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Abstract

Human cognitive abilities decline with increasing chronological age, with decreased explicit memory performance
being most strongly affected. However, some older adults show “successful aging,” that is, relatively preserved cog-
nitive ability in old age. One explanation for this could be higher brain-structural integrity in these individuals.
Alternatively, the brain might recruit existing resources more efficiently or employ compensatory cognitive strategies.
Here, we approached this question by testing multiple candidate variables from structural and functional neuroimag-
ing for their ability to predict chronological age and memory performance, respectively. Prediction was performed
using support vector machine (SVM) classification and regression across and within two samples of young (N=106)
and older (N=153) adults. The candidate variables were (1) behavioral response frequencies in an episodic memory
test; (2) recently described functional magnetic resonance imaging (fMRI) scores reflecting preservation of functional
memory networks; (3) whole-brain fMRI contrasts for novelty processing and subsequent memory; (4) resting-state
fMRI maps quantifying voxel-wise signal fluctuation; and (5) gray matter volume estimated from structural MRIs.
While age group could be reliably decoded from all variables, chronological age within young and older subjects was
best predicted from gray matter volume. In contrast, memory performance was best predicted from task-based fMRI
contrasts and particularly single-value fMRI scores, whereas gray matter volume has no predictive power with re-
spect to memory performance in healthy adults. Our results suggest that superior memory performance in healthy
older adults is better explained by efficient recruitment of memory networks rather than by preserved brain structure.

Key words: brain maintenance; cognitive reserve; fMRI activity; gray matter volume; subsequent memory; suc-
cessful aging

Significance Statement

Although human memory performance declines with increasing age, some older adults (“successful agers”) show
memory performance comparable with young adults. It is an open question whether this is because of preserved
brain structure (brain maintenance) or efficient information processing (cognitive reserve). Here, we addressed this
question using magnetic resonance imaging (MRI), by predicting chronological age and memory performance
from either structural MRI maps or functional MRI (fMRI) measures. While chronological age wasmost strongly as-
sociated with gray matter volume derived from structural MRI, memory performance was best predicted from
task-based scores derived from fMRI. This suggests that superior memory performance in healthy older adults is
better explained by efficient recruitment of memory networks rather than continued integrity of brain structure.
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Introduction
Episodic memory performance peaks in young adult-

hood and declines with increasing age. Notably, a subpo-
pulation of older adults show “successful aging,” with
memory performance comparable to that of younger
adults (Nyberg et al., 2012; Nyberg and Pudas, 2019). An
early assessment of changes in cognitive performance
can help to determine people at risk of pathologic aging,
such as various forms of dementia, and allows for early
medical and behavioral interventions (Naismith et al.,
2009; Cabeza et al., 2018; Whitty et al., 2020). Machine
learning-based techniques such as support vector ma-
chine (SVM) classification and regression provide promis-
ing approaches to differentiate normal from pathologic
neurocognitive aging. They have been employed to pre-
dict chronological age from structural magnetic reso-
nance imaging (MRI; Cole et al., 2017, 2018), to estimate
brain age (Bashyam et al., 2020; Habes et al., 2021) or to
distinguish health from disease (Dyrba et al., 2021; Eitel et
al., 2021).
In contrast to the abundant literature on age prediction

from structural MRI (Luders et al., 2016; Steffener et al.,
2016; Cole et al., 2017, 2018; Soch, 2020), few studies
have been devoted to predicting cognitive function, par-
ticularly memory performance, from neuroimaging data.
One such study found that a combination of ApoE geno-
type and functional MRI (fMRI) was the most effective pre-
dictor for future cognitive decline (Woodard et al., 2010).
The wide range of cognitive functioning even within nar-
rowly defined age groups suggests that chronological age
and cognitive performance might be predicted by differ-
ent modalities. Several studies evaluated potential struc-
tural, functional, physiological and behavioral predictors
of age-related cognitive decline (Gross et al., 2011; Hou
et al., 2020; Chen et al., 2021), but only few studies sys-
tematically compared different predictors and their joint
predictive value (Woodard et al., 2010).
Comparing the predictive value of MRI biomarkers

for chronological age versus individual memory per-
formance appears to be a promising endeavor, be-
cause “successful aging” may reflect dissociable neural
mechanisms: differences in the manifestation of age-

related physiological changes (“brain maintenance”) and/
or differences in cognitive processing (“cognitive reserve”;
Nyberg et al., 2012). Thus, data from different modalities
may differentially predict chronological age and memory
performance, respectively.
We compared SVM-based prediction of chronological

age versus prediction of memory performance from be-
havioral data, task-based fMRI, resting-state fMRI, and
structural MRI markers associated with increasing age.
Our analyses where based on a large sample of 106 young
and 153 older subjects (Soch et al., 2021a). Episodic mem-
ory performance was measured in the fMRI task and in var-
ious neuropsychological tests, using either incidental or
intentional memory formation.
In addition to task-based fMRI, we also included re-

cently described single-value fMRI scores (Soch et al.,
2021b; Richter et al., 2022). These scores are derived
from fMRI contrasts and describe the amount of deviation
from or similarity with prototypical activations seen in
young adults during novelty processing and successful
encoding, by focusing on either typical versus atypical ac-
tivations (FADE, functional activity deviation during en-
coding) or activations and deactivations (SAME, similarity
of activations during memory encoding). These scores
might constitute more robust predictors than voxel-wise
fMRI contrasts, as a recent meta-analysis suggested that
test-retest reliability of task-based fMRI is mediocre, and
the authors recommended whole-brain aggregate analy-
sis rather than voxel-based or ROI-based analyses to im-
prove reliability (Elliott et al., 2020).
As an intermediate variable between task-based fMRI

