
Provable Security for Lightweight Message
Authentication and Encryption

Inauguraldissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften der Universität Mannheim

vorgelegt von
Alexander Julian Moch, M.Sc.

aus Mannheim

Mannheim, 2023

2

Dekan: Prof. Dr. Claus Hertling, Universität Mannheim

Erstgutachter: Prof. Dr. Matthias Krause, Universität Mannheim

Zweitgutachter: Prof. Dr. Stefan Lucks, Bauhaus-Universität Weimar

Drittgutachter: Prof. Dr. Frederik Armknecht, Universität Mannheim

Tag der mündlichen Prüfung: 17. Oktober 2023

Abstract

The birthday bound often limits the security of a cryptographic scheme to half of the block
size or internal state size. This implies that cryptographic schemes require a block size
or internal state size that is twice the security level, resulting in larger and more resource-
intensive designs. In this thesis, we introduce abstract constructions for message authen-
tication codes and stream ciphers that we demonstrate to be secure beyond the birthday
bound.

Our message authentication codes were inspired by previous work, specifically the mes-
sage authentication code EWCDM by Cogliati and Seurin, as well as the work by Mennink
and Neves, which demonstrates easy proofs of security for the sum of permutations and an
improved bound for EWCDM. We enhance the sum of permutations by incorporating a
hash value and a nonce in our stateful design, and in our stateless design, we utilize two hash
values. One advantage over EWCDM is that the permutation calls, or block cipher calls,
can be parallelized, whereas in EWCDM they must be performed sequentially. We demon-
strate that our constructions provide a security level of 2n/3 bits in the nonce-respecting
setting. Subsequently, this bound was further improved to 3n/4 bits of security. Addition-
ally, it was later discovered that security degrades gracefully with nonce repetitions, unlike
EWCDM, where the security drops to the birthday bound with a single nonce repetition.

Contemporary stream cipher designs aim to minimize the hardware module’s resource
requirements by incorporating an externally available resource, all while maintaining a high
level of security. The security level is typically measured in relation to the size of the volatile
internal state, i.e., the state cells within the cipher’s hardware module. Several designs
have been proposed that continuously access the externally available non-volatile secret key
during keystream generation. However, there exists a generic distinguishing attack with
birthday bound complexity. We propose schemes that continuously access the externally
available non-volatile initial value. For all constructions, conventional or contemporary,
we provide proofs of security against generic attacks in the random oracle model. Notably,
stream ciphers that use the non-volatile initial value during keystream generation offer
security beyond the birthday bound. Based on these findings, we propose a new stream
cipher design called Draco.

3

Zusammenfassung

Häufig beschränkt das Geburtstagsparadoxon die Sicherheit eines kryptographischen Sys-
tems auf die Hälfte der Blockgröße oder der internen Zustandsgröße. Das bedeutet, dass
kryptographische Verfahren eine Blockgröße oder interne Zustandsgröße benötigen, die
doppelt so groß ist wie das gewünschte Sicherheitsniveau, was zu größeren und ressourcen-
intensiveren Designs führt. In dieser Arbeit führen wir abstrakte Konstruktionen für Mes-
sage Authentication Codes (MACs) und Stromchiffren ein, von denen wir zeigen, dass sie
über die Geburtstagsgrenze (Birthday-Bound) hinaus sicher sind.

Unsere MACs wurden durch frühere Arbeiten inspiriert, insbesondere durch EWCDM
von Cogliati und Seurin sowie eine Arbeit von Mennink und Neves, welche einfache Sicher-
heitsbeweise für die Summe von Permutationen und eine verbesserte untere Schranke für
EWCDM zeigt. Wir erweitern die Summe von Permutationen durch Einbindung eines
Hashwertes und einer Nonce in unserem ersten Design und in unserem zweiten Design
verwenden wir zwei Hashwerte. Ein Vorteil gegenüber EWCDM ist, dass die Permuta-
tionsaufrufe oder Blockchiffrenaufrufe parallelisiert werden können, während sie bei EW-
CDM sequenziell durchgeführt werden müssen. Wir zeigen, dass unsere Konstruktionen
ein Sicherheitsniveau von 2n/3-Bit im nonce-respecting Szenario bieten. Diese Schranke
wurde später auf ein Sicherheitsniveau von 3n/4-Bit Sicherheit verbessert. Zusätzlich
wurde später entdeckt, dass die Sicherheit bei Wiederholungen der Nonce nur allmählich
abnimmt (gracefully degrades), im Gegensatz zu EWCDM, bei dem die Sicherheit bei einer
einzigen Nonce-Wiederholung auf die Geburtstagsgrenze fällt.

Neuere Stromchiffrendesigns zielen darauf ab, die Ressourcenanforderungen des Hard-
waremoduls zu minimieren, indem sie eine extern verfügbare Ressource einbinden, und
dabei ein hohes Sicherheitsniveau beibehalten. Das Sicherheitsniveau wird typischerweise
in Bezug auf die Größe des volatilen internen Zustands gemessen, d.h., die Zustandszel-
len innerhalb des Hardware-Moduls der Chiffre. Es wurden mehrere Designs vorgesch-
lagen, die während der Keystreamgenerierung kontinuierlich auf den extern verfügbaren
nicht-volatilen gehemein Schlüssel zugreifen. Es gibt jedoch einen generischen Unter-
scheidungsangriff mit Birthday-Bound-Komplexität. Wir schlagen Konstruktionen vor,
die kontinuierlich auf den extern verfügbaren nicht-volatilen Initial Value zugreifen. Für
alle Konstruktionen, konventionelle oder neuere Designs, liefern wir Sicherheitsbeweise ge-

5

6 Zusammenfassung

gen generische Angriffe im Random Oracle Model. Bemerkenswert ist, dass Stromchiffren,
welche den nicht-volatilen Initial Value während der Keystreamgenerierung nutzen, eine
Sicherheit über die Geburtstagsgrenze hinaus bieten. Basierend auf diesen Erkenntnissen
schlagen wir ein neues Stromchiffrendesign namens Draco vor.

Acknowledgements

First and foremost, I would like to express my profound gratitude to Matthias Krause for
serving as my supervisor. The guidance, suggestions, and inspiration you provided were
invaluable to the completion of this journey.

Special thanks to Eik List for assisting me with my first cryptography publication. Fur-
ther acknowledgment goes to Matthias Hamann and Matthias Krause for their support
during the subsequent publications.

My appreciation goes out to my colleagues: Christian Müller, Philipp Schaber, Vasily
Mikhalev, Jasmin Zalonis, Jochen Schäfer, Linda Scheu-Hachtel, and Youzhe Heng. Their
contributions, though often behind the scenes, haven’t gone unnoticed.

I am also deeply appreciative of the behind-the-scenes contributions of Karin Teynor
and Gabi Atkinson, allowing me to focus more intently on my research.

I extend my gratitude to Frederik Armknecht and Stefan Lucks for their review and
assessment of my thesis. Likewise, I appreciate Andreas Neuenkirch for presiding over my
defense and Colin Atkinson for stepping in on short notice during the disputation.

To my parents, thank you for your foundational support in my early years, which has
led me to this academic milestone.

7

Contents

Abstract 3

Zusammenfassung 5

Acknowledgements 7

List of Figures 13

List of Tables 13

Outline 15

I Foundations 19

1 Introduction 21
1.1 Kerckhoffs’ Principle . 23

2 Probability Theory 25
2.1 Basic Definitions . 25
2.2 The Birthday Paradox . 30

2.2.1 Calculating the Probability . 30
2.2.2 The Birthday Problem Generalized 31

3 Cryptographic Security 33
3.1 Perfect Secrecy . 33

3.1.1 One-time Pad . 34
3.1.2 Shannon’s Theorem . 35

3.2 Practical Security . 36
3.3 Turing Machines . 37

3.3.1 Probabilistic Turing Machines . 38
3.3.2 Oracle Turing Machines . 38

3.4 Adversarial Advantage . 39
3.5 Pseudorandomness . 41
3.6 Distinguishing Attacks . 42
3.7 Random Oracle Model . 43

4 The H-coefficient Technique 45

9

10 Contents

4.1 An Example Using the Even-Mansour Cipher 47
4.2 Mirror Theory . 50
4.3 An Example Using the Sum of Permutations 52

II Message Authentication Codes 55

5 Message Authentication Codes 57
5.1 Security Requirements . 60
5.2 Wegman-Carter MACs . 62

5.2.1 Universal Hashing . 63
5.2.2 Attacks on Wegman-Carter MACs 64
5.2.3 Improving the Wegman-Carter MAC 65

6 Improving Wegman-Carter 67
6.1 Preliminaries . 69
6.2 Constructions . 71
6.3 Relation to the Attack by Leurent et al. 73
6.4 Security Analysis of HPxNP . 74

6.4.1 Bad Transcripts . 75
6.4.2 Ratio of Good Transcripts . 76
6.4.3 Using ξaverage . 77

6.5 Security Analysis of HPxHP . 80
6.5.1 Bad Transcripts . 82
6.5.2 Good Transcripts . 83
6.5.3 Using d -wise Independent Hash Functions 85
6.5.4 Extension to d -independence for Even d 90

6.6 Conclusion . 91

III Stream Ciphers 93

7 Stream Ciphers 95
7.1 One-time Pad . 98
7.2 High-level Stream Cipher Encryption . 99

7.2.1 Keystream Generation Using Stateful Stream Ciphers 99
7.3 Feedback Shift Registers . 100
7.4 Security Requirements . 102
7.5 Time-memory-data Tradeoff Attacks . 103

8 Enhanced State Stream Ciphers 105
8.1 Enhanced State Stream Ciphers . 109

Contents 11

8.1.1 Description of the Cipher Constructions 110
8.1.2 Discussion of the Packet Length . 112
8.1.3 Discussion of the State Lengths . 113
8.1.4 Hardware Implications of Continuous IV Access 113

8.2 Time-memory-data Tradeoff Attacks . 115
8.2.1 The Conventional TMDTO Attack 116
8.2.2 TMDTO Attacks Against CKEY . 117
8.2.3 TMDTO Attacks Against CIV . 118
8.2.4 TMDTO Attacks Against CIVK . 118

9 Proving Security 121
9.1 Proof Preliminaries . 121

9.1.1 Random Oracle Model . 121
9.1.2 The Distinguishing Game . 122
9.1.3 Oracle Queries . 122
9.1.4 Transcripts . 123
9.1.5 H-coefficient Technique . 124
9.1.6 The Adversarial Strategy . 125
9.1.7 Structure of the Analysis . 125

9.2 Analysis of LSSK . 126
9.2.1 Overview of the Bad Events . 127
9.2.2 Bad Events . 127
9.2.3 Bounding the Bad Events . 128

9.3 Analysis of CKEY . 129
9.3.1 Overview of the Bad Events . 130
9.3.2 Bad Events . 130
9.3.3 Bounding the Bad Events . 132

9.4 Analysis of CIV . 133
9.4.1 Overview of the Bad Events . 134
9.4.2 Bad Events . 134
9.4.3 Bounding the Bad Events . 135

9.5 Analysis of CIVK . 136
9.5.1 Overview of the Bad Events . 137
9.5.2 Bad Events . 138
9.5.3 Bounding the Bad Events . 139

9.6 Good Transcripts . 140

10 Presenting the DRACO Stream Cipher 143
10.1 Design Specification of DRACO . 143

10.1.1 Components . 144

12 Contents

10.1.2 State Initialization . 147
10.1.3 Keystream Generation . 148

10.2 Design Considerations . 148
10.2.1 The Key-IV Schedule . 149
10.2.2 NFSR1 . 150
10.2.3 NFSR2 . 151
10.2.4 Output Function a . 152
10.2.5 Output Function a: Tap Selection 154
10.2.6 Continuous Key and IV Usage . 156

10.3 Cryptanalysis . 156
10.3.1 Correlation Attacks, Linear Approximations 157
10.3.2 Algebraic Attacks . 158
10.3.3 Conditional Differentials, Cube Attacks 160
10.3.4 Slide Attacks, Related Key Attacks 161
10.3.5 Weak Key-IV Pairs . 162
10.3.6 BDD-based Attacks . 163
10.3.7 Preventing Banik et al. and Esgin-Kara Attacks 163

10.4 Hardware Results . 164
10.4.1 Discussion of the Results . 166

11 Fixing the Key Schedule 167
11.1 Banik’s TMDTO Attacks . 167
11.2 Design Specification of the Quick Fix . 169

11.2.1 Components . 169
11.3 Hardware Metrics for the Quick Fix . 170
11.4 Keeping the State Small . 171
11.5 Hardware Metrics for the Work in Progress 173
11.6 Conclusion . 174

Bibliography 177

List of Figures

2.1 Visualization of the total variation distance. 29
2.2 The birthday paradox for up to 70 people. 32

6.1 Our proposed MAC constructions, HPxNP and HPxHP. 72
6.2 Structure graphs of hash-value pairs (ui , vi) in blocks of size 5 – 7. 87

7.1 A feedback shift register with feedback function f 100
7.2 A linear feedback shift register. 101
7.3 A filtered linear feedback shift register. 102
7.4 A stream cipher with a Grain-like structure. 102

10.1 Draco in keystream generation mode. 144
10.2 Draco in phase 2 of the state initialization. 147

11.1 DracoQF in keystream generation mode. 169
11.2 DracoQF in phase 2 of the state initialization. 170

List of Tables

9.1 Inputs and outputs of oracle queries to LSSK. 126
9.2 Inputs and outputs of oracle queries to CKEY. 129
9.3 Inputs and outputs of the oracle queries to CIV. 133
9.4 Inputs and outputs of the oracle queries to CIVK. 136

10.1 Hardware metrics for Draco and Grain-128a. 165

11.1 Hardware metrics for Draco, DracoQF, Atom and Grain-128a. 171
11.2 Seven consecutive erasures for the cyclically chosen bits. 172
11.3 Hardware metrics for Draco, DracoWIP, Atom and Grain-128a 174

13

Outline

This thesis is concerned with provable security for lightweight message authentication and
stream cipher encryption. Message authentication and stream cipher constructions will be
proposed in this work and their security will be shown in the random oracle model. Also,
a new stream cipher design called Draco will be proposed based on the proofs of security.

Probability theory. As it is essential to definitions of security, the modeling of our
proposed construction and the proofs of security, the fundamentals of probability theory
will be reviewed in this thesis. Of particular relevance is the total variation distance, occa-
sionally referred to as the statistical distance. The total variation distance is used to establish
an upper bound an attacker’s probability of breaking the cryptosystem.

Security model. Throughout this work, we will consider asymptotic security with an
information-theoretic adversary. This means that the scheme will be describes abstractly in
dependence of some security parameters, i.e., the key length, the block size, or the internal
state size. The adversary is not bounded in computational resources but only in the amount
of queries it can ask to the cryptographic construction and its underlying building blocks.

The goal of the adversary is to distinguish the construction from a perfectly random
counterpart. Intuitively, this corresponds to distinguishing the output of a cryptographic
algorithm from random noise. The adversary will get access to an oracle in either the real
world or the ideal world. The real world corresponds to the construction to be analyzed and
the ideal world to its perfectly random counterpart. After a total of q queries, the adversary
has to decide whether it was interacting with the real world or with the ideal world. Its task
is therefore to distinguish the two worlds and the difference how much better the adversary
is than a random guess is measured as the distinguishing advantage.

Birthday bound. Of particular relevance in this work, and for many cryptographic
schemes in general, is the birthday bound. If we pick elements from a set of size N uni-
formly at random with repetition, we expect the first collision after

p
N random draws.

One typical goal when designing new schemes is overcoming the birthday bound. This
allows a scheme to have higher security for given resources, or lower resource requirements
for a given security level.

15

16 Outline

Proof technique. The proofs in this work make use of the H-coefficient technique
which is due to Jacques Patarin [Pat08]. The setting is that of an information-theoretic
adversary that has to distinguish the construction from a perfectly random counterpart.
The main idea is that some events, that allow for easy distinguishing, occur with a small
probability, while the remaining ones can only be distinguished with a small probability.
We describe the H-coefficient technique in Chapter 4 and give an example using the Even-
Mansour cipher. For MACs we use the Mirror Theory and also give a short example in
Section 4.2.

Message authentication. The message authentication codes (MACs) we propose
were inspired by the works [CS16] and [MN17]. [CS16] proposed a beyond the birthday
bound-secure nonce-based MAC that requires two consecutive permutation calls. [MN17]
showed a simple proof of security with n bits of security for the sum of permutation based
on the Mirror Theory by Jacques Patarin [Pat10, Pat17] and the H-coefficients technique
by Jacques Patarin [Pat08]. We based our MAC construction on the sum of permuta-
tions as it allows for parallel calls to the permutations. One of our schemes is nonce-based
(stateful) and the other replaces the nonce with a second hash value and is thus stateless.
[DNT19] studied the same nonce-based construction in parallel to us and further showed
graceful degradation of security if nonces are repeated. For other schemes, security drops
back to the birthday bound if nonces are repeated [CS16] or, even worse, the scheme
is broken [WC81]. [DDNP18] studied the same stateless construction in parallel to us
and showed the same security bound. For both constructions, the security bounds were
later improved [CLLL20, KLL20] and their security was analyzed in a multi-user setting
[CDN22, SWGW21, DDNT23].

Stream ciphers. Stream ciphers are vulnerable to an attack type called time-memory-
data tradeoff attacks. These cap the security of stream ciphers to half the internal state size.
This implies a large internal state to be used. Contemporary designs try to keep the cipher’s
hardware module small by accessing an externally available resource. The total state size,
internal plus external state, must still be double the security level, but the cipher’s hardware
module uses fewer resources.

Our stream cipher constructions were inspired by earlier works that introduced the
Sprout stream cipher [AM15] and the Plantlet stream cipher [MAM16]. These designs
continuously use the secret key during keystream generation. The secret key is not stored
within the cipher’s hardware module. But the design makes use of the existing wiring to
access the key and keep the cipher’s hardware module small.

Extended-state stream ciphers. The problem with designs continuously using the
secret key is that the security level is still capped at half the volatile internal state size when
considering indistinguishability. That prompted us to design a random oracle model which

Outline 17

would allow to analyze the security of stream ciphers in a generic setting. Using this model,
we show tight bounds on the security against generic attacks of stream ciphers. The model
was initially presented in [HKM19], which also demonstrated that stream ciphers continu-
ously using the IV do not suffer from a generic distinguishing attack. Based on this, the
Draco stream cipher [HMKM22] was designed, which additionally uses a non-volatile
key prefix to achieve a higher security level. The proof of security in Draco is based on a
model equivalent to that of [HKM19], but makes use of the H-coefficients technique and
provides much simpler proofs of security. The model was applied to all four constructions
in [Moc23]. As the original version of Draco was attacked, we present a fix as a work in
progress towards the end of this thesis.

Publications. This thesis is based on a total of four publications [ML19, HKM19,
Moc23, HMKM22]. [ML19] presents two message authentication constructions and
shows their security in the random oracle model. It is joint work with Eik List and was
presented at Applied Cryptography and Network Security 2019 (ACNS 2019). [Moc23]
proves the security for four stream cipher constructions in the random oracle model. It
was accepted for publication in the Journal of Mathematical Cryptology – Volume 17, Is-
sue 1 (JMC 17.1). [Moc23] extends the earlier work [HKM19], which is joint work with
Matthias Hamann and Matthias Krause and was presented at Selected Areas in Cryptography
2019 (SAC 2019). [HMKM22] presents the Draco stream cipher that builds upon one of
the four stream cipher constructions proven secure in the random oracle model. It is joint
work with Matthias Hamann, Matthias Krause, and Vasily Mikhalev and was published
in IACR Transactions on Symmetric Cryptology – Volume 2022, Issue 2 (ToSC 2022.2) and
presented at the Fast Software Encryption 2023 (FSE 2023) conference.

Structure. This thesis is structured into three parts. The first part presents a general in-
troduction into the topic in Chapter 1, reviews the basics in probability theory in Chapter 2,
and explains the notion of cryptographic security that we will be using as well as the proof
technique in Chapter 3 and Chapter 4.

The second part presents the basics of message authentication codes and the Wegman-
Carter MAC in particular in Chapter 5. Chapter 6 presents the two message authentication
codes based on the sum of permutations from [ML19] and their proof of security as presen-
ted at ACNS 2019.

The third part presents an introduction into stream ciphers in Chapter 7. Chapter 8
and Chapter 9 are based on [Moc23] and present the enhanced-state stream cipher con-
structions as well as their proofs of security as accepted for JMC 17.1. Chapter 10 presents
the Draco stream cipher from [HMKM22] in its original version as presented at FSE
2023. The original version of Draco contains a glitch in the key schedule, and Chapter 11
presents a work in progress on possible solutions on how to fix this.

Part I

Foundations

19

1 | Introduction

Secure communication matters in the digital age more than ever. From browsing the in-
ternet, composing emails and instant messages, to performing complex operations like
exchanging medical records, conducting electronic banking, or managing access control
to buildings, ensuring the security of these activities necessitates the utilization of cryp-
tographic algorithms. These algorithms play a crucial role in safeguarding the integrity
and confidentiality of data, preventing any unauthorized entity from gaining unauthorized
access or tampering with the information. When communicating over the internet, in par-
ticular, each message (or data packet) travels through several routers before it reaches its
destination. This allows an attacker to intercept, modify, or inject a message between two
legitimate parties. This is to be avoided.

Goals. Although cryptography is primarily known for its role in preserving confidential-
ity, which involves keeping information secret, its scope extends beyond that aspect. It also
encompasses ensuring the integrity of a message, confirming the authenticity of the commu-
nication partner, and preventing the sender from denying their involvement in sending a
message, i.e., plausible deniability. These additional objectives are commonly recognized as
important goals of cryptography.

Challenges. Everyday life depends more and more on electronic devices. Desktop com-
puters, smartphones, and smart cards all have different levels of computing power, and
efficiency is a critical factor in their operation. A smart card may only be powered by a
magnetic field, so an algorithm with high power demands is out of the question. A smart-
phone may run out of battery early if the algorithm is too computationally intensive. For
a desktop computer or generally a more powerful computer connected to a power supply,
one wants to optimize the speed of the algorithm for high-performance scenarios. Fur-
thermore, these systems may want to communicate with one another, so compatibility
is another key factor. The Internet of Things aims to connect an increasing number of
everyday devices, making it essential to strike a balance between circuit power, efficiency,
speed, and hardware module size. This balance is critical to ensure seamless interoperability
between devices.

21

22 Chapter 1. Introduction

Cryptographic security. The next challenge is to define the requirements needed for
a cryptographic algorithm and, in particular, to also define an attacker’s capabilities. Dif-
ferent goals and use cases have different requirements for their security. Considering the
continuous advancement in computing power, it is imperative to anticipate potential fu-
ture threats to cryptographic schemes. A system designed at present should ideally remain
secure even after several decades. Consequently, it becomes essential to establish the require-
ments in advance and develop cryptographic algorithms that align with these specifications.
By adopting this approach, we can ensure the long-term security of the system against po-
tential advancements in computational capabilities. Under assumptions, i.e., that certain
problems are hard or some building blocks of a cryptographic scheme are replaced with
ideal counterparts, proofs of security may be possible.

Historically, ciphers were typically designed in an ad-hoc fashion, meaning they were
not specifically created to adhere to predetermined security criteria or definitions. Today,
security is defined in advance, and schemes are built to meet the requirements. Ad-hoc
designs were sufficient for the time, as before the advent of computers, humans had to per-
form the task of analyzing ciphertexts and possibly decrypting them. Today’s computers can
handle several billions of computations per second. By today’s standards, classical ciphers
like Caesar’s cipher or the Vigenere cipher are considered insecure.

Lightweight cryptography. Many usage scenarios require low-powered or resource-
constrained devices. These may be smart cards, sensors, or embedded systems. For effi-
ciency reasons, these devices often still use very small key lengths that are comparatively
easy to break using exhaustive search, and thus, these devices are considered insecure by
today’s standards. The Internet of Things connects lots of devices with little computational
power. To improve security, new cipher designs attempt to reach a higher security level
while still requiring only low resources. One particular obstacle is the so-called birthday
bound.

Birthday bound. Hash functions, stream ciphers, and message authentication codes all
suffer from the birthday bound. That is, to reach a certain security level, the internal state,
respectively the block size, needs to be twice as large as the desired security level. Conversely,
given a bound on the resources, only a certain security level may be reached. Designing
ciphers overcoming the birthday bound implies smaller resource requirements for a given
security level. A common goal of many cryptographic schemes is to overcome the birthday
bound and allow for a higher security level for lightweight devices.

Openness. Having a cryptographic scheme published is considered very important
today. Cryptographers often cite Kerckhoffs’ Principle in this context.

Chapter 1. Introduction 23

1.1 Kerckhoffs’ Principle

In 1883, Auguste Kerckhoffs published an article [Pet83] in which he stated six design
principles for military ciphers. The second one is still cited throughout the literature on
cryptography and became known as Kerckhoffs’ Principle.

Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber
entre les mains de l’ennemi.

[It must not require secrecy, and it must be able to fall into the hands of
the enemy without inconvenience.]1

According to Kerckhoffs’ Principle, the details of a cryptosystem may be publicly known,
and the security should only depend on the secrecy of the key. Keeping the details of a
cipher secure may become intractable over time. Details may leak to an adversary, and
replacing the cipher itself is much more cumbersome than agreeing on a new secret key.
Furthermore, this will allow the cryptosystem to be analyzed by a large group of experts
instead of only those with access to the cipher. Weaknesses are more likely to be spotted,
reported to the designers, and fixed.

Heuristic process. New schemes are introduced through research papers, which are
openly shared with the public. These papers undergo a rigorous process that involves re-
view, conference presentations, publication, and extensive scrutiny by experts. The analyses
conducted on these schemes are subsequently presented and published as well. As vulner-
abilities come to light, the original designers enhance the scheme to address these issues,
initiating a cycle of iterative improvement.

Eventually, this process is heuristic is nature: If there has been no significant attack on
a scheme after being analyzed for more than 20 years, it is probably considered to be very
good.

Defining security. It directly follows that any cryptosystem must be analyzed for weak-
nesses prior to its usage. Kerckhoffs’ Principle does not state what it means for a cipher
to be secure. Also, it does not state what tools may be used to assess its security. There
are multiple approaches to security; the three most well-known are perfect secrecy, compu-
tational indistinguishability, and information-theoretic indistinguishability. All of those
approaches require some background in probability theory. Thus, the next chapter intro-
duces the necessary basics in probability theory.

1Translated using DeepL: https://www.deepl.com/translator

https://www.deepl.com/translator

2 | Probability Theory

Cryptographic schemes used in practice are rarely perfectly secure. They allow a very small
chance to break the scheme. We will define perfect secrecy later as we need the foundations
in probability theory first. Later, in Subsection 3.1.1, we will present a perfectly secure
cipher, prove it to be perfectly secure, and argue why it is not a feasible scheme in practice.

Resource-bounded adversaries. In cryptographic proofs, it is common to consider
a resource-bounded adversary that attempts to compromise a cryptographic algorithm.
Taking into account the limited resources of the adversary, a proof of security typically
provides an upper bound for the adversary’s probability of successfully breaking the cryp-
tographic scheme. To continue, we need to introduce the necessary concepts.

Necessary foundations. In this section, we will review the necessary concepts of prob-
ability theory that will be used throughout this work. We will follow the excellent book by
Mittelbach and Fischlin [MF21] closely in this section.

2.1 Basic Definitions

Cryptographic proofs usually consist of some form of a game in which an adversary tries
to ‘win’ against the cryptosystem. Usually, the adversary is given a challenge and has to
distinguish between two cases. In the beginning of the game, some form of randomness
is sampled. That may be a secret key or idealized primitives, i.e., random permutations or
random functions.

The adversary will then ask questions to the cryptosystem and receive answers. These
questions asked by the adversary are typically called queries. After querying the cryptosys-
tem, the adversary has to output a decision bit. The course of the game, i.e., the query-
answer pairs, as well as the random key or the random primitives, can be modeled by a
probability distribution. A probability distribution assigns a probability to each outcome
of an experiment. In this case, by ‘outcome’, we mean the course of the game. Note that
we will only be concerned with discrete probability distributions.

Definition 2.1 (Probability distribution)

Let S = {s1, . . . , sn} be a finite set. We call DS = {p1, . . . , pn} a probability distribution
25

26 Chapter 2. Probability Theory

on S if |S | = |DS |, pi ≥ 0 for all i ∈ {1, . . . , n} and

n∑
i=1

pi = 1.

With each element si ∈ S we associate the probability pi , denoted by Pr[si].

There is one distribution that we are particularly interested in, the uniform distribution. The
uniform distribution is a type of probability distribution where all outcomes are equally
likely.

Definition 2.2 (Uniform distribution)

Let S = {s1, . . . , sn} be a finite set and let US = {p1, . . . , pn} be a probability distribu-
tion on S . US is called the uniform distribution on S if pi = p j for all i , j ∈ {1, . . . , n}.

If we sample an element s from S with regard to the uniform distribution this is
denoted by s � S .

A set of outcomes of a probability experiment is called an event and we can associate a
probability with each event:

Definition 2.3 (Event)

A subset E ⊆ DS is called an event and its probability denoted by Pr[E] is defined by

Pr[E] =
∑
s∈E

Pr[s].

A random variable is a function based on the outcomes of the random experiment. In this
work, we will restrict ourselves to the discrete and finite case:

Definition 2.4 (Random variable)

A random variable X consists of a finite set X = {x1, . . . , xn} together with an as-
sociated probability distribution DX = {p1, . . . , pn}. The probability that random
variable X takes on value xi is pi and is denoted by Pr[X = xi].

Often, it is interesting what the expected outcome of an experiment is. The expected value,
or mean, represents the average value of a random variable. Each outcome of the random
variable X is weighted by its probability:

Definition 2.5 (Expectation)

Let X be a random variable with outcomesX = {xi , . . . , xn} and the associated prob-
ability distribution DX = {p1, . . . , pn}. Then the expectation of X is defined as

E[X] =
n∑
i=1

xi pi .

Chapter 2. Probability Theory 27

Note that the expected value need not be a possible outcome of the random experiment.
For example, the expected value of a roll of a die is 3.5.

We will now look at a couple of more notations and properties that will be necessary
in this work. With more than one random variable, we can consider their joint probability.

Definition 2.6 (Joint probability)

Let X and Y be two random variables. The joint probability Pr[X = x ∧ Y = y]
denotes the probability that X takes on value x and Y takes on value y . When
considering two events A and B then Pr[A∩ B] is also called the joint probability of
A and B .

Using the joint probability, we can formulate the probability of either X or Y occurring
and further we can give a simple upper bound on the probability:

Lemma 2.1 (Union bound)

The probability that X = x or Y = y is given by

Pr[X ∨ Y] = Pr[X] + Pr[Y]− Pr[X ∧ Y].

Similarly for two events A and B , we have that

Pr[A∪B] = Pr[A] + Pr[B]− Pr[A∩B]
≤ Pr[A] + Pr[B].

The union bound generalized to n events Ei , i ∈ {1, . . . , n}:

Pr
� n⋃
i=1

Ei

�
≤

n∑
i=1

Pr[Ei].

The union bound is also known as Boole’s Inequality.

Given the joint probability of X and Y , summing over all outcomes of Y , we can obtain
the marginal probability:

Definition 2.7 (Marginal probability)

Given the joint probability of X and Y we can obtain themarginal probability Pr[X =
x] via summation:

Pr[X = x] =
∑
y∈Y

Pr[X = x ∧ Y = y].

We will often consider the probability of the outcome of one random variable given the

28 Chapter 2. Probability Theory

outcome of the other. This is called the conditional probability:

Definition 2.8 (Conditional probability)

Let X and Y be two random variables. Then the conditional probability Pr[X = x |
Y = y] denotes the probability that X takes on value x given that Y takes on value
y .

The law of total probability is a fundamental principle in probability theory. It allows to de-
termine the probability of an outcome if only conditional probabilities and the probability
of the conditioning random variable are known.

Lemma 2.2 (Law of total probability)

By combining marginalization and conditional probabilities we can state the law of
total probability:

Pr[X] =
∑
y∈Y

Pr[X | Y = y] · Pr[Y = y].

The relationship between the conditional probabilities of ‘X given Y’ and ‘Y given X’ is
given by Bayes’ Theorem:

Theorem 2.1 (Bayes’ Theorem)

Let X and Y be two random variables. Assuming Pr[Y = y], we have that

Pr[X = x | Y = y] =
Pr[Y = y | X = x] · Pr[X = x]

Pr[Y = y]
.

An important property of random variables is that of independence. Two events are called
independent in probability theory if the occurrence of one event does not affect the prob-
ability of the other event

Definition 2.9 (Independence)

Two events A and B are called independent if, and only if,

Pr[A∩B] = Pr[A] · Pr[B].

Two random variables X and Y are called independent if for all pairs of events A ⊆X
and B ⊆Y , A and B are independent.

Later, in our proofs, we will upper bound the ‘advantage’ of an adversary. That is, how
much better than a coin toss can an adversary distinguish two distributions. To do so, we
will need the so-called total variation distance. Loosely speaking, it is the distance between
two probability distributions, see Figure 2.1.

Chapter 2. Probability Theory 29
P
ro
ba
bi
li
ty

Values

Figure 2.1: Visualization of the total variation distance. For two probability distributions
(solid and dashed lines), the total variation distance describes the area between the lines
scaled to a value between 0 and 1.

Definition 2.10 (Total variation distance)

Let X and Y be two random variables over the set Z and let DX and DY be their
respective probability distributions. The total variation distance is then defined to be

||X − Y ||TV =
1
2
∑
z∈Z
|Pr[X = z]− Pr[Y = z]| .

The total variation distance is sometimes just called statistical distance.

We will also need Markov’s Inequality in our proofs.

Lemma 2.3 (Markov’s Inequality)

Let X ∈ R≥0 be a nonnegative random variable and a ∈ R>0. Then, the probability
that X is at least a is at most the expectation of X divided by a:

Pr[X ≥ a] ≤ E(X)
a

.

Proof. Let X denote the underlying set of the random variable X . Let X≥a denote all
x ∈X where x ≥ a. Then, we have that:

E(X) =
∑
x∈X

Pr[X = x] · x

30 Chapter 2. Probability Theory

≥ ∑
x∈X≥a

Pr[X = x] · x

≥ ∑
x∈X≥a

Pr[X = x] · a

= a · Pr[X ≥ a].

Rearranging the terms yields the claim. �

2.2 The Birthday Paradox

Overcoming the birthday bound is of particular interest for lightweight cryptography. This
would allow to reach a predefined security level with less resources, i.e., a smaller internal
state or smaller block sized if block ciphers are used. Alternatively, with fixed resources, a
higher security level may be achieved.

The birthday paradox is commonly used in introductory courses in probability theory
to demonstrate that, when probabilities are intuitively estimated, the estimation is often
wrong. Assuming that birthdays are uniformly distributed throughout a year of 365 days,
it asks the following question:

How many people do have to be in a room such that the probability of a
shared birthday exceeds 50%?

The answer is 23 which seems counterintuitive to many and typical guesses tend to be
way higher than that.1 Later in this section, a simple proof for this phenomenon will be
presented.

Use in cryptography. The birthday paradox has high relevance in cryptography, par-
ticularly for hashing, message authentication, and stream ciphers, and is thus of particular
relevance for this work. A frequent goal of an attacker against a cryptographic scheme is to
obtain a collision between two sets. These may be two sets of hash values in the case of a
hash function or two sets of output keystream bits in the case of a stream cipher. Typically,
one set was observed by the attacker, and the other set was generated by the attacker. If
a collision was observed, the attacker can obtain, with high probability, the input value
to the hash function or the internal state of the stream cipher that generated the relevant
keystream.

2.2.1 Calculating the Probability

Despite being called the birthday paradox, it is not a true paradox, but rather a counterin-
tuitive result that often surprises many. In this subsection, the probability of a birthday

1Birthdays are not uniformly distributed and thus, the actual number may be lower than 23.

Chapter 2. Probability Theory 31

collision in n people in a year of 365 days will be calculated. The following subsection
generalizes it to years with d days.

Lemma 2.4 (The birthday paradox)

Assume that birthdays are uniformly distributed throughout a year of 365 days. There
have to be at least 23 people in a room such that the probability of a shared birthday
exceeds 0.5.

Proof. Consider the event that no collision occurs for i people in the room, denoted by
NoColli . It is straightforward to see that NoColl0 = NoColl1 = 1. Further, we can
calculate NoColln as follows:

NoColln =
n−1∏
i=0

Pr [NoColli+1 |NoColli] .

The conditional probabilities Pr [NoColli+1 |NoColli] are easy to determine: The i people
in the room all have distinct birthdays, therefore, the probability for the (i + 1)-th person
entering the room to cause a collision is i/365. Consequently, the probability for the i -th
person to not cause a collision is 1− i/365. Thus, we obtain

NoColln =
n−1∏
i=0

�
1− i

365

�
.

In particular we obtain 1 − Pr [NoColl22] ≈ 0.476 and 1 − Pr �NoColl23� ≈ 0.507. The
probabilities for up to 70 people can be obtained from Figure 2.2. �

2.2.2 The Birthday Problem Generalized

The birthday problem is used throughout cryptography to calculate the collision probab-
ility of various values. These may be internal states for stream ciphers, tags for message
authentication codes, or hash values. Hence, we need to consider larger values than 365
for our underlying set. We will later introduce the concept of asymptotic security that will
be used throughout this work. Thus, we will parameterize the number of days d in a year
and analyze the birthday problem asymptotically in d .

Arbitrary number of days. The birthday problem can be generalized to a year with
an arbitrary number of days d . Typically, we are interested in collisions between elements
drawn uniformly at random from a set of size d . In the following, we will present the lower
and upper bounds on the number of people in a room. For a more detailed description,
please refer to [KL20] and [Bri12].

32 Chapter 2. Probability Theory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70

Figure 2.2: The probabilities of a collision for 0 up to 70 people in a year of 365 days.

Bounding the probability. We already explained how to calculate the probability of
a collision for a year with 365 days in Section 2.2.1 to be

NoColln =
n−1∏
i=0

�
1− i

365

�
.

Adjusting the term for a year with d days, we obtain:

NoColldn =
n−1∏
i=0

�
1− i

d

�
.

Following [Bri12], the term NoColldn can be lower and upper bounded by:

NoColldn ≥ 1−
n−1∑
i=1

i
d
= 1−
� 1
d
+

2
d
+ · · ·+ n − 1

d

�
= 1− n2 − n

d

NoColldn ≤
n−1∏
i=1

e−
i
d = e−(

1
d +

2
d +···+ n−1

d) = e−
n2−n
d

Furthermore, [Bri12] shows that to obtain a collision probability of 1/2, the number of
people must always be either dp2d ln d e or dp2d ln d e + 1. Asymptotically, the number
of people required to obtain a collision in a year with d days is typically approximated byp
d .

3 | Cryptographic Security

In this chapter, we wish to introduce the notion of security that we will be working with. We
will begin by introducing perfect secrecy as the strongest form of security. While desirable,
perfect secrecy is not practical, as it requires secret keys to be exchanged that have the same
size as the messages to be transmitted. Therefore, it is necessary to relax the notion of
security. Typically, a computationally-bounded adversary is considered. This adversary has
limited computational power and is allowed to succeed in breaking the scheme with a very
small probability.

Information-theoretic adversaries. In our proofs, we will be concerned with an
information-theoretic adversary instead of a computationally-bounded adversary. This type
of adversary is not limited in its computational power but only in the amount of queries it
asks to the cryptosystem. This type of adversary is clearly stronger than a computationally-
bounded adversary, but assuming a stronger adversary makes the proofs of security easier.

Pseudorandomness. The adversary will get to query the cryptosystem through what is
called an oracle and is limited in its number of queries to the oracles. Its task is to distinguish
the cryptosystem from a perfectly random counterpart. Its ability to do so better than a
random guess will be captured in what is called the adversarial advantage. If this advantage
is negligible, the cryptosystem is called pseudorandom. These terms will be defined more
rigorously later in this chapter.

Determinism. In this thesis, we will only consider deterministic algorithms. Any sources
of randomness will be sampled in advance, such as the secret key, or the random permuta-
tions and random functions that will be required later. The algorithm will utilize the ran-
domly sampled values either as inputs (e.g., secret key) or get oracle access to them (e.g.,
random permutations and random functions).

3.1 Perfect Secrecy

We wish to define what it means for a cryptographic scheme to be secure. Ideally, it is
unbreakable. We will therefore first introduce the notion of perfect secrecy and show that

33

34 Chapter 3. Cryptographic Security

it is an impractical notion of security. This will then be used to motivate more practical
definitions. Katz and Lindell [KL20] define perfect secrecy as follows:

Definition 3.1 (Perfect secrecy)

An encryption scheme with message spaceM is perfectly secret if for every probability
distribution for M , every message m ∈ M , and every ciphertext c ∈ C for which
Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m]

Loosely speaking, perfect secrecy means that the knowledge of the ciphertext reveals no
information about the plaintext.

3.1.1 One-time Pad

The one-time pad is introduced here for two reasons: (1) it is perfectly secret and is the
only encryption scheme to be perfectly secret, and (2) we will later mimic the one-time pad
encryption by using stream ciphers that use a much shorter key.

Definition 3.2 (One-time pad)

Consider key space K , message space M , and ciphertext space C , where K =
M =C = {0,1}ℓ for some ℓ ∈N. Let k �K be the secret key drawn uniformly at
random. A message m ∈M is encrypted by adding the secret key k to m to obtain
the ciphertext c ∈ C :

c = m ⊕ k .
Analogously, a ciphertext c ∈ C is decrypted by adding the secret key k to c :

m = c ⊕ k .

Next, we will show that the one-time pad is perfectly secret.

Theorem 3.1

The one-time pad is perfectly secret.

Proof. Fix some m ∈M and c ∈ C . For the one-time pad, we have that

Pr[C = c |M = m] = Pr[k ⊕ m = c |M = m]

= Pr[k = m ⊕ c |M = m]

= 2−ℓ .

Here, the first equality is by definition, and the last equality is due to the key k being drawn
uniformly at random from the key spaceK , independently of the message m.

Chapter 3. Cryptographic Security 35

Fix any distribution overM . Using the above, we see that for any ciphertext c ∈ C ,
we have that:

Pr[C = c] =
∑
m∈M

Pr[C = c |M = m] · Pr[M = m]

= 2−ℓ · ∑
m∈M

Pr[M = m]

= 2−ℓ .

Using Bayes’ Theorem, we obtain

Pr[M = m | C = c] =
Pr[C = c |M = m] · Pr[M = m]

Pr[C = c]

=
2−ℓ · Pr[M = m]

2−ℓ
= Pr[M = m]

which concludes the proof. �

3.1.2 Shannon’s Theorem

We now know that the one-time pad is perfectly secret. One might wonder if there are other
schemes that are perfectly secret, in particular ones with a smaller key size. For practical
purposes, it is impractical to share a key that is as large as the message itself. In fact, this
key size is required for achieving perfect secrecy.

Optimality of the OTP. Claude Shannon not only proved the one-time pad to be
perfectly secure, he also proved it to be optimal [Sha49]. In particular, he showed that the
key space and the message space must be equal in size, every key must be chosen uniformly
at random and for every message-ciphertext pair (m, c) there exists exactly one key k such
that the encryption algorithm Enc(k ,m) outputs c . We show that the key space and the
message space must be equal in size to obtain perfect secrecy [MF21].

Theorem 3.2

If an encryption scheme is perfectly secret, then |K | = |M|.

Proof. Assume that |K | < |M|. Fix a ciphertext c ∈ C with Pr[C = c] > 0. Let Mc be
the set of messages m ∈M that c can be decrypted to:

Mc = {m ∈M : ∃k ∈K such that m =Dec(k , c)}.

As the decryption algorithm is deterministic, we have that |Mc | ≤ |K | < |M|. This implies
the existence of a message m′ ∈ M such that m′ 6∈ Mc . This means that m′ cannot be

36 Chapter 3. Cryptographic Security

encrypted to c . Thus, given C = c , we know that

Pr[M = m′|C = c] = 0.

For an arbitrary distribution over the messages such that Pr[M = m′] > 0, we get

Pr[M = m′] 6= Pr[M = m′ | C = c],

which concludes the proof. �

3.2 Practical Security

It is apparent that the one-time pad is not a practical scheme and that perfect secrecy is
not a viable goal in practice. We may still allow an adversary a small chance of breaking
a scheme, even if that means sacrificing perfect secrecy. This will then allow for much
smaller key sizes, typically around 128 to 256 bits, which is a length between 32 and 64
hexadecimal characters. It is much easier to exchange small keys using dedicated key ex-
change algorithms. These small keys will then be used to encrypt a much larger amount of
data. A good cryptographic scheme has a security level that is not much smaller than its
key length. Guessing a secret key with a length of 128 bits is successful with a probability
of 2−128. This is considered infeasible by today’s standards.

Computational security. It may not be necessary to prevent the leakage of any in-
formation, except for the length of a message, to a computationally unbounded attacker.
Typically, the literature on cryptography [KL20] considers the notion of computational
security, which has two relaxations:

1. The computational power of the adversary is bounded so that the adversary only may
take a feasible amount of time.

2. The adversary will succeed in breaking the scheme with very small probability.

There are two approaches to describe what is meant by ‘feasible amount of time’ and ‘very
small probability’: the concrete approach and the asymptotic approach [KL20].

The concrete approach. The concrete approach would consider an adversary running
for a specified amount of time, succeeding with a specified probability. An example would
be an adversary using the fastest supercomputer to date and running it for 100 years, not
being able to succeed in breaking the scheme with a probability higher than 2−80. Alternate
measures of time may be the CPU cycles needed. This type of security is important in
practice but has its own shortcomings: Does the adversary have specialized hardware? How
does future technology impact the success probability? How does the success probability

Chapter 3. Cryptographic Security 37

scale if the adversary runs for half the amount of time? How does the success probability
scale if the adversary runs for double the amount of time?

The asymptotic approach. In this work, we will adopt the asymptotic approach.
Schemes will be described abstractly and employ a security parameter n that all parties, good
and bad alike, know. Throughout this work, the security parameter n will be synonymous
with the key length or the internal state length. Rather than requiring fixed values, the
computational approach limits the running time of adversaries to be a polynomial in n
and the success probability to be negligible in n. In this context, negligible means smaller
than any inverse polynomial in n.

