
Knowledge Graph Embeddings:
Link Prediction and Beyond

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von
Daniel Ruffinelli

aus Asuncion, Paraguay

Mannheim, 2023

Dekan Prof. Dr. Claus Hertling, Universität Mannheim
Referent Prof. Dr. Rainer Gemulla, Universität Mannheim
Korreferent Prof. Dr. Simone Paolo Ponzetto, Universität Mannheim
Korreferent Prof. Dr. Fabian Suchanek, Institut Polytechnique de Paris

Tag der mündlichen Prüfung: 22.11.2023

ABSTRACT

Knowledge graph embeddings, or KGEs, are models that learn vector repre-
sentations of knowledge graphs. These representations have been used for
tasks such as predicting missing links in the graph, or as pre-trained repre-
sentations that encode structured data for downstream applications, such as
question answering or recommender systems. Despite the large amount of
models developed for this purpose, the variety in experimental settings has
made it difficult to compare results across different studies. Models are often
learned using different training and hyperparameter optimization strategies.
In addition, most of the literature has focused on a specific form of predicting
missing links, known as link prediction. Almost no attention was given to
predicting other types of structures in a knowledge graph, and despite their
use in downstream applications, there are virtually no studies on the usability
of KGE models as pre-trained representations of knowledge graphs.

In this thesis, we propose new training and evaluation methods and
conduct several large scale empirical studies, all aimed at studying KGE
models as a form of knowledge representation. First, we compare model
performance in a fair experimental setting that allows us to separate between
contributions from new models and those from new training strategies. We
find that differences in training approaches, and not necessarily in model
architectures, may account for much of the previously reported progress
in link prediction. Second, we study some potential limitations that may
result from focusing almost exclusively on the link prediction task for KGE
research. We find that good link prediction models are not necessarily able
to successfully predict missing links in a knowledge graph, and that link
prediction performance is not an indication that models generally capture
information in the graph. This contradicts the common argument that KGE
models are able to generally preserve the structure in a knowledge graph.

iii

iv

Finally, we look beyond the link prediction task and study different
training objectives aimed at capturing more information in the graph, and the
impact that the resulting representations have on downstream applications.
We find that models trained with the standard approach based on link
prediction do not capture as much information about the graph as possible,
and that link prediction performance is also not a good indicator for good
downstream performance. These results suggest that the relation between pre-
training objectives and downstream performance is not as clear as suggested
in the literature, and that more research is needed to better understand how
to learn generally useful representations of knowledge graphs.

ZUSAMMENFASSUNG

Wissensgrapheneinbettungen (Knowledge Graph Embeddings, KGEs) sind
Modelle, die Vektordarstellungen von Wissensgraphen lernen. Diese Repräsen-
tationen wurden für Aufgaben wie die Vorhersage fehlender Links im
Graphen oder als vortrainierte Repräsentationen verwendet, die strukturi-
erte Daten für nachgelagerte Anwendungen wie Fragebeantwortungs- oder
Empfehlungssysteme kodieren. Trotz der großen Anzahl von Modellen,
die für diesen Zweck entwickelt wurden, ist es aufgrund der Vielfalt der
Versuchsbedingungen schwierig, die Ergebnisse verschiedener Studien zu
vergleichen. Die Modelle werden oft mit unterschiedlichen Trainings- und
Hyperparameter-Optimierungsstrategien erlernt. Darüber hinaus konzentri-
erte sich der Großteil der Literatur auf eine spezielle Form der Vorhersage
fehlender Verbindungen, die so genannte Link-Prediction. Der Vorhersage
anderer Arten von Strukturen in einem Wissensgraphen wurde fast keine
Aufmerksamkeit geschenkt, und trotz ihrer Verwendung in nachgelagerten
Anwendungen gibt es praktisch keine Studien über die Verwendbarkeit von
KGE-Modellen als vortrainierte Repräsentationen von Wissensgraphen.

In dieser Arbeit schlagen wir neue Trainings- und Bewertungsmetho-
den vor und führen mehrere groß angelegte empirische Studien durch, die
alle darauf abzielen, KGE-Modelle als eine Form der Wissensrepräsenta-
tion zu untersuchen. Zunächst vergleichen wir die Leistung der Modelle in
einem fairen experimentellen Rahmen, der es uns ermöglicht, zwischen den
Beiträgen der neuen Modelle und denen der neuen Trainingsstrategien zu
unterscheiden. Wir stellen fest, dass Unterschiede in den Trainingsansätzen
und nicht notwendigerweise in den Modellarchitekturen für einen Großteil
der zuvor berichteten Fortschritte in der Linkvorhersage verantwortlich sein
könnten. Zweitens untersuchen wir einige potenzielle Einschränkungen,
die sich aus der fast ausschließlichen Konzentration auf die Aufgabe der

v

vi

Link-Vorhersage in der KGE-Forschung ergeben können. Wir stellen fest,
dass gute Linkvorhersagemodelle nicht unbedingt in der Lage sind fehlende
Links in einem Wissensgraphen erfolgreich vorhersagen können, und dass
die Leistung der Linkvorhersage kein Hinweis darauf ist, dass die Mod-
elle generell Informationen im Graphen erfassen. Dies widerspricht dem
gängigen Argument, dass KGE-Modelle in der Lage sind, die Struktur eines
Wissensgraphen im Allgemeinen zu erhalten.

Schließlich gehen wir über die Aufgabe der Linkvorhersage hinaus und
untersuchen verschiedene Trainingsziele, die darauf abzielen, mehr Infor-
mationen im Graphen zu erfassen, sowie die Auswirkungen, die die re-
sultierenden Darstellungen auf nachgelagerte Anwendungen haben. Wir
stellen fest, dass Modelle, die mit dem Standardansatz der Linkvorhersage
trainiert werden, nicht so viele Informationen über den Graphen erfassen
wie möglich, und dass die Vorhersageleistung auch kein guter Indikator für
eine gute nachgelagerte Leistung ist. Diese Ergebnisse deuten darauf hin,
dass die Beziehung zwischen den vor dem Training gesetzten Zielen und der
nachgelagerten Leistung nicht so klar ist, wie in der Literatur angenommen
wird, und dass weitere Forschung erforderlich ist, um besser zu verstehen,
wie man allgemein nützliche Repräsentationen von Wissensgraphen erlernen
kann.

ACKNOWLEDGEMENTS

In the early years of studying for my engineering degree, I was introduced to,
and subsequently became fascinated with, the history and philosophy of sci-
ence. Through the works of Karl Popper and Thomas Kuhn, I learned about
the scientific method which, based on observation, rigor and reproducible ev-
idence, brought about long term improvement to our lives. It is my belief that
the general focus on obtaining a high number of (often speedy) publications
has resulted in a process that often neglects those core principles that made
the scientific method the revolution that it was. I say this, so the reader may
appreciate how much I am thankful for having had Rainer Gemulla as my
adviser throughout my PhD. Instead of focusing on publications, Rainer’s
primary interest has always been in deriving meaningful insights that build
understanding on top of the latest related work. This process was often
tough, but it is exactly what I was looking for in a PhD. Far from a stricter
alternative, I belief this is a better reflection of the scientific method, and
should thus be the norm. Thank you, Rainer!

In addition to my adviser, there are many people to whom I owe my
gratitude. I was fortunate enough to have had colleagues that acted as
mentors to me early in my PhD. When I most needed it, Christian Meilicke,
Yanjie Wang and Samuel Broscheit patiently shared their wisdom with me,
and I am happy to have had the opportunity to collaborate with them.
Through one way or another, I have also worked with many professors at the
Data and Web Science Group: Heiner (without whom I would not be here),
Simone, Heiko, Chris and Goran. I am thankful for all of their useful advice.
I have also learned a lot from other PhD students throughout these years,
many of whom I am happy to call friends today. Thank you all for the very
important debates about food, music, and other ways to enjoy life. Jungbusch
would not be the same without you!

vii

viii

I am fortunate enough to have too many friends to name, but I do want
to mention one person by name. My best friend and wife Helga, the best
partner I could have ever hoped for. I am incredibly grateful for her constant
support throughout these years, be it through listening, giving advice, or
simply talking for hours about anything and everything while listening to
music over a weekend breakfast. I love you! Thank you for coming with me
on this adventure!

Finally, I would like to thank Hidetaka Miyazaki for the amazing experi-
ences I have been able to enjoy through his creations.

CONTENTS

1 Introduction 1

2 Background 7
2.1 Knowledge Graphs . 7

2.1.1 Properties . 9
2.1.2 Construction Methods 10
2.1.3 Applications . 10
2.1.4 Open Knowledge Graphs 11
2.1.5 Challenges . 12

2.2 Knowledge Graph Embeddings 12
2.2.1 Mathematical Notation 13
2.2.2 Distributed Representations 13
2.2.3 Representations of Knowledge Graphs 14
2.2.4 Link Prediction and other Applications 16
2.2.5 Models . 17
2.2.6 Evaluation . 23
2.2.7 Training . 26
2.2.8 Limitations and Relevance of KGEs 29

2.3 Related Models . 31
2.3.1 Link Prediction Models 31
2.3.2 Feature-Based Models 32
2.3.3 Rule-Based Models . 32
2.3.4 Graph Convolutional Neural Networks 35

2.4 Benchmark Datasets . 39

ix

x CONTENTS

3 Link Prediction 43
3.1 Training Components . 45
3.2 Experimental Study . 49

3.2.1 Experimental Settings 49
3.2.2 Model Performance . 52
3.2.3 Impact of Hyperparameters 56
3.2.4 Impact of Variations in Evaluation 61

3.3 Related Work . 65
3.4 Summary . 66

4 Knowledge Base Completion 67
4.1 Predicting Missing Links . 70
4.2 Entity-Pair Ranking Protocol 71
4.3 Experimental Study . 74

4.3.1 Experimental Settings 74
4.3.2 Model Performance . 76
4.3.3 Underestimation and Type Filtering 81
4.3.4 Reproduction with LibKGE 83

4.4 Related Work . 84
4.5 Summary . 85

5 Graph-Structure Prediction 87
5.1 Graph-Structure Tasks . 88
5.2 Multi-Task Ranking Protocol 90
5.3 Multi-Task Training . 91
5.4 Experimental Study . 94

5.4.1 Experimental Settings 94
5.4.2 Model Performance . 97
5.4.3 Discussion . 100
5.4.4 Impact of Training Task Selection 102

5.5 Related Work . 102
5.6 Summary . 103

6 Downstream Applications 105
6.1 Pre-Trained Knowledge Graph Representations 106
6.2 Experimental Study . 108

CONTENTS xi

6.2.1 Experimental Settings 109
6.2.2 Model Performance . 113
6.2.3 Impact of Model Selection 116
6.2.4 Impact of Pre-Training Task Selection 119
6.2.5 Data Efficiency Tests . 120

6.3 Related Work . 122
6.4 Summary . 123

7 Conclusions 125

Bibliography 129

List of Algorithms 147

List of Figures 149

List of Tables 153

Appendices 161
A Additional Material for Chapter 3 161
B Additional Material for Chapter 4 173
C Additional Material for Chapter 5 174
D Additional Material for Chapter 6 176

CHAPTER

ONE

INTRODUCTION

"Reality is frequently inaccurate."

Douglas Adams

Knowledge graphs encode real-world information in the form of directed
labeled multigraphs. Their use is prevalent in many application scenarios
where there is a need to integrate and extract value from data at large
scale (Hogan et al., 2021). Some examples of such applications are web
search (Shrivastava, 2017; Singhal, 2012), social networks (Noy et al., 2019;
He et al., 2016) and recommender systems (Chang, 2018; Hamad et al.,
2018). In such scenarios, knowledge graphs can grow to the size of billions of
edges (Pellissier Tanon et al., 2016), presenting challenges to their construction,
maintenance and use (Noy et al., 2019).

Over the past decade, the study and development of methods for learn-
ing vector representations, or embeddings, of knowledge graphs has been
a very active research area (Nickel et al., 2015; Wang et al., 2017; Ji et al.,
2021). This follows from the success of using learned representations in
areas such as natural language processing (Kamath et al., 2019) or computer
vision (Szeliski, 2022). A knowledge graph embedding model, or KGE, learns vec-
tor representations of the entities and relations in a knowledge graph. These
representations capture the general patterns and structure in the knowledge
graph (Trouillon et al., 2016; Bordes et al., 2013b), which makes them useful

1

2 CHAPTER 1. INTRODUCTION

for various purposes, such as predicting missing facts in the knowledge
graph (Balazevic et al., 2019; Sun et al., 2019), or to enhance performance in
knowledge-intensive applications such as question answering (Ilyas et al.,
2022) or recommender systems (El-Kishky et al., 2022).

Despite the large amount of works that have proposed new KGE models (Ji
et al., 2021), it is often difficult to compare model performance across different
studies due to the variety in experimental settings. Models are often learned
using different training and hyperparameter optimization strategies, and
performance is often compared across different implementations of these
training scenarios. In addition, most of the literature on KGE models has
centered around a specific form of predicting missing links in a knowledge
graph, known as link prediction. Almost no attention was given to predicting
other types of structures in a knowledge graph, such as predicting the
neighborhood of an entity or the domain of a relation, and despite their use
in downstream applications, there are virtually no studies on embedding
quality. That is, on the usability of the representations from KGE models as
pre-trained representations of knowledge graphs.

In this thesis, we propose new training and evaluation methods and
conduct several large scale empirical studies, all aimed at studying KGE
models as a form of knowledge representation. First, we compare model
performance in a fair experimental setting that allows us to separate between
contributions from new models and those from new training strategies. We
find that differences in training approaches, and not necessarily in model
architectures, may account for much of the previously reported progress
in link prediction. Second, we study some potential limitations that may
result from focusing almost exclusively on the link prediction task for KGE
research. We find that good link prediction models are not necessarily able
to successfully predict missing links in a knowledge graph, and that link
prediction performance is not an indication that models generally capture
information in the graph. This contradicts the common argument that KGE
models generally preserve the structure in a knowledge graph.

Finally, we look beyond the link prediction task and study different
training objectives aimed at capturing more information in the graph, and the
impact that the resulting representations have on downstream applications.
We find that models do not capture as much information about the graph
as possible with the standard training approach, and that link prediction
performance is also not a good indicator for good downstream performance.

CHAPTER 1. INTRODUCTION 3

These results suggest that the relation between pre-training objectives and
downstream performance is not as clear as suggested in the literature, and
that more research is needed to better understand how to learn generally
useful representations of knowledge graphs.

Contributions

The main contributions in this thesis are:

1. We conduct a large experimental study to compare the link prediction
performance of several popular KGE models all under the same training
conditions. We find that KGE models are very sensitive to training
settings as well as to hyperparameter optimization, and that given
more recent training methods, models that underperform in prior work
become competitive with, or even outperform, state-of-the-art models.
This suggests that observations made in studies that compare published
results across different experimental settings may need to be revised,
and that future work should provide the same resources to all models
to ensure a fair assessment.

2. We design a task we call knowledge base completion, which is a gen-
eralization of the link prediction task, and propose a new evaluation
method based on this new task to assess whether KGE models can
more generally predict missing links in a knowledge graph. With
this approach, we illustrate that the standard form of evaluating link
prediction performance is limited in that models that fail to capture
large areas of a knowledge graph still perform well in standard link
prediction. In contrast, our experimental result show that our proposed
evaluation method makes a clear distinction between more and less
expressive KGE models.

3. We propose a generalization of the standard evaluation method for
link prediction, so that it may be used to evaluate model performance
on any number of prediction tasks. Using this evaluation approach in
combination with a new set of tasks for predicting different structures in
a graph, we assess the extent to which KGE models can make different
types of predictions about the graph they encode. We find that models
with strong link prediction performance are often not those that are best

4 CHAPTER 1. INTRODUCTION

at making predictions about the graph more generally. These results
challenge the intuition that KGE models preserve the general structure
of a knowledge graph.

4. We propose a generalization of the standard training method based on
link prediction to an approach for simultaneously training models on
multiple tasks beyond link prediction. Further, we extend the ability of
KGE models to efficiently answer new types of queries. We compare
the performance of models that are trained with the standard link
prediction approach and our proposed multi-task training approach.
We find that KGE models can indeed learn to simultaneously capture
more information about a graph when trained on multiple tasks.

5. We conduct a large experimental study to assess the impact that dif-
ferent pre-training methods have on the resulting embeddings when
used in downstream applications. We collect and create 35 different
datasets for downstream tasks and compare performance of several
downstream models that use knowledge graph embeddings trained
with the standard approach and our proposed multi-task approach. We
find that link prediction performance is not a good indicator for good
downstream performance, and that multi-task pre-training provides
benefits in downstream tasks most of the time. However, including
more tasks during training does not often lead to improved downstream
tasks, suggesting that more research is needed to better understand the
relation between pre-training KGE models and their usability in down-
stream applications. To assist with future research in this direction, we
provide our collection of downstream datasets to assess embedding
quality, as well as code for all of our proposed methods and empirical
studies, implemented as part of the open source framework LibKGE.

Publications

The work presented in this thesis is based on the following publications:

• Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, Samuel Broscheit, and
Christian Meilicke. On Evaluating Embedding Models for Knowledge
Base Completion. In 4th Workshop on Representation Learning for NLP
(Rep4NLP@ACL), 2019. Received Outstanding Paper Award

CHAPTER 1. INTRODUCTION 5

• Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You CAN
Teach an Old Dog New Tricks! On Training Knowledge Graph Em-
beddings. In International Conference on Learning Representations (ICLR),
2020

• Daniel Ruffinelli and Rainer Gemulla. Beyond Link Prediction: On
Pre-Training Knowledge Graph Embeddings. 2023. Under Submission

We also contributed to, and draw insights from, the following works:

• Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer
Gemulla, and Heiner Stuckenschmidt. Fine-Grained Evaluation of Rule-
and Embedding-based Systems for Knowledge Graph Completion. In
International Semantic Web Conference (ISWC), 2018

• Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and
Heiner Stuckenschmidt. Anytime Bottom-Up Rule Learning for Knowl-
edge Graph Completion. In International Joint Conference on Artificial
Intelligence (IJCAI), 2019

• Haris Widjaja, Kiril Gashteovski, Wiem Ben Rim, Pengfei Liu, Christo-
pher Malon, Daniel Ruffinelli, Carolin Lawrence, and Graham Neubig.
KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models. In Empirical Methods in Natural
Language Processing: System Demonstrations (EMNLP), 2022

Outline

We introduce relevant background concepts and methods in Chapter 2. In
Chapter 3 we discuss the large-scale study where we compare the link
prediction performance of various models all under the same training con-
ditions. We introduce our proposed knowledge base completion task and
the evaluation method we designed based on this task in Chapter 4. We
propose a generalization of the standard training and evaluation approaches
in Chapter 5 and present the corresponding experimental results. In Chap-
ter 6 we discuss our experimental study comparing the effect that different
pre-training approaches have when KGE models are used in downstream
applications. We conclude our thesis in Chapter 7, where we also briefly
discuss opportunities for future work.

6 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

BACKGROUND

In this chapter, we introduce the fundamental concepts and methods that
underpin the work in this thesis. We start with knowledge graphs, and then
introduce knowledge graph embeddings, which are the main focus of this
work. We follow with a brief discussion on other families of related models,
and finish with a description of the relevant datasets used in this work.

2.1 Knowledge Graphs

Many of the properties of knowledge graph embeddings, both observed and
desired, come from the objects these models aim to represent: knowledge
graphs. Consequently, discussing relevant concepts about knowledge graphs
is important to understand the motivation behind most of our proposed
methods and experimental studies. In this section, we give a brief introduc-
tion to knowledge graphs as they are used in this work. For a comprehensive
introduction, see Hogan et al. (2021).

A knowledge graph (KG) encodes real-world information in the form of
a directed labeled multigraph, where nodes correspond to any type of real-
world entities, such as cities or famous persons, and edges represent relations
between two entities. Figure 2.1 shows an example of a small knowledge
graph that represents basic geographical facts about a few cities and states in
the United States of America (USA).

7

8 CHAPTER 2. BACKGROUND

Arkansas
North America

Dallas

USA

Austin

Texas locatedIn
locatedIn

locatedIn

loc
ate

dIn

borders

capitalOf

Figure 2.1: Example of a small knowledge graph

Following the standard data model for KGs, the Resource Description
Framework (RDF) (W3C, 2014), we represent a knowledge graph as a set
of (subject, predicate, object) or (s,p,o) triples. For example, the triple (Austin,
capitalOf, Texas) represents the fact that the city of Austin is the capital of the
state of Texas in the USA. Table 2.1 shows the set of triples that correspond
to the KG in Figure 2.1. We formally define a KG as follows.

Definition 2.1.1 (Knowledge Graph). Given a finite set E of entities and a
finite set R of relations, a knowledge graph K ⊆ E ×R×E is a set of (subject,
predicate, object) triples, each representing a fact in K.

Although generally not required, some KGs follow to a pre-defined
schema, i.e. a set of rules that describe the constraints that the entities and
relations in a KG must adhere to. For example, the KG in Figure 2.1 may
describe that each entity is an instantiation of a more general class, such
as (Texas, instanceOf, city), where city is a node that represents the concept
of a city. Similarly, relations in the KG may have constrained domain and
range, e.g. (capitalOf, hasDomain, city) and (capitalOf, hasRange, state). It is
worth noting that, even in the absence of an explicit schema, the triples that
make up a KG typically follow some set of implicit rules, e.g. relations have
a specific domain and range, or some relations have certain properties, such
as transitivity or symmetry.

CHAPTER 2. BACKGROUND 9

Subject Predicate Object

Dallas locatedIn Texas
Austin capitalOf Texas
Austin locatedIn Texas
Arkansas borders Texas
USA locatedIn North America
Austin locatedIn USA

Table 2.1: Knowledge graph from Figure 2.1 as a set of triples

In this work follow, we follow the open world assumption (OWA) when
working with KGs. That is, we assume that any fact missing from the KG
is unknown, i.e. either true or false. In contrast, the closed world assumption
(CWA) states that missing facts are assumed to be false, such as in traditional
relational database systems.

Knowledge graphs may also contain literals, i.e. nodes that do not repre-
sent a real-world entity, but instead hold information about an entity node in
the form of strings, integers or dates. For example, the triple (USA, founded,
04/07/2023) may be used to represent the date when the USA was founded.
In this work, we focus on KGs that do not contain literals.

2.1.1 Properties

The quality of the data in a KG may be described by several properties (Hogan
et al., 2021). For example, timeliness refers to the relevance of the data across
time, and provenance refers to the process by which the data was obtained.
Two arguably more fundamental properties of KGs, and the two that are
relevant in this work, are accuracy and completeness.

Definition 2.1.2 (KG Syntactic Accuracy). A KG is more syntactically accurate
the more its facts are accurate w.r.t. the rules established by the data model,
e.g. domain and range restrictions in relations.

Definition 2.1.3 (KG Semantic Accuracy). A KG is more semantically accurate
the more its edges correctly represent real-world facts.

Definition 2.1.4 (KG Completeness). A KG is more complete the higher the
percentage of relevant real-world facts are represented within it.

10 CHAPTER 2. BACKGROUND

Note that completeness implies an ideal set of facts that a KG should
have. In practice, completeness can be (at least partially assessed) by using a
larger set of known facts (Darari et al., 2018).

2.1.2 Construction Methods

Knowledge graphs can be constructed in various ways, each of which has
an impact on its completeness and accuracy. Methods for constructing KGs
can be divided into automated or non-automated and structured or unstruc-
tured (Nickel et al., 2015).

An automated approach is one that automatically extracts facts from
various sources, whereas a non-automated approach typically means having
a group of experts manually create a set of triples. While the latter implies
higher quality, its cost may be prohibitively large depending on the size of
the KG and the field of knowledge it represents. Further, there may not
be agreement among experts w.r.t. what some of the facts are. Automated
approaches are more cost effective, but the quality of the resulting KG
may suffer, both in terms of accuracy and completeness, depending on the
extraction method and sources of information.

Structured approaches are those whose source of information is structured
data, e.g. web tables (Luzuriaga et al., 2021) or Wikipedia infoboxes (Peng
et al., 2019). Conversely, unstructured methods extract information from
unstructured sources, such as publicly available text (Gashteovski et al., 2017).
We discuss how the KGs that are relevant for this thesis were constructed in
Section 2.4.

2.1.3 Applications

The main purpose of KGs is to provide structured data that can be inter-
preted by automated systems in a semantically meaningful way across various
application scenarios, such as social network analysis or recommender sys-
tems (Nickel et al., 2015). A common mechanism by which users can extract
information from KGs is logical reasoning. For example, given the KG in
Figure 2.1, the facts (Texas, locatedIn, USA) and (USA, locatedIn, North America)
could lead us to infer the fact (Texas, locatedIn, North America). KGs are usually
consulted via a given query language, such as SPARQL, which was designed
for RDF graphs (W3C, 2013). The cost of extracting information from a KG

CHAPTER 2. BACKGROUND 11

typically depends on the size of the KG and the expressivity of the query
language. We discuss in Section 2.1.5) how this can become a challenge when
using KGs in real-world scenarios.

Depending on their intended purpose, KGs may vary in size and scope.
Some KGs are limited in scope, such as the Gene Ontology, which provides
information about the relations between genes and the biochemical materi-
als that result from the expression of these genes (GOC, 2021). The Gene
Ontology contains data about 27 942 biological processes, 11 263 molecular
functions and 4043 cellular components (GOC, 2023). Conversely, the Google
Knowledge Graph (Singhal, 2012) is a general purpose graph that contains
billions of facts about the world. It was designed to enhance the company’s
search engine with semantically meaningful results. The actual size of this
KG is unknown, as this is not an open graph, but the private property of
a company. Other companies in the industry have also created knowledge
graphs for internal use, such as Amazon (Krishnan, 2018), Facebook (Noy
et al., 2019) or Microsoft (Shrivastava, 2017).

2.1.4 Open Knowledge Graphs

An open KG is one that is publicly available to query, download and use for
any purpose (Hogan et al., 2021). In Section 2.4, we discuss the benchmark
datasets used in this work, all of which are subsets of the following KGs.

Freebase (Bollacker et al., 2007) was a KG with the purpose of encod-
ing general human knowledge. At launch, it was made up of more than
125 000 000 triples (Bollacker et al., 2008) and it was designed to provide
integrated support for the semantic web (Hitzler, 2021). Its construction was
based on collaborative contributions from human editors and it was possible
to extend it via a web user interface. Freebase was deprecated when it was
acquired by Google and became an important part in the creation of the
Google Knowledge Graph (Singhal, 2012).

WordNet (Miller, 1995) is a domain-specific KG. It was designed as a
lexical database that could be easily processed with machines and thus pro-
vide support for automated natural language tasks. WordNet was manually
constructed by experts and contains more than 118 000 word forms and more
than 90 000 different word meanings.

YAGO (Suchanek et al., 2007) is another general-purpose KG, constructed

12 CHAPTER 2. BACKGROUND

by automatically extracting information from structured data in Wikipedia
and using WordNet to integrate and disambiguate facts and concepts. At
launch, it contained about 5 million facts. YAGO was designed to provide sup-
port for various tasks, such as machine translation or document classification,
among others.

Wikidata (Vrandečić and Krötzsch, 2014) was designed as a centralized
database that stores all of the structured information contained in Wikipedia,
with the aim of providing easier access to such structured data. At launch,
it contained over 43 million statements. As with Wikipedia, collaborative
editing is allowed and providing references to claims is encouraged.

2.1.5 Challenges

Despite their wide applicability, KGs have known limitations. Those most
relevant for this work are their incompleteness and their cost of inference.

Due to their construction methods, KGs are often incomplete. For exam-
ple, KGs that are constructed based on information in Wikipedia would only
include facts contained in Wikipedia, such as the high amount of data about
American actors and actresses and the lack of corresponding information
about Indian or Nigerian actors or actresses, despite the latter two being
larger film industries (Nickel et al., 2015). Similarly, the place of birth of 71%
of the people included in Freebase was reportedly missing (West et al., 2014).

As mentioned in Section 2.1.3, the cost of deductive reasoning used to
infer missing or new data in a KG depends on the language bias of the query
language, i.e. what types of queries are supported, and on the size of the
KG. In general, query answering can be undecidable given languages that
are expressive enough (Hitzler et al., 2010). For this reason, a multitude of
less expressive languages, i.e. languages that only support restricted types of
queries, have been developed to allow for efficient reasoning. These range
from IF-THEN rules, such as Datalog for databases (Ceri et al., 1989), to the
various forms of Description Logics designed for the semantic web (Baader
et al., 2017).

Challenges such as the ones described above have been important mo-
tivations for the design of knowledge graph embedding models, which we
introduce in the next section.

CHAPTER 2. BACKGROUND 13

Numbers, Arrays, and Sets

a A scalar
a A column vector
A A matrix
aij Element at position i, j of matrix A
ai or ai: Column vector of row i of matrix A
a:j Column vector of column j of matrix A
A A set
R The set of real numbers
C The set of complex numbers
a ∈ A a is an element of set A
A ⊂ B Set A is a subset of set B
A ∪ B Union of sets A and B
A ∩ B Intersection of sets A and B

Linear Algebra Operations

aT Transpose of vector a
AT Transpose of matrix A
aTb Dot product between a and b
a ◦ b Element-wise (Hadamard) product between a and b
aA Matrix-vector product between a and A
diag (a) Diagonal matrix with vector a in main diagonal

Table 2.2: Mathematical notation used throughout this thesis.

2.2 Knowledge Graph Embeddings

In this section, we introduce the main focus of this thesis: knowledge graph
embedding (KGE) models. KGEs are dense vector representations of the
entities and relations in a KG. Therefore, we give a brief introduction into
dense representations before discussing KGEs in general.

2.2.1 Mathematical Notation

Table 2.2 introduces the mathematical notation used throughout this thesis.

14 CHAPTER 2. BACKGROUND

2.2.2 Distributed Representations

Most of the recent progress in some areas of machine learning, such as natural
language processing and computer vision, is based on models that rely on
dense representations instead of local, or sparse, representations (Kamath
et al., 2019; Szeliski, 2022). Local representations refer to the mapping of a
single representational element to a single concept from a set of concepts to
be represented. For example, a sequence of text could be represented using
one-hot encoding vectors, i.e. vectors with binary indicator features, where
each feature indicates whether a specific word is present in the sequence.
Thus, each feature is mapped to a single word and a sequence of text is
represented by a sparse vector with dimension equal to the size of the
available vocabulary.

In contrast, dense (or distributed) representations rely on a many-to-
many relation between representational components and the concepts or
entities that are to be represented (Hinton, 1984). That is, a single element
may be used to represent multiple concepts, and multiple concepts may be
represented by multiple elements. Note that representational elements need
not be binary as in a one-hot encoding vector. This results in dense, i.e. non-
sparse, vector representations, which allow for the size of the representation
vector to be much smaller than when relying on sparse representations.
Much of the success in machine learning in recent years has been driven by
models that learn such dense representations, which are in turn useful as
input representations for downstream tasks (Bengio et al., 2000; Bengio, 2008;
LeCun et al., 2015; Zhuang et al., 2021). Such dense representations are often
referred to as embeddings.

Dense representations are also related to latent feature models (Orbanz
and Teh, 2010). These models represent concepts as a set of latent features,
i.e. features not directly present in the data, but fundamentally underlying it.
Such models were widely applied in recommender systems based on matrix
factorization techniques (Koren et al., 2009) and have also been successfully
applied to graphs (Orbanz and Roy, 2014).

2.2.3 Representations of Knowledge Graphs

Methods that provide vector representations of knowledge graphs have
been proposed and developed with different purposes in mind. Paccanaro

CHAPTER 2. BACKGROUND 15

and Hinton (2001) focused on the task of inferring new instances of binary
relations between entities in a KG. Three components of their work are still
commonly used today by models that focus on that same task. First, they
modeled this task as predicting a missing element of a triple, e.g. (Alberto,
hasFather, ?). We call this task link prediction and discuss it more formally
in Section 2.2.4. Second, inspired by Hinton (1984), their method was based
on learning distributed vector representations of each entity by embedding
them into a multidimensional Euclidean space. They modeled the relations
between entities in the KG as relation-dependent transformations that, when
applied to the embedding of the subject of a triple, should result in an
approximation of the embedding of the object in that triple. Finally, they
represented the plausibility that a triple is true with a real value given by a
function that takes a triple as input. We call such functions score functions.
This score function was parameterized by the entity and relation embeddings,
and their training approach was based on increasing the scores of known
edges in the graph w.r.t. to all other possible edges.

Inspired by the success of collaborative filtering in recommender systems,
a different set of methods was proposed to solve the same task (but referred
to as relational learning in this line of work) using methods based on matrix
factorization. Singh and Gordon (2008) proposed collective matrix factoriza-
tion, where they followed a collaborative filtering approach to simultaneously
learn relations between different sets of entities, e.g. users and movies in a
recommendation system. Similarly, Nickel et al. (2011) proposed a tensor
factorization approach that, as in collaborative filtering, results in dense
representations of the entities in the data. We discuss this last model further
in Section 2.2.5.

With perhaps a more general purpose in mind, Bordes et al. (2011) pro-
posed a neural network architecture designed to embed a knowledge graph
into a continuous vector space in order to gain flexibility while preserving
its knowledge. Such representations of a KG would allow the injection of
the knowledge represented in the KG into machine learning methods that
commonly rely on feature vectors. They learned vector representations for
each entity and a pair of matrices that acted as linear transformations for
each relation. During training, their model learned to rank the scores of
known triples lower than that of negative triples. The latter were generated
by replacing the subject or object of a triple by a randomly chosen entity from
the set of entities, a process that is still used by models (see Section 2.2.7).

16 CHAPTER 2. BACKGROUND

Thus, their approach was also based on the link prediction task as in the
work of Paccanaro and Hinton (2001).

The works described above from Paccanaro and Hinton (2001), Bordes
et al. (2011) and Nickel et al. (2011) were some of the first to introduce
the motivation and methods that became the starting point of research into
knowledge graph embeddings (KGE). With a clearer picture of such earlier
works, we define KGE models as follows:

Definition 2.2.1 (Knowledge Graph Embedding Model). Given a knowledge
graph K ∈ E ×R× E , a KGE model associates each entity i ∈ E and relation
k ∈ R with an embedding ei ∈ Rde and rk ∈ Rdr×dr in a low-dimensional
vector space, respectively. These embeddings act as parameters for a score
function s : E ×R×E → R that represents the plausibility of any triple (i, k, j)
with a real number. The score function takes the form s(i, k, j) = f (ei, rk, ej),
i.e., it depends on i, k, and j only through their respective embeddings.

Typically, models are trained to associate higher scores to positive triples,
i.e. those known to be correct, and lower scores to negative or pseudo-
negative triples, which are obtained via some protocol for generating negative
examples. We describe the training process of KGEs in detail in Section 2.2.7.

Since the earliest proposals described above, dozens of KGE models
have been proposed, most of which share the same motivation as the works
described above. For a comprehensive list of these proposed models, see the
surveys from Ji et al. (2021) and Wang et al. (2017). In the following sections,
we first discuss the tasks that motivated the design of KGE models in general,
and then formally introduce the specific KGE models that are relevant for
this work.

2.2.4 Link Prediction and other Applications

As we will see in the following sections, link prediction has been a funda-
mental task for KGE models, not only as a goal, but also when designing
approaches for training and evaluating models. This focus on link prediction
has in fact motivated the work we present in Chapters 4 to 6. In this section,
we formally introduce the link prediction task. We also briefly discuss other
types of tasks that KGEs are useful for, such as predicting other types of
graph structure and downstream applications.

CHAPTER 2. BACKGROUND 17

Link prediction. Generally, link prediction relates to a model’s ability to
predict missing edges in a KG. More specifically, the link prediction task has
been commonly defined in the literature as follows.

Definition 2.2.2 (Link Prediction). Given a knowledge graph K ∈ E ×R× E ,
link prediction is the task of predicting a missing entity in a given triple
(i, k, j) ∈ K, i.e. answering queries (i,k,?) or subject prediction, and (?,k,j) or
object prediction, with j and i, respectively.

The development of KGE models was partially motivated by some ad-
vantages that such models could have on the link prediction task compared
to other types of approaches, e.g. rule-based models (Nickel et al., 2015).
First, KGES are significantly more efficient at inference time, because com-
pared to rule-based reasoning, models need to compute the score of a given
triple, which is often a single operation using the corresponding embeddings.
Second, they should in principle be more robust to noise, since noisy data
should have less of an impact on a learned vector space than on the learning
of a set of discrete rules. However, we are not aware of any formal study
into KGE’s ability to handle noise in comparison to rule-based models. We
discuss rule-based models in more detail, including their advantages com-
pared to KGE models, in Section 2.3.3, and compare their performance on
link prediction and other tasks in Chapters 3 and 4.

In addition, distributed representations of entities and relations in a
KG can be very useful for tasks like entity clustering, entity linking across
different KGs, or even identifying errors in the KG by checking the scores of
existing edges.

Other graph structure tasks. KGEs can also perform predictions about
other types of structure in a KG. For example, some works also refer to the
task of predicting the missing relation in a triple, i.e. (s,?,o) as link prediction.
We follow Chang et al. (2020) and Chen et al. (2021c) and refer to this task as
relation prediction.

In addition to relation prediction, some works study the triple classifi-
cation task (Socher et al., 2013; Safavi and Koutra, 2020), i.e. given a triple
t, predict whether t ∈ K or t /∈ K. Although we do not study the triple
classification task in this thesis, we discuss it further in Section 2.2.6. For a
discussion on other graph-structure tasks, see Wang et al. (2017).

Downstream applications. In addition to tasks that aim at predicting
structure in the KG, the learned embeddings provided by KGE models may

18 CHAPTER 2. BACKGROUND

be used as features in downstream applications that may benefit from the
information in the corresponding KG. In this sense, it is crucial that models
actually preserve the information in the KG, which is indeed the goal of
many proposed KGE models (Bordes et al., 2011, 2013b; Trouillon et al., 2016).
There are several different types of downstream models that make use of pre-
trained KGE models, such as recommender systems (El-Kishky et al., 2022;
Wang et al., 2018a), language models (He et al., 2020; Zhang et al., 2019b),
visual models (Baier et al., 2017), and question answering systems (Ilyas et al.,
2022). Different models use the learned representations from KGEs differ-
ently depending on the downstream application. We discuss downstream
applications in more detail in Chapter 6. For more comprehensive discussions
on the use of KGE models in downstream applications, see Wang et al. (2017)
and Ji et al. (2021).

2.2.5 Models

KGE models are mostly differentiated by the assumptions they make, which
are best summarized by their score functions. In this section, we introduce
the models that are part of our experiments in later chapters, based on the
type of score function they use. We focus on what makes models distinct
from one another and leave the discussion of hyperparameters that apply to
all models for Section 2.2.7. In addition, we comment on the more theoretical
aspects of these models, such as model expressivity, at the end of this section.
Later, in Section 2.3, we briefly discuss related families of models, including
more recent link prediction models that do not necessarily learn vector
representations of the components of a KG. For all models discussed below,
let d be a hyperparameter, N = |E | and K = |R|, where E ,R are the sets of
entities and relations in some knowledge graph K, respectively.

Bilinear Models

Often referred to as factorization-based models (Ji et al., 2021), bilinear models
are those with the following score function:

s(i, k, j) = eT
i Rkej, (2.1)

where ei, ej and Rk are embeddings of entities i, j ∈ E and relation k ∈ R,
respectively.

CHAPTER 2. BACKGROUND 19

RESCAL. Proposed by (Nickel et al., 2011), RESCAL is parameterized by
an entity matrix E ∈ RN×d and K relation matrices R1, R2, . . . , RK ∈ Rd×d.
RESCAL uses the standard bilinear score function described by Equation 2.1.

Given that RESCAL learns a d× d matrix for each relation in a KG, it
has a considerably higher number of parameters compared to other KGE
models proposed in subsequent years, some of which we describe below. This
makes the process of training RESCAL more expensive than other models,
and some authors report that this model may be overparameterized due to
its tendency to overfit (Kotnis and Nastase, 2017). Perhaps for these reasons,
RESCAL fell out of use in KGE research compared to other models. But as we
show empirically in Chapter 3, RESCAL is still a very competitive model for
link prediction when trained appropriately, and can even outperform many
models that were more recently proposed.

DistMult. This model can be seen as a constrained variant of RESCAL.
DistMult (Yang et al., 2015) is parameterized by entity matrix E ∈ RN×d and
relation matrix R ∈ RK×d, and it uses the following score function:

s(i, k, j) = eT
i diag (rk) ej. (2.2)

Due to the use of a diagonal matrix as the transformation applied to entity
embeddings, all symmetric pairs of triples (i, k, j) and (j, k, i) all assigned the
same score. This means that DistMult essentially treats all relations in a KG as
symmetric, a strong assumption that does not accurately describe real-world
KGs. Despite this limitation, our empirical results in Chapter 3 show that
DistMult is competitive with more expressive link prediction models and can
even outperform them on some datasets. We discuss the implications of this
observation further in Chapter 4.

ComplEx. Another constrained bilinear model, ComplEx (Trouillon et al.,
2016) is parameterized by entity matrix E ∈ CN×d and relation matrix R ∈
CK×d. Complex has the following score function:

s(i, k, j) = Re(eT
i diag (rk) ej), (2.3)

where Re(x) is the real part of x ∈ C.

