the 
total variance of GOFs explained by including all data and 
analysis characteristics and their two-way interaction effects.

Multivariate regression showed that GOFs were surpris-
ingly susceptible to various characteristics even in correctly 
specified models. As expected, SRMR depended on the sam-
ple size and suggested a better fit with increasing sample 
size. Likewise, χ2 depended on the number of indicators. 
It suggested better fit with decreasing number of indicators. 
χ2, χ2/df, and RMSEA (the latter especially in scenarios 
with one-factor models) suggested better fit for symmetric 
instead of asymmetric response distributions. The type of 
estimator impacted all GOFs. Effects were mixed for differ-
ent GOFs, as confirmed by multivariate regression. Whereas 
χ2, χ2/df, and RMSEA (the latter in scenarios with one-
factor models) indicated better fit when using DWLS instead 
of ML, CFI and SRMR (the latter especially in scenarios 
with two-factor models) pointed to worse fit with DWLS.

The type of estimator moderated several effects on GOFs. 
The number-of-indicator dependency of χ2 weakened when 
switching from ML to DWLS. Likewise, when using MLR, 
DWLS, or WLSMV instead of ML, the effect of the distribu-
tion shape (with varying skewness) vanished. With DWLS 
instead of ML, increasing loading magnitudes suggested 
better fit according to χ2 and χ2/df, but not the other GOFs. 
DWLS also indicated better model fit for correlated than for 
uncorrelated factors according to all GOFs we tested.

The explained variance (R2) in the multivariate regres-
sion quantifies the joint explanatory power of all simulated 
characteristics on GOFs, which should ideally be low (as 
GOFs are otherwise systematically susceptible to these char-
acteristics). For all GOFs, R2 was consistently higher for 
correctly specified one-factor than two-factor models (see 
Table A3 in Additional File 4 of the Supplementary Online 
Material). The largest shares of explained variance emerged 
for χ2 and SRMR of correctly specified one- and two-factor 
models (.815 ≤ R2 ≤ .894), meaning that χ2 and SRMR most 
strongly varied as a function of the simulation characteris-
tics. By comparison, all tested GOFs derived from χ2 (i.e., 
χ2/df, CFI, and RMSEA) were less influenced by data- and 
analysis-specific characteristics than χ2 (or SRMR, for that 
matter), which in turn limited the GOF variability for cor-
rectly specified models that those characteristics might have 
explained (.061 ≤ R2 ≤ .266).

Misspecified models Every second Table 2 column sum-
marizes relevant main and interaction effects for models 
with misspecified factor dimensionality or unmodeled 
cross-loadings. We identified those effects as relatively 
large (or relevant) that were equal to or larger than the 
main effects of the magnitude or, if applicable, the 
proportion of misspecification (i.e., relatively large In
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unstandardized regression coefficients). After describing 
the sensitivity of GOFs to the magnitude or proportion 
of misspecification, we turn to interactions between mis-
specification and other characteristics. Then, we explore 
the susceptibility of GOFs to data and analysis character-
istics. Finally, we analyze the explained variance (R2) of 
GOFs taking all intended influences (i.e., magnitude and 
proportion of misspecification) and those of other charac-
teristics together.

Multivariate analysis confirmed that GOFs were sensitive 
to the magnitude of misspecification. GOFs indicated worse 
fit as the magnitude of the misspecification increased (i.e., 
misspecification in factor dimensionality, higher unmodeled 
cross-loadings). Likewise, increasing the proportion of cross-
loadings in the population model but leaving them unmod-
eled in the analysis model suggested decreasing model fit.

Crucially, the expected sensitivity of GOFs to mis-
specification varied depending on several other charac-
teristics—a problem that only multivariate analysis could 
uncover. This differential sensitivity of GOFs became 
evident through substantial two-way interaction effects of 
the magnitude and proportion of misspecification with the 
factor correlation (for all GOFs) and the type of estima-
tor (for χ2 and χ2/df only) in scenarios with unmodeled 
cross-loadings. We specifically draw the reader’s attention 
to the interaction between the proportion of misspecifi-
cation and the factor correlation—an interaction already 
evident in the GOF distributions in Fig. 4 and resurfacing 
in the multivariate analysis summarized in Table 2. GOFs 
correctly suggested worse fit with a higher proportion of 
unmodeled cross-loadings when factors were uncorrelated. 
When factors were correlated, GOFs somewhat paradoxi-
cally suggested better fit. Thus, the factor correlation (i.e., 
uncorrelated or correlated) moderated the effect of the 
proportion of unmodeled cross-loadings on GOFs.

With regard to GOFs’ susceptibility to data and analysis 
characteristics, several findings from the multivariate regres-
sion are noteworthy. As the loading magnitude increased, 
most GOFs typically indicated worse fit (i.e., χ2, χ2/df, 
RMSEA, and SRMR; the latter especially in scenarios with 
misspecified factor dimensionality). Only CFI showed a dif-
ferent pattern: It pointed to better model fit with increasing 
loading magnitudes in scenarios with unmodeled cross-
loadings—an effect that vanished with correlated instead 
of uncorrelated factors. We also observed typical influences 
of the type of factor correlation (in scenarios with unmod-
eled cross-loadings) and the type of estimator on all GOFs 
(in scenarios with either misspecified factor dimensionality 
or unmodeled cross-loadings). Most GOFs were not sim-
ply susceptible to the type of estimator, but differentially 
so depending on correlating factors (for χ2, χ2/df, CFI, 
and RMSEA in scenarios with unmodeled cross-loadings). 
This, too, was a complex interaction that only multivariate 

analysis could uncover. We return to this interaction when 
visualizing selected effects.

