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Abstract

Over the last decades, the availability of genetic data has exploded and genomic infor-
mation is widely used in a variety of fields today. While the cost of genotyping and se-
quence assembly has been steadily decreasing, software in quantitative genetics has been
struggling to keep up with increasing computational demands. Many existing software
solutions use strategies for shared-memory parallelism and instruction-level parallelism.
However, partly due to a lack of suitable hardware instructions, the dissemination of
software that utilizes accelerator hardware has been limited.
In this thesis, novel methods for the efficient processing of genomic data are presented.
By utilizing low-precision integer instructions on modern NVIDIA® GPUs, the necessity
to decompress SNP data for statistical evaluations is avoided. Due to the memory
efficiency of compressed genomic storage formats, datasets of large populations with a
high number of SNPs can be analyzed on a single datacenter GPU.
The benefits of these new techniques are demonstrated through examples of important
quantities in quantitative genetics. First, it is shown that the analytical calculation of
population statistics, such as the genomic relationship matrix or linkage disequilibrium,
is significantly accelerated compared to existing methods. Second, the numerical evalu-
ation of a single-step BLUP model is used to demonstrate that the use of accelerators
can significantly reduce computing times required for estimating genetic values based
on iterative-solver methods. Lastly, it is illustrated that the estimation of parameters
for an important covariance model can be significantly improved.

Zusammenfassung

Über die letzten Jahrzehnten sind genetische Daten leicht verfügbar geworden und
genetische Informationen werden heute in einer Vielzahl von Bereichen verwendet.
Während die Kosten für Genotypisierung und Sequenzalignment stetig gesunken sind,
hat die Software in der quantitativen Genetik Schwierigkeiten, mit den steigenden
Rechenanforderungen Schritt zu halten. Viele bestehende Softwarelösungen nutzen
Strategien für Shared-Memory-Parallelismus und Instruction-Level-Parallelismus. Teil-
weise aufgrund der fehlenden Hardware-Instruktionen ist die Verbreitung von Software,
die Beschleuniger-Hardware nutzt, jedoch begrenzt.
In dieser Dissertation werden neue Methoden zur effizienten Verarbeitung von genomis-
chen Daten vorgestellt. Durch die Nutzung von Low-Precision-Integer-Instruktionen auf
modernen NVIDIA® GPUs wird die Notwendigkeit umgangen, SNP-Daten für statis-
tische Auswertungen zu dekomprimieren. Aufgrund der Speichereffizienz von komprim-
ierten genomischen Speicherformaten können dadurch Datensätze großer Populationen
mit einer hohen Anzahl von SNPs auf einer einzelnen Datacenter-GPU analysiert wer-
den.
Die Vorteile dieser neuen Techniken werden anhand von Beispielen wichtiger Statistiken
in der quantitativen Genetik demonstriert. Erstens wird gezeigt, dass die analytis-
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che Berechnung von Populationsstatistiken, wie der genomischen Verwandschaftsmatrix
oder des Linkage Disequilibriums, im Vergleich zu bestehenden Methoden erheblich
beschleunigt wird. Zweitens wird die numerische Auswertung eines Single-Step-BLUP-
Modells verwendet, um zu demonstrieren, dass die Nutzung von Beschleunigern die er-
forderlichen Rechenzeiten für die Schätzung von genetischen Werten auf Basis iterativer
Lösungsmethoden erheblich reduzieren kann. Zuletzt wird illustriert, dass die Schätzung
von Parametern für ein wichtiges Kovarianzmodell signifikant verbessert werden kann.
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Chapter 1

Introduction

Through technological advances, the field of genetics has seen unparalleled changes over
the last decades. DNA sequencing has become dramatically cheaper, broadening the
research and applications of the technology. Next-generation sequencing technologies
have enabled genotyping at a reasonable price and even whole-genome sequencing is
now regularly used in clinical studies (Schwarze et al., 2018). Yet, in large-scale genomic
evaluations, genotyping is still mainly based on measuring the expression of single-
nucleotide polymorphisms (SNPs) today, a common form of variation in the genome.
SNPs describe a deviation at a single base pair of the genome. Commonly, only two
possible alleles for the genotype of the base pair are considered in which case the SNP is
called biallelic. Additionally, SNPs in which the less frequent allele falls short of a certain
minimum frequency are excluded from the analysis. SNP arrays of different densities are
available for genotyping, that is, the arrays detect a varying number of SNPs along the
genome. In species with two sets of chromosomes, the SNP variation in an individual
can be either on both chromosomes, on one chromosome or on none of the chromosomes.
In quantitative genetics, SNPs are used to investigate associations between genes and
phenotypes and should be thought of as an auxiliary tool for capturing the full genome
(Mrode, 2014).
Augmenting the progress in genotyping technology, improvements in computational
power have allowed researchers to process data faster and cheaper and to use available
genomic data more effectively. On top of that, the developing field of bioinformatics has
produced novel genomic technologies itself: For instance, it played a vital role in the
development of the gene editing technology CRISPR-Cas (Alkhnbashi et al., 2020).
However, the development of efficient and scalable software solutions traditionally has
not focused on the statistical analysis of genomic data outside of phylogenomics. Review
studies have found that most endeavors to leverage the potential of modern computing
architectures are concentrated on genome assembly tasks like sequence aligning. Graph-
ics processing units (GPUs) have been used for tasks in sequence analysis (Taylor-Weiner
et al., 2019; Krishna and Elisseev, 2021) and the hardware vendor NVIDIA® has de-
veloped proprietary software for some of these operations (O’Connell et al., 2023). On
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the other hand, these review studies did not identify any software in quantitative and
statistical genetics that is targeted at high-performance computing systems (Ocaña and
de Oliveira, 2015; Shi and Wang, 2019). The de-facto standard software packages for as-
sociation studies, PLINK (Chang et al., 2015) and GCTA (Yang et al., 2011), offer data
parallelism and shared-memory parallelism strategies, but no scalability to multi-node
architectures, despite their intended use in big data settings.
Partly due to a lack of hardware instructions, utilization of GPUs in statistical ge-
nomics has been scarce. In this thesis, some of the functionality of the software library
miraculix is presented. The library comprises highly efficient algorithms for essential
algebraic operations on compressed genomic data on both CPUs as well as GPUs. In
particular, it avoids the need to decompress SNP data before performing mathematical
operations on it by employing novel instructions on modern NVIDIA® GPUs. Due to
the memory efficiency of compressed genomic storage formats, huge amounts of data
can be processed on a single datacenter GPU. To the best of the author’s knowledge,
miraculix is the first software to perform operations on compressed genomic data on
GPUs without a prior full decompression of the data. As will be shown later in this
thesis, this functionality has the potential for a significant reduction in computing times
in genomic evaluation pipelines, while simultaneously increasing energy efficiency signif-
icantly. Furthermore, the CPU implementation in miraculix substantially outperforms
other popular libraries such as PLINK (Chang et al., 2015) and GCTA (Jiang and Reif,
2015).

1.1 Outline

This thesis is structured as follows. In Chapter 2, a summary of essential theory from
statistical genetics is presented. It is mainly based on the foundational work by Falconer
(1996) and Mrode (2014).
In Chapter 3, techniques for efficient multiplications of SNP matrices on GPUs are
introduced. Approaches implemented in existing software solutions are discussed and
the methodology for offloading this operation to NVIDIA® GPUs is presented. Its
benefits for common statistical operations on genomic data are demonstrated. This
chapter is based on the article

Freudenberg, A., Schlather, M., Moerkotte, G., and Pook, T. (2023a). mira-
culix: Accelerated Computations for Genomic Analysis. Manuscript submit-
ted. Freudenberg2023a

In Chapter 4, novel methods for multiplying SNP matrices with floating-point vectors
are presented. Its advantages are discussed at the example of single-step models, a
popular method for combining genomic data with pedigree data in large-scale genomic
evaluations. The chapter is based on

Freudenberg, A., Vandenplas, J., Schlather, M., Pook, T., Evans, R., and
ten Napel, J. (2023c). Accelerated matrix-vector multiplications for matri-
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1. Introduction

ces involving genotype covariates with applications in genomic prediction.
Accepted for publication in Frontiers in Genetics. Freudenberg2023c

and an extension to this manuscript is intended to be published in

Freudenberg, A., Schlather, M., Vandenplas, J., and Evans, R. (2023b). Ac-
celerating single-step evaluations through GPU offloading. Manuscript in
preparation Freudenberg2023b

Chapter 5 presents novel approaches for estimating parameters of the Whittle-Matérn
covariance function which has been used to study polygenic effects in genomics. This
chapter is based on unpublished work with Martin Schlather.
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Chapter 2

Statistical models in genetics

Initially, some important concepts in the modeling of the relationship between genes and
quantitative traits are described. This section is largely based on the foundational work
by Falconer (1996). Though these approaches originated in animal breeding, they have
swashed to other areas of quantitative genetics, e.g., heritability modeling in human
genetics.

2.1 Quantitative trait modelling

The assemblage of genes in an individual is referred to as a genotype. Genetic theory
assumes that the value of a quantitative phenotype P can be decomposed into the sum
of the influence of the genotype G and an environmental deviation E, i.e.,

P = G+E.

The quantity G is coined genotypic value or genetic value. If it is assumed that only
a single biallelic variation is causal for the trait, then the genotypic value is explained
by two factors: The average effect A and the dominance deviation D. In this case,
the average effect is the theoretical average quantitative effect on the phenotypic trait
of randomly substituting one allele at one chromosome set by the other possible allele.
However, in practice, it is impossible to actually flip alleles without gene editing. There-
fore, the concept of breeding values has been introduced: The breeding value is defined
as twice the expected deviation in the phenotype of the offspring of an individual com-
pared to the population average, where the multiplication by two is used to account for
the fact that offspring only inherit half their genes from one parent. The breeding value
for a single locus is then equal to the sum of the average effects of the two alleles that
are present in the individual.
However, the realized genotypic value G might deviate from the sum of the average
effects at this locus when the alleles on the two sets of chromosomes do not influence the
trait independently but interact with each other. This is measured by the dominance
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deviation term D. It is defined as the difference between the average effect and the
actually realized impact on the phenotype.
If multiple causal variants are considered and it is assumed that alleles interact across
loci when influencing a trait, then there is another effect: Interaction deviation I (also
called epistatic deviation). Hence, the genotypic value G can be split into

G = A+D+ I.

Due to computational challenges when considering the interactions between tens of
thousands of SNPs, whose number grows quadratically with the number of variants,
epistatic effects are often neglected in practice. Yet, they are sometimes studied when
seeking to explain missing predictiveness of genotypic information (Hemani et al., 2013;
Vojgani et al., 2021, 2023). In this thesis, the focus will lie on the analysis of additive
effects.
When seeking to explain variation in a phenotypic value, its variance VP is analyzed.
To this end, it is commonly assumed that the variables A, D, I and E are uncorre-
lated, though genotype-environment interaction effects can be included in principle by
assuming a non-zero covariance between E and G. The associated variances are termed
additive variance VA, dominance variance VD, interaction variance VI and environmen-
tal variance VE, while the sum of additive, dominance and interaction variances is called
genotypic variance VG. These quantities are used to mathematically define the concept
of heritability: Heritability in the broad sense is defined by the ratio of phenotypic
variance explained by genotypic variance, i.e. VG/VP. Heritability in the narrow sense
refers to the explained variance excluding dominance and interaction effects, VA/VP.

2.2 Statistical inference of genetic effects

Driven by the rising availability of genomic data over the last 20 years, a high volume of
research has focused on improving the estimation of the aforementioned quantities in em-
pirical settings. Additionally, the new area of genomic prediction has been established
which focuses on predicting unobserved phenotypic values from genomic resemblance
(Morota and Gianola, 2014). Chapter 11 in Mrode (2014) gives an overview of estab-
lished models which are the basis of most statistical models used for inferring breeding
values and genetic effects today. We give a brief summary of the relevant approaches.
Though whole-genome regression is becoming more popular, most quantitative genomic
studies are based on the more cheaply available SNP arrays, which genotype genetic
markers at different densities. In general, the genetic theory behind the use of SNPs
assumes that they either directly influence phenotypic expression or are linked to other
base pairs which are causal for this trait (Falconer, 1996; Mrode, 2014). Yet, the sub-par
performance of genotypic data in explaining phenotypic variance has been attributed
to imperfect linkage (Manolio et al., 2009; de los Campos et al., 2015). The theoretical
concept of linkage between alleles during assemblage is specified through Linkage Dis-
equilibrium (LD), which refers to the observed associations of the alleles at two base
pairs. LD is measured in terms of haplotype covariances or haplotype correlations.
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2. Statistical models in genetics

Due to the computational problems indicated above, it is common in animal breeding
that only additive effects are of interest, while polygenic effects (i.e., effects caused by
interactions between SNPs) are only included through an error term. Given a set of k
SNP alleles m1, ...,mk, their effect on a quantitative phenotype y is modeled as

y = µ+
k∑

i=1

ziui + a+ ε, (2.1)

where µ is an intercept term, zi = mi − 2pi is the i-th SNP centered by its allele
frequency pi, ui is the effect size of the i-th SNP, a is the residual polygenic effect
and ε captures environmental deviation. The SNP values m1, ...mk are coded as 0
for one homozygous genotype, 1 for the heterozygous genotype, or 2 for the alternate
homozygous genotype. More specifically, if mi = 0, then both sets of chromosomes in
the individual carry the more frequent allele in the population, which is also referred to
as the major allele. On the other hand, if mi = 2, then both sets of chromosomes have
the minor allele at the locus i, referring to the less frequent allele in the population.
The value pi ∈ [0, 1] is the frequency of the minor allele across the population. In
practical settings, the allele frequencies p1, ..., pk are often not taken to be identical to
the empirically observed frequencies in a population, as the non-random selection of
individuals for genotyping would introduce selection bias. Rather, they are computed
from a reference population or the empirical allele frequency is stratified to account
for the population structure. While the error terms a and ε can be combined for the
case where only genotyped individuals are considered, a separate treatment becomes
important when also non-genotyped individuals are included.
Schreck (2018) and Schreck et al. (2019) investigate the caveats of different modeling
approaches for the effect sizes u1, ..., up. While genetic theory dictates that they are
fixed and variation in genotypic values arises only from differences in the genotype,
this postulation is difficult to account for in practice. If the number of phenotype
records n is smaller than p or if SNPs are in perfect LD, the matrix Z = (z1, ..., zk)
does not have full rank and the best linear unbiased estimator û for the SNP effects
u = (u1, ..., uk)

T is not uniquely determined. Variable selection techniques are studied
in genome-wide association studies (GWAS) to identify variants which are causal for the
trait by themselves. However, when inferring genotypic values, these methods are not
helpful, since evidence suggests that additive effects of quantitative trait loci (QTL) are
infinitesimal for many phenotypes, i.e., the genotypic value is the sum of a high number
of small effects (de los Campos et al., 2015).
Therefore, effect sizes are mostly modeled probabilistically in breeding value estimation
today. In their seminal work, Meuwissen et al. (2001) suggest the use of a random
effects model (REM) or, alternatively, one of two Bayesian models, BayesA and BayesB,
which assume that effect sizes are drawn from a prior distribution. The REM and its
augmentation, the Mixed Effects Model, which also models covariates with fixed effects,
have been introduced into genetics by Fisher (1919). Both modeling approaches, the
REM and Bayesian Models, are still actively used by researchers today. However, in
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large-scale settings, the increased computational requirements of inferring parameters
in Bayesian techniques make them impractical.
In contrast, the parameters β and u in the Mixed Effects Model can be estimated
analytically: The standard Mixed Effects Model for the n-dimensional random vector y
is given by

y = Xβ + Zu+ ε, (2.2)

where X ∈ Rn×l, β ∈ Rl, Z ∈ Rn×k and u, ε are k-dimensional and n-dimensional ran-
dom vectors with existing covariance matrices σ2uΣu, σ

2
εΣε for σ2u, σ2ε > 0 respectively.

