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auctioneers.
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1. Introduction

Many online market platforms, such as eBay, attract only few sellers and buyers for

at least some of the items exchanged on the platform (see Anwar et al. 2006, Andersson

et al. 2012, Bajari and Hortacsu 2003, Haruvy and Popkowski Leszczyc 2010). In such

small markets, each market participant can have a significant impact on the price, market

efficiency, participants’ payoffs and therefore a platform’s revenue.1 As a consequence,

understanding the impact of competition on both sides of a market is crucial to understand

the effect of design changes and other measures aimed at enhancing competition. We focus

on the impact of two such measures. Firstly, we consider the impact of merging two markets,

thus effectively reducing each buyer’s switching cost to zero. This fosters competition, even

without increasing the total number of buyers and sellers. Secondly, we investigate the

impact of increasing each the number of buyers and sellers.

We consider auction markets in which sellers (the auctioneers) have an incentive to dis-

tort reserve prices (away from the own valuation or cost) whereas buyers follow a simple

optimal bidding strategy, which can involve switching between different auctions they ob-

serve. Applications are online auction platforms in which different sellers (of identical items)

run parallel separate ascending (English) auctions and can each set an individual reserve

price for their respective items.

In a laboratory experiment, we test our theoretical predictions on the impact of compe-

tition on participant’s payoffs and market efficiency. The novel feature of our experiment

is that we allow for competition both among buyers and among sellers in a market with

simple rules that resemble those on common internet market platforms. More specifically,

each seller offers one item in competing (parallel) ascending auctions to buyers who each

have unit demand. First, sellers compete by setting their respective reserve prices (inde-

pendently of each other); then, buyers, who can switch between auctions, compete for the

offered items.

Our main experimental findings are as follows:

1. Tearing down barriers between separate auctions is beneficial to its participants –

the total gains from trade are significantly higher in the merged markets than in

the separate markets combined, sellers are not worse off, and buyers are significantly

better off. Even though gains from trade can be lower in the merged markets than

in the separate markets combined, when sellers choose the same positive mark-ups on

their costs, we find that on average this matching effect is positive.

2. A seller reacts to an increase in the number of sellers by setting her reserve price more

1Large markets with a uniform-pricing rule typically do not provide significant incentives to distort the
price because each participant is unlikely to determine the price.
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aggressively (i.e., closer to costs). As a consequence, a seller’s mean profit decreases

and total gains from trade and a buyer’s mean profit increase.

3. We do not find evidence that, keeping the number of sellers constant, sellers’ reserve

prices increase in the number of buyers. Whereas this observation is consistent with

equilibrium behavior it differs from previous experimental findings for monopolistic

sellers whose reserve prices are increasing in the number of bidders (Davis et al. 2011).

For our theoretical model, we provide closed-form equilibrium reserve-price functions

for the family of Generalized Pareto Distributions with monotone non-decreasing hazard

rate (which includes the uniform distribution).2 The equilibrium strategies are linear and

independent of the number of buyers.

To our knowledge, this study provides the first experiment to systematically analyze

the effect of competition on reserve price setting in competing ascending auctions. Hoppe

(2008a,b) experimentally compares the performance of parallel auctions with reserve price

with the performances of a centralized double auction and overlapping auctions. Models

in which auctioneers of a single item compete for buyers with private values and unit-

demand who cannot switch between auctions have been theoretically analyzed by Burguet

and Sakovics (1999), Virág (2010), and Pai (2010). Our study is related to a specific double

auction market design (Williams 1991) and therefore is related to the experimental literature

on double auctions of which there exists a huge variety. Previous experimental studies in

that literature have mainly focused on the convergence of prices to those in a competitive

equilibrium for various double auction clearinghouse designs and continuous double auction

markets used in financial markets (see, e.g., Plott and Smith 2008).

2. Theoretical Considerations and Hypotheses

2.1. The Model

Consider a market with m sellers and n buyers. Each seller offers one of m indivisible

homogeneous items and each buyer requires one item. A seller j’s cost, j ∈ {1, 2, . . . ,m},
for the item is cj and a buyer i’s valuation, i ∈ {1, 2, . . . , n}, for the item is vi. Costs

and valuations are independently drawn from Generalized Pareto Distributions with shape

2The only example of a closed-form equilibrium in a related setting with arbitrary numbers of sellers and
buyers that we are aware of is that by Williams (1991) for the buyer’s bid double auction with uniform
distributions. Generalized Pareto Distributions are also used by Ausubel et al. (2014) and Marszalec et al.
(2020) to derive closed-from equilibrium bidding strategies in multi-unit auctions.
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parameter ξ < 0, support [0,−100/ξ], cdf Fξ, and pdf fξ:

Fξ(x) =
(
1−(1+ξx)

− 1
ξ

)
/100 (1)

fξ(x) = (1+ξx)
− 1+ξ

ξ /100

For ξ = −1, this is the uniform distribution on [0, 100]. A seller’s payoff is her profit

πj = p − cj if she trades at the price p and is πj = 0 if she does not trade. A buyer’s

payoff is vi − p if he buys an item and pays p, and is zero otherwise. Payoff functions and

distributions of costs and valuations are common knowledge. The realizations of costs and

valuations are private information.

We focus on the sellers’ decisions and examine the following auctions market. First,

sellers simultaneously each set a reserve price in their single-item ascending (English) auc-

tion. This reserve price is the standing bid in the auction when the bidding begins. Buyers

take turns in bidding. When it is a buyer’s turn, he bids straightforwardly as follows.3 If

he is not the highest bidder in any auction, he randomly chooses one of the auctions with

the lowest standing bid, and, if existent, restricts the random selection to those of these

auctions that have not yet received any bids. In the chosen auction, the buyer bids the

lowest feasible bid if this does not exceed his valuation and otherwise does not bid at all.

The lowest feasible bid is the reserve price if his is the first bid in the auction and otherwise

is one increment above the standing bid. If he bids, he becomes the new highest bidder in

this auction and the new standing bid in this auction equals his bid. All auctions end when

no new bids are submitted. The high bidder in an auction wins and pays a price equal to

the standing bid.