Information-theoretic adversaries. In our proofs, we will not be concerned with
computationally bounded adversaries and instead focus on information-theoretic adversar-
ies. These adversaries are not bounded in their computational resources but rather the
number of queries they can ask to a cryptosystem. An upper bound on the adversary’s suc-
cess probability will then be given depending on the number of queries the adversary has
asked or is limited to. This type of adversary is stronger than the computationally bounded
adversary. This makes proofs of security easier, as the bounds ultimately only depend on
the number of queries q and the security parameter n. The bounds on the adversary’s suc-
cess probabilities will be of the form qα/2βn , where α and β denote some constants, and
we aim to do asymptotically better than α = 2 and β = 1 (birthday bound). We will only
focus on bounds that are better than the birthday bound, and these bounds are inherently
negligible.

3.3 Turing Machines

The Turing machine is a theoretical computing device used to mimic the behavior of a
general-purpose computer. It is used for the theoretical analysis of algorithms, particularly
their running time. This will be of interest to us as we will model the adversary as a Tur-
ing machine, specifically an oracle Turing machine with access to a special oracle tape, or
possibly multiple ones. This section aims to give an informal overview of Turing machines.

Oracles. We will analyze the schemes presented in this work in the random oracle model.
The random oracle models for stream ciphers and message authentication codes will be
presented later. In the random oracle model, an adversary is given access to a set of oracles
it may ask questions to. Instead of bounding the computational capabilities of the adversary,
the number of queries to the oracles is bounded. In this section, we wish to give a short
overview of Turing machines and, in particular, oracle Turing machines. When we speak
of an adversary or distinguisher, we mean an algorithm, which is abstracted by a Turing

38 Chapter 3. Cryptographic Security

machine. As adversaries are fundamentally algorithms or Turing machines, we refer to
them by the pronoun ‘it’.

Definition. A Turing machine consists of an infinitely long tape divided into cells and a
head that performs read and write operations on the tape and can move to the left or right.
Within the cells are symbols according to an alphabet Σ and a special blank character _.
The machine is in a state q ∈Q and changes its state and the content of the cell according
to a transition function δ . A Turing machine can be formalized as follows:

Definition 3.3 (Turing machine)

A Turing machine is defined as a six tuple M = (Σ,_,Q,δ , qstart, qhalt). Σ describes
the alphabet, _ is a special blank symbol,Q is the finite set of states, qstart ∈Q is the
starting state, qhalt ∈Q is the halting state. δ :Q×Σ∪{_}→Q×Σ∪{_}×{x,y} is
called the transition function. It maps the current state and the currently read symbol
to the new state, written symbol and a head movement left (y) or right (x).

3.3.1 Probabilistic Turing Machines

The Turing machine, as defined above, will always behave the same and deliver the same
output when executed on a specific input. However, many applications are modeled as
probabilistic, where the algorithm can make random choices, such as key generation or an
adversary guessing values.

Random tape. To handle probabilistic behavior, an additional tape called the random
tape is used, along with a read head corresponding to the random tape. The random tape
contains randomly chosen values from the Turing machine’s alphabet. The transition func-
tionδ is adjusted to consider the current cell content on the random tape when randomness
is needed, and then the head of the random tape is moved by one cell.

3.3.2 Oracle Turing Machines

In our proofs, we will consider an information-theoretic distinguisher that asks a limited
number of queries to the cryptosystem. The cryptosystem and some of its components will
be exposed as oracles to the adversary. As the adversary is modeled as a Turing machine, we
will define the oracle Turing machine in this section. An oracle Turing machine is enhanced
with one or multiple oracle tapes to which the adversary writes its questions. The number
of queries to these oracle tapes will be limited.

Oracles as black box. Many cryptographic proofs make use of oracles. An oracle
receives an input and produces the corresponding output. It is not known how the oracle

Chapter 3. Cryptographic Security 39

works, and the oracle does not need to be implementable. The internals of the oracle are
hidden from the algorithm that makes use of it.

A Turing machine M with access to an oracle O is written as M O . The Turing machine
M is extended by an oracle tape for O . M O writes the input to O on the oracle tape, enters
the oracle state, and after one time step, the answer is written on the oracle tape. M O may
then proceed with its calculations.

In our analyses, we will have a distinguisher (i.e., an algorithm or Turing machine)
with access to a set of oracles. The running time of the distinguisher will not be bounded,
but the number of queries to the oracles will be bounded by a parameter q . The success
probability of the distinguisher will be expressed as a function of q .

Remark 3.1

Often, the adversary has oracle access to multiple building blocks. This can be de-
scribed as a single oracle with multiple interfaces, where the adversary specifies in its
input to the oracle which building block to query. Alternatively, the adversary may
have access to multiple oracle tapes, each corresponding to one building block.

3.4 Adversarial Advantage

Intuitively, the adversarial advantage represents how much better the adversary’s answer is
compared to a purely random guess or a coin flip. One definition measures the difference
of 1/2 to the probability of a correct answer by the adversary. We will provide an equivalent
definition in which an adversary distinguishes between two schemes.

Lower bound on security. Proofs of security typically aim to provide an upper bound
on the adversarial advantage, i.e., how much better than chance the adversary is at distin-
guishing the scheme being proven secure from an idealized scheme. In our case, this will
be parameterized by the number of queries. An upper bound on the adversary’s success
probability is equivalent to a lower bound on a scheme’s security level.

A common goal of security proofs is to determine the distinguishing advantage of an
adversary A, i.e., the success probability in distinguishing between two schemes O and
P to which the adversary has oracle access. O and P have identical interfaces, and the
adversary A interacts with one of the two sets of oracles but does not know which one.
The adversary, in this setting also called the distinguisher, posts its queries to the oracle
and eventually outputs a decision bit that represents its guess about which scheme it was
interacting with, O or P . The distinguishing advantage∆A is formally defined as follows.

Definition 3.4 (Distinguishing advantage)

Let A be an adversary that is given access to two oracles O andP that have identical

40 Chapter 3. Cryptographic Security

interfaces. After the adversary’s interaction with the oracles, A will output a decision
bit. The distinguishing advantage is given by:

∆A(O ,P) =
���Pr[AO = 1]− Pr[AP = 1]��� .

Probability space and random variables. Randomness is typically sampled before
the adversary’s interaction with the oracles. The probability space thus consists of the secret
key and the random primitives. The deterministic adversary will interact with these prim-
itives through oracles, ask questions, and receive answers. The set of question-answer pairs
can be viewed as a (deterministic) function of the underlying probability space, i.e., a ran-
dom variable.

Total variation distance. The interaction of the adversary with the oracles can be cap-
tured in a transcript τ which contains the questions asked by A and the answers returned by
the oracle. Denote by X the probability distribution induced by the adversary’s interaction
with O and denote by Y the probability distribution induced by the adversary’s interaction
with P . We can show that the adversarial advantage ∆A(O ,P) is upper bounded by the
total variation distance between X and Y :

Theorem 3.3

The distinguishing advantage ∆A(O ,P) is upper bounded by the total variation dis-
tance ||X − Y ||TV.

Proof. Note that the distinguishing advantage could be defined with the probability of the
adversary outputting a 0 instead of 1:

∆A(O ,P) =
���Pr[AO = 1]− Pr[AP = 1]���
=
���(1− Pr[AO = 0])− (1− Pr[AP = 0])���
=
���Pr[AO = 0]− Pr[AP = 0]��� .

Using this fact, for either bit b ∈ {0,1}, the following upper bound holds true:

∆A(O ,P) =
���Pr[AO = b]− Pr[AP = b]

���
= |Pr[A(X) = b]− Pr[A(Y) = b]|

=

�����∑
τ∈T

Pr[A(τ) = b | X = τ] · Pr[X = τ]

− Pr[A(τ) = b | Y = τ] · Pr[Y = τ]
�����

Chapter 3. Cryptographic Security 41

=

�����∑
τ∈T

Pr[A(τ) = b | X = τ] · (Pr[X = τ]− Pr[Y = τ])
�����

≤∑
τ∈T

Pr[A(τ) = b | X = τ] · |Pr[X = τ]− Pr[Y = τ]|

The last equality is due to the adversary being indifferent to whether the transcript τ was
generated by X or by Y . The upper bound is due to the triangle inequality. Thus, we can
state:

∆A(O ,P) ≤ 1
2
∑

b∈{0,1}

∑
τ∈T

Pr[A(τ) = b | X = τ] · |Pr[X = τ]− Pr[Y = τ]|

=
1
2
∑
τ∈T
|Pr[X = τ]− Pr[Y = τ]| ,

which concludes the proof. �

3.5 Pseudorandomness

Cryptographic schemes use as input a small random key and generate from this input a
(much) larger output. The output of the cryptographic algorithm is a deterministic func-
tion of its input. We want this output to resemble a purely random output as much as pos-
sible. If no adversary can distinguish the cryptographic algorithm’s output from a purely
random output with nonnegligible probability, this cryptographic algorithm is called pseu-
dorandom.

Pseudorandom functions and permutations. In this work, we will primarily look
at message authentication codes and stream ciphers. MACs produce a pseudorandom tag
while stream ciphers produce a pseudorandom keystream. Ideally both the tag and the
keystream resemble random bits as much as possible. We will therefore define the pseudor-
andom function (PRF) advantage of an adversary and use this to measure the security of the
scheme we propose in this work.

Let Func(X ,Y) describe the set of all functions between setsX and Y and similarly
let Perm(X ,Y) describe the set of all permutations between setsX and Y .

Definition 3.5 (Pseudorandom function)

LetK ,X , andY be non-empty sets and let F :K ×X →Y andρ� Func(X ,Y)
and k � K . Then, the PRF advantage of A w.r.t. F is defined as AdvPRF

F (A)
def=

∆A (Fk ,ρ), i.e.

∆A(Fk ,ρ) =
1
2
· ����Pr[AFk = 1]− Pr[Aρ = 1]

���� .

42 Chapter 3. Cryptographic Security

A block cipher needs to be bijective, so it is possible to decrypt bits. It therefore resembles a
pseudorandom permutation. We will need the pseudorandom permutation (PRP) advantage
for an example and for our proposed MAC scheme later.

Definition 3.6 (Pseudorandom permutation)

Let K and X be non-empty sets, E : K ×X → X be a keyed permutation, and
let π� Perm(X) and k �K . Then, the PRP advantage of A w.r.t. E is defined as
AdvPRP

Ek
(A) def= ∆A (Ek ,π), i.e.

∆A(Ek ,π) =
1
2
· ����Pr[AEk = 1]− Pr[Aπ = 1]

���� .

3.6 Distinguishing Attacks

Typically, we want an adversary to not be able to extract any information from a ciphertext,
at least not with significant probability. One notion that tries to formalize that is indistin-
guishability. We give a brief example: Consider a sample space S , and for concreteness’
sake,K a key space andM a message space. Now consider two values x ∈ S and y ∈ S .
Let x �S be sampled uniformly at random fromS . As it is drawn at random, it contains
no information; there is no underlying plaintext. Let y be generated by some deterministic
cryptographic algorithm Alg(k ,m) = y that uses a key k � K and an additional input
m ∈ M as inputs, where k is not known by the adversary. There is obviously a relation
between y , k , and m. The adversary provides m and is given either x or y and has to decide
whether it is the random one or the one generated by Alg. If the adversary cannot decide
correctly with significant probability, x and y are said to be indistinguishable.

There are different definitions of security. We chose to restrict ourselves with security
against distinguishing attacks. Resistance against distinguishing attacks is the strongest
type of security and implies resistance against other attacks.

Indistinguishability from random. The goal is to design a cryptographic algorithm
with outputs that are indistinguishable from random noise. In this case, the distinguisher
gets access to one of two oraclesOreal orOideal and has to decide which oracle it is interacting
with. Oreal corresponds to the cryptographic algorithm to be analyzed, andOideal represents
an ideal counterpart. In the case of a block cipher, the ideal counterpart would be a random
permutation. In the case of a stream cipher, the ideal counterpart would be a random
bitstream. In the case of a message authentication code, the ideal counterpart would be a
random function. The distinguishing advantage of a distinguisher A with access to Oreal or
Oideal is measured by:

∆
A
(Oreal,Oideal) =
���Pr �AOreal = 1�− Pr �AOideal = 1���� .

Chapter 3. Cryptographic Security 43

Typically, an information-theoretic distinguisher is considered, i.e., its computational re-
sources are unbounded, and the only measure of complexity is the number of queries to
the respective oracle. In our work, we will derive an upper bound on the distinguishing
advantage and thus a lower bound on the MAC’s or stream cipher’s security.

3.7 Random Oracle Model

Proofs in the random oracle model were made popular by the work Random Oracles are
Practical by Bellare and Rogaway [BR93]. The idea behind the random oracle model is
to identify primitives, e.g., the round function in AES as a pseudorandom permutation or
hash functions in cryptographic protocols as pseudorandom functions, in a cryptosystem
and replace these primitives with an idealized version, i.e., a random permutation or a
random function. All parties, good and bad alike, get access to the idealized primitives
through an oracle. The oracle will receive a query to that primitive, sample an answer
uniformly at random, and return the answer.

Heuristic in nature. The cryptosystem is then proved to be secure in this model. Fi-
nally, when instantiating the cryptosystem, the random oracles are replaced with real-life
primitives. In practice, instantiations of the cryptosystem’s primitives are significantly sim-
pler than their random counterparts. Bellare and Rogaway ‘stress that the proof is in the
random oracle model and the last step is heuristic in nature’ [BR93].

Soundness. The soundness of the random oracle model has been debated. A work by
Canetti et al. [CGH04] shows that it is possible to design cryptosystems that are secure in
the random oracle model but for which no secure instantiation exists. Yet, Canetti et al.
[CGH04] also note that:

[The random oracle model] may be useful as a test-bed (or as a sanity check).

After all, a security proof in the Random Oracle Model eliminates a broad
class of potential attacks (i.e., the ones that would work also in the Random
Oracle Model), and in many cases it seems that attacks of this type are usually
the ones that are easier to find.

For now, however, I view the random oracle methodology as a very useful
‘engineering tool’ for devising schemes. As a practical matter, I would much
rather see today’s standards built around schemes that are proven secure in the
Random Oracle Model, than around schemes for which no such proofs exist.
If nothing else, it makes finding attacks on such schemes a whole lot harder.

Therefore, we see proofs in the random oracle model as a useful groundwork and a solid
foundation to base message authentication codes and stream cipher designs upon.

44 Chapter 3. Cryptographic Security

Generic attacks. What is of particular interest is that generic attacks also work in the
random oracle model. So, a bound shown in this model will also prove that any generic
attack cannot succeed with a probability higher than that in the given bound. This will not
imply that any instantiation is secure but rule out a broad class of attacks against a scheme.

4 | The H-coefficient Technique

The H-coefficients technique is a proof technique due to Jacques Patarin [Pat08]. The
H-coefficients technique became increasingly popular by the work on the iterated Even-
Mansour cipher [CS14, CLL+14, DKS12, LPS12, BKL+12, ABD+13, EM97]. In partic-
ular, the work by Chen and Steinberger [CLL+14, CS14] made it accessible to a broader
audience. The H-coefficients technique will be used throughout our proofs to calculate
upper bounds on the adversary’s distinguishing advantage, i.e., lower bounds on security.

Transcripts. The setting is that of an information-theoretic adversary with access to
one of two random oracles Oreal and Oideal. Typically, these correspond to a real world and
an ideal world, where the former corresponds to an abstraction of the construction to be
analyzed and the latter corresponds to an idealized construction. The adversary may ask
up to q queries to the oracle and, at the end of the interaction, has to decide which oracle
it was interacting with. The up to q queries and its answers by the oracle are collected in a
transcript τ.

Adversary. The adversary is assumed to be deterministic, and the randomness of the or-
acle is sampled at the beginning of the experiment. Hence, one can identify the transcripts
generated by the adversary’s interaction with the first oracle Oreal as the random variable
Θreal. Similarly, the transcript produced by the interaction with the second oracle Oideal
can be identified as the random variable Θideal. For a broader introduction to the topic,
please refer to [CS14, CLL+14].

Alternatives. Another interesting technique called the χ 2-Method was introduced by
Dai, Hoang, and Tessaro [DHT17]. The authors used it to improve bounds and simplify
proofs that were done using the H-coefficients technique. We did not use it as for our
purposes, the H-coefficients technique would suffice.

Overview. In this section, we wish to give an overview of the H-coefficients technique
[Pat08]. This overview is based on the popular tutorial by Chen and Steinberger [CLL+14].

45

46 Chapter 4. The H-coefficient Technique

Two worlds. The setting is that of an information-theoretic adversary A that asks q
queries to one of two sets of oracles. These two sets of oracles correspond to two ‘worlds’:
the real world and the ideal world. The task of the distinguisher is to determine with which
world it is interacting, i.e., to distinguish.

Typically, the oracles correspond to the building blocks of the cryptosystem under con-
sideration. Furthermore, there is an oracle for the construction function that is often the
only difference between the two worlds. In the real world, the construction function is
composed of the oracles of the underlying building blocks and mimics their interaction in
the cryptosystem. In the ideal world, it is independent of the other oracles and corresponds
to the primitive we want to show our cryptosystem to be indistinguishable from. In the
case of block ciphers, this would be a random permutation; for stream ciphers, a random
bitstream; for MACs, a random function.

Distribution of transcripts. The interaction of the distinguisher with the oracles is
recorded in a transcript τ. The transcript τ contains all the query-answer pairs of the in-
teraction with the oracle. Without loss of generality, the adversary A is assumed to be
deterministic and makes its final decision as a deterministic function of the transcript ob-
tained.

The probability of obtaining a transcript is different in the two worlds. Let Θreal and
Θideal denote the distribution of transcripts in the real and the ideal world, respectively. We
call a transcript τ attainable if Pr [Θideal = τ] > 0. LetT denote the set of all attainable tran-
scripts, and let T + denote all the transcripts τ ∈ T where Pr [Θideal = τ] > Pr [Θreal = τ].
A’s distinguishing advantage is upper bounded by the statistical distance (cf. Theorem 3.3):

∆
A
(Θideal,Θreal) ≤12

∑
τ∈T
|Pr [Θideal = τ]− Pr [Θreal = τ]|

=
∑
τ∈T +

(Pr [Θideal = τ]− Pr [Θreal = τ])

=
∑
τ∈T +

Pr [Θideal = τ] ·
�
1− Pr [Θreal = τ]

Pr [Θideal = τ]

�
=
∑
τ∈T

Pr [Θideal = τ]
�
1−min
�
1,

Pr [Θreal = τ]
Pr [Θideal = τ]

��
.

Good and bad transcripts. Some transcripts are better than others, i.e., the ratio
Pr [Θreal = τ]/Pr [Θideal = τ]may be small (bad) for some transcripts and close to 1 (good)
for other transcripts. A typical proof partitions the set of attainable transcripts T into a set
of good transcripts GoodT and a set of bad transcripts BadT, i.e., T = GoodTtBadT.
A central idea of this method is that most transcripts are equally likely in both worlds, i.e.,
their ratio is close to 1, and the bad ones only occur with negligible probability. We will
define values δ and ε to upper bound the probability of a bad transcript occurring and to

Chapter 4. The H-coefficient Technique 47

lower bound the ratio of the good transcripts, respectively. Define δ ∈ [0,1] such that:∑
τ∈BadT

Pr [Θideal = τ] ≤ δ

and define ε ∈ [0,1] such that for all τ ∈GoodT:

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− ε.

We then find A’s distinguishing advantage to be upper bounded by:

∆
A
(Θideal,Θreal) ≤

∑
τ∈BadT

Pr [Θideal = τ] +
∑

τ∈GoodT
Pr [Θideal = τ] · ε ≤ δ + ε.

Lemma 4.1 summarizes the above and states the fundamental lemma of the H-coefficients
technique.

Lemma 4.1 (H-coefficients technique)

Assume that the set of attainable transcripts can be partitioned into two disjoint sets
GoodT and BadT. Further, assume that there exist δ ,ε ∈ [0,1] such that for any
transcript τ ∈GoodT, it holds that:

Pr [Θideal ∈ BadT] ≤ δ and
Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− ε.

Then for all adversaries A we have that the distinguishing advantage satisfies

∆
A
(Θideal,Θreal) ≤ δ + ε.

4.1 An Example Using the Even-Mansour Cipher

In this subsection, we will consider the single-round Even-Mansour cipher as introduced
in [EM97]. The Even-Mansour cipher is a simple block cipher construction based on a
random permutation P . In particular, its iterated variant can be seen as an abstraction of
block ciphers like AES and allows us to evaluate the security in a generic setting. Here,Pn

denotes the set of all n-bit permutations,M denotes the message space, and C denotes
the ciphertext space.

Definition 4.1 (Even-Mansour cipher)

Let k1, k2� {0,1}n be two n-bit keys and let P �Pn be an n-bit random permuta-
tion. An encryption of a message block m ∈ M using the Even-Mansour construc-

48 Chapter 4. The H-coefficient Technique

tion is defined as follows:

Ek1,k2,P
(m) = P (m ⊕ k1)⊕ k2.

Similarly, the decryption of a ciphertext block c ∈ C is defined as follows:

E −1k1,k2,P
(c) = P −1(c ⊕ k2)⊕ k1.

Adversarial capabilities. We will prove that the Even-Mansour construction is in-
distinguishable from a random permutation for up to O (2n/2) adversarial queries. There
will be an oracle for the encryption (construction) function E and for the permutation P .
The adversary may query the encryption oracle as well as the permutation oracle in both
directions, i.e., it may query E −1 and P −1 as well. The keys k1 and k2 are not known to
the adversary. The plaintext-ciphertext pairs (m, c) will be recorded in a construction tran-
script τE . The permutation queries (x , y) will be recorded in a permutation transcript τP .
The transcripts will not distinguish whether a query was a forward or a backward query.
In the ideal world, the encryption oracle will sample its answer according to a second ran-
dom permutation P ′ � Pn that is independent of P and the keys k1 and k2, i.e., in the
ideal world E = P ′. Furthermore, in the ideal world, two dummy keys will be sampled
uniformly at random. To make matters easier, in either world, we will hand out the keys to
the adversary after the interaction with the oracles is finished. When speaking of random
primitives, we always refer to the uniform distribution. The full transcript can be written
as (τE ,τP , k1, k2).

Lemma 4.2

The advantage of all adversaries making up to qE construction queries and up to qP
permutation queries is upper bounded by

∆
A
(Θideal,Θreal) ≤ 2 · qE · qP

2n
.

Proof. Denote the number of construction queries by qE and the number of permutation
queries by qP . We will first define two bad events that will trivially allow to distinguish the
ideal world from the real world.

Bad Events

We consider two bad events in this example:

– bad1: There exist (m, c) ∈ τE and (x , y) ∈ τP such that m ⊕ x = k1.

– bad2: There exist (m, c) ∈ τE and (x , y) ∈ τP such that c ⊕ y = k2.

Chapter 4. The H-coefficient Technique 49

The bad events correspond to an adversary asking a construction query and a cor-
responding permutation query that together are consistent with the respective secret
key.

Remark 4.1

Technically, we would have to add to bad1 the condition ‘and c⊕ y 6= k2’ and similarly
‘and m ⊕ x 6= k1’ to bad2. For simplicity we chose not to. This will only marginally
affect the bounds.

First, we will bound the bad events in the ideal world.

Lemma 4.3

In the ideal world, we have that:

Pr [bad1] = Pr [bad2] ≤ qE · qP
2n

.

Proof of Lemma 4.3. There are qE ·qP pairs (m, x). The number of distinct m⊕x is therefore
upper bounded by qE · qP . The key k1 is sampled uniformly at random from {0,1}n and
the collision probability with each m⊕ x is 2−n . The same argument holds true for all pairs
(c , y) and k2. �

Good transcripts. Next, we need to lower bound the ratio of the probability of a good
transcript occurring in the real world and in the ideal world. We will consider lazy sampling
of the adversary’s queries. Assume that the keys are sampled first, then the permutation
queries are answered, and finally, the construction queries are answered. It is easy to see
that the two worlds are indistinguishable without considering construction queries, as the
keys and permutation queries are sampled identically in either world.

The construction queries differ. In the ideal world, construction queries are answered
using a second random permutation P ′. Note that before answering construction queries,
no values of P ′ have been sampled, but qP values of P have already been sampled. Also,
note that for all (m, x) we have m ⊕ x 6= k1 and for all (c , y) we have c ⊕ y 6= k2. This has
no effect in the ideal world but means in the real world that no m⊕k1 and no c ⊕k2 occurs
as input or output in a P -query, as these have been excluded through the bad transcripts.
That means, all construction queries that evaluate P in the real world sample ‘fresh’, i.e.,
previously unqueries, values. We can see that for all τ ∈GoodT:

Pr
real
[∀(m, c) ∈ τE : E (m) = c] =

1
2n − qP

· 1
2n − qP − 1

· · · 1
2n − qP − (qE − 1)

,

50 Chapter 4. The H-coefficient Technique

Pr
ideal

�∀(m, c) ∈ τE : P ′(m) = c
�
=

1
2n
· 1
2n − 1 · · ·

1
2n − (qE − 1)

.

In particular, we can see that the probability of obtaining a good transcript is higher in the
real world, i.e., ε = 0. The claim follows. �

4.2 Mirror Theory

Mennink and Neves [MN17] used the Mirror Theory to provide simpler proofs for the sum
of permutations and improve the bound of EWCDM [CS16] that inspired us to prove the
security of a MAC that is based upon the sum of permutations.

Related work. The Mirror Theory was originally described by Patarin [Pat10, Pat17]
and made more accessible by Mennink and Neves [MN17]. It gives a lower bound to the
number of solutions to a given system of equations of the type Pai ⊕ Pbi

= λi .
For message authentication codes, an adversary is typically allowed to ask for verification

queries. With regard to the system of equations, these types of queries correspond to non-
equations of the type Pai ⊕ Pbi

6= λi . Hence, [DDNY18] extended the Mirror Theory by
these non-equations.

There has been some debate over the correctness of the Mirror Theory, in particular
whether it holds true for proofs that show security greater than O (22n/3) bits, as gaps were
identified in the proof of Patarin. [DDD21] showed the extended Mirror Theory to hold
true for up to O (23n/4) adversarial queries.

More recently, [CP20] and [DNS22] showed that the Mirror Theory holds true for up
to O (2n) queries if the maximal block size (as will be defined later) is smaller or equal to
two. Finally, [CDN+23] showed that the Mirror Theory holds true for up to O (2n) queries
if the maximal block size is within the order of O (2n/4/pn).

H-coefficient technique. We will combine the H-coefficient technique with Patarin’s
Mirror Theory, which allows us to lower bound the amount of good transcripts. The Mirror
Theory will facilitate calculating the probability of obtaining a good transcript in the real
world. In the following, we briefly recall the necessary definitions according to the Mirror
Theory, as presented in [MN17], which follows Patarin [Pat10, Pat17].

Mirror Theory. The Mirror Theory evaluates the number of possible solutions to a sys-
tem of affine equations of the form Pai ⊕ Pbi

= λi in a finite group. Let q ≥ 1 denote the
number of equations and r ≥ 1 denote the number of unknowns. Let P = {P1, . . . ,Pr }
represent the set of r distinct unknowns, and consider an equation system

E = ¦Pa1 ⊕ Pb1
= λ1, . . . ,Paq ⊕ Pbq

= λq
©
,

Chapter 4. The H-coefficient Technique 51

where ai , bi for 1 ≤ i ≤ q are mapped to {1, . . . , r } by a surjective index mapping φ :
{a1, b1, . . . ,aq , bq}→ {1, . . . , r }. Given a subset of equations I ⊆ {1, . . . , q}, the multiset
MI is defined asMI =

⋃
i∈I {φ(ai),φ(bi)}.

Definition 4.2 (Circle-freeness)

An equation system E is circle-free if there exists no subset of indices I ⊆ {1, . . . , q}
of equations s.t. MI has even multiplicity elements only.

So, no linear combination of equations is independent of the unknowns.

Definition 4.3 (Block-maximality)

Let Q1, . . . ,Qs = {1, . . . , r } be a partitioning of the r indices into s minimal so-
called blocks s.t. for all equation indices i ∈ {1, . . . , q}, there exists a single block
index ℓ ∈ {1, . . . , s} s.t. the unknowns of the i -th equation are contained in only
this block: {φ(ai),φ(bi)} ⊆ Qℓ . Then, the system of equations E is called ξ -block-
maximal for ξ ≥ 2 if there exists no i ∈ {1, . . . , s} s.t. |Qi | > ξ .

So, the unknowns can be partitioned into blocks of size at most ξ + 1 if E is ξ -block-
maximal.

Definition 4.4 (Non-degeneracy)

A system of equations E is non-degenerate iff there is no I ⊆ {1, . . . , q} s.t. MI has
exactly two odd multiplicity elements and

⊕
i∈I λi = 0.

So, an equation system is non-degenerate if there is no linear combination of one or more
equations that imply Pi = P j for distinct i , j and Pi ,P j ∈ P . The central theorem of
Patarin’s mirror theorem is then Theorem 2 in [MN17], which itself is a brief form of
Theorem 6 in [Pat10].

Theorem 4.1 (Mirror Theorem [MN17])

Let ξ ≥ 2. Let E be a system of equations over the unknownsP that is (i) circle-free,
(ii) ξ -block-maximal, and (iii) non-degenerate. Then, as long as (ξ −1)2 · r ≤ 2n/67,
the number of solutions s.t. Pi 6= P j for all pairwise distinct i , j ∈ {1, . . . , r } is at
least

(2n)r
(2n)q

.

A proof sketch is given in [MN17, Appendix A], and the details in [Pat10]. An updated
proof had been given in [NPV17].

Relaxed Mirror Theory. Mennink and Neves [MN17] describe a relaxation wherein
the condition that two unknowns Pa and Pb must differ whenever a and b differ is released

52 Chapter 4. The H-coefficient Technique

to the degree that distinct unknowns must be pairwise distinct only inside their blocks. So,
it must hold for a 6= b that Pa 6= Pb when a, b ∈ R j for some j ∈ {1, . . . , s} for a given
partitioning {1, . . . , r } =⋃si=1Ri .

Definition 4.5 (Relaxed Non-degeneracy)

An equation system E is relaxed non-degenerate with respect to the partitioning
{1, . . . , r } = ⋃si=1Ri iff there is no I ⊆ {1, . . . , q} s.t. MI has exactly two odd
multiplicity elements and

⊕
i∈I λi = 0.

In [MN17, Theorem 3], Mennink and Neves extend Theorem 4.1 to the following relaxed
form:

Theorem 4.2 (Relaxed Mirror Theorem [MN17])

Let ξ ≥ 2 and let {1, . . . , r } = ⋃si=1Ri be a partition of the r indices. Let E be a
system of equations over the unknownsP that is (i) circle-free, (ii) ξ -block-maximal,
and (iii) non-degenerate w.r.t. the partition {1, . . . , r }. Then, as long as (ξ −1)2 · r ≤
2n/67, the number of solutions s.t. Pi 6= P j for all pairwise distinct i , j ∈ {1, . . . , r }
is at least

NonEq(R1, . . . ,Rs ;E)
(2n)q

,

where NonEq(R1, . . . ,Rs ;E) is the number of solutions to P that satisfy Pa 6= Pb

for all a, b ∈R j for all 1 ≤ j ≤ s as well as all inequalities (the equalities released) by
E .

Mennink and Neves stress that the relaxed Theorem 4.2 is equivalent to Theorem 4.1 for
s = 1, i.e., when the equation system consists of a single block. Moreover, the number
of solutions that are covered in the term NonEq(R1, . . . ,Rs ;E) can be lower bounded by
(2n)|R1| ·
∏s

i=2 (2
n − (ξ − 1))|Ri | since every variable is in exactly one block which imposes

at most ξ − 1 additional inequalities to the other unknowns in its block.

4.3 An Example Using the Sum of Permutations

The MAC constructions we propose later in this work are based on the sum of permutations.
We therefore see it as a useful example to present to proof of security using the Mirror
Theory for the sum of permutations.

Definition. In this section, we will present an example application of the Mirror Theory
showing that the sum of permutations is a secure pseudorandom function. We will follow
the example by [MN17], based on [Pat10], closely.

Chapter 4. The H-coefficient Technique 53

Definition 4.6 (Sum of permutations)

Let π1,π2�Pn be n-bit random permutations and let x ∈ {0,1}n be a n-bit input.
The sum of permutations is defined as follows:

Fπ1,π2
(x) = π1(x)⊕π2(x).

Adversarial capabilities. We will show that the sum of permutations is indistinguish-
able from a random function with n-bit inputs and n-bit outputs for up toO (2n) adversarial
queries. The adversary may only query the construction oracle, i.e., the function Fπ1,π2

, in
the forward direction. Queries to the underlying random permutations are not permitted.
The input-output pairs (x , y) will be recorded in a transcript τ. In the ideal world, the
construction oracle will sample its answer according to a random function F ′�Fn that
is independent of π1 and π2.

Lemma 4.4

The advantage of all adversaries making up to q ≤ 2n/67 queries to the sum of per-
mutations is upper bounded by:

∆
A
(Θideal,Θreal) ≤ q

2n
.

Proof. Following [MN17], we will define for every input-output pair (xi , yi) ∈ τ

P2i−1 := π1(xi) and P2i := π2(xi).

The transcript then defines the system of q equations in 2q unknowns E :

P1 ⊕ P2 = y1,

P3 ⊕ P4 = y2,
...

P2q−1 ⊕ P2q = yq .

Note that all unknowns are distinct as we use two independent permutations. The indices
{1, . . . ,2q} can be partitioned into the indices corresponding toπ1,R1 = {1,3, . . . ,2q−1},
and the indices corresponding to π2,R2 = {2,4, . . . ,2q}.

We do not need to consider bad transcripts in this example. We only need to compute

54 Chapter 4. The H-coefficient Technique

the ratio for all transcripts τ ∈ T :

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− ε.

The probability to obtain τ in the ideal world Pr [Θideal = τ] is easily upper bounded
by 2−nq . In the real world, we will apply the Relaxed Mirror Theorem. Note that E is
circle-free, has q-blocks of size 2 and is relaxed non-degenerate with respect to partition
{1, . . . , r } = R1 t R2. The number of solutions to the unknowns P1 to Pq is at least
NonEq(R1,R2;E)

2nq .
We need to lower bound the term NonEq(R1,R2;E). There are 2n choices for P1,

2n − 1 choices for P3 (as P3 6= P1), etc. Thus, for P1,P3, . . . ,P2q−1 there are (2n)q choices.
There are 2n −1 choices for P2 (if y1 6= 0 then P2 should be unequal to P1), 2n −2 choices
for P4 (as P4 6= P2 and if y2 6= 0 it should be unequal to P3). Thus, for P2,P4, . . . ,P2q there
are (2n − 1)q choices. We obtain

NonEq(R1,R2;E) ≥ (2n)q (2n − 1)q .

For the remaining output values of π1 and π2 there are (2n − q)! choices respectively, thus

Pr [Θreal = τ] ≥
(2n)q (2n−1)q

2nq · ((2n − q)!)2
(2n !)2

=
1
2nq
�
1− q

2n
�
.

Hence, for the ratio we obtain

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− q
2n

.

and therefore ε = q/2n provided q ≤ 2n/67. δ = 0 as we do not consider bad transcripts.
The claim follows. �

Part II

Message Authentication
Codes

55

5 | Message Authentication Codes

In this chapter, we wish to present the fundamentals ofmessage authentication codes (MACs).
We explain their purpose, what distinguishes them from hash functions and digital signa-
tures, and explain their typical vulnerabilities. There are stateless schemes and stateful
schemes that use a nonce as an additional parameter. One important theme in MAC re-
search is overcoming the birthday bound. Another theme is the repetition of nonces in
stateful schemes. The Wegman-Carter scheme, which we will introduce later, breaks with
a single nonce repetition. Therefore, research tries to identify schemes that do not break
with a single nonce repetition and potentially still allow for beyond the birthday bound se-
cure schemes with multiple nonce repetition. Furthermore, schemes should be as efficient
as possible.

Message authentication. Block ciphers and stream ciphers typically do not ensure
that the message arrives unmodified at the receiver. Ciphertexts may be modified in transit,
and while the decryption of a modified ciphertext block will most likely be garbage, for
stream ciphers, select plaintext bits can easily be flipped by flipping the corresponding
ciphertext bits. To prevent a message from being modified in transit and preserve the
message’s integrity, message authentication codes are used. MACs aim to guarantee the
authenticity and integrity of submitted messages. These typically compute a tag from the
message. That tag is sent along with the message. So, a receiver can successfully determine
with high probability whether a given pair (m, t) of message and tag has been generated by
the legitimate sender and has been transmitted correctly or not. The receiver then computes
the tag for the message received and compares it with the tag received. An adversary should
not be able to compute the tag with significant probability unless the MAC’s secret key is
known. A tag that is computed by an illegitimate party is called a forgery.

Network protocols. Message authentication codes are typically used in network trans-
fers to verify the integrity and authenticity of messages. Popular protocols that make use of
MACs are Transport Layer Security (TLS), known for securing HTTPS traffic over the in-
ternet, Secure Shell (SSH) for remotely accessing computers over a network, and the VPN
protocols IPsec and Wireguard.

57

58 Chapter 5. Message Authentication Codes

Popular algorithms. Some of the most popular MAC algorithms are the following:

– HMAC [BCK96a, BCK96b] is used in IPsec [KA98a, MG98, KA98b], Secure
Shell (SSH) [YL06, BB12], Transport Layer Security (TLS) [DR08, Res18], and
OAuth 1.0 [HL10].

– Poly1305 [Ber05c] is used in libsodium [lib23], NaCl [NaC23], Transport Layer
Security (TLS) [NLR18], and Wireguard [Wir23].

– SipHash [AB12] is used in libsodium [lib23] and Wireguard [Wir23].

Types of MACs. There are various types of Message Authentication Codes (MACs),
including stateless deterministic, randomized, and stateful constructions. Additionally,
nonce-based constructions are distinguished, wherein the sender is tasked with providing
a unique nonce for each message to be authenticated. Considering the potential cost of
obtaining cryptographically secure randomness in different scenarios, our emphasis lies on
stateless and nonce-based constructions.

MACs vs. digital signatures. A hash is an unkeyed operation used to verify the
integrity of a message. It provides protection against messages inadvertently being modified
in transit, but it does not protect against a malicious attacker, as the attacker can also
compute the hash.

The fundamental difference between a MAC and a digital signature is that MACs are
symmetric schemes, i.e., the sender and receiver share the same key, while digital signatures
are asymmetric schemes, i.e., the sender and receiver have different keys: one for signing
and one for verifying a message.

In addition to integrity, both MACs and digital signatures verify a message’s authenti-
city. However, unlike a hash function, a malicious attacker cannot compute the tag or the
digital signature without knowing the respective secret key.

Due to digital signatures being an asymmetric scheme, they further provide non-repu-
diation, i.e., a sender cannot deny having sent a message. This is due to the fact that for
digital signatures, the secret key is only known to the sender, whereas for a MAC, the secret
key is shared between the legitimate parties, and thus both parties can generate a valid tag.

Asymmetric schemes tend to be slower than symmetric schemes. Consequently, if
non-repudiation is not necessary, a MAC (Message Authentication Code) is the preferable
choice.

Challenges. We will later introduce the Wegman-Carter MAC, a MAC that combines a
pseudorandom function with a universal hash function. Universal hash functions generally
do not typically fulfill cryptographic requirements, making them more lightweight and
faster to compute. One downside is that this makes finding a preimage or identifying the
hashing key much easier for an adversary.

Chapter 5. Message Authentication Codes 59

The Wegman-Carter MAC uses a nonce as a second input. It enjoys a high-security level
if nonces are never repeated. If nonces are repeated, this can lead to a recovery of the hashing
key [Jou06, HP08]. Therefore, one goal to be accomplished is to allow for nonce repetitions
for Wegman-Carter-style MACs without catastrophic consequences. This would also allow
the use of random nonces, and thus, keeping a state would not be required.

Moreover, it is worth noting that pseudorandom functions are not as readily accessible
as pseudorandom permutations or block ciphers, respectively. Replacing the pseudoran-
dom function in the Wegman-Carter MAC with a pseudorandom permutation causes se-
curity to drop back to the birthday bound [Sho96]. It is, therefore, desirable to design a
Wegman-Carter-style scheme that uses a pseudorandom permutation with as few primit-
ive calls as possible. With higher data rates for high-powered devices and more and more
small electronic devices sending sensitive information, efficiency becomes more important
for MACs as well. There exist some more generic attacks.

Generic attacks. Some MACs are vulnerable to length extension attacks. In this type
of attack, an attacker will extend a previously intercepted message and can create a valid
tag without knowing the secret key. In the case of Wegman-Carter MACs and the univer-
sal hash function not fulfilling cryptographic requirements, the observation of nontrivial
properties of the hash value can lead to a recovery of the hashing key and thus forgeries
[Jou06, HP08]. A replay attack involves sending a previously sent message and its tag
again. The tag is obviously valid. The replay attack as such is not preventable but is typic-
ally handled by the communication protocol using message counters and thus identifying
duplicate messages.

Definition. Usually, people assume the goal of cryptography to be secrecy, i.e., a third
party eavesdropping on a communication channel not being able to decrypt the contents.
However, we also want to ensure that the contents received come from the legitimate sender
and were not modified in transit. An adversary may have acquired some information about
a message that is sent encrypted using a stream cipher. The adversary could then flip the
appropriate bits to change the contents of the message. Message authentication codes aim
to preserve the message integrity. Formally, a message authentication code is defined as
follows [KL20]:

Definition 5.1

A message authentication code (MAC) consists of two probabilistic polynomial-time
algorithms (Tag,Ver) such that:

– Tag receives as input the secret key k and a variable-length message m ∈ {0,1}∗.
Its output is a tag t ∈ T , where T denotes the tagspace.

– Ver receives as input the secret key k , the variable-length message m ∈ {0,1}∗
and the tag t ∈ T . Its output is a bit b ∈ {0,1}. b is 1 if t is a valid tag for m

60 Chapter 5. Message Authentication Codes

and 0 otherwise.

Further, it is required that Ver(k ,m,Tag(k ,m)) = 1.

5.1 Security Requirements

A MAC is supposed to ensure that the message was sent by the legitimate sender and was
not modified in transit. The tag is used to verify the authenticity and integrity of the
message. As the tag is used to verify a message, no adversary should be able to create a valid
tag for a yet unknown message. Creating a valid tag for an unknown message not created
by a legitimate party is called a forgery. We wish to achieve unforgeability for MACs. That
is, no valid tag can be computed by an illegitimate party without knowledge of the secret
key.

The two primary targets of a message authentication code are to ensure a message’s
integrity and the sender’s authenticity. It is, therefore, required that no forgery, as defined
below, be possible with significant probability. Often, a stronger definition of security is
used: indistinguishability from a random function. Showing that Tag is a pseudorandom
function will imply the hardness of forgeries. In our proofs, the attacker will get access to a
tagging oracle and a verification oracle and can thus generate tags for chosen messages and
verify tags as desired.

Unforgeability. The security of a message authentication code is defined via forgeries.
A forgery is a new tag t generated by the adversary for a message m that has not been
communicated before by the legitimate parties. It is required that no adversary can generate
a valid tag for a new message with significant probability. We will first define security
for a stateless MAC scheme and later present the definition of security for a nonce-based
(stateful) scheme.

Definition 5.2 (MAC-advantage)

Let (Tag,Ver) be a message authentication code as defined in Definition 5.1. Let
Tagk (m) be an oracle for the tagging algorithm Tag(k ,m) and let Verk (m, t) be
an oracle for the verification algorithm Ver(k ,m, t). Consider an adversary A with
oracle access to Tagk (m) and Verk (m, t) that is allowed to make at most qm queries
to the tagging oracle (MAC queries) and at most qv queries to the verification oracle
(verification queries). We say that A forges if any of its verification queries returns
one. The advantage of A against the MAC security of (Tag,Ver) is defined as

AdvMAC
(Tag,Ver)(A) = Pr
�
k �K : ATagk ,Verk forges

�
.

The adversary is not allowed to ask a verification query (m, t) if a previous query to

Chapter 5. Message Authentication Codes 61

Tagk (m) returned t .

Remark 5.1

We do not consider probabilistic adversaries here. Also we consider information-
theoretic security, hence the adversary is unbounded in time.

Nonce-based MACs. In the previous section, we defined a message authentication
code without including nonces. In this work, we will prove the security of two construc-
tions: one is nonce-based and therefore stateful, and the other is stateless. The main dif-
ference to Definition 5.1 is that Tag and Ver now both take an additional input ν ∈ N .

Definition 5.3 (Nonce-based MAC)

Let K be the keyspace, N be the noncespace and T be the tagspace. A message
authentication code (MAC) consists of two probabilistic polynomial-time algorithms
(Tag,Ver) such that:

– Tag receives as input the secret key k , a nonce ν , and a variable-length message
m ∈ {0,1}∗. Its output is a tag t ∈ T .

– Ver receives as input the secret key k , the nonce ν , the variable-length message
m ∈ {0,1}∗, and the tag t ∈ T . Its output is a bit b ∈ {0,1}. b is 1 if t is a
valid tag for m and 0 otherwise.

Further it is required that Ver(k , ν ,m,Tag(k , ν ,m)) = 1.

Accordingly, we wish to update the definition of the MAC-advantage for a nonce-based
message authentication code. Also, based on this definition, we introduce what it means
that an adversary is nonce-respecting.

Definition 5.4 (MAC-advantage)

Let (Tag,Ver) be a nonce-based message authentication code as defined in Defin-
ition 5.3. Let Tagk (ν ,m) be an oracle for the tagging algorithm Tag(k , ν ,m) and
let Verk (ν ,m, t) be an oracle for the verification algorithm Ver(k , ν ,m, t). Consider
an adversary A with oracle access to Tagk (ν ,m) and Verk (ν ,m, t) that is allowed to
make at most qm queries to the tagging oracle (MAC queries) and at most qv queries
to the verification oracle (verification queries). We say that A forges if any of its veri-
fication queries returns 1. The advantage of A against the MAC security of (Tag,Ver)
is defined as

AdvMAC
(Tag,Ver)(A) = Pr
�
k �K : ATagk ,Verk forges

�
.

