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In the last decade, a number of methods have been suggested to deal with large
amounts of genetic data in genomic predictions. Yet, steadily growing population
sizes and the suboptimal use of computational resources are pushing the practical
application of these approaches to their limits. As an extension to the C/CUDA
library miraculix, we have developed tailored solutions for the computation of
genotype matrix multiplications which is a critical bottleneck in the empirical
evaluation of many statistical models. We demonstrate the benefits of our
solutions at the example of single-step models which make repeated use of
this kind ofmultiplication. TargetingmodernNvidia

®
GPUs as well as a broad range

of CPU architectures, our implementation significantly reduces the time required
for the estimation of breeding values in large population sizes.miraculix is released
under the Apache 2.0 license and is freely available at https://github.com/
alexfreudenberg/miraculix.
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1 Introduction

Over the past 15 years, the incorporation of genomic information has become essential
for ensuring progress in breeding (Schaeffer, 2006). A routine task in animal breeding is the
estimation of breeding values within a population, that is, the estimation of the average
additive effects of the alleles that an individual passes on to its offspring. Though breeding
values are estimated most accurately through the use genomic data, it is usually too costly to
genotype a whole population. This is particularly true when analyzing large populations, like
national dairy evaluations with millions of animals (Misztal et al., 2022). This circumstance
has sparked a debate on how to combine pedigree information of ungenotyped animals with
Single Nucleotide Polymorphism (SNP) data of genotyped animals to analyze phenotypic
records.

Due to its desirable statistical properties, the single-step genomic BLUP (ssGBLUP)
model (Legarra et al., 2009; Christensen and Lund, 2010) has gained popularity in animal
breeding, combining both the genomic relationship matrix (GRM)G and the pedigree-based
relationship matrix A into a generalized relationship matrix H. Large population sizes used
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in animal breeding programs, ranging from tens of thousands to
millions of individuals, have motivated research in computational
strategies to solve the associated mixed model equations (MME)
efficiently through the use of high-performance computing (HPC)
techniques. One of the proposed approaches is the algorithm for
Proven and Young Animals (APY), which approximates the inverse
of the GRM, G−1, through genomic recursion on a subset of core
animals (Misztal et al., 2014). As an alternative concept, the original
ssGBLUP model was reformulated to, first, allow the use of well-
established numerical software (Legarra and Ducrocq, 2012) and,
second, avoid the explicit construction and inversion of the GRM G
using the Woodbury decomposition. The resulting models were
coined single-step GT(A)BLUP models (Mäntysaari et al., 2017;
Mäntysaari et al., 2020). Additionally, single-step SNP BLUP
(ssSNPBLUP) models were proposed to estimate SNP effects
directly, similarly avoiding G and its inverse (Fernando et al.,
2014; Liu et al., 2014; Taskinen et al., 2017).

Considering the computational aspects of these approaches, the
use of highly-optimized sparse matrix operations has been
established, thanks to the sparse characteristics of the pedigree-
based relationship matrix. Additionally, established iterative-solver
algorithms [e.g., the preconditioned conjugate gradient (PCG)] can
be employed in the resulting equation systems (Strandén and
Lidauer, 1999; Misztal et al., 2009) to avoid explicit construction
of the full coefficient matrix.

Nevertheless, the computational load of the remaining
mathematical operations and slow PCG convergence have been
somewhat prohibitive to the application of ssGTABLUP and
ssSNPBLUP models in ultra-large-scale settings. To mitigate this
issue, a number of numerical advances have been proposed to
improve convergence speed (Vandenplas et al., 2018). So far,
however, improvements in accelerating the involved matrix
arithmetics have been limited to the application of shared-
memory parallel libraries, such as the Intel® Math Kernel Library
(MKL) and PARDISO (Alappat et al., 2020), and unpacking the
compressed SNP matrix M into the CPU cache for the matrix-
matrix product in the PCG iteration (Misztal et al., 2009;
Vandenplas et al., 2020). Bit-level algorithms have been
employed by, for instance, the popular PLINK software (Chang
et al., 2015) in the efficient implementation of genome-wide
association studies (GWAS), which rely on similar genotype
matrix operations. Yet, these routines are not accessible for use
in single-step BLUP evaluations. The software PLINK also
implements BLAS-based routines for the calculation of G on a
Nvidia® GPU in its version 2.0. However, this functionality works on
uncompressed SNP data stored in single-precision floating-point
values, thereby significantly limiting possible problem sizes. Other
authors have used GPUs to accelerate model training for machine
learning algorithms in genomic selection (Xu et al., 2021). In parallel
to this work, efficient approaches for the multiplication of matrices
of mixed input data types have been suggested for use in transformer
machine learning models, in particular with sub-byte integer data
formats (Kim et al., 2022).