The magnitude and proportion of misspecification and 
all other characteristics together explained up to 96% of the 
variation in GOFs (usually more than 62% in most scenarios; 
see Table A4 in the Additional File 4 of the Supplementary 
Online Material). As an exception to this rule, χ2 and χ2/df 
were not explained (R2 = .002 at most) in scenarios with 
misspecified factor dimensionality, so the R2 pattern speaks 
favorably of χ2 and the χ2/df ratio as being immune to sys-
tematic influences of data and analysis characteristics but 
also, and problematically so, as being insensitive to model 
misspecification (at least in our extensive simulation).

Sensitivity and susceptibility of GOFs: Selected 
effects visualized

Finally, we visualized selected main and interaction effects 
that turned out to be substantial for all GOFs. The multi-
variate regression confirmed a substantial susceptibility 
of all GOFs to different types of estimators, especially for 
misspecified models. However, the sensitivity of GOFs to 
misspecification (i.e., unmodeled cross-loadings) and their 
susceptibility to the type of estimator were moderated by 
the type of factor correlation (Table 2). Visualizing these 
effects highlights the complex dependency of GOFs on these 
characteristics and the way they interact.

Figures 5 and 6 display these interactions via conditional 
median plots. The Y-axis shows the respective GOF and its 
values (original metric without altering the direction); the 
X-axis conveys the estimators. We disentangled the magni-
tude and, if applicable, proportion of misspecification by 
using differentially colored and, if applicable, shaped lines 
that connect medians for each scenario in the plot. We fur-
ther split the figures by factor correlation for scenarios with 
unmodeled cross-loadings.

As a general trend, GOFs were sensitive to misspecifica-
tion. They correctly indicated worse fit with increasing mag-
nitudes of misspecification across all estimators (Figs. 5 and 
6). As expected, a higher proportion of unmodeled cross-
loadings also went along with worse fit when factors were 
uncorrelated. By contrast, a higher proportion of unmodeled 
cross-loadings suggested better fit when factors were cor-
related (Fig. 6; compare this to Fig. 4; see also Discussion).

Next, we take a closer look at the susceptibility of GOFs 
to the type of estimator. A predominant trend was that 
GOFs were least sensitive to misspecification with DWLS 
compared to any other estimator (Figs. 5 and 6), except 
for SRMR. However, the factor correlation moderated this 
trend. It is capable of being completely reversed. In the 
presence of uncorrelated factors, GOFs (i.e., χ2, χ2/df, and 
RMSEA) suggested worse model fit with DWLS than with 
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other estimators (the only exception being CFI when using 
WLSMV; see Fig. 6).

Discussion

GOFs were designed to detect model misspecification and 
help judge the tenability of latent variable models (e.g., Hu 
& Bentler, 1999). But how well do GOFs fulfill this pur-
pose? We approached this question by conducting the largest 
and most inclusive simulation study to date on the sensitiv-
ity of GOFs to model misspecification in CFA models and 
their susceptibility to other data and analysis characteristics. 
Through this simulation, we were able to integrate, replicate, 
and extend previous findings on the sensitivity and suscep-
tibility of GOFs. Crucially, data and analysis characteristics 
other than misspecification should not influence GOFs, and 
the sensitivity of GOFs should not vary depending on such 
characteristics, lest judgments of model fit may become seri-
ously biased. As we highlight in the following, our simu-
lation results reinforce prior concerns that GOFs clearly 
fall short of these requirements. This suggests that judging 
model fit against fixed cutoffs for GOFs—without paying 
heed to the specific scenario at hand—is a highly problem-
atic practice that researchers should abandon.

Five main insights emerged from our analysis of about 
6 ×  106 simulated datasets. First, unsurprisingly, GOFs were 
sensitive to misspecification of both factor dimensionality 
and cross-loadings: All GOFs correctly indicated worse fit 
as the degree of misspecified factor dimensionality increased 
(i.e., the correlation between two factors that were incor-
rectly modeled as one factor decreased). GOFs also correctly 
indicated worse model fit as the magnitude and proportion of 
unmodeled cross-loadings grew (but only when the factors 
in the model were uncorrelated).