As an immediate consequence of this bidding behavior, all trades occur at the same

price p∗ (possibly plus one increment). This price equals the m + 1-highest among the

buyers’ valuations and the sellers’ reserve prices. Buyers with valuations above the price

and sellers with reserve prices below the price trade. In particular, no buyer trades whose

3This straightforward bidding behavior is implemented by automated bidders in the experiment. It is
a simple and plausible behavior, and buyers in our setting have incentives to adopt it because a buyer’s
payoff with this strategy is within an increment of his payoff in the associated sealed-bid Vickrey auction
(Parkes 2006). A refined version of this behavior occurs as part of a perfect Bayesian equilibrium in a closely
related setting with multiple parallel second-price proxy auctions (Peters and Severinov 2006). Empirical
evidence from eBay and Tradera auctions supports that bidders switch between auctions of similar items,
and that they tend to bid in the auction with the lower standing bid (Andersson et al. 2012, Anwar et al.
2006). Comparable behavior has been observed in an experiment by Ott (2009) in a related setting with
heterogeneous items and unit demand, and in a setting with multi-unit demand and complementarities by
Kagel et al. (2014). While many bids of human bidders in experiments are in line with straightforward
bidding, deviations occur for example by following cues in selecting the bundle on which to bid, by bidding
aggressively to increase others’ payments (Kagel et al. 2014), or by jump bidding of impatient bidders in
single-unit ascending auctions (Isaac et al. 2005).
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valuation determines the price. In our theoretical analysis, we neglect price variations that

result from the ascending auctions’ increments (which converge to zero if the increment

approaches zero).

Other markets that for sellers are strategically equivalent to our auction market, as they

result in the same trades at prices equal to p∗ and provide the same incentives to sellers, are

the decentralized market with ascending second-price proxy auctions used by eBay (Peters

and Severinov 2006) and the centralized seller’s bid double auction (e.g., Williams 1991).4

2.2. Sellers’ equilibrium reserve prices

A competing seller, just as a monopolist, faces a trade-off: increasing the reserve price

increases the expected price paid conditional on the sale of the object and reduces the

probability of a sale. A sale is less likely because either no buyer is willing to bid above the

seller’s reserve price or – differently to the monopolistic case – because some buyers still

willing to bid above the seller’s increased reserve price switch to sellers with lower reserve

prices.

Profit-maximizing competing sellers simultaneously set reserve prices as follows.

Proposition 1. Consider an auctions market with m sellers and n buyers. A seller’s

reserve price in a symmetric Bayesian equilibrium is given by

rj(cj) = (100+mcj)/(m−ξ) for all j ∈ {1, 2, . . . ,m}.

A seller’s expected profit in this equilibrium decreases in m.

Proposition 1 implies that a seller’s mark-up rj(cj)− cj = (100+ξcj)/(m−ξ) is non-negative

and decreases in the number of sellers. Note that a seller’s mark-up is independent of the

number of buyers. For a monopolistic seller, it is well known that the auction with this

reserve price is an optimal mechanism (see Myerson 1981, Riley and Samuelson 1981). The

proof of Proposition 1 is given in Appendix A.

4Peters and Severinov (2006) analyze the buyers’ side and find a perfect Bayesian equilibrium in which
all prices equal p∗ when reserve prices, valuations, and bids lie on a discrete grid. For the sellers’ side, they
find that the optimal reserve price equals the costs on the grid if there are sufficiently many sellers and
buyers. Thus, they do not consider our setting with continuous reserve prices and arbitrary low number of
sellers. Williams (1991) analyzes the buyer’s bid double auction. In this discrete-time double auction or
clearinghouse, the price with n buyers and m sellers equals the m-highest (or n + 1-smallest) bid among
all bids by buyers and sellers, sellers report their costs truthfully and buyers bid bi(vi) = 100nvi/(n+1) in
equilibrium when cj , vi ∼ U [0, 100] for all j ∈ {1, 2, . . . ,m} and i ∈ {1, 2 . . . , n}. In a seller’s bid double
auction, in contrast, the price equals the m+ 1-highest bid, a buyer never determines the price if he trades,
and buyers therefore bid bi(vi) = vi.
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2.3. Efficiency and Payoffs When Markets are Merged

Merging two markets changes efficiency and market participants’ payoffs. To analyze

merged markets, we assume uniform distributions, which we will use in the experiment, and

compare two markets – each with one seller and one buyer – with a single market consisting

of two sellers and two buyers. In particular, this merger of two identical markets does not

change the buyer-seller ratio.

The effect of the merger on market efficiency is twofold. Even if the merger had no impact

on reserve price setting, different matches of buyers and sellers can occur; we refer to this as

the matching effect on gains from trade. In addition, increased seller competition results in

smaller seller mark-ups in the merged markets, which for all realizations of costs and values

weakly increases gains from trade in the merged markets over that in separate markets;

we refer to this as the competition effect on gains from trade. Whereas the competition

effect is positive, the same is not clear for the matching effect. This is because on the one

hand, a merger creates additional matching possibilities that increase efficiency. On the

other hand, there exist realizations of valuations and costs for which trading both items

would be efficient and would happen in separated markets whereas the trade of only one

item would occur in the merged markets, even if reserve prices were set to the same amount

as in the separated markets (see Appendix B).5 We show that overall this matching effect

(and therefore the total effect) increases total gains from trade in expectation (see tables 5

and B.7).

Both buyers and sellers in expectation are better off after the merger (see Table B.7).

While individual buyers might be worse off,6 overall they benefit from increased seller com-

petition and better matching opportunities (whereas their bidding strategy is unaffected by

the presence of the additional buyer). Sellers suffer from a competition effect due to stronger

seller competition and expect only 92% of their maximum joint profit, whereas they could

achieve this maximum joint profit if they used their reserve-price functions of the separate

markets.7 However, this negative effect is overcompensated by a positive matching effect,

5Note that if sellers set reserve prices equal to their costs, this latter case could not arise and gains from
trade would increase for all realizations of costs and values.

6As in the example above and in Appendix B, where one of the buyers trades before the merger but does
not trade after the merger.

7The two sellers could achieve their maximum joint payoff 22.5 (or 11.3 per seller) if they both set their
reserve price to rj(cj) = (100+cj)/2. This corresponds to the optimal mechanism for a single seller of two
items: Bulow and Roberts (1989) state that the payoff-maximizing mechanism for a seller of multiple units
and increasing marginal costs is to “Sell k units to the buyers with the k highest marginal revenues [i.e.,
virtual values vi − 1−F (vi)/f(vi)], where the kth-highest marginal revenue is greater than the marginal cost
of the kth unit and the (k+1)st marginal revenue is less than the corresponding marginal cost. Each of the
k buyers pays the value on his demand curve associated with the greater of the kth marginal cost and the
(k+1)st marginal revenue, in other words, the minimum value the buyer would have had to have to qualify
to receive a unit.”
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so that a seller’s profit is higher in the merged markets than in the separate markets.

2.4. Hypotheses

The first hypothesis concerns the merger of two identical markets (see Proposition 1 and

Subsection 2.3).