In this study, we present tailored algorithms for the
multiplication of a compressed SNP matrix by a matrix of small
width stored in floating-point format for CPUs and Nvidia® GPUs.
Our CPU code is optimized for all major instruction set
architectures. To take advantage of the instruction-level

parallelism capabilities of modern CPUs, our implementation
uses Single Instruction-stream Multiple Data-stream (SIMD)
operations explicitly (Tanenbaum, 2016). Extending the Nvidia®

CUTLASS library (Thakkar et al., 2023), our GPU approach
benefits from fast tile iterators in the data movement during the
matrix-matrix multiplication.

We demonstrate how these advances can drastically reduce the
computing times of genotype matrix multiplications on CPUs and
GPUs compared to double-precision matrix multiplication
routines provided by the Intel® MKL, while simultaneously
reducing memory requirements. We provide scripts for
reproducing our results in the GitHub repository. Additionally,
using genomic data provided by the Irish Cattle Breeding
Federation and the genetic evaluation software MiXBLUP (ten
Napel et al., 2021), we show how our novel approaches bring down
total run times in solving single-step evaluations by up to 62%,
thereby paving the way to include even larger population sizes in
genomic evaluations.

We provide our implementation as part of the C/CUDA
software library miraculix (https://github.com/alexfreudenberg/
miraculix). Interfaces to call the library from higher-level
languages such as Fortran, R and Julia are provided. Through the
modular structure of the miraculix library, which also supplies
functions for the calculation of G, the code should be easily
modifiable by researchers and practitioners interested in
accelerating computations in other BLUP models (Meuwissen
et al., 2001; VanRaden, 2008) or other genomic analyses.

2 Methods

The efficient multiplication of the genotype matrix by a double-
precision matrix plays an important role in many genomic analyses.
In this section, we explain how this multiplication can be
decomposed to reduce the computational costs involved. Then,
we propose novel techniques for the multiplication of a
compressed SNP matrix with a double-precision matrix on CPUs
and GPUs. We illustrate the role of an efficient genotype matrix
multiplication at the example of single-step models. Lastly, we
describe the methodology which we used for evaluating our
approaches.

2.1 Computational bottlenecks

We consider the commonly encountered operation of
multiplying the centered SNP matrix Z, or its transpose Z′, by a
matrix of low width. Here, the matrix Z can be computed as

Z � M − 2 · 1ngp′,

where M ∈ {0, 1, 2}ng×ns denotes the uncentered genotype matrix
containing the ns SNP genotypes (coded as 0 for one homozygous
genotype, 1 for the heterozygous genotype, or 2 for the alternate
homozygous genotype) of ng genotyped animals. Furthermore, p
denotes the vector of allele frequencies and the subtraction of 2 ·
1ngp′ centers the columns of M.

Considering an arbitrary matrix Λ ∈ Rns×k, we first note that the
multiplication of Z with Λ can be reformulated into
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ZΛ � MΛ − 2 · 1ngp′Λ.

Since subtracting the matrix 21ngp′Λ consists of a vector-matrix
multiplication and subsequent additions of matrices of rank one, it is
computationally cheap and can be achieved with BLAS Level-1
operations. The multiplication of the transposed matrix Z′~Λ with an
arbitrary matrix ~Λ ∈ Rng×k is decomposed similarly into

Z′~Λ � M′~Λ − 2 · p1ng′ ~Λ.

Here, we use the distinction between Λ and ~Λ to emphasize that
Z and Z′ cannot be multiplied with the same matrix because they
have different dimensions. Due to the low cost of SNP genotyping,
the matrix M can have extremely large dimensions, capturing the
genomic information of millions of animals. Furthermore, whereas
Λ is a regular matrix of double-precision, the SNP matrix is usually
stored in a compressed format to save memory. For instance, the
PLINK 1 binary file format stores the genotypes of four individuals
in eight bits (corresponding to one byte), utilizing that one entry of
M only requires two bits of storage. This compressed data format
prevents naive calls to BLAS routines, and decompressing it
explicitly is inefficient and increases memory requirements. Only
recently, the problem of matrix multiplication of mixed input data
types has gained attention (Kim et al., 2022) and no off-the-shelf
solution exists for compressed 2-bit integer data types.