ComplEx was designed to be more expressive than previous models like
DistMult and TransE (discussed below), while retaining the same number of
parameters as these models. Despite its simplicity, ComplEx has shown to be

20 CHAPTER 2. BACKGROUND

competitive with more involved link prediction models when trained with
considerably larger embedding sizes (Lacroix et al., 2018) or when trained
with additional training objectives (Chen et al., 2021c).

Analogy. This model is similar to RESCAL but with additional con-
straints on the relation embeddings. Like RESCAL, Analogy (Liu et al.,
2017) is parameterized by entity matrix E ∈ RN×d and K relation matrices
R1, R2, . . . , RK ∈ Rd×d, and also uses the standard bilinear score function
described by Equation 2.1. However, it introduces the constraints that relation
matrices be normal, i.e. RkRT

k = RT
k Rk, and commutative, i.e. RkRk′ = Rk′Rk,

for every k, k′ ∈ R.

Liu et al. (2017) show that despite using matrices for relation embeddings,
the constraints imposed on the model result in block-diagonal relation ma-
trices that are almost diagonal. Further, the authors show that ComplEx,
DistMult and HolE (Nickel et al., 2016) can all be seen as restricted forms of
the Analogy model.

Translational Models

Translational models are those that use distance-based score functions. That
is, they assume that the embedding of the subject entity, after applying the
corresponding relation-specific transformation, should be in close proximity
to the object embedding according to some distance metric in the embedding
space.

TransE. TransE (Bordes et al., 2013b) is parameterized by entity matrix
E ∈ RN×d and relation matrix R ∈ RK×d. Inspired by translational properties
of word embeddings (Mikolov et al., 2013a), TransE uses the following score
function:

s(i, k, j) = −∥ei + rk − ej∥p, (2.4)

where p ∈ {1, 2} is the p-norm of the resulting vector.

TransE’s score function suggests that, except for the case of 1-to-1 relations,
the model might have a tendency to cluster many entities in embedding space
despite them not necessarily being similar (Wang et al., 2014; Yang et al., 2015).
For example, the relation city_of should map several different cities to the
same country. To increase the plausibility of observed triples for that relation,
TransE may give similar representations to each of those cities. Similarly, to

CHAPTER 2. BACKGROUND 21

better represent symmetric relations, TransE may have a tendency to reduce
the size of the embedding of a symmetric relation, so that the scores of triples
with that relation are indeed symmetric. We observe this last phenomenon
empirically in Chapter 4.

The limitations discussed above inspired several variations of TransE,
such as TransH (Wang et al., 2014) and TransR (Lin et al., 2015). We refer
to Wang et al. (2017) and Ji et al. (2021) for a more detailed discussion of
variations of the TransE model.

Our experimental results from later chapters show that, perhaps due to
its limitations, TransE underperforms in the link prediction task compared to
other models. However, we show in Chapter 6 that despite its relatively low
link prediction performance, the representations learned by TransE are often
more useful in downstream applications than models that perform better on
the link prediction task.

RotatE. RotatE (Sun et al., 2019) is parameterized by entity matrix E ∈
CN×d and relation matrix R ∈ CK×d. RotatE’s score function is the following:

s(i, k, j) = −∥ei ◦ rk − ej∥1, (2.5)

where ◦ is the Hadamard product. This model defines each relation as a
rotation in complex vector space. Note that, as with TransE, we negate the
scores so that larger scores rank higher.

RotatE is a more recent translational model that showed state-of-the-art
performance on some benchmark datasets when released. In addition, it is
not constrained by the limitations in the TransE model, which make it a more
capable representative of translation-based KGE models.

Neural Models

While bilinear models can be represented as neural network models, the
design of several models has been based on neural networks more gener-
ally (Socher et al., 2013; Chen et al., 2021a; Zhu et al., 2021). In the following,
we discuss the most relevant neural model in this thesis.

ConvE. Dettmers et al. (2018) proposed ConvE, a model that applies a
two-dimensional convolutional layer to the concatenation of the subject and
relation embeddings of a triple, after reshaping each into a two-dimensional
embedding. It then projects the resulting feature vector into a desired dimen-

22 CHAPTER 2. BACKGROUND

sionality using a linear layer. ConvE’s score function is as follows:

s(i, k, j) = f (vec(f ([Ei; Rk] ∗ w))W)ej, (2.6)

where f is a non-linear function (originally set to ReLU), vec(x) transforms
x ∈ R2 into a uni-dimensional vector, [x; y] is the horizontal concatenation
of inputs x and y, Ei and Rk are the embeddings of entity i and relation k
reshaped into two dimensions, ∗ is the convolution operation, w is the filter
used in the convolutional layer and W the weight matrix of the linear layer.

The parameters of the convolutional and linear layers in ConvE are
relation-independent, meaning that the model learns a parameterized func-
tion that predicts the object of a triple given its subject and relation. This
is different from the previously described models in that score functions
are usually able to predict either the missing subject or object of a triple,
given the other to components. To address this limitation, ConvE represents
the object prediction task with the query (j, k−1, ?) and learns two different
embeddings for each relation k, one for k and one for k−1. Thus, the model
is parameterized by the filter w of its two-dimensional convolutional layer,
weight matrix W of the linear layer, entity matrix E ∈ RN×d and relation
matrix R ∈ RK′×d, where K′ = K× 2. Note that its dependency on the use of
reciprocal relations means it is unclear how to use ConvE for tasks where the
direction of the relation is not specified, e.g. triple classification. We discuss
this limitation further in Chapter 3.

Theoretical Expressivity of KGE Models

Several studies have looked into the theoretical expressivity and limitations
of different KGE models (Liu et al., 2017; Wang et al., 2018b; Abboud et al.,
2020). In fact, the design of new KGE models is often inspired by the
theoretical limitations of previous models (Wang et al., 2014; Lin et al., 2015;
Liu et al., 2017; Sun et al., 2019; Abboud et al., 2020). However, we note that
despite being designed to overcome the theoretical limitations of previous
models, most such studies test their proposed models on generally the same
experimental settings. That is, on the same link prediction task and using the
same benchmark datasets. Thus, except for a few studies (Trouillon et al.,
2016, 2019), the impact of the theoretical modeling abilities of most models is
often not tested in practice.

CHAPTER 2. BACKGROUND 23

In addition, as we see in later chapters, the theoretical differences between
some models are often not apparent when looking at their empirical perfor-
mance, especially when comparing different models on fair experimental
settings. For example, we see in Chapters 3 and 4 that DistMult, a theoret-
ically restricted model, is competitive with the more expressive ComplEx
model on link prediction in most datasets, even outperforming it at times.
Similarly, and as mentioned before, we see in Chapter 6 that the representa-
tions learned by TransE are often more useful in downstream applications
compared to those of less restricted models, such as ComplEx or RotatE.

For the reasons stated above, in this thesis we focus on the empirical
performance of models on benchmark datasets, and do not discuss the
theoretical differences between KGE models further, except where relevant
for discussing experimental results.

KGE Model Extensions

In this thesis, we propose new training and evaluation methods that gener-
ally apply to KGE models. Therefore, as a first step, the empirical studies
presented in later chapters focus exclusively on pure KGE models, i.e. those
that only make use of known facts in a KG to learn representations about
its entities and relations. However, we note that in addition to pure KGE
models, several models have been designed to use additional information
about entities and relation during training and/or at inference time. While
the results presented in later chapters are insightful for pure KGE models,
future studies may extend the work in this thesis to include KGE models
that use additional information. In principle, all of our proposed methods
are model agnostic, but some models may require some adaptations for
these methods to work. For reference, we cite a few of those models in the
following.

Entity types. Some models make use of information about entity types,
e.g. as constrains in the embedding space (Guo et al., 2015) or to generate
negative samples during training (Kotnis and Nastase, 2018).

Entity descriptions. Other models make use of the textual descriptions
often available for entities in a KG. Such information may be used, for
example, by learning KG and word embeddings simultaneously and aligning
both embedding spaces with corresponding anchors (Wang et al., 2014), or as
additional training objectives (Xiao et al., 2017).

24 CHAPTER 2. BACKGROUND

Schema restrictions. Several properties of relations in a KG can be
expressed as logical rules, e.g. ∀x, y : hasWife(x, y) =⇒ hasSpouse(x, y).
Such information can be used, e.g. as additional constraints in the embedding
space (Guo et al., 2016; Rocktäschel et al., 2015).

Temporal information. Several studies have focused on the temporal
nature of facts in a KG, e.g. a country’s president changes every few years.
Such information has been used in previous studies to learn temporally-aware
models (Dasgupta et al., 2018; García-Durán et al., 2018; Goel et al., 2020).

2.2.6 Evaluation

We introduce in this section the triple classification task and its corresponding
form of evaluation. We then discuss in detail the most common form of KGE
evaluation, called entity ranking. In Chapters 4 and 5, we propose two
alternative methods of evaluation, including a generalization of the entity
ranking protocol introduced below.

Triple classification (TC). The goal of triple classification is to test the
model’s ability to discriminate between true and false triples (Socher et al.,
2013). We define the task as follows:

Definition 2.2.3 (Triple Classification). Given a knowledge graph K ∈ E ×
R× E , triple classification is the task of predicting whether a given triple
(i, k, j) is true or false, i.e. answering the query (i, k, j)?.

To evaluate a model on this task, a held-out set of evaluation triples T
is used. Since only true triples are available in practice, |T | negative triples
are generated by randomly replacing either the subject or the object of each
evaluation triple by a randomly sampled entity (we discuss the generation
of negative examples in more detail below). All triples are then classified as
positive or negative according to the KGE scores. Model performance is then
typically assessed by classification accuracy. A triple (i, k, j) is classified as
positive if its score s(i, k, j) exceeds a relation-specific decision threshold τk
that is learned by maximizing classification accuracy on a different held-out
set of triples created with the same procedure.

Model performance on triple classification suggests that the task is gener-
ally easy, with results that can be overly optimistic and misleading (Safavi
and Koutra, 2020). This is likely because for each evaluation triple, a single

CHAPTER 2. BACKGROUND 25

negative example is created, and because uniform sampling is used to gen-
erate these negatives from a high number of possible candidates, it is more
likely that we obtain a low scored triple, rendering most classification queries
“easy”. To address this issue, Safavi and Koutra (2020) proposed a dataset
with manually labeled negatives constructed to be “hard” (we discuss the
creation of this dataset in Section 2.4). They found that triple classification
with hard negatives is indeed a relatively more difficult task. But despite
these efforts, and perhaps due to the generally optimistic results of this
evaluation, triple classification is not nearly as commonly used as the entity
ranking evaluation protocol. We thus do not consider it in the studies in this
thesis.

Entity Ranking. Most of the studies in the KGE literature have measured
KGE performance using the entity ranking evaluation protocol (Ji et al., 2021;
Wang et al., 2017), described by Algorithm 2.1. This protocol is based on
the link prediction task, as it evaluates a model’s ability to answer questions
(i, k, ?) and (?, k, j) given a held-out set of (i, k, j) evaluation triples. Specif-
ically, given query (i, k, ?), models score all triples (i, k, j′) where j′ is every
possible entity in E . The resulting |E | candidate triples are ranked based on
their score, with the expectation that the known correct answer to the query,
i.e. triple (i, k, j), would rank high on the list of candidates. This process is
performed for every evaluation triple to obtain as many rankings as there
are evaluation triples. The same approach is followed for query (?, k, j), after
which all obtained rankings for both types of queries are aggregated via
the micro-average of some metric, such as mean reciprocal rank or Hits@10,
which we formally define below.

Local-closed world assumption. The evaluation process described above
implies that there is a single correct answer to every evaluation query. While
this is true for functional relations, such as livesIn, it is not true for relations
with more than one possibly correct answer, such as livedIn. This is known
as the local-closed world assumption (LCWA) (Galárraga et al., 2013), which
in contrast to the closed world assumption (see Section 2.1), states that for
every observed triple (i, k, j), every unobserved triple (i, k, j′) is assumed
to be false. This assumption is often violated in different ways. First, and
as mentioned before, a known correct answer may be one of many correct
answers, all of which a good model should rank high. Second, unless the KG
is complete, there are unknown true triples that a model that generalized well
should be able to rank high. This assumption penalizes such a model. Finally,

26 CHAPTER 2. BACKGROUND

Algorithm 2.1: Entity Ranking (ER) Evaluation Protocol
Require: T : set of evaluation triples,

E : set of entities in knowledge graph K
Ensure: Aggregated metric mall over all evaluation triples

1 Rall ← [] // ranks of target answers

2 foreach (i, k, j) ∈ T do
// object prediction

3 No ← construct |E | − 1 candidates (i, k, j′) with every j′ ̸= j ∈ E
4 So ← Compute_Scores(No ∪ {(i, k, j)})
5 ro ← Compute_Ranks(So, j)
6 Rall ← Append(Rall, ro) // add rank of j

// subject prediction

7 Ns ← construct |E | − 1 candidates (i′, k, j) with every i′ ̸= i ∈ E
8 Ss ← Compute_Scores(Ns ∪ {(i, k, j)})
9 rs ← Compute_Ranks(Ss, i)

10 Rall ← Append(Rall, rs) // add rank of i

11 mall ← Compute_Metrics(Rall)

this process may generate triples that are known to be true, e.g. because
they are in the training, validation or test sets. This last factor is partially
addressed by the use of filtered metrics, described below. In addition, we
show in Chapter 4 that it is possible to use known schema constraints to check
whether a candidate triple is actually negative. In general, however, reliance
on LCWA may result in negative examples that are unknown positive triples,
For this reason, we often refer to such generated triples as pseudo-negatives.

Evaluation metrics. We define the evaluation metrics used throughout
this thesis, which are the two most commonly used metrics in the literature:
mean reciprocal rank (MRR) and Hits@K. Given a triple (i, k, j), denote
by rank(j|i, k) the rank of object j given subject and relation tuple (i, k),
i.e., the rank of model score s(i, k, j) among the scores of a set of pseudo-
negative triples. The set of pseudo-negatives used to compute evaluation
metrics determines whether the metrics are raw or filtered. For raw metrics,
this set is defined as {s(i, k, j′) : j′ ∈ E ∧ j′ ̸= j}, as in Algorithm 2.1. To
avoid underestimation of a model that ranks training triples higher than the
expected answer, filtered metrics further add the condition that all candidate
triples do not occur in the training, validation or test splits. We follow
common practice in the recent literature and only report filtered metrics in

CHAPTER 2. BACKGROUND 27

this thesis.

If there are ties, we take the mean rank of all triples with score s(i, k, j).
Define rank(i|k, j) likewise. Denote by Keval the set of evaluation triples.
Then

MRR =
1

2|Keval| ∑
(i,k,j)∈Keval

(
1

rank(i|k, j)
+

1
rank(j|i, k)

)
, (2.7)

Hits@K =
1

2|Keval| ∑
(i,k,j)∈Keval

(
1(rank(i|k, j) ≤ K) + 1(rank(j|i, k) ≤ K)

)
,

(2.8)

where indicator 1(C) is 1 if condition C is true, else 0.

Mean rank (MR) is another metric that is sometimes used in the literature.
It is defined as the average rank of the expected answer in all evaluation
triples. This metric has seldom been used in recent work, as its sensitivity to
outliers is what inspired the widespread use of MRR.

As part of our extensive study on link prediction performance in Chap-
ter 3, we discuss and provide empirical results about variations of the entity
ranking protocol, such as using other forms of handling ties and the impact
that using entities not seen during training has on reported metrics. In
addition, we discuss limitations of this protocol at length in Chapter 4.

2.2.7 Training

In this section, we introduce the most commonly used training method for
KGE models in the literature, including the standard approach for generating
negative examples. We discuss more details about this training method,
such as commonly used loss functions, different regularization approaches
and other related training approaches, in Chapter 3 as part of our large
comparative study on link prediction performance. In addition, we introduce
in Chapter 5 a generalization of this training method.

All methods for training KGE models require negative examples to avoid
solutions that do not generalize well (Nickel et al., 2015). However, knowledge
graphs are almost always constructed using only positive examples, i.e.
observed triples. Thus, there is a need to generate negative examples during
training. There are different types of training methods for KGE models,

28 CHAPTER 2. BACKGROUND

Algorithm 2.2: Negative Sampling Training
Require: T : set of training triples,

E : set of entities in knowledge graph K
θ: model parameters,
n: number of negatives per positive (hyperparameter)

Ensure: Updated model parameters θ
1 Tall ← T
2 foreach (i, k, j) ∈ T do

// object prediction

3 Co ← Sample(E , n) // sample n entities

4 No ← construct negatives (i, k, j′) with every j′ ∈ Co // corrupt j
// subject prediction

5 Cs ← Sample(E , n)
6 Ns ← construct negatives (i′, k, j) with every i′ ∈ Cs // corrupt i
7 Tall ← Tall ∪ No ∪ Ns

8 Sall ← Compute_Scores(Tall)
9 Lall ← Compute_Loss(Sall, Tall)

10 θ ← Update_Parameters(θ, Lall)

which mostly differ in their use of negative examples. We describe the most
common training type in the following.

Negative Sampling. The most common approach for training KGE
models is called negative sampling (NegSamp) (Bordes et al., 2013b) and it is
described by Algorithm 2.2. For every training triple (i, k, j), n negative triples
are generated by corrupting the object of that triple. That is, by replacing
it with a randomly selected entity j′ ∈ E n times to form n triples (i, k, j′).
These generated negatives are used as additional training triples. Similarly,
the subject of every training triple is corrupted n times to create n additional
negative triples. These generated triples are labeled as negatives and added to
the training set. In this type of training, the number n of negatives generated
from each training triple is a hyperparameter.

In general, an approach that relies on corrupting either the subject or
object of a given positive triple can generate at most |E | distinct negative
examples per corrupted slot. This choice of the number of distinct negative
examples that are generated for each positive triple is what partially distin-
guishes NegSamp from other training types that have been proposed to train

CHAPTER 2. BACKGROUND 29

KGE models. We discuss those in detail in Chapter 3.

Note that the standard approach for generating negatives follows the
LCWA, and consequently suffers from the same issues discussed in the
context of the entity ranking protocol in Section 2.2.6. Namely, that a training
triple may have more than one correct answer, and that this process may
produce false negatives. The former motivated the design of the KvsAll
training approach discussed in Section 3.1, while the effect of the latter can
be mildened by checking whether the generated negatives are part of a set
of known positives, e.g. the training set. This set membership operation has
a significant cost in the training process, so it is often not used in practice.
Another approach to minimizing the probability of generating false negatives
relies on using additional information, such as schema constraints, to generate
negatives that are less likely to be positives (Kotnis and Nastase, 2018). In
general, the process of generating negatives for KGE training is known to have
an impact on model performance, and thus has been the focus of previous
studies, e.g. Kotnis and Nastase (2018). We also study this to an extent in
Chapter 3, where we look at the impact on model performance that results
from the choice of different training approaches, as well the choice of n when
training with NegSamp.

Finally, note that the generation of negative examples by corrupting the
subject of a triple is related to the query (?, p, o), as we are training models
to identify correct and incorrect answers to that question. Similarly, when
corrupting the object of a triple, we train models to answer the question
(s, p, ?). Thus, the standard method for training KGE models is designed
to train a model to perform link prediction. We discuss the implications of
this in Chapters 5 and 6, where we propose a generalized form to train KGE
models on multiple tasks simultaneously, and check the impact that using
different training approaches have in downstream applications, respectively.

2.2.8 Limitations and Relevance of KGEs

KGE models are limited in many respects compared to other families of
models. In this section, we briefly discuss some of these limitations. We then
briefly argue why research into KGEs is nevertheless relevant.

Transductivity. One of the most important limitations of KGE models is
their inability to perform inductive predictions, i.e. predictions about unseen
KG components. Pure KGE models are transductive, meaning that they can

30 CHAPTER 2. BACKGROUND

only make predictions about entities and relations they have seen during
training. Whenever a KG is expanded with new entities and/or relations,
one alternative for an existing KGE model that was trained on this KG is to
be retrained on the entire graph. This is a severe limitation, as retraining a
model from scratch is especially limiting when considering that KGEs are
often intended for large-scale real-world knowledge graphs, where training
costs are significantly high (Zheng et al., 2020; Lerer et al., 2019).

Another alternative is for either the model or the training process to
incorporate a mechanism that allows for the addition of new components
of the KG to an existing model. Indeed, some extensions of KGE models
have such mechanisms. For example, Wang et al. (2021) developed a KGE
model that uses a text encoder to embed entities based on textual descriptions.
This model can thus make predictions about unseen entities given a textual
description of them. This limitation of KGEs is well-known and has been the
focus of several studies in the past, e.g. Jambor et al. (2021); Albooyeh et al.
(2020); Zhao et al. (2017); Xie et al. (2016).

Complex query answering. Pure KGE models are designed to provide
scores for given triples. Thus, they are commonly used for simple 1-hop
predictions over a graph, e.g. the link prediction task. While we show in
Chapter 5 that KGEs can be extended and trained to make a wider type of
predictions, these too are not as complex compared to other models that can
answer, e.g. conjunctive queries with missing entities (Kotnis et al., 2021).
Rule-based models can also perform predictions about complex queries, so
long as these are supported by their language bias (see Section 2.3.3).

Several studies in the past have focused on extending KGEs or using them
in combination with other models to make complex predictions over KGs.
For example, Li et al. (2022) focus on multi-hop question answering, and Jia
et al. (2021) focus on complex predictions over temporal knowledge graphs.

Training runtime. KGE models have a considerably higher training cost
compared to some types of models. For example, some rule-based models
can provide competitive results in link prediction after only training for a
few seconds (Meilicke et al., 2019) (more in Section 2.3.3). The high cost of
training KGE models, in combination with the large scale of real-world KGs,
has inspired several engineering efforts to make these costs manageable, e.g.
the works of Mohoney et al. (2021) and Lerer et al. (2019).

The high cost of training is not a problem that is exclusive to KGEs, with

CHAPTER 2. BACKGROUND 31

more recent link prediction models based on transformers (Chen et al., 2021a)
or on graph convolutional neural networks (Zhu et al., 2021) being even
more costly to train. While some of these models do provide some benefits
compared to KGE models, they also come with some disadvantages. We
discuss some of these models further in Section 2.3.1.

Interpretability. KGE models, like many models based on learning
representations, are not interpretable in the sense that in the best case, there
is no straightforward way to derive explanations for the predictions they
make. It is often the case that nothing can be said about what determines
the decisions made by a model. This is in contrast with rule-based models,
which can provide explanations for their predictions (Galárraga et al., 2013;
Meilicke et al., 2019).

A few studies in the past have focused on interpretability of KGE models,
e.g. Zhang et al. (2019a) and Xie et al. (2017), but this research area is not as
active as the ones described above, as there is less relevant work in recent
years.

Relevance of KGE models. We argue that, despite the limitations de-
scribed above, KGE models are a relevant family of models for the following
reason. KGEs are learned representations of KGs, which in turn are a form
of encoding structured data. As such, KGs have various uses both in in-
dustry and academia (see Section 2.1.3). In addition, and as discussed in
Section 2.2.4, KGEs have potential advantages over KGs, such as a reduced
cost of inference or the ability to be used as distributed representations of
knowledge in downstream applications. Thus, so long as KGs are useful,
KGEs can too be useful, as long as they are faithful representations of KGs
(an important question in this thesis).

Recently, a long line of research into language modeling (Mikolov et al.,
2013a; Devlin et al., 2019; Radford et al., 2018) has produced models referred
to as large language models (LLMs) (Touvron et al., 2023; Ouyang et al., 2022).
These models, which are based on distributed representations, have shown
strong performance on several types of tasks that require various forms of
reasoning (Wei et al., 2022). Thus, these models have challenged the intuition
that structured data is needed to encode knowledge that can be reasoned over.
We maintain that while this may be true in the long term, this is at the moment
not the case. LLMs are currently very unreliable sources of knowledge (Sun
et al., 2023). In addition, they are very expensive to train, so that incorporating
new knowledge into these models remains a significant challenge (Bubeck

32 CHAPTER 2. BACKGROUND

et al., 2023). Finally, it may be possible to combine the knowledge in KGs
by either combining them, or their distributed representations, with LLMs.
Previous works have already studied the incorporation of KGE models into
language modeling (Wang et al., 2021; He et al., 2020; Zhang et al., 2019b).

2.3 Related Models

There are other families of models that relate to KGE models because they
can perform link prediction, but either do not learn representations of the
entities and relations in a KG, or because they learn such representations but
are not designed to make use of a score function to make fact predictions. We
use some of these models as baselines in later chapters, such as rule-based
models or models based on graph neural networks, so we discuss these
two families of models in detail in Sections 2.3.3 and 2.3.4, respectively. For
reference, we discuss other related models in the following sections.

2.3.1 Link Prediction Models

Some models are designed exclusively for the link prediction task in KGs.
Such models are often more involved than pure KGE models, which results
in more costly training and/or inference times. In addition, these models
often do not provide representations of the entities or relations in a KG, at
least not in a straightforward manner.

An example of a link prediction model is the HittEr model (Chen et al.,
2021a). It is based on the transformer architecture and is designed to use
contextual representations of entities to perform link prediction. At the time
of its publication, it achieved state-of-the-art results in some link prediction
benchmarks, but it has since been shown that ComplEx achieves similar
results with larger embedding sizes and additional training objectives (Chen
et al., 2021c).

A more recent link prediction model is the NBFNet model (Zhu et al.,
2021). This model is based on graph convolutional networks (GCN) and
achieved state-of-the-art results in some benchmark datasets. However, it
does not directly learn representations of entities in a KG, so that it is unclear
how it can be used as a model that learns representations of a KG. It addition,
its training cost is much higher than that of pure KGEs, so that it is unclear

CHAPTER 2. BACKGROUND 33

to what extent it can scale to real-world KGs.

2.3.2 Feature-Based Models

In contrast to embedding models, which exploit latent features in a graph,
some models exploit observed features in the graph to either learn representa-
tions of the graph, or perform some task such as link prediction. For example,
the path-ranking algorithm or PRA (Lao and Cohen, 2010; Gardner et al.,
2014) was designed for predicting missing links in knowledge graphs from
features constructed by performing random walks on the graph. Another
example is the RDF2Vec model (Ristoski and Paulheim, 2016). It performs
random walks to extract paths from a KG, which are then embedded with
the word2vec approach (Mikolov et al., 2013a) to obtain vector representations
of entities in a KG.

While the RDF2Vec model is more closely related to KGEs in that it
provides representations that can be used in downstream applications, the
performance of such feature-based models is seldom compared with KGEs
models. An exception are rule-based models, which have been shown to
perform competitively with KGEs on link prediction (Meilicke et al., 2018,
2019). In addition, several models based on graph neural networks have
been recently developed that achieve state-of-the-art performance on link
prediction and other tasks that can also be performed with KGE models (Yu
et al., 2021a; Zhu et al., 2021). Thus, we use these two types of models as
baselines in later chapters, and introduce them in more detail in the following
sections.

2.3.3 Rule-Based Models

In this section, we introduce rule-based models in a way that describes
the models that are relevant for this thesis. For a more comprehensive
introduction, see De Raedt (2008).

We refer to rule-based models as models that learn logical rules that explic-
itly encode patterns in a knowledge graph (Lao and Cohen, 2010; Galárraga
et al., 2013; Meilicke et al., 2018, 2019). For example, given knowledge graph
K, such a model might learn the rule capitalO f (X, Y) → locatedIn(X, Y).
Thus, rule-based models learn to represent a KG as a set of logical rules. The
types of rules that a model can learn is referred to as the language bias of the

34 CHAPTER 2. BACKGROUND

model. For example, models may learn path rules of the form

p1(X, Z)← p2(X, Y1) ∧ p3(Y1, Y2) ∧ . . . ∧ pn(Yn−1, Z), (2.9)

where pi ∈ R is a (binary) predicate, X, Yi, Z are variables, p1(. . .) is the head
of the rule, and p2(. . .) ∧ . . . ∧ pn(. . .) is the body of the rule. Entities in a
KG are constants that may ground rules, resulting in new predicted triples
in the KG. For example, given the rule locatedIn(X, Y) ← capitalO f (X, Y),
the grounding X = Austin and Y = Texas would result in the prediction of
the triple locatedIn(Austin, Texas). Note that a triple always corresponds to
a grounded binary predicate.

Rules are often learned along with a confidence score that reflects, based
on the patterns observed about K during learning, how likely is a rule to
make a correct prediction. These confidence scores are used to perform link
prediction as follows. Given an incomplete query p(a, ?), we select all rules
with predicate p in the head. For each rule, we look for groundings of their
body in K where constant a replaces the corresponding variable in the body.
Each rule with a matching body then predicts a candidate for the missing
slot, which we associate with the confidence score of the rule that made
this prediction. All predictions are then ranked by their scores to produce
a final ranking of candidates, as done with KGE models. Then, the same
evaluation protocols for link prediction may be used, e.g. entity ranking (see
Section 2.2.6). In practice, the process is more involved, as a single candidate
is often predicted by more than one rule, and given that there are often
dependencies between different rules, e.g. if one rule fires, a more general
form of the same rule also fires, it is not trivial to determine how to aggregate
scores from different rules to assign a single score to each candidate.

In the following, we describe two rule-based models in more detail:
RuleN (Meilicke et al., 2018), which is used as baseline in Chapter 4, and
AnyBURL (Meilicke et al., 2019), which is used as baseline in Chapter 3.

RuleN. Proposed by Meilicke et al. (2018), RuleN was designed to be a
simple model for link prediction on knowledge graphs. When released, it
achieved competitive results on benchmark datasets.

In addition to path rules, such as those described above, RuleN learns
constant rules. Concretely, let Xi and Y refer to variables that are quantified
over E , k, pi ∈ R and let a be a constant entity. RuleN learns path rules (Pn)

CHAPTER 2. BACKGROUND 35

and constant rules (C) defined as follows:

k(X1, Xn+1)← p1(X1, X2) ∧ . . . ∧ pn(Xn, Xn+1) (Pn)

k(X, a)← ∃Y k(X, Y). (C)

The rule practicesSport(X, football)← ∃Y practicesSport(X, Y) is an example
of a type C rule that might be learned in a KG where a considerable number
of people practice football.

In the original work, the maximum allowed length n of path rules is set
to be small for simplicity and efficiency. To further reduce costs, RuleN does
not use the entire training set when searching for groundings of the body of
a rule. Instead, it samples triples during this process. For details about the
learning and application of rules, as well as confidence scores used for link
prediction, see Meilicke et al. (2018).

AnyBURL. In contrast to RuleN, AnyBURL (Meilicke et al., 2019) learns
rules in a bottom-up approach. Specifically, it samples paths from the graph
and treats them as “bottom” path rules, i.e. specific path rules that can be
generalized to represent a more commonly observed pattern in the graph.
The authors propose that any useful generalization of a path rule of length n
can be described by the following rules:

k(X, Y)← p1(X, A2) ∧ . . . ∧ pn(An, Y) (Pn)

k(c0, X)← p1(X, A2) ∧ . . . ∧ pn(An, cn+1) (AC1)

k(c0, X)← p1(X, A2) ∧ . . . ∧ pn(An, An+1), (AC2)

where ci ∈ E are constants and X, Y, Ai are variables. Thus, AnyBURL focuses
exclusively on learning path rules.

Similar to RuleN, AnyBURL learns Pn rules, but extends its language
bias by learning ACi rules, which generalize the C rules learned by RuleN
by allowing: (i) paths of increasing length and (ii) the use of predicates
in the body that are not present in the head. During training, AnyBURL
samples paths of increasing length iteratively up to a user-specified time
limit. At the time of publication, AnyBURL achieved competitive results on
benchmark datasets for link prediction, sometimes even when training for
only 10 seconds. This highlights one of the main advantages of rule-based
models over KGE models, which we discuss in the following.

Advantages over KGEs. As mentioned in Section 2.2.4, KGEs are faster

36 CHAPTER 2. BACKGROUND

than rule-based models at inference time, as seen by the runtimes reported
by Meilicke et al. (2019). However, compared to KGEs, rule-based models
have some advantages as link prediction models. First, they require a consid-
erably shorter training time, mostly due to the hyperparameter optimization
required by KGE models. In addition, rule-based models can provide expla-
nations for the predictions they make (Meilicke et al., 2019), which makes
them interpretable.

Due to the advantages of rule-based models described in this section,
and the advantages of KGE models described in Section 2.2.4, some works
have studied methods to combine the predictions of both types of models to
improve performance on link prediction. For example, Meilicke et al. (2018)
used standard ensembling approaches on the predictions of both types of
models, while Meilicke et al. (2021) proposed a heuristic to combine the
predictions of AnyBURL with those of KGE models, based on observations
about which types of models are better at which types of relations in the
graph.

In this thesis, we show in Chapter 3 that AnyBURL performs competitively
with KGE models on link prediction, sometimes after learning rules for only
a small fraction of the time it takes to train a single KGE model during
hyperparameter optimization. In addition, we show in Chapter 4 that RuleN
considerably outperforms KGE models on knowledge base completion, a task
we introduce as a more general form of link prediction. All of this makes
rule-based approaches a viable alternative to link-prediction and similar
applications on knowledge graphs.

2.3.4 Graph Convolutional Neural Networks

In Chapter 6, we conduct a large experimental study on the usability of KGE
models in node-level downstream applications, such as classification (e.g.
predicting a person’s profession) or regression (e.g. predicting a person’s age).
Since graph convolutional neural networks (GCNs) are a different family of
models aimed at addressing such tasks, we use a state-of-the-art GCN as
baseline in our experiments on downstream applications. In this section, we
briefly introduce spatial-based GCNs from the perspective of how they model
graph data. We then describe the baseline model we use in Chapter 6. For a
comprehensive introduction to graph neural networks, see Wu et al. (2020).

Graph convolutional neural networks. These models were developed

CHAPTER 2. BACKGROUND 37

as generalizations of convolutional neural networks that can be applied to
graph data. Their main purpose is to address graph-related tasks, such as
node classification, graph classification or link prediction. As such, their
applications sometimes overlap with the goal of KGE models. However,
while there are some similarities between the two families of models, there
are also some important differences in the way they model graph data to
solve a given task.

GCNs are designed to learn node (and sometimes edge) representations
by iteratively applying a function that updates the representation of each
node based on the transformed and aggregated representations of the nodes
in its 1-hop neighborhood. Specifically, let h(t)

i be the representation of node
i in iteration t. We have:

h(t)
i = U(t)

 ∑
j∈N(i)

M(t)(h(t−1)
i , h(t−1)

j)

 , (2.10)

where N(i) is the 1-hop neighborhood of node i, M(t) is a parameterized
message passing function for layer t and U(t) is a (possibly) parameterized
update function for layer (t). M is described as a message passing function
because it combines the representation of a given node with each of its
immediate neighbors. It also often includes node features xi, xj and edge
features xe

(i,j) in its computation, which we omit for brevity. The update
function U transforms the aggregated computations from function M. While
U can be a parameterized transformation, it is often used as an activation
function, e.g. ReLU. Note that the aggregation function in Equation 2.10 is the
sum, but this can be generalized to any (possibly parameterized) aggregation
function. Different choices of M, U and the aggregation function result in
different types of GCNs.

Layers that apply over all nodes in a graph, such as the one described
in Equation 2.10, can be stacked to increase the size of the neighborhood
over which information is passed from node to node. This is known as the
propagation step. Once all GCN layers have been applied, the resulting node
representations can be projected down to a desired size and used as input
features for node-level tasks, or passed to a function that aggregates them to
get a representation of the entire graph for graph-level tasks. These represen-
tations can also be used as input for KGE models to perform link prediction.
This was first tested experimentally when relational graph convolutional

38 CHAPTER 2. BACKGROUND

neural networks were proposed, which we introduce in the following.

Relational GCNs. Schlichtkrull et al. (2018) proposed a generalization of
GCNs that applied to knowledge graphs called relational graph convolutional
neural networks (R-GCNs). To this end, they proposed the use of relation-
specific message passing functions, as well as relation specific aggregation
functions. Specifically, using a sum as aggregation function, we have:

h(t)
i = U(t)

∑
k∈R

∑
j∈Nk(i)

M(t)
k (h(t−1)

i , h(t−1)
j)

 , (2.11)

where Nk(i) is the 1-hop neighborhood of all nodes connected to node i
via relation k, and Mk is the message passing function for relation k. Note
that before aggregating over all types of relations in the KG, we aggregate
the output of Mk over Nk(i). While different choices of the aggregation
function, the M function, and the U function, lead to different relational
GCNs, the authors proposed a specific instance where M(t)

k = λW (t)
k h(t−1)

j ,
with λ acting as a normalization constant set to 1/|Nk(i)|. As part of the
overall aggregation, they also included a transformation W0 applied between
h(t)

i and h(t−1)
i , i.e. between a node and its representation in the previous

layer.

In addition to R-GCNs, Schlichtkrull et al. (2018) proposed an encoder-
decoder architecture for link prediction, where any R-GCN model could act
as an encoder that learns entity representations, and any KGE score function
could act as a decoder that uses the representations provided by the encoder.
In their experiments, they combined their proposed R-GCN model with Dist-
Mult’s score function and showed that their proposed architecture provided
improved performance compared to standard DistMult. However, it has since
been shown with more rigorous experiments that using such encoders in
combinations with KGEs for link prediction provides little benefit, and that
any observed improvement comes from the additional transformations that
the encoder applies to node representations, and not from its modeling of
the structure of the graph (Zhang et al., 2022).

KE-GCN. Under the name of KE-GCN, Yu et al. (2021a) proposed a
general framework for relational GCNs that uses score functions for given
triples as part of the relation-specific message passing functions. Specifically,

CHAPTER 2. BACKGROUND 39

they proposed the following propagation function:

h(t)
i = U(t)

∑
k∈R

∑
j∈Nk(i)

W (t)
k

∂s(t−1)(j, k, i)

∂h(t−1)
i

+ W (t)
0 h(t−1)

i

 , (2.12)

where s(t−1)(i, k, j) is a score function that uses embeddings h(t−1)
i , h(t−1)

j and

r(t−1)
k . Note their use of relation embeddings. Indeed, they also propagate

information to iteratively update the relation embeddings as follows:

r(t)k = U(t)

W (t−1)
rel

 ∑
(i,j)∈N(k)

∂s(t−1)(i, k, j)

∂r(t−1)
k

+ r(t−1)
k

 , (2.13)

where N(k) is the set of entity tuples that interact with relation k and W rel is
a transformation applied exclusively to relation embeddings.

Yu et al. (2021a) showed that their framework subsumes existing GCNs,
such as CompGCN (Vashishth et al., 2020) and W-GCN (Shang et al., 2019).
For example, the model from Schlichtkrull et al. (2018) described above can
be obtained with score function s(i, k, j) = hT

i hj and rk = 0, i.e. setting all
relation embeddings to zero. In their experiments, they used KGE score
functions such as TransE’s or RotatE’s.

In Chapter 6, we compare the performance of the KE-GCN model pro-
posed by Yu et al. (2021a) with simple downstream models that take represen-
tations from pre-trained KGE models as input to perform node classification
or node regression tasks. We find that, despite extensive hyperparameter
optimization for both families of models, KGE models outperform KE-GCN
most of the time, despite the latter training directly on the downstream task.

Comparison to KGE models. There are two aspects of GCNs worth
discussing in the context of KGE models. First, GCN-based models are often
designed for specific tasks, e.g. node classification tasks (Yu et al., 2021a;
Vashishth et al., 2020), node regression tasks (Huang et al., 2021), or graph-
level tasks (Yu et al., 2021a). In contrast, while KGEs have more recently been
studied as link prediction models, they are not only motivated by, but also
used as, learned representations of KGs (El-Kishky et al., 2022; Ilyas et al.,
2022). In contrast, we are unaware of GCN-based models that are used as
pre-trained representations of KGs in downstream application scenarios.

40 CHAPTER 2. BACKGROUND

The fact that GCN-based models are not used as pre-trained representa-
tions of KGs may relate to the second important difference between KGEs
and GCNs: the cost of training. The propagation step in GCNs can be pro-
hibitively expensive with large graphs and deep networks. Thus, it is known
that, at least compared to KGE models, GCNs are much more expensive to
train (Zhang et al., 2022). Despite this cost, GCN-based models can outper-
form KGE models on some tasks. For example, the NBFNet model (Zhu et al.,
2021) outperforms KGE models in link prediction on some commonly used
benchmark datasets. In addition, this model is designed to perform inductive
predictions, which is something that pure KGEs cannot do (see Section 2.2.8).

2.4 Benchmark Datasets

In this section, we introduce the benchmark datasets used in the experiments
presented in later chapters. These have been the most commonly used
benchmarks datasets in KGE research for many years. In addition, we
briefly discuss other KGE datasets that are used in the literature for different
purposes. The statistics of all benchmark datasets introduced in this section
are described in Table 2.3.

FB15K. Introduced by Bordes et al. (2013b), FB15K is a subset of the
Freebase knowledge graph introduced in Section 2.1.4. It was constructed by
selecting the subset of entities that had at least 100 mentions in the entire KG,
and whose corresponding Wikipedia page was linked by at least one website
in Google’s web index at the time of creation. This information was available
in the Wikilinks database, which is no longer active.1 For the set of relations,
they chose those that interacted with this subset of entities, so long as they
too had at least 100 mentions in Freebase. From the resulting set of relations,
they removed those that were explicitly marked as being inverse relations of
other ones present in this set.

