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a b s t r a c t 

Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain 
responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging 
(fMRI), the paradigm typically elicits activations of medial temporal lobe, prefrontal and parietal cortical struc- 
tures in young, healthy participants. This categorical approach is, however, limited by insufficient memory per- 
formance in older and particularly memory-impaired individuals. A parametric modulation of encoding-related 
activations with memory confidence could overcome this limitation. Here, we applied cross-validated Bayesian 
model selection (cvBMS) for first-level fMRI models to a visual subsequent memory paradigm in young (18–35 
years) and older (51–80 years) adults. Nested cvBMS revealed that parametric models, especially with non-linear 
transformations of memory confidence ratings, outperformed categorical models in explaining the fMRI signal 
variance during encoding. We thereby provide a framework for improving the modeling of encoding-related 
activations and for applying subsequent memory paradigms to memory-impaired individuals. 
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. Introduction 

The subsequent memory paradigm, the comparison of encoding-
elated brain responses to stimuli as a function of their later remember-
ng or forgetting, is a widely used approach in neuroimaging research
f human explicit and particularly, episodic, memory. The neural sig-
atures that differentiate subsequently remembered from subsequently
orgotten stimuli are commonly referred to as the DM effect (difference
due to later] memory; Paller et al., 1987 ). First employed in human
vent-related potential studies ( Paller et al., 1987 ), the DM approach
as been established as a key paradigm in event-related functional mag-
etic resonance imaging (fMRI) since the publication of two landmark
tudies over two decades ago ( Brewer, 1998 ; Wagner et al., 1998 ). In
 typical fMRI study of successful memory formation, the DM effect is
xperimentally evoked by presenting a subject with novel information
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 encoding ) and assessing encoding success in a subsequent memory test
 retrieval ). During encoding, subsequently remembered stimuli elicit in-
reased brain responses in the hippocampus and adjacent medial tempo-
al lobe (MTL) structures as well as in prefrontal and occipito-parietal
rain structures when compared to subsequently forgotten items, and
hese findings have been robustly replicated in numerous studies (for
 meta-analysis, see Kim, 2011 ). Over the past two decades, variations
f the subsequent memory paradigm have been adapted to a variety of
uestions in cognitive memory research, like the common and distinct
rocesses of implicit and explicit memory ( Schott et al., 2006 ; Turk-
rowne et al., 2006 ), the dissociation of encoding processes related to

ater recollection and familiarity ( Davachi et al., 2003 ; Henson et al.,
999 ), or the influence of different study tasks on neural correlates of
ncoding ( Fletcher et al., 2003 ; Otten and Rugg, 2001 ). While most of
hose studies have been conducted in young, healthy adults, the DM
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aradigm has also been successfully applied to older adults ( Düzel et al.,
011 ; for a review, see Maillet and Rajah, 2014 ) or to clinical popula-
ions, such as patients with temporal lobe epilepsy ( Richardson et al.,
003 ; Towgood et al., 2015 ) or schizophrenia ( Bodnar et al., 2012 ;
ierhut et al., 2010 ). 

Episodic memory performance declines during aging, and previous
tudies suggest that age-related changes in encoding-related brain activ-
ty differ between individuals with rather preserved memory function
 “successful aging ”) and subjects with relevant age-related memory de-
line ( Düzel et al., 2011 ; Maillet and Rajah, 2014 ). Therefore, the fMRI
M effect might be useful in assessing a potential neural underpinning
f individual differences in age-related alterations of the MTL memory
ystem. However, when applying the subsequent memory paradigm to
lder participants with poor memory performance, a limitation arises
rom the fact that older subjects and particularly those with memory dys-
unction often remember an insufficient number of stimuli to allow for a
eaningful comparison of later remembered and later forgotten items,
hereas young healthy participants might conversely achieve ceiling
erformance in easier memory tasks, rendering it equally difficult to
nfer on subsequent memory effects. 

In subsequent memory experiments, encoding success can be as-
essed via different retrieval tasks, which are commonly based on ei-
her recall (free or cued) or recognition. In recognition paradigms, pre-
iously presented ( old ) and previously unseen stimuli ( new ) are shown
n random order, and subjects are asked whether they have seen an
tem during encoding or not. Some recognition memory tests do not
erely rely on binary responses, but instead require subjects to provide
 recognition confidence rating on a Likert scale Likert (1932) by, for
xample, judging items on a five-point scale from “definitely old ” via
probably old ”, “uncertain ”, and “probably new ” to “definitely new ”.
his approach has been used to infer on neural correlates of recogni-
ion, that is, familiarity (differentiation of old/new without reporting
dditional details from the encoding episode) and recollection (recogni-
ion memory accompanied by remembering of contextual details of the
ncoding episode) ( Düzel et al., 2011 ; Schoemaker et al., 2014 ). 

When assuming that the majority of older and even memory-
mpaired individuals exhibit at least some variability in responding on
uch a scale (e.g., from “definitely new ” to “uncertain ”), one could
odel the subsequent memory effect parametrically. While categorical
odels employ variables that can only assume nominal values (e.g., re-
embered vs. not remembered), parametric models employ variables
ith a wider ranges of values, (e.g., the degree of confidence whether
n item is remembered). The usefulness of parametric models is two-
old: Firstly, participants are no longer required to make a definite de-
ision when they are actually uncertain. Secondly, the parametric mod-
ls are inherently less complex, as they can incorporate multiple re-
ponses in a single regressor. This lower complexity, however, relies on
he assumption that the relationship between the parametric regressor
nd the measured response is itself parametric in nature ( Bogler et al.,
013 ; Soch et al., 2016 , Fig. 3 B; Soch et al., 2020 , Fig. 8C). Several
revious studies have provided promising evidence for the applicability
f parametric analyses to fMRI-based DM effects ( Dennis et al., 2008 ;
ernández et al., 1998 ; Kim and Cabeza, 2007 ; Richter et al., 2017 ), but
t should be noted non-linear parametric modulations may be superior
o simple linear parametric regressors ( Daselaar et al., 2006 ). 

To date, the use of parametric approaches in analyzing subsequent
emory fMRI data has not undergone an objective validation. A para-
etric analysis would be based on the assumption that the BOLD sig-
al in memory-related brain regions varies quantitatively rather than
ualitatively with the strength of the encoding signal. It may therefore
otentially be suboptimal when considering multi-process models of ex-
licit memory, such as the dual-process signal detection model of rec-
llection and familiarity ( Yonelinas, 1994 ; Yonelinas et al., 2010 ). On
he other hand, parametric models could outperform categorical mod-
ls due to their lower complexity. Furthermore, when using confidence
cales that allow for uncertain responses or guesses, parametric models
2 
ight also be employed in memory-impaired subjects whose behavioral
erformance does not allow for meaningful categorical modeling of the
M effect. 