62 Chapter 5. Message Authentication Codes

The adversary is not allowed to ask a verification query (ν ,m, t) if a previous query to
Tagk (ν ,m) returned t . The adversary is said to be nonce-respecting if it never repeats
a nonce ν ∈N in its queries to Tagk .

While the primary goal of a MAC is unforgeability, indistinguishability from random bits
can be a valuable replacement goal to evaluate the security. If tags are indistinguishable
from random, they are also hard to forge.

PRF security. PRF security implies that the outputs of the tag generation algorithm
Tag cannot be distinguished from a random bitstream of the same length. This is the
stronger notion of security for message authentication codes and implies the hardness of
forgeries.

Lemma 5.1

If an algorithm Tag is a secure PRF, then it also is a secure MAC. A secure MAC need
not be a secure PRF.

Proof. Assume an algorithm Tag is a secure PRF but not a secure MAC and let Ver be
the corresponding verification algorithm. In particular, assume that the MAC-advantage
is lower then the PRF-advantage: AdvMAC

(Tag,Ver)(A) < AdvPRF
Tag (A). Then, the adversary can

produce a valid pair (m, t) on a previously unqueried message m. That is, the adversary
can predict a value t of the pseudorandom function Tag(m). This is a contradiction to the
PRF requirement of Tag.

PRF security is not necessary for a secure MAC though. Let f be a secure PRF. Define
the tagging algorithm Tag := f (k ,m) || 0. Tag is a secure MAC but as it always ends in 0
it is easy to distinguish from a truly random function. �

In the proofs later presented in this part of this thesis, we will show PRF security for the
proposed MAC scheme.

Replay attacks. MACs are vulnerable to replay attacks. In this type of attack, an ad-
versary uses an observed message-tag pair (m, t) and sends (m, t) to the respective receiver.
Usually, a message counter is included in the message m to make these kinds of attacks de-
tectable. The replayed message m is then discarded. Due to the correctness of the scheme,
replay attacks are not preventable by the MAC algorithm. We will not consider replay
attacks any further.

5.2 Wegman-Carter MACs

The Wegman-Carter approach [WC81] is a popular and efficient paradigm for constructing
secure MACs. There, a given message is first compressed with a universal hash function

Chapter 5. Message Authentication Codes 63

before the result is processed by a cryptographically secure random function.

Original description. Let h ∈ H be the hash function used. The original scheme
generates, for every message mi , a random bitstring bi where |h(mi)| = |bi | and the tag is
computed via t = h(mi)⊕ bi . The secret key is the sequence (h , b1, b2, . . .) which has to be
communicated between the legitimate parties over a secure channel.

Recent description. In more recent descriptions of the Wegman-Carter scheme, a
pseudorandom function f is used instead of the random bitstrings. The secret key then
becomes the tuple (h , f). Alternative descriptions use a keyed hash function with key kh
and a keyed function with key k f . For every message mi , a unique nonce νi is generated
and sent with the tag ti to the receiver. The tag is computed via ti = h(mi)⊕ f (νi).

Real world MACs. Some message authentication codes that use the Wegman-Carter
construction are VMAC [Kro06], UMAC [BHK+99], and Poly1305-AES [Ber05c].

5.2.1 Universal Hashing

Universal, almost-universal, and almost-XOR-universal hash functions only make a state-
ment about the collision probability of two values and are, in particular, not required
to fulfill cryptographic requirements. Let X and Y denote two non-empty sets, and
H = {h :X →Y } be a family of hash functions h .

Definition 5.5 (Almost-Universal Hash Function [CW79])

We say that H is ϵ-almost-universal (ϵ-AU) if, for all distinct x , x ′ ∈ X , it holds
that Prh�H [h(x) = h(x ′)] ≤ ϵ.

If the outputs of the hash functions h ∈ H have length n and the collision probability is
2−n , thenH is called universal. Almost-universality is a more relaxed definition. Almost-
XOR-universal hash functions were introduced in [Kra94]; however, the term is due to
Rogaway [Rog95].

Definition 5.6 (Almost-XOR-Universal Hash Function [Kra94, Rog95])

Here, let Y ⊆ {0,1}n for some positive integer n. We say thatH is ϵ-almost-XOR-
universal (ϵ-AXU) if, for all distinct x , x ′ ∈ X and arbitrary y ∈ Y , it holds that
Prh�H [h(x)⊕ h(x ′) = y] ≤ ϵ.

Polynomial hashing. Many almost-XOR-universal hash functions have been proposed
in the literature, most of them based on polynomial hashing [Kra94, Rog95, Sho96, HK97,
BHK+99, KR00, KVW04, MV04, Ber05c]. One popular example of a polynomial hash
function is PolyHash [MI11]. However, in this work, it should be noted that PolyHash

64 Chapter 5. Message Authentication Codes

is solely used as an illustrative example of a polynomial hash function, chosen for its simpli-
city and ease of comprehension. We do not elaborate any further on polynomial hashing
but want to give the reader a basic idea. It needs to be highlighted that polynomial hash
function families need not fulfill cryptographic requirements and, in particular, need not
be cryptographic hash functions.

Definition 5.7 (PolyHash)

Let k ∈ {0,1}n be the n-bit hashing key and let m ∈ {0,1}∗ be a message. m is
first padded with an injective padding of the form 01∗ so its length is a multiple
of n. Let m∗ = m1||m2|| . . . ||mℓ be the padded message, where |mi | = n for each
i ∈ {1, . . . ,ℓ}, and ℓ is the number of n-bit blocks of the padded message. Then,
PolyHash is defined as follows:

PolyHashk (m) = mℓk ⊕ mℓ−1k
2 ⊕ · · · ⊕ m1k

ℓ .

PolyHash is a ℓ/2n-XOR-universal hash function [DDNY18].

5.2.2 Attacks on Wegman-Carter MACs

Wegman-Carter MACs enjoy high security properties if nonces are never repeated. As-
suming that f is a perfect random function, an adversary posting qm MAC queries and
qv verification queries succeeds with a probability of ϵ · qv [CS16]. A single nonce repe-
tition, however, can lead to a hashing key recovery and will thus allow universal forgeries
[Jou06, HP08].

Repeating nonces. Assume that an adversary obtains two message-tag-nonce triples
(m, t , ν) and (m′, t ′, ν) with a repeated nonce. The adversary then computes t ⊕ t ′ =
h(m) ⊕ f (ν) ⊕ h(m′) ⊕ f (ν) = h(m) ⊕ h(m′), i.e., with h(m) ⊕ h(m′) ⊕ t ⊕ t ′ = 0 the
adversary learns that the hashing key is the root of a known polynomial. As [Jou06] notes:

One important problem for the adversary is that the degree of this polynomial
can be high, since it is equal to the length in blocks of the longer of the two
messages M(1) and M(2). Since the number of roots can potentially be as high
as the degree, the adversary may hesitate between a large number of possible
H. However, on average, we only expect a small number of roots. Moreover, if
the adversary can obtain a second pair of messages with common IVs, he gets
a second polynomial with root H. Then by computing the GCD of the two
polynomials, he finds a polynomial of small degree with H as a root. Finally,
he is left with a small number of candidates for H. If there is a single candidate,
he is done and stops there. If there are a few, he can either collect additional

Chapter 5. Message Authentication Codes 65

pairs with common IVs or use a chosen ciphertext attack [...] to test each
possible value.

Known hashing key. Assume that an adversary learns the secret hashing key after
observing nonce-repetitions as shown in [Jou06, HP08]. This will allow the adversary
to compute h(m) for any message m. Note that for verification queries the adversary is
allowed to repeat nonces. For an observed message-nonce-tag triple (m, ν , t), the adversary
can compute f (ν) = t ⊕ h(m). For a new message m′, the adversary can simply compute
a forgery via t ′ = h(m′)⊕ f (ν) and obtains a valid message-nonce-tag triple (m′, ν , t ′).

Random permutation. Pseudorandom functions often are not available, yet pseudor-
andom permutations are readily available as block ciphers. Therefore, one may ask if f
can be instantiated as a (pseudo-)random permutation. This will cause the security of the
Wegman-Carter scheme to drop to the birthday bound.

One can easily obtain a distinguisher with birthday bound complexity: For 2n/2 dif-
ferent nonces νi and a single message m, the adversary will ask for the tag ti of the pair
(m, νi). As f is a random permutation, all values of f (νi) are unique and no collision in
the tags will be observed. If f were a random function, one would expect a collision after
2n/2 queries with high probability.

Stateless MAC. Getting rid of the nonce, one can define a universal hashing-based
MAC as t = f (h(m)). This will result in security bounded by ϵ · q2m as a hash collision
will necessarily cause a tag collision. Again, as described above, this allows the adversary to
identify hash collisions and recover the secret hashing key, which will in turn allow them
to create more hash collisions and thus universal forgeries.

5.2.3 Improving the Wegman-Carter MAC

In [Sho96], Shoup replaced the function F with a permutation, addressing the fact that
there exist a number of standardized and well-analyzed block ciphers. Bernstein later
proved the security of Shoup’s construction, e.g., [Ber05c]. Bernstein’s well-known bound
still ensures that the advantage for any adversary that asks 2n/2 authentication queries
[Ber05b] is bounded by 1.7qvℓ/2n , where qv is the number of verification queries and
ℓ is the maximal message length, usually in terms of elements of a ring or field used in h .
Throughout this work, we adopt the common way of referring to security bounds that are
negligible up to O (2n/2) blocks or queries as n/2 bits of security.

Despite its simplicity, one can identify two interesting directions for extending the
Wegman-Carter construction. The first concerns the nonce requirement, which is a well-
known considerable risk: If a single nonce is repeated only once, the security of the con-
struction may collapse completely since the hash-function key could leak. Secondly, even
if nonces never repeat, its security is inherently limited by Bernstein’s bound, which is of

66 Chapter 5. Message Authentication Codes

birthday-bound type. Recent works showed that Bernstein’s bound is tight [LP18, Nan18],
which means that the original construction cannot provide higher security.

6 | Improving Wegman-Carter

EWCDM. An ongoing series of research aims to find constructions with higher security
guarantees that retained some security also under nonce reuse. As one of the starting points,
one could identify the proposal of the Encrypted Davies-Meyer (EDM) and the Encrypted
Wegman-Carter Davies-Meyer (EWCDM) modes by Cogliati et al. [CS16]. While EDM
is a PRP-to-PRF conversion method and therefore restricted to inputs of n bits length,
EWCDM supports nonce-based authentication for variable-input-length messages as does
the original Wegman-Carter construction. In EWCDM, a nonce ν is first processed by the
Davies-Meyer construction under a permutation π1; its result is XORed with the hash of a
message m and the sum is encrypted under a second independent permutation: π2(π1(ν)⊕
ν ⊕ hk ′ (m)). EDM misses the hash and uses ν as the only message input. Its authors
showed that EWCDM provides at least 2n/3-bit security in a nonce-respecting setting
and birthday-bound security in a nonce-misusing setting. Their proof also showed 2n/3-
bit security for EDM. Recently, Cogliati and Seurin [CS18] showed that one can use the
same permutation twice in EDM while retaining 2n/3-bit security. EWCDM [CS16]
started a trend in search of new message authentication constructions.

Improving EWCDM. DWCDM [DDNY18] sought to improve upon EWCDM by
incorporating only a single key while still retaining the same O (22n/3) bits of security.
[MN17] showed an improved bound on security of up to 2n/67n adversarial queries for
EWCDM and up to 2n/67 queries for a dual of EWCDM called EWCDMD. The latter
proof contained an mistake as EWCDMD suffers from a birthday type attack [Nan17].
Either construction only claimed birthday bound security in a nonce-repeating setting.
[DDD21] showed that DWCDM with 3n/4-bit nonces achieves O (23n/4) security and
EWCDM also achieved O (23n/4) security. At that time, it was debated whether the Mirror
Theory holds true for security larger than O (22n/3) and thus the result was [MN17] was
questioned. [DDD21] showed the extended Mirror Theory to hold for up to O (23n/4)
queries.

EWCDM concatenates two permutation calls, i.e. one permutation call uses as its in-
put the output of the other permutation call. Hence, the permutation calls cannot be par-
allelized. [MN17] also showed a very simple proof of security for the sum of permutations
as presented in Section 4.3 with security in O (2n). For this construction the permutations

67

68 Chapter 6. Improving Wegman-Carter

calls can be performed in parallel. Naturally, the question arises whether one can modify
the sum of permutations to obtain a MAC.

TBC-based MACs. An alternative approach has been taken by Cogliati et al. [CLS17]
using tweakable block ciphers (TBC). They proposed four generic constructions based on
the composition of universal hashing and a block cipher: Hash-as-Tweak (HaT), Nonce-as-
Tweak (NaT), Hash-as-Key (HaK), and Nonce-as-Key (NaK). They proved n-bit security
for all constructions in the ideal-permutation model (assuming a universal hash function).
However, the former two constructions require a tweakable primitive, whereas the latter
two require message-dependent rekeying.

Goals. We can identify four desiderata for interesting MACs based on permutations and
universal hashing. In terms of security, the adversary’s advantage should remain negligible
for ℓq � 2n/2. In terms of simplicity, the number of calls to the primitive(s) should be
minimized. For efficiency, their calls should be parallelizable, and frequent rekeying should
be avoided. Last but not least, they should support variable-length messages. So, in spite
of recent advances, it remains an interesting question how one can generally achieve those
aspects for stateless deterministic and/or nonce-based constructions.

Enhanced Hash-then-Mask. Minematsu [Min10] proposed a construction called the
Enhanced Hash-then-Mask (EHtM) MAC, which uses a random salt and two keyed func-
tions that are xored to obtain O (22n/3) security. [DJN17] improved the bound to O (23n/4)
and showed tightness by providing a matching attack.

[DNT19] showed in parallel to us [ML19] that EHtM with two keyed permutations
instead of two keyed function and a nonce instead of a random salt is secure to up to
O (22n/3) queries. They further showed graceful degradation of security when nonces are
repeated, i.e. security degrades as nonces are repeated more often and does not drop to
the birthday bound with a single repetition. [CLLL20] improved the bound to O (23n/4).
[DN20] investigated the construction with public permutations and [CDN22] extended
this to a multi-user setting. We analyzed this construction under the name HPxNP.

Double-block Hash-then-Sum. A different construction uses two hash values as in-
puts to the two permutations and was studied in parallel by [DDNP18] and us [ML19].
Both works show a bound of security of O (22n/3). This was bound was later improved
by [KLL20] to show a security level of O (23n/4). Its security in a multi-user setting was
evaluated and first shown to be O (22n/3) [SWGW21] and then improved to O (23n/4)
[DDNT23]. We analyzed this construction under the name HPxHP.

Contribution. This work analyzes two constructions based on the sum of permutations
and universal hashing with the help of the Mirror Theory. This first construction is stateless
deterministic whereas our second is nonce-based. They are named HPxNP and HPxHP,

Chapter 6. Improving Wegman-Carter 69

according to the fact whether they employ a universal hash function (HP) or a nonce (NP)
as inputs to the permutation. Figure 6.1 illustrates them schematically. Both modes are
shown to provide O (2n/3) bits of security asymptotically.

Structure. Hereupon, we first cover briefly the necessary preliminaries used in this work,
including a brief recap of Patarin’s Mirror Theory. Thereupon, Section 6.2 proposes our
two constructions whose security is then analyzed in the subsequent Sections 6.4 and 6.5.
Section 6.6 concludes.

Remark 6.1

We note that the HPxHP construction is clearly not novel, but an abstraction of a
variety of existing double-lane MACs, e.g., 3kf9 [ZWSW12], GCM-SIV-2 [IM16],
or PMAC+ [Yas11]. However, in its abstract form, it has been studied by Datta et al.
[DDNP18] (the same authors already had studied the construction in [DDN+15])
from a constructive view; in parallel to our work, Dutta et al. also analyzed a variant of
HPxNP with a single bit for domain separation in [DNT19], where they also showed
O(q3/22n) bits of security. Recently, Leurent et al. [LNS18] also studied an attacking
view. More precisely, Leurent et al. [LNS18] proposed a forgery attack with data
complexity of O (23n/4) for such constructions. We also take the constructive view, so
that our derived security bound is also inherently limited by the result by Leurent et
al.; moreover, at the end of each analysis section, we further discuss the effect of using
4-wise independent hash functions for our constructions, with the positive result that
the then-obtained security bounds render their result inapplicable and lead to higher
security.

6.1 Preliminaries

In this section, we will briefly recap the notation and definitions used throughout this
chapter. We use calligraphic uppercase letters X ,Y for sets. We write {0,1}n for the
set of bit strings of length n, and denote the concatenation of binary strings x and y by
x ‖ y and the result of their bitwise XOR by x ⊕ y . We write x � X to mean that x is
chosen uniformly at random from the setX . We consider Func(X ,Y) to be the set of all
deterministic mappings F :X →Y and Perm(X) to be the set of all permutations over
X . Given an event E , we denote by Pr[E] the probability of E . For two integers n, k with
n ≥ k ≥ 1, we denote the falling factorial as (n)k

def=
∏k−1

i=0 (n − i).

Distinguisher. A (complexity-theoretic) distinguisher A is an efficient adversary, i.e.,
an efficient Turing machine that is given access to a number of oracles which it can inter-
act with. The task of A is to distinguish between two worlds of oracles, one of which is
chosen at the beginning of the experiment uniformly at random. After its interaction,

70 Chapter 6. Improving Wegman-Carter

A outputs a bit that represents a guess of the world that A interacted with. The dis-
tinguishing advantage between a real world Oreal and an ideal world Oideal is given by

∆A (P ,O) def=
���Pr �AOreal = 1�− Pr �AOideal = 1����. We consider information-theoretic distin-

guishers, i.e., distinguishers that are computationally unbounded, and that are limited only
by the number of queries they can ask to their available oracles. We assume that distinguish-
ers do not ask duplicate queries or queries to which they already can compute the answer
themselves from earlier queries, as is common. W.l.o.g., we limit our interest to determ-
inistic distinguishers since for each probabilistic distinguisher, there exists a deterministic
one with equal advantage that fixed a random tape beforehand (cf. [ADMA15, CS14]).

Pseudorandomness and hash functions. We briefly recall the definitions for the
advantage of distinguishing a construction from a random function (PRF) and from a
random permutation (PRP), respectively.

Definition 6.1 (PRF Advantage)

LetK ,X , andY be non-empty sets and let F :K ×X →Y andρ� Func(X ,Y)
and k � K . Then, the PRF advantage of A w.r.t. F is defined as AdvPRF

F (A)
def=

∆A (Fk ,ρ).

A keyed permutation E :K ×X → X is a family of permutation over X indexed by a
key k ∈K .

Definition 6.2 (PRP Advantage)

Let K and X be non-empty sets, E : K ×X → X be a keyed permutation, and
let π� Perm(X) and k �K . Then, the PRP advantage of A w.r.t. E is defined as
AdvPRP

Ek
(A) def= ∆A (Ek ,π).

We will also need the definition of a d -wise independent family of hash functions.

Definition 6.3 (d -wise Independence [WC81])

We say thatH is d -independent if, for all pair-wise distinct x1, . . . xd ∈ X and all
y1, . . . , yd ∈ Y d , it holds that Prh�H [h(xi) = yi , for 1 ≤ i ≤ d] = 1/|Y |d .

H-coefficient technique. We will briefly recapture the H-coefficients technique as it
is central to our proof. The H-coefficients technique is a proof method due to Patarin,
where we consider the variant by Chen and Steinberger [CS14, Pat08]. The results of the
interaction of an adversary A with its oracles are collected in a transcript τ. The oracles
can sample randomness prior to the interaction (often a key or an ideal primitive that is
sampled beforehand), and are then deterministic throughout the experiment [CS14]. The
task of A is to distinguish the real world Oreal from the ideal world Oideal. Let Θreal and
Θideal denote the distribution of transcripts in the real and the ideal world, respectively. A

Chapter 6. Improving Wegman-Carter 71

transcript τ is called attainable if the probability to obtain τ in the ideal world – i.e. over
Θideal – is non-zero. Then, the fundamental Lemma of the H-coefficients technique, the
proof to which is given in [CS14, Pat08], states:

Lemma 6.1 (Fundamental Lemma of the H-coefficient Technique [Pat08])

Assume that the set of attainable transcripts can be partitioned into two disjoint sets
GoodT and BadT. Further, assume that there exist δ ,ε ∈ [0,1] such that for any
transcript τ ∈GoodT, it holds that:

Pr [Θideal ∈ BadT] ≤ δ and
Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− ε.

Then for all adversaries A we have that the distinguishing advantage satisfies

∆
A
(Θideal,Θreal) ≤ δ + ε.

Mirror Theory. We will use this in conjunction with the Mirror Theory from Sec-
tion 4.2. We will use the Bad Events of the H-coefficients technique to ensure that all
properties of the Mirror Theory are fulfilled and then apply the Mirror Theorem to the
Good Transcripts.

Remark 6.2

We consider PRF security in the information-theoretic setting, similar to Mennink
and Neves [MN17]. The underlying permutations are secret and assumed to be drawn
uniformly at random from Perm({0,1}n). Our results generalize to the complexity-
theoretic setting. There, the permutations π1 and π2 are supposed to be instantiated
with a block cipher E under independent random secret keys k1 and k2, Ek1

and Ek2
,

respectively. The bounds from this paper can be easily adapted to the complexity-
theoretic setting by adding a term of 2 · AdvPRP

Ek
(q). The term refers to twice the

maximal advantage for an adversary A′ to distinguish E : K × {0,1}n → {0,1}n
keyed with a random key k � K from a random permutation π, where A asks at
most q queries. Note that we only employ the forward direction of the permutation;
therefore, PRP security suffices and we do not need to consider the strong variant.

6.2 Constructions

Let n ≥ 1 be a positive integer, and let K denote a non-empty set. Let π1,π2 �
Perm({0,1}n) be independently uniformly at random sampled permutations over n-bit
strings. Let H = {h | h : {0,1}∗ → {0,1}n} be a family of ϵ1-AXU hash functions; for

72 Chapter 6. Improving Wegman-Carter

m

h1

π1

u

v

x

ν

π2

y

t

(a) HPxNP.

m

h1

π1

u

x

h2

π2

v

y

t

(b) HPxHP.

Figure 6.1: Our proposed constructions. π1 and π2 represent two permutations over
{0,1}n , h1 and h2 two universal hash functions, m a variable-length message, ν , ν1, and ν2
nonces of fixed length, and t the authentication tag.

HPxHP, we will define and use instead H1 = {h1 | h1 : {0,1}∗ → {0,1}n} be a family
of ϵ1-AU hash functions, and H2 = {h2 | h2 : {0,1}∗ → {0,1}n} be a family of ϵ2-AU
hash functions. We require the hash functions to be sampled independently uniformly
at random. Usually, the hash function instances are determined by sampling a hash key
independently uniformly at random for each instance.

Nonce-based MAC. Our first, nonce-based construction, HPxNP, is illustrated in
Figure 6.1a. It shares similarities with Minematsu’s Enhanced Hash-then-Mask construc-
tion [Min10] that had been analyzed further in [DJN16, DJN17]; however, Minematsu’s
construction used a function instead of a permutation and a per-message random IV. In
this construction, the message is hashed to an n-bit value h(m). For this construction, we
need H to be an ϵ-almost-XOR-universal family of hash functions. An n-bit nonce ν is
XORed to the hash u to obtain v := h(m)⊕ ν ; v and ν serve as inputs to the two calls to
a permutation π1 and π2, respectively, and yield x := π1(v) and y := π2(ν). Finally, the
outputs of the permutation calls are XORed and released as authentication tag: t := x ⊕ y .

Stateless MAC. Our second construction, HPxHP, is illustrated in Figure 6.1b. It
consists of two parallel invocations of the hash functions on the input message m ∈ {0,1}∗
that are hashed using h1 ∈ H1 and h2 ∈ H2, respectively, to two n-bit values u and v .
Those serve as inputs to the two calls to a permutation π1 and π2, respectively and yield
x := π1(u) and y := π2(v). Finally, the outputs of the permutation calls are XORed and
released as authentication tag: t := x ⊕ y .

Block ciphers and hashing. In practice, the permutations π1 and π2 will be instan-
tiated with a secure block cipher E under two independent keys k1 and k2. An intuitive
choice for the hash function is, for example, polynomial hashing. Let F2n be the Galois

Chapter 6. Improving Wegman-Carter 73

Field GF (2n) with a fixed primitive polynomial p(x). For n = 128, the GCM polynomial
p(x) = x128+x7+x2+x+1 is a usual choice. The hash function is instantiated by sampling
a hash key k � F2n . Given k and a message m ∈ (F2n)ℓ of ℓ blocks, polynomial hashing
is then defined as the sum of

hk (m)
def=

ℓ∑
i=1

k ℓ+1−i ·mi ,

where mi denotes the i -th message block and additions as well as multiplications are in
F2n .

It is well-known that for maximal message lengths of ℓ blocks (after padding), poly-
nomial hashing is ϵ-AXU for ϵ = ℓ/2n , and therefore also ℓ/2n-AU. Note that poly-
nomial hashing requires an injective padding to prevent trivial hash collisions; a simple
10∗-padding works, but may extend messages by one block.

Parallelization. While the sum of a polynomial hash is sequential, computing the indi-
vidual terms on a few cores in parallel is well-known at the cost of storing multiple powers
of the hash key. For instance, optimized instances of GCM parallelize the computations of
four (or eight) subsequent blocks k4 ·mi , k3 ·mi+1, k2 ·mi+2, and k4 ·mi+3, before their res-
ults are summed, reduced by the modulus, and summed to the sum of the previous blocks∑i−1

j=1 k
jm j [GK14, GL15]. Thus, several hash multiplications, or two hash-function calls,

or hashing and computing a permutation are efficiently parallelizable as long as the plat-
form is not too resource-restricted. Note that a number of related hash functions exist with
similar security properties; pseudo-dot-product hashing, BRW hashing, or combined ap-
proaches such as [CGS17] can half the number of necessary multiplications, and provide
similar parallelizability. We refer the interested reader to an overview by Bernstein [Ber07].

6.3 Relation to the Attack by Leurent et al.

The attacks in [LNS18] exploit that 4-circles may occur after 23n/4 queries if the hash
functions are universal, and the messages are constructed in a dedicated manner. We briefly
recall the attack by Leurent et al. [LNS18] here.

Attack description. Leurent et al. considered MACs with 2n bits of internal state that
can be abstracted to HPxHP. They searched for four-tuples (x , y, z , t) such that they build
a 4-circle as: 

h1(x) = h1(y)

h2(x) = h2(t)

h1(t) = h1(z)

h2(y) = h2(z).

74 Chapter 6. Improving Wegman-Carter

Such a tuple can be efficiently verified since it must hold that their corresponding authen-
tication tags sum to zero: tx ⊕ ty ⊕ tz ⊕ tt = 0n . Since practical instances of such MACs
(e.g., PMAC+, 3kf9, Sum-ECBC) hash the message block-wise, they further employ two
distinct prefixes p0 and p1, such that |p0| = |p1| and the prefixes end at the block boundary:

x = p0 ‖ x∗, y = p1 ‖ y∗, z = p0 ‖ z∗, t = p1 ‖ t∗.

So, the prefixes lead to differences ∆= h1(p0)⊕ h1(p1) and ∇ = h2(p0)⊕ h2(p1). Consid-
ering only four-tuples (x∗, y∗, z∗, t∗) with x∗ ⊕ y∗ ⊕ z∗ ⊕ t∗ = 0n , they could translate the
problem of finding a solution to the rank-four equation system to the problem of finding
a solution to the following rank-three system:

h1(x) = h1(y)

h2(x) = h2(t)

h1(t) = h1(z)

h2(y) = h2(z).

⇔


h1(x) = h1(y)

h2(x) = h2(t)

h1(t) = h1(z),

with x∗⊕ y∗ = z∗⊕ t∗ =∆ and x∗⊕ t∗ = y∗⊕ z∗ =∇, From x∗⊕ y∗⊕ z∗⊕ t∗ = 0n , it followed
then that h2(x) = h2(y) also holds. Leurent et al. propose data-efficient algorithms for this
4-sum problem, i.e., finding four-tuples with data complexity of O (23n/4) queries.

6.4 Security Analysis of HPxNP

First, we consider the construction HPxNP. Patarin’s approach [Pat10] allows us to obtain
a bound of O (2n/3) bits of security. At the end of this section, we discuss the implications
of considering ξaverage instead, as was also suggested ibidem.

Theorem 6.1

Let n ≥ 1,ξ ≥ 2 be integers, and H = {h | h : {0,1}∗ → {0,1}n} be a family of
ϵ-AXU hash functions with h�H . For any nonce-respecting PRF distinguisher A
that asks at most q ≤ 2n/(67ξ 2) queries, it holds that

AdvPRF
HPxNP[h ,π1,π2]

(A) ≤ 2q2 · ϵ
ξ 2

+

�q
2

� · ϵ
2n
+

q
2n

.

Note that in this case, the optimal choice of ξ to obtain the best bound is 2n/6, as-
suming that ϵ ∈ O (2−n). Then, the bound in Theorem 6.1 is dominated by the first term
of O (q2/24n/3 + q2/22n + q/2n), while the number of queries is allowed to be q ≤ 22n/3.
Other values for ξ reduce either the security bound or the number of queries.

The remainder of this section is devoted to show Theorem 6.1. Here, A makes q con-

Chapter 6. Improving Wegman-Carter 75

struction queries (νi ,mi), for 1 ≤ i ≤ q , that are stored together with the query results ti
in a transcript τ = {(νi ,m1, t1), . . . , (νq ,mq , tq)}. In both worlds, the oracle samples h at
the beginning uniformly at random from all hash instances. A sees the results ti after each
query. We employ a common method to alleviate the proof: after the adversary finished
its interaction with the oracle, but before outputting its final decision bit, A is given the
hash-function instance h so that it can compute the values u1, . . . , uq itself. Clearly, this
only makes the adversary stronger, but spares the need to discuss security internals of the
hash function.

Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr } of r unknowns. We consider a
system of q equations

E = {Pa1 ⊕ Pb1
= t1, Pa2 ⊕ Pb2

= t2, . . . , Paq ⊕ Pbq
= tq},

where Pai := xi = π1(h(mi) ⊕ νi) and Pbi
:= yi = π2(νi). We further define an index

mapping φ : {a1, b1, . . . ,aq , bq}→ {1, . . . , r }. For all i , j ∈ {1, . . . , q}:
– φ(ai) 6= φ(a j)⇔ h1(mi)⊕ νi 6= h1(m j)⊕ ν j .
– φ(bi) 6= φ(b j) since νi 6= ν j .
– φ(ai) 6= φ(b j) since both permutations π1 and π2 are independent.

The index mapping φ has a range of size qx + qy , where qx = |{xi , . . . , xq}| ≤ q and
qy = |{ν1, . . . , νq}| = q .

6.4.1 Bad Transcripts

φ only exposes collisions of the form φ(ai) = φ(a j) or equivalently xi = x j . We define the
following bad events:

Bad Events

– bad1: there exist ξ distinct equation indices i1, i2, . . . , iξ ∈ {1, . . . , q} s.t. xi1 =
xi2 = . . . = xiξ where ξ is the threshold given in Theorem 6.1.

– bad2: There exist query indices i 6= j , i , j ∈ {1, . . . , q} s.t. (vi , ti) = (v j , t j).

Let us consider bad1 first. Since h is ϵ-AXU, the expected amount of collisions is q2 · ϵ.
Unfortunately ϵ-AXU is not strong enough to allow for statements regarding multicolli-
sions, i.e. we cannot make a statement on the probability that three or more input values
collide. Considering the maximal block size ξ , the worst case would be that all collisions
occur in the same hash value. If there exists a block of size (ξ + 1), this block contains
ξ 2 collisions. Let #Colls(q) be the random variable that counts the collisions in h . By

76 Chapter 6. Improving Wegman-Carter

Markov’s Inequality, the probability that there are more than
�
ξ
2

�
collisions in h is at most:

Pr
�
#Colls1(q) ≥
�
ξ

2

��
≤ E(C)�

ξ
2

� = �q2� · ϵ�
ξ
2

� ≤ 2q2ϵ
ξ 2

.

For bad2, recall that the ideal world samples the tags independently uniformly at random.
Since h is ϵ-AXU, it follows for some distinct pair i , j ∈ {1, . . . , q}:

Pr
�
vi = v j ∧ ti = t j
� ≤ �q2� · ϵ

2n
.

It follows from the sum of both probability for bad1 and bad2 that

Pr [τ ∈ BadT |Θideal = τ] ≤ 2q2 · ϵ
ξ 2

+

�q
2

� · ϵ
2n

.

6.4.2 Ratio of Good Transcripts

Lemma 6.2

The system of equations is (i) circle-free, (ii) ξ -block-maximal and (iii) relaxed non-
degenerate with respect to the partitioning intoR1 tR2, where

R1 =
def {φ(a1), . . . ,φ(aq)} andR2 =

def {φ(b1), . . . ,φ(bq)}.

Proof. The proof relies on the fact that φ(bi) 6= φ(b j) and φ(ai) 6= φ(b j) for any i 6= j .
For any I ⊆ {1, . . . , q} the corresponding multiset MI has at least |I | odd multiplicity
elements and therefore the system of equations E is (i) circle-free.

(ii) If E were not ξ -block-maximal, then there must be an ordering I = {i1, . . . , iξ }
s.t. φ(ai1) = . . . = φ(aiξ). This is equivalent to a ξ -fold collision xi1 = . . . = xiξ , which
contradicts the assumption that τ is a good transcript.

(iii) Suppose that E would be relaxed degenerate. Then, there would exist a minimal
subset I ⊆ 1, . . . , q that has exactly two odd multiplicity elements corresponding to the
same oracle and s.t.

⊕
i∈I ti = 0. If |I | = 1, MI would have two elements from different

oracles. If |I | = 2 and ti1 = ti2 , then we would know that xi1 6= xi2 since νi1 6= νi2 , i.e.
yi1 6= yi2 . Therefore, we have four odd multiplicity elements. If |I | ≥ 3, there would
exist at least three odd multiplicity elements. So, E cannot be relaxed degenerate, which
concludes the proof. �

Chapter 6. Improving Wegman-Carter 77

Lemma 6.3

Let τ ∈GoodT and q ≤ 2n/(67ξ 2). Then, it holds that

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− q
2n

.

Proof. The probability to obtain a good transcript τ consists of that for obtaining the tags
t1, . . . , tq , and the hash-function outputs h(mi). The probability to obtain the latter is
given in both worlds by |H |−1. The bound in Lemma 6.3 is determined by the ratio of
the respective probabilities. This term appears in the real world as well as in the ideal world
and cancels out eventually. Hence, we ignore it for the remainder of the analysis. The
probability of obtaining the rest of the transcript, i.e., the tags ti , in the ideal world is then
given by

Pr
�
t1, . . . , tq
���Θideal� = 1

(2n)q

since the outputs ti are sampled independently and uniformly at random from {0,1}n in
the ideal world. In the real world, the probability is given by

Pr [Θreal = τ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!
(2n !)2

=
NonEQ(R1,R2;E)
2nq (2n)qx (2

n)qy
.

Remember that qy = q since all νi are distinct. To lower bound NonEQ(R1,R2;E), note
that we have (2n)qx choices for {P j | j ∈ R1} and at least (2n − 1)q possible choices for
{P j | j ∈R2}, as every index inR2 is in a block with exactly one unknown fromR1. Thus

Pr [Θreal = τ] ≥
(2n − 1)q (2n)qx
2nq (2n)q (2n)qx

=
1
2nq
�
1− q

2n
�
.

Hence, we obtain the ratio as in Lemma 6.3. �

6.4.3 Using ξaverage
In [Pat10], Patarin suggests that one can potentially consider the average instead of the
maximal block size for the sum of permutations in the Mirror Theory. More precisely,
Generalization 2 of [Pat10, Section 6] suggests that:

The theorem Pi ⊕ P j is still true if we change the condition ξmaxα � 2n by
ξaverage � 2n .

78 Chapter 6. Improving Wegman-Carter

The bottleneck in our bound is the event bad1; bad2 as well as the good transcripts do
not consider ξ at all and the respective terms become significant only for q approaching
2n . Upper bounding the block size is necessary to ensure the condition q ≤ 2n/(67ξ 2

max).
Using a universal family of hash functions only allows for a very crude upper bound of the
maximal block size that limits us at a security level of around 22n/3 queries.

If we could use the average block size as suggested by Patarin, we are limited by the
condition q ≤ 2n/(67ξ 2

average); then, bad1 would no longer be necessary and would signi-
ficantly improve the bound. The following theorem would yield an upper bound on the
expected average block size ξaverage.

Theorem 6.2

For any q ≤ 2n and ϵ ≤ 1, we expect that ξaverage ≤ (q − 1)ϵ+ 2.

We will first briefly sketch the idea for ϵ = 2−n and explain the idea in more detail below:
For q � 2n , the expected amount of collisions q2/2n is in O (q). For q = 2n , the expected
amount of collisions is 2n−1. In the worst case (regarding the average), the collisions are
uniformly distributed, i.e. h(m1) = h(m2), h(m3) = h(m4), . . . , h(m2n−1) = h(m2n). This
pattern corresponds to the case that every block were of size 3 and hence the average is 3 as
well. Any other pattern would not increase the average block size. The proof will consider
the more general case for ϵ. From Theorem 6.2, we obtain

q ≤ 2n

67((q − 1)ϵ+ 2)2 .

We note that the use of ξaverage implies the need to employ the stronger form of the
Mirror Theory, that assumes that the iterated proof suggested by Patarin holds. Both the
stronger form of the Mirror Theory and the Generalization 2 [Pat10] are subject to their
own analysis.

Proof Sketch. Note that we argue about an upper bound on the expected average block size.
To use this argument in a proper security proof, we would also need to bound the amount
of collisions such that after q queries no more than q collisions occur. This can be done
quite comfortably using Markov’s Inequality.

We recall that ξaverage is the average block size of non-empty blocks of equations. More
formally, we define 2n bins i ∈ {0, . . . ,2n − 1}, where each bin i represents the n-bit value
i that the hash values u = h(m) can take. Over q queries, we define the number of non-
empty bins by B =def |{i : ∃ j ∈ {1, . . . , q} s.t. u j = i}|. We denote by ℓi the load of the
i -th bin, i.e., the number of queries u = h(m) that were equal to i , all over q queries, for
1 ≤ i ≤ q . The average bin load over all non-empty bins is given by

ℓaverage
def=

1
B

2n−1∑
i=0

ℓi =
q
B

Chapter 6. Improving Wegman-Carter 79

since the sum of all bin loads must yield q . We denote by bi the block size that corresponds
to bin i in our proof since a block contains all variables corresponding to tuples (u, ν) with
u = i plus the ℓi disjoint nonces. So, bi =def ℓi + 1 if ℓi > 0 and bi =def 0 if ℓi = 0, i.e., if
bin i is empty. It follows from our definitions above that ξaverage = ℓaverage + 1. In total, we
expect
�q
2

�
ϵ collisions which are distributed over all bins, i.e.,

#Colls =
�
q
2

�
ϵ =

2n−1∑
i=0

�
ℓi
2

�
. (1)

To show the claim, our goal is to maximize ξaverage, which is equivalent to maximize ℓaverage,
which again is equivalent to minimizing B , i.e., the number of non-empty bins.

We have to show two aspects that ℓaverage is largest if the distribution of balls is closest
possible to uniform while maintaining the expected number of collisions. We can observe
that the average block size decreases whenever we would move a ball from one bin to another
so that the load of both diverges. Given two disjoint bin indices i , j ∈ {0, . . . ,2n −1} with
loads ℓi and ℓ j , respectively. W.l.o.g., we assume that ℓi ≥ ℓ j . We have that

#Colls =
�
ℓi
2

�
+
�
ℓ j
2

�
+
��

q
2

�
ϵ−
�
ℓi
2

�
−
�
ℓ j
2

��
def=
�
ℓi
2

�
+
�
ℓ j
2

�
+ R .

We move a ball from bin j to bin i and obtain new loads ℓ ′i = ℓi + 1 and ℓ ′j = ℓ j − 1. We
obtain that

#Colls′ =
�
ℓ ′i
2

�
+
�
ℓ ′j
2

�
+ R = #Colls+ ℓi − ℓ j + 1 ≥ #Colls+ 2.

So, whenever we move a ball such that the resulting bin loads diverge more, the number of
collisions used up by those bins increases. Hence, we have less collisions remaining for the
remaining bins, which implies that the balls in the remaining bins have to be moved:

– either from some bin i ′ to j ′ such that ℓi ′ − ℓ j ′ ≥ ℓi − ℓ j ,
– or between multiple bins,

– or balls have to be moved to previously empty bins.

It is easy to see that this configuration is optimal when the individual non-empty bin loads
diverge as little as possible. This is given by having B non-empty bins of the same load ℓi
s. t. �

ℓi
2

�
·B =
�
q
2

�
ϵ.

Since q = B ·ℓi , we obtain ℓi = (q −1)ϵ+1. It follows that the maximal average block size
is ξaverage = (q − 1)ϵ+ 2. �

80 Chapter 6. Improving Wegman-Carter

6.5 Security Analysis of HPxHP

The analysis of HPxHP shares many similarities with that of HPxNP, but differs in certain
key points. Regarding the maximum block size, a hash collision (considering the hashes
separately) may occur now on one of both sides, i.e., there may be a collision in h1(m) =
h1(m′) or in h2(m) = h2(m′), which increases the block size and effectively doubles the
probability of obtaining a hash collision.1 Further, since collisions may occur on both
sides, it is possible to obtain a circle.

Using a universal hash function, we can obtain security up to O (22n/3) queries, match-
ing the security bound of earlier analyses. Increasing the strength of the hash function
and using a d -wise independent hash function, it is possible to obtain security up to
O (2 (n−1)dd+1) queries. Putting stronger requirements on the family of hash functions increases
its size and therefore the length of the key. We still find this result interesting since re-
cent results [LNS18] provided attacks with a query complexity of O (23n/4). If we demand
stronger properties from the hash function, our security level exceeds the complexity by
the known attacks. Again, we provide an analysis with a universal hash function and ξmax

first. Thereupon, we will argue about the necessary proof changes to adapt to stronger
hash-function families.

Theorem 6.3

Let n ≥ 1,ξ ≥ 2 be integers and H1 and H2 be ϵ1 and ϵ2-AU families of hash
functions, respectively, and let h1 � H1 and h2 � H2 be sampled independently
uniformly at random. Let ϵ =def max{ϵ1,ϵ2}. For any PRF distinguisher A that asks
at most q ≤ 2n/(67ξ 2) queries, it holds that

AdvPRF
HPxHP[h1,h2,π1,π2]

(A) ≤ 4q2ϵ
ξ 2
+ 3 · (qϵ)2 + q3ϵ2 + ξ · q

2n − ξ .

For ξ = 2n/6, and assuming an optimal ϵ = O (2−n), the bound in Theorem 6.3 has the form
ofO (q2/24n/3+q2/22n+q3/22n+q/25n/6) for q ∈ O (22n/3) queries. So, it is dominated by
the first term. The remainder of this section contains the proof of Theorem 6.3. Consider a
deterministic distinguisher A that has access to either HPxHP[h1, h2, π1, π2] or ρ, which
chooses the outputs given to A uniformly at random. A makes q construction queries mi

that are stored together with the query results ti in a transcript τ = {(m1, t1), . . . , (mq , tq)}.
In both worlds, the oracle samples h1 and h2 at the beginning independently and uniformly
at random from their hash families. A sees the results ti after each query. Again, we make
the adversary stronger by defining that the hash keys are revealed to the adversary after it
finished its interaction with the oracle, but before outputting its final decision bit.

1Technically speaking, there is a total of q (q − 1)/2 of input pairs. When bounding the probability of a
collision we used q2 instead, ignoring the factor 1/2.

Chapter 6. Improving Wegman-Carter 81

Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr } of r unknowns. Again, we
consider a system of q equations

E = {Pa1 ⊕ Pb1
= t1, Pa2 ⊕ Pb2

= t2, . . . , Paq ⊕ Pbq
= tq},

where Pai := xi = π1(h1(mi)) and Pbi
:= yi = π2(h2(mi)). We further define an index

mapping φ : {a1, b1, . . . ,aq , bq} → {1, . . . , r }; φ maps equal permutation outputs xi = x j
that occur for any i 6= j (from equal hash values ui = u j) to the same unknown Pk ;
similarly, φ maps equal permutation outputs yi = y j that occur for any i 6= j (from equal
hash values vi = v j) to the same unknown Pℓ . For all i , j ∈ {1, . . . , q}, it holds that

– φ(ai) 6= φ(a j)⇔ h1(mi) 6= h1(m j).

– φ(bi) 6= φ(b j)⇔ h2(mi) 6= h2(m j).

– φ(ai) 6= φ(b j) since both permutations π1 and π2 are independent.

In the real world, the transcript has collisions in the values xi = x j or yi = y j for i 6= j ,
when the corresponding hash values ui = u j or vi = v j collide. A collision in xi and x j
corresponds to a collision in φ(ai) and φ(a j) and a collision in yi and y j corresponds to a
collision in φ(bi) and φ(b j). Multi-collisions in the range values of π1 and π2 correspond
to blocks in the mirror theory. To upper bound the size of the largest blockQk , we need to
consider a special type of collision between two queries i and j . In this setting, we say that
two queries i and j collide if h1(mi) = h1(m j) and/or2 h2(mi) = h2(m j). The probability
for such a collision to happen is ϵ1 + ϵ2 ≤ 2ϵ.

We define an event bad1 if there exists a ξ -multi-collision in any subset of queries
{i1, . . . , iξ +1} ⊆ {1, . . . , q}, where ξ is the threshold in Theorem 6.3. We need to consider
four more events that render a transcript to be bad:

Bad Events

– bad1: There exists a subset I ⊆ {1, . . . , q} of size |I | = ξ , s.t. for each pair
of distinct indices i , j ∈ I , it holds that φ(ai) = φ(a j) and/or φ(bi) = φ(b j);
ξ is the threshold in Theorem 6.3.

– bad2: There exist i 6= j , i , j ∈ {1, . . . , q} s.t. (ui , vi) = (u j , v j) and ti 6= t j .