and structural MRI, we included the strength of resting-
state fMRI signal fluctuations (Jia et al., 2020). Although
resting-state fMRI, like task-based fMRI, measures the
BOLD signal, it is, like structural MRI, not selective with
respect to specific cognitive functions, because subjects
are not performing a specific cognitive task (Buckner et
al., 2008).
We hypothesized that both chronological age and

memory performance could be best predicted from
structural MRI, because age-related decrease of memo-
ry performance is typically accompanied by structural
brain alterations (Cabeza et al., 2004; de Mooij et al.,
2018). Whether any MRI modality would outperform the
others’ prediction of memory performance, was assessed
exploratively.

Materials and Methods
Participants
The study was approved by the Ethics Committee of

the Otto von Guericke University Magdeburg, Faculty of
Medicine, and written informed consent was obtained
from all participants in accordance with the Declaration of
Helsinki (World Medical Association, 2013).
Participants were recruited via flyers at the local univer-

sities (mainly young subjects), advertisements in local
newspapers (mainly older participants), and during public
outreach events of the institute (e.g., Long Night of the
Sciences).
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The study cohort consisted of a total of 259 neuro-
logically and psychiatrically healthy adults, including
106 young (47 male, 59 female, age range 18–35,
mean age 24.126 4.00 years) and 153 older (59 male,
94 female, age range 51–80, mean age 64.0466.74 years)
participants. According to self-report, all participants were
right-handed and did not use neurologic or psychiatric
medication. The Mini-International Neuropsychiatric
Interview (M.I.N.I.; Sheehan et al., 1998; German version
by Ackenheil et al., 1999) was used to exclude present or
past psychiatric illness, alcohol or drug dependence.
Please note that this study is based on the same partici-

pant sample as described by Soch et al. (2021a,b) and
Richter et al. (2022). The analyses and results described
in this study are novel and have not been described or
shown elsewhere.

Experimental paradigm
During the fMRI experiment, participants performed a

visual memory encoding paradigm with an indoor/outdoor
judgment as the incidental encoding task. Compared with
earlier publications of this paradigm (Düzel et al., 2011;
Barman et al., 2014; Schott et al., 2014; Assmann et al.,
2021), the trial timings had been adapted as part of the
DZNE-Longitudinal Cognitive Impairment and Dementia
(DELCODE) study protocol (Düzel et al., 2018; Bainbridge
et al., 2019; for a detailed comparison of trial timings and
acquisition parameters, see Soch et al., 2021a). Subjects
viewed photographs showing indoor and outdoor scenes,
which were either novel at the time of presentation (44 in-
door and 44 outdoor scenes) or were repetitions of two
highly familiar “master” images (22 indoor and 22 outdoor
trials), i.e., one indoor and one outdoor scene prefamiliar-
ized before the actual experiment (cf. Soch et al., 2021a,
their Fig. 1B). Thus, every subject was presented with 88
unique images and 2 master images that were presented
22 times each. Participants were instructed to categorize
images as “indoor” or “outdoor” via button press. Each
picture was presented for 2.5 s, followed by a variable
delay between 0.70 and 2.65 s. To optimize estimation of
the condition-specific BOLD responses despite the short
delay, simulations were employed to optimize the trial
order and jitter, as described previously (Hinrichs et al.,
2000; Düzel et al., 2011).
Approximately 70min (70.236 3.77min) after the start

of the fMRI session, subjects performed a computer-
based recognition memory test outside the scanner, in
which they were presented with the 88 images that were
shown once during the fMRI encoding phase (old) and 44
images they had not seen before (new). Participants rated
each image on a five-point Likert scale from 1 (“definitely
new”) to 5 (“definitely old”). For detailed experimental pro-
cedure, see Assmann et al. (2021) and Soch et al. (2021a).

fMRI data acquisition
Structural MRI and fMRI data were acquired on two

Siemens 3T MR tomographs (Siemens Verio: 58 young,
83 older; Siemens Skyra: 48 young, 70 older), following
the exact same protocol used in the DELCODE study

(Jessen et al., 2018; Düzel et al., 2019; Billette et al.,
2022).
A T1-weighted MPRAGE image (TR=2.5 s, TE=

4.37ms, flip-a = 7°; 192 slices, 256� 256 in-plane resolu-
tion, voxel size = 1� 1 � 1 mm) was acquired for co-regis-
tration and improved spatial normalization. Phase and
magnitude fieldmap images were acquired to improve
correction for artifacts resulting from magnetic field inho-
mogeneities (see below).
For fMRI, 206 T2*-weighted echo-planar images (EPIs;