Here, we used an objective model selection approach to explore the
pplicability of parametric compared to categorical models of the fMRI
ubsequent memory effect, using a visual memory encoding task with
 five-point confidence rating during a recognition memory test that
as previously been employed to assess neural correlates of successful
ging ( Düzel et al. (2011) , Fig. 1). Subject-wise general linear models
GLMs; Friston et al., 1994 ) of individual fMRI datasets were treated as
enerative models of neural information processing, and the selection
etween the different GLMs was afforded by voxel-wise cross-validated
ayesian model selection (cvBMS; Soch et al., 2016 ). This approach re-
ults in an estimated frequency for each model that informs us how often
his model provides the optimal explanation of the observed data. We
ypothesized that models including a differentiation of subsequently re-
embered and subsequently forgotten items would outperform models

hat did not account for memory performance and that among these
odels, parametric models would be superior to categorical models of

uccessful encoding. 

. Methods 

.1. Participants 

A total of 279 volunteers participated in the study (117 young, 162
lder; see Supplementary Methods for sample size estimation). Data
rom 20 participants had to be excluded from analysis due to history of
sychiatric conditions (five cases), incidental findings in structural MRI
cans (eight cases), technical difficulties during recording of behavioral
esponses and/or MRI of the memory experiment (four cases), nausea
uring scanning, insufficiently corrected vision, or artifacts in the MR
mages (one case each). The resulting study cohort consisted of a total
f 259 neurologically and psychiatrically healthy adults, including 106
oung (47 male, 59 female, age range 18–35, mean age 24.12 ± 4.00
ears) and 153 older (59 male, 94 female, age range 51–80, mean age
4.04 ± 6.74 years) participants. The study was approved by the Ethics
ommittee of the Otto von Guericke University Magdeburg, Faculty of
edicine, and written informed consent was obtained from all partic-

pants in accordance with the Declaration of Helsinki World Medical
ssociation (2013) . 

.2. Experimental paradigm 

During the fMRI experiment, participants performed a visual mem-
ry encoding paradigm with an indoor/outdoor judgment as the inci-
ental encoding task (see Fig. 1 A). Compared to earlier publications of
his paradigm ( Assmann et al., 2020 ; Barman et al., 2014 ; Düzel et al.,
011 ; Schott et al., 2014 ), the trial timings had been adapted as part
f the DELCODE protocol ( Bainbridge et al., 2019 ; Düzel et al., 2019 ).
ubjects viewed a series of photographs showing either an indoor or an
utdoor scene, which were either novel to the participant at the time of
resentation (44 indoor and 44 outdoor scenes) or were repetitions of
wo pre-familiarized “master ” images (i.e. one indoor and one outdoor
cene shown to the participants before the start of the actual experi-
ent; see Fig. 1 B). Irrespective of novelty, subjects were requested to

ategorize images as “indoor ” or “outdoor ” via button press. Each pic-
ure was presented for 2.5 s, followed by a variable delay between 0.70 s
nd 2.65 s (see Fig. 1 C), with stimulus intervals and order optimized for
n efficient estimation of the trial-specific BOLD responses ( Düzel et al.,
011 ; Hinrichs et al., 2000 ). 

Approximately 70 min (70.23 ± 3.77 min) after the start of the fMRI
ession, subjects performed a recognition memory test outside the scan-
er, in which they were presented with photographs that had either been
hown during the fMRI experiment or were novel to the participant at
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Fig. 1. Experimental design and stimulus timing during encoding. (A) Exemplary sequence of trials, each trial consisting of either a previously unseen novel image or a 
pre-familiarized master image showing either an indoor or an outdoor scene. Each stimulus was shown for 2.5 s and followed by a variable inter-stimulus-interval 
(ISI) between 0.7 and 2.65 s. (B) Number of trials in the four experimental conditions. There were equally many indoor and outdoor scences and twice as many novel 
images as repetitions of the two previously familiarized master images. (C) Distribution of ISIs in the encoding session. ISIs were pseudo-exponentially distributed 
with shorter intervals occurring more often than longer ones. 
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he time of presentation. Among the 134 pictures presented to each sub-
ect during retrieval, 88 were previously seen “target ” images (44 indoor
nd 44 outdoor scenes), 44 were previously unseen “distractor ” images
22 indoor and 22 outdoor scenes), and 2 were the previously seen pre-
amiliarized “master ” images (1 indoor and 1 outdoor scene). 

Subjects were requested to provide a recognition memory confidence
ating using a five-point Likert scale with the following levels: 

1) I am sure that this picture is new ( definitely new ). 
2) I think that this picture is new ( probably new ). 
3) I cannot decide if the picture is new or old ( unsure ). 
4) I think I have seen this picture before ( probably old ). 
5) I am sure that I have seen this picture before ( definitely old ). 

The responses during this retrieval session were provided verbally
y the participant and recorded via button press by an experimenter.
hese data were used to model the DM effect (see Section 3 ). 

.3. fMRI data acquisition 

Structural and functional MRI data were acquired on two Siemens 3T
R tomographs, (Siemens Verio; 58 young, 83 older; Siemens Skyra: 48

oung, 70 older), following the exact same protocol used in the DEL-
ODE study ( Düzel et al., 2019 ; Jessen et al., 2018 ). 1 

For structural MRI (sMRI), a T1-weighted MPRAGE image
TR = 2.5 s, TE = 4.37 ms, flip- 𝛼 = 7°; 192 slices, 256 × 256 in-plane reso-
ution, voxel size = 1 × 1 × 1 mm) was acquired for later co-registration.
1 In future studies, the data from the young participants of the present study 
ill serve as baseline data to investigate effects of aging and neurodegeneration. 

i  

t  

r  

v  

3 
hase and magnitude fieldmap images were acquired to improve spatial
rtifact correction ( unwarping , see below). 

For functional MRI (fMRI), 206 T2 ∗ -weighted echo-planar images
TR = 2.58 s, TE = 30 ms, flip- 𝛼 = 80°; 47 slices, 64 × 64 in-plane res-
lution, voxel size = 3.5 × 3.5 × 3.5 mm) were acquired in interleaved-
scending slice order (1, 3, …, 47, 2, 4, …, 46). The total scanning time
uring the task-based fMRI session was 531.48 s. The complete study
rotocol also included a resting-state fMRI (rs-fMRI) session comprising
80 scans and using the same scanning parameters as in task-based fMRI
 Teipel et al., 2018 ) as well as additional structural imaging (FLAIR,
LASH, susceptibility-weighted imaging; see e.g. ( Betts et al., 2019 ),
hich are not subject of the analyses reported here. 