Second, however, the sensitivity of GOFs to model mis-
specification was not the same across all scenarios. Instead, 
sensitivity varied considerably depending on several other 
data and analysis characteristics, especially the type of esti-
mator and the factor correlation in the population model. 
An intriguing finding was that, when factors were corre-
lated (rather than uncorrelated) in the population and anal-
ysis models, GOFs suggested better (rather than worse) 
model fit as the proportion of unmodeled cross-loadings 
grew. It may surprise readers that the ability of GOFs to 
detect misspecification would depend so strongly on the 
correlation of factors. In hindsight, this finding is plausible: 
Fitting a correlated two-factor analysis model that ignores 
substantial cross-loadings in the population model implies 
a different meaning and orientation of the two factors in 

Fig. 5  Median values of GOFs conditioned on the type of estimator and misspecification for scenarios with misspecified factor dimensionality. 
Note. GOFs in their original metric and direction
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the variable space: The factor whose indicators’ cross-
loadings go unmodeled reflects a blend of both factors, 
such that the factor correlation increases. Concomitantly, 
the estimated factor loadings of indicators with unmod-
eled cross-loadings are higher than those of correctly mod-
eled indicators (and—by our simulation design—residual 

variances decrease when cross-loadings are added to the 
population model). Therefore, a model with correlated fac-
tors and substantial cross-loadings that go unmodeled (i.e., 
are assumed to be zero) accounts for the unmodeled cross-
loadings through other model parameters (i.e., the factor 
correlation and factor loadings), resulting in seemingly 

Fig. 6  Median values of GOFs conditioned on the type of estimator and misspecification for scenarios with unmodeled cross-loadings. Note. 
GOFs in their original metric and direction
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good model fit despite clear misspecification. A strong 
association between the estimated factor correlations and 
the proportion of unmodeled cross-loadings corroborated 
this interpretation (tau-b = .54). Put differently, the esti-
mated factor correlations became higher than the induced 
one (i.e., factor correlation of .30 in the population model). 
They increased when the proportion of unmodeled cross-
loadings increased (0%, 17%, 33% unmodeled cross-load-
ings: median of estimated factor correlations = .30, .46, 
.54, respectively). This finding shows that GOFs can be 
deceptive in certain scenarios, a finding particularly seri-
ous in empirical settings in which—contrary to simulation 
scenarios—the population model remains unknown.

Third, GOFs showed considerable susceptibility to data and 
analysis characteristics of correctly specified and misspecified 
models. All GOFs analyzed here were susceptible to influences 
other than model misspecification (especially influences of the 
type of estimator and factor correlation). The susceptibility 
of GOFs to data and analysis characteristics differed between 
correctly specified models, misspecified models, and differ-
ent kinds of misspecified models. We could replicate several 
findings of the susceptibility of GOFs to data and analysis 
characteristics that had been identified previously. Similar to 
previous studies, we identified a strong dependency of GOFs 
on the type of distribution (Reußner, 2019) and the type of esti-
mator (Beauducel & Herzberg, 2006; Nye & Drasgow, 2011) 
in correctly specified models. Like previous studies, we also 
identified a strong dependency of GOFs on the magnitude of 
factor loadings (e.g., Beierl et al., 2018; Hancock & Mueller, 
2011; Heene et al., 2011) and the type of factor correlation 
(only with unmodeled cross-loadings; Beauducel & Wittmann, 
2005) in misspecified models.

Fourth, we also shed new light on former findings and 
unraveled hidden complexities of GOFs’ susceptibility to data 
and analysis characteristics. Most interestingly, former studies 
(Xia & Yang, 2019) found that DWLS-based GOFs (i.e., χ2, 
CFI, and RMSEA) signaled better fit for misspecified models 
than ML-based GOFs did. Our results extended this finding. 
Furthermore, they revealed an interaction with the factor cor-
relation when cross-loadings went unmodeled: DWLS-based 
GOFs pointed to better fit than ML-based ones with correlated 
factors; uncorrelated factors reversed the effect.

Fifth, some known influences on GOFs were not as 
substantial as previously assumed when jointly consid-
ering multiple characteristics in a multivariate analysis. 
For instance, Xia and Yang (2018) found that asymmet-
ric response distributions led to more optimistic model 
fit evaluations for DWLS-/WLSMV-based GOFs (i.e., χ2, 
χ2/df, CFI, and RMSEA) for misspecified models than 
symmetric ones. The same applies to ML-based GOFs 
(i.e., CFI, RMSEA, and SRMR), as Reußner (2019) found. 
Though we replicated these principal findings, our main 
effects of asymmetry, as well as the interaction effects 

between DLWS/WLSMV and asymmetry, were small rela-
tive to other effects in our multivariate analysis. Likewise, 
the sample size dependency of GOFs (except for SRMR in 
correctly specified models) remained relatively small com-
pared to other influences in the multivariate analysis—a 
finding that diverged from what previous studies suggested 
(e.g., Kenny et al., 2015; Sharma et al., 2005; Shi et al., 
2019). These findings highlight the importance of consid-
ering the interdependencies among the different influences 
on GOFs to fully understand the differential sensitivity and 
susceptibility to extraneous influences on GOFs.