– bad3: There exist i 6= j , i , j ∈ {1, . . . , q} s.t. (ui , ti) = (u j , t j) and vi 6= v j .

– bad4: There exist i 6= j , i , j ∈ {1, . . . , q} s.t. (vi , ti) = (v j , t j) and ui 6= u j .

– bad5: There exists a subset I ⊆ {1, . . . , q} s.t. MI contains only elements of
even multiplicity.

2To avoid confusion, by ’and/or’ we actually mean the logical ’or’.

82 Chapter 6. Improving Wegman-Carter

If an attainable transcript τ is not bad, we define τ as good. We denote by GoodT and
BadT the sets of good and bad transcripts, respectively. In the H-coefficient technique,
the probability that a transcript is bad is analyzed solely for the ideal world. The bound in
Theorem 6.3 follows then from Lemma 6.1 and Lemmas 6.4–6.6.

6.5.1 Bad Transcripts

Lemma 6.4

Let ξ ≥ 1 denote the threshold from Theorem 6.3. It holds that

Pr [τ ∈ BadT|Θideal = τ] ≤ 4q2ϵ
ξ 2
+ 3 · (qϵ)2 + q3ϵ2.

Proof. In the following, we upper bound the probability that a transcript is bad. Most of
the time, we can upper bound the probabilities of the individual bad events to occur and
will simply take the sum of their probabilities. We will postpone the discussion of the first
bad event to the end and begin with the second bad event.

For the second bad event, it holds that h1 and h2 are both ϵ-AU and independent.
We drop the condition ti 6= t j since it only decreases the probability and an upper bound
suffices for our purpose. The probability that both hash values collide simultaneously for
two queries is at most

Pr [bad2] ≤
�
q
2

�
ϵ2 ≤ q2ϵ2

2
.

For the third and fourth bad events, the probabilities can be formulated similarly. To
upper bound bad3, the probability that ui = u j is again at most ϵ for a fixed pair of
distinct query indices i 6= j . Since the outputs ti and t j are sampled uniformly at random
and independently from the hash values, we can again neglect the requirement vi 6= v j
and obtain the same upper bound for bad3 as for bad2 when we use ϵ ≥ 2−n . A similar
argument holds for bad4.

When upper bounding the probability of bad5, we are limited by the hash function.
We consider all 3-tuples (ma ,mb ,mc) such that h1(ma) = h1(mb) and h2(mb) = h2(mc).
This event can be bounded by

�q
3

�
ϵ2, which also excludes the occurrence of a circle. Thus,

it holds that Pr
�
bad5
� ≤ q3ϵ2. Double-collisions that are small circles by themselves are

excluded by bad2.
Now, we will consider bad1. As in the analysis of HPxNP we will upper bound the

maximal block size for the individual hash functions. We will then condition bad1 on
¬bad5 to ensure that no collisions in h1 are connected to collisions in h2. The hash func-
tions are both ϵ-almost-universal. Again, the worst case regarding block maximality would

Chapter 6. Improving Wegman-Carter 83

be that all collisions occur in the same block of size ξ + 1. Such a block would have
�
ξ
2

�
collisions. Let #Colls1(q) denote a random variable for the number of collisions between
h1(mi) = h1(m j) for 1 ≤ i , j ≤ q and i 6= j . Using Markov’s Inequality, we obtain an
upper bound for the probability that

Pr
�
#Colls1(q) ≥
�
ξ

2

��
≤ E [#Colls1(q)]�

ξ
2

� ≤ 2q2ϵ
ξ 2

.

We can derive a similar argument using a random variable #Colls2(q) for the number of
collisions between collisions h2(mi) = h2(m j), So, the probability to obtain a block of size
ξ is upper bounded by

Pr
�
bad1
��¬bad5� ≤ 4q2ϵ

ξ 2
.

Our bound in Lemma 6.4 follows from summing up the obtained terms. �

6.5.2 Good Transcripts

It remains to upper bound the ratio of probabilities to obtain a good transcript in both
worlds. To upper bound it in the real world, we will use the Relaxed Mirror Theory. We
show that a good transcript fulfills all the properties needed by the Relaxed Mirror The-
orem.

Lemma 6.5

Let τ ∈ GoodT be a good transcript. Let E be the system of q equations corres-
ponding to (φτ ,m1, . . . ,mq). Then, E is (i) circle-free, (ii) ξ -block-maximal, and
(iii) relaxed non-degenerate with regard to the partitioning {1, . . . , r } = R1 ∪ R2,
whereR1 = {φ(ai), . . . ,φ(aq)} andR2 = {φ(bi), . . . ,φ(bq)}.

Proof. We defined τ to be a good transcript; hence, no bad event has occurred, which
implies that the transcript is (i) circle-free since we excluded bad5 here.

(ii) If E were not ξ -block-maximal, there would exist a minimal subsetQ ⊆ {1, . . . , r }
with |Q| ≥ ξ +1 so that there exists some i ∈ {1, . . . , q} for which either {φ(ai),φ(bi)} ⊆Q
or {φ(ai),φ(bi)} ∩Q = ;. The latter event does not violate the block-maximality, so we
can focus on the former statement.

Assuming that E were not ξ -block-maximal, we can define a subset of indices I ⊂
{1, . . . , q} for which it holds that {φ(ai),φ(bi)} ⊆Q for all i ∈ I . Then, we can define an
ordered sequence of the indices in I to i1, . . . , iξ s.t. it would have to hold for all pairs of
subsequent indices i j , i j+1, for 1 ≤ j < ξ that φ(ai) = φ(a j) and/or φ(bi) = φ(b j). This is
equivalent to our definition of bad1 and would therefore violate our assumption that τ is
good. Hence, every good transcript τ is ξ -block-maximal.

84 Chapter 6. Improving Wegman-Carter

(iii) Assume that τ would be relaxed degenerate. This would imply there exists a subset
I ⊆ {1, . . . , q} such that the multiset MI has exactly two odd multiplicity elements from
a single setR1 orR2 and the tags of the elements corresponding to I sum up to zero, i.e.⊕

i∈I
ti =
⊕
i∈I
π1(h1(mi))⊕π2(h2(mi)) = 0.

Recall that φ(ai) 6= φ(a j) if and only if h1(mi) 6= h1(m j), φ(bi) 6= φ(b j) if and only if
h2(mi) 6= h2(m j) and φ(ai) 6= φ(b j) for any choice of i and j . An element φ(ai) has
even multiplicity in MI if there is an even amount of inputs that collide in h1(mi). And
similarly an element φ(bi) has even multiplicity in MI if there is an even amount of inputs
that collide in h2(mi). If there is an even amount of queries that collide in a hash value,
one can easily see that these elements will cancel out in the above sum.

For simplicity, assume, there exists a subset I ⊆ {1, . . . , q} with exactly two odd mul-
tiplicity elements from R1 and even multiplicity elements only from R2. All elements
from R2 cancel out in the sum above. and all even multiplicity elements from R1 cancel
out as well. Let the two odd multiplicity elements fromR1 have multiplicity 2n1 + 1 and
2n2 + 1, where n1, n2 ≥ 0. In total, 2n1 and 2n2 terms will cancel out and what remains is
π1(h1(mi))⊕π1(h1(m j)) = 0 where φ(ai) 6= φ(a j). However, this event cannot occur since
φ(ai) 6= φ(a j) implies that h1(mi) 6= h1(m j); thus the system cannot be relaxed degenerate.
�

Lemma 6.6

Let τ ∈GoodT and q ≤ 2n/(67ξ 2). Then, it holds that

Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− ξ · q
2n − ξ .

Proof. The probability to obtain a good transcript τ consists of that for obtaining the tags
t1, . . . , tq , and the hash-function outputs ui and vi . The probability to obtain the latter
is given in both worlds by Pr [(h1, h2) | (h1, h2)�H1 ×H2]. The bound in Lemma 6.6
is determined by the ratio of the respective probabilities. This term appears in the real
world as well as in the ideal world and cancels out eventually. Hence, we ignore it for
the remainder of the analysis. The probability for the tags ti in the ideal world is then
given by Pr[t1, . . . , tq |Θideal] = 1/(2n)q since the outputs ti are sampled independently
and uniformly at random from {0,1}n in the ideal world.

In the real world, the situation is more complex and a little more work is necessary.
We denote by qx := |{π1(h1(mi)) | i ∈ {1, . . . , q}}| the amount of distinct values for
π1 and similarly we denote by qy := |{π2(h2(mi)) | i ∈ {1, . . . , q}}| the amount of
distinct values for π2. The number of solutions to the qx + qy unknowns is at least

Chapter 6. Improving Wegman-Carter 85

NonEQ(R1,R2;E)/2nq . There are (2n − qx)! possible choices for the remaining output
values of π1 and (2n − qy)! possible choices for the remaining output values of π2. Thus,
we can lower bound

Pr [Θreal = τ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!
(2n !)2

=
NonEQ(R1,R2;E)
2nq (2n)qx (2

n)qy
.

We will use the obvious lower bound for NonEQ(R1,R2;E) and we obtain

Pr [Θreal = τ] ≥
(2n)qx (2

n − ξ)qy
2nq (2n)qx (2

n)qy
=

1
2nq
·
(2n − ξ)qy
(2n)qy

.

We can immediately see that

Pr [Θreal = τ]
Pr [Θideal = τ]

≥
(2n − ξ)qy
(2n)qy

.

We can further reformulate the expression (2n − ξ)qy /(2n)qy to

(2n − qy)(2n − qy − 1) · · · (2n − qy − (ξ − 1))
(2n)(2n − 1)(2n − 2) · · · (2n − (ξ − 1)) =

ξ −1∏
i=0

2n − i − qy
2n − i .

This can be reformed to and upper bounded by

ξ −1∏
i=0

�
1− qy

2n − i
�
≥
�
1− q

2n − ξ
�ξ
≥ 1− ξ · q

2n − ξ ,

where the final inequality is Bernoulli’s. �

6.5.3 Using d -wise Independent Hash Functions

In contrast to the analysis of HPxNP, for HPxHP, we find ξ not only in the analysis
of bad1, but also in that of bad5 plus in the bound for the good transcripts. For the
same reasons as in HPxNP, bad1 and bad5 cap the bound at around q = 22n/3. Using
the average block size would not work here since it would not affect the bound of bad5.
However, we can increase the security bound of HPxHP with stronger, d -wise independent
hash functions. For even d , this allows to obtain a bound of q = 2d n/(d+1) since such hash
functions yield better bounds for circles of sizes ≥ d . Since circles always contain an even
amount of queries, there would be no benefit of an uneven values d . Leurent et al. required
a 4-circle that is expected after 23n/4 queries for their attack. Using a 4-independent hash
function, the first 4-circle occurs after 2n queries on average. So, we can obtain a security
bound that exceeds the complexity of Leurent et al.’s attack. For simplicity, we will consider
4-wise independent hash functions first and illustrate the changes to the security bound of

86 Chapter 6. Improving Wegman-Carter

HPxHP. Thereupon, we extend our analysis to larger values of d .

Lemma 6.7

LetH1 andH2 be independent 4-wise independent hash functions. Let ξ ≥ 7. Then

Pr [bad1|¬bad2] ≤
2
�q
4

�
23n
�
ξ
4

� + 16q5

24n
.

Proof. The analysis of the maximal block size for HPxHP is a little more delicate than that
of HPxNP, because we can have collisions on either side, i.e. in the inputs of π1 or in the
inputs of π2. We will aim to bound the probability of blocks of size 7 among the queries,
i.e., {(ui1 , vi1), . . . , (ui7 , vi7)}, for pairwise distinct i1, . . . , i7 ∈ {1, . . . , q}. For simplicity, we
reindex them as {(u1, v1), . . . , (u7, v7)}, hereafter. W.l.o.g., we consider them in an order
s. t. ui = ui+1 or vi = vi+1 holds for each 1 ≤ i < 7. We exclude collisions of the form
(ui , vi) = (u j , v j) since those are already covered by bad2.

For such blocks, we consider sub-blocks of 5 queries (our actual interest) and upper
bound their probability. However, not in all cases, we can obtain a satisfying bound; there-
fore, we will consider 7-blocks at some points. We identify all possible collision patterns
and bound their probability accordingly before we can make a final statement on the max-
imal block size.

The left side of Figure 6.2 illustrates the possible patterns of 5-chains. We can encode
the possible hash-collisions patterns by four-bit strings (a1,a2,a3,a4), where ai = 0 if ui =
ui+1 and ai = 1 if vi = vi+1. It is easy to see that we can obtain at most 16 such patterns
indexed from (0000) = 0 through (1111) = 15. Moreover, the Variants (8) through (15)
are symmetric to their counterparts (0) through (7). So, it suffices to bound the probability
of the latter. Our claim follows.

Variant (0): u1 = u2 = u3 = u4 = u5. 4-wise independence unfortunately does not
allow a better bound than q4/23n for this case. Instead, we allow large collisions in one
hash function as long as they are not connected to collisions in the other hash function.
This will allow us to bound the probability of large blocks as we did in the analyses before.

For a single hash function, assume that the largest block has size of ξ . This block
contains
�
ξ
4

�
4-collisions. Let #4Colls1(q) denote a random variable for the number of

4-collisions in the outputs of h1. Again, Markov’s Inequality allows us to upper bound the
probability that there are more than

�
ξ
4

�
4-collisions in one hash function by:

Pr
�
#4Colls1(q) ≥
�
ξ

4

��
≤ E [#4Colls1(q)]�

ξ
4

� =

�q
4

�
23n · �ξ4� ≈ q4

23n · ξ 4
.

For ξ = 2n/10, this term allows for up to 217n/20 queries while the condition q ·ξ 2 = 2n/67

Chapter 6. Improving Wegman-Carter 87

(0)

u5

u4

u3

u2

u1

(1) (2) (3) (4) (5) (6) (7)

v5

v4

v3

v2

v1

(8)

u5

u4

u3

u2

u1

(9) (10) (11) (12) (13) (14) (15)

v5

v4

v3

v2

v1

(2.1.1)

u7

u6

u5

u4

u3

u2

u1

(2.1.2) (2.2)

v7

v6

v5

v4

v3

v2

v1

(4.1)

u6

u5

u4

u3

u2

u1

(4.2)

v6

v5

v4

v3

v2

v1

Figure 6.2: Structure graphs of hash-value pairs (ui , vi) in blocks of size 5 – 7. Each pair
of horizontal dots denotes a pair (ui , vi). An edge describes that two hash values are equal,
e.g., Variant (2) represents the case that u1 = u2 = u3, v3 = v4, and u4 = u5.

is fulfilled for up to O (24n/5) queries. We can derive a similar argument using a random
variable#4Colls2(q) for the number of 4-collisions in the outputs of h2, So, the probability
to obtain a block of size ξ in this case is also approximately at most 2q4/23nξ 4. In the
remainder, we will show that we can upper bound the probability of blocks to a size of
ξ ≥ 7 if they connect collisions in h1 with collisions in h2 with a probability of q5/24n .

Variant (1): u1 = u2 = u3 = u4 and v4 = u5. From 4-wise independence, it holds that
the probability for u1 = . . . = u4 is at most∑

u1∈{0,1}n
Pr
�
h1(m1) = h1(m2) = h1(m3) = h1(m4) = u1

� · Pr �v4 = v5
�

≤ (2n · 2−4n) · 2−n = 2−4n .

Since there are at
�q
5

�
such 5-tuples, this variant has probability at most q5/24n . An ana-

logous argument can be formulated for Variant (7). For their complexity, we will consider
variants (2) and (4) at the end, and proceed with Variant (3) next.

Variant (3): u1 = u2 = u3, v3 = v4 = v5. From 4-wise independence, it holds∑
u1∈{0,1}n

∑
u4∈{0,1}n

Pr
�
h1(m1)=h1(m2)=h1(m3)=u1, h1(m4)=u4

�
≤ 22n · 2−4n=2−2n .

88 Chapter 6. Improving Wegman-Carter

Since the outputs of h2 are independent from h1, it holds independently∑
v3∈{0,1}n

∑
v2∈{0,1}n

Pr
�
h2(m3)=h2(m4)=h2(m5)=v3, h2(m2)=v2

�
≤ 22n · 2−4n = 2−2n .

We obtain that the upper bound on the probability of this variant is 2−4n for a fixed 5-tuple,
and at most q5/24n over all such 5-tuples.

Variant (5): u1 = u2, v2 = v3, u3 = u4, v4 = v5. From our assumption that bad2 is
not set, it holds that u1 6= u4 and v2 6= v5. Since h1 and h2 are independent, it holds that
the probability for this constellation is at most∑

u1∈{0,1}n

∑
u4∈{0,1}n

Pr
�
h1(m1) = h1(m2) = h1(m3) = u1, h1(m4) = u4

�
· ∑
v2∈{0,1}n

∑
v4∈{0,1}n

Pr
�
h2(m2) = h2(m3) = v2, h2(m4) = h2(m5) = v4

�
≤ (22n · 2−4n) · (22n · 2−4n),

and therefore at most q5/24n over all 5-tuples.

Variant (6): u1 = u2, v2 = v3 = v4, u4 = u5. Again, from our assumption that bad2 is
not set, it holds that u1 6= {u3, u4} and v2 6∈ {v1, v5}. Since h1 and h2 are independent, it
holds that the probability for this constellation is at most∑

v1∈{0,1}n

∑
v2∈{0,1}n

Pr
�
h2(m1) = v1, h2(m2) = h2(m3) = h2(m3) = v2

�
· ∑
u1∈{0,1}n

∑
u4∈{0,1}n

Pr
�
h1(m1) = h1(m2) = u1, h1(m4) = h1(m5) = u4

�
≤ (22n · 2−4n) · (22n · 2−4n),

and therefore at most q5/24n over all 5-tuples.

Variant (2): u1 = u2 = u3, v3 = v4, u4 = u5. While we could upper bound

Pr
�
u2 = u3, v3 = v4, u4 = u5

� ≤ q4 · 2−3n

in a straight-forward manner for this constellation, it would be inferior to our desired
bound. Hence, we extend it further to six-query variants (2.1), where we add the condition
h1(m5) = h1(m6) = u5 = u6; and (2.2), where we add h2(m5) = h2(m6) = v5 = v6. One
can observe that constellation (2.2) contains Variant (5). So, the probability for the subset
of queries (m2, . . . ,m6) to form the collisions as shown can be derived from there to be at

Chapter 6. Improving Wegman-Carter 89

most q5/24n over all such 5-tuples.
Since we cannot find a good bound for (2.1) yet, we extend it further. We define

Variant (2.1.1) to add a seventh query to the block such that h1(m6) = h1(m7). From
4-wise independence, it holds that the probability for u4 = . . . = u7 is at most∑

u4∈{0,1}n
Pr
�
h1(m3) = h1(m4) = h1(m5) = h1(m6) = u4

� · Pr �v3 = v4
�

≤ (2n · 2−4n) · 2−n = 2−4n .

So, the probability for Variant (2.1.1) is at most q5/24n . For Variant (2.1.2), we can observe
that it contains Variant 9, which is axially symmetric to Variant 6. Thus∑

u3∈{0,1}n

∑
u4∈{0,1}n

Pr
�
h1(m3) = u3, h1(m4) = h1(m5) = h1(m6) = u4

�
· ∑
v3∈{0,1}n

∑
v6∈{0,1}n

Pr
�
h2(m3) = h2(m4) = v3, h2(m6) = h2(m7) = m6

�
≤ (22n · 2−4n) · (22n · 2−4n)

and therefore at most q5/24n over all 5-tuples (m3, . . . ,m7). So, for all extensions, the
probability of a 7-query block from Variant (2) is upper bounded by q5/24n .

Variant (4): u1 = u2, v2 = v3, u3 = u4 = u5. By relabeling the indices of the queries
we can see that this variant is the same as Variant (2). �

We find two interesting points here: (1) Raising the requirement of the hash functions
to 4-wise independence yields a 4-circle after 2n queries on average instead of after 23n/4

queries as in the attack by Leurent et al.. Thus, a security level of 24n/5 can be obtained. (2)
We cannot show yet if it is possible to consider ξaverage instead of ξmax. If we can consider
the average block size instead of the maximum block size, the upper bound of circles is the
bottleneck. Vice versa, it seems that attacks on the HPxHP-type of MACs must exploit
the occurrence of circles. We can formulate the following lemma to bound the probability
of bad5.

Lemma 6.8

LetH1 andH2 be independent 4-wise independent hash functions. Then

Pr
�
bad5|¬bad2 ∧¬bad1

� ≤ q4/24n .

Proof. The analysis of bad5 can then be conducted as follows, where we restrict our atten-
tion to bad5 conditioned on ¬bad2 and ¬bad1. So, we concern chains of even lengths,
such that no collisions (ui , vi) = (u j , v j) has occurred. Hence, bad2 already covers the

90 Chapter 6. Improving Wegman-Carter

probability of 2-chains. A 4-chain is a 4-tuple of pairwise disjoint query indices (i1, i2, i3, i4)
such that there exists an ordering of the indices s. t. h1(mi1

) = h1(mi2
), h2(mi2

) = h2(mi3
),

h1(mi3
) = h1(mi4

), and h2(mi4
) = h2(mi1

) hold. For simplicity, we reindex those queries to
(1,2,3,4) and reindex their corresponding hash values. It holds that∑

u1∈{0,1}n

∑
u3∈{0,1}n

Pr
�
h1(m1) = h1(m2) = u1, h1(m3) = h1(m4) = u3

�
· ∑
v1∈{0,1}n

∑
v2∈{0,1}n

Pr
�
h2(m1) = h2(m4) = v1, h2(m2) = h2(m3) = v2

�
≤ (22n · 2−4n)2 = 2−4n ,

and over
�q
4

�
such tuples, we obtain an upper bound of q4/24n .

A 6-chain is a 6-tuple of pairwise disjoint query indices (i1, . . . , i6) such that there exists
an ordering of the indices s. t. h1(mi1

) = h1(mi2
), h2(mi2

) = h2(mi3
), h1(mi3

) = h1(mi4
),

h2(mi4
) = h2(mi5

), h1(mi5
) = h1(mi6

), and h2(mi6
) = h2(mi1

). Again, we simply reindex
them to (1, . . . ,6). One can observe that there is a sub-structure that corresponds to Vari-
ant (5) in our proof of Lemma 6.7. By conditioning on ¬bad1 we do not need to add this
term to the above bound. It is easy to see that every chain of eight or more queries must
contain at least one of those sub-structures and can be bounded accordingly. Our claim in
Lemma 6.8 follows. �

6.5.4 Extension to d -independence for Even d

Lemma 6.9

LetH1 andH2 be independent d -wise independent hash functions. Then

Pr [bad1|¬bad2] ≤
2
�q
d

�
2(d−1)n · �ξd � + q d+1

2(n−1)d
.

We can extend the argument above to obtain a security of up to O (2 (n−1)dd+1) queries with
a d -independent family of hash function. Instead of considering 5-collisions as the base in
the proof of Lemma 6.7, we consider d -collisions in the following. We can index all such
(d + 1)-collision patterns by a d -bit string (x1, . . . , xd) of d variables. Again, each string
denotes a collision pattern between a d -tuple of disjoint queries with indices (i1, . . . , id);
So, each bit xi = 0 represents that h1(mi) = h1(mi+1) and xi = 1 indicates that h2(mi) =
h2(mi+1) holds. We denote h1(mi) = ui and h2(mi) = vi , for 1 ≤ i ≤ d . Again, we exclude
cases where (ui , vi) = (u j , v j) for i 6= j .

The probability of almost all collision patterns from such d -bit strings can be easily
upper bounded by q d+1/2nd . Since we have at most 2d such patterns, we can upper bound
the probability of their union by 2d q d+1/2nd = q d+1/2(n−1)d .

Chapter 6. Improving Wegman-Carter 91

The only exceptions are represented by the patterns

– (010 · · ·0), (0010 · · ·0), . . . , (0 · · ·010),
– and their counterparts (101 · · ·1), (1101 · · ·1), . . . , (1 · · ·101).

Hence, we will allow these bad collision patterns and consider extensions thereof. We
focus on those bit strings with hamming weight one since an analog argument holds for
their counterparts.

Extending one of those weight-one patterns by a 1-bit on either side will produce a
subpattern that has already been excluded. Moreover, we can extend any of the weight-one
patterns above to a string of d − 2 zeros followed by a 1 followed by another d − 2 zeros.
This extended 2(d − 1)-bit string encodes a collision pattern between 2d − 1 queries and
is still allowed. However, beyond this point, any further extension will yield an excluded
subpattern. Hence, the maximal block size for blocks connecting collisions on the left side
with collisions on the right side is 2d . We define the 0-1-variable #dColls1(q) to be 1
if there exists a chains of d -collisions of hashes from a single hash function, that are not
connected to collisions in the second hash functions. Clearly, it can be upper bounded
from a similar argument as before for 4-wise independent hash functions:

Pr
�
#dColls1(q) ≥
�
ξ

d

��
≤ E [#dColls1(q)]�

ξ
d

� =

�q
d

�
2(d−1)n · �ξd � ≈ q d

2(d−1)n · ξ d
.

Lemma 6.10

LetH1 andH2 be independent d -wise independent hash functions. Then

Pr
�
bad5|¬bad2 ∧¬bad1

� ≤ d /2∑
i=1

� q
2n
�2i

.

It remains to exclude circles up to a size of d . Larger circles are excluded by the pattern
(010 . . .010). Circles up to a size of d can be excluded by

∑d /2
i=1

� q
2n
�2i .

6.6 Conclusion

We presented two MAC constructions that are provably secure to up to O (22n/3) queries;
HPxHP avoids nonces at the price of two independent hash-function evaluations; HPxNP
trades one hash-function call for the use of a nonce.

Our results add to the works that demonstrate the usefulness of Patarin’s Mirror Theory
for such constructions. We indicated that considering the average instead of the maximal
block size in the Mirror Theory would greatly increase the security of one of our construc-

92 Chapter 6. Improving Wegman-Carter

tions. Though, a deeper study of Patarin’s theory is required to derive the consequences of
this replacement, which is out of the scope of this work.

Leurent et al.’s generic distinguisher on constructions similar to HPxHP with a data
complexity of O (23n/4) queries exploited the occurrence of circles in the underlying hash
functions. We studied that stronger, d -wise independent hash functions decreased the
probability of circles where we indicate that it can raise the security level above the bound
of O (23n/4).

For HPxNP, Choi et al. [CLLL20] later established an improved bound of O (23n/4).
Dutta and Nandi [DN20] examined the construction involving public permutations. This
was further extended to a multi-user setting by Chen et al. [CDN22].

Fo HPxHP the lower bound was improved to O (23n/4) by Kim et al. [KLL20]. The
construction’s security was first evaluated in a multi-user environment and a bound of
O (22n/3) was shown by Shen et al. [SWGW21], then later enhanced to O (23n/4) by Datta
et al. [DDNT23]

Part III

Stream Ciphers

93

7 | Stream Ciphers

In this chapter, we will first give a general overview of stream ciphers, present different
types, their security requirements, and vulnerabilities. As we will mostly be concerned
with hardware-based stream ciphers, we give a brief overview of feedback shift registers as
these are commonly used in stream cipher designs.

Block ciphers vs. stream ciphers. The symmetric encryption of a plaintext is usu-
ally performed using block ciphers or stream ciphers. The most commonly used block
cipher, AES, operates on blocks of 128 bits in size. The inputs to a block cipher are a plain-
text block and a secret key that has been communicated between the legitimate parties
using a key exchange protocol. If the plaintext consists of more than one block, a mode of
operation defines how to repeatedly apply the block cipher to the plaintext.

Stream ciphers, on the other hand, generate a stream of key bits from a secret key and a
public variable called the initial value, initialization vector, or just nonce. This pseudoran-
dom keystream is then combined, usually via the bitwise exclusive-or operation, with the
plaintext to produce the ciphertext.

Stateful vs. counter-based. Counter-based stream cipher designs produce a block
of keystream bits from a counter value. As an example, one may use the counter mode of
operation for block ciphers to encrypt the counter and use the block cipher’s output as a
keystream block, increment the counter, and repeat the process. Stateful stream ciphers,
on the other hand, maintain an internal state from which the key bits are generated. That
internal state is updated before the next key bits are output.

Hardware-based stream ciphers. Hardware-based stream ciphers commonly rely
on feedback shift registers (FSRs). These FSRs maintain and update an internal state within
their register cells [HJM06, CP05, AGH18, BCI+21, AM15, MAM16]. In this work, we
are not concerned with FSRs in detail and refer the interested reader to [Aum17] and
[Kle13]. One objective in designing secure hardware-based stream ciphers is to create an
efficient design. In particular, it is important to keep the register size small and have a low
power demand. This will allow reaching a higher security level for resource-constrained
devices and thus ultimately allow more devices to communicate securely.

95

96 Chapter 7. Stream Ciphers

Ongoing research is currently centered on exploring designs that leverage available ex-
ternal resources outside of a cipher’s hardware module. These resources may be the secret
key or the secret IV. The wiring is typically already available to allow the loading of these
values into the cipher’s hardware module before keystream generation. In contemporary
designs, the available wiring is utilized not only during the initial loading of values into the
cipher’s hardware module but also throughout the process of keystream generation.

Software-based stream ciphers. There are software-based stream ciphers as well.
Their goal is to achieve high throughput rates by efficiently using the instructions provided
by modern-day processors. In this work, we will not be dealing with software-based stream
ciphers and focus instead on hardware-based stream ciphers and means to create efficient
designs.

Contribution. The contribution of this work is twofold. First, a random oracle model
for stream ciphers is proposed in which various designs are analyzed for their security against
generic attacks. Second, based on the analysis in the random oracle model, a new light-
weight stream cipher design called Draco is proposed. In this work, we present Draco
in the original version as accepted at FSE 2023 [HMKM22]. A glitch in the key sched-
ule of Draco was found by Banik [Ban22]. In a later chapter, we will present current
work-in-progress describing how to fix the key schedule.

The eSTREAM project. The eSTREAM project, initiated by the European Union,
aims to identify stream ciphers that are well-suited for widespread adoption. It distinguishes
between software-based and hardware-based stream ciphers within two profiles [ECR08]:

Profile 1. Stream ciphers for software applications with high throughput requirements.

Profile 2. Stream ciphers for hardware applications with restricted resources such as limited
storage, gate count, or power consumption.

The project’s goal for hardware-based ciphers, in particular, is suitability for resource-con-
strained devices while still maintaining a high security level. They further note that for ‘any
profile it is likely that the stream cipher must be demonstrably superior to the AES in at
least one significant aspect’.

The eSTREAM project does not standardize stream ciphers but pools information and
makes them available to implementors.

Vulnerabilities. One goal of an adversary typically is to recover some unknown plain-
text bits. For stream ciphers, this is often done by recovering an internal state, as the
internal state ultimately determines the keystream. A known internal state allows one to
generate further key bits and thus decrypt ciphertext and recover plaintext. A different ad-
versarial goal is to distinguish the cipher from a truly random bitstream. Proofs of security

Chapter 7. Stream Ciphers 97

often show that an adversary cannot distinguish a cipher’s output from random noise, as
indistinguishability implies resistance against recovery of plaintext bits. Apart from being a
stronger notion of security, indistinguishability also is often easier to prove.

Stream ciphers are vulnerable to an attack type called time-memory-data tradeoff (TM-
DTO) attacks, introduced by Babbage [Bab95] and Golić [Gol96]. These attacks exploit
the birthday paradox to recover an internal state in dataD and timeT , satisfyingT D = 2ℓs ,
where ℓs denotes the internal state length. The TMDTO attacks introduced by Babbage
and Golić are generic, meaning they need not exploit any internals of the cipher. Thus, the
conventional design approach for stream ciphers was to design them with an internal state
length of at least twice the desired security level.

Challenges. Hardware-based stream ciphers are meant to be efficient, i.e., for the given
security level, their power consumption and area requirements are supposed to be low.
Due to their vulnerability to TMDTO attacks, stream ciphers need a large internal state.
Keeping and updating a large amount of register cells is costly, and thus the number of
state cells needs to be carefully adjusted.

One of the common concerns is the linearity of the update functions. Nonlinear func-
tions are considered more secure, but they often come with increased complexity and re-
source requirements. Additionally, as the complexity of the functions increases, ensuring
the absence of bias becomes more challenging. Furthermore, weaknesses in the key sched-
ule may lead to a break of the cipher as happened with Draco in its original version as
presented at FSE 2023 [HMKM22, Ban22].

Popular designs. Salsa20 [Ber05a] or its variant ChaCha20 [Ber08] are popular soft-
ware-based stream ciphers. They are used in libsodium [lib23], OpenSSL [Ope16], Shad-
owsocks [Sha15], SSH [Ope14], and WireGuard [Wir23], respectively.

The use of hardware-based stream ciphers is harder to identify. Hardware manufactur-
ers often keep the specification of their used ciphers secret. [Aum17] notes that:

Grain-128a is used in some low-end embedded systems that need a compact
and fast stream cipher – typically industrial proprietary systems – which is
why Grain-128a is little known the the open-source software community.

Hardware-based vs. software-based designs. Hardware-based stream ciphers
run, as the name implies, on dedicated hardware. Requirements are to use resources as
efficiently as possible to be implementable on a wide range of devices. This includes power
consumption, which matters in particular for passively powered devices, as no keystream
will be produced if the magnetic field is too weak for the device. The energy consumption
plays an important role for battery-powered devices and will thus have a direct impact on
the battery life. Area also impacts the above, as more circuitry will have more demand for

98 Chapter 7. Stream Ciphers

power and energy. Also, less area will make designs easier to integrate into existing hardware
designs, and it will also incur fewer monetary costs.

Software-based stream ciphers run on CPUs and make use of their word size and avail-
able instructions to run as efficiently as possible. The goal is typically to maximize the
throughput while using as little CPU cycles as possible. These are especially interesting for
general-purpose CPUs.

Lightweight designs. Small low-powered devices, such as RFIDs, only have very lim-
ited resources. It is important to use those resources as efficiently as possible to reach a high
security level. In particular, TMDTO attacks limit the security of conventional stream
ciphers, as their internal state needs to be at least twice the size of the desired security level.
Conversely, if the state size is limited, so is the security level. In the upcoming chapters, we
wish to overcome these limitations by analyzing novel paradigms for stream cipher designs.

As an introductory motivation to stream ciphers, we begin this chapter by explaining
the one-time pad.

7.1 One-time Pad

We already gave an overview of the one-time pad in Subsection 3.1.1. We will briefly recap
the one-time pad here, as it is particularly relevant for stream ciphers. Stream ciphers mimic
the one-time pad. Instead of a large key, a stream cipher uses a small key to generate a large
pseudorandom bitstream. This bitstream, in this context called the keystream, is then added
to the plaintext as is done with the one-time pad.

Encryption. The one-time pad is a cipher that is known to be perfectly secure. To
encrypt a plaintext message m of length ℓ , a secret key k of the same length ℓ is needed.
First, the secret key is generated and exchanged between the legitimate parties via a secure
channel. The ciphertext c is generated by adding the secret key k to the plaintext message
m:

c := Enc(k ,m) = m ⊕ k .
Similarly, a decryption can be performed by adding the secret key k to the ciphertext c :

m :=Dec(k , c) = c ⊕ k .

The one-time pad has one major disadvantage: The key length is the same size as the mes-
sage length and has to be communicated between the two parties in advance of their inter-
action via a secure channel. This may not always be feasible. Instead of using a perfectly
random key (stream), stream ciphers generate a pseudorandom keystream from a small
seed.

Chapter 7. Stream Ciphers 99

7.2 High-level Stream Cipher Encryption

A keystream generator is a fundamental part of a stream cipher. The keystream generator
generates a pseudorandom keystream s from a seed value, which typically consists of a
secret key k and an initial value x . The stream cipher then adds, usually via the bitwise
exclusive-or operation, this pseudorandom keystream s to the plaintext to obtain the cipher-
text. Here, the secret key and the initial value are small (≈ 100 bits each) and can easily
be communicated using one of the popular key exchange protocols. The pseudorandom
keystream s that results as the output of the stream cipher is much larger than its inputs
and is typically in the order of up to 2100 bits.

Encryption. Consider a keystream generator KSG(k , x) with inputs k and x . For sim-
plicity, consider a message m of length ℓ . KSG generates the keystream KSG(k , x) =
s = s0 s1 . . . sℓ−1 from the secret key k and the initial value x . Encryption is performed as
follows:

c := Enc(k , x ,m) = m ⊕KSG(k , x) = m ⊕ s .
Similarly, a decryption can be performed by adding the pseudorandom keystream s to the
ciphertext c :

m :=Dec(k , x , c) = c ⊕KSG(k , x) = c ⊕ s .
Note that, once the keystream was generated, encryption and decryption are performed
identically to the one-time pad.

7.2.1 Keystream Generation Using Stateful Stream Ciphers

Throughout this work we will only consider stateful stream ciphers. We recognize five steps
in generating the pseudorandom keystream using a stateful stream cipher:

1. Key agreement. A secret key k has to be generated and exchanged between the two
legitimate parties. We will ignore this part as it is up to a key exchange protocol and
we will assume the legitimate parties have securely exchanged their keys in advance.

2. Loading. The secret key, the IV and possibly some constants are loaded into the
register, resp. internal state, before any keystream is generated. We will typically
ignore loading and start with the loading state.

3. Initialization. An initialization function the computes the initial state, i.e. the state
from which the first bit is output, from the loading state. Its task is to apply confusion
and diffusion the the loading state. This is also referred to as mixing.

4. State update. An update function updates one internal state to the next internal
state.

100 Chapter 7. Stream Ciphers

5. Output. An output function computes an output bit from an internal state.

After the inputs are loaded into the register cells and the initialization function has been
executed, the output function will compute an output bit. The state is then updated, and
the output function will compute the next bit, and so on.

We will formalize this in Section 8.1.1 when introducing the different cipher paradigms.

7.3 Feedback Shift Registers

Feedback shift registers are easy to implement in hardware and very efficient. They need only
a small number of logical gates and registers. This makes them a good choice for low-power
and resource-constrained environments, while ensuring high-speed operations. All three
members of the eSTREAM hardware portfolio are based on feedback shift registers.

Feedback Shift Registers are typically used to store the internal state of a stream cipher.
A feedback shift register R of degree |R | = n consists of n register cells, each containing
one bit. By R t

i , we denote the i -th cell of the FSR at step t . At each clock tick, the FSR is

R4R3R2R1R0

f

Figure 7.1: A feedback shift register with feedback function f .

updated using a feedback function f : {0,1}n →{0,1} as follows:

R t+1
i =

R t
i+1 for i ∈ {1, . . . , n − 1},
f (R t) for i = n.

One typically distinguishes linear from nonlinear feedback functions. A general form of
an FSR can be found in Figure 7.1.

Linear feedback shift registers. Linear feedback shift registers (LFSRs) are feedback
shift registers with a linear feedback function f . LFSRs can be implemented very efficiently
in hardware but are not by themselves good pseudorandom generators. Nonetheless, they
can be used as a building block in stream ciphers, particularly because it is known how to
construct LFSRs with a maximal period of 2n − 1. Note that the all-zero state must not
occur as the LFSR is then forever stuck in this state since the feedback bit will always be
zero. The FSR in Figure 7.2 shows the feedback function f (R t) = R t

0 ⊕ R t
2 ⊕ R t

4 . For

Chapter 7. Stream Ciphers 101

R4R3R2R1R0

+++

Figure 7.2: A linear feedback shift register.

coefficients ai ∈ {0,1}, the feedback function f of an LFSR of degree n can be written as:

f (R t) =
n−1⊕
i=0

ai · R t
i .

The coefficients of the FSR depicted in Figure 7.2 are a0 = a2 = a4 = 1 and a1 = a3 = 0.
An LFSR of degree n can be described by a polynomial of degree n. Consider the linear

feedback function as described above. The feedback polynomial p(X) is defined as follows:

p(X) = X n + an−1X
n−1 + . . .+ a1X + a0.

Note that FSRs are often indexed in reverse, i.e., the feedback bit replaces the lowest indexed
bit, and the output bit is the one with the highest index. We chose the variant by [PP10] as
it is consistent with the notation published in [HMKM22]. It is known that the period of
the LFSR is maximal if and only if the feedback polynomial p(X) is primitive. A primitive
polynomial is a special type of irreducible polynomial, i.e., a polynomial that cannot be
factored into lower degree polynomials. More information on them and their relationship
to FSRs can be found in [Kle13]. The identification of maximum length LFSRs with
primitive polynomials makes it easy to find maximum length LFSRs. Given an output
sequence, the Berlekamp-Massey algorithm [Ber68, Mas69] finds the shortest length LFSR
that generates this sequence.

Nonlinear feedback shift registers. Nonlinear Feedback Shift Registers (NFSRs) are
feedback shift registers with a nonlinear feedback function f . The advantage over LFSRs is
that, due to nonlinear terms in the feedback function f , it is harder to recover the internal
state from a sequence of output bits. The major disadvantage is that it is not known how to
construct NFSRs with a large period. However, there exist NFSRs with an experimentally
verified period. In particular, for small NFSRs, one can compute the period by clocking
for up to 2n cycles and checking the register cells for duplicates.

Filtered feedback shift registers. In the common description of FSRs, the leftmost
bit is output. A filtered FSR will use a filter function g : {0,1}n → {0,1} that computes
the output based on the current content of the register cells. They are particularly useful for
linear FSRs as a nonlinear output function will thwart straightforward attacks to recover the

102 Chapter 7. Stream Ciphers

R4R3R2R1R0

g

+++

Figure 7.3: A filtered linear feedback shift register.

LFSR’s internal state. The output function should be balanced so that the output bitstream
will not have any obvious bias. For example, if the output bitstream contains more ones
than zeros, it will be easy to distinguish this bitstream from a random bitstream.

Combining feedback shift registers. Another option is to use multiple FSRs, as
with Grain-128a [ÅHJM11]. While NFSRs are cryptographically stronger, their proper-
ties are also harder to analyze, particularly their period. Combining an NFSR with an
LFSR will yield a period at least as long as that of the LFSR. Alternatively, one may also
combine multiple NFSRs to take advantage of their nonlinearity and further use one with
a guaranteed period to prevent an early repetition of keystream bits.

NFSR + LFSR

g f

h

Figure 7.4: A stream cipher with a Grain-like structure.

7.4 Security Requirements

If an attacker manages to generate some bits of the keystream without knowledge of the
key, this will allow them to decrypt those bits of the ciphertext. By bitwise addition of
those bits to the ciphertext, the plaintext can be obtained.

Attacker’s capabilities. The attacker does not know the secret key but is typically
allowed to generate keystream for chosen IVs. Chosen-IV attackers imply chosen-plaintext

Chapter 7. Stream Ciphers 103

and chosen-ciphertext attackers since, given the keystream, the attacker can easily XOR the
keystream with the plaintext or ciphertext.

Notions of security. As a stream cipher is a deterministic algorithm based on its in-
puts, knowing the internal state allows the generation of the keystream and thus trivially
distinguishes it from randomness. There are typically three different notions of security
that are considered regarding stream ciphers:

1. Key recovery refers to the adversary’s ability to recover the secret session key. This
will allow the adversary to decrypt any ciphertext that is encrypted using the secret
session key. Security from key recovery attacks is the weakest notion considered for
stream cipher security.

2. Internal state recovery refers to the adversary’s ability to recover an internal state of
the stream cipher. Many stream ciphers allow the decryption of an entire packet if
an internal state of the stream cipher is known to the adversary. Here, a packet refers
to the keystream that is generated for one key-IV pair. Some stream ciphers have an
invertible state transition function that will further allow the recovery of the secret
key by clocking the cipher back to its loading state.

3. PRF security refers to the adversary’s ability to distinguish the bitstream generated
by a stream cipher from a bitstream generated by a random function. This is the
strongest security notion considered. It implies security from key recovery and in-
ternal state recovery attacks.

PRF security. PRF security implies the security from key recoveries or internal state
recoveries. Of those, it is the strongest notion of security and typically the easiest to prove.
Given the key, the adversary can generate any internal state. In conventional stream ciphers,
from a given internal state, the adversary can compute the keystream bits, which then allows
to distinguish. In our proofs, we will show that the output of the stream cipher resembles
that of a random function, and we will show that an adversary is only negligibly better than
chance at predicting the keystream bits.

7.5 Time-memory-data Tradeoff Attacks

In this section, we will give a short overview of time-memory-data tradeoff attacks against
conventional stream ciphers. By conventional stream ciphers, we refer to stream ciphers
without external non-volatile resources. A more thorough presentation will be given in
Section 8.2.

Relevance. We are particularly concerned with lightweight cryptography. In particular,
we want stream ciphers to be cheaply implementable in hardware. For conventional stream

104 Chapter 7. Stream Ciphers

ciphers, time-memory-data tradeoff attacks imply that security is limited to half of the
internal state size. For resource-constrained devices with a small internal state, these attacks
present a bottleneck to achieving a higher security level.

The Babbage-Golić attack. Time-memory-data tradeoff attacks are due to Babbage
[Bab95] and Golić [Gol97]. The three dimensions, time T , memory M , and data D , are
considered. Usually, these types of attacks are further divided into an online and an offline
phase. Let ℓs be the internal state size.

1. For m randomly and independently chosen internal states, generate a corresponding
keystream of length ℓs . Store the tuple in an efficiently searchable data structure.

2. Observe d keystream bits and search for a ℓs -bit-collision with the keystream gener-
ated in the first step.

If m · d = 2ℓs , a collision in the internal state and thus the keystream bits will occur with
high probability. In particular, for m = d = 2ℓs /2, the attack has an overall complexity of
O (2ℓs /2). Thus, the security level of conventional stream ciphers is capped at the so-called
birthday bound, providing only ℓs/2 bits of security for a state of length ℓs .

8 | Enhanced State Stream Ciphers

Conventional stream cipher designs typically have a large volatile internal state. New re-
search directions seek to enhance the volatile state by a non-volatile internal state that may
include resources outside of the cipher’s hardware module. This will allow shrinking the
volatile internal state kept inside the cipher’s hardware module, thus allowing for more ef-
ficient resource utilization. Furthermore, even if the non-volatile bits are kept within the
cipher’s hardware module, this will result in lower power consumption as these bits are not
updated during the keystream generation.