In general, algorithms for genotype matrix multiplications that
operate on compressed data can be expected to be more efficient due
to the better utilization of memory movements. In cases where the
multiplication ZΛ needs to be evaluated repeatedly for varying Λ, an
optional conversion of the uncentered SNP matrix M to a different
storage format is comparatively cheap. Therefore, switching the
storage format has the potential to yield efficiency gains.

2.2 Acceleration of the genotype matrix-
matrix multiplication

2.2.1 Previous approach
Vandenplas et al. (2020) proposed a decompress-on-the-fly

approach, consisting of unpacking tiles of submatrices of M small
enough to store the result in the cache and perform matrix
multiplication on these tiles. Briefly, modern computer
architecture implements different levels of cache memory
(commonly, L1, L2, and L3) to reduce access times to repeatedly
processed data. While infrequently used data can be stored in the
random access memory (RAM) or even on the disk, accessing it over
the memory bus combined with the lower clock cycles of the RAM
compared to the CPU dramatically slows down the execution of the
program. While low levels of cache close to the core allow faster
memory reads, they come with lower capacity (Tanenbaum, 2016).
Hence, efficient code which processes large amounts of data strives
to reduce data movement along the memory hierarchy and utilizes
the fast access times of low-level caches. In the aforementioned local
decompression approach by Vandenplas et al. (2020), small
submatrices of SNP data in PLINK 1 binary format are
sequentially converted to double-precision floating-point values.
Since these small submatrices are used repeatedly in a loop, they
should not be evicted from the L1 cache. Therefore, the unpacked

SNP data is readily at hand when new tiles of Λ are loaded and can
be multiplied without additional conversion operations.

2.2.2 The 5codes algorithm for CPUs
Building on the idea of keeping frequently used data close to the

core, our novel approach for CPU computations aims to reduce data
streams of Λ through the cache hierarchy by fully avoiding
decompression. To explain this approach, we assume that there
are no missing values at this point. Instead, they are coded as zero
and their effect is taken into account when subtracting 2 · 1ngp′Λ or
2 · p1ng′ ~Λ later. Since the number of missing values is usually not
substantial, this correction comes at a low cost.

We view the problem of storing compressed SNP data
through the lens of combinatorics: Since there are only three
possible states (0, 1, and 2) for a SNP, any vector m ∈ {0,1,2}5 of
five contiguous SNPs can assume only one of 35 = 243 values.
Assuming there are no missing values, this format requires only
80% of the memory required for storing SNP values in 2 bits.
Hence, each realized vectorm can be stored in one 8-bit unsigned
integer while preserving the order of the SNPs. During
preprocessing, we convert the input data to this compressed
format, which we coined 5codes. At multiplication time, we
treat the columns of Λ separately and load a vector λ ∈ R5 of
five entries in a column of Λ, which is stored in double precision.
Subsequently, we compute all possible results of the scalar
product

x � m′λ, for m ∈ 0, 1, 2{ }5

and store them in a hash table. Then, we iterate over the five columns
ofM under consideration and look up the values of x depending on
the realization of m. We provide pseudo-code for one iteration of
this approach in Algorithm 1. The multiplication M′~Λ is achieved
analogously.

It is worth noting that at least 16 of these tables fit into the
L1 cache because each hash table holds 35 = 243 double-precision
values of 64 bits and the L1 cache in modern CPU architectures
typically holds between 32 and 96 KB. Since the hash table of the
different values of x only needs to be computed once for every five-
row tile of Λ, we keep register instructions to a minimum.
Furthermore, compressed matrix values are loaded into integer
registers whereas real values are stored in SIMD registers. The
implementation aims to optimize load operations and store
operations. For instance, if SIMD registers of 256-bit width are
available, one entry of the hash table contains a vector of four
double-precision floating-point values.

The computation is parallelized among the available processor
cores by splitting M and Λ into chunks along the column axis and
row axis respectively. Finally, the results of each thread are united by
a single reduction operation at the end that computes the sum of all
individual results.