As outlined throughout the paper, we investigated the 
sensitivity and susceptibility of GOFs for many combi-
nations of characteristics and types of misspecification, 
extending the scope of previous simulation studies con-
siderably. Still, our enlarged simulations could not cover 
all (potentially relevant) data and analysis characteristics 
or types of misspecification. A limitation to be aware of is 
that we restricted our simulations to CFA models despite 
the presence of several other models in the structural equa-
tion modeling context (see Garrido et al., 2016, for an 
extensive simulation about fit in exploratory structural 
equation models) and beyond. Further, we limited our-
selves to two types of misspecification (i.e., misspecifica-
tion due to factor dimensionality and misspecification due 
to unmodeled cross-loadings), being fully aware that other 
types of misspecification regularly occur in empirical set-
tings (such as unmodeled residual covariances; see Podsa-
koff et al., 2003). Such different types of misspecification 
are likely to impact GOFs differently (e.g., Savalei, 2012; 
Shi et al., 2018b, 2019; Shi & Maydeu-Olivares, 2020). 
While covering many scenarios, we certainly do not cover 
all scenarios one may encounter in research. For exam-
ple, psychological inventories often require CFA models 
with more than two factors and more than 12 indicators; 
to illustrate, the Big Five Inventory–2 (Soto & John, 2017) 
has 15 factors of facet traits nested in five domain factors 
and based on 60 indicators in total. Likewise, sample sizes 
larger than 2000 regularly occur in large-scale assess-
ments (e.g., Programme for the International Assessment 
of Adult Competencies, PIAAC, has a per-country sample 
size of at least 4500; OECD, 2013).

Implications

We acknowledge that the sheer number of results from 
our simulation can be daunting. However, together these 
results convey a clear and straightforward message: 
The sensitivity of GOFs to model misspecification var-
ies greatly across simulation scenarios. Moreover, GOFs 
are susceptible to various data and analysis character-
istics. GOF values reflect characteristics other than the 
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magnitude and proportion of model misspecification. 
These conclusions align with those of several other stud-
ies as our extensive simulation study replicated several 
known influences on GOFs (such as their dependency on 
the type of estimator, e.g., Beauducel & Herzberg, 2006; 
Xia & Yang, 2019). In addition, we extended and refined 
the current knowledge on the sensitivity and susceptibil-
ity of GOFs by uncovering several relevant moderators 
through large interaction effects (especially interactions 
of several characteristics with the type of estimator or 
the factor correlation). Our findings underline even more 
strongly than previous findings that GOFs respond to vari-
ous data and analysis characteristics in complex and hard-
to-predict ways.

Therefore, one must not blindly trust the values of GOFs 
to exclusively reflect (mis)fit, let alone rigidly apply fixed 
cutoffs for model evaluation. We believe this important 
insight should be internalized by all researchers who use 
CFA models, and it should be included in statistics and 
methods curricula dealing with model evaluation. Moreo-
ver, we understand that the findings may sound pessimistic 
and leave some readers wondering how to approach model 
evaluation in the future. However, all fundamental issues 
with GOFs that we and others identified (e.g., Marsh et al., 
2004; McNeish & Wolf, 2023a) have a silver lining. They 
encourage researchers to think more deeply about the appro-
priateness of fixed cutoffs for GOFs and explore alternative 
procedures that will ultimately lead to more accurate judg-
ments about whether a model can be accepted.

Below, we first expand on the problem with fixed cut-
offs for GOFs that springs from the susceptibility of GOFs 
to various data and analysis characteristics. Following this, 
we outline several promising avenues for model evalua-
tions that do not rely on problematic fixed cutoffs.

(Fixed cutoffs for) GOFs are more 
problematic than commonly assumed

Considering the findings of our simulation, how solid as a 
basis for evaluating model fit are fixed cutoffs for GOFs? 
Our results imply that relying on the same fixed cutoffs 
to judge model fit in real data applications can be highly 
problematic and misleading in many settings. Thanks to 
the breadth of scenarios we studied, we can further illus-
trate and quantify this problem. To do so, we estimated 
the frequency distribution of GOFs for correctly specified 
models separately for each simulation scenario. The 95% 
quantile (for χ2, χ2/df, RMSEA, and SRMR; 5% quantile 
for CFI) of each frequency distribution corresponds to a 
5% probability of concluding that a model is misspeci-
fied when it is, in fact, correctly specified (i.e., 5% Type I 

error rate). We can use those quantiles as cutoffs for GOFs. 
Additional File 5 of the Supplementary Online Material 
(Tables A6–A10) shows the tabulated quantiles.

Researchers often take CFI values above .950 to indicate 
good model fit (Hu & Bentler, 1999). This heuristic might be 
sufficiently accurate under some but certainly not under all 
circumstances. Low loading magnitudes in particular under-
mine the nominal Type I error rate when using a cutoff of 
CFI > .950. In some scenarios, much more lenient values than 
.950 maintain a 5% error rate. For example, a cutoff as low as 
CFI = .813 is fully appropriate to demarcate correctly speci-
fied and misspecified models for a one-factor model estimated 
with ML at a sample size of N = 200, with loadings of .40 for 
six indicators and seven response options, in the presence of 
asymmetric data. In other scenarios, such as in the presence 
of high loadings, maintaining a 5% error rate requires much 
stricter values than .950 (e.g., a cutoff of .979 results with 
loadings of .80 in an otherwise identical scenario). To be very 
clear, accepting (or rejecting) models under various scenarios 
at a fixed cutoff (.950) does not effectively control the Type 
I error rate. Fixed cutoffs cannot do justice to every possible 
scenario. Consequently, we strongly discourage researchers 
from inferring the tenability of a model based on conventional, 
fixed cutoffs.