.4. fMRI data preprocessing 

Data preprocessing and analysis were performed using Statistical
arametric Mapping (SPM12; Wellcome Trust Center for Neuroimag-
ng, University College London, London, UK). First, functional scans
EPIs) were corrected for acquisition time delay ( slice timing ), followed
y a correction for head motion ( realignment ) and magnetic field in-
omogeneities ( unwarping ), using voxel-displacement maps (VDMs) de-
ived from the fieldmaps. Then, the MPRAGE image was spatially co-
egistered to the mean unwarped image and segmented into six tis-
ue types, using the unified segmentation and normalization algorithm
mplemented in SPM12. The resulting forward deformation parame-
ers were used to normalize unwarped EPIs into a standard stereotactic
eference frame (Montreal Neurological Institute, MNI) using a target
oxel size of 3 × 3 × 3 mm. Finally, normalized images were spatially
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2 Note that, from here on, the first number after “GLM ” in a model name cor- 
responds to the number of regressors used to describe the subsequent memory 
effect (see Figure 2 B), i.e. GLM_0 ∗ = no memory regressor; GLM_1 ∗ = one mem- 
ory regressor; GLM_2 ∗ = two memory regressors; etc. 
moothed using an isotropic Gaussian kernel with full width at half max-
mum (FWHM) of 6 mm 

.5. Bayesian model selection 

After preprocessing, fMRI data were analyzed using a set of first-level
LMs that provided the model space for the following model selection
rocedure (see Section 3 ). Model inference was performed via cvBMS
 Soch et al., 2016 ) implemented in the SPM toolbox for model assess-
ent, comparison and selection (MACS; Soch and Allefeld, 2018 ). Model

nference either addressed individual GLMs, applied to voxel-wise cross-
alidated log model evidences (cvLME), or families of GLMs, applied to
oxel-wise log family evidences (LFE) calculated from cvLMEs. 

At the second level, cvBMS uses random-effects Bayesian model
election (RFX BMS), a hierarchical Bayesian population proportion
odel, the results of which characterize how prevalent each model (or
odel family) is in the population investigated. A proportion resulting

rom cvBMS (e.g. the likeliest frequency, LF) – can be interpreted as (i)
he frequency of the population “using ” a particular model or as (ii) the
robability that a particular model is the generating model of the data
f a given single subject. Consequently, the model with the maximum
F outperforms all other models in terms of relative frequency and may
e regarded as the selected model in a cvBMS analysis. For each analysis
eported in the results section, we show LF-based selected-model maps
SMM) scaled between 0 and 1, which display the most prevalent model
n each voxel ( Soch et al., 2016 ). 

Note that, when interpreting SMMs, they should not be confused
ith statistical parametric maps (SPMs) conventionally reported as fMRI

esults. Whereas voxels on a thresholded SPM usually indicate that there
s a significant activity difference in these voxels, a voxel appearing
n an SMM only indicates that the respective model (or model fam-
ly) performs better in explaining this voxel’s time course, relative to
ome other model. Consequently, the more brain regions appear on an
MM, the more evidence at the whole-brain level that this model is the
ptimal description of the neural processing underlying the cognitive
ask. 

.6. Replication in independent cohort 

The paradigm employed in the present study had previously been
sed in another cohort of 117 young subjects ( Assmann et al., 2020 ;
ee Supplementary Online Material, Table S1 and Figure S1). In the
resent study, we used those previously acquired datasets as an inde-
endent cohort for replication of the results obtained from the young
ubjects. All core findings could be replicated in that cohort, despite a
mall difference in trial timings. Results from the model selection analy-
es performed in the replication cohort are displayed in Supplementary
igures S5-S10, which are designed analogously to Figures S3 and 3–7
n the main manuscript. 

. Analysis 

Preprocessed fMRI data were analyzed using first-level voxel-wise
LMs that were then submitted to cvBMS. In total, the model space con-

isted of 19 models (see Table 1 and Supplementary Figure S2), varying
n their modeled event duration, categorization of trials and modeling
f the subsequent memory effect. 

.1. The baseline model and variations of no interest 

We began our GLM-based analysis by specifying the most straight-
orward model, in line with standard fMRI analysis conventions and
ost suitable for inferring novelty-related effects. This baseline model

marked as red in Figure S2A) included two onset regressors, one for
ovel images at the time of presentation ( novelty regressor) and one for
he two pre-familiarized images ( master regressor). Both regressors were
4 
reated as stimulus functions with an event duration of 2.5 s, convolved
ith the canonical hemodynamic response function, as implemented in
PM. Additionally, the model included the six rigid-body movement re-
ressors obtained from realignment and a constant regressor represent-
ng the implicit baseline. 

The baseline GLM was then varied along three modeling dimensions
f no interest (see Table 1 and Figure S2A) that served for control and
alidation purposes (see Section 4.1 ): 

• Stimulus-related brain responses can be either modeled according to
the actual trial duration (TD) of 2.5 s (family GLMs_TD including the
baseline GLM) or trials can be modeled as point events (PE) with a
duration of 0 s, i.e. as delta functions (family GLMs_PE ), resulting in
shorter BOLD responses in the HRF-convolved regressors. 

• Novel and master images can be either separated into two regres-
sors (family GLMs_0 including the baseline GLM) or events can be
collapsed across these two conditions, yielding one single regressor
(family GLMs_00 ). 

• Indoor and outdoor scenes can be either collected into one regres-
sor (family GLMs_x1 including the baseline GLM) or events can be
grouped into indoor and outdoor stimuli, yielding two regressors per
condition (family GLMs x2 ). 

Applying these three variations to the baseline GLM results in a
odel space of 2 3 = 8 models (see Table 1 ), which allows to infer on the

ptimal event duration (0 s vs. 2.5 s), the novelty effect (novelty/master
eparated vs. collapsed) and the indoor/outdoor effect (indoor/outdoor
eparated vs. collapsed) by appropriate comparison of the model fami-
ies. 

Related to memory, the baseline GLM allows inferring on a nov-
lty effect by contrasting novel with master images, but it does not as-
ume a subsequent memory effect in any form. Because the baseline
LM emerged as the optimal model from this first model space (see
ection 4.1 ), it also formed the basis for all GLMs assuming a subsequent
emory effect (see Table 1 ) by either adding a parametric modulator
escribing memory performance ( parametric models ; see Section 3.3 ) or
eparating the novelty regressor into different memory reports ( categor-

cal models ; see Section 3.2 ). 

.2. Categorical memory models: two, three or five regressors 

As the focus of our study was to optimize the fMRI modeling of the
M effect, we focused all our subsequent analyses on models, derived

rom the baseline GLM, that included at least one subsequent memory
egressor. We first compared the following categorical GLMs: 2 

• Following the classic subsequent memory approach, stimuli can be
grouped into two categories, later remembered and later forgotten,
whereby definitely old and probably old responses are always con-
sidered remembered and definitely new and probably new responses
are always categorized as forgotten. Neutral items with unsure re-
sponses can be either considered forgotten ( GLM_2-nf ) or remem-
bered ( GLM_2-nr ) or randomly sampled as forgotten or remembered
( GLM_2-ns ), resulting in a model family with three models. 