WN18. This dataset was created by Bordes et al. (2013a). It is a subset of
the WordNet knowledge graph introduced in Section 2.1.4. Without specified
criteria, they selected 18 relations from the WordNet KG as relations for this
dataset, and used all entities that interacted at least 15 times with this set of
relations.

FB15K-237. Toutanova and Chen (2015) developed a link prediction

1https://code.google.com/archive/p/wiki-links/downloads

https://code.google.com/archive/p/wiki-links/downloads

CHAPTER 2. BACKGROUND 41

Dataset Entities Relations Training Validation Test

FB15K 14 951 1 345 483 142 50 000 59 071
WN18 40 943 18 141 442 5 000 5 000
FB15K-237 14 505 237 272 115 17 535 20 466
WNRR 40 559 11 86 835 3 034 3 134
YAGO3-10 123 182 37 1 079 040 5 000 5 000
WIKIDATA5M 4 818 679 828 21 343 681 5 357 5 321

Table 2.3: Statistics of benchmark datasets used throughout this thesis.

model designed to exploit observed features in a KG, in contrast to the latent
features learned by KGE models. This model was based on binary features
that indicated the existence of simple patterns in the graph, such as different
relations that interacted with the same pairs of entities, or the existence
of inverse or near-inverse relations based on the entities they interacted
with. Their proposed model significantly outperformed KGE models in
their experiments, especially on the FB15K dataset (introduced above). They
found that this difference in performance was explained by the fact that
the majority of the test triples were closely related to existing triples in the
training set. Specifically, given test triple (i, k, j), they found that almost 81%
of the time, either triple (i, k′, j) or (j, k′, i) was present in the training set,
where k ̸= k′. This motivated them to create the FB15K-237 dataset (originally
called FB15KSelected).

The FB15K-237 dataset was created by first selecting the 401 most frequent
relations in the dataset and then filtering out relations that were either
duplicates or inverse of other existing relations. They determined that two
relations were the same (or inverse) if at least 97% of the entity pairs (or
inverse entity pairs) they interacted with were the same. In addition, they
removed from the validation and test splits any triple (i, k, j) if a triple (i, k′, j)
was present in the training split, where k ̸= k′. This step was done to further
increase the difficulty of the task, despite understanding that such a scenario
could be present in real-world applications.

WNRR. Dettmers et al. (2018) found that the same issues that motivated
the creation of the FB15K-237 dataset were also present in the WN18 dataset
(introduced above). They thus created the WNRR dataset (originally called
WN18RR) by applying the same procedure to WN18 that Toutanova and

42 CHAPTER 2. BACKGROUND

Chen (2015) applied to FB15K to create the FB15K-237 dataset.

YAGO3-10. Dettmers et al. (2018) introduced this dataset as a subset of
YAGO3 (Mahdisoltani et al., 2014), itself a multilingual extension of the YAGO
KG introduced in Section 2.1.4. YAGO3-10 was constructed by selecting
entities in YAGO3 that interacted with at least 10 different relations. This
resulted in a considerably larger benchmark dataset than other commonly
used ones at the time of its publication.

WIKIDATA5M. Wang et al. (2021) proposed to jointly learn a language
model and a KGE model with the purpose of producing both a more factually
accurate language model and a text-enhanced KGE model that can make
inductive predictions (see Section 2.2.8) by creating representations of unseen
entities based on their textual descriptions. To train their proposed model,
Wang et al. (2021) constructed WIKIDATA5M, a large dataset that included
textual descriptions of its entities and relations, and an additional data split
to test a KGE model’s ability to make inductive predictions. The authors
constructed this dataset based on the Wikidata knowledge graph introduced
in Section 2.1.4. Specifically, for each entity in the KG with a corresponding
Wikipedia page, they extracted the first section of its Wikipedia page as its
textual description, so long as this description was at least 5 words long.
They then obtained all relational facts from Wikidata for this entity, where a
fact was valid if it involved another entity from this set. The resulting dataset
is much larger than all other datasets introduced in this section. In this thesis,
we do not use the textual descriptions of entities provided in this dataset,
and we do not test models on inductive link prediction.

Other datasets. Some benchmark datasets used in the KGE literature are
designed for link prediction in specific domain areas. For example, with the
purpose of fostering reproducible research in biological systems, Walsh et al.
(2020) created the BioKG dataset, a KG that unifies and standardizes data
from several open biological databases.

Other datasets in the literature include additional data aside from the
commonly provided set of triples. For example, the CoDEx dataset (Safavi
and Koutra, 2020) includes additional information about its entities and
relations, such as their types, as well as textual descriptions from Wikidata
and Wikipedia. CoDEx also includes manually annotated negative triples, i.e.
true negatives, in the validation and test splits, with the goal of improving the
quality of evaluation in some tasks like triple classification (see Section 2.2.6).
The set of negatives that was manually annotated was constructed from

CHAPTER 2. BACKGROUND 43

unobserved but type-accurate triples predicted by trained KGE models given
known positive triples. Thus, they were intended to be non-trivial, e.g. type-
inconsistent, negatives. Finally, datasets like ILPC2022 introduced by Galkin
et al. (2022) were designed for inductive link prediction, i.e. performing
inference over a graph with entities unseen during training.

44 CHAPTER 2. BACKGROUND

CHAPTER

THREE

LINK PREDICTION

A vast number of different KGE models for multi-relational link prediction
have been proposed in the literature; e.g., RESCAL (Nickel et al., 2011),
TransE (Bordes et al., 2013b), DistMult (Yang et al., 2015), ComplEx (Trouillon
et al., 2016), ConvE (Dettmers et al., 2018), RotatE (Sun et al., 2019), Hit-
tEr (Chen et al., 2021a), MQuadE (Yu et al., 2021b) and many others covered
in recent surveys (Ji et al., 2021; Wang et al., 2017). As discussed in Chap-
ter 2, model architectures generally differ in the way the entity and relation
embeddings are combined to model the presence or absence of an edge in
a KG, typically represented as a subject-predicate-object triple. The types
of models include factorization models (e.g., RESCAL, DistMult, ComplEx,
TuckER), translational models (TransE, RotatE), and more advanced models
such as those based on convolutional neural networks (ConvE) or attention-
based models (HittEr). In many cases, the introduction of new models also
came with new approaches for training these models—e.g., new training
types (such as negative sampling or 1vsAll scoring), new loss functions (such
as pairwise margin ranking or binary cross entropy), new forms of regu-
larization (such as unweighted and weighted L2), or the use of reciprocal
relations (Kazemi and Poole, 2018; Lacroix et al., 2018)—and ablation studies
were not always performed. Table 3.1 shows an overview of selected models
along with some training techniques they introduced.

The diversity in model training makes it difficult to compare performance
results for various model architectures, especially when results are repro-

45

46 CHAPTER 3. LINK PREDICTION

Publication Model Loss Training Regularizer Optimizer

Nickel et al. (2011) RESCAL MSE Full L2 ALS
Bordes et al. (2013b) TransE MR NegSamp Emb. Norm. SGD
Yang et al. (2015) DistMult MR NegSamp Weighted L2 Adagrad
Trouillon et al. (2016) ComplEx BCE NegSamp Weighted L2 Adagrad
Kadlec et al. (2017) DistMult CE NegSamp Weighted L2 Adam
Dettmers et al. (2018) ConvE BCE KvsAll Dropout Adam
Lacroix et al. (2018) ComplEx CE 1vsAll Weighted L3 Adagrad

MSE = mean squared error, MR = margin ranking, BCE = binary cross entropy, CE = cross
entropy, Emb. Norm. = embedding normalization

Table 3.1: Selected KGE models and training strategies from the literature.
Entries marked in bold were introduced (or first used) in the context of KGE
in the corresponding publication.

duced from prior studies that used a different experimental setup. Model
hyperparameters are commonly tuned using grid search on a small grid
involving hand-crafted parameter ranges or settings known to “work well”
from prior studies. However, a grid suitable for one model may be subopti-
mal for another. Indeed, it has been observed that newer training strategies
can considerably improve model performance (Kadlec et al., 2017; Lacroix
et al., 2018; Salehi et al., 2018).

In this chapter, we look at the empirical study we conducted with the goal
of summarizing and quantifying the impact of different model architectures
and different training strategies on model performance on the link prediction
task (Ruffinelli et al., 2020). For this thesis, we extended this study by
including more datasets and KGE models in our experiments, as well as
extending the discussion of our results. We performed an extensive set of
experiments using popular model architectures and training strategies in a
common experimental setup. In contrast to most prior work, we considered
many training strategies as well as a large hyperparameter space, and we
performed model selection using quasi-random search (instead of grid search)
followed by Bayesian optimization. We found that this approach was able
to find good (and often superior to prior studies) model configurations with
relatively low effort.

Through this study, we found that:

CHAPTER 3. LINK PREDICTION 47

1. When trained appropriately, the performance of a particular model
architecture can by far exceed the performance observed in older studies.
For example, RESCAL (Nickel et al., 2011), which constitutes one of the
first KGE models but is rarely considered in newer work, showed very
strong performance in our study: it was competitive to or outperformed
more recent architectures such as ConvE (Dettmers et al., 2018) and
TuckER (Balazevic et al., 2019).

2. More generally, we found that the relative performance differences
between various model architectures often shrunk and sometimes even
reversed when compared to prior results. This suggests that training
strategies have a significant impact on model performance and may
account for a substantial fraction of the progress made in recent years.

3. We also found that suitable training strategies and hyperparameter
settings vary significantly across models and datasets, indicating that a
small grid search may bias results on model performance. Fortunately,
as indicated above, large hyperparameter spaces can be (and should be)
used with little additional training effort.

This study focused solely on pure KGE models, which do not exploit
auxiliary information such as textual data or logical rules (Ji et al., 2021; Wang
et al., 2017). Since many of the studies on these non-pure models did not
(and, to be fair, could not) use current training strategies and consequently
underestimated the performance of pure KGE models, their results and
conclusions need to be revisited.

As part of this study and to promote robust experimental settings in
future work by the research community, we developed and provided imple-
mentations of relevant training strategies, models, and evaluation methods
as an open source framework called LibKGE (Broscheit et al., 2020), which
emphasizes reproducibility and extensibility.

We begin this chapter by discussing the various training methods for KGE
models in Section 3.1. We present and discuss our experiments in Section 3.2.
We discuss related work in Section 3.3 and summarize our contributions in
Section 3.4.

48 CHAPTER 3. LINK PREDICTION

Algorithm 3.1: 1vsAll Training
Require: T : set of training triples,

E : set of entities in knowledge graph K
θ: model parameters

Ensure: Updated model parameters θ
1 Tall ← T
2 foreach (i, k, j) ∈ T do

// object prediction

3 No ← construct |E | − 1 negatives (i, k, j′) with every j′ ̸= j ∈ E
// subject prediction

4 Ns ← construct |E | − 1 negatives (i′, k, j) with every i′ ̸= i ∈ E
5 Tall ← Tall ∪ No ∪ Ns

6 Sall ← Compute_Scores(Tall)
7 Lall ← Compute_Loss(Sall, Tall)
8 θ ← Update_Parameters(θ, Lall)

3.1 Training Components

In Chapter 2, we discussed the general approach to training KGE models. In
this section, and as part of our study to assess their impact on performance,
we discuss some of the most important training components applied in the
literature. Many, but not all, of the methods introduced in the following, are
part of this comparative study. We describe the scope of our experiments in
detail in Section 3.2.1.

Training types. There are three commonly used approaches to train KGE
models, which differ mainly in the way negative examples are used. First, as
explained in Section 2.2.7, training with negative sampling (NegSamp) (Bor-
des et al., 2013b) means obtaining for each positive triple t = (i, k, j) from
the training data a set of (pseudo-)negative triples by randomly perturbing
the subject, relation, or object position in t (and optionally verifying that the
so-obtained triples do not exist in the KG).

An alternative approach (Lacroix et al., 2018), which we term 1vsAll, is
to omit sampling and take all triples that can be obtained by perturbing the
subject and object positions as negative examples for t (even if these tuples
exist in the KG). 1vsAll is generally more expensive than NegSamp, but it is
feasible (and even surprisingly fast in practice) if the number of entities is

CHAPTER 3. LINK PREDICTION 49

Algorithm 3.2: KvsAll Training
Require: T : set of training triples,

E : set of entities in knowledge graph K
θ: model parameters

Ensure: Updated model parameters θ
1 Tall ← ϵ // empty collection

2 foreach unique (i, k) in triples (i, k, j) ∈ T do
// object prediction

3 Op ← get all entities j′ ∈ E such that (i, k, j′) ∈ T
4 Po ← construct positive triples (i, k, j′) with every j′ ∈ Op
5 On ← get all entities j′ ∈ E such that (i, k, j′) /∈ T
6 No ← construct negative triples (i, k, j′) with every j′ ∈ On
7 Tall ← Tall ∪ Po ∪ No

8 foreach unique (k, j) in triples (i, k, j) ∈ T do
// subject prediction

9 Sp ← get all entities i′ ∈ E such that (i′, k, j) ∈ T
10 Ps ← construct positive triples (i′, k, j) with every i′ ∈ Sp
11 Sn ← get all entities i′ ∈ E such that (i′, k, j) /∈ T
12 Ns ← construct negative triples (i′, k, j) with every i′ ∈ Sn
13 Tall ← Tall ∪ Ps ∪ Ns

14 Sall ← Compute_Scores(Tall)
15 Lall ← Compute_Loss(Sall, Tall)
16 θ ← Update_Parameters(θ, Lall)

not excessively large. The 1vsAll training type is described by Algorithm 3.1.

Finally, Dettmers et al. (2018) proposed a training type that we term
KvsAll (originally called 1-N scoring by the authors), and is described by
Algorithm 3.2. This approach (i) constructs batches from non-empty rows
(i, k, ∗) or (∗, k, j) instead of from individual triples, and (ii) labels all such
triples as either positive (occurs in training data) or negative (otherwise).
This results in a training set whose size is not proportional to the number of
unique triples, but the number of unique (i, k, ∗) and (∗, k, j) tuples.

By training with either NegSamp or 1vsAll, we treat the link prediction
task as a multi-class problem, as for every triple there is a single correct
answer from a set of possible predictions (True or False for NegSamp and the
single correct entity for 1vsAll. However, by training with KvsAll we treat the
task as a multi-label problem, as there are potentially many possible correct

50 CHAPTER 3. LINK PREDICTION

answers for a given tuple (i, k, ∗) or (∗, k, j) as seen in the training set.

Loss functions. Several loss functions for training KGEs have been
introduced so far. RESCAL (Nickel et al., 2011) originally used squared error
between the score of each triple and its label (positive or negative). Thus,
the authors modeled the task as reconstructing the binary 3-way tensor that
corresponds to a given training set.

TransE (Bordes et al., 2013b) used pairwise margin ranking with hinge
loss (MR), where each pair consists of a positive triple and one of its negative
triples (only applicable to NegSamp and 1vsAll) and the margin η is a
hyperparameter. Trouillon et al. (2016) proposed to use binary cross entropy
(BCE) loss: it applies a sigmoid to the score of each (positive or negative)
triple and uses the cross entropy between the resulting probability and that
triple’s label as loss.

Finally, Kadlec et al. (2017) used cross entropy (CE) between the model
distribution (softmax distribution over scores) and the data distribution
(labels of corresponding triples, normalized to sum to 1). CE has been used
for multi-class classification (as in NegSamp and 1vsAll), but also in the
multi-label setting (KvsAll).

Mohamed et al. (2019) found that the choice of loss function can have a
significant impact on model performance, and that the best choice is data
and model dependent. Our experimental study provides additional evidence
for this finding.

Regularization. Several forms of regularization have been used when
training KGEs. The most popular form of regularization in the literature is L2
regularization on the embedding vectors, either unweighted or weighted by
the frequency of the corresponding entity or relation in the training set (Yang
et al., 2015). Lacroix et al. (2018) proposed to use L3 regularization. TransE
normalized the embeddings to unit norm after each update. ConvE used
dropout (Srivastava et al., 2014) in its hidden layers (and only in those),
and Balazevic et al. (2019) used dropout in the embedding layer. Wang et al.
(2022a) proposed the use of constraints on the embedding space to encourage
embedding similarity between semantically similar entities.

Reciprocal relations. A particular hyperparameter that is exclusive to
KGE training is the technique of reciprocal relations, introduced by Kazemi
and Poole (2018) and Lacroix et al. (2018). Observe that during evaluation
and also most training methods discussed above, the model is asked to score

CHAPTER 3. LINK PREDICTION 51

either subjects (for questions of the form (?, k, j)) or objects (for questions of
the form (i, k, ?)). The idea of reciprocal relations is to use separate scoring
functions ssub and sobj for each of these tasks, resp. Both scoring functions
share entity embeddings, but they do not share relation embeddings: each
relation thus has two embeddings. Thus, we can view such an approach as
only predicting objects, but doing so for both each original relation (k) and a
new reciprocal relation formed by switching subject and object (k−1).

The use of reciprocal relations may decrease the computational cost (as
in the case of ConvE), and it may also lead to better model performance as
in Lacroix et al. (2018) (e.g., for relations in which one direction is easier to
predict). On the downside, the use of reciprocal relations means that a model
does not provide a single triple score s(i, k, j) anymore, since in general,
ssub(i, k, j) ̸= sobj(i, k, j). While we are unfamiliar with a principled way to
handle this, some studies have explored this issue. For example, Kazemi
and Poole (2018) proposed to take the average of the two triple scores and
explored the resulting models.

Other hyperparameters. Aside from the choice of training type, loss func-
tion and the various forms of regularization, many more hyperparameters
have been used in prior work. This includes, for example, different meth-
ods to initialize model parameters, different optimizers, different optimizer
parameters such as the learning rate or batch size, the number of negative
examples for NegSamp, the regularization weights for entities and relations,
and so on. To deal with such a large search space, most prior studies favor
grid search over a small grid where most of these hyperparameters remain
fixed (Zhang et al., 2023; Chen et al., 2021b; Abboud et al., 2020; Sun et al.,
2019). However, as discussed before, this approach may lead to bias in the
results.

3.2 Experimental Study

In this section, we report on the design and results of our experimental
study. The goal of these experiments is to better assess the impact on model
performance caused by (i) model architectures and (ii) training strategies. To
that end, all models are implemented in the same codebase and are given
the same resources in terms of hyperparameter optimization, training and
evaluation.

52 CHAPTER 3. LINK PREDICTION

Dataset Entities Relations Training Validation Test

FB15K 14 951 1 345 483 142 50 000 59 071
WN18 40 943 18 141 442 5 000 5 000
FB-237 14 505 237 272 115 17 535 20 466
WNRR 40 559 11 86 835 3 034 3 134

Table 3.2: Statistics of datasets used in this study.

3.2.1 Experimental Settings

Datasets. We used FB15K (Bordes et al., 2013b), WN18 (Bordes et al., 2013b),
FB15K-237 (Toutanova and Chen, 2015) (referred to as FB-237 for brevity) and
WNRR (Dettmers et al., 2018). FB15K was extracted from the Freebase (Bol-
lacker et al., 2008) knowledge base. As described in Section 2.4, FB-237 was
constructed as a “harder” variant of FB15K by removing triples from training
that might trivialize the link prediction task. Similarly, WN18 was extracted
from WordNet (Miller, 1995) and WNRR was built as the “harder” variant
of it. We chose these datasets because (i) they are frequently used in prior
studies, (ii) some are known to be “easy”, while some are designed to be
“hard”, (iii) they are diverse in that relative model performance often differs,
and (iv) they are of reasonable size for a large study. Dataset statistics are
given in Table 3.2.

Models. We selected RESCAL (Nickel et al., 2011), TransE (Bordes
et al., 2013b), DistMult (Yang et al., 2015), ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018) and RotatE (Sun et al., 2019) for our study.
These are all well-known KGE models. We include both early and more
recent models, and chose them to have a diverse set of scoring functions in
our experiments. RESCAL, DistMult and ComplEx are three different bilinear
models, TransE and RotatE are translational and ConvE is based on convo-
lutional neural networks. As baseline, we also include AnyBURL (Meilicke
et al., 2019), a rule-based model designed for link prediction that showed
competitive performance compared to KGE models. For details about these
KGE models, see Section 2.2.5. For details about AnyBURL, see Section 2.3.3.

Evaluation. We use the entity ranking evaluation protocol and report
filtered MRR (%) and filtered Hits@10 (%) (also denoted by H@10 for brevity).
See Section 2.2.6 for details on the evaluation method and reported met-

CHAPTER 3. LINK PREDICTION 53

rics. We use test data to compare final model performance (Table 3.4) and
validation data for our more detailed analysis.

Hyperparameters. We used a large hyperparameter space to ensure
sure that suitable hyperparameters for each model are not excluded a priori.
We included all major training types (NegSamp, 1vsAll, KvsAll), use of
reciprocal relations, loss functions (MR, BCE, CE), regularization techniques
(none/L1/L2/L3, dropout), optimizers (Adam, Adagrad), and initialization
methods (4 in total) used in the KGE community as hyperparameters. We
considered three embeddings sizes (128, 256, 512) and used separate weights
for dropout/regularization for entity and relation embeddings. Table 3.3
provides a complete description of the search space available for all mod-
els. To train TransE and RotatE with BCE, we implemented an offset as a
hyperparameter that is applied to the scores produced by the model. This is
equivalent to the gamma hyperparameter in Sun et al. (2019). To the best of
our knowledge, no prior study had used such a large hyperparameter search
space.

Training. All models were trained for a maximum of 400 epochs. We
validated models using filtered MRR (on validation data) every five epochs
and performed early stopping with a patience of 50 epochs. To keep search
tractable, we stopped training on models that did not reach ≥ 5% filtered
MRR after 50 epochs; in preliminary results, such configurations did not
produce good models.

Model selection. Model selection was performed using filtered MRR on
validation data. We used the Ax framework (https://ax.dev/) to conduct
quasi-random hyperparameter search via a Sobol sequence. Quasi-random
search methods aim to distribute hyperparameter settings evenly and try
to avoid “clumping” effects (Bergstra and Bengio, 2012). More specifically,
for each dataset and model, we generated 30 different configurations per
valid combination of training type and loss function (7 combinations for each
model, 3 for TransE and RotatE which were only trained with NegSamp).
After the quasi-random hyperparameter search, we added a short Bayesian
optimization phase (best configuration so far + 20 new trials, using expected
improvement; also provided by Ax) to tune the numerical hyperparameters
further. Finally, we trained five models with the so-obtained hyperparameter
configuration and selected the best-performing model according to validation
MRR as the final model.

Reproducibility. We implemented all models, training strategies, evalua-

https://ax.dev/

54 CHAPTER 3. LINK PREDICTION

Hyperparameter Random search Bayesian optim.

Embedding size {128, 256, 512} See Tab. A.3
Training type {NegSamp,

1vsAll, KvsAll} See Tab. A.3
Reciprocal {True, False} See Tab. A.3
No. sub. samples (NegSamp) [1, 1000], log scale [1, 1000], log scale
No. obj. samples (NegSamp) [1, 1000], log scale [1, 1000], log scale
Label smoothing (KvsAll) [0.0, 0.3] [0.0, 0.3]

Loss {BCE, MR, CE} See Tab. A.3
Margin (MR) [0, 10] [0, 10]
Lp-norm (TransE) {1, 2} See Tab. A.3

Optimizer {Adam, Adagrad} See Tab. A.3
Batch size {128, 256, 512, 1024} See Tab. A.3
Learning rate [10−4, 1], log scale [10−4, 1], log scale
LR scheduler patience [0, 10] [0, 10]

Lp regularization {L1, L2, L3, None} See Tab. A.3
Entity emb. weight [10−20, 10−5] [10−20, 10−5]
Relation emb. weight [10−20, 10−5] [10−20, 10−5]
Frequency weighting {True, False} See Tab. A.3

Emb. normalization (TransE)
Entity {True, False} See Tab. A.3
Relation {True, False} See Tab. A.3

Dropout
Entity embedding [0.0, 0.5] [0.0, 0.5]
Relation embedding [0.0, 0.5] [0.0, 0.5]
Feature map (ConvE) [0.0, 0.5] [0.0, 0.5]
Projection (ConvE) [0.0, 0.5] [0.0, 0.5]

Embedding initialization {Normal, Unif,
Xavier} See Tab. A.3

Std. deviation (Normal) [10−5, 1.0] [10−5, 1.0]
Interval (Unif) [−1.0, 1.0] [−1.0, 1.0]
Gain (XvNorm) 1.0 1.0
Gain (XvUnif) 1.0 1.0

Table 3.3: Hyperparameter search space used in our study. Settings that
apply only to certain configurations are indicated in parenthesis.

CHAPTER 3. LINK PREDICTION 55

tion, and hyperparameter search in the LibKGE framework (Broscheit et al.,
2020), an framework we developed for this study and made available as open
source.1 The framework emphasizes reproducibility and extensibility and is
highly configurable. We provide all configurations used in this study as well
as the detailed data of our experiments for further analysis.2 These resources
have since been used by various studies to conduct robust experiments. The
work of Safavi and Koutra (2020) and Gema et al. (2023) are examples of such
studies.

3.2.2 Model Performance

Table 3.4 shows the filtered MRR and filtered Hits@10 on test data of various
models both from prior studies and the best models (according to filtered
validation MRR) found in our study.

First reported performance vs. our observed performance. We compared
the first reported performance on FB-237 and WNRR (“First” block of Ta-
ble 3.4) with the performance obtained in our study (“Ours” block). We
found that the performance of a single model can vary wildly across stud-
ies. For example, ComplEx was first run on FB-237 by Dettmers et al. (2018),
where it achieved a filtered MRR of 24.7%. This was a relatively low number
by the standards at the time. In our study, ComplEx achieved a competitive
MRR of 34.8%, which is a large improvement over the first reports. Studies
that report the lower performance number of ComplEx (i.e., 24.7%) thus do
not adequately capture its performance. Similar remarks hold for RESCAL
and DistMult as well as (albeit to a smaller extent) ConvE and TransE. The
exception is RotatE, which outperforms all other models in the “First” block.
This is likely because it is the most recently published model in this block,
and thus should arguably be compared with models in the “Recent” block.
To the best of our knowledge, our results for RESCAL and ConvE constitute
the best results for these models obtained at the time.

Relative model performance (our study). Next, we compared the perfor-
mance across the models used in our study (“Ours” block). We found that
the relative performance differences between model architectures often
shrunk and sometimes reversed when compared to prior results (“First”
block). For example, ConvE showed the best overall performance in prior

1https://github.com/uma-pi1/kge
2https://github.com/uma-pi1/kge-iclr20

https://github.com/uma-pi1/kge
https://github.com/uma-pi1/kge-iclr20

56 CHAPTER 3. LINK PREDICTION

FB-237 WNRR FB15K WN18
MRR H@10 MRR H@10 MRR H@10 MRR H@10

Fi
rs

t

RESCAL* 27.0 42.7 42.0 44.7 35.4 58.7 89.0 92.8
TransE† 29.4 46.5 22.6 50.1 – 47.1 – 89.2
DistMult‡ 24.1 41.9 43.0 49.0 65.4 82.4 82.2 93.6
ComplEx‡ 24.7 42.8 44.0 51.0 69.2 84.0 94.1 94.7
ConvE∥ 32.5 50.1 43.0 52.0 65.7 83.1 94.3 95.6
RotatE# 33.8 53.3 47.6 57.1 79.9 89.2 95.3 95.8

O
ur

s

RESCAL 35.6 54.1 46.7 51.7 64.4 54.4 94.8 95.6
TransE 33.0 52.0 23.3 52.3 68.2 87.0 61.5 93.5
DistMult 34.3 53.1 45.2 53.0 84.1 90.3 94.1 95.4
ComplEx 34.8 53.6 47.5 54.7 83.8 89.3 95.1 95.8
ConvE 33.9 52.1 44.2 50.4 82.5 89.6 94.7 95.3
RotatE 33.3 52.2 47.8 55.3 78.3 87.8 94.6 95.3

R
ec

en
t TuckER** 35.8 54.4 47.0 52.6 69.6 84.2 81.9 96.4

SACN†† 35.0 54.0 47.0 54.4 79.7 88.4 94.9 95.9
RotatE‡‡ 27.3 48.2 44.8 60.2 – – – –

La
rg

e DistMult§§ 35.7 54.8 45.5 54.4 84.1 91.4 91.1 96.1
ComplEx-N3∥∥ 37.0 56.0 49.0 58.0 86.0 91.0 95.0 96.0

R
ul

es

AnyBURL## 34.6 52.3 49.2 57.7 83.9 89.4 95.2 96.2

* FB15K, WN18: Nickel et al. (2016); FB-237, WNRR: Wang et al. (2019)
† FB15K, WN18: Bordes et al. (2013b); FB-237, WNRR: Nguyen et al. (2018)
‡ FB15K, WN18: Trouillon et al. (2016); FB-237, WNRR: Dettmers et al.
(2018) ∥Dettmers et al. (2018) # Sun et al. (2019) ** Balazevic et al.
(2019) †† Shang et al. (2019) ‡‡ Ali et al. (2021) §§ Salehi et al. (2018)
∥∥ Lacroix et al. (2018) ## Meilicke et al. (2019)

Table 3.4: Model performance on test data in prior studies and our study.
We report MRR and Hits@10 (H@10). First: first reported performance on
each dataset (oldest models first); Ours: performance in our study; Recent:
best performance of selected models obtained in recent studies; Large: best
performance achieved in prior studies using more expensive models (not
part of our search space). Bold numbers indicate best performance in group.
References indicate where the performance number was reported. Results for
TransE and RotatE on FB15K and WN18 were not available in prior studies.

CHAPTER 3. LINK PREDICTION 57

studies, but is consistently outperformed by RESCAL, DistMult, and Com-
plEx in our study. As another example, RESCAL (Nickel et al., 2011), which
constitutes one of the first KGE models but is rarely considered in newer
work, showed strong performance and outperformed almost all models in
three of the four datasets, being only slightly outperformed by ComplEx
and RotatE on some datasets. The exception is FB15K, where RESCAL is
considerably outperformed by all models. Since RESCAL has a considerably
higher number of parameters compared to other models, we think this is
likely due the much larger dataset, which results in RESCAL overfitting to
the training set. Taken together, these results suggest that training strategies
have a significant impact on model performance and may account for a large
fraction of the progress made throughout the years.

Relative model performance (overall). Table 3.4 additionally shows the
best performance results obtained in prior studies of selected recent models
(“Recent” block) and very large models with very good performance (“Large”
block). We found that TuckER (Balazevic et al., 2019), RotatE (Sun et al.,
2019), and SACN (Shang et al., 2019) all achieve state-of-the-art performance,
but the performance difference to the best prior models (“Ours” block) in
terms of MRR is small or even vanishes. Even for HITS@10, which we
did not consider for model selection, the advantage of more recent models is
often small, if present. The exception is the RotatE obtained by RotatE (Ali
et al., 2021), which shows impressive performance in Hits@10 on WNRR, but
is outperformed by most models in terms of MRR.

The models in the last block (“Large”) show the best performance numbers
we have seen in the literature at the time. For DistMult and ComplEx, these
numbers have been obtained using very large embedding sizes (up to 4000).
Such large models are an order of magnitude larger than the embedding
sizes available in our search space. We found that model performance is
stable, as indicated by the standard deviation of the validation MRR, which
is relatively low; see Table 3.5.

Rule-based baseline. Table 3.4 includes the performance of AnyBURL
(Meilicke et al., 2019), a rule-based model that performs on par with state-
of-the-art models on the link-prediction benchmark datasets. Compared to
KGE models, AnyBURL performs competitively on most datasets and even
outperforms all reported KGE models in MRR on WNRR. As discussed in
Section 2.3.3, this shows that rule-based approaches are a viable alternative
to link-prediction and a useful baseline to compare against. While they can

58 CHAPTER 3. LINK PREDICTION

RESCAL TransE DistMult ComplEx ConvE RotatE

FB
-2

37 MRR 36.1±0.3 33.5±0.1 35.0±0.0 35.3±0.1 34.3±0.1 34.0±0.0
Hits@10 54.3±0.5 52.3±0.2 53.5±0.1 53.9±0.2 52.4±0.2 52.6±0.1

W
N

R
R MRR 46.8±0.2 23.0±0.1 45.4±0.1 47.6±0.1 44.3±0.1 47.7±0.2

Hits@10 51.8±0.2 52.1±0.1 52.4±0.3 54.1±0.4 50.4±0.2 54.9±0.2

FB
15

K MRR – 68.2±0.1 84.0±0.1 83.8±0.2 82.1±0.2 78.2±0.2
Hits@10 – 86.8±0.1 90.2±0.0 89.2±0.0 89.3±0.1 87.6±0.2

W
N

18 MRR 94.7±0.1 60.9±0.4 93.9±0.1 95.0±0.0 94.6±0.0 94.6±0.1
Hits@10 95.4±0.1 92.9±0.2 95.1±0.1 95.5±0.1 95.3±0.1 95.1±0.2

Table 3.5: Mean and standard deviation of the validation data performance
over five runs of each model using its best hyperparameter configuration.
Most models are very stable, with low standard deviation.

have a higher runtime cost during prediction compared to embedding-based
approaches, they require a considerably shorter training time (mostly due to
the hyperparameter optimization required by KGE models), and can provide
explanations for their predictions (Meilicke et al., 2019).

Model stability. In order to check the stability of the best performing
models obtained in our study, we trained the best configurations for each
combination of model and dataset five times. We report the mean and
standard deviation of the validation MRR of these five runs in Table 3.5. We
observe that most models are very stable, with only RESCAL on FB-237
and TransE on WNRR showing relatively high standard deviation.

CHAPTER 3. LINK PREDICTION 59

Limitations. We note that all models used in our study are likely to yield
better performance when hyperparameter tuning is further improved. For
example, in preliminary tests we found a ComplEx configuration (of size
100) that achieved 49.0% MRR and 56.5% Hits@10 on WNRR, and a RESCAL
configuration that achieved 36.3% MRR and 54.6% Hits@10 on FB-237. Sun
et al. (2019) report on a TransE configuration that achieved 33.3% MRR (52.2%
Hits@10) on FB-237. Since the focus of this study is to compare models in
a common experimental setup and without manual intervention, we do not
further report on these results.

In addition, more recent models, e.g. BoxE (Abboud et al., 2020), and
newer training components, e.g. the regularization method proposed by Wang
et al. (2022a), can be considered in an extension of this study. We discuss this
further in Section 3.4.

3.2.3 Impact of Hyperparameters

Anatomy of search space. Figure 3.1 shows the distribution of filtered MRR
for each model and dataset (on validation data, Sobol configurations only).
Each distribution consists of 210 different quasi-random hyperparameter con-
figurations (except TransE, for which 90 configurations were used). Perhaps
unsurprisingly, we found that all models showed a wide dispersion on both
datasets and only very few configurations achieved state-of-the-art results.
There are, however, notable differences across datasets and models. For
example, on FB-237, the median ConvE configuration is best, whereas Com-
plEx, DistMult and ConvE have better median MRR on FB15K. Similarly, on
WNRR and WN18, DistMult and Complex have a much higher median MRR.
Generally, the impact of the hyperparameter choice is more pronounced on
WNRR and WN18 (higher variance) than on FB-237 and FB15K.

Best configurations (quasi-random search). The hyperparameters of
the best performing models during our quasi-random search are reported
in Table 3.6 for selected models and hyperparameters. For all models and
hyperparameters, see Tables A.3 to A.6 in Appendix A. We found that the
optimum choice of hyperparameters is often model and dataset depen-
dent: with the exception of the loss function (discussed below), almost no
hyperparameter setting was consistent across datasets and models. For
example, the NegSamp training type was frequently selected on FB-237 and
FB15K, but not on WNRR or WN18, where the most frequent choices where

60 CHAPTER 3. LINK PREDICTION

0

10

20

30

40

Va
lid

at
io

n
M

RR

FB-237 WNRR

RESCAL
TransE

DistMult
ComplEx

ConvE
RotatE

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB15K

RESCAL
TransE

DistMult
ComplEx

ConvE
RotatE

WN18

Figure 3.1: Distribution of filtered MRR (%) on validation data over the
quasi-random hyperparameter configurations explored in our study.

KvsAll and 1vsAll, respectively. These findings provide further evidence
that grid search on a small search space is not suitable to compare model
performance because the result may be heavily influenced by the specific
grid points being used. Moreover, the budget that we used for quasi-random
search was comparable to a grid search over a small (or at least not very
large) grid: we tested merely 30 different model configurations for every
combination of training type and loss function. It is therefore both feasible
and beneficial to work with a large search space.

Best configurations (Bayesian optimization). We already obtained good
configurations solely from quasi-random search. After Bayesian optimization

CHAPTER 3. LINK PREDICTION 61

RESCAL TransE DistMult ComplEx

FB
-2

37

Valid MRR 36.1 33.5 35.0 35.3
Emb. size 128 (-0.5) 512 (-2.8) 256 (-0.2) 256 (-0.3)
Batch size 512 (-0.5) 128 (-2.8) 1024 (-0.2) 1024 (-0.3)
Train type 1vsAll (-0.8) NegSamp – NegSamp (-0.2) NegSamp (-0.3)
Loss CE (-0.9) CE (-2.8) CE (-3.1) CE (-3.8)
Optimizer Adam (-0.5) Adagr. (-2.8) Adagr. (-0.2) Adagr. (-0.5)
Initializer Norm. (-0.8) XvNorm (-2.8) Unif. (-0.2) Unif. (-0.5)
Reciprocal No (-0.5) Yes (-3.0) Yes (-0.3) Yes (-0.3)

W
N

R
R

Valid MRR 46.8 23.0 45.4 47.6
Emb. size 128 (-1.0) 512 (-0.9) 512 (-1.1) 128 (-1.0)
Batch size 128 (-1.0) 128 (-0.9) 1024 (-1.1) 512 (-1.0)
Train type KvsAll (-1.0) NegSamp – KvsAll (-1.1) 1vsAll (-1.0)
Loss CE (-2.0) CE (-3.4) CE (-2.4) CE (-3.5)
Optimizer Adam (-1.2) Adagr. (-2.6) Adagr. (-1.5) Adagr. (-1.5)
Initializer Unif. (-1.0) XvNorm (-2.1) Unif. (-1.3) Unif. (-1.5)
Reciprocal Yes (-1.0) Yes (-2.1) Yes (-1.1) No (-1.0)

FB
15

K

Valid MRR – – 68.2 84.0 83.8
Emb. size – – 512 (-18.1) 512 (-1.2) 256 (0.0)
Batch size – – 256 (-15.4) 1024 (-1.2) 256 (0.0)
Train type – – NegSamp – 1vsAll (-5.9) 1vsAll (-7.2)
Loss – – BCE (-15.4) CE (-3.1) CE (-1.7)
Optimizer – – Adagr. (-23.3) Adam (-1.2) Adagr. (0.0)
Initializer – – Norm. (-15.4)XvNorm (-1.2) XvUnif (0.0)
Reciprocal – – Yes (-18.1) Yes (-1.2) No (0.0)

W
N

18

Valid MRR 94.7 60.9 93.9 95.0
Emb. size 256 (-0.3) 256 (-1.4) 512 (0.1) 512 (-0.1)
Batch size 256 (-0.3) 512 (-1.4) 128 (0.1) 1024 (-0.1)
Train type 1vsAll (-0.3) NegSamp – 1vsAll (-4.4) KvsAll (-0.1)
Loss CE (-1.5) CE (-8.0) CE (-9.8) CE (-0.5)
Optimizer Adagr. (-0.3) Adagr. (-1.4) Adagr. (-1.1) Adagr. (-0.2)
Initializer XvUnif (-0.3) XvNorm (-2.1) Norm. (-0.4) Unif. (-0.1)
Reciprocal Yes (-0.3) Yes (-1.4) Yes (-9.8) Yes (-0.1)

Table 3.6: Hyperparameters of best performing models after quasi-random
hyperparameter search and Bayesian optimization w.r.t. filtered MRR on
validation data. For each hyperparameter, we also give the reduction in
filtered MRR for the best configuration that does not use this value of the
hyperparameter (in parenthesis).

62 CHAPTER 3. LINK PREDICTION

(which we used to tune the numerical hyperparameters), the performance
on test data almost always improved only marginally. The notable excep-
tion was TransE on FB15K, for which Bayesian optimization provided an
improvement of about 10%. The best hyperparameters after the Bayesian
optimization phase are reported in Appendix A.

Impact of specific hyperparameters. It is difficult to assess the impact
of each hyperparameter individually. As a proxy for the importance of
each hyperparameter setting, we report in Table 3.6 the best performance
of some models in terms of filtered MRR on validation data for a different
choice of value for each hyperparameter (difference in parenthesis). We
report results for all models and all hyperparameters in Appendix A. For
example, the best configuration during quasi-random search for RESCAL
on FB-237 did not use reciprocal relations. The best configuration that
did use reciprocal relations had an MRR that was 0.5 points lower (35.6
instead of 36.1). This does not mean that the gap is explained by the use
of the reciprocal relations alone, as other hyperparameters may also be
different, but it does show the best performance we obtained when enforcing
reciprocal relations. We can see that most hyperparameters appear to have
moderate impact on model performance: many hyperparameter settings
did not produce a significant performance improvement that others did
not also produce. A clear exception here is the use of the loss function,
which is consistent across models and datasets (always CE), partly with large
performance improvements over alternative loss functions. The training type
shows a similar impact but to a lesser degree, since this is only observed on
some models on FB15K and WN18. The larger performance gaps observed
in DistMult and TransE are due to a combination of outlier models and
considerable improvement after Bayesian optimization.