These examples highlight two caveats about fixed cutoffs, 
such as those suggested by Hu and Bentler (1999), that have 
guided researchers’ model evaluations for over two decades. 
Using cutoffs under scenarios not covered in the initial simula-
tion studies is highly problematic. This pertains, for instance, 
to testing models with low versus high factor loadings. For 
model evaluations through GOFs to be valid, researchers need 
to consider their specific data and analysis characteristics. In 
this regard, our findings reinforce previous warnings against 
overgeneralizing cutoffs, including those that Hu and Bentler 
(1999) stated themselves in their original publication suggest-
ing the canonical cutoffs (see also Marsh et al., 2004; McNeish 
& Wolf, 2023a; Nye & Drasgow, 2011).

Moving from fixed to tailored cutoffs 
is the way forward

Where does this leave researchers seeking to evaluate their 
model’s fit? We recommend that researchers take three 
steps. First, researchers should consider and test alterna-
tive models to learn more about potentially better-suited 
models. Second, they should inspect local (mis)fit, for 
instance, via the residual matrix and modification indi-
ces, to investigate whether a model is probably correctly 
specified or misspecified (see Pornprasertmanit, 2014, for 
a sophisticated strategy to evaluate local fit). Third, and 
most promisingly, researchers should inspect global fit not 
via fixed but via tailored (also called “dynamic”; McNeish 
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& Wolf, 2023a, b) cutoffs for GOFs to evaluate the over-
all model fit free from bias, including any entailed misfit. 
Whereas considering alternative models and inspecting 
local fit are time-honored strategies, tailored cutoffs are a 
much more recent approach that, we believe, holds great 
promise and offers a much-needed remedy for the issues 
with GOFs identified in our present simulation. We believe 
research needs to move toward tailored cutoffs for GOFs 
that take into account the specific data and analysis char-
acteristics. However, tailored cutoffs are a recent introduc-
tion and not yet widely used. To foster the much-needed 
move toward tailored cutoffs, we outline the procedures 
for evaluating models via tailored cutoffs in more detail 
here. We hope to encourage more researchers to consider 
this emerging strategy. We also provide practical exam-
ples and R code illustrating how tailored cutoffs can be 
implemented.

Tailoring cutoffs for GOFs to the specific data and 
analysis characteristics can be achieved in different ways, 
which we denote as the table-based approach, the equa-
tion-based approach, and the scenario-specific simulation-
based approach. Ultimately, all these approaches are based 
on simulations; however, they differ in whether the user 
relies on previous simulation results (as in the table-based 
and equation-based approach) or has to simulate data 
themselves to obtain cutoffs (as in the scenario-specific 
simulation-based approach).

Table‑based approach

The simplest strategy to tailor cutoffs to the specific sce-
nario at hand is to consider tables from simulation studies 
with scenario-specific cutoffs, such as Tables A6 to A10 in 
Additional File 5 of the Supplementary Online Material. 
These tables contain cutoffs for combinations of data and 
analysis characteristics. They were created to read out the 
cutoff that can maintain error rates at the desired level in 
one’s specific empirical setting (i.e., accounting for the 
data and analysis characteristics). This strategy is easy 
to apply and reminiscent of looking up critical values of, 
say, z-scores or t-statistics. One merely selects cutoffs for 
GOFs from the simulation scenario most closely resem-
bling one’s own empirical data and analysis characteris-
tics. For example, for a one-factor model with six indica-
tors, five response options, factor loadings around .60, and 
a symmetric response distribution estimated with WLSMV 
in a sample of 200 respondents, one would reject the tested 
model if the χ2/df ratio is larger than 1.918, CFI is smaller 
than .972, RMSEA is larger than .068, or SRMR is larger 
than .048. However, the table-based approach is somewhat 
limited: If one’s actual data and analysis characteristics are 
dissimilar to those of simulation scenarios, cutoffs are not 

given. The other two strategies to arrive at tailored cutoffs 
go beyond the relatively simplistic table-based strategy to 
overcome these limitations.

Equation‑based approach

In the equation-based approach,8 regression formulae predict 
tailored cutoffs (Nye & Drasgow, 2011). Formulae originate 
from a single simulation study containing information about 
how data and analysis characteristics influence GOFs. Users 
plug characteristics of their own empirical setting into the 
formulae to obtain cutoffs.

To exemplify the equation-based approach, we derived 
regression formulae for tailored cutoffs based on the results 
of our present simulation. The procedure was as follows: We 
took the cutoffs of Tables A6 to A10 in Additional File 5 of 
the Supplementary Online Material as dependent variables 
and regressed them on all data and analysis characteristics 
and their quadratic terms and two-way interactions (sepa-
rately for each GOF). The data and analysis characteristics, 
as well as their quadratic terms and two-way interactions, 
explained a large share of the variation in cutoffs for GOFs 
(R2 ≥ .810). We saved the regression coefficients in Table 3. 
The sum of the regression coefficients times the characteris-
tics (i.e., the regression formula) predicts an appropriate cut-
off for each GOF. To arrive at appropriate cutoffs for one’s 
own empirical problem, one plugs their empirical data and 
analysis characteristics into the regression formulae using 
the coefficients from Table 3. We included a user-friendly 
R script in Additional File 6 of the Supplementary Online 
Material for this purpose. In principle, the regression for-
mulae allow researchers to derive appropriate cutoffs even 
if their empirical data and analysis characteristics do not 
perfectly match the ones from the simulation studies.