• Another option is to group novel images into three categories: re-
membered (responses 4-5), forgotten (responses 1–2), and neutral (re-
sponse 3), yielding a model with three novelty regressors ( GLM_3 ). 

• When all five response types are considered, this leads to a model
with five novelty regressors ( GLM_5 ), which allows to model neural
correlates of recognition, familiarity or recollection by applying the
appropriate contrast vectors (see Düzel et al. (2011) , Fig. 1A). A lim-
itation of this model (as well as of the model using three regressors)
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Table 1 

Model space for GLM-based fMRI analyses. 8 models without memory effects varying model features of no interest (top) and 11 models varying by the way 
how memory effects are modelled (bottom). Model names correspond to those in Supplementary Figure S2 and descriptions of memory regressors are given in 
Section 3 . The model named “GLM_TD_0x1 ” was used as the "baseline model" with respect to memory effects. 

model name event duration novel/ master images indoor/ outdoor images parametric modulator ( 𝑥 = response) categorical regressors (1-5 = responses) 

GLMs with variations of no interest (see Figure S2A) 

GLM_PE_00x1 0 s collapsed collapsed 

GLM_PE_00x2 0 s collapsed separate 

GLM_PE_0x1 0 s separate collapsed 

GLM_PE_0x2 0 s separate separate 

GLM_TD_00x1 2.5 s collapsed collapsed 

GLM_TD_00x2 2.5 s collapsed separate 

GLM_TD_0x1 2.5 s separate collapsed 

GLM_TD_0x2 2.5 s separate separate 

GLMs with subsequent memory effect (see Figure S2B) 

GLM_1e-ip 2.5 s separate collapsed 2 ⋅ Pr ( 𝑥 |“old ”) − 1 
GLM_1e-cp 2.5 s separate collapsed 2 ⋅ Pr ( “old ”|𝑥 ) − 1 
GLM_1e-lr 2.5 s separate collapsed 2 ⋅ �̂� ( “old ”|𝑥 ) − 1 
GLM_1t-l 2.5 s separate collapsed 𝑥 −3 

2 
GLM_1t-a 2.5 s separate collapsed arcsin ( x−3 

2 
) ⋅ 2 

𝜋

GLM_1t-s 2.5 s separate collapsed sin ( x−3 
2 

⋅ 𝜋

2 
) 

GLM_2-nf 2.5 s separate collapsed 1 + 2 + 3 – 4 + 5 
GLM_2-nr 2.5 s separate collapsed 1 + 2 – 3 + 4 + 5 
GLM_2-ns 2.5 s separate collapsed 1 + 2 + (3) – (3) + 4 + 5 
GLM_3 2.5 s separate collapsed 1 + 2 – 3 – 4 + 5 
GLM_5 2.5 s separate collapsed 1 – 2 – 3 – 4 – 5 
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was that not all subjects made use of all five response options during
retrieval, such that this model could not be estimated for all subjects
and results in ineffective data usage. 

.3. Parametric memory models: theoretical or empirical modulators 

Instead of assuming categorical effects of memory performance,
odels can also account for a possible parametric effect, such that the

bserved activity follows the levels (or a function of the levels) of a
arametric variable (here: memory rating). This is implemented by col-
ecting all novel images into one onset regressor and adding a parametric
odulator (PM) describing the assumed modulation of the trial-specific
RF by successful encoding as assessed with subsequent memory per-

ormance (see Table 1 ). In other words, these models add a trial-wise
arametric regressor to the baseline GLM, which consists in a transfor-
ation of the subject’s subsequent memory responses. The transforma-

ion used by each model was either theoretically informed (see Fig. 2 A)
r empirically inferred (see Fig. 2 B). 

In the theoretical parametric models, a mathematical function of the
ubsequent memory report ( 𝑥 ; responses 1-5) is applied to each item
een during the encoding session, yielding the parametric values modu-
ating activity in the corresponding trials. Here, we implemented three
lausible transformations: 

• GLM_1t-l : a linear-parametric model; PM = 

𝑥 −3 
2 ; such that predicted

activity increases linearly with memory response (see light green line
in Fig. 3 A). 

• GLM_1t-a : an arcsine-transformed parametric modulator; PM =
arcsin ( 𝑥 −3 2 ) ⋅

2 
𝜋

; such that “sure ” responses (definitely old/new) re-
ceive relatively higher weights than “unsure ” responses (probably
old/new) (see medium green line in Fig. 3 A). 

• GLM_1t-s : a sine-transformed parametric modulator; PM =
sin ( 𝑥 −3 2 ⋅ 𝜋

2 ) ; such that “unsure ” responses receive relatively higher
weights than “sure ” responses (see dark green line in Fig. 3 A). 

All these transformations of 𝑥 ∈ { 1 , 2 , 3 , 4 , 5 } ensure that −1 ≤ PM ≤

1 , but they differ in their relative weighting of high confidence hits (5)
nd misses (1). In the linear-parametric model, the PM is proportional
o 𝑥 . The arcsine model puts a higher weight on definitely remembered
5) or forgotten (1) items compared with probably remembered (4) or
orgotten (2) items, while the reverse is true for the sine model (see
ig. 2 A). 
5 
Alternatively, one can take a more data-driven approach and derive
arametric modulators empirically from the behavioral data obtained in
he retrieval session. To this end, all stimuli presented during retrieval,
ither old (i.e. previously seen during encoding) or new , are considered
long with their corresponding memory reports ( 𝑥 ; responses 1-5) to
alculate probabilities which are then used as parametric modulators,
.g.: 

• GLM_1e-ip : the inverse probability of subjects giving memory report
𝑥 , given that an item was old, projected into the same range as above;
PM = 2 ⋅ Pr ( 𝑥 |“old ”) − 1 ; 

• GLM_1e-cp : the conditional probability that at item was old, given
memory report 𝑥 , projected into the same range as above; PM = 2 ⋅
Pr ( “old ”|𝑥 ) − 1 ; 

• GLM_1e-lr : in this model, logistic regression was used to predict
whether a stimulus was old, given a subject’s memory report 𝑥 , and
the estimated posterior probability function was used as the para-
metric modulator, i.e. PM = 2 ⋅ �̂� ( “old ”|𝑥 ) − 1 . 

The resulting probabilities of all three models were normalized to
he range −1 ≤ PM ≤ +1 to ensure comparability with the theoretical
arametric memory models. While the theoretical parametric GLMs are
ased on assumptions regarding the mapping of subsequent memory re-
ponse to predicted BOLD signals (see Fig. 2 A), the empirical paramet-
ic GLMs incorporate subject-wise information, namely each subject’s
esponse frequencies from the retrieval phase (see Fig. 2 B), which may
mprove model quality. 