Impact of loss function. In order to further explore the impact of the
loss function, we show in Figure 3.2 the distribution of the filtered MRR
on validation data for every (valid) combination of training type and loss
function. We found that the use of CE (the three rightmost bars) generally
led to better configurations than using other losses. This is surprising (and
somewhat unsatisfying) in that we use the CE loss, which is a multi-class
loss, for a multi-label task. However, similar observations have been made
for computer vision tasks (Joulin et al., 2016; Mahajan et al., 2018). Note that
the combination of KvsAll with CE (on the very right in figure) has not been
explored previously.

CHAPTER 3. LINK PREDICTION 63

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0

10

20

30

Va
lid

at
io

n
M

RR

RESCAL TransE DistMult ComplEx ConvE RotatE
FB15K-237

0

20

40

Va
lid

at
io

n
M

RR

WNRR

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB15K

0

25

50

75

Va
lid

at
io

n
M

RR

WN18

NegSamp+MR NegSamp+BCE 1vsAll+BCE KvsAll+BCE NegSamp+CE 1vsAll+CE KvsAll+CE

Figure 3.2: Distribution of filtered MRR (%) on validation data over the
quasi-random hyperparameter configurations for different training type and
loss functions. Use of the CE loss generally leads to better hyperparameter
configurations.

64 CHAPTER 3. LINK PREDICTION

20

25

30

35

40

45

50

Va
lid

at
io

n
M

RR

FB-237 WNRR

RESCAL
TransE
DistMult
ComplEx
ConvE
RotatE

100 200 300 400
Epoch

20

40

60

80

99

Va
lid

at
io

n
M

RR

FB15K

100 200 300 400
Epoch

WN18

Figure 3.3: Best filtered MRR (%) on validation data achieved during quasi-
random search as a function of the number of training epochs. Changes in
the corresponding “best-so-far” hyperparameter configuration are marked
with a dot. The best choice for hyperparameter configuration was clear in
less than 200 epochs, most of the time.

Model Selection. We briefly summarize the behavior of various models
during model selection. Figure 3.3 shows the best validation MRR (over all
quasi-random hyperparameter configurations) achieved by each model when
trained for the specified number of epochs. The corresponding hyperparame-
ter configuration may change as models were trained longer; in the figure, we
marked such changes with a dot. We found that a suitable hyperparameter
configuration as well as a good model can be found using significantly less
than the 400 epochs used in our study (less than 200 in almost every case).
Nevertheless, longer training did help in many settings and some models
may benefit when trained for even more than 400 epochs.

CHAPTER 3. LINK PREDICTION 65

FB-237 WNRR
MRR Hits@10 MRR Hits@10

RESCAL 35.6 54.1 46.7 51.7
RESCAL w/o unseen 35.6 54.1 49.9 55.2

TransE 31.3 49.7 22.8 52.0
TransE w/o unseen 31.3 49.8 24.4 55.7

DistMult 34.3 53.1 45.2 53.0
DistMult w/o unseen 34.3 53.2 48.3 56.6

Complex 34.8 53.6 47.5 54.7
Complex w/o unseen 34.8 53.6 50.9 58.7

ConvE 33.9 52.1 44.2 50.4
ConvE w/o unseen 33.9 52.1 47.3 53.8

Table 3.7: Comparison of model performance metrics when filtering out
evaluation triples that contain entities not included in the training set (w/o
unseen).

3.2.4 Impact of Variations in Evaluation

Our results in the previous sections show that KGE models are sensitive to,
and can thus perform wildly differently, with different training and hyperpa-
rameter optimization settings. In the following, we discuss a few choices in
the entity ranking evaluation protocol that can also make a significant differ-
ence in model performance, and should therefore taken into consideration
when designing experiments and when comparing results across different
publications.

Evaluating unseen entities. One issue follows the fact that some datasets
have validation or test triples with entities that are not included in the training
split, which we refer to as unseen entities. Some studies include these triples as
part of the evaluation, since they are part of benchmark datasets. Others filter
these triples out, and do not include the corresponding unseen entities as
candidates in the ranking step. To measure the effect of this type of filtering,
we evaluated some of our best models using both types of evaluations and
report these results in Table 3.7. We observe that while this type of filtering
has almost no effect on FB-237, it has a considerable effect on WNRR. This

66 CHAPTER 3. LINK PREDICTION

MRR MRR fwt Hits@10 Hits@10 fwt

FB
-2

37 ComplEx 31.0 35.1 50.0 53.8
ComplEx fwt 31.0 35.2 50.5 54.1

W
N

R
R ComplEx 45.9 46.9 52.3 52.5

ComplEx fwt 46.0 47.1 52.9 53.2

Table 3.8: Comparison of performance metrics on validation data both
without as well as with filtering with test data (fwt) of models selected
with (ComplEx fwt) and without (ComplEx) using filtering with test data for
model selection.

is due to the proportion of such triples in both datasets: about 0.1% and 10%
of the test set, respectively. FB15K and WN18 contain no such triples.

Handling score ties. Another issue that can cause a considerable impact
in KGE evaluation is the way ranking ties are handled during evaluation.
As explained in Section 2.2.6, models rank candidates for a given evaluation
query based on their scores. Depending on the model, it is more or less
likely that two or more candidates get the same score and thus are ranked
on the same position. Sun et al. (2020) studied the effect of using different
tie-handling policies, and report that using the top rank of a set of tied
candidates can lead to serious overestimation of model performance and
might introduce a bias for models to score candidates equally.

Recent frameworks, such as PyKEEN (Ali et al., 2021) and our own
LibKGE (Broscheit et al., 2020) offer three different tie handling policies:
top which selects the top rank in a set of tied candidates, bottom which
selects the bottom rank, and average which selects the average rank in the
set. In this work, we reported model performance using the average tie-
handling policy, which has since become common practice. However, we
evaluated our best models with all three tie-handling policies, and all results
are identical, except for a few models showing differences after the fourth
decimal at times.

CHAPTER 3. LINK PREDICTION 67

Model A Model B

1st ranked prediction Unknown triple Validation triple
2nd ranked prediction Validation triple Test triple
3rd ranked prediction Unknown triple Test triple
4th ranked prediction Unknown triple Validation triple
5th ranked prediction Unknown triple Validation triple

Table 3.9: Example to illustrate the problem of filtering predictions with test
data. Blue indicates correct predictions according to metrics on validation data.
Red indicates incorrect predictions. If we select between two models using
Hits@3 without filtering predicted test triples, both models have the same
performance. But if we filter out predicted test triples, Model B performs
better, so we promote the model based on its performance of test data.

Filtering with test data. It is common practice in the literature to filter
out known test data triples when computing evaluation metrics on validation
data (see filtered metrics in Section 2.2.6). In this thesis we follow this practice
for the purpose of comparison to other works in the literature. However,
we suggest that the use of test data be exclusive to the evaluation of models
on unseen data. Excluding test set triples from the set of filtering triples
during evaluation should have almost no impact in model performance or
in model selection. To assess the impact of this practice, Table 3.8 shows the
performance on validation data of ComplEx when selected with and without
filtering with test data. In our tests, the selected models were always the
same, and we can see that the performance difference is minimal.

To illustrate why using test data to filter results is potentially problematic,
Table 3.9 shows an example of two models and their top 5 predictions on
validation data. Blue indicates correct predictions according to metrics on
validation data. Red indicates incorrect predictions. Say we use Hits@3 to
select the best performing model. Without filtering out known test triples,
both models perform the same, they make one correct prediction in the top 3
ranked predictions according to known validation data. However, if we filter
out test triples, which are correct predictions but treated as incorrect when
evaluating on validation data, Model B improves performance. Thus, when
filtering out test triples, we would select Model B as the best model, partly
based on its performance on test data.

68 CHAPTER 3. LINK PREDICTION

3.3 Related Work

Our study complemented and expanded on the results of Kotnis and Nas-
tase (2018), who focused on negative sampling, and Mohamed et al. (2019),
who focused on loss functions. Since the publication of this study and its
conclusions, similar studies have been motivated by our work, e.g. Ali et al.
(2021), and conducted an even larger comparative study using the same im-
plementation and experimental settings across models. The included a larger
set of models and training settings than in our study. There are, however,
other comparative studies, e.g. Rossi et al. (2021), which look at model per-
formance across different publications, each with different implementations
and experimental settings. Based on the results presented in this chapter,
we must assume that the observations drawn from such studies may change
when all models are given the same training resources.

In addition to studies that focus on KGE models, similar studies have
been conducted in other areas, including language modeling (Melis et al.,
2017), generative adversarial networks (Lucic et al., 2018), or sequence tag-
ging (Reimers and Gurevych, 2017).

3.4 Summary

In this chapter, we focused on link prediction, the most commonly used
task for training and evaluating KGE models. We reported the results of an
extensive experimental study with popular KGE model architectures and
training strategies across a wide range of hyperparameter settings. We found
that when trained appropriately, the relative performance differences between
various model architectures often shrunk and sometimes even reversed when
compared to prior results. This suggests that training and hyperparameter
optimization strategies can have a significant impact on model performance
and may account for a substantial fraction of the progress reported in KGE
model performance.

Based on our results, and to enable an insightful model comparison, we
recommend that new studies: (i) compare models in a common experimental
setup using a sufficiently large hyperparameter search space, and (ii) if
necessary to compare results with other publications, use the best known
performance of each model rather than the first reported one. Our study

CHAPTER 3. LINK PREDICTION 69

shows that such an approach is possible with reasonable computational cost,
and we provide our implementation as part of the LibKGE framework to
facilitate such model comparison. Indeed, as mentioned before, some studies
have followed this recommendation by conducting their experiments using
LibKGE, e.g. Safavi and Koutra (2020) and Gema et al. (2023). Moreover,
we believe that many of the more advanced architectures and techniques
proposed in the literature need to be revisited to reassess their individual
benefits.

In the next chapters, we look at some limitations in the link prediction
approach commonly used in the literature both with respect to KGE models’
ability to capture graph properties and their use in downstream applications.

70 CHAPTER 3. LINK PREDICTION

CHAPTER

FOUR

KNOWLEDGE BASE COMPLETION

The most often cited motivation for developing KGE models is to predict
missing links in an incomplete knowledge graph, e.g. Yu et al. (2021b); Abboud
et al. (2020); Sun et al. (2019); Trouillon et al. (2016). In practice, this has
almost always been done by evaluating model performance on the link
prediction (LP) task, which is most commonly evaluated with the entity
ranking (ER) protocol. As described in Section 2.2.6, this evaluation protocol
takes as input a set of previously unobserved evaluation triples (typically
from the validation or test splits), such as (Einstein, bornIn, Ulm), and uses
the embedding model to rank all possible answers to the questions (Einstein,
bornIn, ?) and (?, bornIn, Ulm). Model performance is then assessed based
on the rank of the answer present in the evaluation triple (Einstein and Ulm,
respectively). Since each question in ER is constructed from an existing
evaluation triple, the protocol ensures that questions are syntactically accurate,
i.e. they respect schema constraints (see Section 2.1.1), and always have a
correct answer.

In this chapter, we argue that the link prediction task, and by extension the
ER protocol that is most commonly used to evaluate it, is not well suited for
the goal of adding missing links to an incomplete KG. To illustrate our point,
we propose the task of knowledge base completion (KBC),1 a generalization of
the LP task that we define as follows:

1The terms link prediction and knowledge base completion are often used interchangeably
in the literature. We define them as different tasks in this thesis.

71

72 CHAPTER 4. KNOWLEDGE BASE COMPLETION

Definition 4.0.1 (Knowledge Base Completion). Given a knowledge graph
K ∈ E ×R× E and relation k ∈ R, knowledge base completion is the task of
inferring true missing facts about relation k, i.e. answering the query (?, k, ?).

In other words, given relation bornIn, models should answer the question
(?, bornIn, ?) with facts such as (Einstein, bornIn, Ulm). This task is different
from LP since no information about potential missing triples is provided
upfront. It thus requires that a model be able to more generally make
predictions about the entire KG, which as we illustrate below, is arguably a
more suitable task for the incompleteness problem that motivates KGEs in
the first place.

Throughout this chapter, we ground our arguments on the ER evaluation
protocol as a proxy for the LP task, and argue that the ER protocol is not
well-suited to assess model performance for KBC. To see this, observe that
models that assign high confidence scores to syntactically inaccurate triples
such as (Ulm, bornIn, Einstein) are not penalized by the ER protocol because
the corresponding questions, e.g., (Ulm, bornIn, ?), are never asked. Thus a
model that performs well on ER may still not perform well on KBC. Such
a model may still make incorrect predictions about a large number of link
prediction queries. This is because, unlike LP where the focus is on answering
meaningful questions, KBC has different goals: (1) to add missing true
triples to the knowledge base and (2) to avoid adding false triples. The
first point relates to recall, while the second relates to precision. A model
that performs well under ER may have low precision on KBC, because it
may assign high scores to a large number of false triples (e.g., nonsensical
triples), despite its good performance on ER. If we used such an LP model
for adding missing facts to a KB using the high-scoring triples, we would
add these false triples and deteriorate precision. This is undesirable, since
many KGs are constructed to be highly precise—e.g. YAGO has a precision
of 95% (Suchanek et al., 2007)—and a drop in precision would not only
be an inaccurate representation of the KG, it would also negatively affect
downstream applications. Thus, models that assign high scores to false
triples should be penalized. We expand on this discussion in Section 4.1, by
showing concretely why some commonly used KGE models are inherently
not well-suited for KBC, and thus not recommended for adding missing links
in a KG.

To assess model performance on the KBC task, we propose the entity-pair
ranking (PR) evaluation protocol. Given a relation such as bornIn, PR uses

CHAPTER 4. KNOWLEDGE BASE COMPLETION 73

the KGE model to rank all possible answers—i.e., all entity pairs—to the
question (?, bornIn, ?), and subsequently assess model performance based
on the rank of the evaluation triples for relation bornIn in the answer. The
protocol ensures that a model’s performance is negatively affected if the
model assigns high scores to false triples such as (Ulm, bornIn, Einstein).

We conducted an experimental study presented in Section 4.3 on com-
monly used benchmark datasets under the ER and the PR protocols. We
found that:

1. The performance of popular embedding models was often good under
the ER but unsatisfactory under the PR protocol, even on “simple”
datasets that are generally considered to be too easy for LP.

2. A simple rule-based model often provided superior performance for PR,
suggesting that it would be a more suitable choice for adding missing
facts to an incomplete KG.

3. To see whether the lower performance of embedding models was mostly
due to the nonsensical, i.e. syntactically inaccurate, triples considered in
PR, we applied the background knowledge of domain-range constraints
to filter out many of these clearly nonsensical triples. We found that
model performance on KBC indeed suffers because models make many
syntactically inaccurate predictions, but that their performance is still
unsatisfactory even after removing these triples during evaluation. This
suggests that models also make a considerable number of semantically
inaccurate predictions, i.e. predictions do not reflect real-world facts
(see Section 2.1.1).

Overall, our findings suggest that evaluating performance on the LP task is
limited in that it does not reflect a model’s ability to generally predict missing
links in a KG, and that more research is needed into embedding models as
well as their training strategies for the more general task of knowledge base
completion.

This chapter is organized as follows. We briefly review the ER evaluation
protocols for KGE models and discuss its limitations in Section 4.1. We
introduce our proposed Entity-Pair Ranking evaluation protocol for the
KBC task in Section 4.2. We describe our experimental study and discuss
our results in Section 4.3. We discuss related work in Section 4.4, and we
summarize our findings in Section 4.5.

74 CHAPTER 4. KNOWLEDGE BASE COMPLETION

4.1 Predicting Missing Links

In this section, we first review the entity ranking (ER) evaluation protocol
for LP (for details, see Section 2.2.6). We then argue that this protocol is not
well-suited for assessing KBC performance, because it focuses on a small
subset of all possible facts for a given relation, and thus does not reflect a
model’s ability to represent an entire KG. We then introduce the entity-pair
ranking (PR) protocol in Section 4.2 and discuss its advantages and potential
shortcomings. We assume throughout that only true but no false triples are
available (as is commonly the case), and that the available true triples are
divided into training, validation, and test triples.

Entity ranking (ER). ER assesses model performance by testing its ability
to perform LP. In particular, for each evaluation triple t = (i, k, j), two
questions qs = (?, k, j) and qo = (i, k, ?) are generated. For question qs, all
entities i′ ∈ E are ranked based on the score s(i′, k, j). To avoid misleading
results, entities i′ ̸= i that correspond to observed triples in the dataset—
i.e., (i′, k, j) occurs in the training/validation/test triples—are discarded to
obtain a filtered ranking. The same process is applied for question qo. Model
performance is evaluated based on the recorded positions of the evaluation
triples in the filtered ranking. Models that tend to rank evaluation triples
(known to be true) higher than unknown triples (assumed to be false) are thus
considered superior. Usually, the micro-average of filtered Hits@K—i.e., the
proportion of evaluation triples ranking in the top-K—and filtered MRR—i.e.,
the mean reciprocal rank of the evaluation triples—are used to assess model
performance.

Discussion. To better illustrate why ER, and thus the LP task it is
based on, can lead to a misleading assessment of a model’s KBC perfor-
mance, consider the DistMult model and the asymmetric relation nomi-
natedFor. As described in Section 2.2.5, DistMult models all relations as
symmetric, i.e. s(i, k, j) = s(j, k, i) for any given triple (i, k, j). Now con-
sider triple t = (H. Simon, nominatedFor, Nobel Prize), and let us suppose that
the model correctly assigns t a high score s(t). Then the inverse triple
t′ = (Nobel Prize, nominatedFor, H. Simon) will also obtain a high score since
s(t′) = s(t). Thus the score produced by DistMult does not discriminate
between the true triple t and the false triple t′. In ER, however, questions
about t′ are never asked; there is no evaluation triple for this relation con-
taining either Nobel Prize as subject or H. Simon as object. The symmetry

CHAPTER 4. KNOWLEDGE BASE COMPLETION 75

of DistMult’s predictions thus barely affects its performance under the ER
protocol.

For another example, consider TransE and the relation k = marriedTo,
which is symmetric but not reflexive. One can show that for all (i, k, j), the
TransE scores satisfy

s(i, k, j) + s(j, k, i) = −∥ei + rk − ej∥ − ∥ej + rk − ei∥
≤ −∥ei + 0− ej∥ − ∥ej + 0− ei∥.

For symmetric relations, TransE should aim at assigning high scores to both
(i, k, j) and (j, k, i). To do so, TransE has the tendency to push the relation
embedding rk towards 0 as well as ei and ej towards each other. But when
rk ≈ 0, then s(i, k, i) is high for all i, so that the relation is treated as if it
were reflexive. We show empirical evidence for this in Section 4.3.2. Again,
in ER, this property only slightly influences the results: there is only one
“reflexive” tuple in each filtered entity list so that the correct answer i for
question (?, k, j) ranks at most one position lower.

More expressive models such as RESCAL or ComplEx do not have such
inherent limitations. Nevertheless, our experimental study shows that these
models also tend to assign high scores to false triples.

4.2 Entity-Pair Ranking Protocol

We propose an alternative evaluation protocol called entity-pair ranking (PR),
described by Algorithm 4.1. The protocol is designed to be a more suitable
method to assess a model’s performance on the KGC task, although it does
come with challenges, which we discuss below. PR proceeds as follows: for
each relation k, we use the KGE model to rank all triples for a specified
relation k, i.e., to rank all answers to question (?, k, ?). As in ER, we filter out
all triples that occur in the training and validation data to obtain a filtered
ranking, i.e., to only rank triples that were not used during model training. If
a model tends to assign a high score to negative triples, its performance is
likely to be negatively affected because it becomes harder for true triples to
rank high. Figure 4.1 shows the contrast between the number of candidate
triples considered for PR and those considered for ER.

Note that the number of candidate answers considered by PR is much

76 CHAPTER 4. KNOWLEDGE BASE COMPLETION

Algorithm 4.1: Entity-Pair Ranking (PR) Evaluation Protocol
Require: T : set of evaluation triples,

E : set of entities in knowledge graph K
Ensure: Aggregated metrics mall of all evaluation triples

1 mall ← 0
2 foreach unique k in triples (i, k, j) ∈ T do
3 C ← |E × E| candidates (i′, k, j′) with every (i′, j′) ∈ E × E
4 S← Scores(C)
5 L← label known positives in C, remaining candidates negative
6 R← Ranks(S, L) // compute ranks of known positives

7 m← Compute_Metric(R)
8 w←Weight(k) // compute weight of k
9 mall ← mall + wm

larger than those considered by ER. Consider a relation k and let Tk be the
set of evaluation triples for relation k. Then ER considers 2|Tk| |E | candidates
in total during evaluation, while PR considers |E |2 candidates. Moreover, PR
considers all evaluation triples in Tk simultaneously instead of sequentially.
For this reason, we do not rely on the MRR metric commonly used in ER.
Instead, we assess model performance using weighted MAP@K—i.e., the
weighted mean average precision in the top-K filtered results—and weighted
Hits@K—i.e., the weighted percentage of evaluation triples in the top-K
filtered results. We weight the influence of relation k proportionally to its
number of evaluation triples (capped at K), thereby closely following ER:

MAP@K = ∑
k∈R

APk@K× min(K, |Tk|)
∑

k′∈R
min(K, |Tk′ |)

Hits@K = ∑
k∈R

Hitsk@K× min(K, |Tk|)
∑

k′∈R
min(K, |Tk′ |)

.

Here APk@K is the average precision of the top-K list (w.r.t. evaluation triples
Tk) and Hitsk@K refers to the fraction of evaluation triples in the top-K list.
Note that K should be chosen much larger for PR than for ER since it roughly
corresponds to the number of triples we aim to predict for relation k.

The PR protocol is more suited to evaluate KBC performance because
it considers all model predictions. However, the protocol also has some

CHAPTER 4. KNOWLEDGE BASE COMPLETION 77

k11 k1j k1n
...

.
...

.
...

ki1 kij kin
...

.
...

.
...

...
.

...
.

...
...

.
...

.
...

kn1 knj knn

(a) Entity Ranking

k11 k1j k1n
...

.
...

.
...

ki1 kij kin
...

.
...

.
...

...
.

...
.

...
...

.
...

.
...

kn1 knj knn

(b) Entity-Pair Ranking

Figure 4.1: Candidate entities considered by different evaluation protocols
for a given query involving relation k. Green cells are target entities, blue
cells are candidate entities, gray cells are filtered out (observed) entities. (a)
Entity Ranking (ER): given query (ki1, k, ?), ER considers all candidates in the
same column and row as target entity kij. (b) Entity-Pair Ranking (PR): given
query (?, k, ?), PR considers all possible candidate triples for relation k.

disadvantages. First, as ER, the PR protocol may underestimate model
performance due to unobserved true triples ranked high by the model. Since
a larger number of candidates is considered, PR may be more sensitive
to this problem than ER. We explore the effect of underestimation in our
empirical study in Sec. 4.3.3. Another concern with PR is its potentially high
computational cost. For current benchmark datasets, we found that the PR
evaluation is feasible. Generally, one may argue that an embedding model is
suitable for KBC only if it is feasible to determine high-scoring triples in a
sufficiently efficient way. Since PR only requires the computation of the top-K
predictions, performance can potentially be improved using techniques such
as maximum inner-product search (Shrivastava and Li, 2014). In practice, we
found that PR is 3–4 times more expensive than ER, but with GPU-ready
implementation, PR costs up to a few minutes in the worst case.

78 CHAPTER 4. KNOWLEDGE BASE COMPLETION

Dataset Entities Relations Training Validation Test

FB15K 14 951 1 345 483 142 50 000 59 071
WN18 40 943 18 141 442 5 000 5 000
FB-237 14 505 237 272 115 17 535 20 466
WNRR 40 559 11 86 835 3 034 3 134

Table 4.1: Statistics of datasets used in this study.

4.3 Experimental Study

We conducted an experimental study with the goal of assessing the perfor-
mance of various KGE models for KBC. As part of our study, we investigated
the extent to which PR underestimates model performance due to unobserved
true triples, and the impact that filtering out syntactically inaccurate predic-
tions have on model performance. This experimental study was done prior
to the work presented in Chapter 3. Thus, some experimental settings do not
follow the guidelines proposed in that study, and the resulting performance
in link prediction is below what is reported in Section 3.2.2. However, the
results in this study are still relevant, as we show in Section 4.3.4 where we
reproduce some of these results using the experimental settings from our
study in Section 3.2.

4.3.1 Experimental Settings

Datasets. We used four common KBC benchmark datasets: FB15K, WN18,
FB15K-237 (referred to as FB-237 for brevity), and WNRR. The first two are
subsets of WordNet and Freebase, respectively (Bordes et al., 2013b), and it
is known that the regularities in the datasets can be explained via simple
implication rules (Dettmers et al., 2018; Meilicke et al., 2018). We will see that
despite their simplicity, these datasets can still shed some light on the behavior
of various models under PR. FB-237 and WNRR are constructed from FB15K
and WN18 respectively, to make the datasets more challenging (Toutanova
and Chen, 2015), and model performance is indeed considerably lower on
these datasets (Akrami et al., 2018). We describe these datasets in more detail
in Section 2.4. Key dataset statistics are summarized in Table 4.1.

Models. We chose five commonly used KGE models: RESCAL (Nickel

CHAPTER 4. KNOWLEDGE BASE COMPLETION 79

et al., 2011), Transe (Bordes et al., 2013b), DistMult (Yang et al., 2015), Com-
plEx(Trouillon et al., 2016), and Analogy(Liu et al., 2017). Some other KGE
models do not support KBC directly due to their architecture. For example,
ConvE (Dettmers et al., 2018) uses reciprocal relations to make object predic-
tions, but KBC requires a single embedding for relations. We also considered
a simple rule-based system called RuleN (Meilicke et al., 2018) to contrast
against KGE models. We describe RuleN in more detail in Section 2.3.3.

Evaluation. For all models, we performed evaluation under both the ER
and PR protocols in order to assess their performance for the LP and KBC
tasks, respectively. For ER, we report MRR and Hits@10 (also denoted by
H@10 for brevity). For PR, we report MAP@100 and Hits@100 (also denoted
by M@100 and H@100, respectively).

Negative sampling. We trained the embedding models with negative
sampling (see Section 2.2.7). Since we are testing performance on the more
general KBC task, we consider three sampling strategies in our experiments:
Corrupt-1: For each training triple t = (i, k, j), sample pseudo-negative triples
by randomly replacing either i or j with a random entity (but such that
the resulting triple is unobserved). This ensures that at least one entity is
observed in the training data of relation k. This strategy matches ER, which
is based on questions (?, k, j) and (i, k, ?), and is the most common approach
to negative sampling in the literature.
Corrupt-1R: For each training triple t = (i, k, j), sample pseudo-negative
triples by randomly replacing either i, k or j. This results that some negative
examples potentially belonging to a different relation. This approach to
generate negatives is generally less adopted, especially when studying the
link prediction task. The generated negative samples are not compared with
the training set as done in some studies, e.g. (Liu et al., 2017).
Corrupt-2: For each training triple t = (i, k, j), obtain pseudo-negative triples
by randomly replacing both i and j, each with a random entity. This method
appears more suited to PR, as it includes triples during training that belong
to the same relation, but are potentially type-inconsistent.

Training and implementation. We trained DistMult, ComplEx, Analogy
and RESCAL with AdaGrad (Duchi et al., 2011) using binary cross-entropy
loss. We used pair-wise ranking loss for TransE (as it always produces
negative scores). All embedding models are implemented on top of the code

80 CHAPTER 4. KNOWLEDGE BASE COMPLETION

of Liu et al. (2017)2 in C++ using OpenMP. For RuleN, we use the original
implementation provided by the authors. The evaluation protocols were
written in Python, with Bottleneck3 used for efficiently obtaining the top-K
entries for PR. We found PR (which took ≈30–90 minutes) was about 3–4
times slower than ER. We discuss in Section 4.3.4 how using more advance
training settings proposed after this publication yields generally the same
results.

Hyperparameters. The best hyperparameters were selected based on
MRR for ER and MAP@100 for PR on the validation data. For both protocols,
we performed an exhaustive grid search over the following hyperparameter
settings: de ∈ {100, 150, 200}, weight of l2-regularization λ ∈ {0.1, 0.01, 0.001},
learning rate η ∈ {0.01, 0.1}, negative sampling strategies Corrupt-1, Corrupt-2
and Corrupt-1R, and margin hyperparameter γ ∈ {0.5, 1, 2, 3, 4} for TransE.
For each training triple, we sampled 6 pseudo-negative triples. To reduce
cost, we only used the most frequent relations from each dataset for model
evaluation on validation data (top-5, top-5, top-15, and top-30 most frequent
relations for WN18, WNRR, FB-237 and FB-15K, respectively). We trained
each model for up to 500 epochs during grid search. In all cases, we evaluated
model performance every 50 epochs and used the overall best-performing
model. For RuleN, we used the best settings reported by the authors for
ER (Meilicke et al., 2018). That is, for FB15K and FB-237, we learned path
rules of length 2 and constant rules, and the sampling size was set to 1000.
For WN18 and WNRR, we learned path rules of length 2 with sampling
size of 1000, and path rules of length 3 with sampling size of 100, as well as
constant rules. For PR, we learned path rules of length 2 using a sampling
size of 500 for FB15K and FB-237. For WN18 and WNRR, we learned path
rules of length 3 and sampling size of 500. As mentioned above, Section 4.3.4
shows that using a larger search space such as the one used in Section 3.2.1
yields generally the same results and is not always beneficial for model
performance.

4.3.2 Model Performance

Entity ranking. Table 4.2 summarizes the ER results. ComplEx and Analogy
outperform other models on FB-237 and WN18, but are sometimes outper-

2https://github.com/quark0/ANALOGY
3https://pypi.org/project/Bottleneck/

https://github.com/quark0/ANALOGY
https://pypi.org/project/Bottleneck/

CHAPTER 4. KNOWLEDGE BASE COMPLETION 81

FB15K FB-237 WN18 WNRR

MRR H@10 MRR H@10 MRR H@10 MRR H@10

DistMult .660 .845 .270 .432 .790 .937 .432 .474
TransE .500 .777 .290 .466 .720 .908 .220 .491
ComplEx .700 .835 .280 .435 .940 .948 .440 .481
Analogy .700 .836 .270 .433 .941 .942 .440 .486
RESCAL .464 .699 .270 .427 .920 .939 .420 .447

RuleN .805 .870 .260 .420 .950 .958 – .536

Table 4.2: Results with the entity ranking protocol (ER), which assesses LP
performance. We report test data MRR and Hits@10 (H@10). Bold entries
show best KGE model performance per dataset.

formed by DistMult and TransE on other datasets, the latter two of which
are known to be less expressive (Wang et al., 2018b). In particular, although
DistMult can only model symmetric relations, and although most relations in
these datasets are asymmetric, DistMult has good ER performance in general.
Likewise, TransE achieved great performance in Hits@10 on all datasets, in-
cluding WN18 which contains a large number of symmetric relations, a type
of relation that is not easily modeled by TransE, as discussed in Section 4.1.
When compared to the rule-based baseline, embedding models perform
competitively with respect to RuleN on all datasets, except for their MRR
performance on FB15K. This holds in general even for the more restricted
models (TransE and DistMult) on the more challenging datasets, which were
created after criticizing FB15K and WN18 as too easy (Toutanova and Chen,
2015; Dettmers et al., 2018). Note that similar observations can be made
about the results in Section 3.2.2 in the previous chapter. In fact, in Table 3.4,
DistMult is not only competitive, but even outperforms all other models on
the FB15K dataset. In short, link prediction performance as reported by the
ER protocol shows that less expressive models like DistMult and TransE
are competitive with, or even outperform, more expressive models like
ComplEx.

Entity-pair ranking. The evaluation results of PR with K = 100 are
summarized in Table 4.3. Note that Tables 4.2 and 4.3 are not directly
comparable: they measure different tasks using different metrics. Also note
that we use a different value of K, which in PR corresponds to the number of

82 CHAPTER 4. KNOWLEDGE BASE COMPLETION

Dataset FB15K FB-237 WN18 WNRR

Model M@100 H@100 M@100 H@100 M@100 H@100 M@100 H@100

DistMult .013 .104 .030 .042 .079 .097 .141 .178
TransE .211 .363 .079 .176 .223 .315 .020 .013
ComplEx .311 .486 .071 .166 .825 .904 .168 .200
Analogy .188 .348 .049 .143 .776 .874 .154 .198
RESCAL .150 .303 .067 .150 .482 .609 .131 .138

RuleN .774 .837 .076 .158 .948 .968 .215 .251

Table 4.3: Results with the entity-pair ranking protocol (PR), which assesses
KBC performance. We report test data MAP@100 and Hits@100 (H@100).
Bold entries show best KGE model performance per dataset.

predicted facts per relation. We discuss the effect of the choice of K later.

For the embeddings, we observe that with the exception of Analogy and
ComplEx on WN18, the performance of all models is unsatisfactory on
all datasets, especially when compared with RuleN on FB15K and WN18,
which were previously considered to be too easy for embedding models.
Specifically, DistMult’s Hits@100 is slightly less than 10% on WN18, meaning
that if we add the top 100 ranked triples to the KB, over 90% of what is
added is likely false. Even when using ComplEx, the best model on FB15K,
we would potentially add more than 50% false triples. This implies that
embedding models cannot make predictions about the graph more generally
than what is implied by the LP task. The notable exceptions are ComplEx
and Analogy on WN18, although both are still behind RuleN. TransE and
DistMult did not achieve competitive results on WN18. In addition, DistMult
did not achieve competitive results on FB15K and FB-237 and TransE did
not achieve competitive results in WNRR. In general, ComplEx and Analogy
performed consistently better than other models across different datasets.
When compared with the RuleN baseline, however, the performance of these
models was often not satisfactory. This suggests that better KGE models
and/or training strategies are needed for KBC.

RuleN did not perform well on FB-237 and WNRR, likely because the
way these datasets were constructed makes them intrinsically difficult for
rule-based methods (Meilicke et al., 2018). This is reflected in both ER and
PR results.

CHAPTER 4. KNOWLEDGE BASE COMPLETION 83

Model

Relation DistMult TransE ComplEx Analogy RESCAL

hyponymy 1 (1) 18 (32) 99 (99) 99 (99) 92 (93)
hypernymy 0 (0) 5 (33) 99 (99) 99 (99) 96 (98)
deriv. related form 100 (100) 0 (0) 100 (100) 100 (100) 6 (68)
member meronym 0 (0) 18 (41) 74 (84) 83 (85) 44 (63)
member holonym 0 (0) 16 (47) 74 (83) 83 (85) 37 (54)

Table 4.4: Number of test triples in the top-100 filtered predictions on WN18.
An estimate of the number of true triples in the top-100 list is given in
parentheses.

Top 100 predictions. To better understand the change in PR performance
of TransE and DistMult compared to their ER performance, we investigated
their predictions for the top-5 most frequent relations on WN18. Table 4.4
shows the number of test triples appearing in the top-100 predictions for
each relation after filtering triples from the training and validation sets. The
numbers in parentheses are discussed in Section 4.3.3.

We found that DistMult worked well on the symmetric relation derivation-
ally related form, because all 100 top predictions it makes are triples from the
test set. This is where its symmetry assumption clearly helps, because 93%
of the training data consists of symmetric pairs (i.e., (i, k, j) and (j, k, i)), and
88% of the test triples have its symmetric counterpart in the training set. In
contrast, TransE contained no test triples for derivationally related form in the
top-100 list. We found that the norm of the embedding vector of this relation
was 0.1, which was considerably smaller than for the other relations (avg. 1.4).
This supports our argument that TransE tends to push symmetric relation
embeddings to 0.

Note that while hyponymy, hypernymy, member meronym and member
holonym are semantically transitive, the dataset contains almost exclusively
their transitive core, i.e., the dataset (both train and test) does not contain
many of the transitive links of the relations. As a result, models are not
exposed to the transitive property of these relations during training. This
might explain why models that cannot handle transitivity well may still
produce good results, and more specifically, why TransE performed better for
these relations than for derivationally related form. DistMult did not perform

84 CHAPTER 4. KNOWLEDGE BASE COMPLETION

0.0

0.2

0.4

0.6

0.8

1.0

Hi
ts

@
K

FB15K

Hi
ts

@
K

WN18

0 200 400 600 800 1000
K

0.0

0.1

0.2

0.3

0.4

Hi
ts

@
K

FB15K-237

0 200 400 600 800 1000
K

Hi
ts

@
K

WNRR

Analogy
DistMult
TransE
Complex
RESCAL
RuleN

Figure 4.2: Hits@K with PR as a function of K

well on these relations (they are asymmetric). ComplEx and Analogy showed
superior performance across all relations. RESCAL is in between, most likely
due to difficulties in finding a good parameterization. However, it is unclear
to us why TransE performed well on FB15K and FB-237.

In general, these results suggest that the limitations of DistMult and
TransE do have an impact on their performance on the KBC task, as
measured by the PR evaluation protocol.

Choice of K. To investigate model performance in PR for different values
of K, we give the curves of Hits@K as a function of K for all datasets in
Figure 4.2. Curves of MAP@K are given in Appendix B. ComplEx and

CHAPTER 4. KNOWLEDGE BASE COMPLETION 85

Analogy, which are universal models in terms of expressive power (see
Section 2.2.5), performed best for large K compared to other embedding
models. Similarly, TransE performs the best for small values of K on FB15K
and FB-237. Note that RuleN performs considerably better on FB15K, WN18
and WNRR, while it still performs competitively on FB-237. In general, all of
the results discussed above hold for all considered values of K.

4.3.3 Underestimation and Type Filtering

Influence of Unobserved True Triples. Since all datasets are based on
incomplete knowledge bases, all evaluation protocols may systematically
underestimate model performance. In particular, any true triple t that is
neither in the training, nor validation, nor test data is treated as negative
during ranking-based evaluations. A model which correctly ranks t high is
thus penalized. PR might be particularly sensitive to this due to the large
number of candidates considered.

It is generally unclear how to design an automatic evaluation strategy
that avoids this problem. Manual labeling can be used to address this, but
it may sometimes be infeasible given the large number of relations, entities,
and models for KBC. It might even require expert knowledge.

To explore such underestimation effect in PR, we decoded the unobserved
triples in the top-100 predictions of the 5 most frequent relations of WN18, by
computing the symmetric/transitive closure of the available data in the entire
WordNet knowledge base. In Table 4.4, we give the resulting number of triples
in parentheses (i.e., number of test triples + implied triples). We observed
that underestimation indeed happened. TransE was mostly affected, but
still did not lead to competitive results when compared to ComplEx and
Analogy. While not included in Table 4.4, RuleN achieves the best possible
results in all 5 relations. That is, all 100 top prediction it makes are true
triples by our estimation. These results suggest that (1) underestimation is
indeed a concern, and (2) the results in PR can nevertheless give an indication
of relative model performance.

Type Filtering. When background knowledge is available, embedding
models only need to score triples consistent with this background knowledge.
We explored whether their performance can be improved by filtering out
type-inconsistent triples from each model’s predictions. Note that this is
inherently what rule-based approaches do, since all predicted candidates will

86 CHAPTER 4. KNOWLEDGE BASE COMPLETION

Model MAP@K (%) Hits@K (%)

FB15K DistMult .188 (+.175) .364 (+.260)
TransE .257 (+.045) .417 (+.054)
ComplEx .531 (+.220) .696 (+.210)
Analogy .413 (+.225) .615 (+.267)
RESCAL .167 (+.017) .328 (+.025)

RuleN .774 (0.000) .837 (0.000)

FB-237 DistMult .095 (+.092) .181 (+.139)
TransE .113 (+.034) .212 (+.036)
ComplEx .113 (+.042) .218 (+.052)
Analogy .105 (+.056) .209 (+.066)
RESCAL .102 (+.035) .190 (+.040)

RuleN .76 (0.000) .158 (0.000)

Table 4.5: Results with PR using type filtering (K = 100).

be type-consistent. In particular, we investigated how model performance is
affected when we filter out predictions that violate type constraints (domain
and range of each relation). If a model’s performance improves with such
type filtering, it must have ranked syntactically inaccurate tuples high in the
first place. We can thus assess to what extent models capture entity types as
well as the domain and range of the relations.

We extracted from Freebase4 type definitions for entities and domain and
range constraints for relations. We also added the domain (or range) of a
relation k to the type set of each subject (or object) entity which appeared in
k. We obtained types for all entities in both FB datasets, and domain/range
specifications for roughly 93% of relations in FB15K and 97% of relations in
FB-237. The remaining relations were evaluated as before. Since WordNet
contains no type or domain/range information, we focused on the Freebase-
derived datasets for this experiment.