The factors σ2u and σ2ε correspond to the additive variance and residual variance respec-
tively and are coined variance components. If σ2uΣu and σ2εΣε are nonsingular, then the
best linear unbiased estimator (BLUE) β̂ for β and the best linear unbiased predictor
(BLUP) û for u suffice the Mixed Model Equations (MME)(

XTΣ−1
ε X XTΣ−1

ε Z

ZTΣ−1
ε X ZTΣ−1

ε Z + σ2
ε

σ2
u
Σ−1
u

)(
β̂
û

)
=

(
XTΣ−1

ε y
ZTΣ−1

ε y

)
, (2.3)

as shown by Henderson (1949). At the same time, any vectors β̂, û which suffice these
equations are the BLUE and BLUP for β and u. Notice that this result holds without
an assumption on the probability distribution of u and ε, though they are commonly
assumed to be normally distributed in practice. The matrices Σu and Σε are often
assumed to be diagonal and the matrix on the left-hand side of the equation is commonly
referred to as the coefficient matrix in the literature.
In genomics, Z = (z1, ..., zk) holds the centered genotypes, and the intercept µ in Equa-
tion (2.1) has been replaced by the fixed effects term Xβ. The fixed effects are often
used to explicitly model environmental effects on the phenotype. In some applications,
only the so-called genomic values g = Zu are of interest. In this case, the model becomes

y = Xβ + g + ε. (2.4)

Formulation 2.2 is referred to as the SNP-BLUP model, whereas 2.4 is called the genomic
BLUP (gBLUP) model. When Σε and the covariance matrix σ2gΣg of g are nonsingular,
then the MME for 2.4 are

(
XTΣ−1

ε X XTΣ−1
ε

Σ−1
ε X Σ−1

ε + σ2
ε

σ2
g
Σ−1
g

)(
β̂
ĝ

)
=

(
XTΣ−1

ε y
Σ−1
ε y

)
. (2.5)

The gBLUP model has the advantage that it can also be posed in the absence of genomic
data. In this case, family relationships are used to construct the relationship matrix
A, also called the numerator matrix. Starting from the oldest animals of consideration,
this matrix is computed recursively by adding the degree of relationship between two
animals to the off-diagonal, utilizing that a parent contributes half of their genes to
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2. Statistical models in genetics

their offspring (see Chapter 2 in Mrode (2014)). This approximation of the genetic
relationship between individuals in a population is then assumed to be the covariance
matrix of g and replaces the genomic relationship matrix (GRM) G in the construction
of the gBLUP model. The matrix A has the useful property that it is always symmetric
positive definite and Henderson (1976) derived rules for constructing its inverse A−1

recursively as well. Starting from the oldest animals in the pedigree again, the matrix
A−1 only has non-zero offdiagonal elements in the indices which correspond to the
parents of an animal, though the values depend on the degree of inbreeding in the
population. Hence, the inverse is highly sparse for large pedigrees.
In fact, this is the traditional approach which was popular before the broad availability
of genomic data. VanRaden (2008) was the first to suggest the use of genomic data
for approximating the number of shared alleles between individuals in the context of
breeding value estimation. He reviewed methods for constructing the GRM G, two of
which are still regularly used today. They assume that effect sizes are independent and
normally distributed, implying that Σu is diagonal. The first method constructs the
GRM G1 as

G1 =
ZZT

2pT (1k − p)
,

where p = (p1, ..., pk)
T is the vector of allele frequencies and 1k = (1, ..., 1) is a vector

of length k consisting of 1s. This method corresponds to Equation 2.2. Indeed, when
using the new variance component σ2g = σ2

u

2pT (1−p)
, then

Cov(g) = σ2gG1.

The use of the constant 2pT (1 − p) was first suggested by Loiselle et al. (1995) as
a way of scaling the covariance matrix ZZT uniformly to account for spatial genetic
structure. VanRaden (2008) used this constant to scale the GRM to be "analogous to
the numerator relationship matrix", which has generally been accepted in the literature.
The second method for constructing a GRM G2 scales the columns of Z by their corre-
sponding allele standard deviation before multiplication, i.e.,

G2 =
(
ZD−1/2

)
(ZD−1/2)T ,

where D = diag(2k · p1 · (1− p1), ..., 2k · pk(1− pk)). This corresponds to a Mixed Ef-
fects Model, in which the genomic values are assumed as g = ZD1/2u. In the case where
p1 = ... = pk, both GRMs coincide, that is, G1 = G2. Though this method accounts for
heteroscedasticity in the observed allele counts, it introduces numerical problems when
the standard deviations are small and assumes that the theoretical variance of all alleles
should be identical (Legarra et al., 2022).
Henderson (1963) showed that, assuming X is of full rank, the BLUE β̂ and BLUP û
are equal to

β̂ =
(
XT

(
σ2εΣε + σ2uZΣuZ

T
)−1

X
)−1

XT
(
σ2εΣε + σ2uZΣuZ

T
)−1

y (2.6)
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and

û = σ2uΣuZ
T
(
σ2εΣε + σ2uZΣuZ

T
)−1

(y −Xβ̂) (2.7)

respectively. Under the assumptions of the GRM G1, the BLUP ĝ for g after reordering
of the variance components is given by

ĝ = G

(
G+

σ2ε
σ2g
1n×n

)−1

(y −Xβ̂). (2.8)

Similarly, the BLUE β̂ can be expressed in terms of G through

β̂ =

(
XT

(
G+

σ2ε
σ2g
1n×n

)−1

X

)−1

XT

(
G+

σ2ε
σ2g
1n×n

)−1

y. (2.9)

For large-scale evaluations, which will be considered later in this thesis, the above
model requires extensions to deal with incomplete information: First, although high-
throughput phenotyping technologies have become available (Solberg et al., 2006), it is
common that not all individuals in a population are phenotyped, e.g., in the case of
sex-specific traits. Yet, they need to be included in breeding value estimation, since
they are similarly subject to selection. In the mixed effects model, they are incorpo-
rated through an incidence matrix W , consisting of zeros and ones, which links each
phenotype observation to its genomic value. The gBLUP model formulation then reads

y = Xβ +Wg + ε. (2.10)

When SNP effects are of interest, it is possible to model residual polygenic effects a
explicitly by replacing Wg by W (Zu+a), where a = (aTn , a

T
g )

T is a random vector with
an existing covariance matrix.
Additionally, it is regularly the case that not all animals in a population are genotyped.
Reasons for that include cost constraints, culling or slaughtering of animals or the in-
clusion of foreign animals, for which only pedigree data is available. Traditionally, a
two-step approach has been used for breeding value estimation in this circumstance:
First, the BLUP ĝ is calculated for the genotyped subset of the population. From these
predictors, the breeding values for non-genotyped animals was derived by using pedigree
data. While this method is still occasionally used today, it has generally been accepted
that it suffers from a number of drawbacks. For instance, accuracy errors in the first
step of the estimation are amplified in the second step. Additionally, genotyping of
animals is usually not performed at random, but rather a select group of fit animals are
genotyped.
Therefore, the two-step approach leads to biased estimates and many evaluation centers
have transitioned to a single-step approach introduced by Legarra et al. (2009) which
combines the two relationship matrices A and G. They use genomic information when
it is available and fall back to pedigree data otherwise, resulting in the matrix

Ã =

(
Ann Ang
Agn G

)
= A+

(
0 0
0 G−Ann

)
, (2.11)

10



2. Statistical models in genetics

where Ann, Ang, Agn and Agg denote the submatrices of A and where the indices non-
genotyped and genotyped animals. However, this matrix can be indefinite and is there-
fore unsuitable for a covariance matrix.
Christensen and Lund (2010) enhanced this approach by assuming that the SNP values
m1, ...,mk are a realization of a normally distributed random variable with covariance
matrix A. If the conditional probability distribution of the full genomic values g is addi-
tionally assumed to be of the form of a GRM, then the restricted conditional covariance
matrix of the genomic values, where only the genotyped SNPs are known, is given by

Cov
((

gn
gg

) ∣∣ Z) = σ2g

(
AgnA

−1
gg GA

−1
gg Ang +Ann −AgnA

−1
gg Ang AgnA

−1
gg G

GA−1
gg Ang G

)
=: σ2gΣg,

(2.12)

by using the formulae for the conditional probability distribution of the multivariate nor-
mal. By separately modeling residual polygenic effects a with mean zero and covariance
matrix σ2aA, they deduce the matrix H,

H =
1

σ2h
Cov

((
gn
gg

)
+ a

∣∣ Z)
=(1− w)Σg + wA

=

(
AgnA

−1
gg G̃A

−1
gg Ang +Ann −AgnA

−1
gg Ang AgnA

−1
gg G̃

G̃A−1
gg Ang G̃

)
(2.13)

for σ2h = σ2g + σ2a, w = σ2a/(σ
2
a + σ2g) and G̃ = (1− w)G+ wAgg, which is non-singular.

The factor w is interpreted as the proportion of the genomic variance that is explained
by residual polygenic effects (see, e.g., Legarra et al. (2022); Vandenplas et al. (2018)).
The inverse H−1 is computed using Schur’s complement, deducing the neat representa-
tion:

H−1 =

(
G̃−1 −A−1

gg 0

0 0

)
+A−1.

Denoting the full genomic value by

g̃ =

(
gn
gg

)
+ a,

the gBLUP model from Equation 2.10 now reads as

y = Xβ +Wg̃ + ε, (2.14)

while the MME are constructed through the expression(
XTΣ−1

ε X XTΣ−1
ε W

W TΣ−1
ε X W TΣ−1

ε W + σ2
ε

σ2
h
H−1

)(
β̂
ĝ

)
=

(
XTΣ−1

ε y
W TΣ−1

ε y

)
. (2.15)
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Though technically only a sufficient and necessary condition for the BLUE β̂ and BLUP
ĝ, the equation system 2.15 is referred to as single-step gBLUP model (ssGBLUP).
Similarly, equation systems that define a BLUP for the SNP effect vector u are called
single-step SNP BLUP (ssSNPBLUP) models.
The authors of Liu et al. (2014) propose the use of the ssSNPBLUP model


XTΣ−1

ε X XT
n

(
Σ
(n)
ε

)−1
Wn XT

g

(
Σ
(g)
ε

)−1
Wg 0

W T
n

(
Σ
(n)
ε

)−1
Xn W T

n

(
Σ
(n)
ε

)−1
Wn +Σ11 Σ12 Σ13

W T
g

(
Σ
(g)
ε

)−1
Xg Σ21 W T

g

(
Σ
(g)
ε

)−1
Wg +Σ22 Σ23

0 Σ31 Σ32 Σ33



β̂
ĝn
ĝg
û



=


XTΣ−1

ε y

W T
n

(
Σ
(n)
ε

)−1
yn

W T
g

(
Σ
(g)
ε

)−1
yg

0

 ,

where the matrix

Σ−1
ε =

(Σ(n)
ε

)−1
0

0
(
Σ
(g)
ε

)−1


is the inverse of the residual covariance matrix and

Σ−1 =

Ann Ang 0
Agn Agg +

(
1
w − 1

)
A−1

gg − 1
wA

−1
gg Z

0 − 1
wZ

TA−1
gg

1
wZ

TA−1
gg Z + 2pT (1−p)

1−w 1k×k

σ−2
u . (2.16)

A computational application of this model will be discussed in Chapter 4. However, this
equation system is only one of many possible formulations. For instance, Mäntysaari
and Strandén (2016) estimate the parameter vector (β̂T , ĝTg , â

T
g , û

T )T instead.
Similarly, variations of the ssGBLUP model have been studied. For instance, Mäntysaari
et al. (2020) propose the use of the decomposition

TT T =
1

w
A−1

gg Z

(
1

w
ZTA−1

gg Z +
2pT (1− p)

1− w
1k×k

)−1

ZT 1

w
Aggw

−1,

so that the Woodbury matrix identity yields

G̃−1 =
1

w
A−1

gg − TT T .
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2. Statistical models in genetics

Due to the matrix T , this model has been coined ssGTBLUP and holds the advantage
that T only needs to be computed once. Furthermore, the right order of calculations
reduces the computational burden if k ≪ n. A slight variation of this model, the
ssGTABLUP model, will be evaluated numerically in Chapter 4.
Practical applications often consider multiple correlated traits. In this case, the above
equations are extended to consider y as a random matrix instead of a random vector.
Furthermore, additional variance components are introduced which model the cross-
correlations between traits which in turn are used to deduce the ratio of cross-correlation
variance components in random effect vectors (Liu et al., 2014; ten Napel et al., 2021).

2.3 Computational considerations

The question of how to estimate breeding values empirically has always been part of the
motivation in animal breeding research. Many of the most influential articles in the field
dedicate a section to the computational implementation of methods (Meuwissen et al.,
2001; VanRaden, 2008; Christensen and Lund, 2010). A general problem when solving
MME of the form 2.3 or 2.5 lies in the presence of variance components in the coefficient
matrix which are a priori unknown. Cunningham and Henderson (1968) suggested a pro-
cedure resembling the expectation-maximization algorithm which iteratively computes
a candidate vector β̂ based on estimates and then derives new estimates for the vari-
ance components from this candidate vector. Today, however, variance components are
commonly estimated in a separate step. A popular method is the use of restricted max-
imum likelihood (REML) (Patterson and Thompson, 1971) which involves maximizing
the likelihood of a linearly transformed Mixed Effects Model

KT y = KTZu+KT ε,

where K ∈ Rm×n is chosen such that KTX = 0. Broadly used software packages
implementing this method include rrBLUP (Endelman, 2011), sommer (Giovanny, 2016)
and ASReml (Gilmour et al., 2002).
Alternatively, estimates for variance components can be obtained from known or esti-
mated heritability values, as the formula for heritability is structurally similar to the
ratio of variance components in the coefficient matrix. For instance, genetic heritability
in humans is often inferred from twin studies.
Computing the BLUE β̂ and the BLUP ĝ or û can be achieved in two ways: The simple
method uses the explicit formulae 2.6, 2.7, 2.8 and/or 2.9. Special care is needed in the
treatment of the involved matrix inverses. On current computers, only dense equation
systems in the low hundreds of thousands can be solved through direct inversion, e.g., a
Cholesky decomposition. Further issues are based on operations on the matrix X as the
number of fixed effects can be in the millions. A classical technique for this purpose is
called iteration-on-data which essentially refers to the use of out-of-core computations
(Strandén and Lidauer, 1999; Schaeffer and Kennedy, 1986).
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The alternative method employs iterative-solver algorithms, such as Gauß-Seidel or
Preconditioned Conjugate Gradient (PCG), to solve the MME. With this approach
breeding values for tens of millions of animals can be estimated at the moment. Software
solutions based on iterative-solver techniques include MiXBLUP (ten Napel et al., 2021),
Mix99 (Vuori et al., 2006), BLUPF90 (Misztal et al., 2014b) and BOLT (Garrick et al.,
2018), most of which are proprietary and closed-source. While iterative solvers are
employed in a variety of fields, their use in breeding value estimation has encountered
a number of computational issues. First, if the number of individuals is large, then
the GRM G is singular and, therefore, G̃ is also close to singularity for small values of
w. In turn, this also leads to numerical problems with H−1, though several approaches
have been suggested to avoid its explicit construction (Mäntysaari et al., 2017, 2020).
Second, variations of the ssSNPBLUP model infer not only one BLUP but a combination
of â, ĝg, ĝn and û. This increases the number of equations and thereby often leads to a
slower convergence. Furthermore, the PCG often employs second-order derivatives of the
minimization problem to be solved. However, in single-step models, this information
is difficult to obtain due to the large dimensions of the coefficient matrix involved.
Methods for choosing good preconditioners and improving convergence speed have been
introduced by Taskinen et al. (2017) and Vandenplas et al. (2018, 2019, 2020, 2023).
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Chapter 3

Techniques for an efficient SNP
matrix multiplication

In the previous chapter, we discussed why genomic datasets used in empirical research
are steadily growing in size. This growth has introduced challenges in the calcula-
tion of population statistics that are based on large parts of the genome. In other
fields of research, similar computational challenges have been tackled with the help of
GPUs. Within our work for the manuscript Freudenberg et al. (2023a), we have de-
veloped a range of algorithms for the calculation of essential SNP matrix operations
widely used in empirical studies, which take advantage of modern NVIDIA® GPUs.
We provide an implementation in the C library miraculix, together with exemplary
interfaces in Julia and Fortran. To ease adaptation we also supply functions to calcu-
late a number of derivatives, such as the genomic relationship matrix (GRM), linkage
disequilibrium (LD) statistics, the genomic BLUP, and principal components analysis.
Source code for miraculix is released under the Apache 2.0 licence and is freely avail-
able at https://github.com/alexfreudenberg/miraculix. The library is developed in C,
C++ and CUDA and has supplementary bindings in Julia. An archived version of the
repository is available at https://doi.org/10.6084/m9.figshare.23725977.v1.
This chapter is based on joint work with Martin Schlather, Guido Moerkotte and Torsten
Pook.