This approach constitutes a clear advancement over the 
status quo of rigidly using fixed cutoffs, whatever the pre-
ferred heuristic for a GOF is. Further, it is more general than 
the simplistic table-based approach described first. It is also 
highly efficient because no new simulation must be carried 
out (as in the scenario-specific simulation-based approach 
described next). However, the potential downside is that 
the starting point is still a single simulation study that can 
never cover all possible real-world settings, no matter how 

8 One can also loosely subsume another approach under the equa-
tion-based category: Researchers can derive tailored cutoffs by rely-
ing on statistical assumptions of the χ2 distribution without and with 
misspecification (Moshagen & Erdfelder, 2016). Except for the distri-
bution of χ2, GOF distributions are unknown. As many GOFs (e.g., 
RMSEA) incorporate the χ2, one can infer their distribution without 
and with model misspecification from the χ2 distribution. A certain 
quantile of the GOF distribution without misspecification may serve 
as a cutoff.
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Table 3  Regression coefficients to derive tailored cutoffs

Independent variables Dependent variable

χ2a χ2/df CFI RMSEA SRMR

Intercept −23.94201 3.28519 −0.53129 0.13285 0.05279
Main effects

Estimator (Reference ML)
   MLR 6.72418 0.45189 −0.21041 0.01536 NA
   DWLS 5.84976 −0.68404 0.19662 −0.03062 0.03774
   WLSMV −4.68805 −0.27096 0.06079 −0.00865 NA

Number of indicators 11.08965 −0.04753 0.04016 −0.00235 0.00278
Response options −7.16670 −0.35058 0.12387 −0.00896 −0.00963
Response options^2 0.72250 0.03496 −0.00936 0.00098 0.00084
Asymmetric (Reference symmetric) −0.27294 0.02331 −0.04904 −0.00024 −0.00115
Loading magnitude −25.73792 −3.58376 4.12967 −0.08865 0.02653
Loading magnitude^2 20.41717 2.96247 −2.75074 0.05766 −0.09506
Sample size 0.00906 0.45022 2.27580 −0.12606 −0.05619
Sample size^2 1.20211 −0.15723 −0.82698 0.04331 0.01882
Number of factors −12.26618 −0.19792 −0.32211 −0.00594 0.01323

Two−way interaction effects
Estimator

   MLR×Number of indicators −0.49485 −0.01090 0.00247 −0.00041 NA
   MLR×Response options 0.17085 0.00216 0.00384 0.00005 NA
   MLR×Response options^2 −0.02131 −0.00052 −0.00024 −0.00001 NA
   MLR×Asymmetric −2.71568 −0.08311 −0.00135 −0.00225 NA
   MLR×Loading magnitude −7.76460 −0.99175 0.45378 −0.03246 NA
   MLR×Loading magnitude^2 −2.61117 0.42949 −0.31994 0.01556 NA
   MLR×Sample size −3.93101 −0.26550 0.09707 −0.00768 NA
   MLR×Sample size^2 1.45709 0.09907 −0.03794 0.00311 NA
   MLR×Number of factors 2.71283 0.11781 −0.00868 0.00304 NA
   DWLS×Number of indicators −2.43747 0.00544 0.00158 −0.00038 −0.00022
   DWLS×Response options −0.39327 −0.02550 −0.00440 −0.00033 −0.00758
   DWLS×Response options^2 0.02110 0.00195 0.00034 0.00003 0.00058
   DWLS×Asymmetric −3.01669 −0.09613 0.00452 −0.00244 0.00140
   DWLS×Loading magnitude −41.99689 −1.36226 −0.30944 −0.05998 −0.00280
   DWLS×Loading magnitude^2 16.73726 0.48895 0.18350 0.02118 −0.00311
   DWLS×Sample size −2.10846 −0.11430 −0.11629 0.02896 −0.02165
   DWLS×Sample size^2 0.75628 0.04419 0.04250 −0.00982 0.00756
   DWLS×Number of factors 16.86537 0.64662 −0.01075 0.02281 0.00330
   WLSMV×Number of indicators −0.60239 −0.00413 0.00097 −0.00029 NA
   WLSMV×Response options 0.63654 0.01440 −0.00270 0.00054 NA
   WLSMV×Response options^2 −0.05539 −0.00115 0.00022 −0.00004 NA
   WLSMV×Asymmetric −2.91980 −0.09484 0.00368 −0.00256 NA
   WLSMV×Loading magnitude 10.29574 0.24493 −0.06415 0.00577 NA
   WLSMV×Loading magnitude^2 −15.70961 −0.45035 0.03405 −0.01194 NA
   WLSMV×Sample size 3.01133 0.05021 −0.04314 0.00682 NA
   WLSMV×Sample size^2 −1.16888 −0.01938 0.01545 −0.00250 NA
   WLSMV×Number of factors 3.90897 0.15706 −0.00697 0.00452 NA

Number of indicators×
   Response options −0.25997 −0.00776 0.00002 −0.00033 −0.00019
   Response options^2 0.02789 0.00081 −0.00003 0.00004 0.00002
   Asymmetric 0.17890 0.00040 0.00034 0.00002 0.00003
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Table 3  (continued)

