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Abstract

Policymakers regularly rely on public financial institutions and government bodies

to provide loans to clean energy projects. However, the market failures that public

loan provision addresses and the role it can play in a policy strategy that also fea-

tures de-risking measures, such as interest rate subsidies, remain unclear. Here, we

develop a model of banks providing loans to clean energy projects that use a novel

technology. Early-stage loans build up financing experience that spills over to peers

and hence is undersupplied by the market. In addition to this cooperation problem,

bankability requirements can result in a coordination failure where the banking sec-

tor remains stuck in an equilibrium with no loans for the novel technology, although

a preferable equilibrium with loans exists. Public provision of early-stage loans is

inferior to de-risking instruments when solving the cooperation problem because

it crowds out private banks’ loan provision. However, public loan provision can

more effectively resolve the coordination failure by pushing the banking sector to

a better equilibrium, ideally in combination with additional de-risking measures to

internalize learning spillovers.
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1 Introduction

To mitigate dangerous climate change, investments in clean energy technologies have to

grow considerably (IEA, 2022; Klaaßen & Steffen, 2023). The magnitude of necessary

investments requires the mobilization of private sector financing (IPCC, 2022), including

large amounts of debt for capital-intense technologies such as renewables. To achieve clean

energy investment at a societal optimal level, economic theory suggests a combination of

carbon pricing and research subsidies, internalizing the climate externality and the effect

of knowledge spillovers (Acemoglu et al., 2012; Borenstein, 2012). Further, technology-

specific subsidies can be an alternative if carbon pricing is not available (Abrell et al.,

2019). In practice, however, policymakers regularly opt for financial measures to de-

risk clean energy financing, such as interest rate subsidies or credit guarantees, and

also provide debt finance directly to projects through public financial institutions or

government bodies.

These financial measures are typically used in addition to other policy instruments

that already address the climate externality. In the United States, for example, the

Department of Energy’s Loan Programs Office has been providing loans and credit guar-

antees to utility-scale clean energy projects, and the recently established USD 14 billion

National Clean Investment Fund will capitalize national clean finance institutions under

the Inflation Reduction Act (US EPA, 2023). In other OECD countries, state investment

banks are remarkably active in renewable energy lending—particularly for higher-risk

technologies such as offshore wind, where they feature in over 70% of all debt financing

deals over the past two decades (Waidelich & Steffen, 2023). In addition, an increasing

number of governments around the world have created public green banks that provide

loans and de-risking measures (Whitney et al., 2020), including countries that typically

hesitate to intervene much in financial markets, such as the United Kingdom.

However, despite the widespread use of public loan provision for the clean energy

transition, the economic literature on the rationale for adding it to a policy strategy is

sparse and has provided little guidance on when to favor the direct market activity of

public banks over de-risking instruments. Previous sector-agnostic studies mainly discuss

both policies in light of credit rationing arising from adverse selection and screening costs

or unconsidered social externalities (Eslava & Freixas, 2021; Hainz & Hakenes, 2012;

Williamson, 1994), from moral hazard for borrowers (Arping et al., 2010) and cyclical

credit crunches (Eslava & Freixas, 2021; Mazzucato & Penna, 2016), or from adverse

incentives due to legacy portfolios (Degryse et al., 2020; Minetti, 2011). Far less emphasis

has been placed on the role of financiers learning about novel clean energy technologies

through lending. By contrast, learning-by-doing processes at the technology level are

increasingly prevalent in economic theory (Thompson, 2012) and numerical modeling

(Gillingham et al., 2008). They are typically modeled via unit costs that decrease in

cumulative production experience, which potentially spills over to competitors (Schauf &



Schwenen, 2021; Spence, 1981).

Empirical work has extended these concepts to clean energy financing, showing that

increases in cumulative financing and the corresponding experience for financiers have

coincided with substantial reductions in the cost of capital for solar photovoltaics and

onshore wind (Egli, 2020; Egli et al., 2018). However, hitherto we lack a theoretical under-

standing of what this implies for optimal policy to mobilize financing for the clean energy

transition. In particular, the existing literature lacks clarity on the need for financial

policy measures if other policy interventions already sufficiently address technology-level

and consumer-level market failures, such as climate externalities, knowledge spillovers, or

lack of demand due to bounded rationality (Borenstein, 2012; Popp, 2019).

To address this gap, this paper investigates the potential and limitations of public

loan provision and de-risking measures by developing a model of loans to clean energy

projects using a novel technology that the banking sector is not (yet) familiar with. This

accurately depicts the situation on the project loan market in key sectors for the energy

transition, such as offshore wind and energy storage, in many regions. In the model,

risky early-stage loans build up the banking sector’s experience with the novel technology

and thus improve future risk-adjusted returns by lowering uncertainties and transaction

costs. Hence, early-stage credit to the novel technology causes a positive externality

to other lenders, which results in two different market failures. First, uninternalized

learning spillovers imply a cooperation problem between banks and lead to an under-

supply of early-stage credit. Using public loan provision to address this problem, however,

is inferior to de-risking instruments because it reduces the willingness of commercial banks

to incur early-stage risk themselves and hence crowds out the private loan provision.