For all parametric GLMs, orthogonalization of parametric regressors
as disabled in SPM, in order not to influence the estimates of the nov-

lty onset regressor ( Mumford et al., 2015 ). 

. Results 

For each GLM, a cross-validated log model evidence (cvLME) map
as calculated, and these maps were submitted to group-level cross-
alidated Bayesian model selection (cvBMS) analyses (see Section 2.5 ).
ach analysis represents a specific modeling question, and each mod-
ling question was separately addressed in young subjects (age ≤ 35,
 = 106) and in older subjects (age ≥ 50, N = 153). 
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Fig. 2. Parametric modulators for GLMs with subsequent memory effect. (A) Predicted signal change as a function of subsequent memory responses in the baseline 
GLM (red), the theoretical parametric GLMs (green) and the two-regressor categorical GLMs (blue). (B) Probabilities used as parametric modulators by empirical 
parametric GLMs. Error bars depict standard deviation (SD) across subjects; colors used in the plots correspond to box coloring in Supplementary Figure S2. 
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.1. Effects of event duration, novelty and stimulus type 

As a preliminary analysis step, we only considered the eight mod-
ls without a subsequent memory effect, i.e. variations of the “baseline
odel ” (see Section 3.1 , Table 1 ). This allowed us to compare (i) point-

vent models vs. stimulus-duration models, to choose the optimal event
uration, (ii) models that did or did not distinguish between novel and
aster images, to infer on the importance of the novelty effect in our
odels, and (iii) models that did or did not separate indoor and out-
oor scenes, to assess the importance of considering this stimulus fea-
ure in an optimal model. Importantly, all of these analyses addressed
odel space dimensions of no interest. This means they served as sanity

hecks for logfile analysis and statistical modeling as well as validation
f the memory paradigm ( Düzel et al., 2011 ) and the cvBMS methodol-
gy ( Soch et al., 2016 ). 

First, we found that in both young and older participants, GLMs using
n event duration of 2.5 s were preferred throughout the grey matter
hereas white matter voxels are better described by GLMs using point

vents (see Supplementary Figure 3A). Presumably, this was an indirect
esult of the absence of task-related signal in white matter, such that
impler models (i.e., the GLMs assuming fewer processes) were selected
utomatically. Notably, the superiority of the trial duration models in
rey matter was observed despite the fact that, due to the short inter-
timulus-intervals (see Section 2.2 and Fig. 1 C), regressors were more
trongly correlated with each other when using a longer event duration.

Second, we observed that GLMs distinguishing between novel and
aster images outperformed GLMs not doing so throughout large por-

ions of the occipital, parietal, and temporal lobes, extending into the
ilateral parahippocampal cortex and hippocampus as well as the dor-
olateral and rostral prefrontal cortex (see Supplementary Figure 3B),
6 
rain structures that are typically considered to constitute the human
emory network ( Jeong et al., 2015 ). 

Third, cvBMS revealed that GLMs distinguishing between indoor and
utdoor images outperformed GLMs not doing so in medial and lateral
arts of the visual cortex (see Supplementary Figure 3C). Given the lim-
ted extent of clusters in the visual cortex favoring a separation of indoor
nd outdoor scenes and the aim of our study to optimize the modeling
f the subsequent memory effect rather than perceptual processes, we
ecided not to include this additional modeling dimension. 

Guided by the results of our preliminary analyses, we performed all
emory-related model comparisons with GLMs using the actual trial

ength as event duration and separating images into novel and master,
ut not indoor and outdoor images. 

.2. Effects of subsequent memory and number of regressors 

To address the effects of modeling subsequent memory on model
uality, we calculated the log family evidence for all GLMs assuming
ny type of memory effect (categorical or parametric) and contrasted
hem against the log model evidence of the baseline GLM (assuming
o memory effect). This analysis, i.e. identifying voxels in which mod-
ls considering later memory collectively outperform the no-memory
odel, yielded considerably different results in young versus older sub-

ects (see Fig. 3 ): In young subjects, including a subsequent memory
odulation led to an improved model fit in a set of brain regions that

argely overlapped with those showing a superiority of the model family
ccounting for novelty (see Figure S3B and Section 4.1 ), including the
orsolateral prefrontal cortex (dlPFC), posterior cingulate cortex (PCC),
recuneus (PreCun), lateral partietal cortices, portions of the ventral vi-
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Fig. 3. Effects of subsequent memory and number of regressors. (A) Selected-model maps in favor of GLMs modeling memory using one or two regressors, as obtained 
from young subjects (red), older subjects (blue) or both (magenta). Selected-model maps display model frequencies and color intensities range from 0 to 1. (B) 

Significant linear contrasts of the number of regressors used to describe memory (X) on the log Bayes (LBF) factor comparing models with X regressors against the 
baseline GLM, obtained in the global maxima of the respective conjunction contrasts, i.e. left middle occipital gyrus (MOG) in young subjects (red) and older subjects 
(blue). Bar plots depict contrasts of parameter estimates of the group-level model; error bars denote 90% confidence intervals (computed using SPM12). 
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ual stream, and also the MTL (parahippocampal cortex and hippocam-
us). In older subjects, we observed qualitatively similar effects, but in
 smaller number of voxels, and not in the dlPFC and parahippocampal
ortex (see Fig. 3 A). 

Among the GLMs modeling subsequent memory, we additionally
ested for the influence of the number of regressors used to model the
ubsequent memory effect, which increases from the parametric mem-
ry models (1 parametric modulator per model; see Section 3.3 ) to
he categorical memory models (2, 3 or 5 regressors; see Section 3.2 ).
o this end, we calculated the LFE for each of these model families
nd subtracted the LME of the baseline GLM to compute log Bayes
actors (LBF) maps in favor of memory models against a no-memory
odel. The rationale behind this was that some models assuming a sub-

equent memory effect might be too complex, essentially performing
ven worse than a model not accounting for memory performance at
ll. The LBF maps were then subjected to a one-way ANOVA model
ith the within-subject factor number of regressors , which has 4 levels

1, 2, 3, 5). There was a main effect of number of regressors throughout
he whole brain (p < 0.05, FWE-corrected; results not shown). When
erforming a conjunction analysis between (i) a contrast of GLMs_1

nd GLMs_2 against baseline and (ii) a t-contrast linearly decreasing
ith number of regressors, we found that the middle occipital gyrus

MOG), a brain structure with a previously demonstrated robust sub-
equent memory response Kim (2011) , exhibited both a reliable DM
ffect as well as model quality gradients related to the number of re-
ressors (see Fig. 3 B). These showed that only GLMs with one or two
emory regressors outperformed the no-memory model whereas GLMs
ith three or five regressors were not significantly different from the
ull model or performed even worse, especially in the older subjects (see
ig. 3 B). 
7 
.3. Parametric versus categorical subsequent memory models 

The analyses described above indicate that parametric GLMs with
ne parametric modulator describing subsequent memory ( GLMs_1 ) and
ategorical GLMs using two regressors for remembered vs. forgotten
tems ( GLMs_2 ) perform best in regions previously implicated in suc-
essful memory formation Kim (2011) . Treating these GLMs as model
amilies, i.e. calculating log family evidences, and comparing the two
amilies via group-level cvBMS, we observed a preference for parametric
LMs throughout the memory network (see Fig. 4 A), in regions largely
verlapping with those that also showed a novelty effect (see Figure S3B
nd Section 4.1 ) and a memory effect (see Fig. 3 A and Section 4.2 ). The
reference for parametric models could be observed in both age groups.