Stream ciphers. Throughout this work, we consider individual bit outputs. The out-
put bit stream is then combined with the plaintext, usually using the XOR operation. One
advantage of stream ciphers is that their resource requirements are lower than those of block
ciphers in many application scenarios. This makes them particularly useful in lightweight
cryptography. Instances of stream ciphers are used in the GSM cellular phone standard
(A5/1), Bluetooth (E0), and wireless networking (RC4).

Vulnerabilities. Stream ciphers are vulnerable to time-memory-data tradeoff attacks
[Bab95, Gol96, BS00]. These types of attacks exploit the birthday paradox to recover an
internal state. This internal state can then be used to decrypt the remaining ciphertext.
Due to the birthday paradox, the security of such ciphers is typically capped at half the size
of the internal state. Accordingly, this has influenced the design of stream ciphers in such
a way that the internal state size is at least twice the size of the desired security level. This is
in stark contrast to the lightweight principle of stream ciphers, as a larger state necessarily
increases resource requirements. Stream ciphers that employ a large internal state are the
eSTREAM portfolio members Grain [HJM06] and Trivium [CP05]. We refer to these
ciphers as the large-state-small-key construction, or LSSK for short.

Conventional versus enhanced designs. Conventional designs keep the entire in-
ternal state within the cipher’s hardware module. We refer to these as ciphers with a large
state and small key, abbreviated as LSSK. Examples of this include the eSTREAM hard-
ware portfolio members Trivium [CP05] and Grain [HJM06]. More recent designs reduce
the register size within the cipher’s hardware module by accessing an externally available

105

106 Chapter 8. Enhanced State Stream Ciphers

resource that will not be updated during internal state updates. This externally available
resource may be the secret key, the IV, or a combination of both stored in EEPROM. There-
fore, we make the distinction between a volatile and a non-volatile internal state. We also
note that the non-volatile state may also be kept inside the cipher’s hardware module. This
will not decrease the register size within the cipher’s hardware module, but it may decrease
power consumption as those register bits do not need to be updated.

Sprout [AM15], Plantlet [MAM16], Fruit [AGH18], and Atom [BCI+21] are stream
ciphers that continuously use the non-volatile secret key during keystream generation. We
refer to these as CKEY. The work [HKMZ18] describes a distinguishing attack on ciphers
that use the non-volatile secret key during state updates, which has a complexity of 2ℓv/2,
where ℓv denotes the size of the volatile internal state only. The relevance of this distinguish-
ing attack in practice may be debated, as no internal state recovery or key recovery attack
is known. Instead of using the secret key as a non-volatile external resource, one may use
the IV [HKM17b], a construction we call CIV. These ciphers use an additional parameter
ℓp called the packet length, which specifies how many keystream bits may be generated per
key-IV pair. It has been shown that these ciphers achieve a security level of ℓv − log(ℓp)
bits, i.e., any successful (generic) attack has a complexity of at least 2ℓv /ℓp [HKM19]. The
CIVK construction uses the non-volatile IV with a key prefix of length at least log(ℓp) to
compensate for the factor ℓ−1p . CIVK achieves a security level against generic attacks of ℓv
bits, i.e., any successful (generic) attack has a complexity of at least 2ℓv .

Random oracle model. In this work, we propose a random oracle model (ROM) for
the stream cipher constructions mentioned above. A random oracle model identifies build-
ing blocks within a cryptographic algorithm and replaces those with idealized, i.e., random,
primitives. An adversary will have oracle access to these building blocks as well as the con-
struction function in either of two worlds. In the real world, the construction function
makes use of the underlying idealized building blocks. In the ideal world, the construction
function is an idealized version of the cryptographic algorithm under consideration. In the
case of stream ciphers, the idealized version would output a perfectly random keystream
as opposed to a pseudorandom one. The adversary’s task is to distinguish between these
two worlds. We will present upper bounds on the adversary’s success probability for all the
stream cipher constructions that have been proposed so far.

Similar work was done for block ciphers, initiated by Even and Mansour [EM97]. The
Even-Mansour construction and its iterated variant can be seen as an abstraction of block
ciphers, particularly AES. The round function of the respective block cipher is replaced
by an ideal variant, namely a random permutation. Before every round and after the last
round, the secret round key is added. A computationally unbounded, i.e., information-
theoretic, distinguisher may then query the construction and the underlying permutations.
The distinguisher then has to decide whether it was interacting with the Even-Mansour
construction or a truly random permutation. In this model, for r rounds, a lower bound

Chapter 8. Enhanced State Stream Ciphers 107

of security of Θ
�
2 r n

r+1
�
has been shown [CS14], where n denotes the block length. There

is a huge body of work done on the iterated Even-Mansour cipher and its iterated variant
[CS14, CLL+14, DKS12, LPS12, BKL+12, ABD+13, EM97].

The model is a strong one, as the internals of a cryptographic algorithm are clearly
not random. Therefore, proofs in this model will not imply the absence of attacks against
a concrete scheme but rather show that the interaction of these building blocks is secure.
This is particularly interesting for stream ciphers, as time-memory-data tradeoff attacks are
generic and do not necessarily exploit the internals of the stream cipher. While these proofs
do not demonstrate the security of any specific scheme, they provide a solid foundation on
which to base a stream cipher, as opposed to ad-hoc designs without such proofs. From
a different perspective, these types of proofs show that any successful attack must exploit
the internals of the respective construction. Hence, a generic time-memory-data tradeoff
attack cannot have a complexity lower than the bounds we provide in this work. We discuss
the validity of proofs in the random oracle model more thoroughly in Section 3.7.

We consider the CIVK construction, the constructions considered in [HKM19] (i.e.,
the conventional construction LSSK and stream ciphers continuously using the CIV), as
well as stream ciphers continuously using the secret keyCKEY, for which, to the best of our
knowledge, a proof of security has not yet been presented. We use an equivalent model to
that of [HKM19], and by making use of the H-coefficients technique [Pat08], our proofs
of security are significantly simpler than those presented in [HKM19].

Contribution. We propose a random oracle model for the four stream cipher designs
mentioned above. We then derive an upper bound on a distinguisher’s advantage, respect-
ively a lower bound on the security of the scheme, and thus show the absence of gen-
eric attacks with lower complexity than the given bounds. In particular, we confirm the
lower bound of half the internal state for conventional stream cipher designs and prove
increased security for the enhanced state stream cipher that incorporates the initial value
during keystream generation. We note that designs continuously using the secret key dur-
ing keystream generation offer no benefit over the conventional design with regard to secur-
ity against distinguishing attacks. Furthermore, we present matching time-memory-data
tradeoff attacks on each of the constructions presented in this work, thus showing that the
presented bounds are tight.

This work enhances the works [HKM19] and [HMKM22]. [HKM19] provides lower
bounds for LSSK and CIV. In their model, the adversary receives a block of keystream per
query. This is similar to time-memory-data tradeoff attacks, where one typically searches
for collisions between keystream blocks. This makes the analysis more cumbersome, as one
has to consider overlapping blocks. In our model, the adversary receives individual bits
per query, which more closely models the stream of bits. Both models are equivalent. Fur-
thermore, we utilize the H-coefficients technique [Pat08], which allows us to significantly
simplify the proof of security for LSSK and CIV.

108 Chapter 8. Enhanced State Stream Ciphers

We show the same bound for CIVK as [HMKM22], yet we distinguish the key length
ℓk and the volatile state length ℓv , whereas in [HMKM22], it is assumed that ℓk = ℓv .
Furthermore, we present a proof of security for CKEY.

One interesting aspect to note is that the enhanced state stream ciphers show that not
all bits of the internal state need to be updated. Our proofs consider the state to be split into
a non-volatile and a volatile part. However, there is no requirement that the non-volatile
internal state may not be kept inside the hardware module.

The DRACO stream cipher. Furthermore, we will present a new stream cipher pro-
posal called Draco. Draco uses a 128-bit volatile internal state and a 128-bit non-volatile
internal state. The non-volatile state consists of the initial value with a length of 96 bits
and a key prefix with a length of 32 bits.

Draco builds upon the generic CIVK construction. In this case, a time complexity
of 2128 steps is needed for a successful distinguishing attack. The corresponding attack on
CIVK can be found in Subsection 8.2.4, and therefore the bound shown in Section 9.5 is
tight.

To the best of our knowledge, it is the first small-state stream cipher that achieves a full
128-bit security level against key-recovery and distinguishing attacks. Our main variant
of Draco stores the key prefix and the IV externally. In an ultra-lightweight scenario, like
RFIDs where the secret key is burned into the device or stored in an EEPROM and the
frame counter is used as the IV, Draco needs 23 % less area and 31 % less power than
Grain-128a at 10 MHz. The saving in power stems from reduced area requirements but
particularly also from the fact that unlike previous ciphers such as Grain-128a, only half
of the state bits are constantly updated, thus significantly reducing costly dynamic power
consumption.

For high-performance environments, we also present the variant Draco[KI] where the
secret key and the initial value are stored inside the Draco hardware module while still only
using 128 bits during the state update. At a clock speed of 1 GHz, Draco needs about 34
% less energy than Grain-128a. This demonstrates that not all internal state bits need to
be constantly updated to achieve a security level of 128 bits. For more details, please refer
to Section 10.4.

Draco is a stream cipher that operates in packet mode, meaning there may be up to
232 bits, i.e., 512 MiB, of output keystream per key-IV pair. After reaching this limit, a
new IV has to be used. No IV may be used twice. In Subsection 8.1.2, we argue that
most transmission protocols use a packet size much lower than 512 MiB, and therefore we
consider the packet length as a valid constraint for keystream generation.

Fixing DRACO. [Ban22] presented an attack on the original version of Draco that
was presented at FSE 2023 [HMKM22]. We will also present the version from FSE 2023
and discuss possible fixes in Chapter 11, as this is currently a work in progress.

Chapter 8. Enhanced State Stream Ciphers 109

Structure of this part. In this chapter, we provide an overview of stateful stream
ciphers and present the enhanced state stream ciphers in Section 8.1. We also present the
known TMDTO attacks on the four constructions in Section 8.2.

In Chapter 9, we introduce the random oracle model and the proof technique in Sec-
tion 9.1. Then, in Sections 9.2 to 9.6, we present the proofs of security.

Chapter 10 presents the Draco stream cipher, and Chapter 11 describes our ongoing
work on how to address the key schedule vulnerability identified by Banik [Ban22].

8.1 Enhanced State Stream Ciphers

We recognized loading, initialization, state update, and output as fundamental parts of a
hardware-based stream cipher in Section 7.2.1. In this section, we will provide a quick
overview of the enhanced state ciphers that we analyze in this work before giving a more
detailed description in the next section. Initialization and state update are particularly
affected by enhanced state ciphers.

The CKEY, CIV, and CIVK constructions divide the internal state into a volatile part
of length ℓv and a non-volatile part of length ℓnv := ℓs − ℓv . The non-volatile memory
remains unchanged during state update and state initialization. The structure of the volatile
and non-volatile state depends on the construction.

The secret key and the IV may already be available in the hardware, outside of the
cipher’s hardware module. It may therefore be possible to use these external resources from
the cipher’s hardware module. In practice, this allows for a reduction in the number of
costly volatile register cells. Furthermore, even if kept in the cipher module, not all bits
need to be updated, resulting in power consumption savings.

Continuous Key. The first example is the CKEY construction. It uses the non-volatile
secret key not only for initialization, as is common, but also during state initialization
and keystream generation. This principle underlies the stream cipher proposals Sprout,
Plantlet, Fruit, and Atom. However, it was shown in [HKM19] that the resistance of the
CKEY construction against generic TMDTO distinguishing attacks is at most ℓv/2.

Continuous IV. The CIV construction was first proposed in [HKM17b]. Contrary to
CKEY, it does not use the non-volatile key, but it uses the initial values as the non-volatile
part of the internal state. This construction provides a provable security level of ℓv−log2(ℓp)
[HKM19]. It is worth noting that there are currently no stream cipher instantiations based
on the CIV construction.

Continuous IV & Key. Our new construction CIVK uses the initial values as part of
the non-volatile state, as well as a prefix of length log2(ℓp) of the secret key. Specifically,
by using the initial values and a key prefix from non-volatile memory, the volatile memory

110 Chapter 8. Enhanced State Stream Ciphers

is initialized with the key only, with ℓv = ℓk , where ℓk denotes the key length. We also
define the non-volatile internal state length ℓnv to be equal to the volatile state length, i.e.,
we have ℓnv = ℓv = ℓk . The IV length ℓIV is determined by the key and packet length:
ℓIV = ℓnv − log2(ℓp) = ℓk − log2(ℓp).

As we will prove in this work, this allows us to achieve a security level of the entire
volatile internal state length ℓv . In the next subsection, we will provide a detailed specific-
ation of the CIVK construction. The proof can be found in Section 9.5, and the resulting
bound can be found in Corollary 9.4.

8.1.1 Description of the Cipher Constructions

We denote byQnv the non-volatile internal state space and byQv the volatile internal state
space. An internal state is denoted as 〈a | b〉, where a ∈ Qnv represents the non-volatile
internal state and b ∈ Qv represents the volatile internal state. This notation is chosen
to distinguish internal states from arbitrary tuples. If the non-volatile state a consists of
two parts a1 and a2, we denote the state as 〈a1,a2 | b〉. We hide constants in the notation
of internal states as they are mostly irrelevant to the analysis. In our model, they only
increase the state size and do not negatively affect security. The key space is denoted byK
and the IV space is denoted by IV . The lengths of the non-volatile internal state space,
the volatile internal state space, the secret key, and the IV are denoted by ℓnv , ℓv , ℓk , and
ℓIV respectively. The following description defines the keystream generation for the four
constructions.

Packet length. LSSK and CKEY do not define a packet length. CIV and CIVK, on
the other hand, define a packet length ℓp as an additional parameter that limits the number
of output bits per key-IV pair. For each key-IV pair (k , x) ∈K ×IV , CIV and CIVK can
output up to ℓp keystream bits, after which a new IV must be exchanged. For simplicity,
we define the packet length for LSSK and CKEY to be the total number of keystream bits
that can be generated from a key-IV pair, i.e., ℓp = 2ℓs .

Enhanced state. Conventional stream cipher designs according to LSSK only use a
volatile internal state, i.e., the entire internal state is contained in the cipher’s hardware
module. For CKEY, CIV, and CIVK, the internal state is divided into a volatile part that
is updated during state updates and a non-volatile part that is not updated during state
updates. The non-volatile state of the enhanced state ciphers is composed as follows:

– CKEY: The non-volatile internal state consists of the secret key k only.

– CIV: The non-volatile internal state consists of the initial value x only.

– CIVK: Same as CIV, but the non-volatile internal state further contains a key prefix
kpre of length at least log(ℓp).

Chapter 8. Enhanced State Stream Ciphers 111

Loading function. The loading function load takes a key-IV pair (k , x) ∈K ×IV as
input and loads it into the registers to produce the loading state. We will omit the loading
process for the most part of our analysis and start the keystream generation process with
the loading state, but including it in our notation is useful.

LSSK : load :K ×IV →Qv , (k , x) 7→ |x , k〉,
CKEY : load :K ×IV →Qnv ×Qv , (k , x) 7→ 〈k | x 〉,

CIV : load :K ×IV →Qnv ×Qv , (k , x) 7→ 〈x | k〉,
CIVK : load :K ×IV →Qnv ×Qv , (k , x) 7→ 〈x , kpre | k〉.

Mixing function. The loading state is used as input to the mixing function p. Its task
is to provide the initial state with enough confusion and diffusion for further operation and
corresponds to clocking the cipher without producing output bits.

LSSK : p :Qv →Qv , |x , k〉 7→ |y〉,
CKEY : p :Qnv ×Qv →Qnv ×Qv , 〈k | x 〉 7→ 〈k | y〉,

CIV : p :Qnv ×Qv →Qnv ×Qv , 〈x | k〉 7→ 〈x | y〉,
CIVK : p :Qnv ×Qv →Qnv ×Qv , 〈x , kpre | k〉 7→ 〈x , kpre | y〉.

State update. The state update functionπ updates a (volatile) internal state to the next
(volatile) internal state.

LSSK : π :Qv →Qv , |y〉 7→ |y ′〉,
CKEY : π :Qnv ×Qv →Qnv ×Qv , 〈k | y〉 7→ 〈k | y ′〉,

CIV : π :Qnv ×Qv →Qnv ×Qv , 〈x | y〉 7→ 〈x | y ′〉,
CIVK : π :Qnv ×Qv →Qnv ×Qv , 〈x , kpre | y〉 7→ 〈x , kpre | y ′〉.

r successive invocations of the state update function π on an internal state 〈a | b〉 are de-
noted by π r (〈a | b〉), e.g., for three successive invocations we write:

π3(〈a | b〉) = π(π(π(〈a | b〉))).

It is needed that the period of the state update function π is larger than or equal to ℓp
for the entire internal state space. This means that for any internal state 〈a | b〉, the set
{〈a | b〉,π1(〈a | b〉), . . . ,πℓp−1(〈a | b〉)} contains ℓp distinct elements.

Output function. The output function f maps an internal state 〈a | b〉 to an output
bit z ∈ {0,1}.

LSSK : f :Qv →{0,1}, |y〉 7→ z ,

112 Chapter 8. Enhanced State Stream Ciphers

CKEY : f :Qnv ×Qv →{0,1}, 〈k | y〉 7→ z ,

CIV : f :Qnv ×Qv →{0,1}, 〈x | y〉 7→ z ,

CIVK : f :Qnv ×Qv →{0,1}, 〈x , kpre | y〉 7→ z .

Keystream generation. Let (k , x) be an arbitrary key-IV pair. Using the functions
defined above, we can define the construction function e that corresponds to the keystream
generation using the above constructions:

e :K ×IV × {0, . . . ,ℓp − 1}→ {0,1}, (k , x , r) 7→ f (π r (p(load(k , x)))).

We consider individual output bits, and e outputs the r -th keystream bit. The entire
keystream packet of length ℓp for a key-IV pair (k , x) looks as follows:

e (k , x ,0) || e (k , x ,1) || · · · || e (k , x ,ℓp − 1).

Note that ℓp = 2ℓs for LSSK and CKEY.

8.1.2 Discussion of the Packet Length

The eSTREAM hardware portfolio’s three ciphers are all designed to handle potentially very
large keystream sequences per key-IV pair. Grain v1 [HJM06], MICKEY 2.0 [BD06], and
Trivium [CP05] all use 80-bit keys, and they have different IV lengths of 64 bits, up to 80
bits, and 80 bits, respectively. The authors of Grain v1 do not give an explicit limit on
the number of keystream bits that should be generated for each key-IV pair. MICKEY 2.0
limits the amount of keystream bits to 240 per key-IV pair, and Trivium has a limit of
264 keystream bits per key-IV pair. Much smaller packet sizes are used by transmission
standards like A5/1, Bluetooth, TLS, and IEEE 802.11 for wireless local area networks.

A5/1. Per key-IV pair, A5/1 can only generate 228 keystream bits. The session key is 64
bits long, and the IV corresponds to 22 bits of the publicly known frame number.

Bluetooth. For the so-called basic rate, Bluetooth packets can only include a maximum
of 2790 bits. The Bluetooth cipher E0 takes a 128-bit session key and uses 26 bits of the
master’s clock as the packet-specific IV. The master’s clock is assumed to be publicly known.

Wireless LAN. In the IEEE 802.11 technical standards, wireless LAN communication
is standardized. At most 11454 bytes (i.e., < 217 bits) are encrypted under the same key-IV
pair using CCMP as specified by the currently active IEEE 802.11-2020 standard [Ins21].

SSL/TLS. Because SSL/TLS is the foundation of HTTPS, it is crucial for protecting the
World Wide Web. In the most recent version, TLS 1.3 [Res18], the maximum amount of

Chapter 8. Enhanced State Stream Ciphers 113

data encrypted under the same key-IV pair is 214 + 28 bytes (i.e., 217 + 211 < 218 bits), as
long as RC4, which is now forbidden for all TLS versions by RFC 7465 [Pop15], is not
used.

No rekeying. We view the packet length as a valid additional parameter in stream cipher
design since all of the popular transmission standards mentioned above impose a limit on
the number of keystream bits generated per key-IV pair. We also want to emphasize that,
once the ℓp keystream bit limit is reached, only the IV needs to be changed. Rekeying is
not necessary. As we argue in the following subsection, a full 2ℓk bits can be generated per
key if the IV length and the packet length are properly selected.

8.1.3 Discussion of the State Lengths

It is up to the designer of the corresponding cipher to specify the lengths of the volatile
and non-volatile states, respectively. The proofs of the four constructions will show how
the lengths affect the security. However, we would like to provide a brief discussion in this
subsection.

Total state size. As the attack by Babbage [Bab95] and Golić [Gol96] is still applicable
without modification, the combined total state length ℓs = ℓnv + ℓv must still be twice as
large as the desired security level.

IV & packet length. It is important to maintain a balance between the IV length ℓIV

and the packet length ℓp such that 2ℓIV ·ℓp ≥ 2ℓk . If this condition is not met, the codebook
would be smaller than 2ℓk , which would allow for a trivial attack with a lower complexity
than exhaustive search.

Key prefix size. Usually, the size of the key prefix, kpre, is chosen to be at least log(ℓp).
This compensates for the factor log(ℓp) in the bound of CIV, as a guess of the key prefix
is correct with a probability of ℓ−1p . Minor modifications to the key prefix’s size will not
significantly impact the security level.

Constants. Constants that may be added for a variety of reasons will not be taken into
account in our notation or analysis. They will not have a negative effect on the security
level in our analysis because they will only increase the size of the state. In our proofs, we
will also distinguish the key length ℓk and the IV length ℓIV from the state lengths ℓs , ℓv ,
and ℓnv . The difference between them may only be due to constants.

8.1.4 Hardware Implications of Continuous IV Access

Now one may argue from a hardware perspective that while the secret key has to be stored
anyhow (e.g., also for LSSK stream ciphers such as Trivium, Grain etc.) in order to be

114 Chapter 8. Enhanced State Stream Ciphers

reused with other IVs, this would not be the case for the IV. Hence, at first sight, assuming
that the IV is still accessible after state initialization might be considered cheating. How-
ever, we do not think that this is the case for many application scenarios. For example,
in A5/1 of the GSM standard, the IV used for encrypting a data packet is the respect-
ive (sequentially incremented) 22-bit frame number. Hence, any A5/1 device needs some
memory containing this frame number anyhow. Similarly, the DECT standard for cordless
telephone systems relies on frame numbers as IVs for encryption.

Packet counters. In general, especially for ciphers with small IV spaces, there always
has to be a mechanism like a stepwise incremented IV storage to make sure that the same
IV is not accidentally used twice under the same secret key. Similarly, in all communica-
tion scenarios like A5/1 or DECT, where the packet number serves at the same time as an
IV source, one will always have this information. Note that such packet counters are not
only prevalent for standard network transmission protocols such as TCP/IP, but are also a
common component of lightweight wireless devices such as RFID tags, e.g., for synchron-
ization purposes and in order to protect against replay attacks.

Non-volatile EEPROM. The majority of RFID tags are based on ASICs (application-
specific integrated circuits), whose primary types of writable storage are non-volatile EEP-
ROMs and volatile flip-flops. In [MAM16], the designers of Plantlet extensively studied
the effects of continuously reading the secret key from an EEPROM during keystream gen-
eration. Despite certain drawbacks of this approach, such as an increased design complexity
and a potential reduction of the maximal achievable throughput, they concluded that this
is in fact feasible. This naturally holds for any other kind of data stored in an EEPROM,
too, such as a packet counter serving as the IV source and being accessed in the same way.
In particular, the key-IV-schedule of Draco (cf.Section 10.1) accesses the 96 IV bits and
the bits of the 32-bit key prefix in sequential order, just like the key schedule of Plantlet
accesses the cipher’s 80-bit key in sequential order.

The designers of Plantlet found this to be beneficial in terms of limiting the negative
performance impact of continuous EEPROM access on the maximal achievable through-
put. If the storage location of the IV source (such as the aforementioned network packet
counter) is an array of flip-flops instead, the feasibility of continuous IV access is straightfor-
ward, because the ASIC’s cryptographic logic can be connected to those flip-flops through
wires at practically no cost.

Internal non-volatile memory. In the previous paragraphs, we have explained that
there are various scenarios where the cipher’s key and/or IV are actually already present
in some storage location on the device, allowing to reuse this when realizing continuous
key-IV access. In fact, the resulting savings on flip-flops (and, thus, chip area) inside the
cipher module have long been the major motivation for such designs. In Section 10.4, we

Chapter 8. Enhanced State Stream Ciphers 115

show that due to this focus on the number of flip-flops, ignoring their actual usage, a great
potential for reducing power consumption has been missed, so far.

More precisely, with our implementation variant Draco[KI] we demonstrate that even
if a 2n-bit storage is required inside the cipher hardware module to achieve n-bit security
against TMDTO attacks, algorithmically keeping half of this state constant is much more
efficient (cf. Tab. 10.1 in Section 10.4) than and equally secure (see Section 10.3 and
Section 9.5) as constantly updating the whole of it. That is, we show that even if the
key and the IV are stored locally inside of the cipher hardware module (thus eliminating
all the scenario assumptions / usage restrictions described above) in order to implement
continuous key-IV access, our new small-state stream cipher Draco still allows to save
up to 34 % of energy as compared to Grain-128a when producing 10 kbit of keystream
(including state initialization) at a clock speed of 1 GHz.

8.2 Time-memory-data Tradeoff Attacks

Stream ciphers are vulnerable to a type of attack called time-memory data tradeoff (TM-
DTO) attacks, as described by Babbage [Bab95] and Golić [Gol96]. We already gave a
quick overview of TMDTO attacks in Section 7.5. In this section, we wish to elabor-
ate further on TMDTO attacks and also present TMDTO attacks against enhanced state
stream ciphers.

TMDTO attacks consider three cost dimensions: time T , memory M , and data D .
Data D refers to the amount of data, usually observed keystream, that the adversary has
obtained. Memory M measures the memory consumption of the attack, and time T
measures the required computation time. Often, time T is divided into an online phase
with Ton and an offline phase Toff. The offline phase is also known as precomputation and
involves computing some auxiliary data structures before carrying out the actual attack in
the online phase. TMDTO attacks typically specify a relation between the cost dimensions
that allows for a successful attack. In other words, an adversary may spend more on one
resource and, in return, less on another. Hence, these attacks are referred to as tradeoff
attacks.

Babbage and Golić. The TMDTO attacks by Babbage and Golić are generic in the
sense that they do not need to exploit the internal structure of the stream cipher. In these
attacks, an adversary generates T keystream prefixes of length ℓs from randomly chosen
internal states and observes D keystream blocks of length ℓs . A collision between these
two is highly likely if T ·D = 2ℓs , and it is often caused by a collision of the underlying
internal states. This collision allows for the recovery of the internal state used to generate
the keystream. The relation T ·D = 2ℓs has its optimal point at T = D = 2ℓs /2, i.e., the
birthday bound, named after the birthday paradox.

116 Chapter 8. Enhanced State Stream Ciphers

Advanced attacks. An attack with a tradeoff T ·M 2 ·D2 = 22·ℓs and Toff = 2ℓs /D
was developed by Biryukov and Shamir [BS00]. They combined the attacks of Babbage
and Golić with Hellman’s attack on block ciphers [Hel80]. The GSM cipher A5/1 was
targeted by an attack from Biryukov, Shamir, and Wagner using a method known as BSW-
sampling [BSW01], which Biryukov and Shamir [BS00] also discuss. The tradeoff curve
T ·M 2 · D2 = 22·ℓs and the relation Toff = 2ℓs /D remain the same, even though BSW-
sampling allows for the relaxation of the restriction T ≥ D2 in the aforementioned attack.
Therefore, even the use of BSW-sampling does not result in an attack with overall complex-
ity lower than 2ℓs /2, considering precomputation as part of the overall attack complexity.
Additionally, because BSW-sampling is highly cipher-specific (see [BS00] for further de-
tails), the corresponding TMDTO attacks are not entirely generic.

Instead of sampling from the space of internal states, Hong and Sarkar [HS05] con-
sider the TMDTO case of sampling pairs of keys and IVs. The overall complexity of this
approach (including precomputation) in a single-key scenario, as analyzed by us, is at least
as high as that of an exhaustive key search. A lower overall complexity can only be achieved
in scenarios with multiple keys, where the attacker’s objective is to discover one of these keys.
Therefore, neither the results of [BS00] nor [HS05] conflict with our security bounds.

Key recovery. In conventional stream ciphers, a recovered internal state allows for the
generation of further keystream bits and thus the decryption of additional ciphertext. Fur-
thermore, the state update, respectively the mixing function, is often bijective. From a
recovered internal state, this allows for the recovery of the loading state and thus the secret
key k .

Attacks on enhanced states. In this section, we will present TMDTO attacks on all
the constructions considered in this work. For simplicity, we focus on the cost dimensions
time T and data D . These dimensions correspond to the queries made by an adversary,
where T corresponds to queries made to the underlying primitives, and D corresponds to
queries made to the construction function. Hence, focusing on T and D only will suffice
to demonstrate that our bounds are tight.

We will first recap TMDTO attacks on conventional stream ciphers and then present
tight TMDTO attacks for enhanced state ciphers.

8.2.1 The Conventional TMDTO Attack

The conventional time-memory-data tradeoff attack is due to Babbage [Bab95] and Golić
[Gol96]. It is targeted against conventional stream ciphers according to LSSK. Its goal is
to recover an internal state from some observed keystream. An adversary generates several
internal states uniformly at random and computes a corresponding keystream prefix of at
least length ℓv . A collision of this keystream prefix with the observed keystream is highly

Chapter 8. Enhanced State Stream Ciphers 117

likely due to a collision in the corresponding internal states. We will now explain the basic
attack.

Attack description. The attacker proceeds as follows to attack the LSSK construction
with an overall complexity in the order of 2ℓv/2.

1. Generate a internal states si uniformly at random and compute a keystream prefix Zi

of length ℓv for every si . Store all (si ,Zi) in an efficiently searchable data structure,
indexed by Zi .

2. Obtain b keystream prefixes Y j of length slightly larger than ℓv . This may be done
by sliding a window of length ℓv over a b -bit keystream.

3. Search for a collision between Zi and Y j . Obtain si .

4. Verify if si is the corresponding internal state by generating some more keystream
bits and comparing them to the observed ones.

Complexity. If a · b = 2ℓv , a collision is highly likely to occur due to the birthday
paradox. For a = b = 2ℓv/2, one obtains the optimal point with regard to overall complexity,
and hence the security of the cipher is capped by a level of ℓv/2 bits.

8.2.2 TMDTO Attacks Against CKEY

Mounting the attack in its original form over the entire (volatile + non-volatile) state would
entail guessing the key and is therefore moot. However, there exists a distinguishing attack
that works in time 2ℓv/2. Contrary to the conventional TMDTO attack, it requires a
chosen-IV attacker. The idea is that within a session, the IV changes but the key does not.
In other words, one can provoke a collision within the volatile internal state for two IVs,
as the non-volatile state remains fixed throughout the session.

Attack description. The attacker proceeds as follows to attack theCKEY construction
with an overall complexity in the order of 2ℓv/2.

1. Generate an initial value x ′ and obtain a keystream prefix Z ′ of length a. Let ℓ ′ > ℓv .
Slide an ℓ ′-bit window over Z ′ to obtain approximately a keystream blocks z ′i . Store
z ′i in an efficiently searchable data structure Z .

2. For b initial values xi , obtain a keystream prefix Zi of length ℓ ′. Search for a collision
in Z . If a collision is found for a · b = 2ℓv , we are in the real world.

118 Chapter 8. Enhanced State Stream Ciphers

Complexity. As the key remains fixed through the session, an internal state collision
occurs if the volatile internal states collide. Due to the birthday paradox, this occurs with
high probability if a · b = 2ℓv . The optimal point is a = b = 2ℓv/2. Note that this distin-
guishing attack only works for a chosen-IV attacker and does not allow for the recovery
of an internal state. In a world with truly random outputs, one would obtain a keystream
collision of length ℓ ′ after generating and observing a = b = 2ℓ ′/2 > 2ℓv/2 blocks.

8.2.3 TMDTO Attacks Against CIV

For CIV, an attacker can perform the original TMDTO attack on the entire internal state.
This will yield the tradeoff curve D · T = 2ℓs = 2ℓv+ℓnv , i.e., the optimal point is at D =
T = 2ℓs /2. Also, note that the maximum amount of data that can be obtained is ℓp · 2ℓIV .
The alternative is to exploit the structure of the cipher and obtain an attack with better
complexity.

Attack description. The attacker proceeds as follows to attack the CIV construction
with an overall complexity in the order of 2ℓv /ℓp .

1. Obtain a keystream packets pi of length ℓp . Each packet contains approximately ℓp
windowsW j

i of length ℓs . StoreW j
i in an efficiently searchable data structure. Note

that the data complexity is D = a · ℓp .
2. For each packet pi with initial value xi , generate b random volatile internal states

s j and compute their corresponding keystream prefix Z i
j of length ℓs . Search for a

collision between Z i
j and W j

i . Note that the time complexity is T = a · b .

Complexity. A collision in the volatile internal state is likely if D · b = a · b · ℓp = 2ℓv .
In particular, we obtain that the time complexity of this attack is T = 2ℓv /ℓp . Note that
T does not depend on the amount of keystream packets observed.

8.2.4 TMDTO Attacks Against CIVK

Similarly to CIV, one can apply both attack types to CIVK. The first one remains un-
changed. The second one needs to account for the key prefix and guess the corresponding
key prefix in step 2.

Attack description. The attacker proceeds as follows to attack the CIVK construction
with an overall complexity in the order of 2ℓv .

1. Obtain a keystream packets pi of length ℓp . Each packet contains approximately ℓp
windowsW j

i of length ℓs . StoreW j
i in an efficiently searchable data structure. Note

that the data complexity is D = a · ℓp .

Chapter 8. Enhanced State Stream Ciphers 119

2. For each packet pi with initial value xi , generate b pairs of key prefixes and random
volatile internal states (kpre, s j) and compute their corresponding keystream prefix
Z i
j of length ℓs . Search for a collision between Z i

j and W j
i . Note that the time

complexity is T = a · b .

Complexity. A collision in the volatile internal state is likely if D · b = a · b · ℓp = 2ℓv .
Further, one needs to consider that the key prefix guesses are correct with a probability of
ℓ−1p , i.e., a · b · ℓp · ℓ−1p = 2ℓv . This yields a total time complexity of the attack of T = 2ℓv .
Note that T does not depend on the amount of keystream packets observed.

Remark 8.1

Note that forCIV andCIVK, assuming a chosen-IV attacker, all a ·b = 2ℓv keystream
packets can be precomputed and need to be stored in an efficiently searchable data
structure, i.e., a binary tree. This will require a time complexity of 2ℓv in the offline
phase and a space (memory) complexity of 2ℓv . The online phase, when observing
a keystream packet, will then have a time complexity of log2(2

ℓv) = ℓv to search for
the collision on the previously computed keystream packets. While the online time
complexity is significantly reduced, there is an excessive amount of precomputation
time necessary, and the space complexity in the online phase is 2ℓv . Even if a time
complexity of 2ℓv were not excessive, a space complexity of 2ℓv may very well be.

9 | Proving Security

In the following, we will present the preliminaries, notation, and random oracle model
necessary for the proof of security. In this section, we will stick with the generic 〈a | b〉
notation, where a describes the non-volatile part of the cipher and b describes the volatile
part of the cipher. This will suffice for describing the model and keep the notation simple in
this section. In the proofs of the respective constructions, we will give detailed information
about the internal state, queries, and transcripts.

9.1 Proof Preliminaries

In this section, we present the random oracle model, the distinguishing game, and the
adversarial strategy that will be used throughout our proofs.

9.1.1 Random Oracle Model

An adversary will be interacting with a set of three oracles in one of two worlds: the real
world or the ideal world. There will be an oracle P for the mixing function, an oracle
F for the output function, and an oracle E for the construction function.1 E is defined
differently in either world. The adversary can query the oracles with the inputs of the
respective functions, and it will receive answers from the oracle. These query-answer pairs
are collected by the adversary in a transcript τ. Finally, the adversary has to output a
decision bit.

Oracles. The P - and F -oracles will answer their queries using ideal randomized prim-
itives in either world. The P -oracle will use a random permutation P (for CIV and CIVK:
multiple random permutations as described later), and the F -oracle will use a random func-
tion F. In the real world, the E -oracle uses P and F as underlying building blocks. In the
ideal world, the E -oracle will have access to another independent random function E. By
assuming the underlying building blocks to be ideal, one can abstract from possible weak-
nesses in the mixing function and the output function that an implementation may have
and show that the scheme, the interaction of those building blocks, is secure. This will not

1π is publicly known and hence no oracle is needed.

121

122 Chapter 9. Proving Security

prove an instantiation to be secure but provide a plausible justification for the structure of
a cipher built upon the respective construction.

In the ideal world, E, corresponding to the encryption function, will sample the output
bits uniformly at random from {0,1}. We will show that the adversary cannot distinguish
the ideal world from the real world in this scenario. In particular, this will show that
the keystream generated by the ‘real’ encryption function is indistinguishable from a truly
random bitstream.

9.1.2 The Distinguishing Game

In the beginning of the adversary’s interaction with the oracles, a key k � K will be
sampled uniformly at random from the key space K . Next, the adversary poses its ques-
tions to the P -, F -, and E -oracles with the additional limit of at most ℓp E -queries per
IV x .2 All of the query-answer pairs will be collected in the corresponding τP , τF , and τE
transcripts.

After the interaction. When the adversary is finished with its interaction with the
oracles, it is given the secret key k , as well as the transcript τα, which contains the inter-
mediate values corresponding to internal states generated during an E -query and will be
defined more explicitly later.

Final decision. Based on the transcript τ = (τP ,τE ,τF ,τα, k), the adversary has to
make its decision whether it was interacting with the real world or the ideal world and
output a decision bit. If the adversary’s guess is correct, it wins the game. Our task is to
upper bound the adversary’s success probability.

9.1.3 Oracle Queries

The adversary will be given access to the P -, F -, and E -oracles that correspond to the mix-
ing function, output function, and construction function, respectively. For clarity, in the
beginning of the proof of each construction, we provide a table that describes the structure
of the inputs and outputs of the respective queries, as chosen by the adversary. We will then
explain how the oracles are implemented. Note that we index the query variables with the
query type, i.e., 〈aP | bP 〉 denotes a P -query where aP and bP are chosen by the adversary.

P-Oracle. The P -oracle that corresponds to the mixing function will be implemented
using random permutations. Note that the mixing function p keeps the non-volatile in-
ternal state unchanged and only the volatile internal state gets permuted. Hence, for every
a ∈ Qnv , the volatile internal state b ∈ Qv is permuted using an independent random
permutation Pa :Qv →Qv . For each Pa , we will use lazy sampling: as the first P -query

2Note that the key remains fixed throughout the game, so only the IV is changed.

Chapter 9. Proving Security 123

〈aP | bP 〉 arrives, the oracle will sample the answer uniformly at random from all 2ℓv pos-
sible answers. As the second P -query arrives, the oracle will sample the answer uniformly
at random from all 2ℓv − 1 remaining possible answers, and so on. The permutation P is
defined as follows:

P :Qnv ×Qv →Qnv ×Qv , 〈aP | bP 〉 7→ 〈aP |PaP
(bP)〉

The adversary may query the P -oracle in either the forward or the backward direction. That
is, the adversary gets oracle access to P as well as P−1.

F-Oracle. The F -oracle that corresponds to the output function will be implemented
using a random function F : Qnv ×Qv → {0,1}. Only queries in the forward direction
are allowed. We again use lazy sampling; as an F -query arrives, the output is sampled
uniformly at random from {0,1}.

E-Oracle. The E -oracle is defined differently in the real world and in the ideal world:
In the real world, it is defined similarly to the construction function e and implicitly uses
the secret key k , the random permutation P, the state update function π, and the random
function F:

E : IV × {0, . . . ,ℓp − 1}→ {0,1}, (xE , rE) 7→ F(π rE (P(load(k , xE))))

In the ideal world, E : IV × {0, . . . ,ℓp − 1} → {0,1} is a random function with outputs
sampled uniformly at random from {0,1}.

No redundant queries. We will assume that the adversary does not make redundant
queries, i.e., the adversary will not query for a value that has been queried before. As
redundant queries yield no additional information, this assumption does not lower the
adversary’s distinguishing advantage.

9.1.4 Transcripts

All of the adversary’s queries to the oracles and the corresponding answers will be collected
in a transcript τ. In particular, we will keep separate transcripts τP , τF , and τE for each
of the corresponding oracles P , F , and E defined as follows:

τP := {(aP , bP , yP) | 〈aP | bP 〉 is a P -query and 〈aP | yP 〉 its answer.}
τF := {(aF , bF , zF) | 〈aF | bF 〉 is an F -query and zF its answer.}
τE := {(xE , rE , zE) | (xE , rE) is an E -query and zE its answer.}

The transcripts mentioned above are visible to the adversary as it makes its queries to the
oracles. Once the adversary’s interaction with the oracles is finished, it will additionally be

124 Chapter 9. Proving Security

given the secret key k and the transcript τα defined as follows:

τα := {(xE , rE ,αE ,αrE) | (xE , rE) is an E -query and (αE ,α
r
E) its α-values.}

The α-values for each E -query (xE , rE) are defined as follows:

αE := P (load(k , xE)) and αrEE := π rE (P (load(k , xE))).

The α-values correspond to the internal states that are generated during an E -query. αE
represents the initial state, and αrEE represents the internal state that is the input to the
output function F after rE state updates on the initial state. We will also sample these
values in the ideal world, even though the construction function E does not depend on
these.

The full transcript can be written as a 5-tuple τ = (τP ,τE ,τF ,τα, k).

9.1.5 H-coefficient Technique

We will briefly recapture the H-coefficients technique as it is central to our proof. The
H-coefficients technique is a proof method due to Patarin, where we consider the variant
by Chen and Steinberger [CS14, Pat08]. The results of the interaction of an adversary A

with its oracles are collected in a transcript τ. The oracles can sample randomness prior
to the interaction (often a key or an ideal primitive that is sampled beforehand), and are
then deterministic throughout the experiment [CS14]. The task of A is to distinguish the
real world Oreal from the ideal world Oideal. Let Θreal and Θideal denote the distribution of
transcripts in the real and the ideal world, respectively. A transcript τ is called attainable
if the probability to obtain τ in the ideal world – i.e. over Θideal – is non-zero. Then, the
fundamental Lemma of the H-coefficients technique, the proof to which is given in [CS14,
Pat08], states:

Lemma 9.1 (H-coefficients technique)

Assume that the set of attainable transcripts can be partitioned into two disjoint sets
GoodT and BadT. Further, assume that there exist δ ,ε ∈ [0,1] such that for any
transcript τ ∈GoodT, it holds that:

Pr [Θideal ∈ BadT] ≤ δ and
Pr [Θreal = τ]
Pr [Θideal = τ]

≥ 1− ε.

Then for all adversaries A we have that the distinguishing advantage satisfies

∆
A
(Θideal,Θreal) ≤ δ + ε.

Chapter 9. Proving Security 125

9.1.6 The Adversarial Strategy

From an attacker’s point of view, the goal is to recover an internal state by obtaining a
collision between an observed keystream and a generated keystream. If the keystreams
collide, there is a high probability that they were generated from the same internal state. In
particular, the same internal state always generates the same keystream in the real world.

Collisions. In our model, the adversary does not have to rely on observing collisions
in the keystream as it is provided the α-values at the end of the interaction. The α-values
correspond to the internal states of the respective output bit. Hence, the adversary’s goal
will be to obtain a collision between the α-values and the inputs of the F -queries.

EF-Collisions. If there occurs a collision between an α-value (corresponding to an E -
query) and an F -query, the corresponding outputs of the E -query and the F -query will
always be identical in the real world, as E internally uses P, π, and F. In the ideal world,
however, E is another random function independent of P, π, and F, and hence, colliding
α-values and F -query inputs only lead to the same output bit with a probability of 1

2 .
This will be used as a distinguishing, i.e., bad, event. In general, there are two ways to
obtain such a collision: (1) guessing an internal state corresponding to the α-values and (2)
guessing the secret key k and deriving the α-value from a P -query.

EE-Collisions. Further, for LSSK and CKEY, there may occur internal state collisions
between two distinct (i.e., with different IVs) E -queries. In the ideal world, the output bits
may be different even though the α-values collide. ForCIV andCIVK, an α-value collision
between two distinct E -queries may not occur as distinct IVs imply distinct α-values.

9.1.7 Structure of the Analysis

Using the H-coefficients technique, the bounds in all of our proofs will ultimately only
be determined by δ , as we will show that Pr [Θreal = τ] = Pr [Θideal = τ] and thus ε = 0.
Hence, for a good transcript, the real and the ideal world are indistinguishable, so the
security bounds will consist only of the bad events’ probability. In Sections 9.2 to 9.5, we
will analyze and upper bound the probability of a bad event in the ideal world for each
of the four constructions. Once this has been done, the analysis of the good transcripts is
identical for all constructions and will be done in Section 9.6.

We chose this structure because the analyses in Sections 9.2 to 9.5 are quite similar, so
it makes sense to group them together. Additionally, when analyzing the good transcripts,
it is necessary to know which specific bad events have been excluded in order to perform a
proper analysis and obtain a good bound for ε. If a bad event were missed, it would appear
in the good transcripts and lead to a poor bound for ε.

126 Chapter 9. Proving Security

Table 9.1: Inputs and outputs of oracle queries to LSSK.

Query Type Input Output

P (xP , kP) yP
P −1 yP (xP , kP)
F yF zF ∈ {0,1}
E (xE , rE) zE ∈ {0,1}

Query notation. When writing a query, we will use indexed letters like xP , kP , and yP
to denote the adversary’s choice. These need not be equal to an actual IV, key, or internal
state. For example, kP denotes a key guess in a P -query by the adversary and needs not be
equal to the actual secret key k .