As discussed above, genotype centering is not a bottleneck due to
its low complexity. Thanks to the structure of the 5codes encoding,
the centering can actually be included in the hash table for the
operation ZΛ, meaning that instead of holding the possible values of
m′λ, the hash table can store the centered values

x � z′λ � m′λ − 2 · p′λ.
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Subtracting 2 ·p9λ at this point further reduces the number of
memory accesses and decreases numerical accumulation errors.

Data: Compressed SNP matrix M ∈ {0,1,2}ng×5, floating-

point vector λ ∈ R5

Result: Genotype matrix multiplication x = Mλ

1 /* Compute and store the dot products of λ with all

possible SNP vectors */

2 for m ∈ {0,1,2}5 do

3 idx ← m1 × 30 + m2 × 31 + m3 × 32 + m4 × 33 + m5 × 34

4 /* Compute and store m′λ*/
5 table[idx] ← m1 × λ1 + m2 × λ2 + m3 × λ3 + m4 × λ4 +

m5 × λ5

6 end

7 /* Compute Mλ by looking up the realization of m in

the matrix M. */

8 for j ← 1 to ng do

9 key ←Mj,1 × 30 + Mj,2 × 31 + Mj,3 × 32 + Mj,4 × 33 +

Mj,5 × 34

10 x[j] ← table[key]

11 end

Algorithm 1. Pseudo-code for the 5codes algorithm for the multiplication

of five columns of SNPs M with a vector λ of length 5. The multiplication of

five columns of M9 is analogous. Note that the variable idx in the algorithm

is smaller than 243. For a general number of SNPs ns, five columns of M are

multiplied at a time.

2.2.3 SNP matrix multiplication with mixed data
types on GPUs

To make use of the powerful HPC capabilities of modern Nvidia®
GPUs, we also implement a matrix multiplication routine in CUDA,
in which we extend the CUTLASS library (Thakkar et al., 2023) in its
version 2.10. CUTLASS is a C++ template library for high-
performance matrix operations on Nvidia® GPUs. In contrast to
CPU operations, GPU functions need to align parallel operations
both within thread blocks as well as within warps of threads (Sanders
and Kandrot, 2010). CUTLASS assists this task by providing a
framework that allows software solutions to target only a subset of
levels in this hierarchy. In our case, we implement a template
specialization for the Single Instruction Multiple Threads (SIMT)
subsection within warp-level API in CUTLASS. Since computing
times for our GPU approach are mostly driven by data movements
instead of algebraic operations, we do not make use of the 5codes
algorithm in this implementation but distribute scalar products of
four-dimensional vectors to the cores of the GPU. Therefore, we keep
the established PLINK 8-bit-sized format for storing a four-
dimensional vector corresponding to four SNPs, where each SNP
is coded as either 0 for the homozygous genotype, 1 for a missing
genotype, 2 for the heterozygous genotype and 3 for the alternate
homozygous genotype. For compatibility with CUTLASS, we
introduce a new interleaved data type for double-precision vectors
of size four. Furthermore, fitting the genotype matrix multiplication
into the CUTLASS framework requires adding a new scalar-product
microkernel for this specific combination of data types and adjusting
the CUTLASS interfaces upstream accordingly. The microkernel uses
bitmasks to extract the SNP values from the compressed storage
format and converts them into double-precision floating-point values

for immediate multiplication afterward. Through the highly efficient
memory access iterators in CUTLASS, we are able to move data
quickly from the device memory to the shared memory to the cores
and back. Furthermore, in order to reduce memory allocations and
data movement between the host and the device, we preallocate
memory for the matrix Λ and transfer data objects which are
required in every PCG iteration (that is, M and p) only once at
start-up time. To our knowledge, this is the first implementation of
matrix multiplication of 2-bit integers with double-precision floating-
point values, which we designed in parallel to the recent work of Kim
et al. (2022) who extended the CUTLASS library to include, among
others, matrix multiplication of 4-bit integers with half-precision
floating-point values.

2.2.4 Memory management
Since both the CPU and GPU approaches exploit a compressed

storage format for the SNP matrix, the question arises of how to
efficiently calculate the transposed matrix productM′~Λ. A memory-
efficient implementation would transpose chunks of M of low
dimension which are iterated over. For instance, transposing sub-
matrices of dimensions 16 by 16 in PLINK 1 binary format would
allow distributing the transpose operation in a warp of threads on a
GPU. However, thanks to the compressed data storage, we are not
memory-bound with the current number of genotyped animals and
SNPs, and we, therefore, choose to transpose M as a whole during
start-up and store it separately to reduce computation time
associated with transposition. For instance, the dataset of 2.61 m
animals with 47 k SNP markers we use in this article for testing
purposes only requires about 57 gigabytes of RAM for both M and
M′ combined.