Hypothesis 1. If two markets, each with one seller and one buyer, are merged, sellers

in the merged markets choose lower mark-ups than sellers in the separate markets. In the

merged markets, total gains from trade are higher than the sum of the two separate markets,

and both a seller’s mean profit and a buyer’s mean payoff are higher.

The second hypothesis concerns the effect of increased seller competition (see Proposi-

tion 1; the effects on total gains and on buyers’ payoffs in equilibrium follow directly from

the effect on reserve prices).8

Hypothesis 2. For a given number of buyers, the higher the number of sellers, the lower

are the mark-ups and a seller’s profit, and the higher are a buyer’s payoff and the total gains

from trade.

The third hypothesis concerns the effect of increased buyer competition. According to

our theoretical analysis, the mark-up is independent of the number of buyers. However,

experimental evidence from the monopolistic seller case (Davis et al. 2011) suggests that

sellers set higher reserve prices when more buyers compete. We base our prediction on this

empirical evidence and hypothesize that this generalizes to our case of competing sellers.

Hypothesis 3. If the number of sellers is fixed, competing sellers’ mark-ups increase with

the number of buyers.

3. Experimental Design

In order to keep the design as simple as possible (while still resembling real-life markets)

and to obtain clean theoretical predictions we make the following two experimental design

choices. First, we computerize the bidding behavior of buyers. Computerized buyers bid

straightforwardly as described in Subsection 2.1. This allows a comparison with previous

research of the monopolistic case (Davis et al. 2011) and gives us control over sellers’ beliefs

about buyers’ behavior. Thus, the automation of buyers reduces strategic uncertainty of the

sellers, who can focus on their interaction with the other seller. Second, costs and valuations

8Unlike the setup in Hypothesis 1, the compared markets involve a different number of goods and therefore,
if reserve prices are set lower when there are more sellers, efficiency gains and increases in buyer’s payoffs
are straightforward for the larger markets. We nevertheless analyze these for the sake of completeness.
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Table 1: Treatments, number of sessions, number of subjects, and number of rounds in the
treatments

Treatment Sellers Buyers # Sessions # Subjects # Rounds

1S1B 1 1 1 30 40
2S1B 2 1 1 30 40

1S2B 1 2 1 30 40
2S2B 2 2 1 30 40

2S5B 2 5 1 30 40

are uniformly (and independently) distributed. This distribution is easiest to understand

for subjects.

We restrict attention to markets with very small numbers of participants, in particular

we only consider the case of one or two sellers in any given market. This is to guarantee that

our setup is sufficiently distinct from competitive markets in which participants’ behavior

hardly affects prices. It also reflects that we are interested in establishing the direction

of effects of competition rather than their magnitude. To test our hypotheses we use four

treatments in which one or two sellers each encounter one or two buyers. To allow for

a better comparison of reserve price setting of two competing sellers in the presence of

various degrees of buyer competition to the well analyzed case of a monopolistic seller, we

in addition consider markets where two sellers encounter five buyers. We name our five

treatments according to the numbers of sellers (S) and buyers (B) 1S1B, 1S2B, 2S1B, 2S2B,

and 2S5B (see Table 1).

Subjects received written instructions that were then read out aloud. The automated

bidding behavior of buyers was explained to subjects verbally and by means of a demonstra-

tion video. The video illustrated the setting using several examples for different orderings

of reserve prices and bids. Subjects had to answer questions on the rules. Then, they

participated in 40 identical rounds of auctions.

In each round, subjects took the role of a seller and set a starting price, i.e., reserve

price, in their ascending auction. Buyers were automated and bid straightforwardly, as

defined in Section 2.1, in random order. The auctions thus all ended at a price equal to

the m + 1-highest among buyers’ valuations and sellers’ reserve prices (with a potential

deviation by plus one increment of one experimental currency unit (CU) in the case of two

sellers and more than one bidder due to the random choice of the auction). Subjects knew

their own distribution of the costs and its realization, the distribution of costs of a competing

seller if present, and the distributions of the valuations of the buyer(s). Costs of sellers and

valuations of buyers were independently drawn from uniform distributions U{1, 2, . . . , 100}
in each round. Costs were opportunity costs, e.g., from an outside option for selling the
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already produced good at a price equal to these opportunity costs, and were therefore called

values. A seller’s earning in a period would equal his value in case of no trade and would

equal the price in case of a sale.9 In case of two sellers, sellers were rematched randomly

at the beginning of each round. In each round, subjects learned their own costs, submitted

their reserve price, outcomes were calculated and each subject was shown the own payoff

and, in case of a sale, the sales price in their auction. With this information feedback,

subjects in case of two sellers could neither observe the other seller’s reserve price (because

the price can be determined by a buyer or a seller) nor the other seller’s costs.

At the end of the sessions, subjects filled out a questionnaire (comments, age, gender,

degree program). They were paid according to five publicly randomly selected rounds plus

a guaranteed show-up fee of four Euro. The conversion rate was 0.04 Euro/CU. The mean,

minimum and maximum total earnings were 15.87 Euro, 8.80 Euro, and 21.00 Euro. Sessions

lasted for one to one and a half hours and were conducted in the lab AiXperiment in Aachen

using zTree (Fischbacher 2007). The 150 participants were recruited from a pool of students

of various fields of study using ORSEE (Greiner 2015).

4. Results

In addition to non-parametric tests (Wilcoxon-Mann-Whitney tests10), we do regres-

sion analyses to infer how sellers’ costs were used to determine reserve prices. The linear

equilibrium strategy of the seller provides predictions for the coefficients. In the analyses,

we replace observed reserve prices above 101, which all result in no sale, by 101 to reduce

potential effects of outliers.11 We apply a 5% significance level to all tests. Decisions of

different subjects are treated as independent. In the two-seller treatments this is justified

because sellers with random rematching, randomly drawn costs and values in each round,

and the information feedback they receive after each round (see Section 3) cannot derive

reliable information about the opponent’s behavior.

The observed and predicted reserve-price mark-ups on costs and the profits are summa-

rized in Table 2. Subjects on average chose lower mark-ups than predicted in all treatments.

9With this framing, every seller earns a positive payoff in each round (unless she sells below value), which
has been conjectured to reduce the influence of cash balance effects (Kagel and Levin 2016) and aggressive
bidding caused by anticipated regret (Turocy and Watson 2012).