9.2 Analysis of LSSK

We begin with the analysis of the conventional LSSK construction. All parts of the internal
state are volatile, i.e., the non-volatile part of the cipher is empty, respectively non-existent.
Therefore, the state length ℓs is equal to the volatile state length ℓv , i.e., ℓs = ℓv . Further,
LSSK does not define a packet length, and thus up to 2ℓs construction queries are possible
per key-IV pair (k , x). The inputs and outputs of the queries to the respective oracles can be
found in Table 9.1. For an E -query (xE , rE), the α-values of LSSK are defined as follows:

αE := P (xE , k) and αrEE := π rE (αE).

The four transcripts are defined in analogy to the oracle queries and α-values:

τP := {(xP , kP , yP) | (xP , kP) is a P -query and yP its answer.}
τF := {(yF , zF) | yF is an F -query and zF its answer.}
τE := {(xE , rE , zE) | (xE , rE) is an E -query and zE its answer.}
τα :=
�
(xE , rE ,αE ,α

rE
E)
�� (xE , rE) is an E -query and (αE ,α

rE
E) its α-values.
	

From Lemma 4.1 (H-coefficients technique), Lemma 9.2 (bad events), and Theorem 9.1
(good transcripts), we will obtain the following bound on the adversarial advantage for
LSSK:

Corollary 9.1

For the LSSK construction as defined in Subsection 8.1.1, where the mixing function
p and the output function f are replaced with their ideal counterparts as defined in
Subsection 9.1.3, we have that for all adversaries A asking at most q queries, it holds

Chapter 9. Proving Security 127

that:

∆
A
(Oreal,Oideal) ≤ q

2ℓk
+

2q2

2ℓv − q .

9.2.1 Overview of the Bad Events

We will define three distinguishing events for LSSK. The first bad event covers the adversary
guessing an internal state as input to the F -oracle that collides with an α-value (internal
state) of an E -query. The second bad event is similar to the first one in that the adversary
is trying to create the same type of collision. This time, however, the adversary guesses the
key and tries to obtain the colliding internal state through a P -query (if the key guess is
correct). The third bad event differs. In LSSK, there may be α-value collisions between
two E -queries that allow for distinguishing.

In the real world, these collisions would imply identical outputs. In the ideal world,
however, E is independent of F , and thus the collisions need not have identical outputs as
a consequence. This is used for distinguishing.

9.2.2 Bad Events

According to Section 9.1, we will define our bad events.

EF-Collisions. The first bad event covers collisions between construction queries and
output function queries. This type of collision corresponds to a correct internal state guess.

Bad Event (bad1)

There exists an E -query (xE , rE) and an F -query yF such that

αrEE = yF .

Note that P (xE , k), i.e., the α-value, is sampled at the end of the interaction.

Key guesses. The second bad event covers correct key guesses. Here, a correct key
guess allows the adversary to obtain a valid internal state for a given IV xP after asking the
corresponding P -query.

Bad Event (bad2)

There exist a P -query (xP , kP), an E -query (xP , rE), and an F -query π rE (P (xP , kP))
such that

kP = k .

128 Chapter 9. Proving Security

EE-Collisions. In case of the LSSK construction, we also need to consider internal state
collisions between two E -queries. Generally, the internal states of two different E -queries
can collide. In the ideal world, however, the outputs can differ as E is modeled as a random
function.

Bad Event (bad3)

There exist two E -queries (xE , rE) and (x ′E , r ′E), where xE 6= x ′E , such that

αrEE = α
r ′E
E .

Remark 9.1

Note that to successfully distinguish, the adversary further needs to observe that

– E (xE , rE) 6= F (yF) for bad1,

– E (xP , rE) 6= F (π rE (P (xP , kP))) for bad2,

– E (xE , rE) 6= E (x ′E , r ′E) for bad3.

We omit these to simplify the analysis of the good transcripts in Section 9.6.

9.2.3 Bounding the Bad Events

In this subsection, we will present an upper bound on the bad events introduced in Sub-
section 9.2.2. In particular, we will show the following lemma:

Lemma 9.2

The probability of a bad event occurring for LSSK is upper bounded by:

Pr [Θideal ∈ BadT] ≤ q
2ℓk
+

2q2

2ℓv − q .

Proof. Since we are in the ideal world, the answers to the E -, F -, and P -queries are in-
dependent of the secret key k . For simplicity, we will sample the secret key k after the
adversary’s interaction with the oracles. Also, we will sample the values αE for each query
after the adversary’s interaction with the oracles.

Key guesses. We will first consider the event bad2. There are at most q P -queries
with at most q distinct kP . The secret key k is sampled independently at random with
regard to the uniform distribution from the set {0,1}ℓk . The probability of a collision with

Chapter 9. Proving Security 129

Table 9.2: Inputs and outputs of oracle queries to CKEY.

Query Type Input Output

P 〈kP | xP 〉 〈kP | yP 〉
P −1 〈kP | yP 〉 〈kP | xP 〉
F 〈kF | yF 〉 zF ∈ {0,1}
E (xE , rE) zE ∈ {0,1}

the secret key k can therefore be upper bounded by q/2ℓk , i.e., we obtain:

Pr [bad2] ≤ q
2ℓk

.

EF-Collisions. We will now consider the event bad1. Since we already bounded the
probability for bad2, we will now consider Pr[bad1 | ¬bad2]. We decided to sample αE
after the adversary’s interaction with the oracles. Further, since we conditioned on ¬bad2,
the corresponding values αrE for all E -queries (xE , r) have not yet been sampled.

The amount of E - and F -queries, respectively, can trivially be upper bounded by q .
Hence, the amount of pairs can be upper bounded by q2. As we sample the αE values at
the end of the interaction uniformly at random without replacement from {0,1}ℓv , we can
upper bound the collision probability by (2ℓv − q)−1 for each pair. Thus, we obtain:

Pr [bad1] ≤ q2

2ℓv − q .

EE-Collisions. Last, we consider the event bad3. The total amount of distinct E -
queries can be upper bounded by q . Fix some E -query (xE , rE) and consider the value
αrEE . Now consider a second E -query (x ′E , r ′E) where the corresponding value αr

′
E
E has not

yet been sampled. The probability that P (x ′E , k) maps to π−r ′E (αrEE) is upper bounded by
(2ℓv − q)−1. Over all q2 pairs of E -queries, we obtain:

Pr
�
bad3
� ≤ q2

2ℓv − q .

Lemma 9.2 follows from the union bound of the above individual bad events. �

9.3 Analysis of CKEY

Of the enhanced state ciphers, we will consider the CKEY construction first. Here, the
non-volatile part of the cipher consists only of the secret key k . Accordingly, the volatile
loading state consists of the IV x only. CKEY does not define a packet length, and thus
up to 2ℓv construction queries are possible per key-IV pair (k , x). The inputs and outputs

130 Chapter 9. Proving Security

of the queries to the respective oracles can be found in Table 9.2. For an E -query (xE , rE),
the α-values of CKEY are defined as follows:

αE := P 〈k | xE 〉 and αrEE := π rE (αE).

The four transcripts are defined in analogy to the oracle queries and α-values:

τP := {(xP , kP , yP) | 〈kP | xP 〉 is a P -query and 〈kP | yP 〉 its answer.}
τF := {(kF , yF , zF) | 〈kF | yF 〉 is an F -query and zF its answer.}
τE := {(xE , rE , zE) | (xE , rE) is an E -query and zE its answer.}
τα :=
�
(xE , rE ,αE ,α

rE
E)
�� (xE , rE) is an E -query and (αE ,α

rE
E) its α-values.
	

From Lemma 4.1 (H-coefficients technique), Lemma 9.3 (bad events), and Theorem 9.1
(good transcripts), we will obtain the following bound on the adversarial advantage for
CKEY:

Corollary 9.2

For the CKEY construction as defined in Subsection 8.1.1, where the mixing func-
tion p and the output function f are replaced with their ideal counterparts as defined
in Subsection 9.1.3, we have that for all adversariesA asking at most q queries, it holds
that:

∆
A
(Oreal,Oideal) ≤ q

2ℓk
+

q2

2ℓv − q .

9.3.1 Overview of the Bad Events

We will define two distinguishing events for CKEY. Essentially, the distinguishing events
are the same as for LSSK. One should note that for guessing an internal state, the adversary
would have to guess the volatile internal state as well as the non-volatile key correctly. There-
fore, it makes more sense for an adversary to guess the key and obtain the colliding internal
state through a P -query. Hence, we only consider these as one bad event, namely cor-
rect key guesses. As is the case for LSSK, there may be α-value collisions between two
E -queries that allow for distinguishing.

In the real world, these collisions would imply identical outputs. In the ideal world,
however, E is independent of F , and thus the collisions need not have identical outputs as
a consequence. This is used for distinguishing.

9.3.2 Bad Events

According to Section 9.1, we will define our bad events.

Chapter 9. Proving Security 131

EF-Collisions. The first distinguishing event covers a collision between a construction
query and an output function query. This corresponds to an adversary correctly guessing
the internal state.

Bad Event (bad1)

There exists an E -query (xE , rE) and an F -query 〈kF | yF 〉 such that:

αrEE = 〈kF | yF 〉.

Key guesses. Note that in case of theCKEY construction, a prerequisite to get a proper
internal state collision, the attacker needs to guess the key right. Here, we will cover all key
guesses, i.e., also through P -queries, in the relaxed variant of bad1:

Bad Event (bad2)

There exists a P -query 〈kP | xP 〉 or an F -query 〈kF | yF 〉 such that:

kP = k or kF = k .

Remark 9.2

Ultimately, the only way for the adversary to distinguish is to observe different outputs
for identical internal states. This can only happen in the ideal world. In the case of
the CKEY construction, it is, in fact, easier for the adversary to guess the key and
then derive a corresponding internal state using a P -query than to guess an internal
state for an F -query, as this also involves guessing the key. We, therefore, ignore bad1
as it is implied by bad2.

EE-Collisions. In the case of the CKEY construction, we also need to consider internal
state collisions between two E -queries. Colliding internal states between two different
E -queries with different outputs give an adversary a tool to distinguish.

Bad Event (bad3)

There exist two E -queries (xE , rE) and (x ′E , r ′E), where xE 6= x ′E such that:

αrEE = α
r ′E
E .

Remark 9.3

Note that to successfully distinguish, the adversary further needs to observe that

132 Chapter 9. Proving Security

– E (xE , rE) 6= F 〈kF | yF 〉 for bad1,

– E (xE , rE) 6= E (x ′E , r ′E) for bad3.

We omit these to simplify the analysis of the good transcripts in Section 9.6.

9.3.3 Bounding the Bad Events

In this subsection, we will present an upper bound on the bad events introduced in Sub-
section 9.3.2. In particular, we will show the following lemma:

Lemma 9.3

The probability of a bad event occurring for CKEY is upper bounded by:

Pr [Θideal ∈ BadT] ≤ q
2ℓk
+

q2

2ℓv − q .

Proof. Since we are in the ideal world, the answers to the E -, F -, and P -queries are in-
dependent of the secret key k . For simplicity, we will sample the secret key k after the
adversary’s interaction with the oracles. Also, we will sample the values αE for each query
after the adversary’s interaction with the oracles.

Key guesses. We will first consider the event bad2. There are at most q queries with
at most q distinct kP or kF . The secret key k is sampled independently at random with
regard to the uniform distribution from the set {0,1}ℓk . The probability of a collision with
the secret key k can therefore be upper bounded by:

Pr [bad2] ≤ q
2ℓk

.

EE-Collisions. Next, we consider the event bad3. The total amount of distinct E -
queries can be upper bounded by q . Fix some E -query (xE , rE) and consider the value
αrEE . Now consider a second E -query (x ′E , r ′E) where the corresponding value αr

′
E
E has not

yet been sampled. The probability that P 〈k | x ′E 〉 maps to π−r ′E (αrEE) is upper bounded by
(2ℓv − q)−1. Over all q2 pairs of E -queries, we obtain:

Pr
�
bad3
� ≤ q2

2ℓv − q .

Lemma 9.3 follows from the union bound of the above individual bad events. �

Chapter 9. Proving Security 133

Table 9.3: Inputs and outputs of the oracle queries to CIV.

Query Type Input Output

P 〈xP | kP 〉 〈xP | yP 〉
P −1 〈xP | yP 〉 〈xP | kP 〉
F 〈xF | yF 〉 zF ∈ {0,1}
E (xE , rE) zE ∈ {0,1}

9.4 Analysis of CIV

CIV uses the IV in the non-volatile part of the cipher, whereas the key is contained in
the volatile part of the loading state. A packet length is defined, and up to ℓp bits may
be output per key-IV pair (k , x). The inputs and outputs of the queries to the respective
oracles can be found in Table 9.3. The α-values for each E -query (xE , rE) are defined as
follows:

αE := P 〈xE | k〉 and αrEE := π rE (P 〈xE | k〉).
The four transcripts are defined in analogy to the oracle queries and α-values:

τP := {(xP , kP , yP) | 〈xP | kP 〉 is a P -query and 〈xP | yP 〉 its answer.}
τF := {(xF , yF , zF) | 〈xF | yF 〉 is an F -query and zF its answer.}
τE := {(xE , rE , zE) | (xE , rE) is an E -query and zE its answer.}
τα :=
�
(xE , rE ,αE ,α

rE
E)
�� (xE , rE) is an E -query and (αE ,α

rE
E) its α-values.
	

From Lemma 4.1 (H-coefficients technique), Lemma 9.4 (bad events), and Theorem 9.1
(good transcripts), we will obtain the following bound on the adversarial advantage for
CIV:

Corollary 9.3

For the CIV construction as defined in Subsection 8.1.1, where the mixing function
p and the output function f are replaced with their ideal counterparts as defined in
Subsection 9.1.3, and up to ℓp adversarial queries per IV x ∈ IV , we have that for
all adversaries A asking at most q queries, it holds that:

∆
A
(Oreal,Oideal) ≤ q

2ℓk
+

ℓp · q
2ℓv − q .

134 Chapter 9. Proving Security

9.4.1 Overview of the Bad Events

We will define two distinguishing events for CIV. Essentially, the distinguishing events
are identical to the first two of LSSK. One distinguishing event corresponds to guessing
an internal state to provoke a collision, and the other distinguishing event corresponds to
guessing the secret key to then derive an internal state collision.

Internal state collisions between two E -queries cannot occur. As the IV x is part of
the non-volatile internal state, a collision between queries with different IVs is not possible.
Collisions of internal states from queries with the same IV are not possible as the state
update function π is required to have a period larger than ℓp .

In the real world, these collisions would imply identical outputs. In the ideal world,
however, E is independent of F , and thus the collisions need not have identical outputs as
a consequence. This is used for distinguishing.

9.4.2 Bad Events

We have to identify bad events that will trivially allow to distinguish the real world from
the ideal world. According to Section 9.1, we will define our bad events.

EF-Collisions. The first distinguishing event covers a collision between a construction
query and an output function query. This corresponds to an adversary correctly guessing
the internal state.

Bad Event (bad1)

There exists an E -query (xE , rE) and an F -query 〈xF | yF 〉 such that:

αrEE = 〈xF | yF 〉.

Note that P 〈xE | k〉 is sampled at the end of the interaction.

Key guesses. We also define a bad event that covers key guesses. The adversary guesses
a key, performs a P -query with its guess, and uses the then obtained internal state to pro-
duce a collision between an E - and an F -query.

Bad Event (bad2)

There exists a P -query 〈xP | kP 〉, an E -query (xP , rE), and an F -queryπ rE (P 〈xP | kP 〉)
such that:

kP = k .

Chapter 9. Proving Security 135

Remark 9.4

Note that bad2 represents a special case of bad1. In particular, we have that:

P 〈xP | kP 〉 = αE and π rE (P 〈xP | kP 〉) = αrEE .

Ultimately, the correct key guess is used to acquire a valid internal state. That in-
ternal state is then used to check whether the corresponding E - and F -queries differ,
which then allows to distinguish. Yet, for simplicity, we consider these as separate
bad events. We will first bound the probability of bad2 and then derive a bound for
bad1 conditioned on bad2 not occurring.

Also note that to successfully distinguish, the adversary further needs to observe
E (xE , rE) 6= F 〈xF | yF 〉 for bad1, and E (xP , rE) 6= F (π rE (P 〈xP | kP 〉)) for bad2. We
omit these to simplify the analysis of the good transcripts in Section 9.6.

9.4.3 Bounding the Bad Events

In this subsection, we will present an upper bound on the bad events introduced in Sub-
section 9.4.2. In particular, we will show the following lemma:

Lemma 9.4

The probability of a bad event occurring for CIV is upper bounded by:

Pr [Θideal ∈ BadT] ≤ q
2ℓk
+

ℓp · q
2ℓv − q .

Proof. Since we are in the ideal world, the answers to the E -, F -, and P -queries are in-
dependent of the secret key k . For simplicity, we will sample the secret key k after the
adversary’s interaction with the oracles. Also, we will sample the values αE for each query
after the adversary’s interaction with the oracles.

Key guesses. We will first consider the event bad2. There are at most q P -queries
with at most q distinct kP . The secret key k is sampled independently at random with
regard to the uniform distribution from the set {0,1}ℓk . The probability of a collision with
the secret key k can therefore be upper bounded by q/2ℓk . We obtain:

Pr [bad2] ≤ q
2ℓk

.

EF-Collisions. We will now consider the event bad1. Since we already bounded the
probability for bad2, we will now consider Pr[bad1 | ¬bad2]. We decided to sample αE
after the adversary’s interaction with the oracles. Further, since we conditioned on ¬bad2,
the corresponding α-values P 〈xE | k〉 for all E -queries (xE , rE) have not yet been sampled.

136 Chapter 9. Proving Security

Table 9.4: Inputs and outputs of the oracle queries to CIVK.

Query Type Input Output

P 〈xP , kpre
P | kP 〉 〈xP , kpre

P | yP 〉
P −1 〈xP , kpre

P | yP 〉 〈xP , kpre
P | kP 〉

F 〈xF , kpre
F | yF 〉 zF ∈ {0,1}

E (xE , rE) zE ∈ {0,1}

The amount of F -queries can trivially be upper bounded by q . Fix any F -query
〈xF | yF 〉. Since the amount of E -queries is bounded to ℓp queries per IV xE , there are
at most ℓp α-values to collide with.

Fix some E -query (xE , rE) where xE = xF . Now, consider the internal state ρ =
π−rE 〈xF | yF 〉. The α-value P 〈xE | k〉 is sampled after the F -query. As there are at most q
queries, we obtain for a fixed E -query and a fixed F -query:

Pr
�
P 〈xE , kpre | k〉 = ρ� ≤ (2ℓv − q)−1.

Over at most q F -queries and up to ℓp matching E -queries per F -query, we obtain:

Pr [bad1 | ¬bad2] ≤
ℓp · q
2ℓv − q .

Lemma 9.4 follows from the union bound of the above individual bad events. �

9.5 Analysis of CIVK

CIVK uses the IV as well as a key prefix in the non-volatile part of the cipher, whereas the
key is contained in the volatile part of the loading state. A packet length is defined, and up
to ℓp bits may be output per key-IV pair (k , x). The inputs and outputs of the queries to
the respective oracles can be found in Table 9.4. The α-values for each E -query (xE , rE)
are defined as follows:

αE := P 〈xE , kpre | k〉 and αrEE := π rE (P 〈xE , kpre | k〉).

The four transcripts are defined in analogy to the oracle queries and α-values:

τP :=
�
(xP , k

pre
P , kP , yP)
�� 〈xP , kpre

P | kP 〉 is a P -query and 〈xP , kpre
P | yP 〉 its answer.

	
τF :=
�
(xF , k

pre
F , yF , zF)
�� 〈xF , kpre

F | yF 〉 is an F -query and zF its answer.
	

τE := {(xE , rE , zE) | (xE , rE) is an E -query and zE its answer.}
τα :=
�
(xE , rE ,αE ,α

rE
E)
�� (xE , rE) is an E -query and (αE ,α

rE
E) its α-values.
	

Chapter 9. Proving Security 137

From Lemma 4.1 (H-coefficients technique), Lemma 9.5 (bad events), and Theorem 9.1
(good transcripts), we will obtain the following bound on the adversarial advantage for
CIVK:

Corollary 9.4

For the CIVK construction as defined in Subsection 8.1.1 where the mixing function
p and the output function f are replaced with their ideal counterparts, as defined in
Subsection 9.1.3, and up to ℓp adversarial queries per IV x ∈ IV , we have that for
all adversaries A asking at most q queries, it holds that:

∆
A
(Oreal,Oideal) ≤ q

2ℓk
+

q
2ℓv − q .

Remark 9.5

Note that there is a minor glitch in the proof of CIVK in [HMKM22]. The bad
events in [HMKM22] additionally contain the condition that the outputs of the cor-
responding E - and F -queries differ. This means that the α-values and the inputs
to the F -queries may collide in the good transcripts if the corresponding outputs of
the E - and F -queries are identical. The consequence is that for the analysis of the
good transcripts, one cannot say that A ∩F = ;. This glitch also occurred in the
submitted version of this work.

By removing the condition in the bad events that the outputs of the E - and
F -queries must differ, one can say that A ∩F = ;. That makes the bounds in
[HMKM22] worse by a factor of 2. As asymptotic security is considered, this factor
is negligible. Corollary 9.4 presents the corrected bound.

9.5.1 Overview of the Bad Events

Note that the IV x is chosen by the adversary. There are two strategies for the adversary to
obtain a collision between the α-values and an F -query input:

1. Guess the key prefix kpre as well as a volatile internal state y correctly and ask the
corresponding F -query F 〈x , kpre | y〉.

2. Guess the key k correctly, ask the corresponding P -query P 〈x , kpre | k〉 to obtain
〈x , kpre | y〉, and ask the corresponding F -query F 〈x , kpre | y〉.

If the outputs of the F -query and the output of the E -query corresponding to the colliding
α-value differ, the adversary surely is in the ideal world. We will introduce two bad events
that correspond to the two strategies mentioned above.

138 Chapter 9. Proving Security

Remark 9.6

In either world, it is possible to choose kpre
P and kP such that kpre

P is not a prefix of
kP . As the mixing function is bijective, the corresponding internal state 〈xP , kpre

P | yP 〉
will be invalid, i.e., it will not occur during an actual encryption using CIVK. These
states cannot be used to obtain a distinguishing event. We will ignore queries of this
type as they yield no advantage to the adversary.

9.5.2 Bad Events

According to Section 9.1, we will define our bad events. The two bad events are similar to
the ones for the CIV construction presented in Subsection 9.4.2. The main difference now
is that we have to account for the key prefix.

EF-Collisions. The first distinguishing event covers a collision between a construction
query and an output function query. This corresponds to an adversary correctly guessing
the internal state.

Bad Event (bad1)

There exists an E -query (xE , rE) and an F -query 〈xF , kpre
F | yF 〉 such that

αrEE = 〈xF , kpre | yF 〉.

Key guesses. The second bad event covers key guesses from which the adversary can
obtain an internal state.

Bad Event (bad2)

There exist the following three queries: a P -query 〈xP , kpre
P | kP 〉, an E -query (xP , rE),

and an F -query π rE (P 〈xP , kpre
P | kP 〉) such that:

(kpre
P , kP) = (k

pre, k).

Remark 9.7

Note that bad2 represents a special case of bad1. In particular, we have that:

P 〈xP , kpre
P | kP 〉 = αE and π rE (P 〈xP , kpre

P | kP 〉) = αrEE .

Considering these as separate bad events will simplify our analysis.
Also note that to successfully distinguish, the adversary further needs to observe

Chapter 9. Proving Security 139

– E (xE , rE) 6= F 〈xF , kpre | yF 〉 for bad1,

– E (xP , rE) 6= F (π rE (P 〈xP , kpre
P | kP 〉)) for bad2.

We omit these to simplify the analysis of the good transcripts in Section 9.6.

9.5.3 Bounding the Bad Events

In this subsection, we will present an upper bound on the bad events introduced in Sub-
section 9.5.2. In particular, we will show the following lemma:

Lemma 9.5

The probability of a bad event occurring for CIVK is upper bounded by:

Pr [Θideal ∈ BadT] ≤ q
2ℓk
+

q
2ℓv − q .

Proof. Since we are in the ideal world, the answers to the E -, F -, and P -queries are inde-
pendent of the secret key (kpre, k). For simplicity, we will sample the secret key (kpre, k)
after the adversary’s interaction with the oracles. Also, we will sample the values αE for
each query after the adversary’s interaction with the oracles.

Key guesses. We will first consider the event bad2. There are at most q P -queries with
at most q distinct (kpre

P , kP). The secret key (kpre, k) is sampled independently at random
with regard to the uniform distribution from the set {0,1}ℓk . The probability of a collision
with the secret key (kpre, k) can therefore be upper bounded by q/2ℓk . We obtain:

Pr [bad2] ≤ q
2ℓk

.

EF-Collisions. We will now consider the event bad1. Since we already bounded the
probability for bad2, we will now consider Pr[bad1 | ¬bad2]. We decided to sample αE
after the adversary’s interaction with the oracles.

By conditioning on ¬bad2, we know that for all x ∈ IV no value P 〈x , kpre | k〉 has
yet been sampled. This applies since there was no adversarial P -query with the correct key.
This implies, as we sample the α-values after the adversary’s interaction with the oracle, no
α-value has yet been sampled.

To obtain a collision between an F -query and an α-value, three conditions need to
apply:

1. The key prefix kpre needs to be guessed correctly.

2. The F -query and the E -query, resp. the α-value, need to utilize the same IV x .

140 Chapter 9. Proving Security

3. A collision in the volatile state needs to occur.

We will individually bound the three conditions above. Fix any F-query F 〈xF , kpre
F | yF 〉.

1. As we sample the key k after the adversary’s interaction with the oracles, a key prefix
collision occurs with a probability of:

Pr
�
kpre
F = kpre� = ℓ−1p .

2. There are at most ℓp E-queries, respectivelyα-values, to collide with, as the E -queries
are limited to ℓp queries per IV x ∈ IV .

3. Fix some E -query (xE , rE) where xE = xF . Now, consider the internal state ρ =
π−rE 〈xF , kpre|yF 〉. The value αE = P 〈xE , kpre | k〉 is sampled after the F -query. As
there are at most q queries we obtain:

Pr
�
P 〈xE , kpre | k〉 = ρ� ≤ (2ℓv − q)−1.

Note that there could be P -queries utilizing xE and kpre with kP 6= k , and therefore we
need to upper bound the amount of queries above by q . We obtain that the probability of
a single fixed F -query to collide with an α-value is upper bounded by:

Pr
�
kpre
F = kpre� · ℓp · Pr �P 〈xE , kpre | k〉 = ρ� = 1

ℓp
· ℓp
2ℓv − q =

1
2ℓv − q .

Summing up over at most q F -queries, we obtain:

Pr [bad1 | ¬bad2] ≤ q
2ℓv − q .

Lemma 9.5 follows from the union bound of the above individual bad events. �

9.6 Good Transcripts

We have upper bounded probability of the occurrence of a distinguishing event in the ideal
world in the previous four sections. In this section, we will show that in the absence of a
distinguishing event, the ideal construction is indistinguishable from the real construction:

Theorem 9.1

For any good transcript τ ∈GoodT, it holds that

Pr [Θreal = τ] = Pr [Θideal = τ] .

Chapter 9. Proving Security 141

Proof. In either world, the permutation P and the secret key k are sampled uniformly at
random, and therefore they are trivially indistinguishable.

EE-Collisions. As the random function F is not sampled by E -queries in the ideal world,
we still need to argue about the answers to the E - and the F -queries. We defineA to be
the multiset of all αr -values, and F as the set of all F -query inputs that are contained in
the transcript τ. Formally,A is defined as:

A := {π r (P (load(x , k))) | (x , r) is an E -query} .

Remember that, in the ideal world, the output of E is sampled independently of the α-
values. Consider two E -queries (x , r) 6= (x ′, r ′) with colliding αr -values. E -queries with
colliding αr -values correspond to elements in A with a multiplicity greater than 1 and
thus:

1 = Pr
real

�
E (x , r) = z | E (x ′, r ′) = z

� 6= Pr
ideal

�
E (x , r) = z | E (x ′, r ′) = z

�
= 1/2.

We will now argue why, for good transcripts, each element in A has a multiplicity of 1
and thusA is a set. For LSSK and CKEY, all values inA have a multiplicity of 1, as we
excluded collisions between two E -queries with the bad event bad3 in Subsection 9.2.2
for LSSK and in Subsection 9.3.2 for CKEY. For CIV and CIVK, all values in A have
a multiplicity of 1, as all states within a packet need to be distinct due to the requirement
on the packet length to have a period of at least ℓp . Additionally, as the entire IV is part of
the non-volatile internal state, states cannot collide for two different IVs.3

As no collisions occur in the αr -values, we can say that for all E -queries (x , r) and their
corresponding αr -values αr ∈A , and for all z ∈ {0,1}, we have:

Pr
real
[F (αr) = z] = Pr

ideal
[E (x , r) = z].

Note that, in the real world, E (x , r) = F (αr).

EF-Collisions. Collisions between E - and F -queries do not occur in the good tran-
scripts, as these have been excluded in the bad events bad1 and bad2. Hence, we know
thatA ∩F = ;. In the ideal world, the random function F is only evaluated on F -queries.
In the real world, E -queries also evaluate F. SinceA ∩F = ;, we know that for all y ∈F ,
the values F(y) are ‘fresh’ in the real world and have not been sampled through an E -query.
The same applies in the ideal world as E -queries do not sample the random function F.

Indistinguishable good transcripts. In particular, all random draws fromA ∪F
are independent and will output 0 or 1 with equal probability in either world. We can

3For CIV and CIVK the multiplicity of 1 will also hold true in the bad transcripts.

142 Chapter 9. Proving Security

conclude that for all E -queries (x , r) ∈ τE and their corresponding αr -values αr ∈A , for
all y ∈F , and for all z , z ′ ∈ {0,1}:

Pr
real
[F (αr) = z ,F (y) = z ′] = Pr

ideal
[E (x , r) = z ,F (y) = z ′].

Again, note that, in the real world, E (x , r) = F (αr). �

10 | Presenting the DRACO Stream
Cipher

For the CIVK construction, a security level of the entire volatile state length was shown in
the last chapter. The Draco stream cipher builds upon CIVK and uses a 128-bit volatile
state size and a 128-bit non-volatile state size. The 128-bit secret key is loaded into the
non-volatile register cells, and the 96-bit IV and a 32-bit key prefix are loaded into the
non-volatile register cells. The packet length is 232 bits.

We will first present the specification of Draco that was presented at FSE 2023 and
published in ToSC 2022 [HMKM22]. Unfortunately, this version has a weakness in its key
schedule that was pointed out by Banik [Ban22]. Essentially, Banik’s attack exploits the fact
that the IV bits and the key prefix bits are combined cyclically using the bitwise exclusive-or
operation. This allows an attacker to craft IVs such that the key-IV-schedule bit is zero for
several (approximately 96) clock cycles. This stream of zeros repeats periodically.

In Chapter 11, we will present possibilities on how to fix these vulnerabilities. This is
currently a work in progress. The main idea is to choose the key prefix bits based on an
address that is generated from one of the NFSRs.

10.1 Design Specification of DRACO

The design of Draco is similar to that of Lizard [HKM17a], which was in turn inspired by
the Grain family [HJMM08] of stream ciphers. In particular, the internal state of Draco
is distributed over two interconnected feedback shift registers (FSRs) as depicted in Fig-
ure 10.1.

Note, however, that while Grain uses one linear feedback shift register (LFSR) and one
nonlinear feedback shift register (NFSR), which, moreover, are of the same length, Draco
(like Lizard) uses two NFSRs of different lengths instead. The reasons for this design
choice will be explained in Section 10.2. Like in Grain, the third important building block
besides the two FSRs is a nonlinear output function, which takes inputs from both shift
registers and is also used as part of the state initialization algorithm. A major difference to
Grain (and also Lizard) is that Draco continuously uses the IV and (parts of) the key not

143

144 Chapter 10. Presenting the DRACO Stream Cipher

NFSR2 NFSR1

a

Key-IV ScheduleKey Prefix 0,IV

dt

9732

40

f2
33

f1

zt

49 10

B t
0 B t

94 S t
0 S t

32

S t
0

Figure 10.1: Draco in keystream generation mode.

only during state initialization but also during keystream generation.
We describe the components of the cipher in detail in Section 10.1.1 and specify how it

is operated during state initialization in Section 10.1.2 and during keystream generation in
Section 10.1.3. For the sake of clarity, subsections 10.1.1–10.1.3 contain only the technical
aspects of Draco. Explanations of important design choices for our construction are given
separately in Section 10.2, along with a discussion of the security properties of the particular
components,e.g., the algebraic properties of the feedback functions.

10.1.1 Components

Let K =
�
K0, . . . ,K127
�

denote the 128-bit secret key and IV =
�
IV0, . . . , IV95
�

the 96-
bit public IV. The 128-bit volatile internal state of Draco is distributed over two NFSRs,
NFSR1 and NFSR2, whose contents at time t = 0,1, . . . we denote by

�
S t
0 , . . . , S

t
32

�
and�

B t
0 , . . . ,B

t
94

�
, respectively (cf. Figure 10.1). As NFSR1 and NFSR2 are Fibonacci-type,

for t ∈N it holds that S t+1
i := S t

i+1, i = 0, . . . ,31, and B t+1
j := B t

j+1, j = 0, . . . ,93.

Non-volatile state. Besides the 128-bit volatile internal state, Draco additionally em-
ploys a 128-bit non-volatile internal state, which is formed by the 96-bit public IV and the
first 32 bits (i.e., K0, . . . ,K31) of the 128-bit secret key.

Specification (Key schedule)

Based on the 96-bit public IV, the first 32 key bits, and the public 1-bit constant 0,
in clock cycle t the key-IV-schedule bit (KIS bit) dt is computed as

dt :=

xt mod 97, for 0 ≤ t ≤ 255,
Kt mod 32 ⊕ xt mod 97, for t ≥ 256,

where x0 := 0 and xi := IVi−1 for i = 1, . . . ,96.

Chapter 10. Presenting the DRACO Stream Cipher 145

The KIS-bit dt is fed to NFSR2 as depicted in Figure 10.1 and described more formally
below.

NFSR1. Draco’s NFSR1 replaces the LFSR of the Grain family of stream ciphers.
NFSR1 is 33 bits wide and corresponds (with a slight adaption, see below) to the NFSR
A12 of the eSTREAM Phase 2 (hardware portfolio) candidate ACHTERBAHN-128/80
[GGK06]. For all starting states, it has a guaranteed period of 233, i.e., it is truly maximal.

Specification (Feedback bit of NFSR1)

NFSR1 can be specified by the following update relation (during keystream genera-
tion), defining f1 depicted in Figure 10.1:

S t+1
32 := S t

0 ⊕ S t
2 ⊕ S t

7 ⊕ S t
9 ⊕ S t

10 ⊕ S t
15 ⊕ S t

23 ⊕ S t
25 ⊕ S t

30 ⊕ S t
8 S

t
15 ⊕ S t

12S
t
16

⊕ S t
13S

t
15 ⊕ S t

13S
t
25 ⊕ S t

1 S
t
8 S

t
14 ⊕ S t

1 S
t
8 S

t
18 ⊕ S t

8 S
t
12S

t
16 ⊕ S t

8 S
t
14S

t
18

⊕ S t
8 S

t
15S

t
16 ⊕ S t

8 S
t
15S

t
17 ⊕ S t

15S
t
17S

t
24 ⊕ S t

1 S
t
8 S

t
14S

t
17 ⊕ S t

1 S
t
8 S

t
17S

t
18

⊕ S t
1 S

t
14S

t
17S

t
24 ⊕ S t

1 S
t
17S

t
18S

t
24 ⊕ S t

8 S
t
12S

t
16S

t
17 ⊕ S t

8 S
t
14S

t
17S

t
18

⊕ S t
8 S

t
15S

t
16S

t
17 ⊕ S t

12S
t
16S

t
17S

t
24 ⊕ S t

14S
t
17S

t
18S

t
24 ⊕ S t

15S
t
16S

t
17S

t
24

⊕¬S t
1¬S t

2 · · ·¬S t
30¬S t

31¬S t
32.

Note that NFSR1 of Draco differs from NFSR A12 of ACHTERBAHN-128/80 only in
the additional final term ⊕¬S t

1¬S t
2 · · ·¬S t

30¬S t
31¬S t

32, which turns the period 233 − 1 of
A12 into the truly maximal period 233 for NFSR1. That is, NFSR1 of Draco cannot get
stuck in the all-zero state.

NFSR2. NFSR2 is 95 bits wide and uses a modified version of g from Grain-128a
[ÅHJM11] as its feedback polynomial. More precisely, f2 of NFSR2 (cf. Figure 10.1)
shifts six taps of g by two positions to the left in order to fit a 95 bit register (i.e., tap shifts
86 ← 88, 89 ← 91, 90 ← 92, 91 ← 93, 93 ← 95, 94 ← 96). Moreover, four quad-
ratic monomials and one degree-three monomial are added to further strengthen Draco,
inter alia, against algebraic attacks. This results in the following update relation (during
keystream generation):

Specification (Feedback bit of NFSR2)

The feedback bit of NFSR2 is calculated as follows:

B t+1
94 := S t

0 ⊕ dt ⊕B t
0 ⊕B t

26 ⊕B t
56 ⊕B t

89 ⊕B t
94 ⊕B t

3B
t
67 ⊕B t

11B
t
13

⊕B t
17B

t
18 ⊕B t

27B
t
59 ⊕B t

36B
t
39 ⊕B t

40B
t
48 ⊕B t

50B
t
79 ⊕B t

54B
t
71

⊕B t
58B

t
63 ⊕B t

61B
t
65 ⊕B t

68B
t
84 ⊕B t

8B
t
46B

t
87 ⊕B t

22B
t
24B

t
25

146 Chapter 10. Presenting the DRACO Stream Cipher

⊕B t
70B

t
78B

t
82 ⊕B t

86B
t
90B

t
91B

t
93.

Note that this update relation for B t+1
94 additionally contains the masking bit S t

0 from
NFSR1 (analogously to the Grain family) as well as the KIS bit dt (unlike the Grain
family).

Output function a. The output function a : {0,1}59 −→ {0,1} builds on the construc-
tion scheme introduced in [MJSC16] as part of the FLIP family of stream ciphers. Please
refer to Section 10.2 for details.

Specification (Output bit of Draco)

a is defined through the output bit zt of Draco at time t , which is computed as

zt :=Lt ⊕Qt ⊕T (1)t ⊕T (2)t ⊕T (3)t ,

where

Lt := B t
7 ⊕B t

15 ⊕B t
32 ⊕B t

47 ⊕B t
66 ⊕B t

80 ⊕B t
92,

Qt := B t
5B

t
85 ⊕B t

12B
t
74 ⊕B t

20B
t
69 ⊕B t

34B
t
57,

T (1)t := B t
53 ⊕B t

38B
t
44 ⊕B t

23B
t
49B

t
83 ⊕B t

6B
t
33B

t
51B

t
73

⊕B t
4B

t
29B

t
43B

t
60B

t
81 ⊕B t

9B
t
14B

t
35B

t
42B

t
55B

t
77

⊕B t
1B

t
16B

t
28B

t
45B

t
64B

t
75B

t
88,

T (2)t := S t
26 ⊕ S t

5 S
t
19 ⊕ S t

11S
t
22S

t
31,

T (3)t := B t
76 ⊕ S t

3B
t
10 ⊕ S t

20B
t
21B

t
30 ⊕ S t

6 S
t
29B

t
62B

t
72.

Chapter 10. Presenting the DRACO Stream Cipher 147

10.1.2 State Initialization

The state initialization process can be divided into two phases, first key loading and then
grain-like mixing, and is similar to the classical Grain-type initialization.

Phase 1, key loading. The first phase of the initialization consists of loading the key
into the registers.

Specification (Key loading)

The registers of the keystream generator are initialized as follows:

B0
j :=

K j ⊕ 1, for j = 0,

K j , for j ∈ {1, . . . ,94} ,
S 0
i := Ki+95, for i ∈ {0, . . . ,32} .

NFSR2 NFSR1

a

Key-IV ScheduleKey Prefix 0,IV

dt

9732

40

f2
33

f1

zt

49 10

B t
0 B t

94 S t
0 S t

32

S t
0

Figure 10.2: Draco in phase 2 of the state initialization.

Phase 2, Grain-like mixing. Clock the cipher 512 times without producing actual
keystream. Instead, at time t = 0, . . . ,511, the output bit zt is fed back into both FSRs
as depicted in Figure 10.2. To avoid ambiguity, we now give the full update relations that
will be used for NFSR2 and NFSR1 in phase 2.

Specification (Grain-like mixing)
For t = 0, . . . ,511, compute

B t+1
j := B t

j+1 for j ∈ {0, . . . ,93} ,
B t+1
94 := zt ⊕ S t

0 ⊕ dt ⊕B t
0 ⊕B t

26 ⊕B t
56 ⊕B t

89 ⊕B t
94 ⊕B t

3B
t
67 ⊕B t

11B
t
13

⊕B t
17B

t
18 ⊕B t

27B
t
59 ⊕B t

36B
t
39 ⊕B t

40B
t
48 ⊕B t

50B
t
79 ⊕B t

54B
t
71

148 Chapter 10. Presenting the DRACO Stream Cipher

⊕B t
58B

t
63 ⊕B t

61B
t
65 ⊕B t

68B
t
84 ⊕B t

8B
t
46B

t
87 ⊕B t

22B
t
24B

t
25

⊕B t
70B

t
78B

t
82 ⊕B t

86B
t
90B

t
91B

t
93,

S t+1
i := S t

i+1 for i ∈ {0, . . . ,31} ,
S t+1
32 := zt ⊕ S t

0 ⊕ S t
2 ⊕ S t

7 ⊕ S t
9 ⊕ S t

10 ⊕ S t
15 ⊕ S t

23 ⊕ S t
25 ⊕ S t

30 ⊕ S t
8 S

t
15 ⊕ S t

12S
t
16

⊕ S t
13S

t
15 ⊕ S t

13S
t
25 ⊕ S t

1 S
t
8 S

t
14 ⊕ S t

1 S
t
8 S

t
18 ⊕ S t

8 S
t
12S

t
16 ⊕ S t

8 S
t
14S

t
18

⊕ S t
8 S

t
15S

t
16 ⊕ S t

8 S
t
15S

t
17 ⊕ S t

15S
t
17S

t
24 ⊕ S t

1 S
t
8 S

t
14S

t
17 ⊕ S t

1 S
t
8 S

t
17S

t
18

⊕ S t
1 S

t
14S

t
17S

t
24 ⊕ S t

1 S
t
17S

t
18S

t
24 ⊕ S t

8 S
t
12S

t
16S

t
17 ⊕ S t

8 S
t
14S

t
17S

t
18

⊕ S t
8 S

t
15S

t
16S

t
17 ⊕ S t

12S
t
16S

t
17S

t
24 ⊕ S t

14S
t
17S

t
18S

t
24 ⊕ S t

15S
t
16S

t
17S

t
24

⊕¬S t
1¬S t

2 · · ·¬S t
30¬S t

31¬S t
32,

where zt and dt are computed as described in Subsection 10.1.1.

10.1.3 Keystream Generation

At the end of the state initialization, the 33-bit (initial) state of NFSR1 is
�
S 512
0 , . . . , S 512

32

�
and the 95-bit (initial) state of NFSR2 is

�
B512
0 , . . . ,B512

94

�
. The first keystream bit that

is used for plaintext encryption is z512. For t ≥ 512, the states
�
S t+1
0 , . . . , S t+1

32

�
and�

B t+1
0 , . . . ,B t+1

94

�
and the output bit zt are computed using the relations given in Subsec-

tion 10.1.1. Figure 10.1 depicts the structure of Draco during keystream generation.

Packet mode. As Draco is designed to be operated in packet mode, the maximum
size of a plaintext packet encrypted under the same key-IV pair is 232 bits and no key-IV
pair may be used more than once, i.e., for more than one packet. Let X =

�
x0, . . . , x|X |−1
�

denote such a plaintext packet and let z512, z513, . . . be the keystream generated for it as
described before. Then the corresponding ciphertext packet Y =

�
y0, . . . , y|X |−1
�

can be
produced via yi := xi ⊕ zi+512, i = 0, . . . , |X |−1. Decryption (given that the secret session
key and the public IV are known) works analogously.

Note that, though we use the terms plaintext/ciphertext packet here, Draco is really a
(synchronous) stream cipher, i.e., the keystream bits z512, z513, . . . are generated in a bitwise
fashion (and independently of the plaintext/ciphertext) and, consequently, the individual
plaintext bits xi can be encrypted and then,in the form of yi , transmitted as they arrive.
The same obviously holds for the decryption of the ciphertext bits yi .

10.2 Design Considerations

In this section, we provide additional explanations with regard to our design, which were
omitted in Section 10.1 for the sake of clarity. As Draco has a Grain-like structure, we
particularly focus on respective similarities and differences. Based on several of the follow-

Chapter 10. Presenting the DRACO Stream Cipher 149

ing properties, we will then argue in Section 10.3 why we believe that Draco resists the
currently known types of attacks against stream ciphers.

When describing the properties of the NFSRs and the output function, we will use
standard terminology like nonlinearity, order of correlation immunity, diffusion parameter,
etc. We refer the reader to [MJSC16, CCH10] for the corresponding definitions and ex-
planations of these concepts.

10.2.1 The Key-IV Schedule

The key-IV schedule defined in Subsection 10.1.1 is designed in such a way that for all
t ≥ 0 the mapping Dt : {0,1}32 × {0,1}96 −→ {0,1}128, defined as

Dt (K0, . . . ,K31, IV0, . . . , IV95) := (dt , dt+1, . . . , dt+127)

is a bijective GF(2)-linear mapping. This follows directly from Lemma 10.1.

Lemma 10.1

Fix some r ∈ {0, . . . ,96}. The system of GF(2)-linear equations in the variables
u0, . . . , u31, v0, . . . , v96

vr = 0 (1)

u0 ⊕ v0 = u1 ⊕ v1 = · · · = u31 ⊕ v31 = 0 (2)

u0 ⊕ v32 = · · · = u31 ⊕ v63 = 0 (3)

u0 ⊕ v64 = · · · = u31 ⊕ v95 = 0 (4)

u0 ⊕ v96 = u1 ⊕ v0 = · · · = u31 ⊕ v30 = 0. (5)

has only one solution: u0 = · · · = u31 = v0 = · · · = v96 = 0.