3.1 Introduction

Through the emergence of high-throughput sequencing technology, the recent decades
have seen the collection of massive genomic datasets, furthering the research in various
fields in genetics such as human medicine or animal breeding and plant breeding. The
consideration of large amounts of data helps to increase the accuracy of predictive mod-
els (Canela-Xandri et al., 2016; Zhao et al., 2021; Singh and Prasad, 2021) and some
authors claim that big data can contribute towards the closing of the missing heritability
gap (Kim et al., 2017; Pallares, 2019). For breeding purposes, the use of genomic in-
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formation leads to more accurate breeding values at earlier life stages, thus allowing for
earlier selection to both reduce housing cost and increase genetic gain (Schaeffer, 2006).
However, the computational analysis of these datasets places a significant burden on
researchers and practitioners. In this article, we present miraculix, a lightweight C
library which offloads the computation of important genomic quantities to NVIDIA®

GPUs.
A GRM describes the proportion of the genome that is shared between individuals in
a population (Mrode, 2014) and is used in various selection methods such as genomic
BLUP (VanRaden, 2008), single-step genomic BLUP (Misztal et al., 2009), extended ge-
nomic BLUP for modeling epistatic effects (Jiang and Reif, 2015) or (selective) epistatic
random regression BLUP (Vojgani et al., 2021). Similarly, LD measures the statisti-
cal similarity of pairs of SNPs in a population. For instance, LD quantities are used
in human genetic studies to infer information on disease causes or population history
(Pritchard and Przeworski, 2001; Gazal et al., 2017).
Due to the large dimensions of modern genomic data sets, a naive calculation of the
GRM, LD and their derivatives would inflict extraordinarily high computational de-
mands, both in terms of memory requirements and calculation times. Since the SNP
genotype of an individual is usually coded as 0 for one homozygous genotype, 1 for the
heterozygous genotype, or 2 for the alternate homozygous genotype, each SNP value
can be stored in 2 bits of memory. An example of this compressed storage format is the
PLINK binary format. Usually, the reference allele is coded as 0. While many statis-
tical objects in genomics can be calculated through the use of highly-optimized BLAS
libraries, similar utilities are not available for these compressed storage formats.
There exist two main approaches to mitigate this problem. The first one decompresses
SNP genotype data before further processing. For instance, the R packages AGHmatrix
(Rampazo Amadeu et al., 2016), qgg (Rohde et al., 2019), rrBLUP (Endelman, 2011)
and snpReady (Granato et al., 2018) use custom floating-point matrix operations for the
calculation of the GRM or rely on BLAS libraries. The R package SNPRelate (Zheng
et al., 2012) benefits from explicit SIMD instructions in the calculation of LD and the
GRM. Standalone solutions for the calculation of LD include HaploView and LDkit
(Barrett et al., 2004; Yao, 2020).
The calculation of the GRM and LD statistics is also implemented in the software
packages PLINK and GCTA (Yang et al., 2011; Chang et al., 2015) which have popularized
the second approach for processing compressed genotype data. They both utilize bit-
compressed algorithms for an efficient calculation of the dot product of SNP vectors.
Motivated by the remarkable speed improvements of these implementations, a number of
tailored algorithms for the dot product have been developed for different instruction set
architectures which are up to 48 times faster than a naive BLAS-based implementation
(Schlather, 2020).
Additionally, some software solutions have studied the benefit of offloading genotype
matrix operations to the GPU. PLINK 2.0 provides a BLAS-based calculation of the
GRM on GPUs. However, according to the documentation, this functionality is just
provided as a proof-of-concept. The Julia package SnpArrays.jl (Zhou et al., 2020)
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3. Techniques for an efficient SNP matrix multiplication

uses BLAS libraries on the GPU to accelerate the multiplication of SNP matrices by a
floating-point vector.
Over the past few years, there has been a rising interest in low-precision arithmetics in
the field of deep learning (Hubara et al., 2017), which has led to hardware improvements.
For example, recent NVIDIA® architectures have introduced a number of new assembler
instructions for this purpose. In deep learning, the method of quantization reduces the
cardinality of possible values of a parameter by using low-precision integers and has
been used in neural networks to increase the number of parameters (Gholami et al.,
2021; Dettmers et al., 2022; Kim et al., 2022). This progress has opened new paths to
explore for acceleration in genomic calculations.
We present the library miraculix which implements functions for the GPU-based mul-
tiplication of compressed SNP matrices by itself or floating-point matrices, which helps
to accelerate the calculation of the GRM, LD and other essential quantities in ge-
nomics. In contrast to aforementioned software packages such as PLINK, the package
miraculix offers only a narrow, highly fine-tuned functionality and is designed to al-
low a neat integration into genomic analysis pipelines. Furthermore, it differentiates
itself from other GPU software solutions by using low-precision instructions available
on NVIDIA® GPUs to operate on compressed SNP data. This technique reduces device
memory requirements and is substantially faster than solutions in floating-point format.
We provide interfaces which can be used by existing libraries for genomic analysis or in
higher-level programming languages such as Julia (Bezanson et al., 2017).

3.2 Methods

For a diploid species, the SNP matrix M describes the genomic information of a set of
genetic markers in the population. That is, M ∈ {0, 1, 2}n×k, where n is the number of
individuals in the population and k is the number of SNPs. Due to the dramatic decrease
in sequencing costs over the last decades, it is now possible to genotype millions of
SNPs in vast populations or, alternatively, impute incompletely genotyped individuals.
Therefore, researchers regularly deal with extraordinarily large data sets. For instance,
the UK Biobank comprises broad genetic data of hundreds of thousands of human
individuals (Bycroft et al., 2018).
The SNP matrix is used for a wide range of genomic analyses. In population analysis,
for instance, the SNP matrix is used in the classical genomic relationship matrix (GRM)
G, which is defined by

G =
ZZT

2pT · (1k − p)

with 1k = (1, ..., 1)T denoting a vector of length k consisting only of 1s, and p denoting
the vector of allele frequencies. If p is assumed to be equal to the empirically observed
frequencies, then the centered SNP matrix can be computed as

Z = PM, for P = 1n×n − 1/n · 1n1Tn .
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Here, the matrix P scalesM to have zero-centered alleles counts (Method 1 in VanRaden
(2008)). In genome-wide analysis studies (GWAS), the SNP matrix Z is used to calculate
correlations between traits and one or multiple SNPs (Jiang et al., 2019). In the analysis
of linkage disequilibrium, the SNP matrix is used to approximate the correlation statistic
r2 through the computation of the correlation between allele counts in M . Due to the
intrinsic properties of a SNP matrix, the efficient computation of MMT or MTM is
in fact the problem of a {0, 1, 2}-matrix multiplication (Chang et al., 2015; Schlather,
2020).

Memory-efficient storage formats for M , such as the PLINK binary format, only use 2
bits per entry and the conceptual arrangement of these bits yields different multiplication
approaches. A number of highly efficient SIMD-based algorithms for CPUs have been
suggested (Schlather, 2020; Chang et al., 2015). Here, we rely on an allele-count encoding
for our GPU implementation MMAGPU, which stores counts in unsigned 2-bit integers.
This allows us to target the 4-bit matrix multiplication assembler instructions on modern
NVIDIA® GPUs of compute capability 7.5 and higher. Through bit-masking and shift
operations, we obtain a straightforward matrix multiplication microkernel. For fast data
movement from global memory to shared memory to the cores and back, our library
extends the CUTLASS library (NVIDIA, 2023) with 2-bit specializations, utilizing the
available fast tile iterators. Since the resulting multiplication function is mainly bound
by data transfers between the GPU and main memory, we divide the multiplication into
blocks of rows and parallelize the multiplication of these rows into different threads and
streams respectively.

Deviating from the above concepts, an efficient multiplication of the SNP matrix by
a floating-point matrix is required for other essential operations in genomics, e.g., in
GWAS. To our knowledge, miraculix is the first software library which offers a GPU-
based implementation of optimized matrix multiplications on compressed genotype data.
The R packages MoBPS (Pook et al., 2020) and EpiGP (Vojgani et al., 2023), as well as
the proprietary software MiXBLUP (ten Napel et al., 2021), have integrated miraculix.

3.3 Results

Since multiplications of the SNP matrix are an essential operation in a number of com-
putational tasks in genomics, miraculix can be used as the backend for various calcu-
lations. In this section, we describe four possible applications of our high-performance
implementation and demonstrate how it enables the processing and analysis of datasets
in previously unattainable computing times.
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Figure 3.1: Wall clock times for the calculation of the genomic relationship matrix
on three simulated sets of allele markers for 22,000 individuals. The genotype datasets
comprise 50,241 ("low"), 250,000 ("medium") and 1,000,000 ("high") SNPs. Evaluations
were performed on 64 cores of a dual-socket AMD® EPYC 7513 (2.6 GHz) and an
NVIDIA® A100-80GB. Displayed is the median of 5 evaluations when using PLINK, a
cuBLAS-based solution ("Naive GPU") and miraculix.

Table 3.1: Wall clock times for calculating the GRM for different SNP densities. In-
cluded operations: 1) Reading of SNP data in PLINK binary format, 2) Calculation of
allele frequencies, 3) Conversion of PLINK format to miraculix-internal storage format,
4) Reformatting of the dataset from SNP-major to individual-major, 5) SNP-matrix
multiplication, 6) Rank-one updates of the covariance matrix, 7) Scaling of covariance
matrix by sum of allele variances, and 8) Writing the result to the disk. Evaluations
were performed on a dual-socket Intel® Xeon Gold 6230 with 40 dedicated cores.

Wall clock time (s) Low Medium High
Reading 0.20 0.61 1.79
Allele frequencies 0.05 0.27 1.07
Format conversion 0.01 0.05 0.24
Transpose formatting 4.59 19.69 91.97
Matrix multiplication 0.68 1.87 6.66
Rank-one updates 0.74 0.77 0.73
Scaling 0.0 0.0 0.0
Writing 2.27 2.61 2.28
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Figure 3.2: Wall clock times for the calculation of LD matrix R2 for three populations of
50,241 SNPs each. Compared are the times required by PLINK, a cuBLAS-based solution
("Naive GPU") and miraculix. The "small", "medium" and "large" populations have
102,000, 751,000 and 3,101,000 individuals respectively. Evaluations were performed on
64 cores of a dual-socket AMD® EPYC 7513 (2.6 GHz) and an NVIDIA® A100-80GB.
Displayed is the median of 5 evaluations, except for PLINK for which results are based
on a single run.

Table 3.2: Wall clock times for calculating the LD matrix R2 for different population
sizes. Included operations: 1) Reading of SNP data in PLINK binary format, 2) Calcu-
lation of allele frequencies, 3) Conversion of PLINK format to miraculix-internal storage
format, 4) Checking for missing values in SNP data, 5) SNP-matrix multiplication, 6)
Rank-one updates of the covariance matrix, 7) Scaling of covariance matrix by recipro-
cal of diagonal elements of the covariance matrix, and 8) Writing the result to the disk.
Evaluations were performed on a dual-socket Intel® Xeon Gold 6230 with 40 dedicated
cores.

Wall clock time (s) Small Medium Large
Reading 0.43 2.57 10.43
Allele frequencies 0.25 1.72 6.75
Format conversion 0.05 0.37 1.22
Validation of data 0.76 5.60 23.22
Matrix multiplication 4.23 21.20 63.47
Rank-one updates 10.97 10.48 10.19
Scaling 6.63 6.63 6.63
Writing 12.47 13.00 12.41
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3.3.1 Genomic Relationship Matrix

For large dimensions of Z, a straightforward calculation of G becomes computation-
ally prohibitive and a careful treatment of the involved operations is required. The
decomposition

n2cG = n2MMT − n1n1TnMMT − nMMT 1n1
T
n + 1n1

T
nMMT 1n1

T
n ,

with c = 2pT (1k−p), reveals that the matrix G can be obtained from MMT at relatively
low computational costs of order n2 + nk, whereas MMT requires O(kn2) calculations
(Schlather, 2020). Moreover, n2cG is integer-valued and can be computed without any
numerical error.
In Figure 3.1, we compare the computation time of our GPU implementation with the
CPU-targeted solution in PLINK. As these evaluations are performed on different hard-
ware, we also benchmark a naive GPU implementation, which involves unpacking com-
pressed genotype data into unsigned integers and uses the NVIDIA® cuBLAS library for
multiplication. This approach resembles the implementation in PLINK, though we opted
to store the input data in integers of 8 bits to save memory, while the proof-of-concept
in PLINK uses single-precision floating-point values. We simulated three different sets
of genotype markers for a population of 22,000 individuals with the simulation utility
in PLINK: A low-density array with 50,241 markers ("Low"), a medium-density ar-
ray with 250,000 markers ("Medium") and a high-density one with 1,000,000 markers
("High"). For reference, the UK Biobank currently comprises about 850,000 directly
measured variants. We tested the GPU functions on an NVIDIA A100 with 80GB of
device memory, while running PLINK on a dual-socket AMD® EPYC 7513 (2.6 GHz)
with 32 dedicated cores each using the PLINK options –make-rel square cov. The
results displayed are the median of 5 evaluations. Though direct conclusions on the
efficiency of each solution are hard to draw due to the different hardware involved in
the benchmarks, it can be observed that wall clock times in miraculix are smaller by a
factor of at least 18 across the three test sets compared to PLINK. On the large dataset,
the computation time was reduced from approximately 20 minutes to 56 seconds. Jux-
taposing our solution to the simple cuBLAS-based solution, we see that significant speed
gains can still be achieved by using our stack of microkernels for sub-byte integers and
efficient memory management.
Yet, the significantly higher price tag of the A100 GPU has to be considered when
evaluating these results: It is available at about 15,000 USD with a thermal power
design (TDP) of 300W, while each of the two AMD® EPYC 7513 (2.6 GHz) CPUs
has a recommended price of 2,840 USD with a TDP of 200W. Considering the power
consumption of the evaluated methods, it is reasonable to assume that the GPU ap-
proaches are significantly more efficient than PLINK. Making a rough estimate based on
the involved TDPs and computing times, a reduction in the magnitude of 20 can be
presumed.
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3.3.2 The gBLUP model

The genomic BLUP (gBLUP) model is widely used in population analysis to capture
additive genetic effects (Misztal and Legarra, 2017) and is the basis for various extensions
such as the extended gBLUP model, the single-step gBLUP model or the epistatic
random regression BLUP model (Misztal et al., 2009; Jiang and Reif, 2015; Vojgani
et al., 2021). In the gBLUP model, a quantitative trait y is assumed to be in a linear
relationship with the genetic markers and environmental influences, captured in a matrix
X ∈ Rn×l. The effects of SNPs are traditionally assumed to be random, resulting in the
model

y = Xβ + Zu+ ε,

where β ∈ Rl is a fixed effect, u ∼ N (0, σ2u1k×k) is a random effect and ε ∼
N (0, σ2ε1n×n), independent of u, is an error term. Often, the notation g = Zu is
used for the so-called breeding values. Then, the vector g is normally distributed with
mean 0 and covariance matrix σ2gG for a constant σ2g > 0. Furthermore, the best linear
unbiased estimator for β is given by

β̂ =

(
XT

(
σ2ε
σ2g
1n×n +G

)−1

X

)−1

XT

(
σ2ε
σ2g
1n×n +G

)−1

y

and the best linear unbiased predictor for g is given by

ĝ = G

(
G+

σ2ε
σ2g
1n×n

)−1

(y −Xβ̂).