10The Wilcoxon-Mann-Whitney test requires equal distributions of the parameter in the populations. If
this assumption is violated, rejecting the null hypothesis does not allow concluding on a location shift (i.e.,
a difference in mean or median). For all Wilcoxon-Mann-Whitney tests on our hypotheses (see tables 6 and
4), we therefore also conducted one-tailed tests of stochastic equality with H0: P (X1 > X2) = P (X1 < X2)
suggested by Schlag (2008) that do not require any assumption on distributions. The conclusions based on
these tests are identical to those based on Wilcoxon-Mann-Whitney tests.

11The highest number accepted by the experimental software is 999. We replaced one 999 in 1S2B, and
one 120 and one 999 in 2S1B.
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Table 2: Observed mean mark-ups and profits. Equilibrium prediction for realized costs in
parentheses.

Treatment Mean mark-up rj − cj Mean profit πj

1S1B 11.7 (eq.: 24.6) 4.7 (eq.: 8.4)
2S1B 9.2 (eq.: 16.2) 3.2 (eq.: 5.6)

1S2B 12.2 (eq.: 24.3) 11.1 (eq.: 13.9)
2S2B 5.3 (eq.: 16.5) 6.0 (eq.: 10.4)

2S5B 9.7 (eq.: 16.4) 19.3 (eq.: 21.1)
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1S1B r(c) = 50.000 + 0.500 c

1S1B r̂(c) = 29.569 + 0.647 c

2S1B r(c) = 33.333 + 0.667 c

2S1B r̂(c) = 20.989 + 0.770 c
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1S2B r(c) = 50.000 + 0.500 c

1S2B r̂(c) = 32.200 + 0.610 c

2S2B r(c) = 33.333 + 0.667 c

2S2B r̂(c) = 19.680 + 0.715 c

Figure 1: Equilibrium (r(c)) and estimated (r̂(c)) reserve-price functions in 1S1B and in
2S1B (LHS) and in 1S2B and in 2S2B (RHS)

Estimated bidding functions are displayed in Figure 1. We estimate the model r =

β0 + β1dS2 + β2c+ β3c× dS2, where the treatment dummy is dS2 = 0 in a treatment with

one seller, in a basic linear regression as well as with random effects, both with cluster-robust

standard errors (see Table C.8).

4.1. Changing Competition by Merging Markets

Who profits from a merger of markets? Theory predicts that total gains from trade

increase and that both market sides benefit. To compare total gains from trade in markets

with one agent on each market side with merged markets (that then have two agents per

market side), we calculate the mean total gains from trade divided by the number of market

participants in the 40 markets in which a subject participates. To compare the sellers’

profits, we calculate the mean profit per subject over the 40 rounds, to compare the buyers’

payoffs (or the total gains from trade) we calculate the mean payoff per buyer (or the mean

total gains from trade) in the 40 markets in which a subject participates (see Table 3).

9



Table 3: Mean observed total gains from trade per agent. Mean gains from trade per agent
in equilibrium (eq.) and in the efficient outcome (eff.) for the realized costs in parentheses.
Seller’s profit and buyer’s payoff observed and in equilibrium for the realized costs (eq.).

Treatment Total gains (per agent) Seller’s profit Buyer’s payoff

1S1B 7.3 (eq.: 6.3, eff.: 8.3) 4.7 (eq.: 8.4) 9.8 (eq.: 4.2)
2S2B 9.2 (eq.: 9.3, eff.: 10.1) 6.0 (eq.: 10.4) 12.4 (eq.: 8.2)

Table 4: Wilcoxon-Mann-Whitney tests on Hypothesis 1 (one-tailed p-values,N=N1=N2).

Variable H0 H1 N U p

Mark-up (r − c)1S1B = (r − c)2S2B (r − c)2S2B < (r − c)1S1B 30 242 0.001
πS πS

1S1B = πS
2S2B πS

1S1B < πS
2S2B 30 386.5 0.176

πB πB
1S1B = πB

2S2B πB
1S1B < πB

2S2B 30 240.5 0.001
Total gains ((πS + πB)/2)1S1B = ((πS + πB)/2)1S1B <

((πS
1 + πS

2 + πB
1 + πB

2 )/4)2S2B ((πS
1 + πS

2 + πB
1 + πB

2 )/4)2S2B 30 193.5 0.000

πS: the seller’s profit. πB: the buyer’s payoff.

The data partly support Hypothesis 1 (see Table 4). There is a significant competition

effect because sellers in the merged markets choose their reserve prices on average closer

to their costs than in the separate markets. Mean total gains from trade and the buyers’

mean payoff are significantly and by 27% higher in the merged markets than in the separate

markets. However, the sellers’ mean profits do not significantly differ.

To further investigate the effect of merging markets, we use the estimated reserve-price

functions for 1S1B and 2S2B to decompose the overall effect into the matching effect and the

competition effect. The matching effect is the difference between payoffs in 1S1B and 2S2B

when reserve prices were set as in 1S1B. The competition effect is the difference between

payoffs in 2S2B when reserve prices were set as in 1S1B and when reserve prices are set

as in 2S2B. Both effects have the predicted direction, i.e., the matching effect increases

sellers’ profits and buyers’ payoffs, whereas the competition effect decreases the sellers’

profits and increases the buyers’ payoffs and overall gains from trade (see Table 5 for the

size of the effects; see Table B.7 for estimated and equilibrium outcomes). The matching

effect has a stronger positive influence on the gains from trade than the competition effect.

Overall, the competition effect and therefore the total effect is smaller than in equilibrium.12

Buyers mainly profit from the competition effect and get a smaller share of the matching

12Note, however, that the smaller increase in gains from trade when comparing estimated effects and
equilibrium is due to the higher level of gains from trade in 1S1B with the estimated function of 1S1B than
in equilibrium. Gains from trade in 1S1B with estimated reserve prices are 7.7, so the maximum increase
is 2.3 because they are limited by gains from trade in the efficient outcome, which are 10.0 (see Table B.7).
Thus, the increase of 3.0 in equilibrium is not possible when starting from the estimated outcome of 1S1B.
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Table 5: Estimated matching and competition effects and effects in equilibrium (eq.).

Variable Matching effect Competition effect Overall effect

Seller’s profit 3.1 (eq.: 2.9) −1.8 (eq.: −0.9) 1.3 (eq.: 2.0)
Buyer’s payoff 0.5 (eq.: 0.8) 2.4 (eq.: 3.1) 3.0 (eq.: 4.0)
Total gains (per agent) 1.8 (eq.: 1.9) 0.3 (eq.: 1.1) 2.1 (eq.: 3.0)

Table 6: Wilcoxon-Mann-Whitney tests on Hypothesis 2 (one-tailed p-values, N=N1=N2).