2.3 SNP matrix multiplications in single-step
models

Single-step models in animal breeding programs commonly
comprise hundreds of thousands or even millions of animals.
Therefore, the MME for these models need to be solved
iteratively in practice, commonly through the PCG algorithm. To
this end, each iteration requires multiplying the corresponding
coefficient matrix with a candidate vector.

To illustrate the necessity of a fast genotype matrix multiplication,
we give an overview of the matrix operations involved in the
ssSNPBLUP approach, proposed by Liu et al. (2014), and the
ssGTABLUP approach, introduced by Mäntysaari et al. (2017).
Both univariate models can be easily extended to multivariate
applications. The numerical treatment of these approaches is
described in detail by Vandenplas et al. (2023) who found that
they have similar computational costs per iteration when applied
to large datasets since they require the same matrix computations.

A standard univariate mixed model for ssGBLUP can be
written as:

y � Xb + Wn 0
0 Wg

[ ] un

ug
[ ] + e

where y is the vector of records, b is the vector of nfixed fixed effects,
un is the vector of additive genetic effects for the non-genotyped
animals, ug is the vector of additive genetic effects for the genotyped
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animals, and e is the vector of residuals. The matricesX,Wn, andWg

are incidence matrices relating records in y to the corresponding
effects. The random effects vector ug can be decomposed into ug = ag
+ Zg, where g is the vector of SNP effects and ag contains the residual
polygenic effects.

Due to the assumed covariance structure, the ssSNPBLUP
system of equations proposed by Liu et al. (2014) involves the
matrix Σ−1 defined as

Σ−1 �

Ann Ang 0

Agn Agg + 1
w
− 1( )A−1

gg − 1
w
A−1

ggZ

0 − 1
w
Z′A−1

gg

1
w
Z′A−1

ggZ + m

1 − w
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦σ

−2
u ,

where the scalar σ−2u is the inverse of the additive genetic variance, w
between 0 and 1 is the proportion of variance not explained by SNP
markers, called residual polygenic effects, and m � 2∑ns

j�1pj(1 − pj)
for (p1, . . . , pns)′ � p. Furthermore, the matrix

A � Ann Ang

Agn Agg
[ ],

denotes the pedigree-based relationship matrix and

A−1 � Ann Ang

Agn Agg[ ].
is its inverse, which is sparse (Henderson, 1976). Here, n and g
denote non-genotyped and genotyped animals respectively. The
inverse of Agg can be computed as

A−1
gg � Agg − Agn Ann( )−1Ang.

Because the coefficient matrices of the ssSNPBLUP and
ssGTABLUP models are too large to be constructed explicitly, it
is decomposed into submatrices which are multiplied separately
(Vandenplas et al., 2020). Importantly, most of these submatrices
(e.g., Ann, Ang, Agn, Agg) in Σ−1 are sparse and can be multiplied by a
vector or a matrix at a relatively low cost by using iteration-on-data
techniques (Schaeffer and Kennedy, 1986) and sparse matrix
operations (Legarra et al., 2009; Vandenplas et al., 2020).
Additionally, although the matrix (Ann)−1 is not sparse in
general, equation systems involving (Ann)−1 can be solved by
using forward and backward substitution techniques with the
Cholesky factor of Ann, which only needs to be computed once.
Therefore, this calculation is also not computationally demanding in
practice. In contrast, the multiplication ofZ by an arbitrary matrix of
low width Λ has been a computational bottleneck so far.

2.4 Evaluation

Since both the 5codes algorithm and our GPU approach take
advantage of modern hardware architectures, it can be expected that
they outperform the existing implementations. To quantify the
benefits, we used simulated data to benchmark our concepts for
genotype data of various sizes. Afterward, considering the
ssSNPBLUP and ssGTABLUP systems of equations on a large
population of Irish beef and dairy cattle, we evaluated the wall
clock times for estimating the breeding values in this population

using the PCG implementation in the software MiXBLUP (ten
Napel et al., 2021). We compared our novel approaches with the
wall clock time required by the current Fortran-based matrix
multiplication implementation in MiXBLUP.

