I consider a repeated auction setting with colluding buyers and a seller who adjusts reserve prices over time without long-term commitment. To model the seller's concern for collusion, I introduce a new equilibrium concept: collusive public perfect equilibrium. For every strategy of the seller I define the corresponding "buyer-game" in which the seller is replaced by Nature who chooses the reserve prices for the buyers in accordance with the seller's strategy. A public perfect equilibrium is collusive if the buyers cannot achieve a higher symmetric public perfect equilibrium payoff in the corresponding buyer-game. In a setting with symmetric buyers with private binary iid valuations and publicly revealed bids, I find collusive public perfect equilibria that allow the seller to extract the entire surplus from the buyers in the limit as the buyers' discount factor goes to 1. I therefore show that a non-committed seller can effectively fight collusion even when she faces patient buyers, can only set reserve prices, and has to satisfy stringent public disclosure requirements.
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.