Within the family of parametric memory models, we additionally
ompared theoretical GLMs ( GLMs_1t ) to empirical GLMs ( GLMs_1e ).
omparing these two sub-families via group-level cvBMS, we ob-
erved an almost whole-brain preference for the empirical GLMs (see
ig. 4 B). 

.4. Winning models within model families 

The group-level results presented so far all refer to model families,
.e. sets of models whose collective quality was quantified via log fam-
ly evidences calculated from log model evidences. This way, we have
dentified the three best performing families of GLMs: two-regressor cat-
gorical GLMs ( GLMs_2 ), theoretical parametric GLMs ( GLMs_1t ), and
mpirical parametric GLMs ( GLMs_1e ). The final step of our model se-
ection procedure was to test how models compared within these fami-
ies, which was addressed by subjecting the respective cvLME maps to
roup-level cvBMS. 
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Fig. 4. Parametric vs. categorical models of the subsequent memory effect. (A) Selected-model maps in favor of parametric GLMs against categorical GLMs. (B) Selected- 
model maps in favor of empirical parametric GLMs against theoretical parametric GLMs. Voxels displayed show the respective model preferences in young subjects 
(red) or older subjects (blue) or both groups (magenta). 
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Within the GLMs_2 family, the GLM categorizing neutral items with
on’t know responses (3) as forgotten ( GLM_2-nf ) performed best in the
ajority of voxels ( Fig. 5 A) when compared with the GLM categorizing

hose items as remembered ( GLM_2-nr ) or randomly distributing them
mong remembered and forgotten items ( GLM_2-ns ). 

Within the GLMs_1t family, the GLM with the arcsine-transformed
emory report as parametric modulator ( GLM_1t-a ) performed best in
ost voxels ( Fig. 5 B) when compared with a sine ( GLM_1t-s ) or a linear

 GLM_1t-l ) transformation. 
Within the GLMs_1e family, the GLM with the inverse probabil-

ty Pr ( 𝑥 |“old ”) as parametric modulator ( GLM_1e-ip ) performed best in
ost voxels ( Fig. 5 C) when compared with the conditional probability
r ( “old ”|𝑥 ) ( GLM_1e-cp ) or logistic regression ( GLM_1e-lr ). 

Overall, within-family differences were smaller than between-family
ifferences, as indicated by lower likeliest frequencies (LFs) on the
elected-model maps (cf. Fig. 6 vs. Figure S3), reflecting more subtle
odeling modifications within versus between families and age-related

ctivation differences being larger in between-family comparisons. 

.5. Novelty and memory parameter estimates 

The aforementioned analyses provide information about the models
hat best explain the BOLD signal in memory-related brain regions. They
o, however, thus far not provide any information about the direction-
lity, strength, or significance of the actual DM effect in the respective
rain structures. To assess how the results of our model selection relate
o group-level GLM results, we conducted second-level significance tests
cross the parameter estimates of the novelty and memory regressors
rom the three models identified as selected models in the three fami-
ies that were performing best (see Fig. 5 ). Replicating previous results
 Kim, 2011 ; Maillet and Rajah, 2014 ), we observed memory-related ac-
ivation differences in a temporo-parieto-occipital network and portions
f the dlPFC (see Fig. 7 ). 3 

In addition to this, we also report the subsequent memory per-
ormance as behavioral data (see Supplementary Table S2) and iden-
3 Please note that the analyses of the DM effect were limited to F-contrasts in 
rder to verify the overall applicability of the winning models. Detailed analyses 
f the subsequent memory effects, with a particular focus on age-related differ- 
nces, are beyond the scope of the current study and will be reported elsewhere. 

c  

a  

t  

t  

fi  

l  

8 
ify age-related differences with respect to response frequencies.
ost prominently, older subjects significantly more often used high-

onfidence ratings and significantly less often used low-confidence rat-
ngs (see Table S2). 

.6. Replication in an independent cohort 

Using the data from an independent replication cohort of young,
ealthy subjects ( Assmann et al., 2020 ; Barman et al., 2014 ; Schott et al.,
014 ), we performed the analyses as described above. Performing these
nalyses using LME images from the additional cohort, we were largely
ble to replicate our results, sometimes with remarkable overlap be-
ween original and replication cohort (see Supplementary Figure S5),
nd sometimes with even stronger evidence for the most often selected
odel (see Supplementary Figure S8). Results from the replication co-
ort are displayed in Supplementary Figures S5-S10. 

. Discussion 

We have applied cross-validated Bayesian model selection
 Soch et al., 2016 ), a novel method for principled comparison be-
ween GLMs for fMRI data, to a previously described version of the
ubsequent memory paradigm ( Düzel et al., 2011 ) in two large samples
f young and older adults. By using the cvBMS approach, we have
dentified several ways to improve the modeling of subsequent memory
ffects in fMRI. 

.1. Optimal statistical modeling of subsequent memory effects 

A key finding from our model selection was the preference of para-
etric over categorical GLMs of the fMRI subsequent memory effect (see

igs. 3 B, 4 A and 6 ). At the model family level, GLMs with one mem-
ry regressor, a parametric modulator, outperformed GLMs with two,
hree or five memory regressors categorizing the events of interest. A
ore property of the cvLME approach is that it balances model accuracy
nd model complexity. With respect to our present analyses, this means
hat the categorical models allow for fitting more diverse activation pat-
erns across memory reports, thereby achieving a higher accuracy when
tting the data. On the downside, their ability to generalize is rather

imited, particularly when there is a low number of events in a given



J. Soch, A. Richter, H. Schütze et al. NeuroImage 230 (2021) 117820 

Fig. 5. Winning models within model families. (A) Selected-model maps in favor of the GLM treating neutral images as forgotten items within the two-regressor 
categorical GLMs. (B) Selected-model maps favoring the GLM using an arcsine-transformed parametric modulator within the theoretical parametric GLMs. (C) 

Selected-model maps in favor of the GLM using an inverse probability parametric modulator within the empirical parametric GLMs. Voxels displayed show the 
respective model preferences in young subjects (red) or older subjects (blue) or both groups (magenta). 

r  

s  

n  

d  

q  

t
 

t  

p  

p  

2  

t  

m  

c  

a  

i  

w  

o  

p  

Y  

c  

r  

s  

o
 

y  

m  

m  

o  

d  

o  

o  

c  

B  

d  

“  

F  

d  

w  

t  

I  

P  

d  

b  

t  

o  

F
 

i  

i  

i  

s  

e  

t  

b  

t

esponse category. In such cases, categorical models may fit tiny, but
purious irregularities between memory reports, indicating that they are
ot only more complex than necessary, but also prone to overfitting the
ata. On the other hand, parametric models are more parsimonious re-
uiring only a single memory regressor, and thus are less likely to overfit
he data. 