2.4.1 Simulated data
For benchmarking our two novel approaches, we simulated

genotype data of various dimensions using the software suite
PLINK (Chang et al., 2015). Mimicking the population sizes of
many breeding programs in practice, we generated genotype data of
three distinct animal populations with a varying number of
individuals: a small population with 102 k animals, a medium
population with 751 k animals and a large population with 3.1 m
animals. For each population, 50,241 SNPs were simulated, resulting
in memory requirements of approx. 1.2 GB in compressed storage
format (38.2 GB in double-precision) for the small population,
8.8 GB (281.2 GB) for the medium population, and 36.3 GB
(1,160.6 GB) for the large population. Furthermore, we simulated
a matrix Λ of 10 normally distributed traits.

2.4.2 Cattle data
We tested our two novel approaches when integrated into the

PCG solver using data from the routine six-trait calving-difficulty
evaluation for Irish dairy and beef cattle performed by Irish Cattle
Breeding Federation (ICBF; Ireland) in March 2022. We solved the
equation systems associated with the ssSNPBLUP and ssGTABLUP
models. The single-step genomic evaluations were based on the
same multi-trait animal model and variance components as the
current official routine breeding value evaluation described in more
detail in Evans et al. (2019) and Vandenplas et al. (2023). Briefly,
after extraction and editing, the data file included 16.59 m data
records (across 6 traits), and the pedigree included 26.46 m animals.
The genotypes of 2.61 m animals included 47,006 SNPmarkers from
29 bovine autosomes, with a minor allele frequency greater or equal
to 0.01. The genotype data were from a range of 30 different arrays
ranging from 3 to 850 k SNPs that had been imputed using FImpute
(Sargolzaei et al., 2014) to a 50 k SNP set based on version 3 of the
International Beef and Dairy (IDB) chip. For both single-step
approaches, the genotype matrix was centered using observed
allele frequencies and the proportion of residual polygenic effects
was set to w = 0.20.

3 Results

3.1 Benchmarks

In Figure 1, we assess the performance of consecutively
multiplying ZΛ and Z′~Λ, as required in each iteration of a PCG
solver. We compare our implementation of the 5codes algorithm and
the GPU implementation with two alternative solutions: 1) The
decompress-on-the-fly approach implemented in Fortran and
proposed by Vandenplas et al. (2020), which we will call
“original solution” below, and 2) a single call to the double-
precision matrix multiplication function (dgemm) which is part
of all major BLAS libraries. As for the latter, we first needed to inflate
the full SNP matrix to double-precision floating-point values and
store both the SNPmatrix as well as its transpose in memory.We use
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the BLAS library included in the Intel® Math Kernel Library (MKL).
For compilation, we used the Intel® compiler in its version
2021.4.0 and employed compilation options to natively
optimize our code to the available hardware. We ran our CPU
benchmarks on a single AMD®Milan EPYC 7513 (2.6 GHz) CPU
and our GPU implementation on an Nvidia® H100. Since our
implementation of the 5codes algorithm did not display
considerable scalability advances beyond 20 cores (see
Table 1) and the software MiXBLUP recommends a similar
number of cores for parallelizing computations, we refrain
from testing it on more cores.

Evaluating our two novel approaches against a crude call to the
BLAS-based double-precision matrix multiplication function shows
that computing times can be reduced by more than 99.7% (98.1%)
for the small and medium populations on the GPU (CPU).

Unfortunately, the genotype data of the large population in
double precision required approx. 2.27 TB of RAM, which could
not be met in our hardware setup, hindering us from benchmarking
the BLAS library on this dataset. Similarly, the CPU-based original
solution for multiplying compressed SNP matrices with Λ took
about 19 times longer on all population sizes compared to the GPU
implementation and three times longer compared to the 5codes
algorithm.

To mitigate the impact of hardware-specific optimizations
which might limit the reproducibility of our results, we further
test our CPU code on Intel® and AMD® processors (Intel® Xeon Gold
6230 and AMD® Milan EPYC 7513) and our GPU code on three
generations of Nvidia® datacenter GPUs (Volta V100, Ampere
A100 and Hopper H100). Results displayed in Table 1 are the
average computing times of 10 replicates.