This system corresponds the situation that t is chosen in such a way that the constant 0 is ad-
ded at position t + r , which is the case if r ≡ 97− t mod 97. Moreover, (u0, . . . , u31) is ob-
tained from (K0, . . . ,K31) by some cyclic shift, and (v0, . . . , v96) is obtained from (x0, . . . , x96)
by a cyclic right shift by r positions.

Proof. Note that us = 0 for s = r mod 32 follows from vr = 0. This implies vs−1 = 0
(by (5)) and us−1 = 0 (by (2)) and vs−2 = 0 (by (5)) and us−2 = 0 (by (2)) and so on, i.e.,
us = us−1 = · · · = u0 = 0. On the other hand, vs = 0 (by (2)) which implies us+1 = 0 (by
(5)) which implies vs+1 = 0 (by (2)) and so on, i.e., us = us+1 = · · · = u31 = 0. As all u-bits
are zero, by (2-5), all v-bits have to be zero, too. �

Note that the bijectivity of Dt makes Draco immune against the following type of
chosen-IV TMDTO-attacks, which we call zero d -stream attacks.

150 Chapter 10. Presenting the DRACO Stream Cipher

Zero d -stream attacks. Let K (0) ⊆ {0,1}32 be the set of all key prefixes kpre for
which there is some initial value IV ∈ {0,1}96 such that dt (kpre, IV) = 0 for all t ≥ 0.
Correspondingly, let IV (0) ⊆ {0,1}96 be the set of all initial value IV ∈ {0,1}96 for
which there is a key prefix kpre ∈ {0,1}32 such that dt (kpre, IV) = 0 for all t ≥ 0. For all
volatile internal states S ∈ {0,1}128 let Z0⃗(S) denote the block of the first 128 keystream
bits generated on S under the condition that the corresponding 128 d -stream bits are all
zero.

Offline

1. The attacker computesK (0) and IV (0)
2. The attacker computes Z0⃗(S) for 296 randomly and mutually independently chosen

internal states S ∈ {0,1}128 and stores them in a database D.

Online

3. The attacker asks for the keystream packet P (k∗, IV) ∈ {0,1}32, k∗ ∈ {0,1}128 the
secret key, for all initial values IV ∈ IV (0) and checks if P (k∗, IV) ∈ {0,1}32
contains a sub block D of length 128 which occurs in D.

4. In the case that a collision D = Z0⃗(S) was found, compute k∗ from S .

Note that, if k∗ ∈ K (0) then, in step 3, the attacker knows the packet P (k∗, IV ∗) for
some IV ∗ ∈ IV (0). This packet contains 232 keystream blocks Z0⃗(S

′) for the internal
state S ′ ∈ {0,1}128. By the birthday paradox, there will be a collision with D which yields
the secret key. If k∗ 6∈ K (0) then the attack fails. Consequently, the success probability of
the attack is around |K (0)| · 2−32, while the cost is at least 296.

Due to the fact that Dt is bijective for all t ≥ 0 (see Subsection 10.2.1) we have that
|K (0)| = |I V (0)| = 1, which implies that the zero d -stream attack against Draco does
not beat exhaustive key search.

10.2.2 NFSR1

NFSR1 has a width of 33 bits and replaces the maximum-length LFSR of the Grain fam-
ily. Considering the reduced size of the cipher’s volatile internal state (128 bits for Draco
compared to 256 bits for Grain-128a), the use of an NFSR is advantageous to enhance the
design’s resistance against algebraic and fast correlation attacks such as [TIM+18]. Unfor-
tunately, there is limited knowledge on the generic construction of large, cryptographically
strong NFSRs with maximal period. Nevertheless, for FSR sizes ranging from 30 to 40
bits, corresponding non-linear feedback functions can be identified through experimenta-
tion. In [GGK06], the designers of the eSTREAM Phase 2 (hardware portfolio) candidate
ACHTERBAHN-128/80 provide a collection of 13 such NFSRs, varying in size from 21
bits (NFSR A0) to 33 bits (NFSR A12). The latter size is perfectly adequate for our design

Chapter 10. Presenting the DRACO Stream Cipher 151

since, given the packet mode limitation with a maximum of 232 keystream bits per key-IV
pair, Draco does not require as large guaranteed periods as the Grain family.

All-zero state. While in the original Grain family, an initial all-zero state for the LFSR
is acceptable due to the sizes of the FSRs (both of key length), it must be strictly avoided for
small-state Grain-like stream ciphers. Specifically, for one out of every 233 key-IV combina-
tions, the mixing process used by Draco during state initialization will result in an all-zero
state for NFSR1. In such a scenario, NFSR A12 of ACHTERBAHN would get stuck in
the all-zero state because, similar to a maximum-length LFSR of this size, it only has a
period of 233−1 for non-zero starting states. In contrast, Draco’s NFSR1 achieves a truly
maximal period of 233 for any starting state. This is accomplished by introducing the term
⊕¬S t

1¬S t
2 · · ·¬S t

31¬S t
32 to ACHTERBAHN’s NFSR A12 as described in Section 10.1.1,

effectively ‘gluing’ the all-zero state into the original state cycle of NFSR A12 between the
states (1,0, . . . ,0) and (0, . . . ,0,1).

Properties. Therefore, we can evaluate the security of our NFSR1 based on the fol-
lowing properties of A12 given in [GGK06]: a nonlinearity of 114688, a order of correl-
ation immunity of 6, and a diffusion parameter1 of 54. Additionally, it is evident that
the feedback function of A12 is balanced and, thus (as it is 6th order correlation-immune),
6-resilient. For comparison, in Grain-128a, the feedback function of the LFSR (which is
replaced by NFSR1 in Draco) has a resiliency of 5. Finally, the algebraic degree of the
feedback function of A12 is 4.

Efficiency. Another important factor in selecting A12 from ACHTERBAHN as the
basis for Draco’s NFSR1 is its hardware efficiency. Despite having a relatively large algeb-
raic normal form, the designers of ACHTERBAHN have managed to provide a compact
hardware implementation of A12’s feedback function, which consumes only 31.75 gate
equivalents (GE) and has a logical depth of three (for more information regarding hard-
ware complexity and the explanation of measurement units such as GE, please refer to
Section 10.4).

10.2.3 NFSR2

NFSR2 is 95 bits wide and its feedback polynomial is a modified version of g from Grain-
128a [ÅHJM11]. In contrast to NFSR1, the period of NFSR2 during keystream genera-
tion is unknown because even after state initialization, it is not operated in a self-contained
manner. More precisely, due to the masking bit from NFSR1 and the KIS bit dt , NFSR2

1The diffusion parameter λ was determined experimentally in [GGK06] and denotes ‘the minimum number
of clock cycles needed in order to transform any two initial states of the shift register Aj of Hamming distance 1
into shift register states of Hamming distance close to N j /2’ (N j denotes the size of the shift register Aj).

152 Chapter 10. Presenting the DRACO Stream Cipher

is actually a filter instead of a real NFSR (cf. corresponding remark for the Grain family in
[HJMM08]).

Modifying g. As detailed in Section 10.1.1, for f2 of Draco, we shifted six taps of g
from Grain-128a two positions to the left, while ensuring that the property of g where
no tap appears more than once is preserved in f2. Additionally, we introduced the fol-
lowing new monomials to further strengthen Draco despite its smaller volatile internal
state: B t

36B
t
39, B

t
50B

t
79, B

t
54B

t
71, B

t
58B

t
63, B

t
8B

t
46B

t
87. It is worth noting that the tap in-

dices of these new nonlinear monomials are disjoint from the tap indices of all other
monomials in f2. Consequently, important properties of g in Grain-128a, such as its
balancedness and its resiliency of 4, carry over to f2. Similarly, the security of f2 in
Draco against linear approximations can be lower bounded by that of Grain-128a (which
has 214 best linear approximations with a bias of 63 · 2−15). As proven in [MJSC16],
the aforementioned disjointness property with respect to the newly added taps implies
that the nonlinearity of f2 in Draco can be calculated based on the nonlinearity of g
in Grain-128a (267403264) and its number of variables (29), along with the nonlinear-
ity of the sum of the new monomials (976) and its number of variables (11), as follows:
211 · 267403264+ 229 · 976− 2 · 267403264 · 976 = 549656723456 (approximately 239).
Similar to g in Grain-128a, the algebraic degree of f2 in Draco is 4.

In addition to these properties, g has successfully thwarted all cube-like attacks target-
ing the initialization of Grain-128a. In Section 10.3.3, we derive corresponding security
arguments for Draco.

10.2.4 Output Function a

In FSR-based stream cipher design, an important consideration is how to distribute the
responsibility of ensuring security between the driving register(s) and the output function.
To compensate for the fact that the volatile internal state of Draco is smaller than that
of Grain-128a, we decided that the output function should have more inputs and larger
algebraic degree instead. The construction scheme used for Draco’s output function a
is based on the approach introduced in [MJSC16] as part of the FLIP family of stream
ciphers. Specifically, Draco’s output function a can be expressed as the direct sum of a
linear function with seven monomials, a quadratic function with four monomials, a trian-
gular function with seven monomials, another triangular function with three monomials,
and a final triangular function with four monomials. Each tap of NFSR1 and NFSR2
appears at most once in a.

Properties. As a result, the output function of Draco is defined over 59 variables, is bal-
anced, and possesses the following security properties based on lemmata 3–6 in [MJSC16]:
a nonlinearity of 287580136809693184 (approximately 257), a resiliency of 9, an algebraic

Chapter 10. Presenting the DRACO Stream Cipher 153

immunity of at least 7, and a fast algebraic immunity of at least 8. The algebraic degree of
a is 7.

Guessing NFSR1. In the scenario where the attacker has knowledge of the content
of NFSR1 at time t (e.g., as part of a guess-and-determine attack), the output function
still relies on a minimum of 44 variables and ‘gracefully degrades’ into the direct sum of a
linear function with eight or nine (depending on the value of S t

3) monomials, a quadratic
function with four to six (depending on the values of S t

20 and S t
6 S

t
29) monomials, and a

triangular function with seven monomials. This conforms to the construction principle
introduced in [MJSC16] and results in the following worst-case security properties for
that situation: a nonlinearity of 8634823344128 (approximately 242), a resiliency of 8, an
algebraic immunity of at least 7, and a fast algebraic immunity of at least 8.

Tap positions. While the selection of tap positions for state update functions is often
restricted by the requirement to ensure a certain period (e.g., as seen in the case of NFSR1),
the choice of tap positions for an output function is typically less rigorously justified. The
design documents introducing members of the Grain family (e.g., [HJM06, ÅHJM11,
HJMM08]) primarily focus on the conceptual decision of whether certain taps used in the
output function should originate from the NFSR or the LFSR (and the quantity of taps
from each). The more specific question of which tap positions within each FSR are actually
selected for the output function is mostly discussed in the context of hardware acceleration
or when addressing issues that arise from actual attacks on previous versions (e.g., the attack
by Dinur and Shamir [DS11] on Grain-128, which led to a modification of tap positions
in the output function of Grain-128a [ÅHJM11]).

Positive difference sets. In the absence of canonical criteria for selecting tap posi-
tions in Grain-like constructions, we primarily rely on the concept of (full) positive differ-
ence sets introduced by Golić in [Gol96]. This concept was originally used to evaluate the
security of nonlinear filter generators consisting of a single LFSR and a nonlinear output
function. Notably, the fast correlation attacks against Grain v1 and Grain-128a described
in [TIM+18] align with this cipher model as they treat Grain’s NFSR as (part of) a filter for
its LFSR. For more information on Golić’s findings and their influence on Draco’s output
function, please refer to Subsection 10.2.5.

Binary decision diagrams. Another factor guiding our selection of tap positions for
Draco’s output function is the consideration of attacks based on binary decision diagrams
(BDDs). This type of attack, introduced by Krause in [Kra02] and applied to Grain-128
by Stegemann in [Ste07], highlights the importance of having a significant difference in
tap indices between the lowest and highest taps in each monomial. Section 10.3.6 provides
more detailed information on this topic.

154 Chapter 10. Presenting the DRACO Stream Cipher

10.2.5 Output Function a: Tap Selection

As mentioned in Subsection 10.2.4, the selection of tap positions for Grain-like construc-
tions lacks canonical criteria. Therefore, we primarily rely on the concept of (full) positive
difference sets introduced by Golić in [Gol96] to evaluate the security of nonlinear filter
generators that consist of a single LFSR and a nonlinear output function. A similar ap-
proach has been employed in other stream ciphers, such as Espresso [DH15] and Lizard
[HKM17a], which are based on NFSR and have Grain-like characteristics.

Golić defines ‘for a positive integer λ, call Γ a λth-order positive difference set if λ is the
maximum number of pairs of its elements with the same mutual difference (for λ = 1, we
get a full positive difference set)’ [Gol96] and, as a security criterion for output functions,
requires that the taps ‘should be chosen according to a full or a λth-order positive difference
set, with λ as small as possible’ [Gol96].

Properties. In line with this, the output function a of Draco has the following prop-
erties:

– No taps from NFSR1, except some of those in the additionally required term of f1,
⊕¬S t

1¬S t
2 · · ·¬S t

31¬S t
32 (cf. Section 10.1.1), are used at the same time for its feed-

back function f1 and the output function. (In Grain-128a, the feedback function
of the LFSR, which corresponds to NFSR1 in our construction, and the output
function do not share any taps, either.)

– The set
{5,11,19,22,26,31}

of the tap indices (all from NFSR1) of T (2)t is a full positive difference set. This
means that each two bits of the internal bitstream of NFSR1 never appear more
than once together as part of this triangular function.

– No taps from NFSR2 are used at the same time for its feedback function and the
output function. (In Grain-128a, the feedback function of the NFSR, which corres-
ponds to NFSR2 in our construction, and the output function share only a single
tap called ‘bi+95’ in [ÅHJM11].)

– The direct sumLt+Qt+T (1)t uses only taps fromNFSR2. (To maintain a sufficient
security level even when the content of the smaller NFSR1 is known to the attacker,
e.g., due to guessing; cf. Section 10.3.2.)

– The set
{7,15,32,47,53,66,76,80,92}

of the tap indices (all from NFSR2) of the linear monomials ofLt +T (1)t +T (3)t is
a full positive difference set.

Chapter 10. Presenting the DRACO Stream Cipher 155

– The set
{5,12,20,34,38,44,57,69,74,85}

of the tap indices (all fromNFSR2) of the quadratic monomials ofQt +T (1)t is a full
positive difference set. One consequence of this is that each two bits of the internal
bitstream of NFSR2 can form at most once a quadratic monomial together.

– The sets
{|5− 85|, |12− 74|, |20− 69|, |34− 57|, |38− 44|}

of differences between the two taps from NFSR2 of each quadratic monomial in
Qt +T (1)t and

{|3− 67|, |11− 13|, |17− 18|, |27− 59|, |36− 39|, |40− 48|,
|50− 79|, |54− 71|, |58− 63|, |61− 65|, |68− 84|}

of differences between the two taps from NFSR2 of each quadratic monomial in
the feedback function of NFSR2 are disjoint. Hence, even during phase 2 of the
state initialization, each two bits of the internal bitstream of NFSR2 can form at
most once a quadratic monomial together.

– None of the differences

{|5− 85|, |12− 74|, |20− 69|, |34− 57|, |38− 44|}

between the two taps (all from NFSR2) of each quadratic monomial in Qt +T (1)t

appears as a difference between two taps of a higher degree monomial of T (1)t .

– Each of the sets

{23,49,83} ,
{6,33,51,73} ,
{4,29,43,60,81} ,
{9,14,35,42,55,77} ,
{1,16,28,45,64,75,88}

of tap indices (all from NFSR2) of the monomials of degree 3, . . . ,7 of T (1)t is a
full positive difference set. Consequently, each two bits of the internal bitstream of
NFSR2 never appear more than once together as part of each (i.e., the same) of
those monomials.

156 Chapter 10. Presenting the DRACO Stream Cipher

10.2.6 Continuous Key and IV Usage

In this subsection, we provide further details about how the generic CIVK construction
introduced in Subsection 8.1.1 is instantiated concretely through Draco. In particular,
we argue about the choice of the different parameter lengths. With Draco we want to
achieve a security level of 128 bits. Accordingly, the key length is chosen to be 128 bits.

Parameter lengths. As Draco is designed to operate in packet mode and a key-IV pair
may be used to generate at most 232 keystream bits, the key prefix length is log2 2

32 = 32
bits. This also determines the length of the initial value: As the desired security level is
2128 and the packet length is 232 bits, we need to set the length of the initial value to be
128− 32 = 96 bits. This corresponds to a total volatile internal state size of 128 bits and a
total non-volatile internal state size of 128 bits.

Mixing phase. It is easy to see that Draco’s mixing phase in fact realizes a bijection
(between the 256-bit internal states at t = 0 and those at t = 512) as assumed by our
security proof for the CIVK construction given in Section 9.5. Draco deviates from the
generic construction scheme only in a tiny detail. During key loading at t = 0, the first key
bit is inverted (i.e., B0

0 := K0 ⊕ 1). This is to avoid the ‘sliding property’ of Grain v1 and
Grain-128 that was pointed out in [DCKP08] (see Section 10.3.4 for further details). In
terms of our TMDTO security proof, however, this modification is completely irrelevant.

10.3 Cryptanalysis

In the following subsections, we will argue for several types of attacks which weakened or
even broke other stream ciphers in the past, why we believe that Draco will resist them. In
Section 8.2 we already argued about time-memory-data tradeoff attacks against the CIVK
construction that underlies Draco.

The discussion in this section will build on a variety of results that illuminate the se-
curity of Grain-v1 against these attacks, and that address a number of established security
parameters. Since Grain and Draco are very similar in the structural elements relevant to
algebraic and correlation attacks, it seems sufficient to us in the given context to describe
the extent to which Draco meets or exceeds the design criteria relevant to Grain’s secur-
ity. Of course, this does not mean provable security against every conceivable variant of
such attacks. But establishing a more extended and detailed formal framework for formally
proving the security of grain-like ciphers would have to go beyond the existing state of the
art and would thus be a challenging scientific project in its own right, clearly beyond the
scope of this paper. We think that further development of this formal framework should
come from new attacks ideas being published from within the scientific community.

Chapter 10. Presenting the DRACO Stream Cipher 157

10.3.1 Correlation Attacks, Linear Approximations

Correlation attacks and fast correlation attacks, as described in the publications [MJSC16,
TIM+18, ZGM17, TMA20, WLLM19], pose a significant threat to Grain-like stream
ciphers. These attacks specifically focus on the LFSR of the cipher and aim to identify
sufficiently biased linear approximations of the NFSR’s feedback and the output function.
In the Draco cipher, the LFSR of Grain is substituted with NFSR1, which exhibits high
nonlinearity and correlation immunity. Additionally, the output function of Draco in-
corporates a greater number of inputs, increased resiliency, and significantly higher nonlin-
earity compared to Grain-128a. Moreover, the feedback function of NFSR2 in Draco
has been further strengthened, as explained in Section 10.2.3.

In [MJSC16], Méaux et al. highlight the significance of ‘good balancedness, non-lin-
earity, and resiliency properties’ of the filtering function to withstand correlation attacks
[Sie85] and fast correlation attacks [MS89]. As explained in Section 10.2.4, Draco in-
corporates a relatively complex output function to compensate for the smaller volatile part
of the internal state when compared to the original Grain family. The output function
of Draco is defined over 59 variables and exhibits a nonlinearity of approximately 257,
whereas the output function of Grain-128a is defined over 17 variables with a nonlinearity
of 61440. Additionally, the resiliency of Draco’s output function is 9, whereas that of
Grain-128a is 7.

In [BGM06], Berbain, Gilbert and Maximov present an attack on Grain v0 that com-
bines linear approximations of the NFSR’s feedback function and of the output function
in order to recover the initial state of the LFSR given a sufficient amount of keystream
bits. As possible countermeasures, Berbain, Gilbert and Maximov proposed the following
modifications [BGM06]: ‘Introduce several additional masking variables from the NFSR
in the keystream bit computation’, ‘replace g by a 2-resilient function’, ‘modify the filter-
ing function h in order to make it more difficult to approximate’ and ‘modify the function
g and h to increase the number of inputs’. For Grain-128a, the feedback function g of
the NFSR was constructed with the above attack in mind. The designers state: ‘The best
linear approximation of g is of considerable interest, and for it to contain many terms,
we need the resiliency of the function g to be high. We also need a high nonlinearity in
order to obtain a small bias.’ As a consequence, g was chosen such that it has nonlinearity
267403264 (≈ 228) and resiliency 4.

As explained in Section 10.2.3, the feedback function f2 of NFSR2 in Draco builds
on that of Grain-128a in a way that preserves its balancedness and resiliency, but features
an even higher nonlinearity (≈ 239). Moreover, in accordance with the above suggestions
from [BGM06] and the construction principle underlying g of Grain-128a (see previous
paragraph), the output function of Draco has more than three times as many inputs, a
much higher nonlinearity and a higher resiliency than that of Grain-128a (cf. values at
the beginning of this subsection) in order to strengthen it against linear approximations.

158 Chapter 10. Presenting the DRACO Stream Cipher

In particular, it is defined over the state variables of both FSRs, featuring monomials of
all degrees between one and seven defined over NFSR2 (cf.triangular function T (1)t in
Subsection 10.1.1), monomials of degrees one, two, and three over NFSR1 (cf.triangular
function T (2)t), and monomials of degrees two, three, and four with variables from both
FSRs mixed (cf.triangular function T (3)t).

It should be noted that (fast) correlation attacks against Grain-like structures, as pub-
lished in [MJSC16, TIM+18, ZGM17, TMA20, WLLM19], primarily target the ciphers’
LFSR. However, in the case of Draco, as explained in Section 10.2.2, the LFSR of the
Grain family is replaced by an NFSR with high nonlinearity and correlation immunity.
This approach has already been utilized in Lizard, making it the only Grain-like stream
cipher that remains completely unaffected by (fast) correlation attacks thus far.

In their work [TMA20], Todo, Meier, and Aoki investigate the data limitation of small-
state stream ciphers in the context of correlation attacks. For the Plantlet cipher, which
aims for 80-bit security, they demonstrate that the secret key can be recovered if approxim-
ately 253 keystream bits per key-IV combination are available. Fortunately, this condition
cannot be met in practice as the cipher’s designers set a corresponding limit of 230 bits,
which is considered ‘conservative’ by Todo, Meier and Aoki. Based on these findings, the
designers of Draco (which has larger key and state sizes compared to Plantlet) have im-
posed a maximum packet length of 232 bits, aligning with the recommended limitations.

Finally, as explained in Section 10.2.4, the choice of tap positions for Draco’s out-
put function follows the concept of (full) positive difference sets, which was introduced
by Golić in [Gol96] as a design criterion to strengthen nonlinear filter generators against
correlation attacks.

10.3.2 Algebraic Attacks

Algebraic attacks against Draco can be classified into two primary approaches. The first
approach involves representing the observed keystream bits as functions of the unknown
128 key bits and attempting to solve the resulting system of equations. However, this
method requires including all state transitions down to t = 0. Considering the nonlinearity
of both FSRs and the high algebraic degree of the output function (which is employed in
phase 2 of the state initialization), this approach is evidently more complex compared to
the second attack approach: expressing the observed keystream bits as functions of the
unknown 128 bits of the volatile initial state at t = 512 and the unknown 32-bit key
prefix (which is continuously used during keystream generation), and then solving the
corresponding system of equations. Therefore, in the subsequent part of this subsection,
we will concentrate on the second approach.

First of all, note that, to the best of our knowledge, no successful (i.e., having complex-
ity lower than 2128) algebraic attacks that can recover arbitrary initial states for Grain-128a

Chapter 10. Presenting the DRACO Stream Cipher 159

have been reported so far.2 Due to the smaller volatile internal state of Draco, the cor-
responding system of equations in such an attack would, in fact, involve a lower number
of variables. However, this reduction is compensated by the larger degree of the output
function, which is now 7 compared to 3 for Grain-128a. As emphasized in Section 10.2.4,
Draco’s output function follows the construction scheme introduced in [MJSC16]. It de-
pends on 59 variables, exhibits a nonlinearity of approximately 257, an algebraic immunity
of at least 7, and a fast algebraic immunity of at least 8. Moreover, both FSRs are now
nonlinear, and NFSR1, corresponding to the LFSR of the original Grain family, has an
algebraic degree of 4. Additionally, we have hardened NFSR2 against algebraic attacks
by incorporating five additional nonlinear monomials compared to g in Grain-128a (cf.
Section 10.2.3). Considering these properties, we expect that algebraic attacks against full
Draco will not have a complexity lower than that of exhaustive key search.

Guessing NFSR1. It is important to note that even when guessing the shorterNFSR1,
Draco’s output function still relies on at least 44 variables and possesses the following worst-
case security properties: nonlinearity of approximately 242, algebraic immunity of at least
7, and fast algebraic immunity of at least 8. For comparison, the complete output function
of Grain-128a is dependent on 17 variables, exhibits a nonlinearity of 61440, and has an
algebraic degree of 3. Therefore, in the context of a corresponding guess-and-determine
attack, an algebraic attack on NFSR2 similar to the one described in [BGJ09] will have a
large enough complexity.

Guessing NFSR2. Guessing the larger NFSR2 is even less promising from an at-
tacker’s perspective. Due to its size of 95 bits and the 128-bit security level targeted by
Draco, a successful state-recovery attack against the full cipher would need to subsequently
recover the 33-bit internal state of NFSR1 and the 32-bit key prefix used in the key-IV
schedule, with a time-memory-data complexity below 2128−95 = 233. Notably, these 65
remaining unknowns also influence the further state updates of NFSR2, which, unlike
NFSR1, does not operate autonomously during keystream generation. Therefore, while
guessing NFSR1 allows for its elimination (including its feedback function and its con-
tribution to the output function) from subsequent cryptanalysis steps, this is not the case
when guessing NFSR2. In other words, an attacker guessing NFSR2 would need to re-
cover 65 unknowns with a time-memory-data complexity below 233, while still being faced
with both feedback functions and the complete output function of Draco.

2The currently best result seems to be an algebraic attack by Berbain, Gilbert and Joux against a modified
version of Grain-128, which requires 2115 computations and 239 keystream bits [BGJ09]. They point out, how-
ever, that ‘[t]his attack is not applicable to the original Grain-128’. Moreover, note that the required amount of
keystream bits (belonging to a single initial state) would not be available for Draco due to the maximum packet
length of 232 bits.

160 Chapter 10. Presenting the DRACO Stream Cipher

10.3.3 Conditional Differentials, Cube Attacks

In [LM12], Lehmann and Meier study the security of Grain-128a against dynamic cube
attacks and differential attacks. They come to the following conclusion:

To analyse the security of the cipher, we study the monomial structure and
use high order differential attacks on both the new and old versions. The com-
parison of symbolic expressions suggests that Grain-128a is immune against
dynamic cube attacks. Additionally, we find that it is also immune against
differential attacks as the best attack we could find results in a bias at round
189 out of 256.

The currently best key-recovery cube attack against round-reduced Grain-128a is presented
in [TIHM17]. It is based on the division property and works for 183 initialization rounds.

Draco has 512 rounds in phase 2 of the state initialization, where the Grain-like mixing
is performed as described in Section 10.1.2. On top of that, from the second half of phase 2
onwards (i.e, for all t ≥ 256), the 32-bit prefix of the secret key is continuously involved
in the state update of NFSR2.

Note that the volatile internal state of Draco (128 bits) is smaller than that of Grain-
128a (256 bits), whereas the output function is much more dense. It depends on 59 vari-
ables as compared to 17 in Grain-128a. The output function of Draco also has more
nonlinear monomials (15) than that of Grain-128a (5). Moreover, now both FSRs are
nonlinear and the feedback function of NFSR1 is defined over more inputs (40 vs.19)
and has more nonlinear monomials (15 vs.10) than that of Grain-128a’s NFSR.

The combination of a smaller volatile state and more dense feedback and output func-
tions causes a faster diffusion of differentials and of the monomial structure for Draco.
Together with the doubled number of initialization rounds, this should make Draco at
least as resistant against differential attacks and cube attacks as Grain-128a, which seems
to be already sufficiently secure in that respect.

Earlier version of Draco. In 2021 Horn [Hor21] studied the resistance of an earlier
version of Draco against cube attacks. Since then, the key-IV schedule was slightly mod-
ified to prevent the zero d -stream attacks mentioned in Subsection 10.2.1. In particular
the work by Horn considers a key prefix of length 33 instead of 32 and an IV of length
95 instead of 96 with an additional 0-prefix. This will not significantly change the results
obtained in the analysis against cube attacks.

Horn [Hor21] considered only 99 and 100 initialization rounds instead of the full 512
as ‘the superpoly recovery for Draco frequently turned out to become computationally
infeasible even for a very small number of initialization rounds.’ Horn observed that in
each clock cycle only one IV bit enters the internal state of NFSR2. He found practical
distinguishers for 99 and 100 initialization rounds. Yet, he was not successful in attack-
ing 101 initialization rounds. The author states that ‘it was not possible to recover the

Chapter 10. Presenting the DRACO Stream Cipher 161

superpoly of a cube just a few rounds after the cube variable with the highest index is intro-
duced.’ Further, since Draco uses 512 initialization rounds, Horn considers the margin
more than sufficient to provide very high security against his cube attacks. Horn concludes
that the ‘extremely fast growing complexity of these superpolys of an even simplified ver-
sion of Draco, again supports our assumption that Draco is extremely resistant against
the considered attack.’

10.3.4 Slide Attacks, Related Key Attacks

In [Küç06], Küçük first pointed out a sliding property of the state initialization of Grain v1,
which was later formally published by De Cannière, Küçük and Preneel in [DCKP08]
as: ‘For a fraction of 2−2·n of pairs (K , IV), there exists a related pair (K ∗, IV ∗) which
produces an identical but n-bit shifted key stream.’ In the same paper, the authors describe
how this property can be exploited to speed up exhaustive key search for Grain v1 (and
also for Grain-128) by a factor of two.3 In addition, they also suggest a related-key slide
attack, for which they note: ‘As is the case for all related key attacks, the simple attack just
described is admittedly based on a rather strong supposition.’ [DCKP08] As a reaction, the
designers of Grain-128a changed the 22-bit constant (1, . . . ,1) that was used in the state
initialization of Grain-128 to (1, . . . ,1,0).

Avoiding the sliding property. To avoid the above sliding property, we set B0
0 :=

K0 ⊕ 1 in phase 1 of the state initialization (cf. Section 10.1.2). As a result, for a key-IV
pair (K , IV), a related key-IV pair (K ∗, IV ∗) in the sense of [DCKP08] would have to
satisfy

K ∗0 = K1 ⊕ 1. (1)

Let dt and d ∗t denote the key-IV-schedule bits computed on the basis of (K , IV) and
(K ∗, IV ∗), respectively, as described previously in Section 10.1.1. For the sliding property
from [DCKP08] to occur, dt+1 = d ∗t would need to hold for t ≥ 0. In particular, we get

IV1 = d1 = d ∗0 = IV ∗0 (2)

and

K1 ⊕ IV1 = d289 = d ∗288 = K
∗
0 ⊕ IV ∗0 . (3)

It is easy to see that equations (1), (2), and (3) cannot be satisfied simultaneously.
Note that, without inverting K0 in phase 1 of the state initialization together with

3More precisely, this speed up refers to making the key candidate checks more efficient. The actual number
of key candidate checks, however, is not reduced compared to exhaustive key search. Still, we consider such a
sliding property undesirable as it might pave the way for other attacks and, hence, seek to avoid it for Draco.

162 Chapter 10. Presenting the DRACO Stream Cipher

having different definitions of dt for t ≤ 255 and t ≥ 256, Draco would in fact suffer
from a variant of the sliding property, despite continuously employing the IV and the 32-bit
key prefix for state update during keystream generation.

Related key & fault attacks. Let us also emphasize that, similar to the statement
made by De Cannière, Küçük, and Preneel in [DCKP08] as cited earlier, we also consider
the assumptions underlying related-key attacks to be quite strong. Specifically, we do not
claim security in situations where a potential victim generates keystreams using secret re-
lated keys, while an attacker attempts to recover one or more of these keys. This scenario
is often motivated by fault attacks, where an attacker manipulates the secret internal state
and/or the unknown key bits through techniques like clock glitches, voltage spikes, optical
or electromagnetic fault injection, etc. Additionally, it may arise due to the usage of a weak
(session) key derivation method, which is an obvious security vulnerability that should
be avoided regardless of the employed cipher. Furthermore, various established counter-
measures are available at the hardware design level to protect against fault attacks (see, for
example, [KSV13] for an overview). Therefore, we do not make security claims regarding
other types of side-channel attacks either.

10.3.5 Weak Key-IV Pairs

In [ZW09], Zhang and Wang introduce the notion of weak key-IV pairs for the Grain
family of stream ciphers. They show that Grain-128 has 296 such pairs, which lead to an
all-zero initial state of the LFSR, and use them to mount distinguishing attacks and initial
state recovery attacks. In [ÅHJM11], the designers of Grain-128a point out: ‘We note that
the IV is normally assumed to be public, and that the probability of using a weak key-IV
pair is 2−128. Any attacker guessing this to happen and then launching a rather expensive
attack, is much better off just guessing a key.’

All-zero state. In analogy to the definition of Zhang and Wang, weak key-IV pairs for
Draco would lead to an all-zero initial state of NFSR1. Such pairs, however, are now
completely unproblematic (and, hence, not weak anymore) as the 33-bit-wideNFSR1 has
truly maximal period 233. In particular, unlike the LFSR of the Grain family, it cannot get
stuck in the all-zero state.

Note that without adding the final term ⊕¬S t
1¬S t

2 · · ·¬S t
30¬S t

31¬S t
32 to ACHTER-

BAHN’s NFSR A12 for obtaining NFSR1 of Draco (cf. Section 10.1.1), there would
have actually been about 2191 weak key-IV pairs out of 2224 total key-IV pairs, leading to
a probability of 2−33 for using a weak pair. Thus, corresponding attacks might have posed
a real threat to Draco, which is now avoided.

Chapter 10. Presenting the DRACO Stream Cipher 163

10.3.6 BDD-based Attacks

In the paper [Kra02], Krause introduced the concept of utilizing binary decision diagrams
(BDDs) to attack LFSR-based stream ciphers such as A5/1 in the GSM standard or E0 in
Bluetooth. Later, Stegemann demonstrated in [Ste07] how this approach can be extended
to NFSR-based stream ciphers like Trivium and Grain.

In contrast to TMD tradeoff attacks or correlation attacks, which potentially require a
lot of known keystream, BDD attacks are short-keystream attacks in the sense that only the
information-theoretic minimum of keystream bits (i.e., often only few more than n bits of
keystream for a keystream generator of internal state length n) is required to recover the
corresponding initial state.

Although we are currently not aware of any BDD attack faster than exhaustive key
search against any member of the Grain family, the key design implication derived from
Stegemann’s BDD-related cryptanalytic findings for Grain-like stream ciphers is that the
maximum number of what he terms active monomials in the feedback functions and output
function should be maximized (refer to [Ste07] for more details). In Stegemann’s setting,
for Grain-128a, the maximum number of active monomials would be 0 for the LFSR, 3
for the NFSR, and 3 for the output function. In comparison, for Draco, the maximum
number of active monomials would be 19 for NFSR1, 6 for NFSR2, and at least 10 for
the output function a. As a result, we anticipate that despite the smaller volatile internal
state, Draco will also resist BDD attacks.

10.3.7 Preventing Banik et al. and Esgin-Kara Attacks

Banik’s attack [BCI+21] against Sprout is based on the LFSR-property that the constant
zero internal state occurs in Sprout with a certain probability. This state generates a stream
of zeros. As Draco does not use any LFSR, this attack can not applied to Draco.

The Banik, Baroti, Isobe attack against Plantlet [BBI19] exploits Plantlet’s property
that pairs of internal states which differ only in position 43 generate identical keystream
blocks of length 41. This property is due to the comparatively large distance between certain
taps of Plantlet’s LFSR. To prevent this type of attack, the Atom stream cipher uses an
additional second key filter which is driven by a 7-bit LFSR. As all pairs of neighbored taps
of both of Draco’s NFSRs have a sufficiently small distance, the BBI-attack can not be
applied to Draco. This is the reason why we decided to use only a simple cyclic filter as
key schedule for Draco, and not an LFSR-driven one.

The Esgin-Kara attack against Sprout [EK15] exploits the fact that key bits from the key
filter undergo multiplication by a term dependent on the volatile state. It can be demon-
strated that these key bits can be zero during specific clock cycles. This indicates that cer-
tain blocks of the keystream solely rely on the volatile internal states, enabling nontrivial
Time-Memory-Data Trade-Off (TMDTO) attacks. However, this attack methodology is
not applicable to Draco since the d -bits originating from the Draco key-IV schedule are

164 Chapter 10. Presenting the DRACO Stream Cipher

linearly added to the state update function of NFSR1. Furthermore, the Draco key-IV
schedule ensures that each 128-bit key stream block is dependent on all key prefix and IV
bits. Consequently, this design characteristic thwarts attacks similar to Esgin-Kara’s attack
described in Subsection 3.4 of [BCI+21].

10.4 Hardware Results

In this section, we present the hardware results for our new stream cipher Draco and com-
pare them to those of Atom [BCI+21] and Grain-128a [ÅHJM11]4, which, like Draco,
accepts 128-bit keys and 96-bit IVs. We also included hardware numbers for variants of
Draco where the key prefix is kept inside the hardware module, where the IV is kept in-
side the hardware module, and where both are kept inside the hardware module. These are
indexed by [K], [I], and [KI], respectively.

Grain-128a. The reasons for focusing on Grain-128a are twofold. First, it is a natural
choice for comparison due to the close structural relation between Draco and the Grain
family of stream ciphers as explained in Sections 10.1 and Section 10.2. Second, and
more importantly, Grain v1 (the 80-bit version of Grain-128a) turned out to be the most
hardware efficient member of the eSTREAM [ECR08] portfolio (see tables 1–4 and figures
1–3 in [GB08]) and, hence, the Grain family of stream ciphers can be considered as a
benchmark for new designs. Also note that Draco is the first small-state stream cipher
offering full 128-bit security against key recovery and distinguishing attacks, which is why
a comparison to, e.g., Plantlet or Lizard would not be appropriate, here.

Atom. Second we chose to compare Draco to Atom. Atom is a lightweight stream
cipher that was recently published in ToSC [BCI+21]. Atom is a reasonable comparison as
it also uses a 128-bit key and it further stores the secret key externally, i.e. it builds upon
CKEY that we introduced earlier. We further implemented a version of Atom that stores
its secret key internally in the hardware module in an additional register that is denoted in
Table 10.1 as Atom[K]. This is done to allow the comparison to variants of Draco that store
the key prefix, resp. IV, locally in the hardware module as described below. In particular,
for Draco[KI] and Atom[K] there are no dependencies to external resources, as is the case
for Grain-128a.

ASICs. In line with publications like [Fel07, GB08], which evaluate candidates in the
eSTREAM hardware category, we focus on application-specific integrated circuits (ASICs)

4Note that Grain-128a actually comes in two flavors: authenticated encryption and encryption only.
For reasons of fairness, we naturally consider the more lightweight encryption-only variant of Grain-128a in

our comparison to Draco. In fact, the authentication mechanism of Grain-128a is completely independent of
the underlying keystream generator and could as well be used in connection with Draco.

Chapter 10. Presenting the DRACO Stream Cipher 165

Design Area [GE]
Power [µW]

100
KHz

1 MHz 10 MHz 100
MHz

1 GHz

Atom 2976 67.9 71.2 104.9 441.9 3811.7
Atom[K] 3858 88.9 92.3 126.1 463.9 3842.3
Grain-128a 2795 67.3 71.6 115.3 551.4 4912.9
Draco 2142 48.8 51.6 79.2 355.6 3119.3
Draco[K] 2368 54.2 57.0 84.7 369.1 3134.1
Draco[I] 2805 64.6 67.7 95.1 372.3 3144.7
Draco[KI] 3025 69.9 72.6 100.6 377.6 3150.0

Table 10.1: Hardware metrics for Draco and Grain-128a.

with standard CMOS libraries. ASICs are the prevalent hardware component in light-
weight application scenarios, such as radio frequency identification (RFID) technology,
and likewise important for highspeed cryptographic processing, such as bitcoin mining.
The two main restrictions imposed on the design of cryptographic protocols for RFID tags
are the circuit size and the power budget. The circuit size strongly influences the manufac-
turing costs of an RFID tag (see [AHM14] for details) and is commonly specified in gate
equivalents (GE), where one GE corresponds to the area of a two-input drive-strength-one
NAND gate. The power consumption is crucial as low-cost RFID tags are usually passively
powered (i.e., via an electromagnetic field radiated by the reader). In ASIC-based high-
speed processing, on the other hand, energy consumption is becoming the main cost factor
(see, e.g., [DV18]).

Measuring power consumption. It is important to note that while the area require-
ment of cipher designs can be compared over different standard cell libraries by using the
measure gate equivalents, ‘[p]ower cannot be scaled reliably between different processes
and libraries’ [GB08]. Consequently, it is crucial to use the same design flow for all im-
plementations that are to be compared. The appendix of [HMKM22] provides a detailed
specification of the tools and methodology employed for deriving the hardware evaluation
results summarized in Table 10.1. After state initialization, all implementations produce
one keystream bit per clock cycle, leading to identical throughput rates at identical clock
speeds.

Large constant internal state. Remember that in contrast to Grain-128a, half of
Draco’s 256-bit internal state is actually held constant (consisting of the 32-bit key pre-
fix and the 96-bit IV). This allows for maximizing Draco’s resource efficiency by easily
adapting the hardware implementation to each device’s specific capabilities. For example,

166 Chapter 10. Presenting the DRACO Stream Cipher

if the secret key is burned into the device or stored in an EEPROM (a common RFID
scenario [AHM14], assumed, e.g., by Plantlet) and the IV is constituted by the device’s
frame counter (as, e.g., in A5/1), then no storage cells for this data need to be allocated
inside of the Draco hardware module, leading to the most lightweight variant labeled
Draco in Table 10.1. If, on the other hand, the 32-bit key prefix and the 96-bit IV
should both be available only at the beginning of state initialization (as generally assumed
by Grain-128a), additional storage cells are required, leading to Draco[KI]. The variants
Draco[K] resp.Draco[I] represent the two intermediate scenarios that only the 32-bit key
prefix resp.the 96-bit IV need to be held locally in the Draco hardware module.

10.4.1 Discussion of the Results

Grain-128a. The numbers presented in Table 10.1 show that the Draco stream cipher
is likewise attractive for lightweight RFID and highspeed computation scenarios. For ex-
ample, when making optimal use of an RFID tag’s resources (i.e., burned/EEPROM key,
transmission counter as IV), Draco requires 23 % less area (2142 vs.2795 GE) and 31
% less power (79.2 vs.115.3 µW) than Grain-128a at a clock frequency of 10 MHz. In
the case of high speed computing, on the other hand, everything comes down to energy
consumption. At a clock frequency of 1 GHz, all four implementation variants of Draco
consume about 34 % less energy than Grain-128a for producing 10 kbit of keystream (in-
cluding state initialization). This substantial advantage is achieved even if the 32-bit key
prefix and the 96-bit IV have to be stored locally inside of the Draco hardware module
(i.e., 32.7 nJ for Draco[KI] vs.50.4 nJ for Grain-128a; cf. Appendix C of [HMKM22]).

Atom. In direct comparison to Atom we can see that Draco needs 28 % less area (2142
vs.2976 GE) and 24 % less power (79.2 vs 104.9 µW) at a clock frequency of 10 MHz.
Further comparing Atom[K] to Draco[KI] we see improvements of 21 % in area (3025 vs
3858 GE) and an improvement of 20 % in power consumption (100.6 vs 126.1 µW) at a
clock frequency of 10 MHz.

Power consumption. The reason behind this is that already for moderate clock fre-
quencies (here: between 10 MHz and 20 MHz) the dynamic power consumption (due to
switching of values) dominates the static power consumption (due to leakage) of flip-flop
storage cells. To the best of our knowledge, this effect has never been considered in stream
cipher design before. Instead, the classical design paradigm (e.g., followed by Grain-128a,
but also by Plantlet and Lizard) exclusively focused on the number of flip-flops, ignoring
their actual usage. With Draco[KI], we demonstrate that even if 2n-bit storage is required
inside the cipher’s hardware module to achieve n-bit security against TMDTO attacks, al-
gorithmically keeping half of this state constant is much more efficient (cf. Tab. 10.1) and
equally secure (see Section 10.3 and Section 9.5) as constantly updating the whole of it.

11 | Fixing the Key Schedule

The original version of the Draco stream cipher that was presented in this work and at FSE
2023 is vulnerable to an attack with a complexity of 107 bits [Ban22], which violates the
security claim of 128 bits. The attack by Subhadeep Banik exploits a vulnerability in the key
schedule. For some key-IV combinations, the key schedule periodically produces sequences
that are all zero and thus several keystream bits are not affected by the non-volatile state.
An attacker can exploit this to recover an internal state and the secret key. In particular, a
combination of three properties enables the distinguishing attack by Subhadeep Banik.

1. A small key prefix.

2. The small period of the KIS-bit.

3. For some IVs the KIS-bit is zero for several cycles.

11.1 Banik’s TMDTO Attacks

In this section, we will give an informal description of the two attacks by Banik [Ban22].
For a detailed description of the attacks, please refer to [Ban22].

First attack. Let ℓIV denote the IV length, let ℓkpre denote the key prefix length, let ℓp
denote the packet length, and let p denote the period of the stream of key schedule bits dt .
The attack is based on the observation that for every key prefix kpre, there exists an initial
value xkpre ∈ IV such that the stream of key schedule bits dt has subsequences of length
ℓIV where the key schedule bit is 0. These subsequences repeat every p bits, and the ℓp/p
positions are known to the adversary. The all-zero subsequences of the key schedule bit dt
imply that at these known positions, the keystream depends only on the volatile internal
state. The period of Draco’s d -stream is small, i.e., p ≈ 212, and ℓp/p ≈ 220. This allows
for a birthday collision attack.