Variable H0 H1 N U p

Mark-up (r − c)1S1B = (r − c)2S1B (r − c)2S1B < (r − c)1S1B 30 264.5 0.003
Seller’s profit πS

1S1B = πS
2S1B πS

2S1B < πS
1S1B 30 235.5 0.001

Buyer’s payoff πB
1S1B = πB

2S1B πB
1S1B < πB

2S1B 30 124 0.000
Total gains (πS + πB)1S1B = (πS + πB)1S1B <

(πS
1 + πS

2 + πB)2S1B (πS
1 + πS

2 + πB)2S1B 30 46.5 0.000

Mark-up (r − c)1S2B = (r − c)2S2B (r − c)1S2B > (r − c)2S2B 30 250 0.002
Seller’s profit π1S2B = π2S2B π1S2B > π2S2B 30 163 0.000
Buyer’s payoff πB

1S2B = πB
2S2B πB

1S2B < πB
2S2B 30 22 0.000

Total gains (πS + πB
1 + πB

2 )1S2B = (πS + πB
1 + πB

2 )1S2B <
(πS

1 + πS
2 + πB

1 + πB
2 )2S2B (πS

1 + πS
2 + πB

1 + πB
2 )2S2B 30 23.5 0.000

effect, though the competition effect is smaller than in equilibrium. For sellers, the negative

competition effect does not fully offset the positive matching effect, but is stronger than in

equilibrium.

4.2. Increasing Seller Competition

Our data supports Hypothesis 2. Both with one and two buyers, the mark-ups and

profits of two competing sellers are significantly lower than those of monopolistic sellers.

Also, as predicted, a buyer’s payoff and total gains from trade are higher when there are

more sellers. The results of the non-parametrical tests are given in Table 6.

Comparing treatments with one buyer using the estimated bidding functions, we find,

as predicted, that the reserve-price function with two sellers starts at a lower level and is

steeper than with one seller (r(0) = 29.6 vs. r(0) = 21.0 and slopes of 0.65 vs. 0.77).13

Figure 1 shows that the difference between one and two sellers’ mean mark-ups is mainly

driven by mark-ups on low costs, as the regression lines cross.

In the case of two buyers, as predicted, the reserve price function with two sellers has

a smaller intercept and larger slope than with one seller (32.2 vs. 19.7 and slopes of 0.61

13The signs of β1 and β3 are negative and positive, as predicted. z-tests reject β1 = 0 and β3 = 0 (see
Table C.8).
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vs. 0.72),14 and lies below that of a monopolistic seller.

Comparing observed reserve prices with equilibrium reserve prices, Figure 1 reveals that

all four estimated bid-functions lie below the equilibrium bid-functions. The difference is

significant in treatment 2S2B, where the intercept is lower than predicted and we find no

evidence for different slopes. However, with monopolistic sellers, the intercepts are smaller

but the functions are steeper than predicted. In treatment 2S1B, the function is also steeper

than predicted but there is no evidence for a difference in intercepts.15

4.3. Increasing Buyer Competition

Our data does not support Hypothesis 3. There is no evidence that the mark-up of

competing sellers increases with the number of buyers (see Table 2).16 However, sellers

profit from buyer competition and have a significantly higher payoff when the number of

buyers increases.17

5. Conclusion

This paper explores how market performance measures such as efficiency and payoffs

can be affected by a market designer with some control over the intensity of competition

and buyers’ switching costs.

Increasing the number of sellers has the effect of lowering sellers’ mark-ups and payoffs

(and, therefore, also increasing gains from trade). Thus, attracting additional auctioneers

increases market efficiency for two reasons: a decrease in reserve prices and an increase in

trading opportunities.

Market efficiency can also be improved without the need to attract additional auction-

eers. This is possible if bidders are not aware of (or find it too costly to participate in)

simultaneous auctions of substitutes and a designer can change that by effectively merging

auctions. This could be achieved by advertising similar or identical objects that are for

sale at the same time, or by having an automated bidding agent bid simultaneously in sev-

eral actions. Obviously, our results cannot indicate whether attracting additional sellers or

14The signs of β1 and β3 are negative and positive, as predicted. z-tests reject β1 = 0 and β3 = 0 at the
5% level with one-tailed tests (see Table C.8); p = 0.076/2 for the hypothesis β3 = 0.

15F -tests on null hypotheses on intercepts and slopes:
1S1B: β0 = 50: F (1, 59) = 84.65, p = 0.0000; β2 = 1/2: F (1, 59) = 31.19, p = 0.0000.
2S1B: β0 + β1 = 100/3: F (1, 59) = 1.01, p = 0.3188; β2 + β3 = 2/3: F (1, 59) = 22.09, p = 0.0000.
1S2B: β0 = 50: F (1, 59) = 54.06, p = 0.0000; β2 = 1/2: F (1, 59) = 17.92, p = 0.0001.
2S2B: β0 + β1 = 100/3: F (1, 59) = 4.35, p = 0.0414. β2 + β3 = 2/3: F (1, 59) = 1.60, p = 0.2106.

16Kruskal-Wallis test: H0: (r− c)2S1B = (r− c)2S2B = (r− c)2S5B , p = 0.52. In a regression analysis with
treatment dummies to detect differences in intercepts and slopes between 2S1B and 2S2B as well as 2S1B
and 2S5B, none of the treatment dummies differs significantly from zero at the 5% level in two-tailed t-tests.

17Jonckheere-Terpstra test H0: π2S5B = π2S2B = π2S1B, H1: π2S5B ≥ π2S2B ≥ π2S1B with at least one
strict inequality, p = 0.01.
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merging auctions should be the preferred way to enhance efficiency because these measures

are neither exclusive nor does their implementation come at similar costs.

In a theoretical analysis, we derive equilibrium predictions on the impact of changes in

competition on the aforementioned market performance measures. Whereas our experimen-

tal findings are qualitatively in line with these equilibrium predictions, the magnitude of

the observed mark-up in many cases is not. Different explanations for such deviations are

possible (for example, sellers could be risk-averse or regret averse) and have been analyzed

in the context of bidding behavior in first-price auctions (where buyers face a similar trade-

off as the sellers in our model) or reserve-price setting (absent auctioneer competition). As

our experiment was not designed to test the validity of different behavioral or standard

models, we abstain from adding to these explanations, which we believe are all possible and

potentially valid in our setup as well.
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Appendix A. Proof of Proposition 1

The following proof mirrors arguments used by Williams (1991) in his analysis of the

buyer’s bid double auction, because our sellers face the inverse of the strategic problem

of William’s buyers. In addition, it extends the analysis from the uniform distribution

(Williams 1991) to the family of Generalized Pareto Distributions with monotone non-

decreasing hazard rate.18
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ξ = 0, which has the cdf F (x) = 1 − e−x for all x ≥ 0. All arguments in the proof apply also to the latter
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Proof of Proposition 1. Consider an auction market with n buyers, indexed by i, and m− 1

sellers, indexed by j. Buyers’ private values vi and sellers’ private costs cj are indepen-

dently distributed according to a Generalized Pareto Distribution Fξ as given in (1). For

convenience, we rescale the problem to the standard supports [0,−1/ξ] instead of [0,−100/ξ]

and denote the cdf and pdf by F̃ξ and f̃ξ. Note that, for all ξ < 0, the hazard rate

f̃ξ(x)/(1−F̃ξ(x)) = (1 + ξx)−1 with the derivative −ξ(1 + ξx)−2 is monotone increasing in x.