FIGURE 1
Total wall clock time for consecutively calculating ZΛ and Z′~Λ on a system with a dual-socket AMD

®
Milan EPYC 7513 (2.6 GHz) processor, 2 TB of

RAM and a single Nvidia
®
H100 GPU. Annotations show formatted computing times in seconds. CPU calculations used 20 dedicated cores. No test was

performed for the BLAS routine with the large population size, as this would have required ca. 2.27 TB of RAM. Results are the average of 10 repeated
calculations.

TABLE 1 Computation wall clock times in seconds of the GPU implementation and the CPU algorithm 5codes for the multiplication of the genotypematrix Z and its
transposed Z9with simulated matricesΛ and ~Λ. CPU operations were performed with 2 TB of RAM on the Intel® Xeon Gold 6230 (2.1 GHz) and the AMD® EPYC 7513
(2.6 GHz) on 1 core, 10 cores and 20 cores. The V100 GPUs were equipped with 32 GB of device memory, while the A100 and H100 models had a capacity of 80 GB.
Dashes (−) indicate out-of-memory events. Results are the average of 10 repeated calculations.

Population Operation Nvidia
®

Intel
®

AMD
®

Size V100 A100 H100 1c 10c 20c 1c 10c 20c

Small ZΛ 0.10 0.06 0.05 2.24 0.36 0.35 1.71 0.38 0.41

Z′~Λ 0.10 0.06 0.05 2.29 0.37 0.29 1.75 0.30 0.28

Medium ZΛ 0.69 0.45 0.35 16.03 2.61 2.51 12.53 2.96 2.94

Z′~Λ 0.70 0.47 0.36 16.81 2.50 1.81 13.00 2.08 1.33

Large ZΛ - 1.87 1.42 76.42 12.31 12.24 51.72 10.99 11.03

Z′~Λ - 1.94 1.47 83.44 12.73 10.04 53.68 8.36 5.55
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As for the GPU implementation, our findings suggest that
reductions in computing times of approx. 25% (50%) can be
achieved when using the recently introduced H100 compared to
the A100 (V100). More importantly, the V100 ships with 16 GB or
32 GB of device RAM, limiting the potential problem sizes in our
application. Yet, this issue could be mitigated by using multiple
GPUs. Since both the transposed and the untransposed matrix are
stored on the device, computing times for both multiplications do
not differ substantially.

Despite using the Intel® C/C++ Classic Compiler with Intel-
specific optimizations, the 5codes algorithm performs slightly better
on the more powerful AMD® chip than on the Xeon Gold 6230. We
observe that our implementation scales reasonably well to 10 cores,
decreasing computing times by at least a factor of 5. However,
increasing the number of cores to 20 only yields mild performance
improvements and even comes with a penalty in some cases (see
Table 1).

Overall, our evaluations suggest that the GPU implementation
significantly outperforms the 5codes implementation, though
practical applications should evaluate the costs and benefits of
adding a GPU to their hardware setup based on their respective
compute time restraints.

3.2 Impact on single-step genomic
evaluations

We solved the equation systems associated with the
ssSNPBLUP and ssGTABLUP models with the program hpblup,
a PCG-based solver used by the software MiXBLUP 3.1 (ten Napel
et al., 2021), which links against the miraculix library and toggles
the use of our two novel implementations through an option.
Experiments were performed with 180 GB of RAM on a single
AMD® EPYC 7513 CPU for the 5codes algorithm and a single
Nvidia® A100 for the GPU implementation. For the CPU tests, we
used 15 dedicated cores, as this is the recommended setting in
MiXBLUP. The PCG was iterated until a square relative residual
below 10–13 was achieved. To put our observed computing times
into perspective, we also solved both models with the current
approach for multiplying genotype matrices implemented in
MiXBLUP 3.1 (which we will call “current” below).

Results are displayed in Table 2. Due to the different nature of
the effects estimated, the computing times should be evaluated
separately for the two models. For the ssSNPBLUP equation
system, we observe that the average wall clock time is reduced by
approx. 72% (11%) for the multiplication ZΛ and by approx. 95%
(76%) for Z′~Λ on GPUs (CPUs) respectively. When solving the
ssGTABLUP equation system, the average time for multiplying ZΛ
was slightly higher in the 5codes algorithm. Yet, both 5codes and the
GPU implementation significantly decreased the time for
computing Z′~Λ.