TR=2.58 s, TE=30ms, flip-a = 80°; 47 slices, 64� 64 in-
plane resolution, voxel size = 3.5� 3.5� 3.5 mm) were ac-
quired in interleaved-ascending slice order (1, 3, ..., 47, 2,
4, ..., 46). Before this task-based fMRI experiment, a rest-
ing-state fMRI run was acquired, comprising 180 EPIs
with otherwise identical acquisition parameters. The total
scanning times were 531.48 s (�9:51min) for the task-
based fMRI run and 464.4 s (�7:44min) for the resting-
state fMRI session. The complete study protocol also
included a T2-weighted MRI in perpendicular orientation
to the hippocampal axis (TR=3.5 s, TE=350ms, 64 sli-
ces, voxel size = 0.5� 0.5� 1.5 mm) for optimized seg-
mentation of the hippocampus (Dounavi et al., 2020) and
additional structural imaging not used in the analyses re-
ported here.

fMRI data preprocessing
Data preprocessing was performed using Statistical

Parametric Mapping (SPM12; Wellcome Trust Center
for Neuroimaging, University College London, London,
United Kingdom). EPIs were corrected for acquisition
time delay (slice timing), head motion (realignment), and
magnetic field inhomogeneities (unwarping), using voxel-
displacement maps (VDMs) derived from the fieldmaps. The
MPRAGE image was spatially co-registered to the mean un-
warped image and segmented into six tissue types, using the
unified segmentation and normalization algorithm imple-
mented in SPM12. The resulting forward deformation param-
eters were used to normalize unwarped EPIs into a standard
stereotactic reference frame (Montreal Neurologic Institute,
MNI; voxel size=3� 3 � 3 mm). Normalized images were
spatially smoothed using an isotropic Gaussian kernel of 6-
mm full width at half maximum (FWHM).

General linear modeling
For first-level fMRI data analysis, which was also per-

formed in SPM12, we used a parametric general linear
model (GLM) of the subsequent memory effect that has
recently been demonstrated to outperform the so far
more commonly employed categorical models of fMRI
subsequent memory effects (Soch et al., 2021a) when
subsequent memory responses are recorded as memory
confidence ratings on a parametric scale.
This model included two onset regressors, one for

novel images at the time of presentation (“novelty re-
gressor”) and one for presentations of the two prefami-
liarized images (“master regressor”). Both regressors
were created as short box-car stimulus functions with an
event duration of 2.5 s, convolved with the canonical
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hemodynamic response function, as implemented in
SPM12.
The regressor reflecting subsequent memory perform-

ance was obtained by parametrically modulating the nov-
elty regressor with a function describing subsequent
memory report. Specifically, the parametric modulator
(PM) was given by:

PM ¼ arcsin
x� 3
2

� �
� 2
p
;

where x 2 1;2;3;4; 5f g is the subsequent memory report,
such that –1 � PM � 11. Compared with a linear-para-
metric model, this transformation puts a higher weight on
definitely remembered (5) or forgotten (1) items compared
with probably remembered (4) or forgotten (2) items (cf.
Soch et al., 2021a, their Fig. 2A).
The model also included the six rigid-body movement

parameters obtained from realignment as covariates of no
interest and a constant representing the implicit baseline.

Extraction of target variables
For each subject, age group (young vs older), chrono-

logical age (in years) and memory performance (area
under the curve, AUC; see Soch et al., 2021b, Appendix
B) were extracted as dependent variables, i.e., target vari-
ables for prediction analyses (see Table 1).
Note that our measure of memory performance is not

completely independent from some of the source varia-
bles, because it was obtained from the same task during
which behavioral data and fMRI were acquired (see
below, Extraction of source variables). For this reason, we
also used independent measures of memory performance
to test the predictive performance of our candidate varia-
bles. These measures include (1) the number of items re-
trieved in a verbal learning task (verbal learning and
memory test, VLMT; Helmstaedter et al., 2001), in a recall
after 30min or 1 d; and (2) the number of points obtained
in a semantic memory test (Wechsler memory scale,
WMS; Härting et al., 2000), in a recall after 30min or 1 d
(see Table 2). For detailed description of these neuropsy-
chological assessments, see Richter et al. (2022).

Extraction of source variables
For each subject, the following variables were extracted

as independent variables, i.e., source variables for predic-
tion analyses (see Table 3):

• behavioral response frequencies: In the surprise rec-
ognition memory test, subjects provided memory con-
fidence ratings between 1 and 5 for all 88 old stimuli
(i.e., items presented during the encoding session)

and 44 new stimuli (i.e., items not seen during the en-
coding session; see above, Experimental paradigm).
From the responses of subject i, we calculated oij, the
proportion of old items rated with confidence level j,
and nij, the proportion of new items rated with j. The
variables oi3 and ni3 were dropped to avoid collinearity
of predictor variables, since all “old” proportions and
all “new” proportions added up to 1, respectively.

• fMRI contrast images: The GLM for first-level fMRI data
analysis contained one regressor for novel images, para-
metrically modulated with a nonlinear transformation of
memory confidence, and another regressor for master
images (see above, General linear modeling). From
this, we generated fMRI contrast maps for “novelty
processing” as such, by subtracting the master re-
gressor from the novelty regressor, and for “subse-
quent memory” effects, identical to the estimated
regression coefficient for the PM.

• fMRI summary statistics: We then identified regions
with group-level significant positive and negative
activations on these contrasts in young subjects.
Using these voxels as masks, we calculated two re-
cently described fMRI scores quantifying the devia-
tion of older adults from the prototypical activation
of young subjects (for detailed procedure and ex-
tracted scores, see Soch et al., 2021b). Both scores,
FADE-classic (FADE = functional activity deviation
during encoding; Düzel et al., 2011) and FADE-
SAME (SAME = similarities of activations during
memory encoding; Soch et al., 2021b), were com-
puted from both contrasts, novelty processing and
subsequent memory.