In practice, the variance components σ2u, σ2g are either derived from previous estimates
on the heritability of the trait y (e.g., by comparing offspring phenotypes with parental
phenotypes) or estimated through Restricted Maximum Likelihood (REML), for in-
stance, using the software package ASReml (Butler et al., 2017). Considering the above
identities, the quantities ĝ and β̂ can be derived from the GRM G and estimates σ̂2u, σ̂2g
through a Cholesky decomposition. To this end, we utilize the cuSOLVER library to
offload this computation to the GPU. In a recent empirical study, the full gBLUP calcu-
lation with miraculix showed an acceleration of up to 100 times compared to traditional
software in the case where the heritability is known (Pook et al., 2021). Additionally,
two recent studies investigating the effects of epistasis utilized the efficiency of optimized
CPU functions in miraculix (Vojgani et al., 2021, 2023). However, it should be noted
that the memory requirements for setting up the GRM increase quadratically with the
number of individuals which puts a limit to potential problem sizes.

3.3.3 Linkage Disequilibrium

LD is a way of describing the dependence structure between pairs of alleles in a set of
markers and there exist different statistics to capture this information in a population
(Pritchard and Przeworski, 2001). The software PLINK implements the LD statistics r2,
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Table 3.3: Computing times for various steps in a gBLUP calculation. Computations
were performed on a single NVIDIA® A100-40GB using Julia interface of miraculix.
Total times include additional system start-up time.

Calculation Wall clock Main memory Device memory
time (s) usage (GB) usage (GB)

Data set-up 20.20 26.24 -
GRM 30.48 18.67 5.57
PCA 17.63 5.01 17.23
gBLUP 12.73 0.13 18.67
Total 95 36.08 18.67

D and D′, which can be thought of as correlation measures between alleles. Though
the true linkage value is based on haplotypes, it is sometimes approximated by the
allele count correlations (e.g., in PLINK). That is, the squared correlation between the
columns i and j of M is used as the value for r2. Since the correlation matrix R can be
written as

R = D−1/2ΣMD
−1/2 for ΣM = ZTZ − 4nppT , D = diag(ΣM ).

the matrix R2, consisting of pairwise r2 values, can be computed from ΣM at low cost.
While the computation of R2 for a small block of SNPs with a limited number of
individuals is straight-forward, a simple algorithm for the detection of LD between
distant SNPs (so-called long-range LD) or the calculation of the average LD decay in a
large part of the chromosome becomes cumbersome.
In our experiments, we calculated the matrixR2 of 50,241 markers across three simulated
populations: A small population of 102,000 individuals, a medium-sized one comprising
751,000 individuals and a large population of 3,101,000 individuals. As inflating the large
population to single-precision floating-point values would require approximately 580GB
of memory, this approach is impractical for LD calculation. As miraculix processes
SNP data in compressed format and subdivides the computation of the SNP matrix
multiplication into blocks, only about 6 GB of device memory was required.
Using the same hardware set-up as above, we compare our solution with the implemen-
tation in PLINK on 64 cores and a simple GPU solution in cuBLAS. However, due to
its higher device memory requirements, the latter could only be evaluated on the small
dataset. Results are displayed in Figure 3.2 and are the median of 5 evaluations for the
GPU functions. PLINK calculations were only performed once as wall clock times on
these test sets made further evaluations unreasonable. For LD calculation, the PLINK
options –r square were used. We observe that compute times in PLINK were more
than 400 times higher on the large dataset
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3.3.4 PCA

For a column-wise standardized matrix U ∈ Rn×l, the first m principal components are
defined by Uv1, ..., Uvm, where v1, ..., vm solve the maximization problems

max
v1∈Rl,∥v1∥=1

∥Uv1∥,

and

max
vk∈Rl,∥vk∥=1

∥Uvk∥ such that vTk vj = 0, j = 1, ..., q − 1,

for q = 2, ...,m. Even though the transfer of the PCA to non-continuous data is not
straightforward and a topic of ongoing research (see, e.g., Schlather and Reinbott (2021)
for an approach to non-Euclidean data), PCA is still regularly used as an auxiliary
tool in statistical genomics. Since principal component analysis (PCA) is a dimension-
reducing method aimed at capturing large parts of variation in the dataset, PCs of
the GRM are used in empirical studies in genetics to investigate population structure
(e.g., by Steyn et al. (2022)) or as an auxiliary tool in the REML-based estimation
of variance components (Thompson and Shaw, 1990; Lee and van der Werf, 2016).
Principal components in the SNP direction are regularly used to control for population
stratification in GWAS studies or in breeding value estimation to increase the accuracy of
predictive models (Price et al., 2006). Popular software solutions include Eigensoft and
PLINK (Price et al., 2006; Chang et al., 2015). Since PCA requires the multiplication of
an orthonormal matrix of eigenvectors of UTU by U , miraculix can help to accelerate
the PCs of a population by a fast computation of the GRM. Similarly, the PCs of
SNPs can be derived from the MTM matrix. However, if the dataset contains a lot
of markers, constructing this matrix is challenging. The functionality of miraculix
to multiply a SNP matrix by a floating-point matrix helps to alleviate this burden
since their exists randomized algorithms for the singular value decomposition that do
not require an explicit construction and calculate the first m eigenvalues and their
corresponding eigenvectors with high accuracy (Halko et al., 2011). We provide an
exemplary implementation in Julia.

3.3.5 Computing times

To evaluate the performance of miraculix in a practical setting, we simulate a popula-
tion of 50.000 animals with 727,605 variants based on the Illumina BovineHD BeadChip
(Cunningham et al., 2021). Our supplementary Julia functions are linked to the inter-
face of the library and perform low-cost post-processing operations on its return values.
Emulating typical computational tasks in practice, we first load and process our data,
which is stored in PLINK binary format on the disk, then calculate the GRM of the
population and the SNP-wide PCs for later usage in inferring the parameters of the
gBLUP model. PCs were modeled as fixed effects.
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3. Techniques for an efficient SNP matrix multiplication

Data processing operations were performed on an AMD® EPYC 7513 (2.6 GHz), while
SNP matrix operations were offloaded to an NVIDIA® A100. Since the CPU was
mainly used for data preprocessing, we only used 8 dedicated cores. Due to the memory
efficiency of our implementation, we were able to use the version of the A100 GPU
with only 40GB of device memory. Computation of the GRM involved calculating the
SNP matrix cross-product of dimensions 50,000 times 50,000 while retrieving the first
10 principal components required the multiplication of the SNP matrix by a floating-
point matrix to obtain the approximate eigenvectors of SNP-wide covariance matrix. To
estimate the vectors β̂ and ĝ of the gBLUP model, the Cholesky decomposition of the
stretched GRM needed to be computed to solve the involved equation systems. Since
heritability was assumed to be known, the ratio of variance components did not need
to be estimated on the data.
Results are displayed in Table 3.3. We note that data processing now constitutes a
significant portion of the total compute resource requirements both in terms of memory
and computing times, as it requires a 2-bit format conversion and reordering of the bit-
level values. The construction of the GRM was performed in just approx. 30 seconds,
whereas the PCA and gBLUP calculations needed 18 seconds and 13 seconds each. In
total, approx. 36 gigabytes of main memory and 19 gigabytes of device memory were
used.

3.4 Discussion

We have presented the capability of miraculix to offload essential operations on ge-
nomic data to the GPU. We illustrated its benefits in four applications. The package
outperforms existing CPU-based software solutions significantly and thereby enables
much faster processing of genomic datasets of substantial size. Furthermore, it works
on compressed data and therefore allows the processing of huge datasets.
Overall, our experiments showed that a full gBLUP on a population of 50,000 individuals
could be performed in little more than 1.5 minutes. Considering that a similar task
was assumed to be computationally infeasible by VanRaden (2008) at the time, we
find the performance improvements to be promising and encourage the use of GPUs
to accelerate the processing of large datasets in genomics. While there is a suite of
established methods to deal with extraordinary dimensions, e.g., Algorithm for Proven
and Young (APY) (Misztal et al., 2014a) or the use of iterative solvers (Strandén and
Lidauer, 1999), these approaches can similarly benefit from the techniques introduced
in this article.
To allow miraculix to handle further increases in dataset sizes, future software versions
might include distributed calculations for high-performance clusters via a Message Pass-
ing Interface (MPI), which would extend its applicability to datasets that still cannot be
fully stored in device memory. Furthermore, since the variance component estimation
through REML is another computational bottleneck in genomic analyses, it would be
interesting to offload this procedure to the GPU as well. Extensions of miraculix to
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AMD® or Intel® GPUs would be useful to allow researchers to take full advantage of
existing compute hardware.
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Chapter 4

Acceleration of SNP matrix-vector
multiplications for single-step
models

In the last decade, a number of methods have been suggested to deal with large amounts
of genetic data in genomic predictions. Yet, steadily growing population sizes and the
suboptimal use of computational resources are pushing the practical application of these
approaches to their limits. As an extension to the C/CUDA library miraculix, we have
developed tailored solutions for the computation of genotype matrix multiplications
which is a critical bottleneck in the empirical evaluation of many statistical models.
We demonstrate the benefits of our solutions at the example of single-step models
which make heavy use of this kind of multiplications. Targeting modern NVIDIA®

GPUs as well as a broad range of CPU architectures, our implementation significantly
reduces the time required for the estimation of breeding values in large population
sizes. miraculix is released under the Apache 2.0 license and is freely available at
https://github.com/alexfreudenberg/miraculix.
This chapter is based on a joint manuscript with Jeremie Vandenplas, Martin Schlather,
Torsten Pook, Ross Evans and Jen ten Napel (Freudenberg et al., 2023c).

4.1 Introduction

Over the past 15 years, the incorporation of genomic information has become essential
for ensuring progress in breeding (Schaeffer, 2006). A routine task in animal breeding
is the estimation of breeding values within a population, that is, the estimation of the
average additive effects of the alleles that an individual passes on to its offspring. Though
breeding values are estimated most accurately through the use genomic data, it is usually
too costly to genotype a whole population. This is particularly true when analyzing large
populations, like national dairy evaluations with millions of animals (Misztal et al.,
2022). This circumstance has sparked a debate on how to combine pedigree information
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of ungenotyped animals with Single Nucleotide Polymorphism (SNP) data of genotyped
animals to analyze phenotypic records.
Due to its desirable statistical properties, the single-step genomic BLUP (ssGBLUP)
model (Legarra et al., 2009; Christensen and Lund, 2010) has gained popularity in ani-
mal breeding, joining both the genomic relationship matrix (GRM) G and the pedigree-
based relationship matrix A into a generalized relationship matrix H (see Equation
(2.13)). Large population sizes used in animal breeding programs, ranging from tens of
thousands to millions of individuals, have motivated research in computational strate-
gies to solve the associated mixed model equations (MME) efficiently through the use
of high-performance computing (HPC) techniques. One of the proposed approaches is
the algorithm for Proven and Young Animals (APY), which approximates the inverse of
the GRM, G−1, through genomic recursion on a subset of core animals (Misztal et al.,
2014a). As an alternative concept, the original ssGBLUP model was reformulated to,
first, allow the use of well-established numerical software (Legarra and Ducrocq, 2012)
and, second, avoid the explicit construction and inversion of the GRMG using the Wood-
bury decomposition. The resulting models were coined single-step GT(A)BLUP models
(Mäntysaari et al., 2017, 2020). Additionally, single-step SNP BLUP (ssSNPBLUP)
models were proposed to estimate SNP effects directly, similarly avoiding G and its
inverse (Liu et al., 2014; Fernando et al., 2014; Taskinen et al., 2017).
Considering the computational aspects of these approaches, the use of highly-optimized
sparse matrix operations has been established, thanks to the role of pedigree-based rela-
tionship matrix. Additionally, established iterative-solver algorithms (e.g., the precon-
ditioned conjugate gradient (PCG)) can be employed in the resulting equation systems
(Strandén and Lidauer, 1999; Misztal et al., 2009) to avoid explicit construction of the
full coefficient matrix.
Nevertheless, the computational load of the remaining mathematical operations and slow
PCG convergence have been somewhat prohibitive to the application of ssGTABLUP
and ssSNPBLUP models in ultra-large-scale settings. To mitigate this issue, a number
of numerical advances have been proposed to improve convergence speed (Vandenplas
et al., 2018). So far, however, improvements in accelerating the involved matrix arith-
metics have been limited to the application of shared-memory parallel libraries, such
as the Intel® Math Kernel Library (MKL) and PARDISO (Alappat et al., 2020), and
unpacking the compressed SNP matrix M into the CPU cache for the matrix-matrix
product in the PCG iteration (Misztal et al., 2009; Vandenplas et al., 2020). Bit-level
algorithms have been employed by, for instance, the popular PLINK software (Chang
et al., 2015) in the efficient implementation of genome-wide association studies (GWAS),
which rely on similar genotype matrix operations. Yet, these routines are not accessi-
ble for use in single-step BLUP evaluations. The software PLINK also implements
BLAS-based routines for the calculation of G on an NVIDIA® GPU in its version 2.0.
However, this functionality works on uncompressed SNP data stored in single-precision
floating-point values, thereby significantly limiting possible problem sizes. Other au-
thors have used GPUs to accelerate model training for machine learning algorithms in
genomic selection (Xu et al., 2021). In parallel to this work, efficient approaches for
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4. Acceleration of SNP matrix-vector multiplications for single-step models

the multiplication of matrices of mixed input data types have been suggested for use in
transformer machine learning models, in particular with sub-byte integer data formats
(Kim et al., 2022).
In this study, we present tailored algorithms for the multiplication of a compressed
SNP matrix by a matrix of small width stored in floating-point format for CPUs and
NVIDIA® GPUs. Our CPU code is optimized for all major instruction set architectures.
To take advantage of the instruction-level parallelism capabilities of modern CPUs, our
implementation uses Single Instruction-stream Multiple Data-stream (SIMD) operations
explicitly (Tanenbaum, 2013). Extending the NVIDIA® CUTLASS library (Thakkar
et al., 2023), our GPU approach benefits from fast tile iterators in the data movement
during the matrix-matrix multiplication.
We demonstrate how these advances can drastically reduce the computing times of geno-
type matrix multiplications on CPUs and GPUs compared to double-precision matrix
multiplication routines provided by the Intel® MKL, while simultaneously reducing
memory requirements. We provide scripts for reproducing our results in the GitHub
repository. Additionally, using genomic data provided by the Irish Cattle Breeding Fed-
eration and the genetic evaluation software MiXBLUP (ten Napel et al., 2021), we show
how our novel approaches bring down total run times in solving single-step evaluations
by up to 62%, thereby paving the way to include even larger population sizes in genomic
evaluations.
We provide our implementation as part of the C/CUDA software library miraculix
(https://github.com/alexfreudenberg/miraculix). Interfaces to call the library from
higher-level languages such as Fortran, R and Julia are provided. Through the modular
structure of the miraculix library, which also supplies functions for the calculation of
G, the code should be easily modifiable by researchers and practitioners interested in
accelerating computations in other BLUP models (Meuwissen et al., 2001; VanRaden,
2008) or other genomic analyses.

4.2 Methods

The efficient multiplication of the genotype matrix by a double-precision matrix plays
an important role in many genomic analyses. In this section, we explain how this
multiplication can be decomposed to reduce the computational costs involved. Then,
we propose novel techniques for the multiplication of a compressed SNP matrix with
a double-precision matrix on CPUs and GPUs. We illustrate the role of an efficient
genotype matrix multiplication at the example of single-step models. Lastly, we describe
the methodology which we used for evaluating our approaches.