We will show that the optimal reserve price of (w.l.o.g.) seller 1 is r1(c1) = (1+mc1)/(m−ξ)

if rj(cj) = (1+mcj)/(m−ξ) for all j ∈ {2, 3, . . . ,m} and if all buyers i ∈ {1, 2, . . . , n} follow

the strategies ascribed to them in the main text. In what follows, assume the m− 1 sellers

j > 1 and the n buyers follow these strategies.

Recall that a buyer quits the market if the price in all auctions has reached his valuation.

Thus, buyer i’s strategy can be described by his maximum bid, which equals his valuation

vi. The probability that a buyer with vi will quit at a price below a reserve price r1 is

FB(r1) := Prob{vi ≤ r1} = F̃ξ(r1) with the pdf fB(r1) = f̃ξ(r1). The probability that a

seller j > 1 with cj sets a reserve price below r1 is FS(r1) := Prob{r∗(cj) ≤ r1} = Prob{cj ≤
r−1
∗ (r1)} = F̃ξ(r

−1
∗ (r1)) with the pdf fS(r1) = f̃ξ(r

−1
∗ (r1)) · d r−1

∗ (r1)/d r1.

Denote by F(k:n+m−1) and f(k:n+m−1) the cdf and the corresponding pdf of the k-th

order statistics for k ∈ {1, 2, . . . , n + m − 1} (where k = 1 denotes the distribution of the

maximum) calculated from the n buyers’ valuations and the reserve prices of the m − 1

sellers j > 1.

If m > 1 and seller 1 sets a reserve price r1 ≥ 1/(m−ξ), then

F(k:n+m−1)(r1) =
∑

0≤i+j≤k−1
0≤i≤n

0≤j≤m−1

(
n
i

)(
m−1
j

)
F̃ξ(r1)

n−i(1− F̃ξ(r1))
i(F̃ξ(r

−1
∗ (r1)))

m−1−j(1− F̃ξ(r
−1
∗ (r1)))

j .

If m > 1 and r1 < 1/(m−ξ) or if m = 1, then seller 1 trades if at least one buyer bids more

than r1 (because the reserve prices of the other sellers, if there are any, are above r1). We

get for k ∈ {m,m+ 1, . . . , n+m− 1}

F(k:n+m−1)(r1) =
k−m∑
i=0

(
n
i

)
F̃ξ(r1)

n−i(1− F̃ξ(r1))
i.

distribution but we exclude it for ease of exposition.
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The expected payoff of seller 1 with costs c1 setting a reserve price r1 is given by19

E [π1(r1, c1)] =
(
F(m+1:n+m−1)(r1)− F(m:n+m−1)(r1)

)
(r1 − c1)

+

∫ −1/ξ

r1

(x− c1)f(m+1:n+m−1)(x) dx.

This function is differentiable for all r1 if m = 1. If m > 1, it is continuous but not

necessarily differentiable at r1 = 1/(m−ξ). For m = 1 and for m > 1 and r1 ̸= 1/(m−ξ), the

derivative is

∂E[π1(r1,v1)]
∂r1

= F(m+1:n+m−1)(r1)− F(m:n+m−1)(r1)− f(m:n+m−1)(r1)(r1 − c1).

For m > 1 and 0 < r1 < 1/(m−ξ), the expected utility is strictly increasing in r1 for all c1,

∂E[π1(r1,v1)]
∂r1

= F(m+1:n+m−1)(r1)− F(m:n+m−1)(r1)− f(m:n+m−1)(r1)(r1 − c1)

= nF̃ξ(r1)
n−1

(
1− F̃ξ(r1)− f̃ξ(r1)(r1 − c1)

)
≥ nF̃ξ(r1)

n−1
(
1− F̃ξ(r1)− f̃ξ(r1)r1

)
= nF̃ξ(r1)

n−1
(
(1 + ξr1)

− 1
ξ − (1 + ξr1)

− 1+ξ
ξ r1

)
= nF̃ξ(r1)

n−1(1 + ξr1)
− 1

ξ
(
1− (1 + ξr1)

−1r1
)
> 0.

The last inequality holds because (1 + ξr1)
− 1

ξ ∈ (0, 1] for r1 > 0 by F̃ξ being a cdf, and

because 1 − (1 + ξr1)
−1r1 > 0 for all r1 < 1/(m−ξ) (with 1 + ξr1 > 0 for all r1 < −1/ξ).

This implies that the best response of seller 1 to the given strategies of the other sellers and

buyers is to set a reserve price r1 ≥ 1/(m−ξ) for all c1. Thus, for m = 1 and for m > 1 and

r1 > 1/(m−ξ), the first-order condition is given by

r1 − c1 =
F(m+1:n+m−1)(r1)−F(m:n+m−1)(r1)

f(m:n+m−1)(r1)
. (A.1)

The difference ∆F (r1) := F(m+1:n+m−1)(r1)− F(m:n+m−1)(r1) simplifies to

∆F (r1) =
∑

i+j=m
1≤i≤n

0≤j≤m−1

(
n
i

)(
m−1
j

)
F̃ξ(r1)

n−i(1− F̃ξ(r1))
iF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j
.

Assuming n ≥ m (for the case n < m, the steps are the same with n−m and n−m− 1 as

19Note that F(k:n+m−1)(r1) is the probability that the k-th highest of the other n + m − 1 participants
has a valuation or reserve price below r1. Thus, F(m+1:n+m−1)(r1)− F(m:n+m−1)(r1) is the probability that
exactly m of the others have a valuation or reserve price above r1.
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the lower bounds on the index j) and using i = m− j, this simplifies to

∆F (r1) =

m−1∑
j=0

(
n

m−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1−F̃ξ(r1))
m−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j
.