• resting-state fMRI maps: We then applied the
RESTplus toolbox (Jia et al., 2019) to the prepro-
cessed resting-state fMRI scans of each subject and
calculated the voxel-wise percent of amplitude fluc-
tuation (PerAF) of signals in the frequency range
from 0.01 to 0.08 Hz. PerAF is the average absolute
deviation from the signal mean, measured in percent
(Jia et al., 2020, eq. 1). Here, we used “mean PerAF”
(mPerAF), which additionally divides PerAF by the
global mean (Jia et al., 2020, their Table 1) and was
already employed in a previous study (Kizilirmak et
al., 2022).

• structural MRI maps: Finally, the T1 image of each
subject was submitted to structural MRI analyses
(i.e., voxel-based morphometry; VBM) using the
Computational Anatomy Toolbox (CAT12; Structural
Brain Mapping Group, Department of Neurology,
University Jena, Germany), resulting in gray matter
volume (GMV) maps. These maps were additionally

Table 1: Target variables used for prediction analyses

Variable Range Description
age group xi 2 1;2f g cohort of either young (1) or older (2) subjects
chronological age 18 � xi � 80 absolute age of a subject in years
memory performance different measures for details, see Table 2

Details on the different measures of memory performance are given in Table 2.
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smoothed using a Gaussian kernel (isotropic FWHM =
6mm) before entering whole-brain decoding analyses.

Prediction of target from source variables
After source and target variables were extracted,

several analyses were performed and each analysis
consisted in predicting a single target variable from a
feature set of source variables using SVMs (see Fig. 1;
Table 4).
For decoding the age group, a subject was belonging

to, we used support vector classification (SVC) using a lin-
ear SVM with C=1. For predicting chronological age and
memory performance, we used support vector regression
(SVR) using a linear SVM with C=1. For both, SVC and
SVR, subjects were split with k-fold cross-validation (CV)
on subjects per group using k=10 CV folds. All SVM anal-
yses were implemented using LibSVM in MATLAB via in-
house scripts available from GitHub (https://github.com/
JoramSoch/ML4ML).

Distributional transformation
When predicting chronological age and memory per-

formance, distributional transformation (DT) was applied
to preserve the observed distribution of the target variable
(Soch, 2020). DT is a postprocessing operation that maps
predicted values to the variable’s distribution in the train-
ing data and can improve prediction precision.
For example, memory measured as AUC always falls

into the range between 0 and 1, but a trained SVM may
also return values smaller than 0 or larger than 1. Then,
DT brings predicted values into the natural range of the
target variable while keeping the ranks of all predicted val-
ues identical before and after transformation (Soch,

2020). The same holds when predicting age which was al-
ways between 18 and 80 years in our study. For subgroup
analyses, only the age range of the respective group
(young vs older) was applied.

Performance assessment
The prediction precision was assessed using balanced

accuracy (BA; ranging between 0 and 1) when decoding
age group, i.e., by averaging the decoding accuracies for
young and older subjects (Brodersen et al., 2010), and
using correlation coefficients (ranging between –1 and
11) when predicting chronological age and memory per-
formance, i.e., as the sample correlation coefficient be-
tween actual and predicted values of those variables. For
each precision measure, a 90% confidence interval (CI)
was established. CIs were generated using the MATLAB
functions binofit for accuracies (assuming that the num-
bers of correct predictions are binomially distributed with
unknown success probability) and corrcoef for correla-
tions (assuming that actual and predicted continuous vari-
ables are linearly related).
When predicting chronological age and memory per-

formance, we additionally calculated absolute errors (AE)
between predicted and actual target values and submit-
ted them to Wilcoxon signed-rank tests to check for sig-
nificant reduction of the mean AE (MAE) from one feature
set to another. This nonparametric test was chosen be-
cause of the presumably non-normal distribution of AEs.
For each target variable, AEs of the feature set with the
highest correlation coefficient were compared against
AEs of each other feature set to test whether performan-
ces of the feature sets were significantly different from
that of the most predictive feature set (Fig. 3).

Table 3: Source variables used for prediction analyses

Variables Range Description
behavioral response frequencies oi1; :::; oi5 2 ½0;1�

ni1; :::; ni5 2 ½0; 1�
proportion of old items replied to with 1, ..., 5 and proportion of new items
replied to with 1, ..., 5

fMRI summary statistics yi1; :::; yi4 2 R two scores (FADE-classic, FADE-SAME) computed from two fMRI con-
trasts (novelty processing, subsequent memory)

fMRI contrast images Yi 2 Rv voxel-wise fMRI contrasts computed in SPM, representing activations re-
lated to novelty processing (novel images – master images) or subse-
quent memory (PM with memory response)

resting-state fMRI maps Yi 2 Rv voxel-wise PerAF (mPerAF) computed using the REST toolbox, based on
fMRI signals measured during a resting-state session

structural MRI maps Yi 2 Rv voxel-wise gray matter volumes computed in CAT12, based on each sub-
ject’s T1 image

FADE = functional activity deviation during encoding, SAME = similarities of activations during memory encoding, R = real numbers, v = number of (in-mask)
voxels.