4.2.1 Computational bottlenecks

We consider the commonly encountered operation of multiplying the centered SNP
matrix Z, or its transpose ZT , by a matrix of low width. Here, the matrix Z can be
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computed as
Z =M − 2 · 1ngp

T ,

where M ∈ {0, 1, 2}ng×k denotes the uncentered genotype matrix containing the k SNP
genotypes (coded as 0 for one homozygous genotype, 1 for the heterozygous genotype,
or 2 for the alternate homozygous genotype) of ng genotyped animals. Furthermore,
p denotes the vector of allele frequencies and the subtraction of 2 · 1ngp

T centers the
columns of M .
Considering an arbitrary matrix Λ ∈ Rk×l, we first note that the multiplication of Z
with Λ can be reformulated into

ZΛ =MΛ− 2 · 1ngp
TΛ.

Since subtracting the matrix 21ngp
TΛ consists of a vector-matrix multiplication and

subsequent additions of matrices of rank one, it is computationally cheap and can be
achieved with BLAS Level-1 operations. The multiplication of the transposed matrix
ZT Λ̃ with an arbitrary matrix Λ̃ ∈ Rng×l is decomposed similarly into

ZT Λ̃ =MT Λ̃− 2 · p1Tng
Λ̃.

Here, we use the distinction between Λ and Λ̃ to emphasize that Z and ZT cannot be
multiplied with the same matrix because they have different dimensions. Due to the low
cost of SNP genotyping, the matrix M can have extremely large dimensions, capturing
the genomic information of millions of animals. Furthermore, whereas Λ is a regular
matrix of double precision, the SNP matrix is usually stored in a compressed format
to save memory. For instance, the PLINK 1 binary file format stores the genotypes of
four individuals in eight bits (corresponding to one byte), utilizing that one entry of
M only requires 2 bits of storage. This compressed data format prevents naive calls
to BLAS routines, and decompressing it explicitly is inefficient and increases memory
requirements. Only recently, the problem of matrix multiplication of mixed input data
types has gained attention (Kim et al., 2022) and no off-the-shelf solution exists for
compressed 2-bit integer data types.
In general, algorithms for genotype matrix multiplications that operate on compressed
data can be expected to be more efficient due to the better utilization of memory move-
ments. In cases where the multiplication ZΛ needs to be evaluated repeatedly for varying
Λ, an optional conversion of the uncentered SNP matrix M to a different storage format
is comparatively cheap. Therefore, switching the storage format has the potential to
yield efficiency gains.

4.2.2 Acceleration of the genotype matrix-matrix multiplication

Previous approach

Vandenplas et al. (2020) proposed a decompress-on-the-fly approach, consisting of un-
packing tiles of submatrices of M small enough to store the result in the cache and
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4. Acceleration of SNP matrix-vector multiplications for single-step models

perform matrix multiplication on these tiles. Briefly, modern computer architecture
implements different levels of cache memory (commonly, L1, L2 and L3) to reduce ac-
cess times to repeatedly processed data. While infrequently used data can be stored in
the random access memory (RAM) or even the disk, accessing it over the memory bus
combined with the lower clock cycles of the RAM compared to the CPU dramatically
slows down the execution of the program. While low levels of cache close to the core
allow faster memory reads, they come with lower capacity (Tanenbaum, 2013). Hence,
efficient code which processes large amounts of data strives to reduce data movement
along the memory hierarchy and utilizes the fast access times of low-level caches. In
the aforementioned local decompression approach by Vandenplas et al. (2020), small
submatrices of SNP data in PLINK 1 binary format are converted to double-precision
floating-point values at a time. Since these small submatrices are used repeatedly in
a loop, they should not be evicted from the L1 cache. Therefore, the unpacked SNP
data is readily at hand when new tiles of Λ are loaded and can be multiplied without
additional conversion operations.

The 5codes algorithm for CPUs

Building on the idea of keeping frequently used data close to the core, our novel approach
for CPU computations aims to reduce data streams of Λ through the cache hierarchy
by fully avoiding decompression. To explain this approach, we assume that there are
no missing values at this point. Instead, they are coded as zero and their effect is taken
into account when subtracting 2 ·1ngp

TΛ or 2 ·pT ng
Λ̃ later. Since the number of missing

values is usually not substantial, this correction comes at a low cost.
We view the problem of storing compressed SNP data through the lens of combinatorics:
Since there are only three possible states (0, 1 and 2) for a SNP, any vectorm ∈ {0, 1, 2}5
of five contiguous SNPs can assume only one of 35 = 243 values. Assuming there are
no missing values, this format is 20% more memory efficient than storing SNP values in
2 bits. Hence, each realized vector m can be stored in one 8-bit unsigned integer while
preserving the order of the SNPs. During preprocessing, we convert the input data to
this compressed format, which we coined 5codes. At multiplication time, we treat the
columns of Λ separately and load a vector λ ∈ R5 of five entries in a column of Λ, which
is stored in double precision. Subsequently, we compute all possible results of the scalar
product

x = mTλ, for m ∈ {0, 1, 2}5

and store them in a lookup table. Then, we iterate over the five columns of M under
consideration and look up the values of x depending on the realization of m. We provide
pseudo-code for one iteration of this approach in Algorithm 1. The multiplication MT Λ̃
is achieved analogously.
It is worth noting that at least 16 of these tables fit into the L1 cache because each
lookup table holds 35 = 243 double-precision values of 64 bits and the L1 cache in
modern CPU architectures typically holds between 32KB and 96KB. Since the lookup
table of the different values of x only needs to be computed once for every five-row tile of
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Λ, we keep register instructions to a minimum. Furthermore, compressed matrix values
are loaded into integer registers whereas real values are stored in SIMD registers. The
implementation aims to optimize load operations and store operations. For instance, if
SIMD registers of 256-bit width are available, one entry of the lookup table contains a
vector of four double-precision floating-point values.
The computation is parallelized among the available processor cores by splitting M and
Λ into chunks along the column axis and row axis respectively. Finally, the results of
each thread are united by a single reduction operation at the end that computes the
sum of all individual results.
As discussed above, genotype centering is not a bottleneck due to its low complexity.
Thanks to the structure of the 5codes encoding, the centering can actually be included
in the lookup table for the operation ZΛ, meaning that instead of holding the possible
values of mTλ, the lookup table can store the centered values

x = zTλ = mTλ− 2 · pTλ.

Subtracting 2 · pTλ at this point further reduces the number of memory accesses and
decreases numerical accumulation errors.

Algorithm 1: Pseudo-code for the 5codes algorithm for the multiplication of
five columns of SNPs M with a vector λ of length 5. The multiplication of
five columns of MT is analogous. Note that the variable idx in the algorithm
is smaller than 243. For a general number of SNPs k, five columns of M are
multiplied at a time.

Data: Compressed SNP matrix M ∈ {0, 1, 2}ng×5, floating-point vector λ ∈ R5

Result: Genotype matrix multiplication x =Mλ

1 /* Compute and store the dot products of λ with all possible SNP
vectors */

2 for m ∈ {0, 1, 2}5 do
3 idx ← m1 × 30 + m2 × 31 + m3 × 32 + m4 × 33 + m5 × 34

4 /* Compute and store mTλ */
5 table[idx]← m1 × λ1 + m2 × λ2 + m3 × λ3 + m4 × λ4 + m5 × λ5
6 end

7 /* Compute Mλ by looking up the realization of m in the matrix
M. */

8 for j ← 1 to ng do
9 key ←Mj,1 × 30 +Mj,2 × 31 +Mj,3 × 32 +Mj,4 × 33 +Mj,5 × 34

10 x[j]← table[key]
11 end
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4. Acceleration of SNP matrix-vector multiplications for single-step models

SNP matrix multiplication with mixed data types on GPUs

To make use of the powerful HPC capabilities of modern NVIDIA® GPUs, we also
implement a matrix multiplication routine in CUDA, in which we extend the CUT-
LASS library (Thakkar et al., 2023) in its version 2.10. CUTLASS is a C++ template
library for high-performance matrix operations on NVIDIA® GPUs. In contrast to
CPU operations, GPU functions need to align parallel operations both within thread
blocks as well as within warps of threads (Sanders and Kandrot, 2010). CUTLASS
assists this task by providing a framework that allows software solutions to target only
a subset of levels in this hierarchy. In our case, we implement a template specialization
for the Single Instruction Multiple Threads (SIMT) subsection within warp-level API
in CUTLASS. Since computing times for our GPU approach are mostly driven by data
movements instead of algebraic operations, we do not make use of the 5codes algorithm
in this implementation but distribute scalar products of four-dimensional vectors to the
cores of the GPU. Therefore, we keep the established PLINK 8-bit-sized format for
storing SNP four-dimensional vectors while introducing a new CUTLASS-compatible
interleaved data type for double-precision vectors of size four. Furthermore, fitting the
genotype matrix multiplication into the CUTLASS framework requires adding a new
scalar-product microkernel for this specific combination of data types and adjusting the
CUTLASS interfaces upstream accordingly. The microkernel uses bitmasks to extract
the SNP values from the compressed storage format and converts them into double-
precision floating-point values for immediate multiplication afterward. Through the
highly efficient memory access iterators in CUTLASS, we are able to move data quickly
from the device memory to the shared memory to the cores and back. Furthermore,
in order to reduce memory allocations and data movement between the host and the
device, we preallocate memory for the matrix Λ and transfer data objects which are
required in every PCG iteration (that is, M and p) only once at start-up time. To
our knowledge, this is the first implementation of matrix multiplication of 2-bit integers
with double-precision floating-point values, which we designed in parallel to the recent
work of Kim et al. (2022) who extended the CUTLASS library to include, among others,
matrix multiplication of 4-bit integers with half-precision floating-point values.

Memory management

Since both the CPU and GPU approaches exploit a compressed storage format for the
SNP matrix, the question arises of how to efficiently calculate the transposed matrix
product MT Λ̃. A memory-efficient implementation would transpose chunks of M of low
dimension which are iterated over. For instance, transposing sub-matrices of dimensions
16 by 16 in PLINK 1 binary format would allow distributing the transpose operation
in a warp of threads on a GPU. However, thanks to the compressed data storage, we
are not memory-bound with the current number of genotyped animals and SNPs, and
we, therefore, choose to transpose M as a whole during start-up and store it separately
to reduce computation time associated with transposition. For instance, the dataset of
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2.61m animals with 47k SNP markers we use in this article for testing purposes only
requires about 57 gigabytes of RAM for both M and MT combined.

4.2.3 SNP matrix multiplications in single-step models

Single-step models in animal breeding programs commonly comprise hundreds of thou-
sands or even millions of animals. Therefore, the MME for these models need to be
solved iteratively in practice, commonly through the PCG algorithm. To this end, each
iteration requires multiplying the corresponding coefficient matrix with a candidate vec-
tor.
To illustrate the necessity of a fast genotype matrix multiplication, we give an overview
of the matrix operations involved in the ssSNPBLUP approach, proposed by Liu et al.
(2014), and the ssGTABLUP approach, introduced by Mäntysaari et al. (2017). Both
models can be easily extended to multivariate models. The numerical treatment of
these approaches is described in detail by Vandenplas et al. (2023) who found that they
have similar computational costs per iteration when applied to large datasets since they
require the same matrix computations.
A standard univariate mixed model for ssGBLUP can be written as:

y = Xβ +

(
Wn 0
0 Wg

)(
gn
gg

)
+ ε

where y is the vector of records, β is the vector of p fixed effects, gn is the vector
of additive genomic values for the non-genotyped animals, gg is the vector of additive
genomic values for the genotyped animals, and ε is the vector of residuals. The matrices
X, Wn, and Wg are incidence matrices relating records in y to the corresponding effects.
The random effects vector gg can be decomposed into gg = ag+Zu, where u is the vector
of SNP effects and ag contains the residual polygenic effects.
Due to the assumed covariance structure, the ssSNPBLUP system of equations proposed
by Liu et al. (2014) involves the matrix Σ−1 defined as in Equation (2.16). Furthermore,
the matrix

A =

(
Ann Ang

Agn Agg

)
,

denotes the pedigree-based relationship matrix and

A−1 =

(
Ann Ang

Agn Agg

)
.

is its inverse, which is sparse (Henderson, 1976). The inverse of Agg can be computed
as

A−1
gg = Agg −Agn(Ann)−1Ang.
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4. Acceleration of SNP matrix-vector multiplications for single-step models

Because the coefficient matrices of the ssSNPBLUP and ssGTABLUP models are too
large to be constructed explicitly, it is decomposed into submatrices which are multiplied
separately (Vandenplas et al., 2020). Importantly, most of these submatrices (e.g.,
Ann, Ang, Agn, Agg) in Σ−1 are sparse and can be multiplied by a vector or a matrix
at a relatively low cost by using iteration-on-data techniques (Schaeffer and Kennedy,
1986) and sparse matrix operations (Legarra et al., 2009; Vandenplas et al., 2020).
Additionally, although the matrix (Ann)−1 is not sparse in general, equation systems
involving (Ann)−1 can be solved by using forward and backward substitution techniques
with the Cholesky factor of Ann, which only needs to be computed once. Therefore,
this calculation is also not computationally demanding in practice. In contrast, the
multiplication of Z by an arbitrary matrix of low width Λ has been a computational
bottleneck so far.

4.2.4 Evaluation

Since both the 5codes algorithm and our GPU approach take advantage of modern
hardware architectures, it can be expected that they outperform the existing imple-
mentations. To examine this assumption, we used simulated data to benchmark our
concepts for genotype data of various sizes. Afterward, considering the ssSNPBLUP
and ssGTABLUP systems of equations on a large population of Irish beef and dairy
cattle, we evaluated the wall clock times for inferring the breeding values in this popula-
tion required by the PCG implementation in the software MiXBLUP (ten Napel et al.,
2021). We compared our novel approaches with the wall clock time required by the
current Fortran-based matrix multiplication implementation in MiXBLUP.

Simulated data

For benchmarking our two novel approaches, we simulated genotype data of various
dimensions using the software suite PLINK (Chang et al., 2015). Mimicking the popu-
lation sizes of many breeding programs in practice, we generated genotype data of three
distinct animal populations with a varying number of individuals: a small population
with 102k animals, a medium population with 751k animals and a large population with
3.1m animals. For each population, 50,241 SNPs were simulated, resulting in memory
requirements of approx. 1.2 GB in compressed storage format (38.2 GB in double-
precision) for the small population, 8.8 GB (281.2 GB) for the medium population, and
36.3 GB (1160.6 GB) for the large population. Furthermore, we simulated a matrix Λ
of 10 normally distributed traits.

Cattle data

We tested our two novel approaches when integrated into the PCG solver using data from
the routine six-trait calving-difficulty evaluation for Irish dairy and beef cattle performed
by Irish Cattle Breeding Federation (ICBF; Ireland) in March 2022. We solved the
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Figure 4.1: Total wall clock time for consecutively calculating ZΛ and ZT Λ̃ on a system
with a dual-socket AMD® Milan EPYC 7513 (2.6 GHz) processor, 2 TB of RAM and a
single NVIDIA® H100 GPU. Annotations show formatted computing times in seconds.
CPU calculations used 20 dedicated cores. No test was performed for the BLAS routine
with the large population size, as this would have required ca. 2.27 TB of RAM. Results
are the average of 10 repeated calculations.

equation systems associated with the ssSNPBLUP and ssGTABLUP models. The single-
step genomic evaluations were based on the same multi-trait animal model and variance
components as the current official routine breeding value evaluation described in more
detail in Evans et al. (2019) and Vandenplas et al. (2023). Briefly, after extraction and
editing, the data file included 16.59m data records (across 6 traits), and the pedigree
included 26.46m animals. The genotypes of 2.61m animals included 47,006 SNP markers
from 29 bovine autosomes, with a minor allele frequency greater or equal to 0.01. The
genotype data were from a range of 30 different arrays ranging from 3k to 850k SNPs
that had been imputed using FImpute (Sargolzaei et al., 2014) to a 50k SNP set based
on version 3 of the International Beef and Dairy (IDB) chip. For both single-step
approaches, the genotype matrix was centered using observed allele frequencies and the
proportion of residual polygenic effects was set to w = 0.20.