As the genotype matrix multiplication constitutes a
significant portion of the time per iteration in the PCG
solver, the 5codes implementation reduced the time for
solving the ssSNPBLUP model from approx. 6.47 h to 4.22 h
on the CPU. Similarly, the wall clock time for solving the
ssGTABLUP model was reduced from 4.03 h to 3.30 h.
Outperforming these results, the GPU approach only
required 2.49 h for the ssSNPBLUP model and 1.98 h for the
ssGTABLUP model. A similar number of iterations was
observed for solving all models, though the 5codes algorithm
required 27 iterations less for solving the MME associated with
the ssSNPBLUP model, which might be explained by its
inherently higher precision.

4 Discussion

We have presented novel approaches for multiplying centered
genotype matrices M by a continuously-scaled matrix Λ which are
applicable both on CPUs as well as on modern GPUs. Useful
applications include single-step genomic models that are used to
compute breeding value estimates when only a subset of animals are
genotyped and/or phenotyped. Yet, similar computational
operations are employed in other fields of modern genetics. For
instance, genome-wide association studies could benefit from a fast
genotype matrix multiplication at various computational
bottlenecks: the multiplication of the SNP matrix by a phenotype
vector is an essential part of the calculation of genotype-phenotype
correlations (Yang et al., 2011). Additionally, many genome-wide
association studies use the results of a principal component analysis
(PCA) of G for population stratification (Price et al., 2006;

TABLE 2 Computation wall clock times of single-step genomic models on ICBF cattle data in seconds. The SNP matrix Z and its transposed Z9 are multiplied by
matricesΛ and ~Λ respectively to compute the candidate matrix in the PCG. All computations were performed on one AMDMilan EPYC 7513 CPUwith 15 dedicated
cores. GPU computations were performed on a single Nvidia® A100 GPU with 80 GB device memory. Both models were trained to a relative error below 10–13. The
total time contains preprocessing (I/O operations and set-up of the preconditioner matrix), solving of the MME, and postprocessing (mainly I/O operations).

Wall clock time (s)
ssSNPBLUP ssGTABLUP

Current 5codes GPU Current 5codes GPU

Average time ZΛ 5.41 4.81 1.50 8.76 10.38 1.53

Average time Z′~Λ 29.68 7.05 1.62 28.66 6.83 1.58

Average time per iteration 51.43 32.32 14.16 50.38 35.21 16.25

Number of iterations 389 362 385 212 212 212

Preprocessing time 2953 3191 3186 3493 4068 3184

Total time 23275 15195 8961 14504 11863 7138
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Meuwissen et al., 2017; Ødegård et al., 2018) and hence are to gain
from a fast genotype matrix multiplication as well.

Through our optimized algorithms we were able to achieve a
speed-up of critical operations by a factor of up to 3 compared to the
methodology by Vandenplas et al. (2020) using CPUs, and a factor of
up to 20 using GPUs. Thanks to this acceleration, we have shown how
our software library can be used by researchers and practitioners to
estimate breeding values in a population of 26.46 m animals, 2.61 m of
which were genotyped, in a reasonable time of approx. 2 h.

Nevertheless, the growth of breeding populations as well as the
steadily falling costs of genotyping will result in genomic datasets of
ever-growing size. Therefore, there are several avenues for further
research to utilize computing resources even more efficiently.

First, as indicated in Section 2, systemmemory requirementsmight
be reduced by a factor of approximately two by transposing the
compressed genotype matrix on-the-fly during matrix multiplication
instead of storing the transpose explicitly.WithNvidia® GPUs currently
limited to at most 94 GB device memory and most compute set-ups
limited to hundreds of gigabytes of RAM, this improvement would
extend the dimensions of possible problem sizes addressable with our
proposed matrix-multiplication microkernel.

Second, though our GPU implementation uses highly
efficient data access iterators provided by the CUTLASS
library, a further reduction in computing time might be
achieved by using warp-level-coordinated matrix operations,
which have been added as hardware instructions on the latest
generations of GPUs [see, e.g., the CUTLASS documentation for
how this has been tackled in general tensor-tensor operations
(Thakkar et al., 2023)]. Additionally, we have seen that our 5codes
implementation suffers from scalability issues when extending
the number of cores.

Finally, it should be noted that in the evaluation of single-step
models, the preprocessing time required by the PCG solver (e.g., to
set up the preconditioner) now constitutes a significant portion of
the total computation time. Reducing this contribution holds the
potential for additional performance improvements.

Notwithstanding these potential improvements, our software
can be used in a variety of computational tasks in genomics to reduce
computing times.
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