An important caveat when using parametric models is the assump-
ion of a parametric, or at least monotonic relationship between the
arameter and the measured response, as often observed, for exam-
le when varying stimulus intensity or similar properties ( Bogler et al.,
013 ; Soch et al. (2016) , Fig. 3B; Soch et al., 2020 , Fig. 8C). The ques-
ion whether this assumption is met in the case of successful episodic
emory encoding touches an intense debate in the memory research

ommunity that has been ongoing for decades. Several researchers have
rgued for a qualitative distinction of recollection and familiarity that
s mirrored by a hierarchical architecture of the MTL memory system,
ith the hippocampus subserving context-rich, recollection-based mem-
ry, whereas rote, familiarity-based recognition memory relies on the
erirhinal and parahippocampal cortices ( Vargha-Khadem et al., 2001 ;
onelinas et al., 2010 ). The alternative view emphasizes common pro-
esses in episodic and semantic memory and the high overlap between
ecollection and high-confidence familiarity, with activity of the MTL
howing a quantitative rather than qualitative relationship with mem-
ry strength ( Squire et al., 2007 ; Wixted and Squire, 2011 ). 

The preference for parametric models observed in our cvBMS anal-
sis seems, at first sight, to be more in line with the second view. It
ust, on the other hand, also be noted that, within the family of para-
etric memory models, non-linear transformations of subsequent mem-
9 
ry performed better at describing the measured hemodynamic signals
uring memory encoding than a simple linear parametric modulation
f the novelty regressor with memory confidence ratings. At the level
f single models, the ones using the arcsine-transformed PM (theoreti-
al) and the inverse probability PM (empirical) were favored by cvBMS.
oth models put a high weight on stimuli recognized with high confi-
ence (response “5 ”) relative to low-confidence recognition (response
4 ”). In the case of the inverse probability GLM, the group average (see
ig. 2 B) even suggests that the entire DM effect might by driven by a
ifference between high-confidence hits and all other conditions, which
ould essentially correspond to the recollection estimate proposed in

he original publication of the paradigm used here ( Düzel et al., 2011 ).
n a supplementary analysis directly comparing the arcsine-transformed
M against the inverse probability PM, we found that model quality
ifferences were rather unspecific within the human memory network,
ut that there were systematic age differences in cortical midline struc-
ures, with young subjects preferring the arcsine-transformed GLM and
lder subjects favoring the inverse probability GLM (see Supplementary
igure S4). 

It must be emphasized that, even though the group average of the
nverse probability PM is suggestive of a bias towards encoding predict-
ng high-confidence memory, the very definition of this PM based on
ndividual behavioral data allows for very different weighting of the re-
ponse options at the level of single subjects. It can therefore also be
mployed in individuals with poor memory and largely absent recollec-
ion. On the downside, PMs with substantially different weighting might
e difficult to compare at the group level. In this case, the model using
he arcsine-transformed PM may be preferable. 
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Fig. 6. Model (family) comparisons (summary). (A) and (B) Selected-model maps (young subjects) in favor of GLMs assuming a novelty effect (red; see Figure S3B), 
a memory effect (blue; see Figure 3 A), parametric vs. categorical memory effects (green; see Figure 4 A) or an arcsine-shaped subsequent memory effect vs. other 
theoretical models (magenta; see Figure 5 B). In most voxels with preference for parametric GLMs, there was also a preference for the arcsine model. (C) and (D) The 
corresponding selected-model maps from older subjects. (E) Proportion of voxels in which a model or family was selected (young subjects). “X within Y ” is to be read 
as “probability that X was the selected family among voxels in which Y was the selected family ”. (F) The corresponding proportions, obtained from older subjects. 

10 
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Fig. 7. Exemplary statistical parametric maps. On the second level, a one-sample t-test was run across parameter estimates obtained from young subjects (red) and older 
subjects (blue) for (A) the novelty contrast (novelty vs. master images) and (B) the memory regressor of the theoretical-parametric GLM using the arcsine-transformed 
PM, (C) the memory regressor of the empirical-parametric GLM using the inverse probability PM and (D) the memory contrast (remembered vs. forgotten items) 
resulting from a two-regressor categorical GLM categorizing neutral responses as forgotten. In SPM, statistical inference was corrected for multiple comparisons 
(FWE, p < 0.05, k = 10), resulting in critical F-values for thresholding of SPMs (young: F > 27.01; older: F > 25.94). Color maps are scaled from the critical F-value 
to the maximum F-value in each map, in units of the decadic logarithm (see color bars). 
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.2. Model preferences and age-related differences in the human memory 

etwork 

Beyond the preference of a specific model of the DM effect, an over-
rching trend in our model selection results relates to the repeated ob-
ervation of a distributed memory network in model preferences (see
ig. 6 A): When comparing regions with a novelty effect, regions with a
ubsequent memory effect and regions preferring parametric over cat-
gorical GLMs, there was a pronounced convergence of model prefer-
nces in multiple brain regions previously implicated in successful mem-
ry encoding Kim (2011) , such as lateral and medial parietal cortices
e.g., PreCun), inferior temporal areas extending into the MTL with the
ippocampus and parahippocampal cortex, as well as the dlPFC. 

While there was overall convergence of brain regions exhibiting the
ame model preferences for novelty and subsequent memory across the
ntire study sample, this convergence was less pronounced in the older
11 
articipants. On the one hand, there were almost no age differences in
odel preference regarding novelty (see Figure S3B), i.e. in both young

nd older participants, the model accounting for stimulus novelty sig-
ificantly outperformed the model using a single regressor for all im-
ges. On the other hand, a considerable difference between age groups
merged with respect to subsequent memory effects (see Fig. 3 A). Here,
he older participants showed a preference for models accounting for
he DM effect in substantially fewer voxels and brain regions compared
o the young group. Most likely because subsequent memory effects are
enerally weaker in older subjects, memory models also perform weaker
hen compared against the baseline GLM assuming no memory effect

see Fig. 3 B). In extreme cases, this can even mean that very complex
odels, such as the five-category GLM in the present study, may per-

orm significantly worse than the memory null model, because the lat-
er is prone to overfitting neural responses, which in turn decreases its
eneralizability. 
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We cannot exclude that even less complex categorical models may be
nferior to a simple novelty-based model assuming no memory effect in
articipants with very poor memory, such as patients with early or pre-
linical Alzheimer’s disease. However, ongoing data analyses suggest
hat the DM effect may exhibit more extensive and robust differences
etween young and older individuals when compared to the novelty
ffect ( Soch et al., 2021 ). In such situations, we suggest that the use of
 relatively simple parametric model may provide a reasonable tradeoff
etween model complexity and utility. 