4.3 Results

4.3.1 Benchmarks

In Figure 4.1, we assess the performance of consecutively multiplying ZΛ and ZT Λ̃,
as required in each iteration of a PCG solver. We compare our implementation of the
5codes algorithm and the GPU implementation with two alternative solutions: 1) The
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Table 4.2: Computation wall clock times of single-step genomic models on ICBF cattle
data in seconds. The SNP matrix Z and its transposed ZT are multiplied by matrices
Λ and Λ̃ respectively to compute the candidate matrix in the PCG. All computations
were performed on one AMD Milan EPYC 7513 CPU with 15 dedicated cores. GPU
computations were performed on a single NVIDIA® A100 GPU with 80 GB device
memory. Both models were trained to a relative error below 10−13. The total time
contains preprocessing (I/O operations and set-up of the preconditioner matrix), solving
of the MME, and postprocessing (mainly I/O operations).

Wall clock time (s) ssSNPBLUP ssGTABLUP
Current 5codes GPU Current 5codes GPU

Average time ZΛ 5.41 4.81 1.50 8.76 10.38 1.53
Average time ZT Λ̃ 29.68 7.05 1.62 28.66 6.83 1.58
Average time per iteration 51.43 32.32 14.16 50.38 35.21 16.25
Number of iterations 389 362 385 212 212 212
Preprocessing time 2953 3191 3186 3493 4068 3184
Total time 23275 15195 8961 14504 11863 7138

decompress-on-the-fly approach implemented in Fortran and proposed by Vandenplas
et al. (2020), which we will call "original solution" below, and 2) a single call to the
double-precision matrix multiplication function (dgemm) which is part of all major BLAS
libraries. As for the latter, we first needed to inflate the full SNP matrix to double-
precision floating-point values and store both the SNP matrix as well as its transpose in
memory. We use the BLAS library included in the Intel® Math Kernel Library (MKL).
For compilation, we used the Intel® compiler in its version 2021.4.0 and employed
compilation options to natively optimize our code to the available hardware. We ran
our CPU benchmarks on a single AMD® Milan EPYC 7513 (2.6 GHz) CPU and our
GPU implementation on an NVIDIA® H100. Since our implementation of the 5codes
algorithm did not display considerable scalability advances beyond 20 cores (see Table
4.1) and the software MiXBLUP recommends a similar number of cores for parallelizing
computations, we refrain from testing it on more cores.
Evaluating our two novel approaches against a crude call to the BLAS-based double-
precision matrix multiplication function shows that computing times can be reduced by
more than 99.7% (98.1%) for the small and medium population on the GPU (CPU).
Unfortunately, the genotype data of the large population in double precision required
approx. 2.27 TB of RAM, which could not be met in our hardware setup, hindering us
from benchmarking the BLAS library on this dataset. Similarly, the CPU-based original
solution for multiplying compressed SNP matrices with Λ took about 19 times longer
on all population sizes compared to the GPU implementation and three times longer
compared to the 5codes algorithm.
To mitigate the impact of hardware-specific optimizations which might limit the repro-
ducibility of our results, we further test our CPU code on Intel® and AMD® processors
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4. Acceleration of SNP matrix-vector multiplications for single-step models

(Intel® Xeon Gold 6230 and AMD® Milan EPYC 7513) and our GPU code on three
generations of NVIDIA® datacenter GPUs (Volta V100, Ampere A100 and Hopper
H100). Results displayed in Table 4.1 are the average computing times of 10 replicates.
As for the GPU implementation, our findings suggest that reductions in computing
times of approx. 25% (50%) can be achieved when using the recently introduced H100
compared to the A100 (V100). More importantly, the V100 ships with 16 GB or 32
GB of device RAM, limiting the potential problem sizes in our application. Yet, this
issue could be mitigated by using multiple GPUs. Since both the transposed and the
untransposed matrix are stored on the device, computing times for both multiplications
do not differ substantially.
Despite using the Intel® C/C++ Classic Compiler with Intel-specific optimizations, the
5codes algorithm performs slightly better on the more powerful AMD® chip than on
the Xeon Gold 6230. We observe that our implementation scales reasonably well to 10
cores, decreasing computing times by at least a factor of 5. However, increasing the
number of cores to 20 only yields mild performance improvements and even comes with
a penalty in some cases (see Table 4.1).
Overall, our evaluations suggest that the GPU implementation significantly outperforms
the 5codes implementation, though practical applications should evaluate the costs and
benefits of adding a GPU to their hardware setup based on their respective compute
time restraints.

4.3.2 Impact on single-step genomic evaluations

We solved the equation systems associated with the ssSNPBLUP and ssGTABLUP
models with the program hpblup, a PCG-based solver used by the software MiXBLUP
3.1 (ten Napel et al., 2021), which links against the miraculix library and toggles the
use of our two novel implementations through an option. Experiments were performed
with 180 GB of RAM on a single AMD® EPYC 7513 CPU for the 5codes algorithm
and a single NVIDIA® A100 for the GPU implementation. For the CPU tests, we
used 15 dedicated cores, as this is the recommended setting in MiXBLUP. The PCG
was iterated until a square relative residual below 10−13 was achieved. To put our
observed computing times into perspective, we also solved both models with the current
approach for multiplying genotype matrices implemented in MiXBLUP 3.1 (which we
will call "current" below).
Results are displayed in Table 4.2. Due to the different nature of the effects estimated,
the computing times should be evaluated separately for the two models. For the ssS-
NPBLUP equation system, we observe that the average wall clock time is reduced by
approx. 72% (11%) for the multiplication ZΛ and by approx. 95% (76%) for ZT Λ̃
on GPUs (CPUs) respectively. When solving the ssGTABLUP equation system, the
average time for multiplying ZΛ was slightly higher in the 5codes algorithm. Yet, both
5codes and the GPU implementation significantly decreased the time for computing
ZT Λ̃.
As the genotype matrix multiplication constitutes a significant portion of the time per
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iteration in the PCG solver, the 5codes implementation reduced the time for solving the
ssSNPBLUP model from approx. 6.47 hours to 4.22 hours on the CPU. Similarly, the
wall clock time for solving the ssGTABLUP model was reduced from 4.03 hours to 3.30
hours. Outperforming these results, the GPU approach only required 2.49 hours for
the ssSNPBLUP model and 1.98 hours for the ssGTABLUP model. A similar number
of iterations was observed for solving all models, though the 5codes algorithm required
27 iterations less for solving the MME associated with the ssSNPBLUP model, which
might be explained by its inherently higher precision.

4.4 Discussion

We have presented novel approaches for multiplying centered genotype matrices M by
a continuously-scaled matrix Λ which are applicable both on CPUs as well as on mod-
ern GPUs. Useful applications include single-step genomic models that are used to
compute breeding value estimates when only a subset of animals are genotyped and/or
phenotyped. Yet, similar computational operations are employed in other fields of mod-
ern genetics. For instance, genome-wide association studies could benefit from a fast
genotype matrix multiplication at various computational bottlenecks: the multiplica-
tion of the SNP matrix by a phenotype vector is an essential part of the calculation
of genotype-phenotype correlations (Yang et al., 2011). Additionally, many genome-
wide association studies use the results of a principal component analysis (PCA) of G
for population stratification (Price et al., 2006; Meuwissen et al., 2017; Ødegård et al.,
2018) and hence are to gain from a fast genotype matrix multiplication as well.
Through our optimized algorithms we were able to achieve a speed-up of critical oper-
ations by a factor of up to 3 compared to the methodology by Vandenplas et al. (2020)
using CPUs, and a factor of up to 20 using GPUs. Thanks to this acceleration, we have
shown how our software library can be used by researchers and practitioners to estimate
breeding values in a population of 26.46m animals, 2.61m of which were genotyped, in
a reasonable time of approx. 2 hours.
Nevertheless, the growth of breeding populations as well as the steadily falling costs of
genotyping will result in genomic datasets of ever-growing size. Therefore, there are
several avenues for further research to utilize computing resources even more efficiently.
First, as indicated in Section 4.2, system memory requirements might be reduced by a
factor of approximately two by transposing the compressed genotype matrix on-the-fly
during matrix multiplication instead of storing the transpose explicitly. With NVIDIA®

GPUs currently limited to at most 94 GB device memory and most compute set-ups lim-
ited to hundreds of gigabytes of RAM, this improvement would extend the dimensions of
possible problem sizes addressable with our proposed matrix-multiplication microkernel.
Second, though our GPU implementation uses highly efficient data access iterators pro-
vided by the CUTLASS library, a further reduction in computing time might be achieved
by using warp-level-coordinated matrix operations, which have been added as hardware
instructions on the latest generations of GPUs (see, e.g., the CUTLASS documentation

40



4. Acceleration of SNP matrix-vector multiplications for single-step models

for how this has been tackled in general tensor-tensor operations (Thakkar et al., 2023)).
Additionally, we have seen that our 5codes implementation suffers from scalability issues
when extending the number of cores.
Finally, it should be noted that in the evaluation of single-step models, the preprocessing
time required by the PCG solver (e.g. to set up the preconditioner) now constitutes a
significant portion of the total computation time. Reducing this contribution holds the
potential for additional performance improvements.
Notwithstanding these potential improvements, our software can be used in a variety of
computational tasks in genomics to reduce computing times.
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Chapter 5

Estimation of covariance parameters

One of the core assumptions in the use of SNP markers for quantitative trait modeling
is that they are in LD with causal QTL, that is, their genotypic value is linked during
genomic assemblage. Yet, correlations between SNPs themselves are often treated as an
artifact in predictive models (Calus and Vandenplas, 2018; Chang et al., 2015), while
negligent treatment of LD is simultaneously considered a contributor to an incomplete
understanding of heritability (de los Campos et al., 2015; Schreck et al., 2019). However,
investigating the dependence structure of effect sizes might be equally as interesting:
Since their treatment as random is not based on genetic theory, their covariance could
be used as an auxiliary tool for capturing the underlying genomic variation, for which
empirical data is incomplete.
One such approach has been suggested by Ober et al. (2011): They use the numerator
relationship matrix as covariance matrix for the genomic value and include the SNP
effects through an additional random term:

yi = Xiβ +Wiu+ g(Zi) + εi, for i = 1, ..., n,

where Xi,Wi and Zi denote i-th row of X, W and Z respectively and yi and εi are the
i-th entry of y and ε. They assume that (g(z), z ∈ Rk) is an isotropic Gaussian random
field with Whittle-Matérn covariance function, that is,

Cov(Zi, Zj) = Cp,ν,σ2(∥Zi − Zj∥),

where ∥ · ∥ denotes the Euclidean norm and

Cρ,ν,σ2(h) = σ2
21−ν

Γ(ν)

(√
2νh/ρ

)ν
Kν

(√
2νh/ρ

)
, h ≥ 0, (5.1)

for ρ, ν, σ > 0. Here, Kν is the modified Bessel function of the second kind (DLMF,
2023, Equation 10.25.1).
The Whittle-Matérn covariance function has the useful property that it coincides with
the exponential covariance function for ν = 1

2 , i.e.,

Cρ, 1
2
,σ2(h) = σ2 exp

(
−h
ρ

)
, ρ, σ > 0,
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and with the Gaussian covariance function for ν →∞,

lim
ν→∞

Cρ,ν,σ2(h) = σ2 exp

(
−1

2

h2

ρ

)
, ρ, σ > 0,

indicating different levels of smoothness. For a more detailed discussion of this covari-
ance function, the reader is referred to the work by Stein (1999).
As an extension to the classic BLUP model, Ober et al. (2011) use simple kriging and
universal kriging for predicting the vector (g(Z1), ..., g(Zn))

T . To this end, they estimate
the parameters ν, ρ and σ2 through maximum likelihood (ML) by using the R package
RandomFields (Schlather et al., 2015). The package infers ML estimates (MLEs) by
combining heuristics for good starting values for optimization with the nonlinear opti-
mization procedure implemented in the R function optim.
However, this approach motivates a new line of interest. The parameters ρ, ν and σ2

have a huge impact both on the covariance function as well as on the structure of the
random field (g(z), z ∈ Rk). Consequently, different parameters would result in vastly
different dependence structures of genetic effects. The rising popularity of kernel-based
approaches in genomic prediction (Morota and Gianola, 2014) motivates the question
of how to infer the parameters ρ, ν and σ2 accurately from real data.
To start this chapter, we briefly recall how the method of maximum likelihood is used
in quantitative genetics. Specifically, we present the ideas behind restricted maximum
likelihood (REML) which is widely used for inferring model parameters.
Then, current approaches for obtaining ML estimates of the parameters of the Whittle-
Matérn and their limitations are discussed. A novel technique for numerically computing
the Whittle-Matérn covariance function and its partial derivatives is presented. This
section is based on joint work with Martin Schlather.

5.1 Restricted maximum likelihood

Consider the Mixed Effects Model

y = Xβ + Zu+ ε

with normally distributed random effect vector u ∼ N (0, σ2uΣu) and error vector ε ∼
N (0, σ2εΣε), independent of u. While the previous applications of this model in this
thesis have taken the covariance matrices Σu and Σε as given, they are in fact commonly
modeled as a function of hyperparameters in quantitative genetics. For instance, the
variance of random effects u1, ..., uk is usually not assumed to be constant along the
genome. Since the variability of random effects is used as an auxiliary tool for capturing
genomic variation, the R package sommer provides the functionality for inferring SNP
variances which differ for each chromosome, for instance.
Therefore, in the following the covariance matrices will be denoted as a function of
additional parameters γ ∈ Θu and δ ∈ Θε for parameter spaces Θu ⊆ Rnγ ,Θε ⊆ Rnδ ,
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5. Estimation of covariance parameters

resulting in the notation Σu(γ) and Σε(δ). E.g., when setting γ = δ = (ρ, ν), the
parameterization of the covariance matrices could be modeled as

σ2uΣu((ρu, νu)) =
(
Cρu,νu,σ2

u
(|ui − uj |)

)
i,j=1,...,k

,

and
σ2εΣε((ρε, νε)) =

(
Cρε,νε,σ2

ε
(|εi − εj |)

)
i,j=1,...,n

,

where Cρ,ν,σ2 is the Whittle-Matérn covariance function from before. In general, the
matrix-valued functions γ 7→ Σu(γ) and δ 7→ Σε(δ) are assumed to be smooth.
Denoting the variance matrix of y by

V (σ2u, σ
2
ε , γ, δ) = Cov(y) = σ2uZΣu(γ)Z

T + σ2εΣε(δ),

the log-likelihood ℓ function of y with respect to β, σ2u, σ2ε , γ and δ is equal to

ℓML(β, σ2u, σ
2
ε , γ, δ) =−

n

2
log(2π)− 1

2
log(det(V (σ2u, σ

2
ε , γ, δ)))

− 1

2
(y −Xβ)T (V (σ2u, σ

2
ε , γ, δ))

−1(y −Xβ).

Considering the covariance parameters θ = (σ2u, σ
2
ε , γ, δ) as fixed and only optimizing

with respect to β, the BLUE for β can be retrieved (Henderson, 1963). However, the
optimization of the log-likelihood with respect to θ is biased in general. This is commonly
illustrated at the example of σ2ε whose MLE does not correct for the number of fixed
effects β (Thompson, 2008).
The REML method was first introduced by Patterson and Thompson (1971) to mitigate
this flaw and a number of different motivations for this approach have been presented in
the literature (Harville, 1974; Verbyla, 1990; Thompson, 2008). REML transforms the
data vector y linearly by the transposed of a matrix K ∈ Rs×n, where s = n− rank(X)
and K is chosen such that its columns are linearly independent and

KTX = 0.

The REML log-likelihood function of KT y is then given by

ℓREML(θ) = −s
2
log(2π)− 1

2
log(det(KV (θ)KT ))− 1

2
yTK(KV (θ)KT )−1KT y.

Theory for the calculus of matrix-valued functions (Magnus, 2019) yields that the partial
derivatives of ℓREML are given by(

∂

∂θi
ℓREML

)
(θ) =− 1

2
tr
((
KTV (θ)K

)−1
KT

(
∂

∂θi
V

)
(θ)K

)
+

1

2
yTK

((
KTV (θ)K

)−1
KT

(
∂

∂θi
V

)
(θ)K

(
KTV (θ)K

)−1
)
KT y.
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When assuming that X has full rank p < n, the identity

K(KTV (θ)K)−1KT = (V (θ))−1 − (V (θ))−1X(XTV (θ)X)−1XT (V (θ))−1 =: P (θ),

can be shown by analyzing the singular value decomposition of the respective matrices.
This identity can then be utilized to derive a representation of ℓREML independent of
K:

ℓREML(θ) =− s

2
log(2π)− 1

2
log(det(V (θ)))− 1

2
log(det(XT (V (θ))−1X))

+
1

2
log(det(XTX))− 1

2
zTP (θ)z.