Table 2: Measures of memory performance used as target variables

Measure Stimulus material Encoding type Recall delay Recall type Theoretical range Actual range
FADE-A’ visual incidental 70min recognition 0–1 0.53–0.98
VLMT-30 min verbal intentional 30min free recall 0–15 4–15
VLMT-1 d verbal intentional 1 d free recall 0–15 2–15
WMS-30 min auditory intentional 30min free recall 0–50 9–46
WMS-1 d auditory intentional 1 d free recall 0–50 6–45

FADE = name of the fMRI paradigm; A’ = area under the curve (AUC) when plotting the hit rate as a function of false alarm rate; VLMT = verbal learning and mem-
ory test; WMS = Wechsler memory scale.
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Results
Chronological age is best predicted from structural
MRI maps
The age group a subject belonged to (young vs older

subjects) could be predicted from all feature sets with
above-chance decoding accuracy (see Extended Data
Fig. 2-1). The highest accuracy was obtained with GMV
maps (BA=96.01%; CI = [0.931, 0.976]) and the lowest
accuracy was obtained with response frequencies to old
items (BA=59.68%, CI = [0.542, 0.646]).
When predicting chronological age (in years) across

all subjects, we found significant correlations for all
feature sets (see Fig. 2A; old items: r = 0.40; GMV
maps: r = 0.95). However, this was mainly attributable
to the inherent correlation between chronological age and
age group (see Materials and Methods, Participants), such
that decoding age group is already a good predictor for
chronological age. Therefore, we performed the same analy-
ses separately within young subjects (18–35years) and with-
in older subjects (60–80years).
In young subjects, chronological age could only be re-

constructed from whole-brain GMV maps (see Fig. 2B;
r=0.24, CI = [0.085, 0.388]; all other |r| , 0.20). In older
subjects, chronological age could be predicted from GMV

and resting-state fMRI maps (see Fig. 2C; GMV maps:
r=0.63, CI = [0.540, 0.703]; mPerAF maps: r=0.40, CI =
[0.279, 0.504]) and, with lower accuracy, from task-based
fMRI contrasts (novelty and memory: r=0.30, CI = [0.179,
0.421]) and fMRI summary statistics (FADE and SAME:
r=0.17, CI = [0.033, 0.293]), but not from behavioral re-
sponse frequencies (old and new: r=0.01, CI = [�0.120,
0.147]).

Dependent memory performance is best predicted
from task-based fMRI
Similar to chronological age, memory performance

(AUC) across all subjects could be predicted from all fea-
ture sets; (see Fig. 3A; GMV maps: r = 0.13; SAME scores:
r = 0.48). [Note that we are here not using behavioral data
as source variables, because the target variable of memo-
ry performance is a mathematical function of the behav-
ioral response frequencies. For this reason, prediction
from response frequencies to all items would reach ceiling
performance and is not shown.] However, as memory per-
formance is also strongly influenced by age group, with
young subjects performing significantly better than older
subjects (young: m1 = 0.82; older: m2 = 0.77; effect size:
d’ = 0.72; two-sample t test: t=5.67, p,0.001), we again

Figure 1. Methodology of the present study. Several target variables of interest (right) are predicted using several sets of source
variables (left), thought to be markers of cognitive decline in old age, using machine learning techniques (center).
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analyzed this target variable separately within young and
older subjects, respectively.
In both age groups, memory performance predicted by

GMV maps was not correlated to actual memory perform-
ance (young: r=0.11; older: r=0.11). Instead, memory
performance was best predicted by the fMRI memory
contrast in young subjects (see Fig. 3B; r=0.19, CI =

[0.032, 0.342]) and the SAME scores in older subjects
(see Fig. 3C; r=0.53, CI = [0.421, 0.616]). Note that the
predictive accuracy when predicting from just four single-
value fMRI scores (FADE and SAME: r=0.48, CI = [0.368,
0.575]) was better than using two whole-brain task-based
fMRI contrasts (novelty and memory: r=0.35, CI = [0.227,
0.461]).

Table 4: Feature sets used for prediction analyses

Short Long Features Description
old old items 4 responses to old items only
new new items 4 responses to new items only
both old and new 8 responses to old and new items
FADE FADE scores 2 FADE scores for novelty and memory
SAME SAME scores 2 SAME scores for novelty and memory
both FADE and SAME 4 FADE and SAME scores for novelty and memory
nov. novelty contrast v whole-brain novelty contrast maps
mem. memory contrast v whole-brain memory contrast maps
both nov. and mem. 2v whole-brain novelty and memory contrast maps
mPerAF mPerAF maps v whole-brain percent amplitude fluctuation maps
GMV GMV maps v whole-brain gray matter volume maps
all all features 4v112 all unique features listed in this table

Short and long feature set names are used as x-axis labels on Figures 2-5. The number of features corresponds to the number of columns in the data matrix
used for prediction. FADE = functional activity deviation during encoding, SAME = similarities of activations during memory encoding, v = number of (in-mask)
voxels.