.3. Clinical implications and future directions 

While episodic memory performance almost invariably declines dur-
ng normal aging, accelerated memory decline is also a prominent
ymptom of Alzheimer’s disease (AD) ( Buckner, 2004 ; Cansino, 2009 ;
ubin et al., 1998 ). Those observations at the behavioral level are mir-
ored by structural imaging findings showing age-related volume loss
n the MTL ( Raz et al., 2007 ) and pronounced MTL involvement in AD
 Duara et al., 2008 ; Jack et al., 1998 ; Visser et al., 2002 ). To allow for
arly intervention, it is desirable to identify individuals developing AD
t early clinical risk stages like subjective cognitive decline (SCD) or
ild cognitive impairment (MCI) ( Jessen et al., 2020 ). Considering the
arked interindividual variability of age-related changes of encoding-

elated brain activity ( Düzel et al., 2011 ), the DM paradigm might pro-
ide a useful tool in dissociating AD-related pathological changes from
ffects of normal aging. We suggest that the use of parametric mod-
ls may help to further improve the utility of subsequent memory fMRI
ctivations as a potential biomarker, as they are less dependent on indi-
idual memory performance when compared to categorical models. 

.4. Applicability beyond memory research 

We have described the application of the cvBMS approach
 Soch et al., 2016 ; Soch and Allefeld, 2018 ) to a paradigm that has pre-
iously been shown to elicit robust subsequent memory effects and is
seful for detecting individual differences at the level of brain activity
 Assmann et al., 2020 ; Barman et al., 2014 ; Düzel et al., 2011 ). While,
o our knowledge, no previous study has employed our approach as ex-
ensively with respect to both model space and sample size, it should
e emphasized that cvBMS should be applicable to essentially all cog-
itive paradigms in fMRI research that allow for multiple plausible first
evel models. As described above, we started our model selection proce-
ure by assessing the influence of stimulus duration and content (i.e., in-
oor vs. outdoor), with both selections yielding clear preferences, which
uided our subsequent analyses (see Figure S3). This provides further
vidence for the utility of cvBMS in modeling decisions with respect
o even very basic technical or stimulus-related aspects of a first-level
MRI model, similarly to its previously described application for de-
iding on the use of temporal and dispersion derivatives of the BOLD
esponse ( Soch et al., 2016 ). On the other hand, the cvBMS approach
s not limited to such fundamental aspects of models, but can also be
sed to help decide between multiple models reflecting different theo-
ies of underlying cognitive and behavioral processes ( Charpentier et al.,
020 ). The study by Charpentier et al. is particularly noteworthy from
n Open Science perspective. The authors conducted a pre-registered
tudy aimed at replication of their original findings. When their model
f imitation learning from the first study could not be replicated, they
mployed cvBMS in an exploratory analysis and found a simpler model
o be associated with higher exceedance probabilities in both their orig-
nal data and the data of their pre-registered replication study. For fu-
ure research, we suggest that pre-registered studies could also employ
vBMS and pre-register their complete model space, thereby allowing
or more flexibility during data analysis, despite pre-registration. 

In the present study, our interest was focused on the use of cate-
orical versus parametric models, and on the model preferences within
he respective model families. Parametric regressors with more than
12 
wo values are commonly coded as linear scales ( Heinzel et al., 2005 ;
orthoff et al., 2009 ) and, in the present study, a linear scale of recog-
ition confidence was used in our default parametric model. We ad-
itionally employed an arcsine-transformed scale, which was inspired
y the use of arcsine transformations for proportion data in statistics
 Hernández et al., 2018 ; Lin and Xu, 2020 ). The choice of arcsine
ver other inverse sigmoid transformations like the logit or Fisher z-
ransformations was due to the non-asymptotic nature of the arcsine
unction. We are aware that other transformations with similar shapes
e.g., a cubic function) will likely yield similar results. While such differ-
nces are probably negligible due to the rather coarse five-step scaling
f our parametric modulators, the shape of the transformation might be-
ome more important when employing scales with a higher resolution,
uch as visual analog scales ( Northoff et al., 2009 ). In such cases, com-
aring parametric models with several alternative transformations may
e helpful to further improve the model fit. 

.5. Limitations 

One limitation of the present approach is that any parametric model
ssumes an at least monotonic relationship between memory confidence
nd brain activation patterns. Evidently, such a relationship is plau-
ible for any model assuming increasing memory strength as a func-
ion of increasing MTL engagement Wixted and Squire (2011) , but it
an also be applicable to hierarchical models of memory performance
hen considering, for example, that recollection is highly correlated
ith high memory confidence and accompanied by an additional famil-

arity signal ( Yonelinas et al., 2010 ). However, caution is necessary as
onfidence and recognition accuracy may not necessarily be correlated
nder all circumstances ( Busey et al., 2000 ). Furthermore, the assump-
ion of a monotonic relationship will likely be violated when applying
ingle-process models that also include implicit memory processes like
riming ( Berry et al., 2012 ). For example, previous studies have demon-
trated encoding-related activations predicting explicit memory, but de-
ctivations predicting priming in the fusiform gyrus ( Schott et al., 2006 ),
nd a possibly reverse pattern in the right temporo-parietal junction
 Schott et al., 2006 ; Uncapher and Wagner, 2009 ; Wimber et al., 2010 ).

.6. Conclusions 

Our results suggest that a systematic model selection approach favors
arametric over categorical models in first-level GLM-based analysis of
he fMRI subsequent memory effect. While it would be, in our view, pre-
ature to draw a conclusion with respect to hierarchical versus single-
rocess models of explicit memory function in the human memory net-
ork based on these results, our results do provide a strong rationale

or the use of parametric models in studies focusing on between-group
ifferences, particularly in older humans and individuals with impaired
emory performance. 
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odels (see Table 1 ) as well as general linear model (GLM) con-
rast images for 4 parameters (see Figure 7 ) from all 259 sub-
ects underlying the group analyses reported in this paper as Neu-
oVault collections ( https://neurovault.org/collections/EKUNXKRB/ ,
ttps://neurovault.org/collections/QBHNSRVW/ ). MATLAB code and
nstructions to process these data can be found in an accompanying
itHub repository ( https://github.com/JoramSoch/FADE _ BMS ). 
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