This holds the advantage that for obtaining the REML estimates the matrix K does
not need to be constructed explicitly which would require searching the kernel space of
X.
Similarly, the matrix P can be used to derive representations of the partial derivatives
independent of K:(

∂

∂θi
ℓREML

)
(θ) = −1

2
tr
(
P (θ)

(
∂

∂θi
V

)
(θ)

)
+

1

2
yTP (θ)

(
∂

∂θi
V

)
(θ)P (θ)y,

where the cyclic property of the trace was used. Furthermore, the partial derivatives of
the second order can be expressed in terms of P (θ):(

∂2

∂θj∂θi
ℓREML

)
(θ)

=
1

2
tr
(
P (θ)

(
∂

∂θj
V

)
(θ)P (θ)

(
∂

∂θi
V

)
(θ)

)
− 1

2
tr
(
P

(
∂2

∂θj∂θi
V

)
(θ)

)
− yTP (θ)

(
∂

∂θj
V

)
(θ)P (θ)

(
∂

∂θi
V

)
(θ)Py +

1

2
yTP

(
∂2

∂θj∂θi
V

)
(θ)Py

More elegant representations for the first-order and second-order partial derivatives with
respect to σ2u and σ2ε can be derived. Furthermore, it is often the goal to avoid the second
partial derivatives of V when performing numerical optimization of the log-likelihood
function by means of Quasi-Newton methods. To this end, the Fisher matrix is employed
which can be computed by assuming vector y in the second-order partial derivative to
be random and then computing the expectation of the expression:

Ey∼N (0,V (θ))

[(
∂2

∂θj∂θi
ℓREML

)
(θ)

]
= −1

2
tr
(
P (θ)

(
∂

∂θj
V

)
(θ)P (θ)

(
∂

∂θi
V

)
(θ)

)
.

The Fisher matrix then replaces the role of the Hessian in the Newton method.
Since the trace of a matrix can be quite expensive to compute for large matrices, the
Average Information (AI) algorithm proposed by Searle et al. (1992) uses a mixture
of Fisher matrix entries and Hessian matrix entries to avoid computationally intensive
calculation.
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5. Estimation of covariance parameters

Figure 5.1: Three levels of smoothness for the Whittle-Matérn covariance. Plot A
shows the graph of the covariance function C1.0,ν,1.0 for ν ∈ {0.1, 1.0, 5.0} and param-
eters ρ, σ2 = 1.0. Plot B shows one realization of a Gaussian process on the grid
{0.0, 0.1, ..., 10.0} for each value of ν.

5.2 Inference of parameters of the Whittle-Matérn covari-
ance function

The Whittle-Matérn covariance function as defined in Equation (5.1) offers flexibility to
model a great bandwidth of dependence structures of Gaussian processes. In the left-
hand side of Figure 5.1, the graph of the covariance function for three different values of
ν (0.1, 1.0 and 5.0) are compared. While the covariance function drops rather quickly
when moving away from 0 for ν = 0.1, higher levels of ν lead to slower convergence to
zero and smoother covariance functions. On the right-hand side, one realization of a
Gaussian time series with Whittle-Matérn covariance function on the equidistant time
scale {0.0, 0.1, 0.2, ..., 10.0} for each value of ν. It can be observed that the higher values
of ν also coincide with smoother trajectories of the Gaussian process.
This illustrates that the parameters of the Whittle-Matérn covariance are important
information when this covariance function is used in the modeling of data. Yet, the
estimation of these parameters is not straightforward. ML estimates depend on partial
derivatives of ℓML which are structurally similar to the ones of ℓREML. Hence, they
depend on the partial derivatives which can be computed using calculus for matrix-
valued function (Magnus, 2019) to be equal to(

∂

∂θi
V

)
(θ) =

(
∂

∂θi
Vj,l(θ)

)
j,l=1,...,n

= Z
∂

∂θi
(σ2uΣu(γ))Z

T +
∂

∂θi
(σ2εΣε(δ)).

If, for example, Σu(γ) is isotropic, then this partial derivative with respect to γi can be
expressed as

∂

∂γi
(σ2uΣu(γ)) =

(
∂

∂γi
Cγ(|uj − ul|)

)
j,l=1,...,k

.
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To return to the Whittle-Matérn covariance function, we will compute its partial deriva-
tives analytically. First, the partial derivative with respect to σ2 is given by

∂

∂σ2
Cρ,ν,σ2(h) =

1

σ2
Cρ,ν,σ2(h), h > 0. (5.2)

As the second-order partial derivatives with respect to σ2 are similarly simple, σ2 = 1
will be assumed in the following to simplify notation.
The partial derivative of Cρ,ν,1 with respect to ρ is given by

∂

∂ρ
Cρ,ν,1(h)

=
21−ν

Γ(ν)

−
√
2νh

ρ2
× ν

(√
2ν
h

ρ

)ν−1

Kν

(√
2ν
h

ρ

)
+

21−ν

Γ(ν)

−
√
2νh

ρ2
×
(√

2ν
h

ρ

)ν
(

ν√
2ν h

ρ

Kν

(√
2ν
h

ρ

)
−Kν+1

(√
2ν
h

ρ

))

=− 2ν

ρ
Cρ,ν,1(h) +

2ν

ρ
Cρ,ν+1,1

(
h

√
ν√

ν + 1

)
, h > 0,

where the formula for the derivative of Kν with respect to its argument,

K ′
ν(x) =

∂

∂x
Kν(x) =

ν

x
Kν(x)−Kν+1(x), x > 0, (5.3)

for ν > 0 (DLMF, 2023, Equation 10.29.2) was used. Additionally,

∂

∂ν
Cρ,ν,1(h) =− 2

Γ′(ν)
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)ν
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(√
νh√
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)ν ((
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)(√
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ν
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ρ

)
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2νρ

)
=Cρ,ν,1(h) ·

(
log

(√
νh√
2ρ

)
+

1

2
− ψ(ν)

)
+

2

Γ(ν)

(√
νh√
2ρ

)ν (
∂

∂ν
Kν

)(√
2ν
h

ρ

)
+

2

Γ(ν + 1)

(√
νh√
2ρ

)ν+1

K ′
ν

(√
2ν
h

ρ

)
, h > 0,

where ψ is used to denote the digamma function,

ψ(ν) =
Γ′(ν)

Γ(ν)
, ν > 0.
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5. Estimation of covariance parameters

Again, the derivative of Kν with respect to its argument can be expanded as in Equation
(5.3).
However, the partial derivative of Kν with respect to its order poses a computational
challenge. In Equation 10.38.2, DLMF (2023) give an expression for this partial deriva-
tive in terms of the modified Bessel function of the first kind, Iν ,

∂

∂ν
Kν(x) =

1

2 sin(νπ)

(
∂

∂ν
I−ν(x)−

∂

∂ν
Iν(x)

)
− π

tan(νπ)
Kν(x), x ≥ 0, ν /∈ Z (5.4)

In the accompanying Equation 10.38.1, the partial derivative of Iν is given as

∂

∂ν
Iν(x) = Iν(x) log

(x
2

)
−
(x
2

)ν ∞∑
k=0

ψ(k + 1 + ν)

Γ(k + 1 + ν)

(z2/4)k

k!
, x ≥ 0, ν /∈ Z.

For ν ∈ Z, the derivative is given by Equation 10.38.4:

∂

∂ν
Kν(x) =

ν!

2

(x
2

)−ν
ν−1∑
k=0

(x
2

)k Kk(x)

k!(ν − k)
, x ≥ 0, ν ∈ Z.

However, it is well-known that the representation (5.4) is numerically unstable and
cannot be used for high-precision evaluations.
In general, the question of how to obtain ML estimates for ν has not been sufficiently
answered so far. For instance, by using the R function optim, the package Random-
Fields (Schlather et al., 2015) implicitly employs finite differences for approximating
the gradient of ℓML. Finite differences show a decent performance in regions where the
Whittle-Matérn covariance is numerically well-conditioned. An alternative method us-
ing the Whittle likelihood, which is based on the periodogram of the realized data, has
been proposed recently (Sykulski et al., 2019; Guillaumin et al., 2022). The authors show
that this method can recover the true values of the Whittle-Matérn covariance function
reasonably well. Yet, this technique is somewhat contrary to the established methods
in quantitative genetics and their numerical precision and computational performance
would require further investigation.
Another novel approach has been proposed recently by Geoga et al. (2023) in their
Julia package BesselK.jl. By dividing the domain of the function (ν, x) 7→ Kν(x) into
subregions and performing series expansions within these subregions, they implement a
new implementation of the Bessel-K function which is suitable for automatic differenti-
ation. The authors compare their function against a high-precision implementation in
the arbitrary precision library Arb (Johansson, 2017) and find that their function shows
competitive absolute accuracy when x is large. However, for small values of x the accu-
racy deteriorates and especially when x ≤ 1 and ν > 5, the absolute error is in the order
of 10−1 which is not sufficient from a numerical point of view. Additionally, the absolute
accuracy of the derivatives of first and second order with respect to ν is compared to
a reference solution which is provided by tenth-order adaptive finite differences. Again,
they find that large values of x provide a good approximation of the reference solution
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but for large values of ν and small values of x ≈ 0.25, the absolute error is up to 105 for
the first order derivative and even 1010 for the second order derivative.

As an alternative, it might have merit to study recently introduced representations of
the partial derivatives of Kν . For instance, Brychkov (2016) derives the expression

∂

∂ν
Kν(x) =

π

2 sin(πν)

(
π

tan(πν)
Iν(x)− (Iν(z) + I−ν(x))×(

x2

4(1− ν2)3
F4

[
1, 1, 3/2

2, 2, 2− ν, 2 + ν

∣∣∣∣ x2]+ log(x/2)− ψ(ν)− 1

2ν

))
+

1

4

(
I−ν(x)Γ

2(−ν)
(x
2

)2ν
2F3

[
ν, 1/2 + ν

1 + ν, 1 + ν, 1 + 2ν

∣∣∣∣ x2]−
Iν(x)Γ

2(−ν)
(x
2

)2ν
2F3

[
ν, 1/2 + ν

1 + ν, 1 + ν, 1 + 2ν

∣∣∣∣ x2]−
Iν(z)Γ

2(ν)
(x
2

)−2ν

2F3

[
−ν, 1/2− ν

1− ν, 1− ν, 1− 2ν

∣∣∣∣ x2]), ν /∈ Z,

where pFq denotes the generalized hypergeometric function (DLMF, 2023, Equation
16.2.1), and a shorter expression involving the Meijer G function (DLMF, 2023, Equation
16.7.1) has been presented by González-Santander (2017)

(
∂

∂ν
K

)
(x) =

ν

2

(
Kν(x)√

π
G3,1

2,4

[
1/2, 1

0, 0, ν,−ν

∣∣∣∣ x2]−√πIν(z)G4,0
2,4

[
1/2, 1

0, 0, ν,−ν

∣∣∣∣ x2]) ,

for ν > 0, x > 0.

However, both expressions are hard to evaluate numerically. For the generalized hyper-
geometric functions of higher-order, a series needs to be computed and our experiments
showed that numerical errors in the above representation of ∂

∂νKν tend to accumulate.
The Meijer G function is defined as a contour integral on the complex plane whose path
depends on the parameters and no implementation of the required form exists. Hence,
the numerical computation of this function is not straightforward either.

In the following, we explore a different approach. First, note that the integral repre-
sentation of the Bessel-K function (Gradshteyn and Ryzhik, 2007, 8.432 Equation 6.)
enables the equality
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5. Estimation of covariance parameters

Cρ,ν,1(h) =
4−ν

Γ(ν)

(√
2νh

ρ

)2ν ∫ ∞

0
exp
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−t− (
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×
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u
− u

4

)
.
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(
√
2νh/ρ)2ν+2

(
√
2νh/ρ)2

u2
du

=
1

Γ(ν)

∫ ∞

0
exp

(
−νh

2/ρ2

2u
− u
)
uν−1 du (5.5)

where we used the transformation u = (
√
2νh/ρ)2

t . Since the integrand in (5.5) is struc-
turally similar to the integrand involved in the definition of the Gamma function, it
is reasonable to assume that this expression can be evaluated numerically to some ex-
tent, though the fraction νh2/ρ2

2u might pose problems. For small values of h and ν, the
transformation ∫ ∞

0
fh,ν,ρ(u) du =

∫ ∞

−∞
exp

(
−νh

2

2ρ2
e−u − eu + νu

)
du (5.6)

might be useful to mitigate these numerical problems, where we used the notation

fh,ν,ρ(u) = exp

(
−νh

2/ρ2

2u
− u
)
uν−1.

Furthermore, the connection to the Gamma function allows us to assume that the partial
derivatives with respect to ν for the expression in (5.5) can be computed by interchanging
differentiation and integration later on. An illustration of the integrands in (5.5) and
(5.6) for a number of combinations of ν and h is provided in Figure 5.2.
Before we study partial derivatives of the integrals with respect to ν, we first attempt to
achieve a decent computation of the covariance function itself. This has the advantage
that a high-precision reference implementation as a golden standard can be computed
using the Julia package ArbNumeric.jl (Sarnoff, 2023). The package includes functions
to evaluate Cρ,ν,σ2 in Equation (5.1) to a precision of 512 bits. Once we have found a
method for computing one of the integral representations of the function, we can transfer
this method to the partial derivatives since they are structurally similar as we will see
later.
We compute our high-precision reference solution on the logarithmic-scaled grid

(h, ν) ∈ {10−4.0, 10−3.9, ..., 100.9, 101.0}2,

with ρ = σ2 = 1.0. The surface of the function on this grid is depicted in Figure 5.2.
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Figure 5.2: A: Plot of the integrand fh,ν,1.0 for different values of h and ν. B: Plot of the
exponentially transformed integrands in Equation (5.6). C: Plot of the exponentially
transformed integrands on a log-scale. D: Surface of the Whittle-Matérn covariance
function for ρ, σ2 = 1.0 and evaluated on the grid (h, ν) ∈ {0, 0.1, ..., 10}2 .

There are several possibilities for evaluating the integrals (5.5) and (5.6) numerically.
First, the connection to the Gamma function allows a stochastic approximation via a
Monte Carlo procedure. Specifically, Equation (5.5) yields the relationship

Cρ,ν,1(h) = E
[
exp

(
− νh2

2ρ2X

)]
≈ 1

n

n∑
i=1

exp

(
− νh2

2ρ2X(i)

)
,

for X,X(1), ..., X(n) independently Γ(ν)-distributed. Unfortunately, the Monte Carlo
approximation has a slow convergence rate of n−1/2.
Next, another natural attempt for evaluating the integral (5.5) is the numerical integra-
tion method by Gauss-Laguerre quadrature. This method uses Laguerre polynomials
Li (DLMF, 2023, Table 18.3.1) to approximate integrands of the form e−xf(x) by∫ ∞

0
e−xf(x) dx ≈

n∑
i=1

f(xi)wi,

where x1, ..., xn are the roots of Ln and

wi =
xi

(n+ 1)2L2
n+1(xi)

, i = 1, ..., n.

The motivation for this quadrature method is that the above approximation is exact if
f is a polynomial of order small than 2n.
Employing the generalized Laguerre polynomials Lα

i for α > −1, even integrands of the
form xαe−xf(x) can be approximated by∫ ∞

0
xαe−xf(x) dx ≈

n∑
i=1

f(xi)wi,
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5. Estimation of covariance parameters

Figure 5.3: Relative error of the Monte Carlo method (row A), Gauss-Laguerre quadra-
ture (row B) and generalized Gauss-Laguerre quadrature (row C) when compared
against a high-precision reference solution on a logarithmic grid. Each method was
evaluated for values of n ∈ {102, 103, 104}, where n is the number of random samples for
each point of the grid and the number of nodes and weights for the quadrature methods.

and the nodes x1, ..., xn and weights w1, ..., wn are adapted to Lα
n.