Independent variables Dependent variable

χ2a χ2/df CFI RMSEA SRMR

   Loading magnitude −4.80064 −0.04388 −0.10488 −0.00698 −0.00316
   Loading magnitude^2 3.83154 0.04484 0.07017 0.00652 0.00190
   Sample size −1.04664 0.00016 −0.01404 0.00655 −0.00160
   Sample size^2 0.38895 0.00157 0.00500 −0.00224 0.00058
   Number of factors 0.64889 −0.01164 0.00234 −0.00030 0.00003

Response options×
   Asymmetric 0.47743 0.01356 −0.00319 0.00043 0.00061
   Loading magnitude 22.43204 1.53987 −0.33800 0.04504 0.01794
   Loading magnitude^2 −19.13312 −1.33866 0.23297 −0.03818 −0.01639
   Sample size 2.42094 −0.20111 −0.00951 −0.00561 0.01125
   Sample size^2 −1.16974 0.07428 0.00109 0.00208 −0.00388
   Number of factors 1.18404 0.04887 0.00555 0.00098 0.00068

Response options^2×
   Asymmetric −0.04690 −0.00122 0.00031 −0.00005 −0.00006
   Loading magnitude −2.12451 −0.14685 0.02682 −0.00451 −0.00166
   Loading magnitude^2 1.79085 0.12730 −0.01863 0.00381 0.00151
   Sample size −0.40475 0.01424 0.00006 0.00030 −0.00097
   Sample size^2 0.17973 −0.00524 0.00020 −0.00011 0.00034
   Number of factors −0.10687 −0.00463 −0.00039 −0.00010 −0.00005

Asymmetric×
   Loading magnitude 3.71952 0.27558 0.11280 0.01327 0.00844
   Loading magnitude^2 −1.17710 −0.18396 −0.07174 −0.00937 −0.00713
   Sample size 0.29781 −0.00253 0.02437 −0.00219 −0.00393
   Sample size^2 −0.16484 −0.00346 −0.00870 0.00072 0.00138
   Number of factors −0.81043 −0.03425 −0.00208 −0.00101 −0.00028

Loading magnitude×
   Sample size 16.43214 0.03858 −5.87140 0.01187 −0.04098
   Sample size^2 −8.22119 −0.08583 2.14448 −0.00411 0.01586
   Number of factors 1.82103 0.21559 0.65988 0.02703 −0.01793

Loading magnitude^2×
   Sample size −15.03742 −0.14310 3.87122 0.00022 0.06458
   Sample size^2 7.54665 0.12608 −1.41187 0.00015 −0.02336
   Number of factors 5.02726 0.03351 −0.43878 −0.01413 0.04983

Sample size×
   Number of factors 0.39375 0.08076 0.09529 −0.00988 −0.02326

Sample size^2×
   Number of factors −0.26943 −0.03848 −0.03378 0.00320 0.00784

Number of factors×
   Correlated factors −2.51728 −0.05765 0.00487 −0.00223 −0.00481

R2 .970 .810 .902 .903 .963
N 1296 1296 1296 1296 648

The sum of the regression coefficients times the characteristics (i.e., the regression formula) predicts an appropriate cutoff. Divide the sample 
size by 1000 before plugging it into the equation. Regression coefficients are unstandardized and uncentered. Independent variables with more 
than two simulated levels were entered additionally in quadratic form. The multiplication sign (×) indicates interaction terms. SRMR is only 
available for comparing ML and DWLS (because SRMR is identical for ML and MLR, as well as DWLS and WLSMV, Maydeu-Olivares et al., 
2018). NA = not applicable (i.e.,  scenario not tested or  testable). aχ2 depends on the degrees of freedom and, thus, predicted cutoffs for χ2 
are barely useful for models different from the ones in the paper.
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thorough. Although extrapolation is possible in principle, 
researchers should only use the regression formulae for tai-
lored cutoffs when empirical settings do not strongly deviate 
from the simulation scenarios.

Scenario‑specific simulation‑based approach

If empirical settings strongly deviate from simulation scenarios, 
neither cutoff tables nor regression formulae should be used for 
cutoffs. Instead, one may adopt the third approach and conduct 
a small-scale, scenario-specific simulation to investigate the 
behavior of GOFs. Several authors have suggested this approach 
(most recently, McNeish & Wolf, 2023a, b; for similar earlier 
work, see Millsap, 2007, 2013; Niemand & Mai, 2018; Pornpra-
sertmanit, 2014; for nested models, see Pornprasertmanit et al., 
2013). Before initializing the simulation, researchers define 
analysis and population models. Then, they simulate data from 
the population model (via a Monte Carlo simulation, similar 
to what we did in the present paper), fit the analysis model to 
the data, and record the GOFs. Similar to our tables in Addi-
tional File 5 of the Supplementary Online Material, researchers 
then extract cutoffs from the resulting GOF distributions. The 
analysis model can equal (or approximately equal; see Millsap, 
2007, 2013; Pornprasertmanit, 2014) the population model, 
corresponding to a correctly specified model. Cutoffs derived 
from the GOF distribution of correctly specified models con-
trol the Type I error rate (as implemented in the approaches of 
McNeish & Wolf, 2023a, b; Millsap, 2007, 2013; Niemand & 
Mai, 2018; Pornprasertmanit, 2014). Including a misspecified 
model (i.e., where the analysis model differs considerably from 
the population model) allows one to control the Type II error 
rate (i.e., the probability of concluding that a model is correctly 
specified when it is, in fact, misspecified) in the derivation of 
tailored cutoffs (as implemented in the approaches of McNeish 
& Wolf, 2023a, b, and Pornprasertmanit, 2014). Further, includ-
ing several misspecified models might help to evaluate model fit 
gradually (e.g., McNeish & Wolf, 2023a, b).