We report in Table 4.5 the Hits@100 and MAP@100 as well as their absolute
improvement (in parentheses) w.r.t. Table 4.3. We also include the results of
RuleN from Table 4.3, which are already type-consistent. The results show
that all KGE models improve with type filtering; thus all models make

4https://developers.google.com/freebase/

https://developers.google.com/freebase/

CHAPTER 4. KNOWLEDGE BASE COMPLETION 87

FB-237 WN18 WNRR

M@100 H@100 M@100 H@100 M@100 H@100

DistMult .030 .042 .079 .097 .141 .178
DistMult LibKGE .002 .027 .084 .104 .141 .149
ComplEx .071 .166 .825 .904 .168 .200
ComplEx LibKGE .111 .191 .794 .836 .204 .270
RESCAL .067 .150 .482 .609 .131 .138
RESCAL LibKGE .124 .209 .702 .767 .200 .240

RuleN .260 .420 .950 .958 – .536

Table 4.6: Comparison of Entity-Pair Ranking (PR) performance between
models in Table 4.3 (including RuleN) and an implementation with LibKGE
that followed the same experimental settings as in Section 3.2.1. We report test
data MAP@100 and Hits@100 (H@100). Bold entries show best performance
per dataset. Results from RuleN are included again for reference.

syntactically inaccurate predictions, specifically, triples where the entity
types do not match the relations domain/range restrictions. In particular,
DistMult shows considerable improvement on both datasets. Indeed, about
90% of the relations in FB15K (about 85% for FB-237) have a different type
for their domain and range. As DistMult treats all relations as symmetric,
it introduces a wrong triple for each true triple into the top-K list on these
relations; type filtering allows us to ignore these wrong tuples. This is also
consistent with DistMult’s improved performance under ER, where type
constraints are implicitly used since only questions with correct types are
considered. Interestingly, ComplEx and Analogy improved considerably
on FB15K, suggesting that the best performing embedding models on
this dataset are still making a considerable number of type-inconsistent
predictions. On FB15K, the relative ranking of the models with type filtering
is roughly equal to the one without type filtering. On the harder FB-237
dataset, all models now perform similarly. Note that when compared with
RuleN, embedding models are still behind on FB15K, but are no longer
behind on FB-237.

88 CHAPTER 4. KNOWLEDGE BASE COMPLETION

4.3.4 Reproduction with LibKGE

To test the impact of using some of the more advanced training strategies
that were proposed after this study was published, we reimplemented the
PR evaluation protocol in LibKGE, our open source framework introduced in
Chapter 3. We then evaluated PR performance of the best models selected in
our study in Section 3.2. The results are reported in Table 4.6.

We found that the models implemented with LibKGE, which used more
advanced training strategies, yielded considerably better performance for
the most part, with a few exceptions: ComplEx performs worse on WN18,
and DistMult is worse in FB-237, comparable in WNRR and slightly better in
WN18. This shows that more advanced training strategies that are successful
for link prediction are not always beneficial for PR performance.

More generally, the reproduced results using LibKGE show that the
takeaways from previous sections with respect to the KBC task still hold.
In particular, DistMult is considerably weaker than other models in PR,
in contrast to its competitive performance in ER as reported in Tables 3.4
and 4.2. This suggests that PR evaluation is better suited for the KBC task,
a task that is better aligned with the main motivation behind the design of
KGE models: to add missing facts to incomplete KGs. In addition, results
show that PR performance for all models is unsatisfactory, especially when
compared to RuleN, which still far outperforms KGE models on the KBC
task. This suggests that new models and/or training strategies are needed to
get better performance in KBC.

In addition, one advantage that the LibKGE implementation provides is
that runtimes are much lower compared to our original implementation, with
PR evaluation taking between one and three minutes depending on model
and dataset. The difference in cost compared to ER is still as reported before,
with PR being 3–4 times slower than ER.

4.4 Related Work

One line of related work involves studies that focus on a different form of
KGE evaluation. In early (and rarely in recent) work, KGE models were
evaluated using triple classification (Socher et al., 2013; Wang et al., 2014;
Lin et al., 2015; Wang et al., 2022b). As discussed in Section 2.2.6, we do

CHAPTER 4. KNOWLEDGE BASE COMPLETION 89

not consider it in our experiments, as it is typically overly optimistic and
misleading unless hard negatives are used (Safavi and Koutra, 2020). A more
recent proposal comes from Chang et al. (2020), who evaluated KGE models
on the relation prediction task. We also consider this task as one of the
evaluation tasks in Chapter 5.

Another line of related work are studies about probing KGE models to
better understand their performance (Widjaja et al., 2022; Allen et al., 2021;
Rim et al., 2021; Meilicke et al., 2018). These studies focus on a model’s link
prediction performance on relations with different types of properties, e.g.
symmetric. In contrast, our focus is on the more general KBC task, which is
designed to measure a model’s ability to make predictions about a KG more
generally that the standard link prediction task.

4.5 Summary

In this chapter, we showed empirically that the focus on link prediction as
a task to assess KGE performance is limited in that it does not encourage
models to generally predict missing links in a KG. We illustrated this with
examples that show that models with limited ability for predicting links in a
KG still perform competitively or even outperform state-of-the-art models
on the link prediction task, as commonly defined in the literature. We then
proposed the more general task of knowledge base completion (KBC), which
we argue is more suitable for the goal of predicting missing links in a KG.
We designed a corresponding entity-pair ranking (PR) evaluation protocol to
assess model performance on the KBC task. This protocol evaluates a model’s
ability to predict links in a graph more generally than what is required for
the link prediction task.

We conducted a large experimental study with commonly used KGE
models and various benchmark datasets. We found that good link prediction
performance, as measured by the entity ranking evaluation protocol, is not
indicative of a model’s ability to generally predict missing links in a KG. This
suggests that standard KGE models are not generally suitable for adding
missing links to a KG.

In the next chapter, we propose new training methods that go beyond the
link prediction task to test whether KGE models can more generally capture
multiple KG properties simultaneously.

90 CHAPTER 4. KNOWLEDGE BASE COMPLETION

CHAPTER

FIVE

GRAPH-STRUCTURE PREDICTION

KGE models are often described as representations that capture semantic
properties of the entities in a KG (Bordes et al., 2011, 2013b; Nickel et al., 2015;
Wang et al., 2017; Ji et al., 2021). And indeed, KGE models have been used
as pre-trained representations to inject the structured knowledge encoded
in a KG into various downstream applications, such as question answering
systems (Ilyas et al., 2022) and recommender systems (El-Kishky et al., 2022;
Wang et al., 2018a), among others.

At the same time, most of the literature in KGE models has focused
on the link prediction (LP) task, which is commonly defined as answering
questions such as (Austin, capitalOf, ?) by reasoning over an incomplete KG.
As described in Chapter 2, this focus on link prediction has influenced the
design of the standard training and evaluation methods. Consequently, the
question of whether KGE models provide generally useful representations—
i.e. representations that provide good results beyond link prediction—remains
largely open. To our knowledge, no previous work has studied the impact
that different training approaches have on the learned KG embeddings in
any way other than by assessing performance on link prediction.

In this chapter, we study whether out-of-the-box KGE models capture
general properties of the graph. We do this by evaluating their performance
on a new set of basic graph-structure prediction tasks that are similar to link
prediction, such as predicting the relation of a triple (e.g., the relationship
between Austin and Texas), the domain and range of a relation (e.g., whether

91

92 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

Austin is a capital), as well as entity and relation neighborhood of each entity
(e.g., which other entities are related to Austin). These tasks differ from the
knowledge graph completion (KBC) task introduced in Chapter 4 in that
these are different types of predictions about a graph, whereas KBC is a
generalization of link prediction that includes all of the KG.

To evaluate a model on this set of tasks, we generalized the entity ranking
protocol commonly used for link prediction to include any number of user-
defined tasks. We refer to this approach as multi-task ranking (MTR). We
found that the best performing models on LP where never the best perform-
ing models for MTR and that the relative performance of models changed
considerably between the different tasks. This suggests that models that are
good at LP are not necessarily those that capture more properties about the
graph, challenging the intuition that KGE models preserve the structure of a
KG.

As a result of this observation, and inspired by multi-task approaches in
other areas—such as natural language processing (Aribandi et al., 2022; Sanh
et al., 2022) or computer vision (Doersch and Zisserman, 2017)—, we included
the graph-structure prediction tasks discussed above as additional training
objectives and used MTR as evaluation measures during model selection.
Specifically, we generalized the standard training approach based on link
prediction to a multi-task training objective (MTT), which can be used with
any KGE model class and without a substantial increase in computational
cost. The resulting multi-task KGE models had significantly better overall
performance across all graph-structure prediction tasks, suggesting that the
learned representations capture more information about the graph, at the
cost of a minor decrease in link prediction performance. This is an indication
that the focus on the link prediction task is too narrow for training KGE
models so that they generally capture the properties of a KG.

We begin this chapter by introducing our proposed set of graph-structure
prediction tasks in Section 5.1. We introduce the multi-task ranking eval-
uation in Section 5.2. In Section 5.3 we describe our proposed multi-task
training approach. We describe the settings and discuss the findings of our
experimental study in Section 5.4. We discuss related work in Section 5.5 and
summarize our contributions in Section 5.6.

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 93

Knowledge graph Task Example query Some an-
swers

(Dallas, locatedIn, Texas) Link (LP) (Austin, locatedIn, ?) Texas, USA
(Texas, locatedIn, USA) (?, locatedIn, Texas) Austin
(Austin, capitalOf, Texas) Relation (REL) (Austin, ?, Texas) locatedIn
(Austin, locatedIn, Texas) Domain (DOM) (*, locatedIn, ?) Texas, USA
(Arkansas, borders, Texas) (?, locatedIn, *) Dallas, USA
(USA, locatedIn, North A.) Entity (Austin, *, ?) Texas, USA
(Austin, locatedIn, USA) neighb. (NBE) (?, *, Texas) Arkansas

Relation (Austin, ?, *) capitalOf
neighb. (NBR) (*, ?, Texas) borders

Table 5.1: Graph-structure prediction tasks used for self-supervised pre-
training and evaluation along with example queries. Here ? denotes the
prediction target and ∗ acts as a wildcard.

5.1 Graph-Structure Tasks

The new set of tasks we designed to explore the suitability of KGE models
for basic graph-structure prediction tasks is summarized and exemplified in
Table 5.1. We describe the form of the queries for each task as a triple such
as (s, ?, ∗), where s or o denote input entities, p denotes an input relation, ?
denotes the prediction target, and ∗ acts as a wildcard. Using this notation,
we consider the following tasks and queries:

• Link prediction (LP): Given a relation and a subject, predict the object
(denoted (s, p, ?)). Likewise, given a relation and an object, predict the
subject (denoted (?, p, o)).

• Relation prediction (REL, Chang et al. (2020); Chen et al. (2021c):
Given two entities s and p, predict the relation between them (denoted
(s, ?, o)).

• Domain prediction (DOM): Given a relation, predict its domain (de-
noted (?, p, ∗)) or its range (denoted (∗, p, ?)).

• Entity neighborhood prediction (NBE): Given a subject entity, predict
related objects (denoted (s, ∗, ?)). Likewise, given an object, predict
related subjects (denoted (?, ∗, o)).

94 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

• Relation neighborhood prediction (NBR): Given a entity, predict the
relations where it occurs as subject (denoted (s, ?, ∗)) and where it
occurs as object (denoted (∗, ?, o)).

Note that we use the wildcard to denote existential quantification. For
example, given a ground-truth KG G and domain prediction query (?, p, ∗),
an entity s ∈ E is a correct answer if there exists an entity o ∈ E such that
(s, p, o) ∈ G.

We chose this particular set of tasks because they are simple, they capture
basic information about the graph structure beyond link prediction, and they
only have one prediction target (an entity or a relation). The latter property
allows efficient pre-training and evaluation, as discussed below. For this
reason, we exclude tasks such as KBC (see Section 4 (denoted (?, p, ?)) or
reconstruction (Nickel et al., 2011) (denoted (?, ?, ?)). This allowed us to
include some datasets that are larger than those used in the experimental
studies in previous chapters.

5.2 Multi-Task Ranking Protocol

To evaluate the performance of KGE models on the graph-structure prediction
tasks, we generalize the entity ranking (ER) protocol for link prediction to a
multi-task ranking (MTR). Intuitively, for each of the nine queries (REL as
well as LP/DOM/NBE/NBR for both subject and object targets), we construct
from each evaluation triple (s, p, o), the queries corresponding to each task as
given in Table 5.1. We then obtain, for each query, a ranking of the prediction
targets (entity or relation) that do not already occur in the training data, and
then use metrics such as MRR or Hits@K. The final MTR metric is given by
the micro-average over all nine queries.

Obtaining rankings for some of these tasks is not as straightforward
as obtaining rankings for LP. First, for a REL query of the form (s, ?, o), we
proceed as in Chang et al. (2020) and rank all r′ ∈ R such that (s, r′, o) /∈ Gtrain

in descending order of their scores s(s, r′, o), where s is the score function
of the KGE model we are evaluating. For the other tasks, which involve
wildcards, it is not immediately clear how to perform prediction using a
KGE model. We first discuss scoring and ranking, then filtering of training
data. Consider for example the NBR query (s, ?, ∗), where our goal is to
rank relations. The perhaps simplest approach to obtain a relation ranking

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 95

Algorithm 5.1: Extended Score Function (accepts wildcards)
Require: t: triples to compute score, e.g. (i, k, ∗)

s: model score function
C: set of candidates for wildcard slot

Ensure: Score of given triple t
1 max_score← 0
2 if wildcard not slot in t then
3 max_score← s(t)
4 else
5 foreach c ∈ C do
6 candidate_t = (i, k, c) // e.g. t = (i, k, ∗)
7 candidate_score = s(candidate_t)
8 if candidate_score ≥ max_score then
9 max_score← candidate_score

10 return max_score

is to first rank all triples of the form (s, r′, o′), for every r′ ∈ R and o′ ∈ E ,
and then rank relations by their first appearance (e.g., the relation of the
highest-scoring triple is ranked at the top).

The process described above can be seen as an extended score function
that accepts wildcards, which we describe in Algorithm 5.1. That approach
corresponds to using s(s, r′, ∗) = maxo′∈E s(s, r′, o′), i.e, the score of a relation
r′ is the score of its most plausible triple. Although other aggregation
functions are feasible, we only consider max-aggregation because it does not
make any additional assumptions on the scoring function.

To filter training data during model evaluation, we remove all relations
r′ such that (s, r′, o′) ∈ Gtrain for some o′ ∈ E ; i.e., we remove all prediction
targets that are already implied by the training data. We proceed similarly
for all other tasks involving wildcards. Note that the number of score
computations needed to predict entity targets for queries without wildcards
is O(|E |), whereas the one for queries with wildcards is O(|E ||R|). We
discuss in Section 5.3 how the latter cost can be reduced to O(|E |).

96 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

5.3 Multi-Task Training

We now generalize the standard KGE training approach to include all of
the graph-structure prediction tasks, called multi-task training (MTT). Our
goal is to be able to improve model performance on these tasks, while at
the same time keeping training and prediction cost low. To this end, we
constructed a task-specific cost function for each individual training task;
the final cost function is then given as a weighted linear combination of the
task-specific costs (and additional regularization terms), where the weights
are hyperparameters.

To illustrate how training objectives are constructed using more than
one training task, i.e. query, we define both the standard training objective
(STD) based on link prediction (introduced in Section 2.2.7) and our proposed
multi-task objective (MTT) as follows. Let To = {(t, l)} be the set of relevant
positive and negative examples t and corresponding label l induced by the
link prediction query (s, p, ?) in a given training set. Let Ts be the analogous
set of examples for query (?, p, o). For some loss function L, the STD training
approach optimizes the following objective function (we omit the penalty
term for brevity):

f (θ) = argmin
θ

(
1
|Ts| ∑

(t,l)∈Ts

L(s(t), l) +
1
|To| ∑

(t,l)∈To

L(s(t), l)

)
(5.1)

where s is a KGE score function parameterized by model parameters θ. We
generalize this objective to define the following multi-task training (MTT)
objective:

f (θ) = argmin
θ

1
N ∑

Ti∈T
∑

(t,l)∈Ti

λiL(s(t), l) (5.2)

where T = {T1, T2, . . .} is a superset of training examples for queries Ti, N is
the sum of the cardinalities of each Ti and λi a hyperparameter that controls
the impact of query i in the training objective. Chen et al. (2021c) have
already followed this training approach by adding the relation prediction
task, i.e. (i, ?, j) to Eq. 5.1. They set λs = λo = 1 and tune λr. We note
that Equations 5.1 and 5.2 do not describe the exact training objective with
some loss functions, e.g. some losses require a positive and corresponding
set of negatives to compute a loss value. However, the MTT objective can be

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 97

Algorithm 5.2: Multi-task Training (MTT)
Require: T : set of training triples,

E : set of entities in knowledge graph K
θ: model parameters,
W : set of training queries,
Q: set of weights for given training queries

Ensure: Updated model parameters θ
1 foreach q, w ∈ Q,W do
2 N ← construct set of negatives for q using T
3 Tall ← T ∪ N
4 sall ← Compute_Scores(Tall)
5 lq ← w ∗Compute_Loss(sall, Tall) // loss weighted by w
6 θ ← Update_Parameters(θ, lq)

reformulated for every loss function commonly used to train KGE models. We
provide such a general description of the MTT approach in Algorithm 5.2. As
with loss functions, the MTT approach is agnostic to the choice of model and
training task. However, in this thesis we focus on the set of tasks summarized
in Table 5.1.

The examples for the task-specific cost functions for link prediction and
relation prediction are obtained as in standard training (see Sec. 2.2.7): for
each positive triple (s, p, o) ∈ G, we construct a set of negatives according to
the corresponding query (i.e., by perturbing the position of the prediction
target) and then apply the loss function (e.g., cross entropy).

For the other tasks, which involve wildcards, we proceed differently.
Instead of performing some form of (costly) score aggregation during training
as in the extended score function described in Algorithm 5.1, we “convert”
tasks with wildcards into tasks without wildcards. To do so, we make use
of three virtual wildcard entities—one for subjects (anyS), one for relations
(anyR), and one for objects (anyO)—and learn embeddings for these entities.
During training, we conceptually replace wildcards by their corresponding
wildcard entity and proceed as before. For example, for training triple (s, p, o)
and NBR query (s, ?, ∗), we consider the virtual triple (s, p, anyO) along with
query (s, ?, anyO). By doing so, we converted the NBR task into a REL task.
We also use the so-obtained wildcard embeddings during prediction time in
the same fashion; e.g., we set s(s, r′, ∗) = s(s, r′, anyO). Instead of performing

98 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

score aggregation, the model thus directly learns extended scores.

The advantage of the MTT approach is that (i) the prediction costs re-
main stable, i.e., the cost of graph-structure prediction or downstream task
prediction is unaffected by the number or choice of pre-training tasks, and
(ii) the pre-training costs increase only linearly in the number of tasks (see
Table 5.6). It is important that MTT be scalable, as learning representations
of an entire KG can be very costly, which is also a motivation for learning
generally useful representations of the KG.

Note that the wildcard embeddings are not used for entity-level down-
stream tasks. Nevertheless, using wildcard entities during training affects all
other entities as well. This is because the embedding of each entity occurs in
all graph-structure prediction tasks. The entity embeddings of a good KGE
model thus needs to be suitable for all these tasks, not just for link prediction.

5.4 Experimental Study

We conducted a large experimental study to test our proposed MTT approach
for model training and our proposed MTR approach for model evaluation.
Specifically, our goals were (i) to evaluate whether standard KGE models
capture various properties of a KG by assessing their performance on new
graph-structure prediction tasks, including link prediction, and (ii) to deter-
mine whether (and by how much) KGEs improve their performance on these
tasks when simultaneously trained for them. To our knowledge, almost no
prior work has focused on studying different training objectives for KGE
models. We discuss related work further in Section 5.5.

5.4.1 Experimental Settings

Datasets. We chose three commonly used benchmark datasets for evaluating
KGE models: FB15K-237 (Toutanova and Chen, 2015) (referred to as FB-237
for brevity), WNRR (Dettmers et al., 2018), YAGO3-10 (Mahdisoltani et al.,
2014), and WIKIDATA5M (Wang et al., 2021) (referred to as WIKI5M for
brevity). Each dataset is associated with a training, a validation and a test
split. As described in Section 2.4, FB-237 and WNRR are designed to be
harder benchmarks for link prediction. YAGO3-10 is a considerably larger
dataset than the two, but WIKI5M is much larger than all other datasets. Due

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 99

Dataset Entities Relations Training Validation Test

FB-237 14 505 237 272 115 17 535 20 466
YAGO3-10 123 182 37 1 079 040 5 000 5 000
WNRR 40 559 11 86 835 3 034 3 134
WIKI5M 4 818 679 828 21 343 681 5 357 5 321

Table 5.2: Statistics of datasets used in this study.

to the high cost of multi-task ranking (MTR) on models without wildcard
embeddings, we only report results on WIKI5M of MTT models. The statistics
of these datasets are summarized in Table 5.2.

KGE models. We chose four popular, representative KGE models: TransE
(Bordes et al., 2013b) and DistMult (Yang et al., 2015) (basic translational and
factorization models, respectively) as well as RotatE (Sun et al., 2019) and
ComplEx (Trouillon et al., 2016) (translational and factorization models). Due
to cost, we only train ComplEx and TransE on WIKI5M.

KGE training. We used LibKGE (Broscheit et al., 2020) for STD training
(LP only) as a baseline and extended it to support MTT/MTR for model
training/evaluation. All KGE models were trained for a maximum of 200
epochs with early stopping on validation MRR checked every 10 epochs. We
used cross-entropy as loss function, as it systematically outperformed other
losses in most prior studies. We used 1vsAll training with FB-237 and WNRR
(to achieve good results) and NegSamp with YAGO3-10 and WIKI5M to scale
to these larger datasets. Models were selected w.r.t. performance (MRR) on
the validation data. We selected STD models with LP task and MTT models
with the MTR task. For MTT training, we used all tasks in Table 5.1. We
discuss the impact of using fewer tasks during training in Section 5.4.4.

KGE evaluation. As with training, we evaluate KGE models with respect
to each of the five graph-structure prediction tasks of Sec. 5.1 (LP, REL, DOM,
NBE, NBR) using filtered MRR on test data. We also aggregate these metrics
into the multi-task ranking MRR (MTR).

KGE hyperparameters. We closely follow the approach of the experi-
mental study in Section 3.2 to perform hyperparameter optimization. We
performed 30 random trials using SOBOL sampling (Bergstra and Bengio,
2012) over a large search space to tune several hyperparameters, e.g. regular-

100 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

Hyperparameter Values

Embedding size† {128, 256, 512}
Training type {NegSamp (YAGO3-10),

1vsAll (FB15K, WNRR)}
Task Weights (MTT) [0.1, 10], log scale

No. subject samples (NegSamp) [1, 10000], log scale
No. object samples (NegSamp) [1, 10000], log scale

Optimizer {Adam, Adagrad}
Batch size* {128, 256, 512, 1024

(except on YAGO3-10)}
Learning rate [10−4, 1], log scale
LR scheduler patience [0, 10]

Lp regularization {L1, L2, L3, None}
Entity emb. weight [10−20, 10−5]
Relation emb. weight [10−20, 10−5]
Frequency weighting {True, False}

Embedding normalization (TransE)
Entity {True, False}
Relation {True, False}

Dropout
Entity embedding [0.0, 0.5]
Relation embedding [0.0, 0.5]

Embedding initialization {Normal, Unif, XvNorm, XvUnif}
Std. deviation (Normal) [10−5, 1.0]
Interval (Unif) [−1.0, 1.0]
Gain (XvNorm) 1.0
Gain (XvUnif) 1.0

† For RotatE, embedding size is fixed 128 on WNRR and set to either 128 or 256 for
YAGO3-10. For Transe, this is set to either 128 or 256 for FB-237 and fixed to 128 for
WNRR and 1024 for YAGO3-10.

* For RotatE, batch size is fixed to 256 in YAGO3-10 and to 128 on FB-237 and WNRR.
For Transe, this is set to either 128 or 256 on YAGO3-10.

Table 5.3: Hyperparameter search space for pre-training KGE models.
Restrictions for RotatE and TransE are due to higher memory consumption
and runtime.

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 101

Training Selection Graph-structure prediction - MRR (↑)
LP REL DOM NBE NBR MTR

FB-237 STD LP .346 .919 .624 .051 .136 .342
MTT MTR .331 .977 .813 .210 .925 .606

YAGO3-10 STD LP .550 .900 .178 .400 .656 .432
MTT MTR .538 .954 .861 .591 .967 .759

WNRR STD LP .474 .794 .396 .432 .881 .553
MTT MTR .459 .874 .593 .426 .955 .633

WIKI5M STD LP* .288 – – – – –
MTT MTR .250 .908 .185 .169 .503 .347

* Not evaluated on new graph-structure prediction tasks due to high cost.

Table 5.4: Best performance with STD and MTT training on test data of
graph-structure prediction tasks. Bold entries show best performance
per task and dataset. MTT outperforms STD training all tasks almost
every time, suggesting that standard KGE models do not capture general
information about the graph unless trained for this purpose.

ization, embedding size, batch size, dropout, initialization and training task
weights, each in [0.1, 10.0], log scale. To keep our study feasible, we reduced
the maximum batch and embedding size for larger datasets and expensive
models. The full search space is described in Table 5.3.

5.4.2 Model Performance

Overall performance. In Table 5.4, we report test MRR of the best perfor-
mance achieved by any of the KGE models with each training approach,
i.e. standard training (STD) with the LP task for model selection and our
proposed multi-task training (MTT) and model selection (MTR). This includes
the standard KGE evaluation based on link prediction (LP); our proposed
tasks: relation domain (DOM), neighboring entities (NBE), neighboring rela-
tions (NBR); and our proposed MTR evaluation protocol that aggregates all
of the mentioned tasks. Bold entries show the best performance for each task
and dataset.

The results show that across all datasets and KGE models, STD training
performed considerably worse on all graph-structure tasks compared to MTT

102 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

training, except on LP. This suggests that, unless trained for it, standard
KGE models fail to capture graph structure more generally than what is
required for link prediction. The performance for these tasks improved
significantly when they were introduced as auxiliary training objectives with
MTT training in almost all cases, especially in DOM, NBE and NBR, and
without a significant increase in training time (linear in the number of training
tasks, see Table 5.6). MTT models had slightly lower performance on LP,
but the decrease was often small and outweighed by significantly improved
performance over the other tasks. A notable exception was NBE, which
is the only task that uses wildcard embeddings for relations. Here STD
outperformed MTT on YAGO-10 on WNRR. In general, MTT improved
significantly on STD for graph structure prediction and can thus be used
to improve KGE’s ability to learn multiple graph tasks simultaneously.
Note that new training tasks can be designed and used with MTT to capture
specific properties of the graph that may be desired.

Model performance. Table 5.5 shows the same comparison between
STD and MTT training as in Table 5.4, but at the model level. For easier
comparison between STD and MTT, underlined entries highlight the best
performance compared to the entry with the same corresponding KGE model
on the same dataset, but that uses the other training method. The results
show that, indeed, every model is able to capture more information about
the KG when trained for it on multiple tasks simultaneously. For a given
model, the improvement can be large, often by a factor of 2x and up to 10x
depending on model, task and dataset. Moreover, it is often the case with
STD training that the best models for LP are far outperformed on other tasks
by different STD models. For example, the best LP performance for STD
models on FB-237 is ComplEx, but RotatE STD outperforms it considerably
on REL and TransE STD on DOM. Similar observations can be made about
the best models on MTR, but the compromise in performance w.r.t. the best
models for each task is significantly smaller. These results suggest that
MTR is a more suitable task when the goal is training models that capture
more information about the KG during training.

Performance per task. When comparing performance across individual
tasks in Table 5.5, we see that the size of the performance difference between
the two training approaches depends on the task, with STD and MTT
often performing similarly on some tasks like LP or REL, but significantly
differently on others like DOM or NBE. In addition, some tasks seem to

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 103

Training Selection Graph-structure prediction - MRR (↑)
LP REL DOM NBE NBR MTR

FB
-2

37

ComplEx STD LP .346 .805 .423 .016 .046 .274
MTT MTR .331 977 .773 .210 .925 .606

DistMult STD LP .342 .388 .045 .009 .036 .139
MTT MTR .327 .939 .780 .142 .879 .577

RotatE STD LP .312 .919 .581 .051 .136 .342
MTT MTR .314 .964 .813 .160 .922 .598

TransE STD LP .330 .900 .624 .038 .054 .332
MTT MTR .288 .960 .708 .112 .911 .555

YA
G

O
3-

10

ComplEx STD LP .550 .900 .120 .215 .517 .411
MTT MTR .538 .930 .836 .591 .940 .749

DistMult STD LP .539 .881 .010 .327 .613 .429
MTT MTR .536 .941 .861 .581 .967 .759

RotatE STD LP .436 .809 .046 .400 .656 .432
MTT MTR .427 .933 .032 .550 .694 .482

TransE STD LP .504 .860 .178 .287 .175 .349
MTT MTR .048 .954 .686 .046 .798 .457

W
N

R
R

ComplEx STD LP .474 .782 .396 .246 .690 .488
MTT MTR .459 .831 .593 .426 .953 .633

DistMult STD LP .447 .767 .081 .253 .702 .415
MTT MTR .431 .804 .573 .342 .952 .600

RotatE STD LP .469 .794 .311 .432 .881 .553
MTT MTR .431 .874 .512 .239 .955 .572

TransE STD LP .174 .707 .044 .171 .332 .239
MTT MTR .094 .603 .476 .095 .827 .399

W
IK

I5
M

ComplEx STD* LP .288 – – – – –
MTT MTR .215 .804 .087 .136 .342 .263

TransE STD* LP .288 – – – – –
MTT MTR .250 .908 .185 .169 .503 .347

* Not evaluated on new graph-structure prediction tasks due to high cost.

Table 5.5: Performance on test data of graph-structure prediction tasks
with STD and MTT training. Bold entries show best performance per task
and dataset. Underlined entries show best performance between STD and
MTT. MTR is more suitable than LP for representing models that capture a
graph more generally.

104 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

Average training epoch time in seconds
FB-237 YAGO3-10 WNRR WIKI5M

ComplEx STD 004.92 097.88 002.32 0823.80
MTT 010.83 137.13 008.13 1635.90

TransE STD 078.76 141.62 098.45 1115.65
MTT 245.05 219.42 278.60 2124.29

Table 5.6: Average training epoch time in seconds over first 5 epochs of best
models with STD and MTT training. All tests were done with an 11th gen.
Intel Core i7-11700K, 64GB of RAM and an NVIDIA GeForce RTX 3090.

be more difficult than others, e.g. NBE results are often low even with MTT
training. This may be because it is difficult to learn some subsets of tasks
simultaneously. We discuss this further in Section 5.4.4.

5.4.3 Discussion

From a training objective perspective, these results are not surprising, as STD
training only focuses on the LP task (we discuss similar effects on MTT in
Section 5.4.4). However, these results do contradict what is usually argued
about the ability of these models to generally capture KG properties (Bordes
et al., 2011, 2013b; Nickel et al., 2015; Wang et al., 2017), which in turn inspired
their use as KG representations in downstream applications (El-Kishky et al.,
2022; Ilyas et al., 2022; He et al., 2020; Zhang et al., 2019b; Wang et al., 2018a;
Baier et al., 2017). This is despite the fact that KGE training has almost
exclusively focused on the link prediction task and almost no prior work
studies different training approaches (see Section 5.5). In addition, some of
the new tasks are similar enough to link prediction, and arguably simpler,
that the results are indeed unexpected. For example, a model that is good at
link prediction may be able to answer (Austin, capital of, ?) and (?, capital of,
Texas), yet it may not be able to predict that capital of is a relation connected to
Austin and/or Texas (NBR). Similar arguments can be made for other tasks.
We discuss in Section 5.4.4 how excluding the LP task during pre-training
can result in improved performance on other graph-structure tasks.

Generally, when the goal is the link prediction task, STD training is more
suitable. But we show empirically in Chapter 6 that the choice of training

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 105

objective has an impact on the learned representations and that including the
LP task during pre-training can at times be detrimental for the performance
of downstream models.

5.4.4 Impact of Training Task Selection

Table 5.7 summarizes our results from exploring the impact of pre-training
task selection and, in particular, whether all proposed MTT tasks are benefi-
cial. To keep computational costs feasible, we focused on FB-237. We explored
performance using MTT, and MTT without either the LP, REL, DOM, NBE,
or NBR pre-training task, as well as without LP+REL or without DOM+NBR.
We report only on the sets of tasks that provided relevant results for our
discussion. All combinations of pre-training tasks are reported in Table C.1
in Appendix C.

We found that for graph-structure predictions, excluding a task generally
led to lower performance on that task, as expected. It may also, however, lead
to a boost in performance on other tasks, For example, the best REL and NBE
performance for TransE is obtained when LP is excluded during training.
These results suggest that improving performance on some pre-training
tasks may be detrimental to the performance of other pre-training tasks, so
that more research is required to understand the relation between different
training tasks and their impact on downstream applications.

5.5 Related Work

As with our work with the KBC task proposed in Chapter 4, our goal with
the MTR evaluation protocol is related to studies about probing KGE models
to better understand their performance (Widjaja et al., 2022; Allen et al., 2021;
Rim et al., 2021; Meilicke et al., 2018). The main difference is that while these
studies focus on a model’s link prediction performance over different types of
relations, we assess model performance on a new a new set of graph-structure
prediction tasks designed to measure a model’s ability to make structures in
the graph beyond link prediction.

W.r.t. MTT, and as mentioned before, most of the work on KGE models
is based on the same training approach. However, the are some exceptions
in the literature. One exception is the work of Nickel et al. (2011) when

106 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

Training Selection Graph-structure prediction (↑)
LP REL DOM NBE NBR MTR

ComplEx STD LP .346 .805 .423 .016 .046 .274
MTT MTR .331 .977 .773 .210 .925 .606
w/o LP MTR .154 .972 .831 .200 .932 .579
w/o NBE MTR .315 .958 .850 .005 .936 .575
w/o LP+REL MTR .001 .009 .843 .177 .939 .436

DistMult STD LP .342 .388 .045 .009 .036 .139
MTT MTR .327 .939 .780 .142 .879 .577
w/o LP MTR .159 .954 .826 .087 .937 .553
w/o DOM MTR .323 .948 .703 .106 .914 .560
w/o NBE MTR .316 .928 .848 .003 .937 .571

RotatE STD LP .312 .919 .581 .051 .136 .342
MTT MTR .314 .964 .813 .160 .922 .598
w/o LP MTR .204 .914 .842 .126 .928 .568
w/o DOM MTR .319 .965 .661 .170 .883 .559
w/o NBR MTR .318 .964 .710 .168 .673 .522

TransE STD LP .330 .900 .624 .038 .054 .332
MTT MTR .288 .960 .708 .112 .911 .555
w/o LP MTR .271 .968 .781 .138 .901 .572
w/o NBE MTR .330 .966 .801 .012 .904 .562
w/o NBR MTR .329 .966 .723 .125 .790 .545

Table 5.7: Performance on test data of graph-structure prediction and
downstream tasks for FB-237 of STD with LP model selection and various
forms of multi-task training, all using MTR for model selection. Objectives
such as w/o LP are MTT objectives with all tasks in Table 5.1 except
one, in this case, LP. Results show that excluding the LP task during
pre-training often results in improved downstream performance, and that
using all pre-training tasks is often not the best choice.

CHAPTER 5. GRAPH-STRUCTURE PREDICTION 107

proposing RESCAL, one of the earliest KGE models. They trained their
model the reconstruction task. This task aims to construct the entire training
data using cost functions such as ∑s,p,o∥I[(s, p, o) ∈ Gtrain]− s(s, p, o)∥2

2, where
I[·] is a 0/1 indicator and Gtrain is the training set of some knowledge graph
G. In contrast to the local-closed world assumption made by commonly
used training methods, this task makes the arguably stronger closed world
assumption. A similar approach was explored by Li et al. (2021). We do not
consider such methods further because training costs are excessive (at least
unless squared error is used) and the empirical performance reported by Li
et al. (2021) is generally far behind KGE models trained with link prediction.

Another exception is Chen et al. (2021c), who proposed to augment the
link prediction task with relation prediction during training (but not evaluation).
In this study, we expanded upon this work by considering additional pre-
training tasks and by focusing on graph-structure prediction performance
including the LP task.

5.6 Summary

In this chapter, we looked beyond the link prediction task and asked whether
KGE models are indeed able to capture structures in the graph more generally,
as is often argued in the literature. We proposed a new set of tasks similar to
link prediction to assess whether KGE models capture these different graph
properties, and generalized the standard entity ranking protocol to include
these (and any number of) tasks for model evaluation. We also generalized
the standard training approach based on link prediction to a proposed multi-
task training method that allows KGE models to be trained on any number
of tasks simultaneously, including link prediction. To efficiently train models
for some of these new types of tasks, we introduced the concept of wildcard
embeddings, which are a few additional parameters that effectively and
reliably extend the ability of KGE models to answer new types of queries
about graph structure.

To test our proposed methods, we conducted a large experimental study
where we included our proposed set of graph-structure prediction tasks as ad-
ditional training objectives. The results showed that with additional training
objectives, popular KGE models are able to capture more information about
the graph and thus significantly improve performance on graph-structure

108 CHAPTER 5. GRAPH-STRUCTURE PREDICTION

prediction tasks compared to models that only train with the standard link
prediction approach. This suggests that standard link prediction models do
not capture as much information in a KG as possible, and that new forms
of training KGE models may be more suitable for obtaining more general
representations of KGs.

In the next chapter, we explore the impact that capturing more information
about the graph has on the resulting learned representations when they are
used in downstream applications.

CHAPTER

SIX

DOWNSTREAM APPLICATIONS

In this chapter, we extend the questions we asked in Chapter 5 to also include
downstream applications. Despite being used as KG representations in
downstream applications, e.g. recommender systems (El-Kishky et al., 2022;
Wang et al., 2018a) and language models (He et al., 2020; Zhang et al., 2019b),
almost all previous research on KGEs models focuses on link prediction
performance as a way to select good KGE models. Thus, it is not well
understood how choices taken in model training and model selection affect
the usability of these KG representations in downstream applications. This
stands in contrast to the use of learned representations in other fields such as
natural language processing, where pre-training objectives are often designed
with downstream tasks in mind, and the quality of the learned representations
is assessed in downstream applications (Devlin et al., 2019; Mikolov et al.,
2013b).

Our goal is to explore the impact that different training approaches have
on the learned representations provided by KGE models in terms of how use-
ful they are in downstream applications. Specifically, we investigate whether
KGE models are suitable pre-trained representations for node-level down-
stream tasks such as entity classification (e.g., the profession of a person) or
regression (e.g., the average rating of a movie). To this end, we conducted
a large empirical study using 35 downstream tasks on three different KGs,
where we compared the performance of downstream models that use rep-
resentations from KGEs trained with the standard link prediction approach,

109

110 CHAPTER 6. DOWNSTREAM APPLICATIONS

and with our multi-task training (MTT) approach introduced in Chapter 5.

We found that KGE models trained with the standard approach often
perform decent on these tasks and, in fact, the best KGE models often (but not
always) exceed the performance of recent graph neural networks that train
directly on the downstream task, such as KE-GCN (Yu et al., 2021a). However,
the KGE models with best downstream task performance were often not the
best-performing models for link prediction. For example, we found that the
basic TransE model (Bordes et al., 2013b) can be superior to more recent KGE
models better suited for link prediction such as ComplEx (Trouillon et al.,
2016) or RotatE (Sun et al., 2019). This suggests that good link prediction
performance is not necessarily indicative of good downstream task perfor-
mance. This is another indication that, as seen in previous chapters, the focus
on link prediction is too narrow for pre-training KGE models, i.e., to provide
generally useful features for downstream applications.

We further we found that multi-task training often (but not always) im-
proved downstream performance. In fact, we found that excluding the link
prediction task during pre-training resulted in better downstream perfor-
mance more often than not. However, our results also show that capturing
more information about the graph does not directly translate to better down-
stream performance, as the more useful models were often those that were
pre-trained without using all available training tasks. In general, the best
choice of pre-training tasks depends on the dataset, KGE model class, and
type of downstream task, suggesting that more research is needed to bet-
ter understand the relation between capturing properties of the graph and
providing useful features for downstream applications.

This chapter is organized as follows. In Section 6.1 we briefly review how
KGE models are used in some downstream applications. We discuss our
experimental study in Section 6.2. We discuss related work in Section 6.3 and
summarize our contributions in Section 6.4.

6.1 Pre-Trained Knowledge Graph Representations

As illustrated in Figure 6.1, many applications use KGE models as repre-
sentations of knowledge graphs with the purpose of injecting structured
knowledge into their downstream pipelines. In this sense, KGEs are seen
as pre-trained models that encode the information in the KG. Generally, the

CHAPTER 6. DOWNSTREAM APPLICATIONS 111

Recommender Systems

Question Answering

Language Modeling

§
§
§

Knowledge Graph Learned Representations Downstream Applications

Figure 6.1: The KGE pipeline. The learned representations of knowledge
graphs are used to inject structured data into downstream applications.

learned entity and/or relation representations are used as feature vectors
in different ways, the specifics of which depend on the type of downstream
application. We describe some examples in the following.

El-Kishky et al. (2022) use KGE models as part of a wide variety of
recommender systems. The authors encode different types of interactions
between users and other components of their system into a knowledge graph.
They then embed this graph using TransE and the standard link prediction
training approach. They find that the additional information provided by
these pre-trained representations results in improvements across a range of
recommender tasks.

Ilyas et al. (2022) constructed a large knowledge graph with the purpose of
serving factual knowledge to several industry applications, such as question
answering systems. To improve this service, they learn representations of
this KG with TransE and DistMult using the standard training approach, and
apply vector-based similarity search to the learned representations for fact
ranking, fact verification and missing fact imputation.