In Figure 5.3, we compare the Monte Carlo approximation, the Gauss-Laguerre quadra-
ture and the generalized Gauss-Laguerre method with α = ν − 1 for the integral (5.5)
against the reference dataset. The plots show the order of the relative error when eval-
uating these approaches on double-precision floating point values. For the Monte Carlo
method, we simulate a number n of Γ(ν)-distributed random variables for each point
of the grid and compute the arithmetic mean of this sample. To compute the (general-
ized) Gauss-Laguerre quadrature, we use the Julia package FastGaussQuadrature.jl to
compute n nodes and weights based on the (generalized) Laguerre polynomials.
We observe that the approximation by the Monte Carlo method is rather weak across
the full domain and increasing the number of samples n does not yield substantial im-
provements. The Gauss-Laguerre and the generalized Gauss-Laguerre quadrature show
decent performance in regions of the domain where h and ν are large. However, small
values of h in particular lead to deteriorating approximations. Interestingly, the gener-
alized Gauss-Laguerre method performs worse than the regular Gauss-Laguerre method
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although its approach is seemingly better suited to the structure of the integrand. This
can be explained by the fact that for ν → 0, the value of α goes to -1, approaching
the boundary of the domain for the generalized Laguerre polynomials. This leads to
numerically worse evaluations of the nodes and weights for this method. Additionally,
it can be expected that the approximation of the integrand e−νh2/(2u) by polynomials is
poor, thereby undercutting one of the core assumptions for a successful application of
the Gauss-Laguerre quadrature method.
It is worth noting that our implementation of these three methods does not take advan-
tage of numerical tricks and precision could likely be improved. For instance, Kahan
correction could be used to avoid numerical accumulation errors and the integral could
be evaluated separately on different regions of (0,∞). Additionally, the approximation
of the integral representation (5.6) might show better numerical behavior. However,
in our experiments the achieved improvements through these techniques were marginal
and we deemed that further investigation would not increase precision sufficiently.
A lesser-known quadrature method is the tanh-sinh quadrature which was introduced
by Takahasi and Mori (1974). In essence, this method applies the transformation

φ : (−∞,∞)→ (−1, 1), u 7→ tanh
(π
2
sinh(u)

)
to an integrable function f on the domain (−1, 1). The integral then can be approxi-
mated by ∫ 1

−1
f(t) dt =

∫ ∞

−∞
f(φ(t))φ′(t) dt ≈

n∑
k=−n

f(xk)wk,

where

xl = φ(lh) and wl = hφ′(lh) =
hπ

2

cosh(t)

cosh2
(
π
2 sinh(t)

) , l = −n, ..., n,

for h > 0. For integrals on the positive half-axis, the transformation

ψ : (−∞,∞)→ (0,∞), u 7→ exp
(π
2
sinh(u)

)
is suggested instead. Another transformation which uses hyperbolic sine twice is suitable
for integration on (−∞,∞). Since the hyperbolic functions can be expressed in terms of
the exponential function, the tanh-sinh quadrature and the exp-sinh quadrature are also
called double-exponential formulae. These quadrature methods are implemented, for
example, in the Boost C++ library and the Julia package DoubleExponentialFormulas.jl
In Tanaka et al. (2009), the authors were able to prove bounds on the approximation
error for the double-exponential formulae for functions f which are holomorphic on a
certain subset of the complex plane. To summarize these results without going into
details, if f : [0,∞)→ (−∞,∞) suffices this differentiability condition and

|f(x)| ≤ C
∣∣∣∣ xβ−1

(1 + x2)β

∣∣∣∣ , (5.7)
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5. Estimation of covariance parameters

Table 5.1: Number of nodes and weights n for exp-sinh quadrature for different combi-
nations of the value of δ−1 and precisions of the significand in the arbitrary-precision
floating-point format.

Precision Value of δ−1

4 8 64 256 1024

32 bits 47 188 749 2993 11972
64 bits 56 224 896 3581 14322
128 bits 65 260 1040 4157 16626
256 bits 74 296 1182 4725 18900

for a β > 0 and all x in the differentiability subset defined by the parameter d ∈ (0, π/2),
then ∣∣∣∣∣

∫ ∞

0
f(t) dt− h

n∑
l=−n

f(ψ(lδ))ψ′(lδ)

∣∣∣∣∣ ≤ C exp

(
−2πd

δ

)
,

for δ = log(8dn/β)
n and a constant C > 0 independent of n. Unfortunately, the underlying

theorem from the numerical integration theory for contour integrals does not produce
an explicit representation of the constant C.
As the integrand in (5.5) decays exponentially fast for u→ 0 and for u→∞, it satisfies
inequality (5.7) for, e.g., β = ν. Hence, the exp-sinh quadrature could be considered
for computing this integral. To compute the nodes and weights for this method, we
consider δ as a tuning parameter and compute the minimum n1 ∈ N for a given δ > 0
such that either ψ(−(n1 +1) · δ) or ψ′(−(n1 +1) · δ) is smaller than machine epsilon for
the giving floating-point format. Similarly, we compute n2 to be the minimum integer
such that ψ((n2 + 1) · δ) or ψ′((n2 + 1) · δ) is greater than the largest floating-point
number representable by the given format. Then, the integers n1 and n2 are used as
limits for the sum, i.e. ∫ ∞

0
f(x) dx ≈

n2∑
l=−n1

f(xl)wl

for
xl = ψ(lδ) and wl = δψ′(lδ), l = −n1, ..., n2.

The value of δ is chosen as a negative power of 2. Table 5.1 shows the total number of
weights and nodes, i.e., n = n1 + n2 + 1, for different precisions and different values of
δ.
In Figure 5.4, we compare our implementation against the reference dataset on the
logarithmic grid. We test on three different floating-point formats: double precision
of 64 bits ("Float64") and two formats exported by the ArbNumerics.jl library with
significands of 128 bits ("ArbFloat{128}") and 256 bits ("ArbFloat{256}") precision
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Figure 5.4: Relative error of the exp-sinh quadrature for the integral (5.5) for different
combinations of the value of δ and floating-point formats.

respectively. It should be noted that the arbitrary numerics library uses custom floating-
point arithmetics of higher precision intrinsically and, therefore, numerical results cannot
be compared directly to standard formats.
Yet, we observe that, though small values of δ−1 do not suffice to evaluate the integral
well, δ−1 = 64 already approximates the reference solution close to machine epsilon for
the standard double-precision format. Increasing δ−1 by another factor of 2 puts the
128-bit precision format within machine epsilon. The 256-bit computation has a relative
error smaller than 10−50 on the entire grid except when h and ν are both small.
This method holds an additional computational advantage. The standard implementa-
tion of the Bessel-K function computes the function values as a series whose coefficients
are determined by a recursive sequence (Campbell, 1980) and no vectorized version of
this procedure has been published. Considering the small value of δ−1 required for a
high-precision approximation of the Whittle-Matérn in Figure 5.4, the use of the exp-
sinh quadrature method could be beneficial when a large number of evaluations of the
Whittle-Matérn covariance function is required. For a satisfactory accuracy on the full
logarithmic grid in double precision, δ−1 = 256 might be chosen. Since this corresponds
to 2720 nodes and weights in double-precision floating-point format, the total memory
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5. Estimation of covariance parameters

requirement for the quadrature table can be computed as

2720 ∗ 2 ∗ 8B ≈ 44.52KB.

Considering that many modern CPUs have a capacity of 64KB of L1 cache memory, an
efficient implementation of the exp-sinh quadrature could hold the table of nodes and
weights in the cache. Alternatively, the domain of (h, ν) could be divided into subregions
for evaluating the integral to account for the fact that for h > 10−2 smaller values of
δ−1 yield a sufficient approximation. Furthermore, the integrand fh,ν,ρ does not rely
on special functions anymore and can be fully computed using assembler instructions.
In fact, the AVX instruction set extension even provides intrinsics for computing a
vectorized version of fh,ν,ρ using SIMD instructions. Similarly, NVIDIA® GPUs of
compute capability 7.0 or newer provide a 64KB block of constant memory which has
decreased latency for memory accesses from a thread.
As there is no publicly available implementation of the Bessel-K function for general or-
ders ν on NVIDIA® GPUs, a CUDA function for the exp-sinh quadrature of integrand
(5.5) would introduce a convenient way for evaluating the Whittle-Matérn covariance
function. Additionally, a GPU implementation could be useful for computing the re-
alized values of a covariance matrix, for example, if a Cholesky decomposition of this
matrix is required afterward. In Table 5.2, we compare the performance of a CUDA
implementation utilizing a quadrature table stored in constant memory. For this pur-
pose, we simulated a number of N ∈ {5 ·103, 104, 2 ·104} points uniformly distributed on
[0, 1]2 and computed their pairwise Euclidean distances. This data of N(N−1)

2 values was
used as input for h, while ρ = σ2 = 1.0 and ν = 0.1 was fixed. Since extremely small
distances are unlikely in this setting, we chose to use δ−1 = 64, sacrificing a higher pre-
cision for better performance. Furthermore, as discussed above, there was no reference
implementation available on NVIDIA® GPUs. Hence, we compared our CUDA imple-
mentation against a CPU-based multithreaded Whittle-Matérn function based on the
original representation (5.1) involving the Bessel-K function. We evaluated this function
on a dual-socket AMD® EPYC 7513 (each with a TDP of 200W, 32 cores and 2,840USD
price recommendation), while the GPU solution was tested on an NVIDIA® A100 GPU
with 40GB of device memory (TDP of 300W, available at approx. 5,000USD). We see
that our GPU version performs slightly worse than the CPU implementation, with a
markup of about 20%. However, we emphasize that the new solution should only be
regarded as a proof-of-concept and more efficient implementations are likely feasible.
For instance, when considering fixed ν, the nodes and weights could be rearranged into

x̃l = exp
(
− ν

2lδ

)
and w̃l = exp(−lδ)(lδ)ν−1wl l = −n1, ..., n2,

so that ∫ ∞

0
fh,ν,ρ(u) du =

n2∑
l=−n1

(x̃l)
h2
w̃l.

This would result in an additional reduction in the number of arithmetic operations if
precision can be maintained. Furthermore, bringing the required number of weights and
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Table 5.2: Wall-clock times times for evaluating the Whittle-Matérn covariance function
C1,0.1,1 on pairwise Euclidean distances between N random samples with probability
distribution U([0, 1]2). CPU computations were based on the representation of C1,0.1,1 in
terms of the Bessel-K function while the GPU implementation used exp-sinh quadrature.
Calculations were performed on a dual-socket AMD® EPYC 7513 with 64 dedicated
cores and an NVIDIA® A100-40GB. Mean relative error was computed as the average
absolute difference between the values of CPU and GPU computations over the CPU
function values.

Number of Number of Computing times Mean rel. deviation
samples N evaluations N(N−1)

2 CPU GPU

5,000 ∼ 1.2 · 107 0.08s 0.11s 5.13 · 10−16

10,000 ∼ 5.0 · 107 0.37s 0.45s 5.14 · 10−16

20,000 ∼ 2.0 · 108 1.71s 1.81s 5.14 · 10−16

nodes for a precise evaluation down to 500 might yield disproportionate speed gains as
the constant memory cache on NVIDIA® GPUs only has a capacity of 8KB.
For evaluating the partial derivatives of Cρ,ν,σ2 , it is not obvious what a good reference
solution might be as there is no high-precision implementation of the derivative of Kν

with respect to ν. Therefore, let us consider the partial derivative of the integral (5.5)
for now. Since(

∂

∂ν
fh,ν,ρ

)
(u) = exp

(
−νh

2/ρ2

2u
− u
)
uν−1

(
log(u)− h2/ρ2

2u

)
decays exponentially fast for u → 0 and u → ∞, it can be bounded by an integrable
function locally in ν. Therefore, the partial derivative of Cρ,ν,1(h) is equal to(

∂

∂ν
Cρ,ν,1

)
(h) =

1

Γ(ν)

∫ ∞

0

(
∂

∂ν
fh,ν,ρ

)
(u) du− ψ(ν)Cρ,ν,1(h) h > 0.

Again, the partial derivative of the integrand ∂
∂ν fh,ν,ρ satisfies the conditions for inter-

changing integration and differentiation with respect to ν and, hence, the second-order
partial derivative of Cρ,ν,1 can be computed as(

∂2

∂ν2
Cρ,ν,1

)
(h) =

1

Γ(ν)

∫ ∞

0

(
∂2

∂ν2
fh,ν,ρ

)
(u) du

− 2ψ(ν)

(
∂

∂ν
Cρ,ν,1

)
(h)− ψ′(ν)Cρ,ν,1(h), h > 0,

where ψ′ denotes the derivatives of the digamma function, also known as the trigamma
function, and(

∂2

∂ν2
fh,ν,ρ

)
(u) = exp

(
−νh

2/ρ2

2u
− u
)
uν−1

(
log(u)− h2/ρ2

2u

)2

.
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5. Estimation of covariance parameters

Figure 5.5: Relative error in the approximation of first-order and second-order partial
derivatives of the Whittle-Matérn covariance function with respect to its smoothness
parameter ν. Evaluated are tenth-order finite differences, automatic differentiation pro-
vided by BesselK.jl (Geoga et al., 2023) and exp-sinh quadrature with δ−1 = 256. All
methods were computed in double-precision floating-point format.

Since the integrands ∂
∂ν fh,ν,ρ and ∂2

∂ν2
fh,ν,ρ also decay exponentially fast for u→ 0 and

u → ∞, it is reasonable to assume that exp-sinh quadrature yields a decent approx-
imation. Furthermore, high-precision implementations of the digamma function and
the trigamma function are available in many special functions libraries and hence a
quadrature-based computation of the partial derivatives of Cρ,ν,σ2 with respect to ν is
worth investigating.
While the authors of Geoga et al. (2023) opted for an adaptive finite difference method
as a reference implementation for the partial derivatives in their analysis, this approach
showed insufficient numerical stability for small values of h and ν in our analysis. There-
fore, we decided to compute a high-precision reference dataset for the integrals of ∂

∂ν fh,ν,ρ

and ∂2

∂ν2
fh,ν,ρ for (h, ν) ∈ {10−4, 10−3.9, ..., 101} based on exp-sinh quadrature. Consid-

ering the sound approximation quality of this method for integrating fh,ν,ρ and the
similar behavior of the integrands for u → 0 and u → ∞, using exp-sinh quadrature
with δ−1 = 1024 and the arbitrary-precision floating-point format with 1024 bits of
precision could be reasonably presumed to deliver a more precise reference dataset as a
golden standard than finite differences.
In Figure 5.5, we compare the accuracy of exp-sinh quadrature at computing the first-
order and second-order partial derivatives of C1,ν,1(h) on the logarithmic grid (h, ν) ∈
{10−4, 10−3.9, ..., 101}2. It is apparent that the approximation by finite differences is
rather poor, especially for the partial derivatives of the second order. Both the automatic
differentiation method, as implemented in the Julia package BesselK.jl, as well as the
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exp-sinh quadrature show a decreasing accuracy for large ν and small h. However, in the
region where ν ∼ 10−2 the exp-sinh quadrature shows a higher precision. Potentially,
this could be attributed to the branching behavior of the implementation of the Bessel-K
function in BesselK.jl.
Despite these promising first results, a number of questions remain to be answered for an
application in ML estimation. For instance, it needs to be investigated how the higher
numerical accuracy in the computation of the partial derivatives of the Whittle-Matérn
covariance function transfers to the partial derivatives of the log-likelihood and how this
impacts the convergence behavior of optimization algorithms. Furthermore, it will be
interesting to study if a vectorized implementation of the exp-sinh quadrature could
improve computing times for the evaluation of the covariance function itself. Never-
theless, the increased precision we demonstrated for our novel technique for evaluating
the Whittle-Matérn covariance function and its partial derivatives has the potential to
mitigate some of the numerical issues that have been known to be problematic in the
inference of its parameters.
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