(A.2)

The pdf f(m:n+m−1)(r1) captures the case that one of n buyers quits at r1 and exactly m−1

of the remaining n− 1 valuations and m− 1 reserve prices are above r1 or that one of m− 1

sellers sets his reserve price r∗(cj) at r1 and exactly m − 1 of the remaining n valuations

and m− 2 reserve prices are above r1. The pdf f(m:n+m−1)(r1) is therefore given by

nfB(r1)
∑

i+j=m−1
0≤i≤n−1
0≤j≤m−1

(
n−1
i

)(
m−1
j

)
F̃ξ(r1)

n−i−1(1− F̃ξ(r1))
iF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j

+ (m− 1)fS(r1)
∑

i+j=m−1
1≤i≤n

0≤j≤m−2

(
n
i

)(
m−2
j

)
F̃ξ(r1)

n−i(1− F̃ξ(r1))
iF̃ξ

(
r−1
∗ (r1)

)m−2−j
(
1− F̃ξ(r

−1
∗ (r1))

)j
,

which simplifies to

nf̃ξ(r1)

m−1∑
j=0

(
n−1

m−1−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1− F̃ξ(r1))
m−1−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j

+ (m− 1)f̃ξ(r
−1
∗ (r1))

d r−1
∗ (r1)
d r1

·

·
m−2∑
j=0

(
n

m−1−j

)(
m−2
j

)
F̃ξ(r1)

n−m+j+1(1− F̃ξ(r1))
m−1−jF̃ξ

(
r−1
∗ (r1)

)m−2−j
(
1− F̃ξ(r

−1
∗ (r1))

)j
.

In a first step, replace in the first sum and the last sum, respectively,

(
n−1

m−1−j

)
= m−j

n

(
n

m−j

)
and

(
m−2
j

)
= j+1

m−1

(
m−1
j+1

)
,

in a second step, replace the index j in the last sum with j + 1, and in a third step, factor
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out to express f(m:n+m−1)(r1) by

nf̃ξ(r1)
m−1∑
j=0

m−j
n

(
n

m−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1− F̃ξ(r1))
m−1−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j

+ (m− 1)f̃ξ(r
−1
∗ (r1))

d r−1
∗ (r1)
d r1

·

·
m−2∑
j=0

(
n

m−1−j

) j+1
m−1

(
m−1
j+1

)
F̃ξ(r1)

n−m+j+1(1− F̃ξ(r1))
m−1−jF̃ξ

(
r−1
∗ (r1)

)m−2−j
(
1− F̃ξ(r

−1
∗ (r1))

)j

= f̃ξ(r1)

m−1∑
j=0

(m− j)
(

n
m−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1− F̃ξ(r1))
m−1−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j

+ f̃ξ(r
−1
∗ (r1))

d r−1
∗ (r1)
d r1

·

·
m−1∑
j=1

j
(

n
m−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1− F̃ξ(r1))
m−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j−1

=
f̃ξ(r1)

1−F̃ξ(r1)

m−1∑
j=0

(m− j)
(

n
m−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1− F̃ξ(r1))
m−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j

+
f̃ξ(r

−1
∗ (r1))

(1−F̃ξ(r
−1
∗ (r1))

d r−1
∗ (r1)
d r1

·

·
m−1∑
j=1

j
(

n
m−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1− F̃ξ(r1))
m−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j
.

Using r−1
∗ (r1) = ((m−ξ)r1−1)/m, we get

f̃ξ(r1)

1−F̃ξ(r1)
= (1+ξr1)

− 1+ξ
ξ

(1+ξr1)
− 1

ξ
= (1 + ξr1)

−1 =

(
1+ξ

(m−ξ)r1−1
m

)− 1+ξ
ξ

(
1+ξ

(m−ξ)r1−1
m

)− 1
ξ

m−ξ
m =

f̃ξ(r
−1
∗ (r1))

(1−F̃ξ(r
−1
∗ (r1))

d r−1
∗ (r1)
d r1

Thus, we can combine the two sums and express f(m:n+m−1)(r1), using (A.2), by

mf̃ξ(r1)

1−F̃ξ(r1)

m−1∑
j=0

(
n

m−j

)(
m−1
j

)
F̃ξ(r1)

n−m+j(1− F̃ξ(r1))
m−jF̃ξ

(
r−1
∗ (r1)

)m−1−j
(
1− F̃ξ(r

−1
∗ (r1))

)j

=
mf̃ξ(r1)

1−F̃ξ(r1)

(
F(m+1:n+m−1)(r1)− F(m:n+m−1)(r1)

)
. (A.3)

Using (A.3), the first-order condition (A.1) simplifies to

r1 − c1 =
F(m+1:n+m−1)(r1)−F(m:n+m−1)(r1)

f(m:n+m−1)(r1)
=

1−F̃ξ(r1)

mf̃ξ(r1)
= 1+ξr1

m . (A.4)

Seller 1’s optimal strategy is r1(c1) = r∗(c1) = (1+mc1)/(m−ξ) because this also satisfies the
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second-order condition. For m = 1 and for m > 1 and r1 > 1/(m−ξ), the second derivative is

∂2E[π1(r1,v1)]
∂r21

= f(m+1:n+m−1)(r1)− 2f(m:n+m−1)(r1)−
∂f(m:n+m−1)(r1)

∂r1
(r1 − c1).

Using that, if rj(cj) = r∗(cj), by (A.3) and (A.4),

∂f(m:n+m−1)(r1)

∂r1
=
(

mf̃ξ(r1)

1−F̃ξ(r1)

)′
∆F (r1) +

mf̃ξ(r1)

1−F̃ξ(r1)

(
f(m+1:n+m−1)(r1)− f(m:n+m−1)(r1)

)
,

this second derivative is negative when evaluated at r1(c1) = r∗(c1) for all c1:

f(m+1:n+m−1)(r∗(c1))− 2f(m:n+m−1)(r∗(c1))−
∂f(m:n+m−1)(r1)

∂r1

∣∣∣
r1=r∗(c1)

1−F̃ξ(r∗(c1))

mf̃ξ(r∗(c1))

= −f(m:n+m−1)(r∗(c1))−
(

f̃ξ(r1)

1−F̃ξ(r1)

)′
∆F (r1)

1−F̃ξ(r1)

f̃ξ(r1)
< 0

The final inequality holds because all factors are positive.

Next, we show that a seller’s expected equilibrium profit decreases in the number of

sellers m if the number of buyers n is held constant. Let rj∗ (cj ,m) = (1+mcj)/(m−ξ) be the

equilibrium strategy of seller j when there are m sellers and assume all sellers and bidders

choose their equilibrium strategies. Note that rj∗ (cj ,m) decreases in m for all ξ < 0 and

all cj in the support of the distribution. W.l.o.g., consider seller 1.