In the offline phase, T random volatile internal states yi are generated. For each yi , an
output keystream zi with length ℓIV is generated with the d -stream being 0, i.e., without
considering the key schedule bits. Each (yi , zi) is stored in an efficiently searchable data
structureZ . In the online phase, for all kpre ∈ {0,1}ℓkpre , the packet for the corresponding

167

168 Chapter 11. Fixing the Key Schedule

initial value xkpre ∈ IV is generated. If a collision in Z is found, the adversary verifies the
key prefix guess by generating a few more keystream bits.

Second attack. The second attack by Banik [Ban22] uses the idea that for an all-zero
IV, effectively only the key prefix influences the d -stream. The paper first describes the
attack for an all-zero IV and then proceeds to describe a tradeoff between the online and
offline phase, where the last E bits of the IV are non-zero.

The idea for the all-zero IV is that an attacker generates 128 keystream bits from 296

randomly chosen internal states for every 232 key prefix in the offline phase. For every key
prefix, the keystream and corresponding internal state are stored in a table indexed by the
keystream. This corresponds to an offline complexity of 2128. In the online phase, the
attacker will get one packet of size 232 bits for the all-zero IV. For every 128-bit window in
the obtained keystream (there are approximately 232 windows), the attacker checks each of
the 232 tables for the corresponding keystream and then verifies a collision by computing
a few more bits. This corresponds to an online complexity of 264.

For an all-zero IV, the total complexity is still that of exhaustive search, but it is re-
markable that the online complexity is way lower than the offline complexity. The idea
now is to consider IVs of the form 096−E ||e , where e ∈ {0,1}E . The first 97−E keystream
bits computed from such an IV do not depend on the IV bits and hence only on the key
prefix. Also, as the non-volatile state has a size of 97 bits, these occurrences repeat every 97
cycles. Therefore, the idea in the offline phase is to compute a fewer amount of internal
states, 296−D for every key prefix, assuming that only the first 96−E bits of the IV are zero.
Accordingly, fewer keystream bits are computed. This will decrease the complexity in the
offline phase.

In the online phase, the attacker will not only query the all-zero IV, but also all 2E

IVs of the form 096−E ||e . Furthermore, as fewer keystream bits per candidate state were
generated, eliminating incorrect states is now more costly in the online phase.

By carefully balancing the parameters D and E [Ban22], achieves a total attack com-
plexity of approximately 2107.1.

Possible fixes. We performed a detailed cost analysis of the two attacks by Banik in
dependence of T , the key prefix length ℓkpre and the IV length ℓIV. We found out that if
the key prefix is slightly larger1 than the initial value, i.e. ℓkpre > ℓIV, the costs of Banik’s
attacks are worse than those of exhaustive key search. This motivated our changes in the
design of Draco. We leave the key schedule for the inner d -stream as is but increase the
length of the non-volatile key prefix from 32 bits to 128 bits, i.e., the full key length.

An alternative design change to prevent Banik’s attack could be to modify the key sched-
ule for the internal d -stream in such a way that the period of the d -stream p exceeds the

1A few bits difference are needed for Draco, as it takes six clock cycles for the first unknown d -bit to reach
the first register cell of NFSR2 that is used by the output function a.

Chapter 11. Fixing the Key Schedule 169

NFSR2 NFSR1

a

Key-IV ScheduleKey 0,IV

dt

97128

40

f2
33

f1

zt

49 10

B t
0 B t

94 S t
0 S t

32

S t
0

Figure 11.1: DracoQF in keystream generation mode.

packet length ℓp . The advantage would be that we instantiate the minimal key prefix length
suggested by the underlying proof of security for the generic CIVK construction. One idea
to implement this could be to use some bits of the NFSRs to encode the addresses of the
key prefix and IV bits to be included in the internal d -stream. A detailed security analysis
of this more complex alternative approach is a matter of future research.

11.2 Design Specification of the Quick Fix

In this section we will only present the changes made to Draco to obtain the Quick Fix,
which is not vulnerable to Banik’s attack [Ban22].

The Quick Fix increases the key prefix length from 32 bits to 128 bits. This will change
Subsection 10.1.1, as well as Figure 10.1 and Figure 10.2. The update of Subsection 10.1.1
can be found in Subsection 11.2.1 and Subsection 11.2.1 below. Figure 11.1 and Fig-
ure 11.2 below contain the updates to Figure 10.1 and Figure 10.2.

11.2.1 Components

Let K =
�
K0, . . . ,K127
�
denote the 128-bit secret key and IV =

�
IV0, . . . , IV95
�
the 96-bit

public IV. The 128-bit volatile internal state of DracoQF is distributed over two NFSRs,
NFSR1 and NFSR2, whose contents at time t = 0,1, . . . we denote by

�
S t
0 , . . . , S

t
32

�
and�

B t
0 , . . . ,B

t
94

�
, respectively (cf. Figure 11.1). As NFSR1 and NFSR2 are Fibonacci-type,

for t ∈N it holds that S t+1
i := S t

i+1, i = 0, . . . ,31, and B t+1
j := B t

j+1, j = 0, . . . ,93.

Computation of the KIS-bit. Besides the 128-bit volatile internal state, DracoQF

additionally employs a 224-bit non-volatile internal state, which is formed by the 96-bit
public IV and the 128-bit secret key.

170 Chapter 11. Fixing the Key Schedule

NFSR2 NFSR1

a

Key-IV ScheduleKey 0,IV

dt

97128

40

f2
33

f1

zt

49 10

B t
0 B t

94 S t
0 S t

32

S t
0

Figure 11.2: DracoQF in phase 2 of the state initialization.

Specification (Key schedule)

Based on the 96-bit public IV, the 128-bit secret key, and the public 1-bit constant 0,
in clock cycle t the key-IV-schedule bit (KIS bit) dt is computed as

dt :=

xt mod 97, for 0 ≤ t ≤ 255,
Kt mod 128 ⊕ xt mod 97, for t ≥ 256,

where x0 := 0 and xi := IVi−1 for i = 1, . . . ,96. The KIS-bit dt is fed to NFSR2 as
depicted in Figure 11.1 and Figure 11.2, respectively.

11.3 Hardware Metrics for the Quick Fix

In this section, we present the updated hardware metrics. The updated power and area
values for DracoQF are presented in Table 11.1. The indexed variants of Draco denote
whether the key (prefix) ([K]), the IV ([I]), or both ([KI]) are kept in the hardware module.
The main variant of Draco with an external key (prefix) and IV is denoted without an
index.

Atom & Grain. The updated variant of Draco requires about 9% more area, meas-
ured in gate equivalents (GE). The increase in power consumption lies between 6.6% (100
KHz) and 3.8% (1 GHz). Compared to Grain-128a, the reduction in area is 16.5%, and
the reduction in power consumption lies between 22.7% (100 KHz) and 34.1% (1 GHz).
Compared to Atom, the reduction in area is 21.6%, and the reduction in power consump-
tion lies between 23.4% (100 KHz) and 15.0% (1 GHz).

Internal non-volatile state. Obviously, the variants with an internal key (prefix),
Draco[K] and Draco[KI], are affected most by increasing the length of the non-volatile

Chapter 11. Fixing the Key Schedule 171

Design Area [GE]
Power [µW]

100
KHz

1 MHz 10 MHz 100
MHz

1 GHz

Atom 2976 67.9 71.2 104.9 441.9 3811.7
Atom[K] 3858 88.9 92.3 126.1 463.9 3842.3
Grain-128a 2795 67.3 71.6 115.3 551.4 4912.9
Draco 2142 48.8 51.6 79.2 355.6 3119.3
DracoQF 2334 52.0 54.8 83.5 370.3 3238.4
Draco[K] 2368 54.2 57.0 84.7 369.1 3134.1
DracoQF

[K] 3215 73.0 75.9 104.6 392.3 3269.0

Draco[I] 2805 64.6 67.7 95.1 372.3 3144.7
DracoQF

[I] 2997 67.8 70.6 99.4 387.0 3263.8

Draco[KI] 3025 69.9 72.6 100.6 377.6 3150.0
DracoQF

[KI] 3872 88.7 91.5 120.3 408.0 3284.8

Table 11.1: Hardware metrics for Draco, DracoQF, Atom and Grain-128a.

key prefix from 32 bits (Draco) to 128 bits (DracoQF). DracoQF
[K] requires 35.8% more

area than the original variant, and DracoQF
[KI] requires 28% more area than the original vari-

ant. With regard to power, the increase of DracoQF
[K] compared to the original variant is

between 34.7% (100 KHz) and 4.3% (1 GHz), while the increase of DracoQF
[KI] is between

26.9% (100 KHz) and 4.3% (1 GHz).

11.4 Keeping the State Small

The quick fix is not a desirable solution, as it effectively destroys the idea behind the Draco
stream cipher. Instead of increasing the size of the key prefix, one may try to get rid of the
other two properties in the key schedule.

Generating an address. Increasing the period of the KIS-bit could be done by gen-
erating the address of the 32-bit key prefix bit chosen in the current clock cycle based on
five bits taken from one of the NFSRs. This will equal the KIS-bit period to that of the
NFSR. A problem with this approach is that it may happen that some key prefix bits do
not enter the KIS-bitstream for several hundred clock cycles, as the contents of the NFSR
are pseudorandom.

Cyclically chosen bits. To fix this problem, another two key prefix bits are added,
which are cyclically chosen from the first 15 and the last 17 bits of the key prefix. Two bits
are chosen so that at least one key prefix bit enters the KIS-bitstream in every clock cycle, as

172 Chapter 11. Fixing the Key Schedule

Prefix bits
Offset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

First 15 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0
Last 17 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1

Table 11.2: Seven consecutive erasures for the cyclically chosen bits.

it may happen that the key prefix bit generated from the address and one cyclically chosen
key prefix bit may cancel each other out. The cyclically chosen bits will never cancel each
other out due to being chosen from disjunct index sets. 15 and 17 were chosen as they are
coprime and thus increase the period of the cyclically chosen bits.

Calculating the address. The address for the work in progress version of Draco is
chosen based onNFSR1. NFSR1 has a size of 33 bits and a period of 233 bits. This allows
to run analyses and experimentally verify properties of the key prefix addresses chosen. We
analyzed the following properties for various tap selections from which we pull the five
address bits:

1. For all key bits x ∈ [32]: What is the largest number of clock cycles cx missing key
bit x ? How large is max

x
(cx)?

2. How many key prefix bits are missing in the worst window of size 128 (volatile state
length)?

3. For all cyclically chosen key prefix bits y ∈ [32]: What is the largest window where
y is cancelled2 by the address, i.e., how often is bit y consecutively cancelled every
15, resp. 17, clock cycles?

4. How often do we hit the limit of 7 for 3.?

After several thousand test runs for randomly chosen tap selections, we identified an upper
limit of 800 for 1. and an upper limit of 10 for 2. as these proved to be among the best. No
test run had a value below 729 for 1. and no test run had a value smaller than 10 for 2. The
limit of 7 for 3. and 4. is due to the fact that 7 ·15+14 = 119 and thus the KIS-bitstream
is missing a bit from the first 15 consecutively chosen key prefix bits for at most 119 cycles
and thus enters the KIS-stream at 120. As 7 · 17+ 16 = 135, the KIS-bitstream is missing
a bit from the last 17 consecutively chosen key prefix bits for at most 135 cycles and thus
enters the KIS-stream at 136. For the last 17 this is unfortunately larger than the volatile
state size of 128, but after days of exhaustive search, no better values were found.

2If the cyclically chosen bit is the same as that chosen by the generated address, they cancel each other out
due to being combined by the exclusive-or operation.

Chapter 11. Fixing the Key Schedule 173

We eventually decided for the tap selection {24,4,22,14,28} for our preliminary tests.
Its values are 777 for 1. and 10 for 2. Seven consecutive erasures of the cyclically chosen
bits appear at the respective offsets as given in Table 11.2.

Updated key schedule. The updated key schedule can be found below. Note that
for area efficiency in hardware, the updated key schedule is identical during mixing but
changes for keystream generation. Here, addr(t) describes the index of the key prefix bit
that is chosen via the address generated from NFSR1.

Specification (Updated key schedule)

In clock cycle t the key-IV-schedule bit (KIS bit) dt is computed as

dt :=


xt mod 97, for 0 ≤ t ≤ 255,
Kt mod 32 ⊕ xt mod 97, for 256 ≤ t ≤ 511,
Kt mod 15 ⊕K(t mod 17)+15 ⊕Kaddr(t) ⊕ xt mod 97, for t ≥ 512,

where x0 := 0, xi := IVi−1 for i = 1, . . . ,96, and

addr(t) := (S t
28, S

t
14, S

t
22, S

t
4 , S

t
24) ∈ {0, . . . ,31}.

11.5 Hardware Metrics for the Work in Progress

The updated hardware metrics can be found in Table 11.3. In particular, one finds that
the area increased by only 4.9% to 7.0% depending on the implementation variant, as
opposed to the up to 35.8% increase of the quick fix. The power consumption also only
increased modestly in the range of 2.2% to up to 5.9%, depending on the implementation
variant and the clock speed. The increase in power consumption with the quick fix was up
to 34.7%.

Grain & Atom. For the work-in-progress version, the area is still 18% smaller than
Grain-128a and 23% smaller than Atom. The power consumption improvements over
Grain-128a are in the range of 23.2% to 33.9%. The power consumption improvements
over Atom are in the range of 14.8% to 23.9%.

Internal key prefix and IV. DracoWIP
[KI] uses 13.6% more area than Grain-128a and

6.7% more area than Atom. At low clock frequencies, DracoWIP
[KI] has increased power

requirements over Grain and Atom. For Grain-128a, the increase is 8.0% at 100 kHz and
5.6% at 1 MHz. For Atom, the increase is 7.1% at 100 kHz and 6.2% at 1 MHz. From 10
MHz upwards, DracoWIP

[KI] sees decreased power requirements over Grain and Atom. For

174 Chapter 11. Fixing the Key Schedule

Design Area [GE]
Power [µW]

100
KHz

1 MHz 10 MHz 100
MHz

1 GHz

Atom 2976 67.9 71.2 104.9 441.9 3811.7
Atom[K] 3858 88.9 92.3 126.1 463.9 3842.3
Grain-128a 2795 67.3 71.6 115.3 551.4 4912.9
Draco 2142 48.8 51.6 79.2 355.6 3119.3
DracoWIP 2292 51.7 54.5 83.3 370.8 3245.9
Draco[K] 2368 54.2 57.0 84.7 369.1 3134.1
DracoWIP

[K] 2517 57.0 59.9 88.8 377.1 3260.8

Draco[I] 2805 64.6 67.7 95.1 372.3 3144.7
DracoWIP

[I] 2955 67.5 70.4 99.2 387.6 3271.3

Draco[KI] 3025 69.9 72.6 100.6 377.6 3150.0
DracoWIP

[KI] 3174 72.7 75.6 104.4 392.8 3276.6

Table 11.3: Hardware metrics for Draco, DracoWIP, Atom and Grain-128a

Grain-128a, the decrease is 9.5% at 10 MHz, 28.8% at 100 MHz, and 33.3% at 1 GHz.
For Atom, the decrease is 0.5% at 10 MHz, 11.1% at 100 MHz, and 14.0% at 1 GHz.

In direct comparison to Atom[K], we see a decrease in area and power requirements for
DracoWIP

[KI] . Area is reduced by 17.7%, and the power consumption is decreased by 14.7%
at 1 GHz, to 18.2% at 100 kHz.

Outlook. The numbers for the work in progress version look promising. The work in
progress version is only marginally worse than the original version of Draco. However, it
is important to note that this version is preliminary and needs further checking for security
vulnerabilities. This is a topic for further research.

11.6 Conclusion

In this part, we presented the new generic stream cipher construction CIVK and a new
stream cipher proposal called Draco that instantiates CIVK. CIVK provably provides full
volatile state length security against distinguishing attacks, providing a solid theoretical
foundation to design stream ciphers upon.

Draco uses a 128-bit key, which is loaded to the volatile state cells of its feedback shift
registers during initialization. A 32-bit prefix of this key, together with a 96-bit initial value,
is continuously employed as part of the state update during keystream generation. If the
key prefix and the initial value are stored ‘externally’ (e.g., inside an EEPROM), this design
requires 18% less area and 27.8% less power than Grain-128a at 10 MHz.

Chapter 11. Fixing the Key Schedule 175

For high-performance environments, we also considered an implementation variant
called Draco[KI] with the key prefix and the initial value stored inside the cipher hardware
module, while still only half of the total internal state is updated during state updates.
When clocked at 1 GHz, this variant consumes about 33.3% less energy than Grain-128a,
still providing 128 bits of security and thus challenging the current paradigm of stream
ciphers to always incorporate all internal state bits during state updates.

As future work, we suggest evaluating the performance of Draco on other hardware
platforms like FPGAs or microcontrollers. Moreover, it might be interesting to investigate
whether, under the current security guarantees, even more lightweight variants of Draco
are possible, for example by choosing a lighter output function.

Bibliography

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. Siphash: A fast short-input
PRF. In Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology
- INDOCRYPT 2012, 13th International Conference on Cryptology in India,
Kolkata, India, December 9-12, 2012. Proceedings, volume 7668 of Lecture
Notes in Computer Science, pages 489–508. Springer, 2012.

[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and
John P Steinberger. On the indifferentiability of key-alternating ciphers. In
CRYPTO 2013, pages 531–550. Springer, 2013.

[ADMA15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Se-
curity of Keyed Sponge Constructions Using a Modular Proof Approach.
In Gregor Leander, editor, FSE, volume 9054 of LNCS, pages 364–384.
Springer, 2015.

[AGH18] Vahid Amin Ghafari and Honggang Hu. Fruit-80: a secure ultra-lightweight
stream cipher for constrained environments. Entropy, 20(3):180, 2018.

[ÅHJM11] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-
128a: A New Version of Grain-128 with Optional Authentication. IJWMC,
5(1):48–59, December 2011.

[AHM14] Frederik Armknecht, Matthias Hamann, and Vasily Mikhalev. Lightweight
Authentication Protocols on Ultra-Constrained RFIDs - Myths and Facts. In
RFIDSec 2014, pages 1–18. Springer International Publishing, Cham, 2014.

[AM15] Frederik Armknecht and Vasily Mikhalev. On lightweight stream ciphers
with shorter internal states. In FSE 2015, pages 451–470. Springer, 2015.

[Aum17] Jean-Philippe Aumasson. Serious cryptography: a practical introduction to mod-
ern encryption. No Starch Press, 2017.

[Bab95] Steve H. Babbage. Improved ”exhaustive search” attacks on stream ciphers.
In European Convertion on Security and Detection 1995, pages 161–166, May
1995.

177

178 Bibliography

[Ban22] Subhadeep Banik. Cryptanalysis of draco. IACR Trans. Symmetric Cryptol.,
2022(4):92–104, 2022.

[BB12] D. Bider and M. Baushke. SHA-2 Data Integrity Verification for the Secure
Shell (SSH) Transport Layer Protocol. RFC 6668 (Proposed Standard), July
2012.

[BBI19] Subhadeep Banik, Khashayar Barooti, and Takanori Isobe. Cryptanalysis of
plantlet. IACR Transactions on Symmetric Cryptology, 2019, Issue 3:103–120,
2019.

[BCI+21] Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier,
Kosei Sakamoto, and Santanu Sarkar. Atom: A Stream Cipher with Double
Key Filter. IACR Transactions on Symmetric Cryptology, pages 5–36, 2021.

[BCK96a] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lec-
ture Notes in Computer Science, pages 1–15. Springer, 1996.

[BCK96b] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Message authentication
using hash functions: The hmac construction. RSA Laboratories’ CryptoBytes,
2(1):12–15, 1996.

[BD06] Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0. eS-
TREAM: the ECRYPT Stream Cipher Project, 2006. http://www.ecrypt
.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf.

[Ber68] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill series in systems
science. McGraw-Hill, 1968.

[Ber05a] Daniel J. Bernstein. Salsa20/12. eSTREAM: the ECRYPT Stream Cipher
Project, 2005. https://www.ecrypt.eu.org/stream/e2-salsa20.htm
l.

[Ber05b] Daniel J. Bernstein. Stronger Security Bounds for Wegman-Carter-Shoup
Authenticators. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of
LNCS, pages 164–180. Springer, 2005.

[Ber05c] Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code. In
Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of LNCS,
pages 32–49. Springer, 2005.

[Ber07] Daniel J Bernstein. Polynomial evaluation and message authentication, 2007.
https://cr.yp.to/antiforgery/pema-20071022.pdf.

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
https://www.ecrypt.eu.org/stream/e2-salsa20.html
https://www.ecrypt.eu.org/stream/e2-salsa20.html
https://cr.yp.to/antiforgery/pema-20071022.pdf

Bibliography 179

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20. https://cr.yp.to/c

hacha/chacha-20080128.pdf, 2008.

[BGJ09] Côme Berbain, Henri Gilbert, and Antoine Joux. Algebraic and Correlation
Attacks against Linearly Filtered Non Linear Feedback Shift Registers. In
SAC 2008, pages 184–198. Springer, Berlin, Heidelberg, 2009.

[BGM06] Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of
Grain. In FSE 2006, pages 15–29. Springer, Berlin, Heidelberg, 2006.

[BHK+99] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.
UMAC: fast and secure message authentication. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 216–233. Springer,
1999.

[BKL+12] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, François-Xavier
Standaert, John Steinberger, and Elmar Tischhauser. Key-alternating ciphers
in a provable setting: Encryption using a small number of public permuta-
tions. In EUROCRYPT 2012, pages 45–62. Springer, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS
’93, Proceedings of the 1st ACM Conference on Computer and Communications
Security, Fairfax, Virginia, USA, November 3-5, 1993, pages 62–73. ACM,
1993.

[Bri12] David Brink. A (probably) exact solution to the Birthday Problem. The
Ramanujan Journal, 28(2):223–238, 2012.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, pages
1–13. Springer, Berlin, Heidelberg, 2000.

[BSW01] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis of
A5/1 on a PC. In FSE 2000, pages 1–18. Springer, Berlin, Heidelberg, 2001.

[CCH10] Claude Carlet, Yves Crama, and Peter L. Hammer. Boolean functions for
cryptography and error-correcting codes. In Yves Crama and Peter L. Ham-
mer, editors, Boolean Models and Methods in Mathematics, Computer Science,
and Engineering, pages 257–397. Cambridge University Press, 2010.

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf

180 Bibliography

[CDN22] Yu Long Chen, Avijit Dutta, and Mridul Nandi. Multi-user BBB security
of public permutations based MAC. Cryptogr. Commun., 14(5):1145–1177,
2022.

[CDN+23] Benoît Cogliati, Avijit Dutta, Mridul Nandi, Jacques Patarin, and Abishanka
Saha. Proof of mirror theory for a wide range of $\xi _{\max }$. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT
2023 - 42nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part IV, volume 14007 of Lecture Notes in Computer Science, pages 470–501.
Springer, 2023.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

[CGS17] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A Fast Single-
Key Two-Level Universal Hash Function. IACR Trans. Symmetric Cryptol.,
2017(1):106–128, 2017.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round even-mansour cipher. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 39–56. Springer, 2014.

[CLLL20] Wonseok Choi, ByeongHak Lee, Yeongmin Lee, and Jooyoung Lee. Im-
proved security analysis for nonce-based enhanced hash-then-mask macs. In
Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIAC-
RYPT 2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-11,
2020, Proceedings, Part I, volume 12491 of Lecture Notes in Computer Science,
pages 697–723. Springer, 2020.

[CLS17] Benoît Cogliati, Jooyoung Lee, and Yannick Seurin. New Constructions of
MACs from (Tweakable) Block Ciphers. IACR Trans. Symmetric Cryptol.,
2017(2):27–58, 2017.

[CP05] Christophe De Cannière and Bart Preneel. Trivium – Specifications. eS-
TREAM: the ECRYPT Stream Cipher Project, 2005. http://www.ecrypt
.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.

[CP20] Benoît Cogliati and Jacques Patarin. Mirror theory: A simple proof of the
pi+pj theorem with xi_max=2. IACR Cryptol. ePrint Arch., page 734, 2020.

http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf

Bibliography 181

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT, volume 8441 of LNCS, pages 327–350. Springer, 2014.

[CS16] Benoît Cogliati and Yannick Seurin. EWCDM: an efficient, beyond-birthday
secure, nonce-misuse resistant MAC. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages
121–149. Springer, 2016.

[CS18] Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation en-
crypted Davies–Meyer construction. Designs, Codes and Cryptography, Mar
2018.

[CW79] Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions.
Journal of Computer and System Sciences, 18(2):143–154, 1979.

[DCKP08] Christophe De Cannière, Özgül Küçük, and Bart Preneel. Analysis of Grain’s
Initialization Algorithm. In Serge Vaudenay, editor, AFRICACRYPT 2008,
pages 276–289. Springer, Berlin, Heidelberg, 2008.

[DDD21] Nilanjan Datta, Avijit Dutta, and Kushankur Dutta. Improved security
bound of (E/D)WCDM. IACR Trans. Symmetric Cryptol., 2021(4):138–176,
2021.

[DDN+15] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting
Zhang. Building Single-Key Beyond Birthday Bound Message Authentic-
ation Code. Cryptology ePrint Archive, Report 2015/958, 2015. Version:
20160211:123920.

[DDNP18] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam Paul. Double-
block Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF. IACR
Transactions on Symmetric Cryptology, 2018(3):36–92, Sep. 2018. Full up-
dated version at https://eprint.iacr.org/2018/804.

[DDNT23] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Tight
multi-user security bound of dbhts. IACR Trans. Symmetric Cryptol.,
2023(1):192–223, 2023.

[DDNY18] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. Encrypt or
Decrypt? To Make a Single-Key Beyond Birthday Secure Nonce-Based MAC.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO I, volume
10991 of LNCS, pages 631–661. Springer, 2018.

https://eprint.iacr.org/2018/804

182 Bibliography

[DH15] Elena Dubrova and Martin Hell. Espresso: A stream cipher for 5G wire-
less communication systems. Cryptography and Communications, pages 1–17,
2015.

[DHT17] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic in-
distinguishability via the chi-squared method. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer Sci-
ence, pages 497–523. Springer, 2017.

[DJN16] Avijit Dutta, Ashwin Jha, and Mridul Nandi. Exact Security Analysis of
Hash-then-Mask Type Probabilistic MAC Constructions. IACR Cryptology
ePrint Archive, 2016:983, 2016.

[DJN17] Avijit Dutta, Ashwin Jha, and Mridul Nandi. Tight Security Analysis of
EHtM MAC. IACR Transactions of Symmetric Cryptology, 2017(3):130–150,
2017.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in crypto-
graphy: The Even-Mansour scheme revisited. In EUROCRYPT 2012, pages
336–354. Springer, 2012.

[DN20] Avijit Dutta and Mridul Nandi. BBB secure nonce based MAC using public
permutations. In Abderrahmane Nitaj and Amr M. Youssef, editors, Pro-
gress in Cryptology - AFRICACRYPT 2020 - 12th International Conference
on Cryptology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings, volume
12174 of Lecture Notes in Computer Science, pages 172–191. Springer, 2020.

[DNS22] Avijit Dutta, Mridul Nandi, and Abishanka Saha. Proof of mirror theory for
ξmax = 2. IEEE Trans. Inf. Theory, 68(9):6218–6232, 2022.

[DNT19] Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Beyond Birthday Bound
Secure MAC in Faulty Nonce Model. IACR Cryptology ePrint Archive,
2019:127, 2019. To appear in EUROCRYPT 2019.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by
RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919.

[DS11] Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks.
In FSE 2011, pages 167–187. Springer, Berlin, Heidelberg, 2011.

[DV18] Alex De Vries. Bitcoin’s growing energy problem. Joule, 2(5):801–805, 2018.

Bibliography 183

[ECR08] ECRYPT – European Network of Excellence for Cryptology. eSTREAM:
the ECRYPT stream cipher project, 2008. http://www.ecrypt.eu.org/
stream/.

[EK15] Muhammed F Esgin and Orhun Kara. Practical cryptanalysis of full sprout
with tmd tradeoff attacks. In International Conference on Selected Areas in
Cryptography, pages 67–85. Springer, 2015.

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. Journal of cryptology, 10(3):151–161, 1997.

[Fel07] Martin Feldhofer. Comparison of Low-Power Implementations of Trivium
and Grain. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/027,
2007. http://www.ecrypt.eu.org/stream/papersdir/2007/027.pd
f.

[GB08] Tim Good and Mohammed Benaissa. Hardware performance of eStream
phase-III stream cipher candidates. eSTREAM: the ECRYPT Stream Cipher
Project, 2008. http://www.ecrypt.eu.org/stream/docs/hardware.p
df.

[GGK06] Berndt Gammel, Rainer Göttfert, and Oliver Kniffler. Achterbahn-128/80.
eSTREAM: the ECRYPT Stream Cipher Project, 2006. http://www.ecry
pt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf.

[GK14] Shay Gueron and Michael E. Kounavis. Intel Carry-Less Multiplication In-
struction and its Usage for Computing the GCM Mode - Rev 2.02. Intel
White Paper. Technical report, Intel corporation, April 20 2014.

[GL15] Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant
Authenticated Encryption at Under One Cycle per Byte. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel, editors, ACM CCS, pages 109–119.
ACM, 2015.

[Gol96] Jovan Dj. Golić. On the security of nonlinear filter generators. In Dieter
Gollmann, editor, FSE 1996, pages 173–188. Springer, Berlin, Heidelberg,
1996.

[Gol97] Jovan Dj Golić. Cryptanalysis of alleged a5 stream cipher. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages
239–255. Springer, 1997.

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, Jul 1980.

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/papersdir/2007/027.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/027.pdf
http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf

184 Bibliography

[HJM06] Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream Cipher
for Constrained Environments. eSTREAM: the ECRYPT Stream Cipher
Project, 2006. http://www.ecrypt.eu.org/stream/p3ciphers/grain
/Grain_p3.pdf.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The
Grain Family of Stream Ciphers. In New Stream Cipher Designs: The eS-
TREAM Finalists, pages 179–190. Springer, Berlin, Heidelberg, 2008.

[HK97] Shai Halevi and Hugo Krawczyk. MMH: software message authentication in
the gbit/second rates. In Eli Biham, editor, Fast Software Encryption, 4th Inter-
national Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997, Proceedings,
volume 1267 of Lecture Notes in Computer Science, pages 172–189. Springer,
1997.

[HKM17a] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD – A
Lightweight Stream Cipher for Power-constrained Devices. IACR ToSC,
2017(1):45–79, 2017.

[HKM17b] Matthias Hamann, Matthias Krause, and Willi Meier. A note on stream
ciphers that continuously use the iv. IACR Cryptology ePrint Archive,
2017:1172, 2017.

[HKM19] Matthias Hamann, Matthias Krause, and Alexander Moch. Tight security
bounds for generic stream cipher constructions. In SAC 2019, pages 335–
364. Springer, 2019.

[HKMZ18] Matthias Hamann, Matthias Krause, Willi Meier, and Bin Zhang. Design
and analysis of small-state grain-like stream ciphers. Cryptography and Com-
munications, 10(5):803–834, 2018.

[HL10] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (Proposed Stand-
ard), April 2010.

[HMKM22] Matthias Hamann, Alexander Moch, Matthias Krause, and Vasily Mikhalev.
The draco stream cipher: A power-efficient small-state stream cipher with
full provable security against tmdto attacks. IACR Transactions on Symmetric
Cryptology, 2022, Issue 2:1–42, 2022.

[Hor21] Tobias Horn. On Cube Attacks on Stream Ciphers. Master’s thesis, Uni-
versität Mannheim, 2021. https://www.wim.uni-mannheim.de/media

/Lehrstuehle/wim/ths/files/tohorn_masters.pdf.

[HP08] Helena Handschuh and Bart Preneel. Key-recovery attacks on universal hash
function based mac algorithms. In Annual International Cryptology Confer-
ence, pages 144–161. Springer, 2008.

http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/ths/files/tohorn_masters.pdf
https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/ths/files/tohorn_masters.pdf

Bibliography 185

[HS05] Jin Hong and Palash Sarkar. New applications of time memory data tradeoffs.
In Bimal Roy, editor, ASIACRYPT 2005, pages 353–372, Berlin, Heidelberg,
2005. Springer.

[IM16] Tetsu Iwata and Kazuhiko Minematsu. Stronger Security Variants of GCM-
SIV. IACR Transactions of Symmetric Cryptology, 2016(1):134–157, 2016.

[Ins21] Institute of Electrical and Electronics Engineers. IEEE Standard for Informa-
tion Technology – Telecommunications and Information Exchange between
Systems – Local and Metropolitan Area Networks – Specific Requirements –
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-
2016), pages 1–4379, 2021.

[Jou06] Antoine Joux. Authentication failures in nist version of gcm. NIST Comment,
page 3, 2006.

[KA98a] S. Kent and R. Atkinson. IP Authentication Header. RFC 2402 (Proposed
Standard), November 1998.

[KA98b] S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP). RFC
2406 (Proposed Standard), November 1998.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
press, 2020.

[Kle13] Andreas Klein. Stream ciphers, volume 12. Springer, 2013.

[KLL20] Seongkwang Kim, ByeongHak Lee, and Jooyoung Lee. Tight security bounds
for double-block hash-then-sum macs. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lec-
ture Notes in Computer Science, pages 435–465. Springer, 2020.

[KR00] Ted Krovetz and Phillip Rogaway. Fast universal hashing with small keys and
no preprocessing: The polyr construction. In Dongho Won, editor, Inform-
ation Security and Cryptology - ICISC 2000, Third International Conference,
Seoul, Korea, December 8-9, 2000, Proceedings, volume 2015 of Lecture Notes
in Computer Science, pages 73–89. Springer, 2000.

[Kra94] Hugo Krawczyk. LFSR-based Hashing and Authentication. In Yvo Desmedt,
editor, CRYPTO, volume 839 of LNCS, pages 129–139. Springer, 1994.

186 Bibliography

[Kra02] Matthias Krause. BDD-Based Cryptanalysis of Keystream Generators. In
Lars R. Knudsen, editor, EUROCRYPT 2002, pages 222–237. Springer, Ber-
lin, Heidelberg, 2002.

[Kro06] Ted Krovetz. Message authentication on 64-bit architectures. In Eli Biham
and Amr M. Youssef, editors, Selected Areas in Cryptography, 13th Interna-
tional Workshop, SAC 2006, Montreal, Canada, August 17-18, 2006 Revised
Selected Papers, volume 4356 of Lecture Notes in Computer Science, pages 327–
341. Springer, 2006.

[KSV13] D. Karaklajić, J. Schmidt, and I. Verbauwhede. Hardware designer’s guide to
fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
21(12):2295–2306, 2013.

[Küç06] Özgül Küçük. Slide Resynchronization Attack on the Initialization of Grain
1.0. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/044, 2006.
http://www.ecrypt.eu.org/stream.

[KVW04] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-
performance conventional authenticated encryption mode. In Bimal K. Roy
and Willi Meier, editors, Fast Software Encryption, 11th International Work-
shop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume
3017 of Lecture Notes in Computer Science, pages 408–426. Springer, 2004.

[lib23] libsodium documentation. Online, 2023.

[LM12] Michael Lehmann and Willi Meier. Conditional Differential Cryptanalysis
of Grain-128a. In CANS 2012, pages 1–11. Springer, Berlin, Heidelberg,
2012.

[LNS18] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic Attacks
Against Beyond-Birthday-Bound MACs. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO I, volume 10991 of LNCS, pages 306–336.
Springer, 2018.

[LP18] Atul Luykx and Bart Preneel. Optimal Forgeries Against Polynomial-Based
MACs and GCM. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT (1), volume 10820 of LNCS, pages 445–467. Springer, 2018.

[LPS12] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An asymptotically
tight security analysis of the iterated even-mansour cipher. In ASIACRYPT
2012, pages 278–295. Springer, 2012.

[MAM16] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On ciphers that
continuously access the non-volatile key. IACR ToSC, pages 52–79, 2016.

http://www.ecrypt.eu.org/stream

Bibliography 187

[Mas69] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans.
Inf. Theory, 15(1):122–127, 1969.

[MF21] Arno Mittelbach and Marc Fischlin. The Theory of Hash Functions and Ran-
domOracles - An Approach to Modern Cryptography. Information Security and
Cryptography. Springer, 2021.

[MG98] C. Madson and R. Glenn. The Use of HMAC-SHA-1-96 within ESP and
AH. RFC 2404 (Proposed Standard), November 1998.

[MI11] Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweakable
blockcipher: Extending FSE 2009 proposal. In Liqun Chen, editor, Crypto-
graphy and Coding - 13th IMA International Conference, IMACC 2011, Ox-
ford, UK, December 12-15, 2011. Proceedings, volume 7089 of Lecture Notes
in Computer Science, pages 391–412. Springer, 2011.

[Min10] Kazuhiko Minematsu. How to Thwart Birthday Attacks against MACs via
Small Randomness. In Seokhie Hong and Tetsu Iwata, editors, FSE, volume
6147 of LNCS, pages 230–249. Springer, 2010.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards Stream Ciphers for Efficient FHE with Low-Noise Cipher-
texts. In EUROCRYPT 2016, pages 311–343. Springer, Berlin, Heidelberg,
2016.

[ML19] Alexander Moch and Eik List. Parallelizable MACs Based on the Sum of PRPs
with Security Beyond the Birthday Bound. In ACNS 2019, pages 131–151.
Springer, 2019.

[MN17] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO III, volume 10403 of LNCS, pages 556–583.
Springer, 2017.

[Moc23] Alexander Moch. Provable security against generic attacks on stream ciphers.
Journal of Mathematical Cryptology, 17(1):20220033, 2023.

[MS89] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain
stream ciphers. Journal of Cryptology, 1(3):159–176, 1989.

[MV04] David A. McGrew and John Viega. The security and performance of the
galois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Inter-
national Conference on Cryptology in India, Chennai, India, December 20-22,

188 Bibliography

2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages
343–355. Springer, 2004.

[NaC23] NaCl: Networking and Cryptography library. Online, 2023.

[Nan17] Mridul Nandi. Birthday Attack on Dual EWCDM. IACR Cryptology ePrint
Archive, 2017:579, 2017.

[Nan18] Mridul Nandi. Bernstein Bound on WCS is Tight - Repairing Luykx-Preneel
Optimal Forgeries. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO II, volume 10992 of LNCS, pages 213–238. Springer, 2018.

[NLR18] Y. Nir, A. Langley, and I. Rijndael. ChaCha20 and Poly1305 for IETF Pro-
tocols. RFC 8439 (Proposed Standard), June 2018.

[NPV17] Valérie Nachef, Jacques Patarin, and Emmanuel Volte. Feistel Ciphers - Secur-
ity Proofs and Cryptanalysis. Springer, 2017.

[Ope14] OpenSSH 6.5 Release Notes, 2014. Accessed: 2023-06-29.

[Ope16] OpenSSL 1.1.0 Series Release Notes, 2016. Accessed: 2023-06-29.

[Pat08] Jacques Patarin. The ”Coefficients H” Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, SAC, volume 5381 of LNCS, pages
328–345. Springer, 2008.

[Pat10] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Lin-
ear Equalities and Linear Non Equalities for Cryptography. IACR Cryptology
ePrint Archive, 2010:287, 2010.

[Pat17] Jacques Patarin. Mirror theory and cryptography. Appl. Algebra Eng. Com-
mun. Comput., 28(4):321–338, 2017.

[Pet83] Fabien Petitcolas. La cryptographie militaire. Journal des sciences militaires,
9:161–191, 1883.

[Pop15] A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465 (Proposed Standard),
February 2015.

[PP10] Christof Paar and Jan Pelzl. Understanding Cryptography - A Textbook for
Students and Practitioners. Springer, 2010.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018.

[Rog95] Phillip Rogaway. Bucket Hashing and its Application to Fast Message Au-
thentication. In Don Coppersmith, editor, CRYPTO, volume 963 of LNCS,
pages 29–42. Springer, 1995.

Bibliography 189

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst.
Tech. J., 28(4):656–715, 1949.

[Sha15] Shadowsocks Encryption, 2015. Accessed: 2023-06-29.

[Sho96] Victor Shoup. On Fast and Provably Secure Message Authentication Based
on Universal Hashing. In Neal Koblitz, editor, CRYPTO, volume 1109 of
LNCS, pages 313–328. Springer, 1996.

[Sie85] Thomas Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext
Only. IEEE Transactions on Computers, 34(1):81–85, January 1985.

[Ste07] Dirk Stegemann. Extended BDD-Based Cryptanalysis of Keystream Gener-
ators. In SAC 2007, pages 17–35. Springer, Berlin, Heidelberg, 2007.

[SWGW21] Yaobin Shen, Lei Wang, Dawu Gu, and Jian Weng. Revisiting the security
of dbhts macs: Beyond-birthday-bound in the multi-user setting. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021
- 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture
Notes in Computer Science, pages 309–336. Springer, 2021.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube Attacks
on Non-Blackbox Polynomials Based on Division Property. In CRYPTO
2017, pages 250–279, Cham, 2017. Springer International Publishing.

[TIM+18] Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang.
Fast Correlation Attack Revisited. In CRYPTO 2018, pages 129–159, Cham,
2018. Springer International Publishing.

[TMA20] Yosuke Todo, Willi Meier, and Kazumaro Aoki. On the Data Limitation of
Small-State Stream Ciphers: Correlation Attacks on Fruit-80 and Plantlet. In
SAC 2019, pages 365–392, Cham, 2020. Springer International Publishing.

[WC81] Mark N. Wegman and Larry Carter. New Hash Functions and Their Use in
Authentication and Set Equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

[Wir23] WireGuard: Next Generation Kernel Network Tunnel. Online, 2023.

[WLLM19] Shichang Wang, Meicheng Liu, Dongdai Lin, and Li Ma. Fast Correlation
Attacks on Grain-like Small State Stream Ciphers and Cryptanalysis of Plant-
let, Fruit-v2 and Fruit-80. Cryptology ePrint Archive, Report 2019/763,
2019. https://eprint.iacr.org/2019/763.

[Yas11] Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In
Phillip Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 596–609.
Springer, 2011.

https://eprint.iacr.org/2019/763

190 Bibliography

[YL06] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253 (Proposed Standard), January 2006.

[ZGM17] Bin Zhang, Xinxin Gong, and Willi Meier. Fast Correlation Attacks on
Grain-like Small State Stream Ciphers. IACR ToSC, 2017(4):58–81, Dec.
2017.

[ZW09] Haina Zhang and Xiaoyun Wang. Cryptanalysis of Stream Cipher Grain
Family. Cryptology ePrint Archive, Report 2009/109, 2009. http://epri
nt.iacr.org/2009/109.

[ZWSW12] Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. 3kf9: Enhancing
3GPP-MAC beyond the Birthday Bound. In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT, volume 7658 of LNCS, pages 296–312. Springer,
2012.

http://eprint.iacr.org/2009/109
http://eprint.iacr.org/2009/109

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	Outline
	I Foundations
	Introduction
	Kerckhoffs' Principle

	Probability Theory
	Basic Definitions
	The Birthday Paradox
	Calculating the Probability
	The Birthday Problem Generalized

	Cryptographic Security
	Perfect Secrecy
	One-time Pad
	Shannon's Theorem

	Practical Security
	Turing Machines
	Probabilistic Turing Machines
	Oracle Turing Machines

	Adversarial Advantage
	Pseudorandomness
	Distinguishing Attacks
	Random Oracle Model

	The H-coefficient Technique
	An Example Using the Even-Mansour Cipher
	Mirror Theory
	An Example Using the Sum of Permutations

	II Message Authentication Codes
	Message Authentication Codes
	Security Requirements
	Wegman-Carter MACs
	Universal Hashing
	Attacks on Wegman-Carter MACs
	Improving the Wegman-Carter MAC

	Improving Wegman-Carter
	Preliminaries
	Constructions
	Relation to the Attack by Leurent et al.
	Security Analysis of HPxNP
	Bad Transcripts
	Ratio of Good Transcripts
	Using Xi_average

	Security Analysis of HPxHP
	Bad Transcripts
	Good Transcripts
	Using d-wise Independent Hash Functions
	Extension to d-independence for Even d

	Conclusion

	III Stream Ciphers
	Stream Ciphers
	One-time Pad
	High-level Stream Cipher Encryption
	Keystream Generation Using Stateful Stream Ciphers

	Feedback Shift Registers
	Security Requirements
	Time-memory-data Tradeoff Attacks

	Enhanced State Stream Ciphers
	Enhanced State Stream Ciphers
	Description of the Cipher Constructions
	Discussion of the Packet Length
	Discussion of the State Lengths
	Hardware Implications of Continuous IV Access

	Time-memory-data Tradeoff Attacks
	The Conventional TMDTO Attack
	TMDTO Attacks Against CKEY
	TMDTO Attacks Against CIV
	TMDTO Attacks Against CIVK

	Proving Security
	Proof Preliminaries
	Random Oracle Model
	The Distinguishing Game
	Oracle Queries
	Transcripts
	H-coefficient Technique
	The Adversarial Strategy
	Structure of the Analysis

	Analysis of LSSK
	Overview of the Bad Events
	Bad Events
	Bounding the Bad Events

	Analysis of CKEY
	Overview of the Bad Events
	Bad Events
	Bounding the Bad Events

	Analysis of CIV
	Overview of the Bad Events
	Bad Events
	Bounding the Bad Events

	Analysis of CIVK
	Overview of the Bad Events
	Bad Events
	Bounding the Bad Events

	Good Transcripts

	Presenting the DRACO Stream Cipher
	Design Specification of DRACO
	Components
	State Initialization
	Keystream Generation

	Design Considerations
	The Key-IV Schedule
	NFSR1
	NFSR2
	Output Function a
	Output Function a: Tap Selection
	Continuous Key and IV Usage

	Cryptanalysis
	Correlation Attacks, Linear Approximations
	Algebraic Attacks
	Conditional Differentials, Cube Attacks
	Slide Attacks, Related Key Attacks
	Weak Key-IV Pairs
	BDD-based Attacks
	Preventing Banik et al. and Esgin-Kara Attacks

	Hardware Results
	Discussion of the Results

	Fixing the Key Schedule
	Banik's TMDTO Attacks
	Design Specification of the Quick Fix
	Components

	Hardware Metrics for the Quick Fix
	Keeping the State Small
	Hardware Metrics for the Work in Progress
	Conclusion

	Bibliography