Wang et al. (2021) proposed to jointly learn a language model and a KGE
model with the purpose of producing both a more factually accurate language
model and a text-enhanced KGE model that can make inductive predictions
(see Section 2.2.8) by creating representations of unseen entities based on
their textual descriptions. To this end, the authors combined the training
objectives of a masked language model and a KGE model, and conditioned
the representations of the KG entities to be generated by the same text encoder
used in the language model based on given textual descriptions of each entity.

Other examples of using KGE models as pre-trained representations

112 CHAPTER 6. DOWNSTREAM APPLICATIONS

include other approaches to training language models that incorporate the
knowledge encoded in the KG embeddings (He et al., 2020; Zhang et al.,
2019b), and visual models that use semantic information encoded in KGEs to
improve performance on the task of mapping images to their descriptions in
natural language (Baier et al., 2017).

Training for downstream applications. In general, there are different
approaches to training KGE models with the goal of using the resulting
representations in downstream applications. A more general approach is
to pre-train models on self-supervised tasks that encourage a model to
encode the information in a KG, so that it may later be used in downstream
applications. Such an approach is general in that no information about any
downstream task is used during pre-training. This may be beneficial because
(i) it may be expensive to pre-train the models, e.g. when learning on an
entire KG like Freebase (Zheng et al., 2020), and (ii) it may not be desirable to
include information about specific downstream tasks during training, as this
may impact the general usability of the representations on other downstream
applications that may not be known at the time of training.

An alternative to training only on self-supervised tasks, such as those
studied in Chapter 5, is to incorporate information about relevant down-
stream applications during training. This may be done by including them as
training objectives, or by performing model selection based on performance
on these tasks. Such an approach may be desirable when the application
scenario is clear, but as mentioned before, it is possible that such an approach
results in representations that favor some applications over others.

In the experimental study discussed in the next section, we take the more
general approach of training without downstream task information. While
we do test the impact of using performance on downstream applications for
model selection, we leave the general question on the impact of including
downstream applications during training for future work.

6.2 Experimental Study

We conducted a large experimental study with the goals of (i) assessing
performance of standard KGE models on downstream tasks, and (ii) assessing
the impact of different training approaches on downstream task performance.
We used the pre-trained models from our experimental study in Chapter 5

CHAPTER 6. DOWNSTREAM APPLICATIONS 113

Benchmark Name Train Validation Test

FB-237 Entity Type 6 719 – 1 680
Profession 2 537 – 635
Organization Type 342 – 86
Writer Type 136 – 34

YAGO3-10 Entity Type 69 592 – 17 398
Player Type 33 928 – 8 483
Profession 14 480 – 3 621
Writer Type 4 870 – 1 218
Scientist Type 2 041 – 511
Organization Type 1 248 – 312
Artists Type 520 – 130
Waterbody Type 195 – 49

Table 6.1: Statistics of datasets for entity classification downstream tasks used
to evaluate pre-trained KGEs.

as input features for several downstream models on a large number of
downstream task datasets. In order to observe the impact of pre-training
choices more generally, we aimed at providing results across a considerable
number of downstream tasks. Thus, our study focuses on simple classification
and regression tasks that use the KGE embeddings as input features. We
do not consider in this study applications such as recommender systems,
as these pipelines are generally more involved and require more effort to
implement and more expertise to analyze. This would make our study less
scalable, so we leave that for future work.

6.2.1 Experimental Settings

Downstream tasks. We collected or created data for 35 downstream tasks on
FB15K-237 (referred to as FB-237 for brevity), YAGO3-10 or WIKI5M. This
includes the datasets of Jain et al. (2021) for entity classification on FB-237 and
YAGO3-10, which aim to predict the types of entities at different granularities.
For regression, we use the datasets of Pezeshkpour et al. (2018) for YAGO3-10,
which consist of temporal prediction tasks (e.g., the year an event took place),
and the dataset of Huang et al. (2021) for node importance prediction. We

114 CHAPTER 6. DOWNSTREAM APPLICATIONS

Benchmark Name Train Validation Test

FB-237 Node Importance 9 877 1 380 2 823
Birth Year 3 538 442 444
Latitude 2 568 321 322
Longitude 2 560 320 322
Person Height 2 295 287 288
Size Area 1 731 216 218
Population 1 543 193 193
Film Release Year 1 493 186 188
Org Year Founded 985 123 124
Film Rating 591 73 75

YAGO3-10 Born on Year 60 409 – 6 730
Created on Year 23 896 – 2 638
Died on Year 13 582 – 1 513
Destroyed on Year 1 630 – 186
Happened on Year 749 – 73

WIKI5M Date of Birth 992 126 124 015 124 017
Album Publication 29 156 3 644 3 645
Asteroid Magnitude 16 722 2 090 2 091
River Length 10 092 1 261 1 262
Airport Elevation 9 054 1 131 1 133
Sports Season Start 7 631 953 955
Village Population 3 691 461 462
Municipality Area 3 158 394 396

Table 6.2: Statistics of datasets for regression downstream tasks.

also created several regression tasks for FB-237 from the multi-modal data
of García-Durán et al. (2018) by predicting literals associated to entities (e.g.,
a date, a person’s height, the rating of a movie). To create regression tasks for
WIKI5M, we followed the same approach using numerical relations extracted
from Wikidata (Van Veen, 2019). Datasets statistics are given in Tables 6.1
and 6.2.

KGE models. Since we are interested in pre-trained KGE models, we used
the KGE models trained for the experiments discussed in Section 5.4. Thus,
no information from downstream tasks was used for KGE model training
and selection; i.e. each of the pre-trained KGE models are used as input

CHAPTER 6. DOWNSTREAM APPLICATIONS 115

for each of the downstream tasks in our experiment. For model selection,
we selected STD models with LP task (represented by the standard entity
ranking evaluation protocol), but combined MTT models with the LP task or
the MTR task. Further improvements may be made by using downstream
tasks during training (Aribandi et al., 2022) at the cost, perhaps, of obtaining
less general representations, but we leave such exploration to future work.

We note that these are not the latest KGE models, but they can reach state-
of-the-art performance with reasonable embedding sizes (Ruffinelli et al.,
2020) and allow us to conduct a large-scale comparative study. Specifically,
RotatE and ComplEx are the methods of choice for low-cost embeddings
with good prediction performance (Ruffinelli et al., 2020; Sun et al., 2019),
and—with an increase in model size and/or training cost (Lacroix et al., 2018;
Chen et al., 2021c)—can perform as well as more involved state-of-the-art
models such as the transformer-based HittER model (Chen et al., 2021a).
Some recent models achieve better performance on link prediction, but these
are often models that focus exclusively on the link prediction task and do
not directly provide entity representations that can be used on downstream
applications. For example, the main idea with HittER is to add entity context
for link prediction and it is not immediately clear how to use such a model
for graph-structure prediction or downstream tasks. Similarly, the NBFNet
model (Zhu et al., 2021) exclusively focuses on link prediction and does
not provide entity embeddings for downstream models. Such models have
considerably higher training costs, which limits their ability to scale entire
large industry-scale KGs. It is because of scalability that simpler models are
often preferred in the industry (El-Kishky et al., 2022).

Downstream models. We use implementations from scikit-learn (Pe-
dregosa et al., 2011). Each model uses only the node embeddings of the
pre-trained KG model as input features. For classification, we use multi-
layer perceptrons (MLP), logistic regression, KNN, and random forests. For
regression, we use MLP and linear regression.

Downstream training. Each model was trained using 5-fold cross vali-
dation and selected based on mean validation performance across folds (we
discuss specific metrics below). We then retrained the selected model on
the union of the training and validation split (if present). To tune hyperpa-
rameters, we use 10 trials of random search with SOBOL sampling for each
downstream model. The search space for each downstream model is given in
Table 6.3. We treat the choice of downstream model as a hyperparameter.

116 CHAPTER 6. DOWNSTREAM APPLICATIONS

Model Hyperparameter Values

MLP Hidden Layer {(100,), (10,),
(100, 100), (10, 10)}

Alpha [0.00001, 0.001]
Learning Rate [0.001, 0.01]
Solver [Adam, LBFGS]

Logistic Regression C [100, 100000]

KNN n_neighbors [1, 10]

Random Forest num_estimators [10, 50, 100, 200]

Linear Regression Alpha [0.00001, 0.001]

KE-GCN Dimension {16, 32, 64}
Additional Layers {0, 1, 2}
Learning Rate {0.001, 0.005,

0.01, 0.05, 0.1}
Alpha {0.3, 0.5}

Table 6.3: Hyperparameter search space for training downstream models.
All hyperparameters except those of KE-GCN follow the semantics by scikit-
learn.

Downstream evaluation. For entity classification, we report weighted F1,
as in Jain et al. (2021), aggregated across all classification tasks (denoted EC).
For regression, we chose relative squared error (RSE), defined as follows:

RSE =
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − ȳ)2

(6.1)

where N is the number of evaluation examples, yi are targets to predict, ŷi
are model predictions, and ȳ = 1

N ∑n yi, i.e. the mean of targets to predict.
We chose RSE because it is interpretable and allows meaningful averaging
across the different regression tasks (denoted REG). An RSE value of 1 is
equivalent to the performance of a model that predicts the average of the
dependent variable in the evaluation data; lower values are better. For each
metric, we report the mean and standard deviation over 3 training runs of
the downstream model.

CHAPTER 6. DOWNSTREAM APPLICATIONS 117

Dataset Training Selection Downstream tasks
EC (↑) REG (↓)

FB-237 STD LP .873 .447
MTT LP .890 .394

YAGO3-10 STD LP .742 .447
MTT MTR .746 .441

WIKI5M STD* LP – .596
MTT MTR – .650

Table 6.4: Best performance on test data of down-
stream tasks with STD and MTT training. Underlined
entries show best performance per dataset. The results
suggest that none of the pre-training approaches are
beneficial across all datasets.

Downstream baselines. We include KE-GCN (Yu et al., 2021a), a recent
GNN with state-of-the-art results for graph alignment and entity classification.
In contrast to KGEs, this model is directly trained on the downstream task
(i.e., no pre-training) and needs to access the KG to perform predictions. For
regression tasks, we use a linear layer after the final convolutional layer of
KE-GCN, as this led to better performance in our experiments compared
to using a single dimensional output in the final convolution layer as done
by Huang et al. (2021). We tune hyperparameters using 30 SOBOL trials
(as for KGE models); the search space is shown in Table 6.3. For training,
evaluation, and model selection, we follow the approach for our downstream
models (e.g,. 5-fold CV).

6.2.2 Model Performance

Overall performance. Table 6.4 shows the best downstream performance
achieved by models that were pre-trained with STD and MTT training, each
with the model selection approach that resulted in the best performance (LP
or MTR). For each knowledge graph, column EC reports mean weighted F1
across all classification datasets, and column REG reports mean RSE across
all regression datasets.

118 CHAPTER 6. DOWNSTREAM APPLICATIONS

The results are different for each knowledge graph. On FB-237, pre-
training with MTT is more beneficial on both types of downstream tasks. On
YAGO3-10, both pre-training approaches provide similar results, while on
WIKI5M pre-training with STD is more beneficial. These results suggest
that neither STD nor MTT are generally suitable pre-training approaches
for optimizing downstream performance. For LP, this means that link
prediction is too restricted if the goal is using the learned representations
for downstream applications. For MTR, this means that capturing more of
the graph does not necessarily translate to better downstream performance.
We discuss these pre-training approaches as predictive of good downstream
performance further in Section 6.2.3. Note that in our study, MTR is computed
over the set of tasks used during pre-training (see Table 5.1), and that using a
different set of tasks during pre-training and/or model selection may provide
different results. We discuss the choice of pre-training tasks for optimizing
downstream application in Section 6.2.4.

Model performance. Table 6.5 shows mean performance and standard
deviation across all downstream tasks for each KGE model. As before,
bold entries show best performance per metric and evaluation method, and
underlined entries facilitate performance comparisons across the different
training approaches. We report performance for each individual downstream
task in Appendix D.

The best overall downstream task performance across all KGE models
was achieved by MTT in all cases, and often combined with the LP task
for model selection. While the margin compared to STD was sometimes
small (e.g., EC on YAGO3-10) and sometimes large (e.g., REG on FB1K-
237), STD training, i.e. training only for link prediction, resulted in better
downstream performance only a few times compared to MTT. Nevertheless,
for a given KGE model, STD training occasionally performed better than
MTT (e.g., DistMult and TransE on EC tasks for FB-237 and YAGO3-10,
respectively). Given the higher cost of MTT during pre-training, the trade-off
for downstream performance improvement may not always be beneficial.
Note that using MTT with a different set of pre-training tasks may be not
only be more efficient, but may result in better performance. Ultimately, we
conclude that the choice of pre-training objective clearly has an impact on
downstream performance, although it is currently unclear how to make
this choice in order to maximize downstream performance. Although we
explore this further in Section 6.2.4, our results show that pre-training KGEs

CHAPTER 6. DOWNSTREAM APPLICATIONS 119

Training Selection Downstream tasks
EC (↑) REG (↓)

FB-237 ComplEx STD LP .844±.008 .447±.051
MTT LP .858±.005 .394±.057

DistMult STD LP .873±.009 .551±.062
MTT LP .865±.005 .472±.026

RotatE STD LP .868±.003 .797±.286
MTT LP .890±.003 .573±.062

TransE STD LP .873±.015 .742±.287
MTT MTR .878±.009 .681±.095

KE-GCN .829±.526 .501±.001

YAGO3-10 ComplEx STD LP .712±.008 .589±.023
MTT MTR .729±.005 .459±.020

DistMult STD LP .734±.003 .519±.019
MTT LP .746±.006 .472±.029

RotatE STD LP .701±.002 .696±.018
MTT MTR .746±.001 .470±.017

TransE STD LP .742±.002 .447±.036
MTT LP .723±.004 .441±.029

KE-GCN .700±.223 .398±.008

WIKI5M ComplEx STD LP – .687±.032
MTT MTR – .720±.023

TransE STD LP – .596±.011
MTT MTR – 650±.018

KE-GCN† – –
† Not evaluated due to OOM.

Table 6.5: Average performance on test data of all downstream tasks
per dataset for models with STD and MTT training, as well as KE-
GCN by Yu et al. (2021a). Using STD models almost never results in
better downstream performance.

120 CHAPTER 6. DOWNSTREAM APPLICATIONS

for optimizing their use as KG representations is an open problem worthy
of more attention. In this thesis, we provide code and datasets to further
explore this issue.

Downstream baseline performance. Table 6.5 also includes our GNN-
based baseline KE-GCN (Yu et al., 2021a) that trains directly on the down-
stream tasks, i.e. it is not a pre-trained model. When comparing KGE
performance with KE-GCN, KGE models outperform KE-GCN almost ev-
ery time. The exception is REG on YAGO3-10, where KE-GCN outperforms
KGE models. These results suggest that the information captured by KGE
models during pre-training is useful for simple downstream models to not
only be competitive with, but even outperform, more involved downstream
models that train directly on the task.

6.2.3 Impact of Model Selection

Pre-training for downstream applications. Table 6.6 reports the performance
of all models on the two main self-supervised pre-training tasks: LP and MTR,
and on the two sets of downstream tasks: EC and REG. Each column reports
performance of the same set of 8 selected models as in previous sections. To
facilitate comparison of relative model performance across tasks, models are
sorted in decreasing order. Where applicable, we include KE-GCN.

The result show that neither LP nor MTR are suitable methods for model
selection when the goal is to optimize downstream performance. This is
clear because the best models for LP or MTR are almost never the best
models for EC or REG. In fact, models with weaker performance during
pre-training with both STD and MTT often performed competitively in
downstream tasks and sometimes even outperformed models with stronger
pre-training performance. For example, ComplEx considerably outperformed
RotatE and TransE on LP and MTR on both FB-237 and YAGO3-10, but both
models outperformed ComplEx on the EC tasks for those datasets. Similar
observations can be made about both REG tasks on YAGO3-10. The REG
tasks on FB-237 were an exception though; here higher performance during
pre-training translated to better performance on downstream tasks, as one
would expect. Generally, these results are problematic, as they suggest
that MTR and, perhaps more importantly, LP are often inadequate tasks
to guide the choice of the more suitable KGE model class for downstream
applications, a problem that needs further exploration in future work.

CHAPTER 6. DOWNSTREAM APPLICATIONS 121

Sorted Performance for each Pre-Training and Downstream Task
Graph-structure Downstream Tasks

LP (↑) MTR (↑) EC (↑) REG (↓)

FB
-2

37

Compl. STD .346 Compl. MTT .606 RotatE MTT .890 Compl. MTT .394
DistM. STD .342 RotatE MTT .598 TransE MTT .878 Compl. STD .447
Compl. MTT .331 DistM. MTT .577 TransE STD .873 DistM. MTT .472
TransE STD .330 TransE MTT .555 DistM. STD .873 KE-GCN .501
DistM. MTT .327 RotatE STD .342 RotatE STD .868 DistM. STD .551
RotatE MTT .314 TransE STD .332 DistM. MTT .865 RotatE MTT .573
RotatE STD .312 Compl. STD .274 Compl. MTT .858 TransE MTT .681
TransE MTT .288 DistM. STD .139 Compl. STD .844 TransE STD .742

KE-GCN .829 RotatE STD .797

YA
G

O
3-

10

Compl. STD .550 DistM. MTT .759 DistM. MTT .746 KE-GCN .398
DistM. STD .539 Compl. MTT .749 RotatE MTT .746 TransE MTT .441
Compl. MTT .538 RotatE MTT .482 TransE STD .742 TransE STD .447
DistM. MTT .536 TransE MTT .457 DistM. STD .734 Compl. MTT .459
TransE STD .504 RotatE STD .432 Compl. MTT .729 RotatE MTT .470
RotatE STD .436 DistM. STD .429 TransE MTT .723 DistM. MTT .472
RotatE MTT .427 Compl. STD .411 Compl. STD .712 DistM. STD .519
TransE MTT .048 TransE STD .349 RotatE STD .701 Compl. STD .589

KE-GCN .700 RotatE STD .696

Table 6.6: Sorted performance on graph-structure prediction and down-
stream tasks of KGE models, and KE-GCN (Yu et al., 2021a). Relative model
performance given by LP or MTR differs from that given by downstream
performance, suggesting that neither LP nor MTR are generally useful for
model selection.

122 CHAPTER 6. DOWNSTREAM APPLICATIONS

Selection Method
EC - Weighted F1 (↑) REG - RSE (↓)

LP MTR LP MTR

ComplEx STD .844 .858 .447 .545
DistMult STD .873 .836 .551 .686

Table 6.7: Performance on FB-237 downstream tasks for STD
training and two model selection approaches: LP and MTR.
On both types of tasks, the best performance is obtained by
combining STD training with LP model selection.

Further model selection approaches. For completeness, we also explored
the impact of further combinations of model selection methods with both
STD and MTT training. To explore whether there would be improvements in
STD models when selecting them based on performance on the MTR task,
Table 6.7 reports downstream performance of some KGE models using STD
training combined with either LP or MTR for model selection. We see that the
combination of STD with MTR leads to lower downstream performance
almost every time.

Model selection using downstream information. To explore whether
results can improve by using information from downstream tasks to select
models, Table 6.8 reports performance on FB-237 of some KGE models using
both training approaches with either LP for model selection (which consis-
tently provided better results for these models with both training approaches)
or by selecting directly on the metric used to evaluate the downstream task
(weighted F1 for entity classification and RSE for regression). We found that
model selection with the downstream task metric provides only marginal
benefits for both STD and MTT and can in fact be detrimental, likely due
to overfitting on validation data. This suggests that model selection without
information about downstream tasks—i.e., using LP or MTR—may be pre-
ferrable to using downstream information. This is convenient, as including
downstream information during pre-training or model selection would likely
make the resulting representations less general. In addition, it is often the
case that the downstream task is not known at the time of pre-training the
model (El-Kishky et al., 2022).

Overall, we found that full MTT training with LP for model selection was

CHAPTER 6. DOWNSTREAM APPLICATIONS 123

Selection Method
EC - Weighted F1 (↑) REG - RSE (↓)

LP Weighted F1 LP RSE

ComplEx STD .844 .850 .447 .437
MTT .858 .827 .394 .393

DistMult STD .873 .846 .551 .539
MTT .865 .864 .472 .476

Table 6.8: Performance on FB-237 downstream tasks for
different KGE model training (STD and MTT) and two model
selection approaches: LP and weighted F1 or RSE. Using
downstream task data for model selection provides only
marginal gains and is sometimes detrimental to downstream
performance, likely due to overfitting on validation data.

a suitable choice, but we show in the next section that further improvements
are possible by dataset-, model- and task-specific choices of pre-training task.

6.2.4 Impact of Pre-Training Task Selection

Table 6.9 summarizes our results from exploring the impact of pre-training
task selection and, in particular, whether all proposed MTT tasks are ben-
eficial. To keep computational costs feasible, we focused on FB-237. We
explored performance using MTT with all available pre-training tasks, and
MTT without either the LP, REL, DOM, NBE, or NBR pre-training task, as
well as without LP+REL or without DOM+NBR. In every case, we selected
best models based on their performance on MTR over the corresponding
set of pre-training tasks. We report only on the sets of tasks that provided
relevant results for our discussion. All combinations of pre-training tasks are
reported in Table D.8 in Appendix D.

We observe that the choice of training tasks can have a significant impact
on downstream performance and that good choices differ between KGE
models and the type of downstream task. For example, compared to full
MTT training, using a subset of tasks led to large improvements in almost
all cases, except for ComplEx on REG. That is, the best performance in most
cases is obtained by removing one of the tasks during training. In particular,

124 CHAPTER 6. DOWNSTREAM APPLICATIONS

Training Selection Downstream tasks
EC (↑) REG (↓)

ComplEx STD LP .844±.008 .447±.051
MTT MTR .843±.002 .412±.037
w/o LP MTR .870±.002 .512±.044
w/o NBE MTR .856±.002 .562±.038
w/o LP+REL MTR .849±.011 .542±.054

DistMult STD LP .873±.009 .551±.062
MTT MTR .857±.006 .482±.026
w/o LP MTR .861±.008 .522±.067
w/o DOM MTR .849±.002 .478±.027
w/o NBE MTR .844±.002 .524±.047

RotatE STD LP .868±.003 .797±.286
MTT MTR .847±.001 .704±.060
w/o LP MTR .874±.000 .661±.043
w/o DOM MTR .898±.001 .593±.078
w/o NBR MTR .863±.007 .552±.035

TransE STD LP .873±.015 .742±.287
MTT MTR .878±.009 .681±.095
w/o LP MTR .870±.000 .486±.027
w/o NBE MTR .884±.002 .463±.032
w/o NBR MTR .857±.007 .458±.024

Table 6.9: Performance on downstream tasks for FB-237 using
different pre-training objectives and model selection. Excluding
the LP task in pre-training often improves performance.

excluding the LP task during pre-training resulted in better downstream
performance compared to STD and full MTT training half of the time, sug-
gesting that including the LP task during pre-training can be detrimental
to downstream performance. These results show that including more
tasks during pre-training does not necessarily lead to higher downstream
performance, and they also provide more evidence that STD training is not
enough for good downstream task performance.

CHAPTER 6. DOWNSTREAM APPLICATIONS 125

0.50

0.55

0.60

0.65

0.70

0.75

W
ei

gh
te

d
F

1

ComplEx DistMult

100% 10 Shots 5 Shots 3 Shots

0.50

0.55

0.60

0.65

0.70

0.75

W
ei

gh
te

d
F

1

RotatE

100% 10 Shots 5 Shots 3 Shots

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 6.2: Few-shot performance of entity classification tasks for YAGO3-10
(higher is better). Each n-shot training set consists of n sampled positive and
negative examples for each class. The gap in performance between MTT and
STD models becomes larger as training data becomes less available.

6.2.5 Data Efficiency Tests

As part of our study, we also tested whether KGE models that capture more
information during training are more beneficial as pre-trained models when
there is a small amount of downstream data available. To this end, we
reduced the amount of training data in our downstream datasets in two
different ways.

First, we tested models in a few-shot scenario. That is the setting where
there are only a handful of examples available for the downstream task.
For classification, we sampled n positive and n negative examples per class,
where n ∈ {3, 5, 10}. Figure 6.2 shows the results for the YAGO3-10 classifi-
cation tasks (higher is better). We found that, indeed, as less data becomes
available, the average performance of STD models over the set of downstream

126 CHAPTER 6. DOWNSTREAM APPLICATIONS

0.40

0.60

0.80

1.00

1.20

1.40

R
S

E

ComplEx DistMult

100% 10% 5% 3%
0.40

0.60

0.80

1.00

1.20

1.40

R
S

E

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure 6.3: Performance of regression tasks for YAGO3-10 with downsampled
training sets (lower is better). Each training set was constructed by sampling
a percentage of the training set. The gap in performance between MTT and
STD models becomes larger as training data becomes less available.

classification tasks becomes considerably lower than when using pre-trained
models with MTT. The exception is TransE, where the performance difference
is not as significant, but it is still different from the setting with a complete
training set. We observed the same pattern in FB-237 (reported in Figure D.1
in Appendix D).

The few-shot scenario applied to regression tasks yielded unsatisfactory
models almost every time. We say this because almost all models gave an
RSE value considerably above 1. We thus constructed a different scenario
with scarce training data. We randomly sampled n% of the training set,
where again n ∈ {3, 5, 10}. Figure 6.3 shows the results for the YAGO3-10
regression tasks (lower is better). This time, MTT seems to be more beneficial
as training data becomes less available for Transe. For the other models, the
trend observed with a complete training set is mostly maintained. We do see

CHAPTER 6. DOWNSTREAM APPLICATIONS 127

more benefits in the FB-237 dataset, reported in Figure D.4 in Appendix D.
But these results on regression tasks show that it is not always evident that
MTT models are more beneficial with less training data. Still, at no point
do models pre-trained with STD become a better choice. In addition, when
applying this sampling setting to the classification datasets (reported in
Figures D.2 and D.2 in Appendix D), we observed the same pattern as in the
few-shot setting, albeit to a lesser extent. Overall, although not every time,
we observed the clear trend that MTT models become more beneficial than
STD models as less training data for downstream tasks becomes available,
especially for the classification tasks in our tests.

6.3 Related Work

To our knowledge, there is almost no prior work on studying embedding
quality in the context of KGE models.

Some studies focus on understanding KGE performance at a more fine-
grained level (Widjaja et al., 2022; Rim et al., 2021; Meilicke et al., 2018).
They do so by looking at link prediction performance on different types
of relations, e.g. symmetric relations. These studies focus on link predic-
tion performance and do not study the quality of resulting embeddings in
downstream applications.

More closely related to our work, Pezeshkpour et al. (2018) proposed
KGE models that can handle numerical relations, i.e. relations that associate
entities to numerical values, such as a person’s age or height. To test this
ability, they evaluated their models on regression tasks. We use their datasets
in our study. The work from Jain et al. (2021) is the most similar to the work
presented in this chapter. They evaluated the pre-trained embeddings from
our study in Chapter 3 (i.e. trained on link prediction) on entity classification
tasks. We also use their datasets in our study.

In this chapter, we expanded on the work from Jain et al. (2021) by using
a larger set of pre-training tasks, as well as more variety and a higher number
of downstream tasks. Further, our main focus is on the impact of different
pre-training objectives and model selection approaches on downstream task
performance.

128 CHAPTER 6. DOWNSTREAM APPLICATIONS

6.4 Summary

In this chapter, we studied the impact that different pre-training objectives
and model selection methods have on downstream task performance. For
this purpose, we conducted a large experimental study where we either
created, or collected from the literature, 35 different datasets for two different
types of downstream tasks: entity classification and regression. We tested
the performance of several downstream models that use KGE models as
input features to solve these downstream tasks. As pre-trained models, we
used KGE models that were trained with the standard link prediction (LP)
approach, as well as various forms of the multi-task training (MTT) approach
we proposed in Chapter 5.

We found that strong performance during pre-training with both LP
and MTT often does not translate to strong performance in downstream
applications. In addition, we found that using more tasks during pre-training
with MTT is often not the best choice, and that excluding the standard LP
task during pre-training often improves downstream performance. When
compared to performance of a GCN-based model that trains directly on
the downstream task, we found that KGEs often outperform this model,
suggesting that KGEs are useful pre-trained models for solving downstream
tasks at a reduced cost. In short, although our work makes a step toward
understanding the impact of pre-training objectives for KGE models, these
results also suggest that more research is needed on the relation between the
choice of training objectives and the suitability of resulting KGE models for
downstream applications.

CHAPTER

SEVEN

CONCLUSIONS

In this thesis, we proposed new training and evaluation methods for KGE
models and conduct several experimental studies that bring to light a few
issues with the current state of KGE research. First, we conduct a large-scale
experimental study that compares several popular KGE models all under
the same training conditions. We find that performance on link prediction,
the most commonly studied task for KGE models, is highly sensitive to
training conditions, and that new training settings, as opposed to new model
architectures, may account for much of the progress reported in recent years.
As evidence of this, our results show that, unlike previous results, models that
were released many years ago are competitive with, or even outperform, state-
of-the-art models when trained with more recent approaches. This highlights
the need for future studies to implement their own baselines instead of using
previously published results, as this provides a clearer picture of what each
experimental component contributes to the reported results.

In addition, we proposed new evaluation methods that highlight the
potentially negative impact that the focus on the link prediction task has on
KGE research. Namely, the entity-pair ranking protocol that is based on the
more general knowledge base completion task, and the multi-task ranking
protocol, designed to aggregate ranking performance over any number of
tasks. Our results with the entity-pair ranking protocol show that the link
prediction task, as commonly defined in the literature, is a constrained form
of predicting missing links, and thus not generally indicative of how useful a

129

130 CHAPTER 7. CONCLUSIONS

KGE model is when adding missing links to an incomplete knowledge graph.
Similarly, our results with the multi-task ranking evaluation, in combination
with a set of simple graph-structure prediction tasks we proposed, show that
link prediction is not indicative of a model’s ability to capture the general
properties in a knowledge graph, which is one of the main arguments behind
the study of KGE models. These results suggest that the focus on link
prediction is too narrow, especially if the goal is to learn generally useful
representations of knowledge graphs.

Finally, we proposed a generalized training approach that allows the
training of KGE models on multiple tasks simultaneously, and tested the
impact that different pre-training approaches have on downstream appli-
cations. Despite the use of KGE models as pre-trained representations of
knowledge graphs, ours is the first study that looks into the relation between
different pre-training approaches and model usability in downstream appli-
cations. We found that standard link prediction performance is not indicative
of good downstream performance, and that while using more tasks during
pre-training often yields better results, the best performance is not obtained
by pre-training models with as many tasks as possible. These results high-
light the need for more research into understanding how to pre-train KGE
models, so they provide generally useful representations for downstream
applications. To this end, we provide highly modular code and a suite of
benchmark datasets as part of the open source framework LibKGE, all of
which should be helpful for future research in this direction.

Future Work

As a result of this thesis, there are a number of interesting research directions
for future work. We briefly discuss some of them in the following.

Knowledge Base Completion

As discussed in Chapter 4, the knowledge base completion (KBC) task pro-
vides a way to more generally assess whether a model can successfully add
missing links to an existing knowledge graph. However, model performance
on this task is still quite low, especially when compared with rule-based
models that clearly outperform KGE models. Low performance on this task

CHAPTER 7. CONCLUSIONS 131

may result in models that add a considerable amount of noise when adding
new facts to a knowledge base.

Consequently, and much in the same way that link prediction guided
the design of training methods, the KBC task may inspire new types of
training approaches that could yield more useful models for knowledge
base completion. However, the gap in performance compared to rule-based
models as reported in Section 4.3 suggests that this is a challenging research
direction. Specific challenges may be the cost of the KBC task, which may
also translate to new training approaches, and the impact that the closed
world assumption commonly used in KGE research may have when dealing
with the entire known graph, as required for this task.

Pre-Training KGE Models

It is common in other fields such as natural language processing to test the
quality of pre-trained representations in downstream applications (Mikolov
et al., 2013b; Devlin et al., 2019). In addition, it is known that the choice
of pre-training objective has an impact on the resulting representations,
which is why pre-training objectives are often designed to fit a particular
goal (Devlin et al., 2019; Radford et al., 2018). Although we take the first
steps in studying similar effects in KGE models, our work highlights the
need to focus on this open problem if we aim at using KGE models as
pre-trained representations of knowledge graphs. To this end, new types
of training objectives may be tested either in isolation or combined with
existing ones using our proposed multi-task training approach. Existing
approaches that may provide interesting results may be KGE models that
are trained on multi-hop query answering (Arakelyan et al., 2020) or other
tasks that encourage models to capture different properties in the graph.
Similarly, training with supervised objectives may have a significant impact
on downstream performance, but perhaps at the expense of obtaining more
general representations. Such directions have already been explored in
natural language processing (Aribandi et al., 2022; Sanh et al., 2022).

Comparison to Graph Neural Networks

Graph neural networks (GCNs) have recently emerged as a family of mod-
els that can perform link prediction (Zhu et al., 2021) and other types of

132 CHAPTER 7. CONCLUSIONS

graph-related tasks, such as entity classification (Yu et al., 2021a) or graph
classification (Vashishth et al., 2020). In this work, we compared the use of
pre-trained KGE models with a state-of-the-art GCN-based model designed
for entity classification. However, given the overlap in tasks with KGE models,
a large-scale comparative study of KGE and GCN-based models would be
a suitable way to more generally compare and contrast the benefits of each
family of approaches. Existing comparative studies have already focused
on graph-neural networks for graph classification (Errica et al., 2019) and
link prediction on standard graphs (Li et al., 2023), but to our knowledge,
no large-scale study focuses on knowledge graph tasks, and includes KGE
models as baselines.

BIBLIOGRAPHY

Ralph Abboud, Ismail Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori.
Boxe: A box embedding model for knowledge base completion. Advances
in Neural Information Processing Systems, 2020.

Farahnaz Akrami, Lingbing Guo, Wei Hu, and Chengkai Li. Re-evaluating
embedding-based knowledge graph completion methods. In International
Conference on Information and Knowledge Management, 2018.

Marjan Albooyeh, Rishab Goel, and Seyed Mehran Kazemi. Out-of-sample
representation learning for knowledge graphs. In Findings of the Association
for Computational Linguistics (EMNLP 2020), 2020.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail
Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann.
Bringing light into the dark: A large-scale evaluation of knowledge graph
embedding models under a unified framework. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

Carl Allen, Ivana Balazevic, and Timothy Hospedales. Interpreting knowlege
graph relation representation from word embeddings. In International
Conference on Learning Representations (ICLR), 2021.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez.
Complex query answering with neural link predictors. In International
Conference on Learning Representations (ICLR), 2020.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng,
Sanket Vaibhav Mehta, Honglei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo

133

134 BIBLIOGRAPHY

Ni, et al. ExT5: Towards extreme multi-task scaling for transfer learning.
In International Conference on Learning Representations (ICLR), 2022.

Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction
to Description Logic. Cambridge, United Kingdom, 2017.

Stephan Baier, Yunpu Ma, and Volker Tresp. Improving visual relationship
detection using semantic modeling of scene descriptions. In International
Semantic Web Conference (ISWC), 2017.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. TuckER: Tensor factor-
ization for knowledge graph completion. In Empirical Methods in Natural
Language Processing (EMNLP), 2019.

Yoshua Bengio. Neural net language models. Scholarpedia, 2008.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic
language model. Advances in neural information processing systems, 2000.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 2012.

Kurt Bollacker, Robert Cook, and Patrick Tufts. Freebase: A shared database
of structured general human knowledge. In AAAI, 2007.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring
human knowledge. In International Conference on Management of Data ACM
SIGMOD, 2008.

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning
structured embeddings of knowledge bases. In AAAI Conference on Artificial
Intelligence, 2011.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A se-
mantic matching energy function for learning with multi-relational data:
Application to word-sense disambiguation. Machine Learning, 2013a.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational
data. In Advances in Neural Information Processing Systems (NIPS), 2013b.

BIBLIOGRAPHY 135

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer
Gemulla. Libkge-a knowledge graph embedding library for reproducible
research. In Empirical Methods in Natural Language Processing: System Demon-
strations (EMNLP), 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke,
Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
et al. Sparks of artificial general intelligence: Early experiments with gpt-4.
arXiv preprint arXiv:2303.12712, 2023.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you Always Wanted
to Know About Datalog (And Never Dared to Ask). IEEE Transactions on
Knowledge and Data Engineering, 1989.

David Chang, Ivana Balažević, Carl Allen, Daniel Chawla, Cynthia Brandt,
and Richard Andrew Taylor. Benchmark and best practices for biomedical
knowledge graph embeddings. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2020.

Spencer Chang. Scaling Knowledge Access and Retrieval at
Airbnb, 2018. URL https://medium.com/airbnb-engineering/
scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95.
Accessed: 2023-08-17.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and
Yangfeng Ji. HittER: Hierarchical transformers for knowledge graph em-
beddings. In Empirical Methods in Natural Language Processing (EMNLP),
2021a.

Yao Chen, Jiangang Liu, Zhe Zhang, Shiping Wen, and Wenjun Xiong.
Möbiuse: Knowledge graph embedding on möbius ring. Knowledge-Based
Systems, 2021b.

Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp.
Relation prediction as an auxiliary training objective for improving multi-
relational graph representations. In 3rd Conference on Automated Knowledge
Base Construction, 2021c.

Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski. Com-
pleteness Management for RDF Data Sources. ACM Trans. Web, 2018.

https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95
https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95

136 BIBLIOGRAPHY

Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte:
Hyperplane-based temporally aware knowledge graph embedding. In
Empirical Methods in Natural Language Processing (EMNLP), 2018.

Luc De Raedt. Logical and relational learning. Springer Science & Business
Media, 2008.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
Convolutional 2D knowledge graph embeddings. In AAAI Conference on
Artificial Intelligence, 2018.

Jacob Devlin, Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
In Conference of the North American Chapter of the Association for Computational
Linguistics (NA-ACL), 2019.

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual
learning. In International Conference on Computer Vision, 2017.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 2011.

Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin
Kim, Ramy Eskander, Yury Malkov, Frank Portman, Sofía Samaniego, Ying
Xiao, and Aria Haghighi. Twhin: Embedding the twitter heterogeneous
information network for personalized recommendation. In Conference on
Knowledge Discovery and Data Mining ACM SIGKDD, 2022.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair
comparison of graph neural networks for graph classification. In Interna-
tional Conference on Learning Representations (ICLR), 2019.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.
Amie: association rule mining under incomplete evidence in ontological
knowledge bases. In International Conference on World Wide Web (WWW),
2013.

Mikhail Galkin, Max Berrendorf, and Charles Tapley Hoyt. An open challenge
for inductive link prediction on knowledge graphs. In 2nd Workshop on
Graph Learning Benchmarks (GLB@WWW22), 2022.

BIBLIOGRAPHY 137

Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert. Learning
sequence encoders for temporal knowledge graph completion. In EMNLP,
2018.

Matt Gardner, Partha Talukdar, Jayant Krishnamurthy, and Tom Mitchell.
Incorporating vector space similarity in random walk inference over knowl-
edge bases. In Empirical Methods in Natural Language Processing (EMNLP),
2014.

Kiril Gashteovski, Rainer Gemulla, and Luciano del Corro. MinIE: Minimizing
Facts in Open Information Extraction. Association for Computational
Linguistics (ACL), 2017.

Aryo Pradipta Gema, Dominik Grabarczyk, Wolf De Wulf, Piyush Borole,
Javier Antonio Alfaro, Pasquale Minervini, Antonio Vergari, and Ajitha
Rajan. Knowledge graph embeddings in the biomedical domain: Are
they useful? a look at link prediction, rule learning, and downstream
polypharmacy tasks. arXiv preprint arXiv:2305.19979, 2023.

GOC. The Gene Ontology Resource: enriching a GOld mine. Nucleic Acids
Research, 2021.

GOC. GO FAQs, 2023. URL http://geneontology.org/docs/faq/. Accessed:
2023-03-15.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart.
Diachronic embedding for temporal knowledge graph completion. In AAAI
Conference on Artificial Intelligence, 2020.

Shu Guo, Quan Wang, Bin Wang, Lihong Wang, and Li Guo. Semantically
smooth knowledge graph embedding. In Annual Meeting of the Association
for Computational Linguistics and the International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2015.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embed-
ding knowledge graphs and logical rules. In Empirical Methods in Natural
Language Processing (EMNLP), 2016.

Ferras Hamad, Isaac Liu, and Xian Xing Zhang. Food Discovery with
Uber Eats: Building a Query Understanding Engine, 2018. URL https://
www.uber.com/en-DE/blog/uber-eats-query-understanding/. Accessed:
2023-08-17.

http://geneontology.org/docs/faq/
https://www.uber.com/en-DE/blog/uber-eats-query-understanding/
https://www.uber.com/en-DE/blog/uber-eats-query-understanding/

138 BIBLIOGRAPHY

Bin He, Di Zhou, Jinghui Xiao, Xin Jiang, Qun Liu, Nicholas Jing Yuan,
and Tong Xu. Bert-mk: Integrating graph contextualized knowledge into
pre-trained language models. In Findings of the Association for Computational
Linguistics EMNLP, 2020.

Qi He, Bee-Chung Chen, and Deepak Agarwal. Building The LinkedIn
Knowledge Graph, 2016. URL https://engineering.linkedin.com/blog/
2016/10/building-the-linkedin-knowledge-graph. Accessed: 2023-08-
17.