Figure 2. Prediction of chronological age from different feature sets. Bar plots show correlation coefficients for predicting chrono-
logical age (in years; A) across all subjects, (B) in young subjects only, or (C) in older subjects only from behavioral data (red), fMRI
scores (magenta), task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and structural MRI (green), or all features (yel-
low). Error bars denote 90% CIs; x-axis labels are explained in Table 4. The feature set with the highest predictive correlation is de-
noted with an “o”; other feature sets are labeled with asterisks to indicate significantly different MAE (*p, 0.05, **p,0.01,
***p, 0.001, otherwise not significant). For classification of age group from these features, see Extended Data Figure 2-1.
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Independent memory performance is best predicted
from single-value fMRI scores
When predicting independent measures of memory

performance (see Materials and Methods, Extraction of
target variables; Table 2), we restrict the results report to
the older subjects, because those measures could not be
reliably predicted at all in young subjects (see Extended
Data Fig. 4-1), probably because of the lower variation in
their close-to-ceiling memory performance.
Generally, the prediction of memory performance in in-

dependent tests was less accurate than that of behavioral
memory performance in the fMRI task itself (compare Fig.
4 and 3C). Besides this, outcomes from all memory tests
are best predicted by the SAME scores (see Fig. 4A,B,D;
VLMT 30min: r=0.25, CI = [0.124, 0.375]; VLMT 1 d:
r=0.23, CI = [0.099, 0.356]; WMS 1 d: r=0.33, CI =
[0.198, 0.442]) or FADE scores (see Fig. 4C; WMS 30min:
r=0.36, CI = [0.234, 0.471]).
Moreover, there appears to be a dissociation by type of

memory test. Whereas performance in the verbal-seman-
tic VLMT could be predicted from behavioral responses
to old items, but not task-based fMRI contrast maps, the
reverse pattern was seen for performance in the auditory-
episodic WMS (see Fig. 4, red and blue bars). [This is pre-
sumably because the verbal-semantic VLMT includes a

distractor list and the distractors act similar like the new
items in the FADE task, requiring subjects to decide dur-
ing item retrieval, whether an item they remember was in
the target list or the distractor list. This similarity of dis-
crimination requirements might induce a correlation be-
tween the number of old items recalled (VLMT) and the
fraction of old images recognized (FADE), leading to a sig-
nificant predictive correlation. This interpretation would
be in line with a two-process model for recognition and re-
trieval (Anderson & Bower, 1972) which points out the im-
portance of contextual information, e.g. distractor lists
during learning (Cox and Dobbins, 2011).] Notably, the
two SAME scores and all four fMRI-based scores were
the only feature sets that allowed for above-chance pre-
diction of all four independent measures of memory per-
formance (see Fig. 4, magenta bars).

Effects of age andmemory are specific to structural
MRI versus fMRI
To follow-up on the findings of predictive analyses,

especially the differences in predicting participants’ age
versus memory (compare Figs. 2C and 3C), we explicitly
compared functional and structural MRI data in older sub-
jects using subgroup analyses. To this end, we partitioned
all older subjects into four groups based on (1) chronological

Figure 3. Reconstruction of memory performance from different feature sets. Bar plots show correlation coefficients for predicting
memory performance (AUC; A) across all subjects, (B) in young subjects only, or (C) in older subjects only from fMRI scores (ma-
genta), task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and structural MRI (green), or all features (yellow). Note
that memory performance can be directly derived from behavioral data which is why the corresponding prediction analyses were
not performed. The layout follows that of Figure 2.
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age, separating into “young” and “old” older subjects; and
(2) memory performance, separating higher from lower
memory performance subjects (see Extended Data Fig.
5-1). Then, the voxel-wise data of the quarter with the low-
est values and the quarter with the highest values were
submitted to second-level two-sample t tests in SPM. This
analysis was performed for both fMRI contrasts, mPerAF
maps and GMV maps. Thresholded statistical parametric
maps were FWE-cluster-corrected (cluster-defining thresh-
old, CDT: p, 0.001, k=0), resulting in a minimum cluster
size for each analysis [novelty: k =42; memory: k =27;
mPerAF: k=23; GMV: k=33 (separating by age) and k=42
(separating by memory); see Fig. 5].
Taken together, we observed a double dissociation of

structural MRI versus task-based fMRI and age versus
memory, in the sense that (1) when partitioning subjects
by chronological age, there were significant effects on
structural MRI (see Fig. 5A); and (2) when partitioning sub-
jects by memory performance, there were significant ef-
fects on task-based fMRI (see Fig. 5B); at the same time,
there were no age-related differences with respect to
task-based fMRI and no memory-related differences with
respect to structural MRI. Resting-state fMRI maps
showed differences between younger and older subjects,
but not between those with high versus low memory

performance (see Fig. 5, third row), suggesting that their
informational content is closer to structural MRI than to
task-based fMRI.

Single-value fMRI scores have moderate predictive
utility
To assess the predictive utility of fMRI summary statis-

tics, we used FADE and SAME scores computed from
novelty and memory contrasts (i.e., four features; com-
pare Table 4) and evaluated the precision by which these
scores predict memory performance in two ways.
First, we compared predicted with actual values when

reconstructing AUC in the fMRI memory paradigm from
FADE and SAME scores (compare Fig. 3B,C). In older
subjects, there was a correlation of 0.47 (p, 0.001) and
AUC could be predicted with a MAE of 0.06 (see Fig. 6B).
For comparison, the same correlation was 0.17 (p=0.082)
with an MAE of 0.08 in young subjects (see Fig. 6A).
Second, we tested how well subgroups of the older

subjects formed for the previous analysis (see above,
Effects of age and memory are specific to structural MRI
versus fMRI; compare Fig. 5A,B) could be classified from
fMRI scores. When classifying older subjects with lower
versus higher memory performance based on FADE and