First, if seller 1 unilaterally deviates from his equilibrium strategy to r1∗ (c1,m+ 1), his

expected profit strictly decreases because rj∗ (cj ,m) is a unique best response.

Second, seller 1’s expected profit decreases further if first, the remaining sellers also

play rj∗ (cj ,m+ 1). To see this note that the price in our market always equals the m+ 1-

highest value among all reserve prices and valuations, and that a seller trades if and only

if his reserve price is weakly below the price. Fix seller 1’s reserve price at r1∗ (c1,m+ 1).

If the remaining sellers j ∈ {2, 3, . . . ,m} decrease their reserve price from rj∗ (cj ,m) to

rj∗ (cj ,m+ 1), the m+ 1-highest among all reserve prices and valuations and therefore the

price must (weakly) decrease. If the price decreases and seller 1’s reserve price is fixed,

either his profit from his trade decreases or he loses his trade (and if he does not trade at

the higher price, he does not trade at the lower price). A trade is always profitable because

the reserve price exceeds the costs. Thus, seller 1 is weakly worse off if the price decreases

weakly.

Third, seller 1’s expected profit decreases further if a new seller m+1 enters the market

and plays according to rm+1∗ (cm+1,m+ 1). Fix seller j’s reserve price at rj∗ (cj ,m+ 1)

for all j ∈ {1, 2, . . . ,m}. Assume seller m + 1 enters the market with the reserve price

rm+1∗ (cm+1,m+ 1). The m + 2-highest among all reserve prices and valuations is weakly

lower than the m+ 1-highest among all reserve prices and valuations without that of seller

m+1. Thus, the price decreases when seller m+1 enters. By the arguments of the previous
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paragraph seller 1’s profit decreases weakly. ■

Appendix B. Matching and Competition Effects when Markets are Merged

When two one-seller-one-buyer markets are merged, total gains from trade per agent

will be higher in the merged markets than in the single market (see Section 2.3 and Table

B.7) due to a matching effect and a competition effect.

To see this matching effect, assume reserve prices were given by (100+cj)/2 in the two

one-seller-one-buyer markets (in which they are optimal for sellers) as well as in the two-

sellers-two-buyers market after a merger. For most realized valuations and costs, the merged

markets are efficient if the separate markets are efficient because additional matching possi-

bilities increase efficiency. However, note that if both buyers’ valuations exceed both sellers’

costs and the lower costs and the higher valuation are very different while the higher costs

and the lower valuation are close to each other, it is possible that the separate markets

generate an efficient outcome while the merged markets do not.

Consider the following example with sellers j ∈ {1, 2}, buyers i ∈ {1, 2}, costs c1 = 40

and c2 = 70, and valuations v1 = 100 and v2 = 75. In the efficient outcome, two trades

occur, with gains from trade of 65. With reserve prices r1 = 70 and r2 = 85, in the separate

markets if seller 2 is in a market with buyer 1 and seller 1 is in a market with buyer 2, both

trades take place whereas in the merged markets only seller 1 and buyer 1 trade, with total

gains from trade of only 60.20 On average, however, if sellers stick to (100+cj)/2, a merger of

markets improves gains from trade.

The competition effect from using the strictly lower reserve prices rj(cj) = (100+2cj)/3

instead of rj(cj) = (100+cj)/2 in the merged market increases gains from trade in the merged

markets for all value and cost realizations. With both reserve-price functions, reserve prices

always exceed costs. Thus, the lower reserve prices due to seller competition in the merged

markets promote efficient trades. To quantify this effect, compare the total gains from trade

per agent of 8.1 in the merged markets when sellers set reserve prices rj(cj) = (100+cj)/2 as

in the separate markets with the total gains from trade of 9.3 in equilibrium with rj(cj) =

(100+2cj)/3, an increase by 1.1 (see Table B.7 for the equilibrium properties and Table 5 for

the size of the effect). This competition effect arises although the number of buyers also

doubles when the markets are merged.

20Note that the same effect arises if the sellers adjust reserve prices: The same trades would take place if
the sellers chose their different equilibrium reserve prices of r1 = 60 and r2 = 80 in the merged markets and
of r1 = 70 and r2 = 85 in the separate markets.
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Table B.7: Efficient outcomes, equilibrium outcomes, and estimated outcomes for 1S1B and
2S2B for c, v ∼ U [0, 100].

1S1B 2S2B

Efficient outcome:
A seller’s profit 0.0 5.0
A buyer’s payoff 16.7 15.0
Total gains (per agent) 8.3 10.0
Probability of a trade per seller 0.50 0.50

Equilibrium outcome:
A seller’s profit 8.3 10.4
A buyer’s payoff 4.2 8.1
Total gains (per agent) 6.3 9.3
Probability of a (efficient) trade per seller 0.25 0.37

Outcome with estimated bidding functions: r̂1S1B r̂2S2B
A seller’s profit 6.4 7.7
A buyer’s payoff 9.0 12.0
Total gains (per agent) 7.7 9.8

Appendix C. Regression Results

Table C.8: Estimated reserve-price functions r̂(c) to compare one- and two-seller treatments

Linear regression Random-effects GLS regression
1S1B vs. 2S1B 1S2B vs. 2S2B 1S1B vs. 2S1B 1S2B vs. 2S2B
r r r r

d2S −8.580∗∗(−3.01) −12.520∗∗∗ (−3.58) −8.015∗∗ (−2.68) −11.42∗∗∗ (−3.23)
[−14.293,−2.868] [−19.516,−5.524]

c 0.647∗∗∗ (24.60) 0.610∗∗∗ (23.44) 0.662∗∗∗ (30.99) 0.626∗∗∗ (26.35)
[.594, .670] [.558, .662]

d2S × c 0.123∗∗∗ (3.59) 0.105∗ (2.27) 0.112∗∗∗ (3.60) 0.0832 (1.77)
[.0542, .191] [.0123, .197]

constant 29.569∗∗∗ (13.32) 32.200∗∗∗ (13.30) 28.826∗∗∗ (12.27) 31.400∗∗∗ (12.41)
[25.126, 34.013] [27.355, 37.044]

N 2400 2400 2400 2400
F (3, 59) 642.89∗∗∗ 330.93∗∗∗

Wald χ2(3) 2150.01∗∗∗ 1204.21∗∗∗

R2 .770 .627 .770 .627
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 (two-tailed); SE adjusted for 60 clusters

t statistics for the linear regression and z statistics in the random-effects regression in parentheses

95% confidence intervals
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