Geoffrey E Hinton. Distributed representations. 1984.

Pascal Hitzler. A review of the semantic web field. Communications of the
ACM, 2021.

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of
Semantic Web Technologies. 2010. URL http://www.semantic-web-book.
org/.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de
Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, et al. Knowledge Graphs. ACM Computing
Surveys (CSUR), 2021.

Han Huang, Leilei Sun, Bowen Du, Chuanren Liu, Weifeng Lv, and Hui
Xiong. Representation learning on knowledge graphs for node importance
estimation. In Conference on Knowledge Discovery & Data Mining (ACM
SIGKDD), 2021.

Ihab F Ilyas, Theodoros Rekatsinas, Vishnu Konda, Jeffrey Pound, Xiaoguang
Qi, and Mohamed Soliman. Saga: A platform for continuous construction
and serving of knowledge at scale. 2022.

Nitisha Jain, Jan-Christoph Kalo, Wolf-Tilo Balke, and Ralf Krestel. Do
embeddings actually capture knowledge graph semantics? In Extended
Semantic Web Conference (ESWC), 2021.

Dora Jambor, Komal Teru, Joelle Pineau, and William L Hamilton. Exploring
the limits of few-shot link prediction in knowledge graphs. In Conference of
the European Chapter of the Association for Computational Linguistics (E-ACL),
2021.

https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
http://www.semantic-web-book.org/
http://www.semantic-web-book.org/

BIBLIOGRAPHY 139

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A
survey on knowledge graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning Systems, 2021.

Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and Gerhard Weikum. Com-
plex temporal question answering on knowledge graphs. In International
Conference on Information & Knowledge Management (CIKM), 2021.

Armand Joulin, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache.
Learning visual features from large weakly supervised data. In European
Conference on Computer Vision (ECCV), 2016.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base comple-
tion: Baselines strike back. In 2nd Workshop on Representation Learning for
NLP (Rep4NLP@ACL), 2017.

Uday Kamath, John Liu, and James Whitaker. Deep learning for NLP and speech
recognition. Springer, 2019.

Seyed Mehran Kazemi and David Poole. Simple embedding for link pre-
diction in knowledge graphs. In Advances in Neural Information Processing
Systems (NIPS), 2018.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, 2009.

Bhushan Kotnis and Vivi Nastase. Learning knowledge graph embeddings
with type regularizer. In Knowledge Capture Conference, 2017.

Bhushan Kotnis and Vivi Nastase. Analysis of the impact of negative sampling
on link prediction in knowledge graphs. In 1st Workshop on Knowledge Base
Construction, Reasoning and Mining (KBCOM@WSDM), 2018.

Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. Answering complex
queries in knowledge graphs with bidirectional sequence encoders. In AAAI
Conference on Artificial Intelligence, 2021.

Arun Krishnan. Making Search Easier: How Amazon’s Product Graph
is Helping Customers Find Products More Easily. Amazon Blog,
August 17 2018. URL https://blog.aboutamazon.com/innovation/
making-search-easier.

https://blog.aboutamazon.com/innovation/making-search-easier
https://blog.aboutamazon.com/innovation/making-search-easier

140 BIBLIOGRAPHY

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical
tensor decomposition for knowledge base completion. In International
Conference on Machine Learning (ICML), 2018.

Ni Lao and William W Cohen. Relational retrieval using a combination of
path-constrained random walks. Machine Learning, 2010.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
2015.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt,
Abhijit Bose, and Alex Peysakhovich. PyTorch-BigGraph: A Large-scale
Graph Embedding System. In Conference on Systems and Machine Learning
(SysML), 2019.

Fengying Li, Mingdong Chen, and Rongsheng Dong. Multi-hop Question
Answering with Knowledge Graph Embedding in a Similar Semantic Space.
In International Joint Conference on Neural Networks (IJCNN), 2022.

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah,
Jiliang Tang, and Dawei Yin. Evaluating graph neural networks for
link prediction: Current pitfalls and new benchmarking. arXiv preprint
arXiv:2306.10453, 2023.

Zelong Li, Jianchao Ji, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Chong Chen,
and Yongfeng Zhang. Efficient non-sampling knowledge graph embedding.
In International Conference on World Wide Web (WWW), 2021.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning
entity and relation embeddings for knowledge graph completion. In AAAI
Conference on Artificial Intelligence, 2015.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. Analogical inference for multi-
relational embeddings. In International Conference on Machine Learning
(ICML), 2017.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier
Bousquet. Are GANs created equal? A large-scale study. In Advances in
Neural Information Processing Systems (NIPS), 2018.

BIBLIOGRAPHY 141

Jhomara Luzuriaga, Emir Munoz, Henry Rosales-Mendez, and Aidan Hogan.
Merging Web Tables for Relation Extraction with Knowledge Graphs. IEEE
Transactions on Knowledge and Data Engineering, 2021.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Explor-
ing the limits of weakly supervised pretraining. In European Conference on
Computer Vision (ECCV), 2018.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A
knowledge base from multilingual wikipedias. In 7th biennial conference on
innovative data systems research, 2014.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer
Gemulla, and Heiner Stuckenschmidt. Fine-Grained Evaluation of Rule-
and Embedding-based Systems for Knowledge Graph Completion. In
International Semantic Web Conference (ISWC), 2018.

Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner
Stuckenschmidt. Anytime Bottom-Up Rule Learning for Knowledge Graph
Completion. In International Joint Conference on Artificial Intelligence (IJCAI),
2019.

Christian Meilicke, Patrick Betz, and Heiner Stuckenschmidt. Why a naive
way to combine symbolic and latent knowledge base completion works sur-
prisingly well. In 3rd Conference on Automated Knowledge Base Construction,
2021.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of
evaluation in neural language models. In International Conference on Learning
Representations (ICLR), 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality.
Advances in neural information processing systems, 2013a.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Conference of the North American
Chapter of the Association for Computational Linguistics (NA-ACL), 2013b.

George A Miller. WordNet: A Lexical Database for English. Communications
of the ACM, 1995.

142 BIBLIOGRAPHY

Sameh Mohamed, Vít Nováček, Pierre-Yves Vandenbussche, and Emir Muñoz.
Loss functions in knowledge graph embedding models. In Workshop on
Deep Learning for Knowledge Graphs (DL4KG2019), 2019.

Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shiv-
aram Venkataraman. Marius: Learning massive graph embeddings on a
single machine. In Symposium on Operating Systems Design and Implementa-
tion ({OSDI}), 2021.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A
novel embedding model for knowledge base completion based on convo-
lutional neural network. In Conference of the North American Chapter of the
Association for Computational Linguistics (NA-ACL), 2018.

Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. A three-way
model for collective learning on multi-relational data. In International
Conference in Machine Learning (ICML), 2011.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A
Review of Relational Machine Learning for Knowledge Graphs. Proceedings
of the IEEE, 2015.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic em-
beddings of knowledge graphs. In AAAI Conference on Artificial Intelligence,
2016.

Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and
Jamie Taylor. Industry-scale knowledge graphs: Lessons and challenges:
Five diverse technology companies show how it’s done. Queue, 2019.

Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other
exchangeable random structures. IEEE transactions on pattern analysis and
machine intelligence, 2014.

Peter Orbanz and Yee Whye Teh. Bayesian nonparametric models. Encyclope-
dia of machine learning, 2010.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 2022.

BIBLIOGRAPHY 143

Alberto Paccanaro and Geoffrey E Hinton. Learning hierarchical structures
with linear relational embedding. Advances in neural information processing
systems, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 2011.

Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas
Steiner, and Lydia Pintscher. From Freebase to Wikidata: The Great Migra-
tion. In International Conference on World Wide Web (WWW), 2016.

Boya Peng, Yejin Huh, Xiao Ling, and Michele Banko. Improving Knowledge
Base Construction from Robust Infobox Extraction. In Conference of the North
American Chapter of the Association for Computational Linguistics (NA-ACL),
2019.

Pouya Pezeshkpour, Liyan Chen, and Sameer Singh. Embedding multimodal
relational data for knowledge base completion. In Empirical Methods in
Natural Language Processing (EMNLP), 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Im-
proving language understanding by generative pre-training. 2018.

Nils Reimers and Iryna Gurevych. Reporting score distributions makes a
difference: Performance study of LSTM-networks for sequence tagging. In
Empirical Methods in NaturalLanguage Processing (EMNLP), 2017.

Wiem Ben Rim, Carolin Lawrence, Kiril Gashteovski, Mathias Niepert, and
Naoaki Okazaki. Behavioral testing of knowledge graph embedding mod-
els for link prediction. In 3rd Conference on Automated Knowledge Base
Construction, 2021.

Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data
mining. In International Semantic Web Conference (ISWC), 2016.

Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical back-
ground knowledge into embeddings for relation extraction. In Conference
of the North American Chapter of the Association for Computational Linguistics
(NA-ACL), 2015.

144 BIBLIOGRAPHY

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and
Paolo Merialdo. Knowledge graph embedding for link prediction: A
comparative analysis. ACM Transactions on Knowledge Discovery from Data
(TKDD), 2021.

Daniel Ruffinelli and Rainer Gemulla. Beyond Link Prediction: On Pre-
Training Knowledge Graph Embeddings. 2023. Under Submission.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You CAN Teach
an Old Dog New Tricks! On Training Knowledge Graph Embeddings. In
International Conference on Learning Representations (ICLR), 2020.

Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph
Completion Benchmark. In Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Farnood Salehi, Robert Bamler, and Stephan Mandt. Probabilistic knowledge
graph embeddings. In 1st Symposium on Advances in Approximate Bayesian
Inference (AABI), 2018.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika,
Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
et al. Multitask prompted training enables zero-shot task generalization.
In International Conference on Learning Representations (ICLR), 2022.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg,
Ivan Titov, and Max Welling. Modeling relational data with graph convolu-
tional networks. In Extended Conference in Semantic Web (ESWC), 2018.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
End-to-end structure-aware convolutional networks for knowledge base
completion. In AAAI Conference on Artificial Intelligence, 2019.

Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for sublin-
ear time maximum inner product search (MIPS). In Advances in Neural
Information Processing Systems (NIPS), 2014.

Saurabh Shrivastava. Bring Rich Knowledge of People, Places,
Things and Local Businesses to your Apps, 2017. URL
https://blogs.bing.com/search-quality-insights/2017-07/
bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps.
Accessed: 2023-08-17.

https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps

BIBLIOGRAPHY 145

Ajit P Singh and Geoffrey J Gordon. Relational learning via collective matrix
factorization. In International Conference on Knowledge Discovery and Data
Mining ACM SIGKDD, 2008.

Amit Singhal. Introducing the Knowledge Graph: Things, not
Strings, 2012. URL https://blog.google/products/search/
introducing-knowledge-graph-things-not/. Accessed: 2023-08-17.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng.
Reasoning with neural tensor networks for knowledge base completion.
Advances in neural information processing systems, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 2014.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A Core of
Semantic Knowledge. In International Conference on World Wide Web (WWW),
2007.

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-
to-tail: How knowledgeable are large language models (llm)? a.k.a. will
llms replace knowledge graphs? arXiv preprint arXiv:2308.10168, 2023.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowl-
edge graph embedding by relational rotation in complex space. In Interna-
tional Conference on Learning Representations (ICLR), 2019.

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming
Yang. A re-evaluation of knowledge graph completion methods. In Annual
Meeting of the Association for Computational Linguistics (ACL), 2020.

Richard Szeliski. Computer vision: algorithms and applications. Springer Nature,
2022.

Kristina Toutanova and Danqi Chen. Observed versus latent features for
knowledge base and text inference. In 3rd Workshop on Continuous Vector
Space Models and their Compositionality (CVSC@ACL), 2015.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

146 BIBLIOGRAPHY

Faisal Azhar, et al. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guil-
laume Bouchard. Complex embeddings for simple link prediction. In
International Conference on Machine Learning (ICML), 2016.

Théo Trouillon, Éric Gaussier, Christopher R Dance, and Guillaume Bouchard.
On inductive abilities of latent factor models for relational learning. Journal
of Artificial Intelligence Research, 2019.

Theo Van Veen. Wikidata. Information technology and libraries, 2019.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar.
Composition-based multi-relational graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2020.

Denny Vrandečić and Markus Krötzsch. Wikidata: A Free Collaborative
Knowledgebase. Communications of the ACM, 2014.

W3C. SPARQL 1.1 Query Language, 2013. URL https://www.w3.org/TR/
sparql11-query/. Accessed: 2023-03-15.

W3C. RDF 1.1 Concepts and Abstract Syntax, 2014. URL https://www.w3.
org/TR/rdf11-concepts/. Accessed: 2023-03-15.

Brian Walsh, Sameh K Mohamed, and Vít Nováček. BioKG: A Knowledge
Graph for Relational Learning on Biological Data. In International Conference
on Information & Knowledge Management, 2020.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. Dkn: Deep
knowledge-aware network for news recommendation. In International
Conference of the World Wide Web (WWW), 2018a.

Jie Wang, Zhanqiu Zhang, Zhihao Shi, Jianyu Cai, Shuiwang Ji, and Feng Wu.
Duality-Induced Regularizer for Semantic Matching Knowledge Graph
Embeddings. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022a.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering, 2017.

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

BIBLIOGRAPHY 147

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan
Liu, Juanzi Li, and Jian Tang. KEPLER: A unified model for knowledge
embedding and pre-trained language representation. Transactions of the
Association for Computational Linguistics, 2021.

Xintao Wang, Qianyu He, Jiaqing Liang, and Yanghua Xiao. Language
models as knowledge embeddings. In International Joint Conference on
Artificial Intelligence (IJCAI), 2022b.

Yanjie Wang, Rainer Gemulla, and Hui Li. On multi-relational link prediction
with bilinear models. In AAAI Conference on Artificial Intelligence, 2018b.

Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, Samuel Broscheit, and Chris-
tian Meilicke. On Evaluating Embedding Models for Knowledge Base Com-
pletion. In 4th Workshop on Representation Learning for NLP (Rep4NLP@ACL),
2019. Received Outstanding Paper Award.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In AAAI Conference on
Artificial Intelligence, 2014.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural Information Processing
Systems, 2022.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta,
and Dekang Lin. Knowledge base completion via search-based question
answering. In International Conference on World Wide Web (WWW), 2014.

Haris Widjaja, Kiril Gashteovski, Wiem Ben Rim, Pengfei Liu, Christo-
pher Malon, Daniel Ruffinelli, Carolin Lawrence, and Graham Neubig.
KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models. In Empirical Methods in Natural
Language Processing: System Demonstrations (EMNLP), 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A Comprehensive Survey on Graph Neural Networks.
IEEE transactions on neural networks and learning systems, 2020.

148 BIBLIOGRAPHY

Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. Ssp: semantic space
projection for knowledge graph embedding with text descriptions. In AAAI
Conference on Artificial Intelligence, 2017.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy. An Interpretable
Knowledge Transfer Model for Knowledge Base Completion. In Annual
Meeting of the Association for Computational Linguistics (ACL), 2017.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Repre-
sentation learning of knowledge graphs with entity descriptions. In AAAI
Conference on Artificial Intelligence, 2016.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge
bases. In International Conference on Learning Representations (ICLR), 2015.

Donghan Yu, Yiming Yang, Ruohong Zhang, and Yuexin Wu. Knowledge
embedding based graph convolutional network. In International Conference
on the World Wide Web (WWW), 2021a.

Jinxing Yu, Yunfeng Cai, Mingming Sun, and Ping Li. Mquade: a unified
model for knowledge fact embedding. In International Conference on World
Wide Web (WWW), 2021b.

Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and Liang Wang. Learning
latent relations for temporal knowledge graph reasoning. In Annual Meeting
of the Association for Computational Linguistics (ACL), 2023.

Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, and Huajun
Chen. Interaction embeddings for prediction and explanation in knowledge
graphs. In ACM International Conference on Web Search and Data Mining
(WSDM), 2019a.

Zhanqiu Zhang, Jie Wang, Jieping Ye, and Feng Wu. Rethinking graph
convolutional networks in knowledge graph completion. In International
Conference on World Wide Web (WWW), 2022.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun
Liu. Ernie: Enhanced language representation with informative entities. In
Annual Meeting of the Association for Computational Linguistics (ACL), 2019b.

BIBLIOGRAPHY 149

Yu Zhao, Sheng Gao, Patrick Gallinari, and Jun Guo. Zero-shot embedding for
unseen entities in knowledge graph. IEICE TRANSACTIONS on Information
and Systems, 2017.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao
Xiong, Zheng Zhang, and George Karypis. DGL-KE: Training Knowledge
Graph Embeddings at Scale. In ACM Conference on Research and Development
in Information Retrieval (SIGIR), 2020.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang.
Neural bellman-ford networks: A general graph neural network framework
for link prediction. 2021.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Heng-
shu Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer
learning. Proceedings of the IEEE, 2021.

150 BIBLIOGRAPHY

LIST OF ALGORITHMS

2.1 Entity Ranking (ER) Evaluation Protocol 25

2.2 Negative Sampling Training . 28

3.1 1vsAll Training . 46

3.2 KvsAll Training . 47

4.1 Entity-Pair Ranking (PR) Evaluation Protocol 72

5.1 Extended Score Function (accepts wildcards) 91

5.2 Multi-task Training (MTT) . 93

151

152 LIST OF ALGORITHMS

LIST OF FIGURES

2.1 Example of a small knowledge graph 8

3.1 Distribution of filtered MRR (%) on validation data over the
quasi-random hyperparameter configurations explored in our
study. 57

3.2 Distribution of filtered MRR (%) on validation data over the
quasi-random hyperparameter configurations for different train-
ing type and loss functions. Use of the CE loss generally leads
to better hyperparameter configurations. 60

3.3 Best filtered MRR (%) on validation data achieved during quasi-
random search as a function of the number of training epochs.
Changes in the corresponding “best-so-far” hyperparameter
configuration are marked with a dot. The best choice for
hyperparameter configuration was clear in less than 200 epochs,
most of the time. 62

4.1 Candidate entities considered by different evaluation protocols
for a given query involving relation k. Green cells are target
entities, blue cells are candidate entities, gray cells are filtered
out (observed) entities. (a) Entity Ranking (ER): given query
(ki1, k, ?), ER considers all candidates in the same column and
row as target entity kij. (b) Entity-Pair Ranking (PR): given
query (?, k, ?), PR considers all possible candidate triples for
relation k. 73

153

154 LIST OF FIGURES

4.2 Hits@K with PR as a function of K 80

6.1 The KGE pipeline. The learned representations of knowledge
graphs are used to inject structured data into downstream
applications. 107

6.2 Few-shot performance of entity classification tasks for YAGO3-
10 (higher is better). Each n-shot training set consists of n
sampled positive and negative examples for each class. The
gap in performance between MTT and STD models becomes
larger as training data becomes less available. 121

6.3 Performance of regression tasks for YAGO3-10 with down-
sampled training sets (lower is better). Each training set was
constructed by sampling a percentage of the training set. The
gap in performance between MTT and STD models becomes
larger as training data becomes less available. 122

A.1 Distribution of filtered MRR (on validation data, quasi-random
search only) for different batch sizes (top row: FB15K-237,
bottom row: WNRR) . 167

A.2 Distribution of filtered MRR (on validation data, quasi-random
search only) for different embedding sizes (top row: FB15K-237,
bottom row: WNRR) . 168

A.3 Distribution of filtered MRR (on validation data, quasi-random
search only) for different optimizers (top row: FB15K-237,
bottom row: WNRR) . 169

A.4 Distribution of filtered MRR (on validation data, quasi-random
search only) for different initializers (top row: FB15K-237,
bottom row: WNRR) . 170

A.5 Distribution of filtered MRR (on validation data, quasi-random
search only) with and without reciprocal relations (top row:
FB15K-237, bottom row: WNRR) 171

A.6 Distribution of filtered MRR (on validation data, quasi-random
search only) with and without dropout (top row: FB15K-237,
bottom row: WNRR) . 172

B.1 MAP@K with PR as a function of K. 173

LIST OF FIGURES 155

D.1 Few-shot performance of entity classification tasks for FB15K-
237 (higher is better). Each n-shot training set consists of n
sampled positive and negative examples for each class. . . . 176

D.2 Performance on entity classification for FB15K-237 with down-
sampled training sets (higher is better). Each training set was
constructed by sampling (stratified) a percentage of the training
set. 177

D.3 Performance on entity classification for YAGO3-10 with down-
sampled training sets (higher is better). Each training set was
constructed by sampling (stratified) a percentage of the training
set. 178

D.4 Performance of regression tasks for FB15K-237 with down-
sampled training sets (lower is better). Each training set was
constructed by sampling a percentage of the training set. . . 179

156 LIST OF FIGURES

LIST OF TABLES

2.1 Knowledge graph from Figure 2.1 as a set of triples 9

2.2 Mathematical notation used throughout this thesis. 13

2.3 Statistics of benchmark datasets used throughout this thesis. . 40

3.1 Selected KGE models and training strategies from the literature.
Entries marked in bold were introduced (or first used) in the
context of KGE in the corresponding publication. 44

3.2 Statistics of datasets used in this study. 50

3.3 Hyperparameter search space used in our study. Settings that
apply only to certain configurations are indicated in parenthesis. 51

3.4 Model performance on test data in prior studies and our study.
We report MRR and Hits@10 (H@10). First: first reported
performance on each dataset (oldest models first); Ours: per-
formance in our study; Recent: best performance of selected
models obtained in recent studies; Large: best performance
achieved in prior studies using more expensive models (not
part of our search space). Bold numbers indicate best perfor-
mance in group. References indicate where the performance
number was reported. Results for TransE and RotatE on FB15K
and WN18 were not available in prior studies. 53

3.5 Mean and standard deviation of the validation data perfor-
mance over five runs of each model using its best hyperpa-
rameter configuration. Most models are very stable, with low
standard deviation. 56

157

158 LIST OF TABLES

3.6 Hyperparameters of best performing models after quasi-random
hyperparameter search and Bayesian optimization w.r.t. fil-
tered MRR on validation data. For each hyperparameter, we
also give the reduction in filtered MRR for the best configu-
ration that does not use this value of the hyperparameter (in
parenthesis). 59

3.7 Comparison of model performance metrics when filtering out
evaluation triples that contain entities not included in the
training set (w/o unseen). 63

3.8 Comparison of performance metrics on validation data both
without as well as with filtering with test data (fwt) of models
selected with (ComplEx fwt) and without (ComplEx) using
filtering with test data for model selection. 64

3.9 Example to illustrate the problem of filtering predictions with
test data. Blue indicates correct predictions according to met-
rics on validation data. Red indicates incorrect predictions. If
we select between two models using Hits@3 without filtering
predicted test triples, both models have the same performance.
But if we filter out predicted test triples, Model B performs
better, so we promote the model based on its performance of
test data. 65

4.1 Statistics of datasets used in this study. 74

4.2 Results with the entity ranking protocol (ER), which assesses
LP performance. We report test data MRR and Hits@10 (H@10).
Bold entries show best KGE model performance per dataset. 77

4.3 Results with the entity-pair ranking protocol (PR), which as-
sesses KBC performance. We report test data MAP@100 and
Hits@100 (H@100). Bold entries show best KGE model perfor-
mance per dataset. 78

4.4 Number of test triples in the top-100 filtered predictions on
WN18. An estimate of the number of true triples in the top-100
list is given in parentheses. 79

4.5 Results with PR using type filtering (K = 100). 82

LIST OF TABLES 159

4.6 Comparison of Entity-Pair Ranking (PR) performance between
models in Table 4.3 (including RuleN) and an implementation
with LibKGE that followed the same experimental settings as
in Section 3.2.1. We report test data MAP@100 and Hits@100
(H@100). Bold entries show best performance per dataset.
Results from RuleN are included again for reference. 83

5.1 Graph-structure prediction tasks used for self-supervised pre-
training and evaluation along with example queries. Here ?
denotes the prediction target and ∗ acts as a wildcard. 89

5.2 Statistics of datasets used in this study. 94

5.3 Hyperparameter search space for pre-training KGE models.
Restrictions for RotatE and TransE are due to higher memory
consumption and runtime. 96

5.4 Best performance with STD and MTT training on test data
of graph-structure prediction tasks. Bold entries show best
performance per task and dataset. MTT outperforms STD
training all tasks almost every time, suggesting that standard
KGE models do not capture general information about the
graph unless trained for this purpose. 97

5.5 Performance on test data of graph-structure prediction tasks
with STD and MTT training. Bold entries show best perfor-
mance per task and dataset. Underlined entries show best
performance between STD and MTT. MTR is more suitable
than LP for representing models that capture a graph more
generally. 99

5.6 Average training epoch time in seconds over first 5 epochs of
best models with STD and MTT training. All tests were done
with an 11th gen. Intel Core i7-11700K, 64GB of RAM and an
NVIDIA GeForce RTX 3090. 100

160 LIST OF TABLES

5.7 Performance on test data of graph-structure prediction and
downstream tasks for FB-237 of STD with LP model selection
and various forms of multi-task training, all using MTR for
model selection. Objectives such as w/o LP are MTT objectives
with all tasks in Table 5.1 except one, in this case, LP. Results
show that excluding the LP task during pre-training often
results in improved downstream performance, and that using
all pre-training tasks is often not the best choice. 101

6.1 Statistics of datasets for entity classification downstream tasks
used to evaluate pre-trained KGEs. 109

6.2 Statistics of datasets for regression downstream tasks. 110

6.3 Hyperparameter search space for training downstream mod-
els. All hyperparameters except those of KE-GCN follow the
semantics by scikit-learn. 112

6.4 Best performance on test data of downstream tasks with STD
and MTT training. Underlined entries show best performance
per dataset. The results suggest that none of the pre-training
approaches are beneficial across all datasets. 113

6.5 Average performance on test data of all downstream tasks per
dataset for models with STD and MTT training, as well as
KE-GCN by Yu et al. (2021a). Using STD models almost never
results in better downstream performance. 115

6.6 Sorted performance on graph-structure prediction and down-
stream tasks of KGE models, and KE-GCN (Yu et al., 2021a).
Relative model performance given by LP or MTR differs from
that given by downstream performance, suggesting that neither
LP nor MTR are generally useful for model selection. 116

6.7 Performance on FB-237 downstream tasks for STD training
and two model selection approaches: LP and MTR. On both
types of tasks, the best performance is obtained by combining
STD training with LP model selection. 118

LIST OF TABLES 161

6.8 Performance on FB-237 downstream tasks for different KGE
model training (STD and MTT) and two model selection ap-
proaches: LP and weighted F1 or RSE. Using downstream task
data for model selection provides only marginal gains and is
sometimes detrimental to downstream performance, likely due
to overfitting on validation data. 118

6.9 Performance on downstream tasks for FB-237 using different
pre-training objectives and model selection. Excluding the LP
task in pre-training often improves performance. 119

A.1 Hyperparameters of best performing models found after quasi-
random hyperparameter optimization and Bayesian optimiza-
tion. All other hyperparameters are the same as in Tables A.3
(FB15K-237) and A.4 (WNRR). 161

A.2 Hyperparameters of best performing models found after quasi-
random hyperparameter optimization and Bayesian optimiza-
tion. All other hyperparameters are the same as in Tables A.5
(FB15K) and A.6 (WN18). 162

A.3 Hyperparameters of best models found with random search on
FB15K-237. For each hyperparameter, we show in parenthesis
the reduction in MRR for the best configuration that does not
use this value. 163

A.4 Hyperparameters of best models found with random search
on WNRR. For each hyperparameter, we show in parenthesis
the reduction in MRR for the best configuration that does not
use this value. 164

A.5 Hyperparameters of best models found with random search
on FB15K. For each hyperparameter, we show in parenthesis
the reduction in MRR for the best configuration that does not
use this value. 165

A.6 Hyperparameters of best models found with random search
on WN18. For each hyperparameter, we show in parenthesis
the reduction in MRR for the best configuration that does not
use this value. 166

162 LIST OF TABLES

C.1 Performance on test data of graph-structure prediction and
downstream tasks for FB-237 of STD with LP model selection
and various forms of multi-task training, all using MTR for
model selection. 175

D.1 Weighted F1 on test data of downstream classifiers (MLP, Logis-
tic Regression, KNN and Random Forest) that use pre-trained
KGE embeddings as input to solve entity classification tasks
about entities in FB15K-237; and KE-GCN (Yu et al., 2021a), a
GCN that trains directly on the downstream data. Datasets are
sorted by decreasing size of the training set from left to right. 180

D.2 Weighted F1 on test data of downstream classifiers (MLP, Logis-
tic Regression, KNN and Random Forest) that use pre-trained
KGE embeddings as input to solve entity classification tasks
about entities in YAGO3-10; and KE-GCN (Yu et al., 2021a), a
GCN that trains directly on the downstream data. Datasets are
sorted by decreasing size of the training set from left to right. 181

D.3 Part 1: Relative squared error (RSE) on test data of downstream
models (MLP and Linear Regression) that use pre-trained KGE
embeddings as input to solve regression tasks about entities in
FB15K-237; and KE-GCN (Yu et al., 2021a), a GCN that trains
directly on the downstream data. Models with RSE above 1 are
considered unsatisfactory. Datasets are sorted by decreasing
size of the training set from left to right. 182

D.4 Part 2: Relative squared error (RSE) on test data of downstream
models (MLP and Linear Regression) that use pre-trained KGE
embeddings as input to solve regression tasks about entities in
FB15K-237; and KE-GCN (Yu et al., 2021a), a GCN that trains
directly on the downstream data. Models with RSE above 1 are
considered unsatisfactory. Datasets are sorted by decreasing
size of the training set from left to right. 183

LIST OF TABLES 163

D.5 Relative squared error (RSE) on test data of downstream mod-
els (MLP and Linear Regression) that use pre-trained KGE
embeddings as input to solve regression tasks about entities in
YAGO3-10; and KE-GCN (Yu et al., 2021a), a GCN that trains
directly on the downstream data. Models with RSE above 1 are
considered unsatisfactory. Datasets are sorted by decreasing
size of the training set from left to right. 184

D.6 Part 1: Relative squared error (RSE) on test data of downstream
models (MLP and Linear Regression) that use pre-trained KGE
embeddings as input to solve regression tasks about entities
in WIKIDATA5M; Models with RSE above 1 are considered
unsatisfactory. Datasets are sorted by decreasing size of the
training set from left to right. 185

D.7 Part 2: Relative squared error (RSE) on test data of downstream
models (MLP and Linear Regression) that use pre-trained KGE
embeddings as input to solve regression tasks about entities
in WIKIDATA5M; Models with RSE above 1 are considered
unsatisfactory. Datasets are sorted by decreasing size of the
training set from left to right. 186

D.8 Performance on downstream tasks for FB-237 using different
pre-training objectives and model selection. Excluding the LP
task in pre-training often improves performance. 187

164 LIST OF TABLES

APPENDICES

A Additional Material for Chapter 3

RESCAL TransE DistMult ComplEx ConvE RotatE

FB
15

K
-2

37

Learning rate 0.00074 0.12197 0.15954 0.18255 0.00428 0.22032
Sched. patience 1 6 6 7 9 6
Ent. reg. weight 4.70−11 1.40−07 1.41−09 6.70−09 4.30−15 1.01−06

Rel. reg. weight 7.34−13 9.25−17 4.10−15 4.13−14 1.12−14 9.90−18

Ent. emb. dropout 0.43 0.02 0.42 0.50 0.00 0.00
Rel. emb. dropout 0.16 0.00 0.41 0.23 0.12 0.00
Proj. drop. (ConvE) – – – – 0.50 –
Ft. map drop. (ConvE) – – – – 0.49 –

W
N

R
R

Learning rate 0.00085 0.10666 0.33127 0.52558 0.00162 0.20986
Sched. patience 8 6 7 5 1 6
Ent. reg. weight 1.37−14 1.51−07 1.25−12 4.52−06 1.08−08 1.01−06

Rel. reg. weight 2.57−15 2.92−18 1.53−14 4.19−10 9.52−11 1.57−17

Ent. emb. dropout 0.00 0.00 0.37 0.36 0.00 0.00
Rel. emb. dropout 0.24 0.00 0.50 0.31 0.23 0.00
Proj. drop. (ConvE) – – – – 0.15 –
Ft. map drop. (ConvE) – – – – 0.33 –

Table A.1: Hyperparameters of best performing models found after quasi-
random hyperparameter optimization and Bayesian optimization. All other
hyperparameters are the same as in Tables A.3 (FB15K-237) and A.4 (WNRR).

165

RESCAL TransE DistMult ComplEx ConvE RotatE

FB
15

K

Learning rate 0.07879 0.03905 0.00054 0.04934 0.11317 0.38031
Sched. patience 7 5 6 8 3 4
Ent. reg. weight 2.32−06 9.60−11 2.34−13 5.99−06 5.50−18 4.57−09

Rel. reg. weight 2.42−03 9.53−18 7.85−08 6.83−17 2.41−06 1.53−15

Ent. emb. dropout 0.30 0.02 0.00 0.15 0.16 0.00
Rel. emb. dropout 0.21 0.00 0.11 0.00 0.44 0.00
Proj. drop. (ConvE) – – – – 0.07 –
Ft. map drop. (ConvE) – – – – 0.16 –

W
N

18

Learning rate 0.16402 0.00300 0.01491 0.09452 0.00100 0.46028
Sched. patience 6 2 6 3 6 4
Ent. reg. weight 5.12−09 5.98−19 7.96−16 1.70−02 4.81−16 1.07−08

Rel. reg. weight 2.53−08 7.62−17 7.38−19 3.72−08 6.32−14 5.95−16

Ent. emb. dropout 0.47 0.07 0.00 0.09 0.00 0.00
Rel. emb. dropout 0.39 0.00 0.05 0.00 0.00 0.00
Proj. drop. (ConvE) – – – – 0.18 –
Ft. map drop. (ConvE) – – – – 0.47 –

Table A.2: Hyperparameters of best performing models found after quasi-
random hyperparameter optimization and Bayesian optimization. All other
hyperparameters are the same as in Tables A.5 (FB15K) and A.6 (WN18).

166

R
ES

C
A

L
Tr

an
sE

D
is

tM
ul

t
C

om
pl

Ex
C

on
vE

R
ot

at
E

FB15K-237M
ea

n
M

R
R

36
.1

33
.5

35
.0

35
.3

34
.3

34
.0

Em
be

dd
in

g
si

ze
12

8
(-

0.
5)

51
2

(-
2.

8)
25

6
(-

0.
2)

25
6

(-
0.

3)
25

6
(-

0.
4)

25
6

(-
2.

0)
Tr

ai
ni

ng
ty

pe
1v

sA
ll

(-
0.

8)
N

eg
Sa

m
p

–
N

eg
Sa

m
p

(-
0.

2)
N

eg
Sa

m
p

(-
0.

3)
1v

sA
ll

(-
0.

4)
N

eg
Sa

m
p

–
R

ec
ip

ro
ca

l
N

o
(-

0.
5)

Ye
s

(-
3.

0)
Ye

s
(-

0.
3)

Ye
s

(-
0.

3)
Ye

s
–

Ye
s

(-
2.

0)
Sa

m
pl

es
su

b
(N

eg
Sa

m
p)

–
2

55
7

55
7

–
25

Sa
m

pl
es

ob
j(

N
eg

Sa
m

p)
–

56
36

7
36

7
–

29
2

La
b.

Sm
oo

th
.(

K
vs

A
ll)

–
–

–
–

–
–

Lo
ss

C
E

(-
0.

9)
C

E
(-

2.
8)

C
E

(-
3.

1)
C

E
(-

3.
8)

C
E

(-
0.

4)
BC

E
(-

2.
3)

M
ar

gi
n

(M
R

)
–

–
–

–
–

–
L p

-n
or

m
(T

ra
ns

E)
–

L2
–

–
–

–
O

pt
im

iz
er

A
da

m
(-

0.
5)

A
da

gr
ad

(-
2.

8)
A

da
gr

ad
(-

0.
2)

A
da

gr
ad

(-
0.

5)
A

da
gr

ad
(-

1.
5)

A
da

gr
ad

(-
2.

7)
Ba

tc
h

si
ze

51
2

(-
0.

5)
12

8
(-

2.
8)

10
24

(-
0.

2)
10

24
(-

0.
3)

10
24

(-
0.

4)
12

8
(-

2.
3)

Le
ar

ni
ng

ra
te

0.
00

06
3

0.
04

12
2

0.
14

11
8

0.
14

11
8

0.
00

37
3

0.
22

03
2

Sc
he

d.
pa

ti
en

ce
1

(-
0.

5)
6

(-
2.

8)
9

(-
0.

2)
9

(-
0.

3)
5

(-
0.

4)
6

(-
2.

0)
L p

re
g.

L2
(-

0.
5)

L2
(-

2.
8)

L3
(-

0.
2)

L3
(-

0.
3)

L3
(-

0.
4)

L2
(-

2.
5)

En
t.

em
b.

w
ei

gh
t

5.
82
−

12
1.

32
−

07
1.

55
−

10
1.

55
−

10
1.

55
−

11
1.

01
−

06

R
el

.e
m

b.
w

ei
gh

t
6.

77
−

11
3.

72
−

18
3.

93
−

15
3.

93
−

15
7.

91
−

12
9.

90
−

18

Fr
eq

.w
ei

gh
t

Ye
s

(-
0.

5)
N

o
(-

2.
8)

Ye
s

(-
0.

3)
Ye

s
(-

0.
3)

Ye
s

(-
1.

5)
N

o
(-

2.
0)

Em
b.

no
rm

.(
Tr

an
sE

)
En

ti
ty

–
N

o
–

–
–

–
R

el
at

io
n

–
N

o
–

–
–

–
D

ro
po

ut
En

t.
em

b.
0.

37
0.

00
0.

46
0.

46
0.

00
0.

00
R

el
.e

m
b.

0.
28

0.
00

0.
36

0.
36

0.
10

0.
00

Pr
oj

.(
C

on
vE

)
–

–
–

–
0.

19
–

Fe
at

.m
ap

(C
on

vE
)

–
–

–
–

0.
49

–
Em

b.
in

it
.

N
or

m
al

(-
0.

8)
X

vN
or

m
(-

2.
8)

U
ni

f.
(-

0.
2)

U
ni

f.
(-

0.
5)

X
vN

or
m

(-
0.

4)
X

vN
or

m
(-

2.
0)

St
d.

de
v.

(N
or

m
al

)
0.

80
62

0
–

–
–

–
–

In
te

rv
al

(U
ni

f)
–

–
[-

0.
85

,0
.8

5]
[-

0.
85

,0
.8

5]
–

–

Ta
bl

e
A

.3
:H

yp
er

pa
ra

m
et

er
s

of
be

st
m

od
el

s
fo

un
d

w
ith

ra
nd

om
se

ar
ch

on
FB

15
K

-2
37

.F
or

ea
ch

hy
pe

rp
ar

am
et

er
,

w
e

sh
ow

in
pa

re
nt

he
si

s
th

e
re

du
ct

io
n

in
M

R
R

fo
r

th
e

be
st

co
nfi

gu
ra

ti
on

th
at

do
es

no
t

us
e

th
is

va
lu

e.

167

R
ESC

A
L

TransE
D

istM
ult

C
om

plEx
C

onvE
R

otatE

WNRR M
ean

M
R

R
46.8

23.0
45.4

47.6
44.3

47.7
Em

bedding
size

128
(-1.0)

512
(-0.9)

512
(-1.1)

128
(-1.0)

512
(-1.2)

256
(-3.7)

Training
type

K
vsA

ll(-1.0)
N

egSam
p

–
K

vsA
ll(-1.1)

1vsA
ll(-1.0)

K
vsA

ll(-1.2)
N

egSam
p

–
R

eciprocal
Yes

(-1.0)
Yes

(-2.1)
Yes

(-1.1)
N

o
(-1.0)

Yes
–

Yes
(-1.9)

Sam
ples

sub
(N

egSam
p)

–
2

–
–

–
25

Sam
ples

obj(N
egSam

p)
–

56
–

–
–

292
Lab.Sm

ooth.(K
vsA

ll)
0.30

–
0.21

–
-0.29

–
Loss

C
E

(-2.0)
C

E
(-3.4)

C
E

(-2.4)
C

E
(-3.5)

C
E

(-1.4)
BC

E
(-2.4)

M
argin

(M
R

)
–

–
–

–
–

–
L

p -norm
(TransE)

–
L2

–
–

–
–

O
ptim

izer
A

dam
(-1.2)

A
dag.(-2.6)

A
dag.(-1.5)

A
dag.(-1.5)

A
dam

(-1.4)
A

dag.(-1.9)
Batch

size
128

(-1.0)
128

(-0.9)
1024

(-1.1)
512

(-1.0)
1024

(-1.3)
128

(-2.4)
Learning

rate
0.00160

0.04122
0.25575

0.50338
0.00160

0.22032
Sched.patience

8
(-1.0)

6
(-0.9)

6
(-1.1)

7
(-1.0)

1
(-1.2)

6
(-1.9)

L
p

reg.
L3

(-1.2)
L2

(-0.9)
L3

(-1.1)
L2

(-1.0)
L1

(-1.2)
L2

(-1.9)
Ent.em

b.w
eight

3.82 −
20

1.32 −
07

1.34 −
10

1.48 −
18

3.70 −
12

1.01 −
06

R
el.em

b.w
eight

7.47 −
05

3.72 −
18

6.38 −
16

1.44 −
18

6.56 −
10

9.90 −
18

Freq.w
eigh

N
o

(-1.0)
N

o
(-0.9)

Yes
(-1.1)

N
o

(-1.0)
N

o
(-1.4)

N
o

(-1.9)
Em

b.norm
.(TransE)

Ent.
–

N
o

–
–

–
–

R
el.