Figure 4. Reconstruction of independent memory performance in older subjects. Bar plots show correlation coefficients for predict-
ing, in older subjects only, independent measures of memory performance, namely, (A) VLMT items after 30min, (B) VLMT items
after 1 d, (C) WMS points after 30min, and (D) WMS points after 1 d, from behavioral data (red), fMRI scores (magenta), task-based
fMRI contrasts (blue), resting-state fMRI maps (cyan) and structural MRI (green), or all features (yellow). The layout follows that of
Figure 3C. For prediction of memory performance in young subjects, see Extended Data Figure 4-1.
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SAME scores (N=76), the decoding accuracy was 72.37%
(sensitivity: 76.32%; specificity: 68.42%). For comparison,
the decoding accuracy was 84.93% (sensitivity: 81.08%;
specificity: 88.89%) when classifying “old” versus “young”
older subjects based on GMVmaps (N=73).

Discussion
In the present study, we have comparatively evaluated

the ability of structural and functional (resting-state and
task-based) MRI data as well as behavioral measures to
predict chronological age versus memory performance in
young and older healthy adults (see Fig. 1). While all modal-
ities could predict age group, within-group prediction of
age and memory performance revealed distinct patterns.
Among young and older subjects, chronological age was
best predicted by structural MRI and also resting-state
fMRI (see Fig. 2B,C), whereas memory performance was
best predicted by fMRI contrasts (novelty and subsequent
memory effects) and especially single-value fMRI-based
scores (see Figs. 3C, 4) in older participants only.

Prediction of chronological age from structural MRI
All of the candidate predictors employed in the pres-

ent study have previously been shown to exhibit age-

related differences: (1) behavioral memory responses
are different between age groups, with older adults pro-
ducing more false positives which reduces memory per-
formance (cf. Soch et al., 2021a, Tab. S2; also see
Duarte et al., 2010); (2) memory-related fMRI responses
differ between age groups, with older adults showing
reduced parahippocampal activations and reduced de-
fault mode network (DMN) deactivations during novelty
processing and subsequent memory (cf. Soch et al.,
2021b, their Fig. 2; also see Maillet and Rajah, 2014;
Billette et al., 2022); (3) resting-state fMRI patterns ex-
hibit global age-related differences (Foo et al., 2021;
Xing, 2021); and (4) quantitative structural MRI ap-
proaches like VBM yield robust and well-replicated
age-related differences, with older adults showing re-
duced hippocampal volumes (cf. Kizilirmak et al., 2022;
also see Veldsman et al., 2021) as well as reduced corti-
cal and subcortical GMV, particularly in structures of
the human memory network like the medial temporal
lobe (Schiltz et al., 2006; Minkova et al., 2017).
In line with the aforementioned observations, all varia-

bles could discriminate between age groups, but within
the group of older adults, a distinct pattern emerged re-
garding the prediction of chronological age and memory
performance, respectively. Chronological age was best

Figure 5. Differential effects of age and memory in structural MRI and fMRI. Significant differences (A) between “young” and “old” older
subjects and (B) between older subjects with higher versus lower memory performance, with respect to fMRI activity during novelty proc-
essing (first row), subsequent memory (second row), fMRI amplitudes during rest (third row), and voxel-wise gray matter volume (fourth
row). Thresholded SPMs are FWE-corrected for cluster size (CDT: p, 0.001, k=0). Colored voxels indicate significantly higher values for
either young subjects and those with higher memory performance (red) or old subjects and those with lower memory performance (blue).
For distributions of chronological age and memory performance underlying these analyses, see Extended Data Figure 5-1.

Research Article: New Research 10 of 14

November/December 2022, 9(6) ENEURO.0212-22.2022 eNeuro.org

https://doi.org/10.1523/ENEURO.0212-22.2022.f5-1


predicted from voxel-wise GMV, reflecting the well-repli-
cated observation that both cortical and subcortical GM
show age-related volume loss (Minkova et al., 2017;
Soch, 2020; Veldsman et al., 2021), which is, longitudi-
nally, already observable within a year’s time (Fjell et al.,
2009, 2013; Bagarinao et al., 2022). Predictive correlation
of whole-brain GMV and chronological age within the
group of older adults was, however, only moderate, most
likely reflecting the considerable interindividual variability
in age-related structural brain changes. This phenomenon
has in fact been conceptualized within the brain-age
framework, a widely researched approach to employ dif-
ferences between predicted brain age and chronological
age as a biomarker for brain health in aging (Cole and
Franke, 2017; Bashyam et al., 2020). Including other pre-
dictors in the model did not improve age prediction
among older adults (Fig. 2C), suggesting that the biologi-
cal information actually predicting chronological rather
than brain age might be limited.
In a recent competition to predict chronological age

from structural neuroimaging (Fisch et al., 2021), the win-
ning performance, a MAE of 2.90 years, was achieved
using lightweight 3D convolutional neural networks (Gong
et al., 2021). Moreover, it was shown that DT can improve
the MAE by about half a year, using the distribution of the
target values in the training data (Soch, 2020), an ap-
proach that was also used in the present study (see
Materials and Methods, Distributional transformation).