Choosing simulation characteristics (e.g., analysis model, 
sample size, estimator) similar to those of the empirical 
setting of interest is the gold standard to arrive at tailored 
cutoffs. By simulating data, cutoffs can be tailored to the 
setting of interest. However, the flexibility of the scenario-
specific simulation-based approach may not always be a 
merit but also a difficulty. The approach demands specific 
knowledge about defining population and analysis models, 
running simulations, and analyzing them. Automated solu-
tions (i.e., Shiny apps) can ease the process considerably 
(e.g., McNeish & Wolf, 2023a).

In sum, the table-, equation-, and scenario-specific simu-
lation-based approaches are three alternative ways to arrive 
at tailored cutoffs for model evaluation. Although these pro-
cedures are more involved than judging model fit against 
fixed cutoffs for GOFs, we hope our simulation results have 

convinced the reader of the urgency of phasing out fixed 
cutoffs in favor of a more appropriate tailored approach.

Conclusion

GOFs were designed to detect model misspecification and 
support the evaluation of model fit. However, our simula-
tion reinforces the view that there are two fundamental 
problems with GOFs. First, GOFs not only reflect model 
misspecification but are susceptible to a range of data and 
analysis characteristics (other than model misspecifica-
tion). Second, the sensitivity of GOFs to model misspecifi-
cation also depends on such characteristics. In this regard, 
a particularly impressive (and alarming) finding was the 
strong dependence on absolute GOF values and their mis-
specification sensitivity to the factor correlation and the 
type of estimator. Such characteristics are irrelevant from 
the researcher’s point of view for judging model fit or 
identifying misspecification. Hence, they should ideally 
have no bearing at all on GOFs. However, our findings 
converge with—and even expand—previous small-scale 
simulations suggesting that a range of characteristics other 
than misspecification influence absolute GOF values.

The pattern of associations between those charac-
teristics and GOFs is complex, as interaction effects 
attest; it varies for different GOFs and is hard to predict 
for specific constellations. This complexity means that 
simple modifications cannot come to the rescue, such 
as adding or subtracting a constant from cutoff values. 
The problem lies with fixed cutoffs for GOFs as such. 
Fixed cutoffs cannot do justice to all combinations of 
data and analysis characteristics researchers encounter 
in applied settings.

Our findings make it abundantly clear that the conven-
tional practice of relying on fixed cutoffs for GOFs is far 
more problematic than commonly assumed. Even though 
previous simulations had raised some of the issues high-
lighted in our study, the practice has not changed. Hu and 
Bentler (1999) already cautioned researchers to execute 
discretion when using their cutoffs (see also McNeish & 
Wolf, 2023a). However, researchers continue to rely on 
these cutoffs even in empirical settings markedly dif-
ferent from the simulation scenarios covered by Hu and 
Bentler (1999) and related studies by Reußner (2019) and 
Rutkowski and Svetina (2014). For example, fixed cutoffs 
are often applied to one-factor CFA models, even though 
Hu and Bentler’s simulations did not include such models 
(McNeish & Wolf, 2023b). More than 20 years later, our 
detailed simulation resonates with their initial warnings 
and brings several additional issues to light. Consequently, 
we urge researchers to be wary of the problems with fixed 
cutoffs.
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We recommend that researchers routinely adopt the 
time-honored strategies of inspecting (and reporting) local 
fit and comparing alternative models instead of relying 
exclusively on GOFs. Methodologists have long advocated 
these effective strategies, but these are far from being univer-
sally applied in published research. Ultimately, we believe 
the field needs to move away from relying on fixed cutoffs 
and toward cutoffs tailored to the specific data and analysis 
characteristics (e.g., McNeish & Wolf, 2023a, b). Tailored 
cutoffs offer an appropriate response to the susceptibility of 
GOFs and the ensuing lack of validity of fixed cutoffs. To 
contribute to a much-needed shift toward tailored cutoffs, we 
discussed and developed emerging strategies for implement-
ing tailored cutoffs and pointed to ongoing work that aims 
to improve these strategies further. We hope our simulation 
results will encourage researchers to embark on this path, 
ultimately resulting in valid and replicable research.

Abbreviations CFA: confirmatory factor analysis; CFI: comparative 
fit index; df: degrees of freedom; DWLS: diagonally weighted least 
squares; GOF:  goodness-of-fit index; ML:  maximum likelihood; 
MLR: robust maximum likelihood; RMSEA: root mean square error 
of approximation; SRMR: standardized root mean square residual; 
WLSMV: diagonally weighted least squares mean and variance adjusted
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