–
N

o
–

–
–

–
D

ropout
Ent.em

b.
0.00

0.00
0.12

0.05
0.00

0.00
R

el.em
b.

0.00
0.00

0.36
0.44

0.23
0.00

Proj.(C
onvE)

–
–

–
–

0.09
–

Feat.m
ap

(C
onvE)

–
–

–
–

0.42
–

Em
b.init.

U
nif.(-1.0)

X
vN

orm
(-2.1)

U
nif.(-1.3)

U
nif.(-1.5)

X
vN

orm
(-1.4)

X
vN

orm
(-1.9)

Std.dev.(N
orm

al)
–

–
–

–
–

–
Interval(U

nif)
[-0.31,0.31]

–
[-0.81,0.81]

[-0.31,0.31]
–

–

Table
A

.4:H
yperparam

eters
ofbestm

odels
found

w
ith

random
search

on
W

N
R

R
.For

each
hyperparam

eter,w
e

show
in

parenthesis
the

reduction
in

M
R

R
for

the
best

configuration
that

does
not

use
this

value.

168

R
ES

C
A

L
Tr

an
sE

D
is

tM
ul

t
C

om
pl

Ex
C

on
vE

R
ot

at
E

FB15KM
ea

n
M

R
R

64
.6

68
.2

84
.0

83
.8

82
.1

78
.2

Em
be

dd
in

g
si

ze
25

6
(-

3.
4)

51
2

(-
18

.1
)

51
2

(-
1.

2)
25

6
(0

.0
)

51
2

(-
5.

6)
25

6
(-

15
.7

)
Tr

ai
ni

ng
ty

pe
1v

sA
ll

(-
8.

3)
N

eg
Sa

m
p

–
1v

sA
ll

(-
5.

9)
1v

sA
ll

(-
7.

2)
K

vs
A

ll
(-

0.
2)

N
eg

Sa
m

p
–

R
ec

ip
ro

ca
l

N
o

(-
3.

4)
Ye

s
(-

18
.1

)
Ye

s
(-

1.
2)

N
o

(0
.0

)
Ye

s
–

Ye
s

(-
15

.7
)

Sa
m

pl
es

su
b

(N
eg

Sa
m

p)
–

11
–

–
–

49
Sa

m
pl

es
ob

j(
N

eg
Sa

m
p)

–
3

–
–

–
36

1
La

b.
Sm

oo
th

.(
K

vs
A

ll)
–

–
–

–
0.

25
–

Lo
ss

C
E

(-
7.

3)
BC

E
(-

15
.4

)
C

E
(-

3.
1)

C
E

(-
1.

7)
BC

E
(-

0.
2)

C
E

(-
8.

7)
M

ar
gi

n
(M

R
)

–
–

–
–

–
–

L p
-n

or
m

(T
ra

ns
E)

–
L1

–
–

–
–

O
pt

im
iz

er
A

da
gr

ad
(-

4.
0)

A
da

gr
ad

(-
23

.3
)

A
da

m
(-

1.
2)

A
da

gr
ad

(0
.0

)
A

da
gr

ad
(-

0.
2)

A
da

gr
ad

(-
15

.7
)

Ba
tc

h
si

ze
51

2
(-

3.
7)

25
6

(-
15

.4
)

10
24

(-
1.

2)
25

6
(0

.0
)

51
2

(-
0.

4)
51

2
(-

8.
7)

Le
ar

ni
ng

ra
te

0.
01

95
8

0.
00

82
6

0.
00

03
4

0.
06

94
9

0.
17

38
4

0.
46

02
8

Sc
he

d.
pa

ti
en

ce
4

(-
3.

4)
9

(-
15

.4
)

7
(-

1.
2)

8
(0

.0
)

4
(-

0.
2)

4
(-

8.
7)

L p
re

g.
L2

(-
4.

1)
L1

(-
15

.4
)

L2
(-

2.
0)

L2
(-

1.
4)

L2
(-

0.
2)

L3
(-

15
.7

)
En

t.
em

b.
w

ei
gh

t
8.

06
−

11
1.

36
−

11
9.

58
−

13
9.

56
−

07
5.

14
−

20
1.

07
−

08

R
el

.e
m

b.
w

ei
gh

t
7.

19
−

18
9.

91
−

20
2.

29
−

02
2.

56
−

17
2.

49
−

06
5.

95
−

16

Fr
eq

.w
ei

gh
t

Ye
s

(-
3.

4)
Ye

s
(-

15
.4

)
Ye

s
(-

1.
2)

N
o

(0
.0

)
Ye

s
(-

0.
2)

N
o

(-
15

.7
)

Em
b.

no
rm

.(
Tr

an
sE

)
En

t.
–

L2
–

–
–

–
R

el
.

–
L2

–
–

–
–

D
ro

po
ut

En
t.

em
b.

0.
16

0.
03

0.
08

0.
00

0.
16

0.
00

R
el

.e
m

b.
0.

09
0.

00
0.

06
0.

00
0.

46
0.

00
Pr

oj
.(

C
on

vE
)

–
–

–
–

0.
03

–
Fe

at
.m

ap
(C

on
vE

)
–

–
–

–
0.

16
–

Em
b.

in
it

.
N

or
m

al
(-

3.
4)

N
or

m
al

(-
15

.4
)X

vN
or

m
(-

1.
2)

X
vU

ni
f

(0
.0

)
X

vN
or

m
(-

0.
4)

N
or

m
al

(-
8.

7)
St

d.
de

v.
(N

or
m

al
)

0.
00

02
0

0.
00

00
3

–
–

–
0.

12
24

7
In

te
rv

al
(U

ni
f)

–
–

–
–

–
–

Ta
bl

e
A

.5
:H

yp
er

pa
ra

m
et

er
s

of
be

st
m

od
el

s
fo

un
d

w
ith

ra
nd

om
se

ar
ch

on
FB

15
K

.F
or

ea
ch

hy
pe

rp
ar

am
et

er
,w

e
sh

ow
in

pa
re

nt
he

si
s

th
e

re
du

ct
io

n
in

M
R

R
fo

r
th

e
be

st
co

nfi
gu

ra
ti

on
th

at
do

es
no

t
us

e
th

is
va

lu
e.

169

R
ESC

A
L

TransE
D

istM
ult

C
om

plEx
C

onvE
R

otatE

WN18 M
ean

M
R

R
94.7

60.9
93.9

95.0
94.6

94.6
Em

bedding
size

256
(-0.3)

256
(-1.4)

512
(0.1)

512
(-0.1)

128
(-0.0)

256
(-0.8)

Training
type

1vsA
ll(-0.3)

N
egSam

p
–

1vsA
ll(-4.4)

K
vsA

ll(-0.1)
1vsA

ll(-0.1)
N

egSam
p

–
R

eciprocal
Yes

(-0.3)
Yes

(-1.4)
Yes

(-9.8)
Yes

(-0.1)
Yes

–
Yes

(-0.8)
Sam

ples
sub

(N
egSam

p)
–

87
–

–
–

49
Sam

ples
obj(N

egSam
p)

–
26

–
–

–
361

Lab.Sm
ooth.(K

vsA
ll)

–
–

–
0.21

–
–

Loss
C

E
(-1.5)

C
E

(-8.0)
C

E
(-9.8)

C
E

(-0.5)
C

E
(-0.1)

C
E

(-0.5)
M

argin
(M

R
)

–
–

–
–

–
–

L
p -norm

(TransE)
–

L1
–

–
–

–
O

ptim
izer

A
dagrad

(-0.3)
A

dagrad
(-1.4)

A
dagrad

(-1.1)A
dagrad

(-0.2)
A

dam
(-0.1)

A
dagrad

(-0.8)
Batch

size
256

(-0.3)
512

(-1.4)
128

(0.1)
1024

(-0.1)
1024

(-0.0)
512

(-0.5)
Learning

rate
0.06949

0.00299
0.01068

0.25575
0.00089

0.46028
Sched.patience

8
(-0.3)

2
(-1.4)

6
(0.1)

6
(-0.1)

4
(-0.0)

4
(-0.5)

L
p

reg.
L2

(-0.3)
L3

(-1.4)
L3

(0.1)
L3

(-0.1)
L2

(-0.0)
L3

(-0.7)
Ent.em

b.w
eight

9.56 −
07

6.67 −
20

4.08 −
17

1.34 −
10

8.63 −
17

1.07 −
08

R
el.em

b.w
eight

2.56 −
17

1.68 −
15

8.78 −
16

6.38 −
16

2.51 −
14

5.95 −
16

Freq.w
eight

N
o

(-0.3)
Yes

(-8.0)
N

o
(0.1)

Yes
(-0.1)

N
o

(-0.1)
N

o
(-0.8)

Em
b.norm

.(TransE)
Ent.

–
N

o
–

–
–

–
R

el.
–

L2
–

–
–

–
D

ropout
Ent.em

b.
0.00

0.16
0.00

0.12
0.00

0.00
R

el.em
b.

0.00
0.00

0.16
0.36

0.00
0.00

Proj.(C
onvE)

–
–

–
–

0.09
–

Feat.m
ap

(C
onvE)

–
–

–
–

0.46
–

Em
b.init.

X
vU

nif(-0.3)
X

vN
orm

(-2.1)
N

orm
al(-0.4)

U
nif.(-0.1)

X
vN

orm
(-0.1)

N
orm

al(-0.5)
Std.dev.(N

orm
al)

–
–

0.00322
–

–
0.12247

Interval(U
nif)

–
–

–
[-0.81,0.81]

–
–

Table
A

.6:H
yperparam

eters
of

bestm
odels

found
w

ith
random

search
on

W
N

18.For
each

hyperparam
eter,w

e
show

in
parenthesis

the
reduction

in
M

R
R

for
the

best
configuration

that
does

not
use

this
value.

170

0

10

20

30

Va
lid

at
io

n
M

RR

FB
15

K-
23

7

RESCAL TransE DistMult ComplEx ConvE RotatE

0

10

20

30

40

Va
lid

at
io

n
M

RR

W
NR

R

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB
15

K

128256512
1024

0

20

40

60

80

Va
lid

at
io

n
M

RR

W
N1

8

128256512
1024 128256512

1024 128256512
1024 128256512

1024 128256512
1024

Figure A.1: Distribution of filtered MRR (on validation data, quasi-random
search only) for different batch sizes (top row: FB15K-237, bottom row:
WNRR)

171

0

10

20

30

Va
lid

at
io

n
M

RR

FB
15

K-
23

7

RESCAL TransE DistMult ComplEx ConvE RotatE

0

10

20

30

40

Va
lid

at
io

n
M

RR

W
NR

R

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB
15

K

128 256 512

0

20

40

60

80

Va
lid

at
io

n
M

RR

W
N1

8

128 256 512 128 256 512 128 256 512 128 256 512 128 256 512

Figure A.2: Distribution of filtered MRR (on validation data, quasi-random
search only) for different embedding sizes (top row: FB15K-237, bottom row:
WNRR)

172

0

10

20

30

Va
lid

at
io

n
M

RR

FB
15

K-
23

7

RESCAL TransE DistMult ComplEx ConvE RotatE

0

10

20

30

40

Va
lid

at
io

n
M

RR

W
NR

R

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB
15

K

Adagrad
Adam

0

20

40

60

80

Va
lid

at
io

n
M

RR

W
N1

8

Adagrad
Adam

Adagrad
Adam

Adagrad
Adam

Adagrad
Adam

Adagrad
Adam

Figure A.3: Distribution of filtered MRR (on validation data, quasi-random
search only) for different optimizers (top row: FB15K-237, bottom row:
WNRR)

173

0

10

20

30

Va
lid

at
io

n
M

RR

FB
15

K-
23

7

RESCAL TransE DistMult ComplEx ConvE RotatE

0

10

20

30

40

Va
lid

at
io

n
M

RR

W
NR

R

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB
15

K

Normal
Unif.
XvNorm

XvUnif
0

20

40

60

80

Va
lid

at
io

n
M

RR

W
N1

8

Normal
Unif.
XvNorm

XvUnif
Normal

Unif.
XvNorm

XvUnif
Normal

Unif.
XvNorm

XvUnif
Normal

Unif.
XvNorm

XvUnif
Normal

Unif.
XvNorm

XvUnif

Figure A.4: Distribution of filtered MRR (on validation data, quasi-random
search only) for different initializers (top row: FB15K-237, bottom row:
WNRR)

174

0

10

20

30

Va
lid

at
io

n
M

RR

FB
15

K-
23

7
RESCAL TransE DistMult ComplEx RotatE

0

10

20

30

40

Va
lid

at
io

n
M

RR

W
NR

R

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB
15

K

No Rec. Rec.
0

20

40

60

80

Va
lid

at
io

n
M

RR

W
N1

8

No Rec. Rec.
No Rec. Rec.

No Rec. Rec.
No Rec. Rec.

Figure A.5: Distribution of filtered MRR (on validation data, quasi-random
search only) with and without reciprocal relations (top row: FB15K-237,
bottom row: WNRR)

175

0

10

20

30

Va
lid

at
io

n
M

RR

FB
15

K-
23

7

RESCAL TransE DistMult ComplEx ConvE RotatE

0

10

20

30

40

Va
lid

at
io

n
M

RR

W
NR

R

0

20

40

60

80

Va
lid

at
io

n
M

RR

FB
15

K

No Dropout
Dropout

0

20

40

60

80

Va
lid

at
io

n
M

RR

W
N1

8

No Dropout
Dropout

No Dropout
Dropout

No Dropout
Dropout

No Dropout
Dropout

No Dropout
Dropout

Figure A.6: Distribution of filtered MRR (on validation data, quasi-random
search only) with and without dropout (top row: FB15K-237, bottom row:
WNRR)

176

B Additional Material for Chapter 4

0.0

0.2

0.4

0.6

0.8

1.0

M
AP

@
K

FB15K

M
AP

@
K

WN18

0 200 400 600 800 1000
K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
AP

@
K

FB15K-237

0 200 400 600 800 1000
K

M
AP

@
K

WNRR

Analogy
DistMult
TransE
Complex
RESCAL
RuleN

Figure B.1: MAP@K with PR as a function of K.

177

C Additional Material for Chapter 5

178

Training Selection Graph-structure prediction (↑)
LP REL DOM NBE NBR MTR

ComplEx STD LP .346 .805 .423 .016 .046 .274
MTT MTR .331 .977 .773 .210 .925 .606
w/o LP MTR .154 .972 .831 .200 .932 .579
w/o REL MTR .322 .831 .831 .159 .927 .590
w/o DOM MTR .327 .966 .713 .198 .915 .586
w/o NBE MTR .315 .958 .850 .005 .936 .575
w/o NBR MTR .325 .967 .795 .199 .874 .595
w/o LP+REL MTR .001 .009 .843 .177 .939 .436
w/o DOM+NBR MTR .330 .970 .074 .199 .107 .266

DistMult STD LP .342 .388 .045 .009 .036 .139
MTT MTR .327 .939 .780 .142 .879 .577
w/o LP MTR .159 .954 .826 .087 .937 .553
w/o REL MTR .323 .857 .827 .057 .932 .571
w/o DOM MTR .323 .948 .703 .106 .914 .560
w/o NBE MTR .316 .928 .848 .003 .937 .571
w/o NBR MTR .325 .956 .801 .112 .775 .554
w/o LP+REL MTR .000 .019 .837 .108 .937 .420
w/o DOM+NBR MTR .307 .955 .136 .147 .279 .299

RotatE STD LP .312 .919 .581 .051 .136 .342
MTT MTR .314 .964 .813 .160 .922 .598
w/o LP MTR .204 .914 .842 .126 .928 .568
w/o REL MTR .272 .887 .846 .137 .924 .583
w/o DOM MTR .319 .965 .661 .170 .883 .559
w/o NBE MTR .301 .960 .813 .003 .912 .558
w/o NBR MTR .318 .964 .710 .168 .673 .522
w/o LP+REL MTR .012 .031 .842 .124 .916 .424
w/o DOM+NBR MTR .322 .945 .016 .166 .019 .221

TransE STD LP .330 .900 .624 .038 .054 .332
MTT MTR .288 .960 .708 .112 .911 .555
w/o LP MTR .271 .968 .781 .138 .901 .572
w/o REL MTR .307 .944 .698 .124 .906 .557
w/o DOM MTR .325 .965 .626 .126 .879 .542
w/o NBE MTR .330 .966 .801 .012 .904 .562
w/o NBR MTR .329 .966 .723 .125 .790 .545
w/o LP+REL MTR .149 .930 .821 .116 .924 .550
w/o DOM+NBR MTR .312 .962 .360 .129 .580 .414

Table C.1: Performance on test data of graph-structure prediction and
downstream tasks for FB-237 of STD with LP model selection and
various forms of multi-task training, all using MTR for model selection.

179

D Additional Material for Chapter 6

0.76

0.78

0.80

0.82

0.84

0.86

0.88

W
ei

gh
te

d
F

1

ComplEx DistMult

100% 10 Shots 5 Shots 3 Shots
0.76

0.78

0.80

0.82

0.84

0.86

0.88

W
ei

gh
te

d
F

1

RotatE

100% 10 Shots 5 Shots 3 Shots

TransE

 STD LP
 MTT MTR
 MTT LP

Figure D.1: Few-shot performance of entity classification tasks for FB15K-237
(higher is better). Each n-shot training set consists of n sampled positive and
negative examples for each class.

180

0.73

0.75

0.78

0.80

0.83

0.85

0.88

W
ei

gh
te

d
F

1

ComplEx DistMult

100% 10% 5% 3%
0.73

0.75

0.78

0.80

0.83

0.85

0.88

W
ei

gh
te

d
F

1

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure D.2: Performance on entity classification for FB15K-237 with down-
sampled training sets (higher is better). Each training set was constructed by
sampling (stratified) a percentage of the training set.

181

0.55

0.60

0.65

0.70

0.75

W
ei

gh
te

d
F

1

ComplEx DistMult

100% 10% 5% 3%
0.55

0.60

0.65

0.70

0.75

W
ei

gh
te

d
F

1

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure D.3: Performance on entity classification for YAGO3-10 with down-
sampled training sets (higher is better). Each training set was constructed by
sampling (stratified) a percentage of the training set.

182

0.50

1.00

1.50

2.00

2.50

R
S

E

ComplEx DistMult

100% 10% 5% 3%

0.50

1.00

1.50

2.00

2.50

R
S

E

RotatE

100% 10% 5% 3%

TransE

 STD LP
 MTT MTR
 MTT LP

Figure D.4: Performance of regression tasks for FB15K-237 with downsam-
pled training sets (lower is better). Each training set was constructed by
sampling a percentage of the training set.

183

FB15K
-237

Entity
C

lassification
(W

eighted
F1

-higher
is

better)
Type

Profession
O

rganization
W

riter

C
om

plEx
STD

+LP
.986±

.001
.808±

.011
.921±

.021
.661±

.000
M

TT+LP
.986±

.000
.820±

.005
.946±

.003
.682±

.012
M

TT+M
TR

.986±
.000

.802±
.004

.944±
.003

.641±
.000

D
istM

ult
ST

D
+LP

.984±
.000

.811±
.007

.912±
.009

.785±
.020

M
TT+LP

.987±
.000

.810±
.016

.974±
.002

.690±
.000

M
TT+M

TR
.986±

.000
.785±

.006
.890±

.000
.768±

.018

R
otatE

ST
D

+LP
.985±

.000
.797±

.000
.908±

.013
.781±

.000
M

TT+LP
.989±

.001
.807±

.000
.934±

.012
.828±

.000
M

TT+M
TR

.989±
.000

.810±
.000

.931±
.003

.658±
.000

TransE
STD

+LP
.984±

.001
.791±

.005
.913±

.032
.806±

.021
M

TT+LP
.987±

.000
.805±

.006
.946±

.009
.681±

.014
M

TT+M
TR

.987±
.000

.796±
.000

.942±
.000

.789±
.034

K
E-G

C
N

.988±
.000

.738±
.000

.906±
.002

.685±
.020

Tab
le

D
.1:

W
eighted

F1
on

test
d

ata
of

d
ow

nstream
classifi

ers
(M

L
P,L

ogistic
R

egression,K
N

N
and

R
and

om
Forest)

that
u

se
p

re-trained
K

G
E

em
bed

d
ings

as
inp

u
t

to
solve

entity
classifi

cation
tasks

abou
t

entities
in

FB
15K

-237;and
K

E
-G

C
N

(Yu
et

al.,2021a),a
G

C
N

that
trains

d
irectly

on
the

d
ow

nstream
d

ata.
D

atasets
are

sorted
by

decreasing
size

of
the

training
set

from
left

to
right.

184

YA
G

O
3-

10
En

tit
y

C
la

ss
ifi

ca
tio

n
(W

ei
gh

te
d

F1
-h

ig
he

r
is

be
tt

er
)

Ty
pe

Pl
ay

er
Pr

of
es

si
on

W
ri

te
r

Sc
ie

nt
is

t
O

rg
an

iz
at

io
n

A
rt

is
t

W
at

er
bo

dy

C
om

pl
Ex

ST
D

+L
P

.9
94
±

.0
00

.9
18
±

.0
01

.7
53
±

.0
04

.5
75
±

.0
06

.5
18
±

.0
13

.7
89
±

.0
05

.4
80
±

.0
18

.6
73
±

.0
15

M
T

T+
LP

.9
97
±

.0
00

.9
19
±

.0
02

.7
90
±

.0
02

.6
19
±

.0
06

.5
53
±

.0
11

.8
77
±

.0
03

.4
66
±

.0
13

.6
14
±

.0
00

M
T

T+
M

T
R

.9
96
±

.0
00

.9
14
±

.0
01

.7
76
±

.0
00

.6
17
±

.0
09

.5
56
±

.0
07

.8
71
±

.0
05

.4
91
±

.0
21

.6
14
±

.0
00

D
is

tM
ul

t
ST

D
+L

P
.9

94
±

.0
00

.9
19
±

.0
01

.7
64
±

.0
03

.5
77
±

.0
00

.5
29
±

.0
03

.8
14
±

.0
11

.5
35
±

.0
07

.7
38
±

.0
00

M
TT

+L
P

.9
96
±

.0
00

.9
19
±

.0
02

.7
89
±

.0
02

.6
34
±

.0
19

.5
56
±

.0
03

.8
90
±

.0
10

.4
95
±

.0
10

.6
91
±

.0
00

M
TT

+M
T

R
.9

96
±

.0
00

.9
18
±

.0
02

.7
76
±

.0
00

.6
22
±

.0
06

.5
39
±

.0
09

.8
76
±

.0
05

.4
62
±

.0
06

.6
91
±

.0
00

R
ot

at
E

ST
D

+L
P

.9
73
±

.0
01

.9
14
±

.0
00

.7
06
±

.0
02

.6
11
±

.0
00

.5
45
±

.0
00

.7
34
±

.0
14

.5
30
±

.0
00

.5
93
±

.0
00

M
TT

+L
P

.9
90
±

.0
01

.9
13
±

.0
01

.7
33
±

.0
00

.6
05
±

.0
00

.4
69
±

.0
09

.7
93
±

.0
05

.4
13
±

.0
00

.7
51
±

.0
00

M
TT

+M
T

R
.9

94
±

.0
00

.9
19
±

.0
01

.7
68
±

.0
00

.6
43
±

.0
00

.5
76
±

.0
00

.8
30
±

.0
11

.5
34
±

.0
00

.7
07
±

.0
00

Tr
an

sE
ST

D
+L

P
.9

93
±

.0
00

.9
19
±

.0
01

.7
62
±

.0
00

.6
23
±

.0
00

.6
30
±

.0
00

.8
33
±

.0
00

.5
07
±

.0
15

.6
70
±

.0
00

M
TT

+L
P

.9
91
±

.0
00

.9
12
±

.0
00

.7
28
±

.0
05

.5
83
±

.0
00

.6
03
±

.0
00

.8
04
±

.0
11

.5
06
±

.0
07

.6
54
±

.0
06

M
TT

+M
T

R
.9

92
±

.0
00

.8
92
±

.0
00

.7
50
±

.0
00

.5
80
±

.0
00

.4
01
±

.0
12

.8
09
±

.0
03

.4
64
±

.0
15

.6
14
±

.0
12

K
E-

G
C

N
.9

96
±

.0
00

.8
96
±

.0
01

.7
09
±

.0
00

.5
82
±

.0
05

.6
10
±

.0
06

.8
53
±

.0
06

.4
63
±

.0
14

.4
88
±

.0
14

Ta
b

le
D

.2
:W

ei
gh

te
d

F1
on

te
st

d
at

a
of

d
ow

ns
tr

ea
m

cl
as

si
fi

er
s

(M
L

P,
L

og
is

ti
c

R
eg

re
ss

io
n,

K
N

N
an

d
R

an
d

om
Fo

re
st

)
th

at
u

se
p

re
-t

ra
in

ed
K

G
E

em
be

d
d

in
gs

as
in

p
u

t
to

so
lv

e
en

ti
ty

cl
as

si
fi

ca
ti

on
ta

sk
s

ab
ou

t
en

ti
ti

es
in

YA
G

O
3-

10
;a

nd
K

E
-G

C
N

(Y
u

et
al

.,
20

21
a)

,a
G

C
N

th
at

tr
ai

ns
d

ir
ec

tl
y

on
th

e
d

ow
ns

tr
ea

m
d

at
a.

D
at

as
et

s
ar

e
so

rt
ed

by
de

cr
ea

si
ng

si
ze

of
th

e
tr

ai
ni

ng
se

t
fr

om
le

ft
to

ri
gh

t.

185

FB15K
-237

R
egression

(R
SE

-low
er

is
better)

N
ode

Im
p.

Birth
Year

Latitude
Longitude

Person
H

eight

C
om

plEx
STD

+LP
.870±

.048
.601±

.239
.172±

.013
.089±

.010
.678±

.010
M

TT
+LP

.918±
.142

.477±
.190

.145±
.015

.066±
.008

.661±
.011

M
TT

+M
TR

.909±
.086

.214±
.050

.143±
.009

.096±
.008

.678±
.000

D
istM

ult
STD

+LP
.807±

.023
.844±

.042
.182±

.031
.088±

.005
.669±

.003
M

TT
+LP

.788±
.006

.827±
.065

.143±
.001

.083±
.013

.651±
.009

M
TT

+M
TR

.802±
.049

.701±
.052

.232±
.053

.070±
.006

.691±
.000

R
otatE

ST
D

+LP
.913±

.000
.872±

.027
.498±

.057
.279±

.003
.657±

.000
M

TT
+LP

.834±
.016

.797±
.069

.313±
.014

.173±
.003

.813±
.136

M
TT

+M
TR

.856±
.003

.811±
.005

.411±
.022

.225±
.096

.847±
.000

TransE
ST

D
+LP

.886±
.035

.836±
.041

.170±
.022

.084±
.006

.722±
.003

M
TT

+LP
.833±

.018
.812±

.012
.078±

.011
.061±

.003
.769±

.009
M

TT
+M

TR
.897±

.044
.655±

.053
.088±

.005
.052±

.006
.824±

.000

K
E-G

C
N

.804±
.005

.376±
.035

.218±
.023

.113±
.003

.748±
.002

Table
D

.3:Part1:R
elative

squared
error

(R
SE)on

testdata
ofdow

nstream
m

odels
(M

LP
and

Linear
R

egression)
that

u
se

p
re-trained

K
G

E
em

bed
d

ings
as

inp
u

t
to

solve
regression

tasks
abou

t
entities

in
FB

15K
-237;

and
K

E
-G

C
N

(Yu
et

al.,2021a),a
G

C
N

that
trains

d
irectly

on
the

d
ow

nstream
d

ata.
M

od
els

w
ith

R
SE

above
1

are
considered

unsatisfactory.D
atasets

are
sorted

by
decreasing

size
of

the
training

set
from

left
to

right.

186

FB
15

K
-2

37
R

eg
re

ss
io

n
(R

SE
-l

ow
er

is
be

tt
er

)
Si

ze
A

re
a

Po
pu

la
ti

on
Fi

lm
Ye

ar
D

at
e

Fo
un

de
d

Fi
lm

R
at

in
g

C
om

pl
Ex

ST
D

+L
P

.2
34
±

.0
18

.4
42
±

.0
71

.1
56
±

.0
16

.4
94
±

.0
42

.7
36
±

.0
46

M
T

T+
LP

.0
46
±

.0
26

.2
60
±

.0
64

.1
38
±

.0
07

.4
31
±

.0
47

.7
95
±

.0
58

M
T

T+
M

T
R

.0
49
±

.0
21

.4
93
±

.0
97

.1
26
±

.0
03

.6
05
±

.0
33

.8
04
±

.0
65

D
is

tM
ul

t
ST

D
+L

P
.4

12
±

.3
18

.9
14
±

.0
93

.1
52
±

.0
03

.6
27
±

.0
36

.8
13
±

.0
62

M
T

T+
LP

.4
35
±

.0
46

.5
03
±

.0
04

.1
34
±

.0
12

.4
29
±

.0
45

.7
28
±

.0
63

M
T

T+
M

T
R

.0
25
±

.0
08

.5
40
±

.0
30

.1
46
±

.0
05

.7
18
±

.0
12

.8
94
±

.0
43

R
ot

at
E

ST
D

+L
P

.7
00
±

.2
23

.4
63
±

.4
29

.1
76
±

.0
04

.6
18
±

.0
24

.7
92
±

.0
89

M
T

T+
LP

.7
08
±

.1
12

.5
37
±

.0
35

.1
46
±

.0
08

.5
14
±

.0
55

.8
97
±

.1
68

M
T

T+
M

T
R

.4
40
±

.1
90

.7
10
±

.1
58

.1
57
±

.0
10

.6
31
±

.0
60

.9
49
±

.0
56

Tr
an

sE
ST

D
+L

P
.3

26
±

.0
75

.9
06
±

.5
74

.1
53
±

.0
19

.4
99
±

.0
46

.8
39
±

.0
45

M
T

T+
LP

.0
41
±

.7
44

.2
27
±

.7
30

.1
41
±

.0
04

.3
00
±

.0
13

.6
90
±

.0
31

M
T

T+
M

T
R

.8
33
±

.6
84

.6
75
±

.1
09

.1
30
±

.0
12

.7
08
±

.0
22

.9
46
±

.0
18

K
E-

G
C

N
.7

54
±

.0
18

0
.6

64
±

.0
51

.1
44
±

.0
08

.4
98
±

.0
34

.6
91
±

.0
09

Ta
bl

e
D

.4
:P

ar
t2

:R
el

at
iv

e
sq

ua
re

d
er

ro
r

(R
SE

)o
n

te
st

da
ta

of
do

w
ns

tr
ea

m
m

od
el

s
(M

LP
an

d
Li

ne
ar

R
eg

re
ss

io
n)

th
at

u
se

p
re

-t
ra

in
ed

K
G

E
em

be
d

d
in

gs
as

in
p

u
t

to
so

lv
e

re
gr

es
si

on
ta

sk
s

ab
ou

t
en

ti
ti

es
in

FB
15

K
-2

37
;

an
d

K
E

-G
C

N
(Y

u
et

al
.,

20
21

a)
,a

G
C

N
th

at
tr

ai
ns

d
ir

ec
tl

y
on

th
e

d
ow

ns
tr

ea
m

d
at

a.
M

od
el

s
w

it
h

R
SE

ab
ov

e
1

ar
e

co
ns

id
er

ed
un

sa
ti

sf
ac

to
ry

.D
at

as
et

s
ar

e
so

rt
ed

by
de

cr
ea

si
ng

si
ze

of
th

e
tr

ai
ni

ng
se

t
fr

om
le

ft
to

ri
gh

t.

187

YA
G

O
3-10

R
egression

(R
SE

-low
er

is
better)

Born
on

D
ate

C
reated

on
D

ate
D

ied
on

D
ate

D
estroyed

on
D

ate
H

appened
on

D
ate

C
om

plEx
STD

+LP
.519±

.001
.672±

.033
.555±

.014
.872±

.060
.324±

.006
M

T
T+LP

.345±
.025

.603±
.009

.377±
.005

.709±
.009

.296±
.036

M
T

T+M
T

R
.363±

.010
.643±

.016
.406±

.023
.605±

.029
.277±

.023

D
istM

ult
ST

D
+LP

.432±
.013

.612±
.024

.466±
.025

.773±
.004

.311±
.030

M
T

T
+LP

.345±
.023

.565±
.015

.416±
.023

.724±
.044

.312±
.040

M
T

T
+M

TR
.352±

.006
.648±

.016
.438±

.035
.677±

.024
.214±

.022

R
otatE

ST
D

+LP
.689±

.027
.800±

.009
.849±

.000
.913±

.000
.227±

.055
M

T
T

+LP
.538±

.006
.717±

.008
.657±

.018
.886±

.031
.497±

.233
M

T
T+M

T
R

.421±
.016

.706±
.012

.468±
.003

.616±
.043

.137±
.013

TransE
ST

D
+LP

.422±
.018

.647±
.008

.351±
.037

.513±
.057

.300±
.059

M
T

T+LP
.371±

.006
.725±

.022
.434±

.009
.573±

.081
.100±

.027
M

T
T+M

T
R

.494±
.017

.777±
.000

.521±
.038

.942±
.048

.666±
.024

K
E-G

C
N

.256±
.009

.611±
.008

.299±
.011

.657±
.045

.167±
.001

Table
D

.5:R
elative

squared
error

(R
SE)

on
test

data
of

dow
nstream

m
odels

(M
LP

and
Linear

R
egression)

that
use

pre-trained
K

G
E

em
beddings

as
inputto

solve
regression

tasks
aboutentities

in
YA

G
O

3-10;and
K

E-G
C

N
(Yu

et
al.,2021a),a

G
C

N
that

trains
d

irectly
on

the
d

ow
nstream

d
ata.

M
od

els
w

ith
R

SE
above

1
are

consid
ered

unsatisfactory.D
atasets

are
sorted

by
decreasing

size
of

the
training

set
from

left
to

right.

188

W
IK

ID
A

TA
5M

R
eg

re
ss

io
n

(R
SE

-l
ow

er
is

be
tt

er
)

D
at

e
of

Bi
rt

h
A

lb
um

Pu
b.

A
st

er
oi

d
M

ag
.

R
iv

er
Le

ng
th

C
om

pl
Ex

ST
D

+L
P

.4
75
±

.0
03

.7
60
±

.0
09

.4
36
±

.0
14

.5
59
±

.0
22

M
TT

+L
P

.4
81
±

.0
06

.8
44
±

.0
09

.5
19
±

.0
26

.5
40
±

.0
07

M
TT

+M
TR

.4
68
±

.0
10

.8
13
±

.0
06

.5
18
±

.0
14

.6
59
±

.0
25

Tr
an

sE
ST

D
+L

P
.3

73
±

.0
02

.5
55
±

.0
04

.3
77
±

.0
15

.4
44
±

.0
16

M
TT

+L
P

.4
34
±

.0
07

.6
69
±

.0
03

.4
39
±

.0
13

.4
33
±

.0
29

M
TT

+M
TR

.4
55
±

.0
05

.6
67
±

.0
10

.4
55
±

.0
21

.4
18
±

.0
21

Ta
bl

e
D

.6
:P

ar
t1

:R
el

at
iv

e
sq

ua
re

d
er

ro
r

(R
SE

)o
n

te
st

da
ta

of
do

w
ns

tr
ea

m
m

od
el

s
(M

LP
an

d
Li

ne
ar

R
eg

re
ss

io
n)

th
at

us
e

pr
e-

tr
ai

ne
d

K
G

E
em

be
dd

in
gs

as
in

pu
tt

o
so

lv
e

re
gr

es
si

on
ta

sk
s

ab
ou

te
nt

iti
es

in
W

IK
ID

A
TA

5M
;M

od
el

s
w

it
h

R
SE

ab
ov

e
1

ar
e

co
ns

id
er

ed
un

sa
ti

sf
ac

to
ry

.D
at

as
et

s
ar

e
so

rt
ed

by
de

cr
ea

si
ng

si
ze

of
th

e
tr

ai
ni

ng
se

t
fr

om
le

ft
to

ri
gh

t.

189

W
IK

ID
A

TA
5M

R
egression

(R
SE

-low
er

is
better)

A
irport

Elev.
Season

Start
Population

M
unic.A

rea

C
om

plEx
ST

D
+LP

.849±
.007

.596±
.002

.019±
.197

.801±
.000

M
T

T+LP
.917±

.000
.695±

.014
.785±

.139
.867±

.000
M

T
T+M

TR
.928±

.000
.657±

.040
.841±

.086
.877±

.000

TransE
ST

D
+LP

.734±
.019

.546±
.029

.928±
.000

.811±
.000

M
T

T+LP
.894±

.037
.654±

.024
.739±

.087
.825±

.000
M

T
T+M

TR
.873±

.000
.610±

.011
.896±

.080
.825±

.000

Table
D

.7:Part2:R
elative

squared
error

(R
SE)on

testdata
ofdow

nstream
m

odels
(M

LP
and

Linear
R

egression)
thatuse

pre-trained
K

G
E

em
beddings

as
inputto

solve
regression

tasks
aboutentities

in
W

IK
ID

A
TA

5M
;M

odels
w

ith
R

SE
above

1
are

considered
unsatisfactory.D

atasets
are

sorted
by

decreasing
size

of
the

training
set

from
left

to
right.

190

Training Selection Downstream tasks
EC (↑) REG (↓)

ComplEx STD LP .844±.008 .447±.051
MTT MTR .843±.002 .412±.037
w/o LP MTR .870±.002 .512±.044
w/o REL MTR .851±.005 .486±.035
w/o DOM MTR .851±.003 .479±.029
w/o NBE MTR .856±.002 .562±.038
w/o NBR MTR .858±.000 .459±.062
w/o LP+REL MTR .849±.011 .542±.054
w/o DOM+NBR MTR .856±.001 .415±.029

DistMult STD LP .873±.009 .551±.062
MTT MTR .857±.006 .482±.026
w/o LP MTR .861±.008 .522±.067
w/o REL MTR .868±.008 .536±.077
w/o DOM MTR .849±.002 .478±.027
w/o NBE MTR .844±.002 .524±.047
w/o NBR MTR .859±.002 .493±.043
w/o LP+REL MTR .856±.001 .572±.085
w/o DOM+NBR MTR .839±.001 .545±.060

RotatE STD LP .868±.003 .797±.286
MTT MTR .847±.001 .704±.060
w/o LP MTR .874±.000 .661±.043
w/o REL MTR .862±.003 .692±.079
w/o DOM MTR .898±.001 .593±.078
w/o NBE MTR .862±.003 .558±.050
w/o NBR MTR .863±.007 .552±.035
w/o LP+REL MTR .864±.001 .743±.123
w/o DOM+NBR MTR .854±.001 .809±.249

TransE STD LP .873±.015 .742±.287
MTT MTR .878±.009 .681±.095
w/o LP MTR .870±.000 .486±.027
w/o REL MTR .856±.001 .622±.061
w/o DOM MTR .863±.000 .539±.052
w/o NBE MTR .884±.002 .463±.032
w/o NBR MTR .857±.007 .458±.024
w/o LP+REL MTR .860±.001 .594±.032
w/o DOM+NBR MTR .864±.001 .497±.057

Table D.8: Performance on downstream tasks for FB-237 using
different pre-training objectives and model selection. Exclud-
ing the LP task in pre-training often improves performance.

191

	Introduction
	Background
	Knowledge Graphs
	Properties
	Construction Methods
	Applications
	Open Knowledge Graphs
	Challenges

	Knowledge Graph Embeddings
	Mathematical Notation
	Distributed Representations
	Representations of Knowledge Graphs
	Link Prediction and other Applications
	Models
	Evaluation
	Training
	Limitations and Relevance of KGEs

	Related Models
	Link Prediction Models
	Feature-Based Models
	Rule-Based Models
	Graph Convolutional Neural Networks

	Benchmark Datasets

	Link Prediction
	Training Components
	Experimental Study
	Experimental Settings
	Model Performance
	Impact of Hyperparameters
	Impact of Variations in Evaluation

	Related Work
	Summary

	Knowledge Base Completion
	Predicting Missing Links
	Entity-Pair Ranking Protocol
	Experimental Study
	Experimental Settings
	Model Performance
	Underestimation and Type Filtering
	Reproduction with LibKGE

	Related Work
	Summary

	Graph-Structure Prediction
	Graph-Structure Tasks
	Multi-Task Ranking Protocol
	Multi-Task Training
	Experimental Study
	Experimental Settings
	Model Performance
	Discussion
	Impact of Training Task Selection

	Related Work
	Summary

	Downstream Applications
	Pre-Trained Knowledge Graph Representations
	Experimental Study
	Experimental Settings
	Model Performance
	Impact of Model Selection
	Impact of Pre-Training Task Selection
	Data Efficiency Tests

	Related Work
	Summary

	Conclusions
	Bibliography
	List of Algorithms
	List of Figures
	List of Tables
	Appendices
	Additional Material for Chapter 3
	Additional Material for Chapter 4
	Additional Material for Chapter 5
	Additional Material for Chapter 6