fMRI as predictor of cognitive performance in old age
Unlike chronological age, memory performance could

not be reliably predicted from GMV. This is compatible

with the fact that in previous studies, we found no correla-
tions between hippocampal volume and our task-based
fMRI summary statistics for both hemispheres, using two
scores, computed from two contrasts (cf. Soch et al.,
2021b, their Fig. 4). It is also supported by another study,
in which a combination of ApoE genotype and task-based
fMRI was identified as the best predictor of cognitive de-
cline in healthy older adults (Woodard et al., 2010). In line
with those findings, we here observed that memory per-
formance could be predicted from single-value fMRI
scores (see Fig. 4), especially when extracting both FADE
and SAME scores, from both novelty and memory con-
trasts (Soch et al., 2021b).
It should be noted that the cognitive task underlying

our fMRI data set (incidental encoding of visual scenes)
in fact targeted declarative long-term memory. In so
far, the high predictive value of functional measures
derived from activity during such a task (i.e., fMRI nov-
elty and memory contrast maps, FADE and SAME
scores) for other measures of declarative memory ap-
pears to be a natural outcome, as it is more specifically
targeting the to-be-predicted variable than GMV or
mPerAF. The same is true for the study of Woodard and
colleagues, in which participants encoded names (fa-
mous vs unfamiliar names) and the independent meas-
ures of cognitive decline comprised different types of
neuropsychological memory assessments. On the other
hand, we could recently show that, while the scores de-
rived from the novelty contrast were rather specifically
associated with tests of explicit memory, the scores
computed from the memory contrast were also associ-
ated with measures of global cognition (Richter et al.,
2022). More generally, our findings are in line with the

Figure 6. Prediction of memory performance from single-value fMRI scores. Scatter plots of actual versus predicted memory per-
formance when reconstructing memory performance from FADE and SAME scores (see Fig. 3, magenta bars) in (A) young subjects
and (B) older subjects. r = correlation coefficient, MAE = mean absolute error, ***p, 0.001.
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notion that cognitive reserve may to a certain degree be
independent from structural age-related changes of the
brain (Nyberg et al., 2012).

Informational content of resting-state maps
It is also noteworthy that resting-state fMRI behaved

more similar to structural MRI than task-based fMRI, with
BA for mPerAF maps being close to that of GMV maps
(see Extended Data Fig. 2-1) and mPerAF similarly pre-
dicting chronological age (see Fig. 2C), but not capturing
memory performance in older subjects (see Fig. 3C). This
suggests that at least voxel-wise mPerAF maps derived
from resting-state fMRI provide information that is closer
to the brain-anatomic information of structural MRI maps
than to the neural-processing information of task-based
fMRI contrasts.
This is compatible with the line of thought discussed

above. While task-based fMRI measures provide informa-
tional value for cognitive performance measures, espe-
cially when the fMRI task falls into the same cognitive
domain as the to-be-predicted performance indicator,
resting-state fMRI measures appear to reflect brain integ-
rity more generally (Mevel et al., 2011).

Successful aging, brain structural integrity, and
memory performance
Overall, our results suggest that successful aging, that

is, relatively preserved memory in healthy older adults,
may not be primarily attributable to lower gray matter
loss, but rather to better preserved functional brain net-
works, as evident in a higher similarity of memory-related
brain activity with that of young adults (see Fig. 5). This
might be different in pathologic aging when brain anatomy
is affected to a larger extent but is compatible with earlier
studies suggesting that in healthy older adults, functional
neurocognitive resources may be more important for cog-
nitive performance than structural measures of brain in-
tegrity (Scarmeas et al., 2003; Stern, 2009, 2012; Cabeza
et al., 2018).
The observation that structural MRI had no predictive

power for memory performance in our study may at first
seem surprising, given that there are very large differen-
ces with respect to GMV between young and older adults
(Farokhian et al., 2017) who typically also differ with re-
spect to memory performance (Soch et al., 2021a; Richter
et al., 2022). One potential explanation for this finding
may be that, in our study, the sample investigated con-
sisted of neurologically and psychiatrically healthy older
adults without signs of cognitive impairment. This sug-
gests that brain atrophy (i.e., structural volume loss) may
to some extent occur invariably with increasing age, but
does not necessarily affect cognitive performance as long
as (1) the degree is still within the bounds of normal aging
and (2) it is not accompanied by functional processing
changes (reflected in fMRI scores), potentially because of
compensatory mechanisms (Kizilirmak et al., 2021). This is
in line with previous studies that reported a decoupling be-
tween gray and white matter measures and memory per-
formance in older age (de Mooij et al., 2018), underscoring

that cognitive maintenance or reserve is, at least to a de-
gree, independent of neural maintenance. A large meta-
analysis also highlights the lack of a strong dependency
between structural and cognitive decline (Oschwald et al.,
2019), suggesting that the healthy aging brain possesses a
considerable potential to compensate for inevitable age-re-
lated structural decline (Stern, 2009; Nyberg et al., 2012;
Cabeza et al., 2018).
In conclusion, we have shown a systematic difference

in predictive ability between structural MRI markers (and
resting-state fMRI) on the one hand versus fMRI markers
(especially fMRI summary statistics) on the other hand.
Whereas the former are most strongly related to chrono-
logical age reflecting the mere progression of time, the
latter allow to better predict cognitive performance in ep-
isodic memory. In a sense, this double dissociation sup-
ports the concept of cognitive reserve as a phenomenon
that may to some degree be independent from structural
brain aging. Further research has to elucidate the sour-
ces of preserved memory performance in older adults
with structural degradation, but functional maintenance.
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