Second, minimum risk-return requirements for a project to be ”bankable” can result in a

coordination failure where the banking sector remains stuck in a Nash equilibrium with

no loans for the immature technology, although a better market equilibrium in which

the novel technology receives loans is, in principle, possible. In this case, a sufficiently

sized public loan provider, for example, in the form of a public green bank, can push the

banking sector to a better equilibrium, particularly if combined with additional de-risking

policies to internalize learning spillovers to other banks.

Therefore, this paper extends the argument by Rodrik (1996) that “when multiple

equilibria exist, the role of government policy is to move the economy out of the bad

equilibrium into the good one” to financial policies and public loan provision to novel

technologies in particular. Importantly, our model does not require any market failures

on the technology and consumer level to justify the policy intervention, thus clarifying

the role of public loan provision and de-risking measures in a climate policy strategy that

already features instruments such as carbon pricing and R&D subsidies.

The remainder of this paper is structured as follows. Section 2 summarizes the extant

literature and clarifies the research gap we address through our model, whose general
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framework is introduced in Section 3. Section 4 compares the socially optimal loan

financing amount to the market outcome without policy intervention before Section 5

introduces a de-risking instrument and public loan provision as two stylized policy options

to address potential market failures. Finally, Section 6 discusses the policy implications

of our findings and concludes.

2 Literature review

Clean energy technologies require substantial upfront financing due to their high capital

intensity (Borenstein, 2012). Therefore, their cost-competitiveness for large-scale deploy-

ment strongly depends on their cost of capital (Hirth & Steckel, 2016; Stocks, 1984), which

can be reduced substantially through debt financing (Schmidt et al., 2019)—particularly

if higher leverage ratios can be obtained by using project finance (Steffen et al., 2018).

However, this requires bank loans as long as technologies and firms have not matured

sufficiently to tap bond markets (Berger & Udell, 1998). In consequence, accessible credit

is key for the ramp-up of these technologies. However, it may be rationed due to financial

market frictions (Stiglitz, 1993) and remaining externalities at the technology level (Popp,

2019). Indeed, there is empirical evidence that emerging clean energy technologies face

financing constraints (cf. Haas and Kempa, 2023, for an overview).

Modern banking theory has extensively studied the potential of credit guarantees or

interest rate subsidies to mitigate inefficient credit rationing (Arping et al., 2010; Hainz &

Hakenes, 2012; Janda, 2011; Minelli & Modica, 2009; Philippon & Skreta, 2012). These

insights on de-risking measures have been extended to the case of low-carbon technologies

(Haas & Kempa, 2023), but there is less theoretical clarity about which role the public

provision of loans to clean energy projects is supposed to play, if any. The extant literature

is primarily centered around public (green) banks—which typically engage both in loan

provision and de-risking (Eslava & Freixas, 2021; Whitney et al., 2020)—and suggests

various reasons for how these institutions could limit the extent of credit rationing for

low-carbon technologies.

One suggestion is that public loan programs and development banks provide counter-

cyclical finance in times of credit crunches (Eslava & Freixas, 2021; Mazzucato & Penna,

2016). For the energy sector specifically, however, this notion has not been empirically

confirmed (Waidelich & Steffen, 2023), and the question remains why economy-wide

credit crunches should be addressed by sector-specific policy interventions instead of

general counter-cyclical fiscal and monetary policy. Studies further cite high risk premia

and discount rates of private banks as a rationale for public loan provision (Lehmann &

Söderholm, 2018; Mazzucato & Penna, 2016). From an efficiency point of view, though,

the preferences of market players per se cannot represent a market failure. Hence, this

argument either requires remaining externalities at the technology level or the assumption
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that the optimal social discount rate is lower than the rate applied by private-sector

financiers. Furthermore, the argument abstracts from well-established reasons why banks

act more risk-averse than other types of investors, such as regulatory capital requirements

or the risk of having to raise external finance due to unexpected deposit withdrawals

(Diamond & Dybvig, 1983; Froot & Stein, 1998), while they, unlike equity investors,

cannot participate in any project upsides and hence focus on mitigating default risks.

Another strand of literature argues that novel technologies threaten the value of banks’

legacy positions and their information stock on incumbent technologies, calling for new

institutions with a clean slate (Degryse et al., 2020; Minetti, 2011). This argument

primarily motivates sufficient anti-trust policies for the banking sector and underlines

the potential benefit of a new entrant bank. However, it provides little reason why the

new bank should be public, particularly since dedicated green commercial banks are often

important first movers for clean energy technologies (Zhang, 2020). More sector-agnostic

studies have motivated the need for public loan provision based on two issues. First,

the existence of projects with a negative net present value that are socially desirable—

although, in the case of clean energy, this might be better addressed through first-best

policies outside the financial sector; second, information asymmetries in the form of

inefficiently low screening efforts if borrower types are unknown to banks and screening is

costly, but project screening outcomes are observable to competitors (Eslava & Freixas,

2021; Hainz & Hakenes, 2012; Williamson, 1994).

Similar to this screening benefit argument, Geddes et al. (2018) highlight that, aside

from providing loans and de-risking investments, public green banks often educate mar-

kets on novel technologies and provide strong signals on their economic viability. This

behavior is motivated by the fact that novel technologies are not only subject to technolog-

ical learning but also improve their risk-return profile as financing experience accumulates.

Reasons for this include that an expanding credit track record reduces banks’ uncertainty

about the default probability of projects (Egli et al., 2018) and that more experienced

debt providers can extract more value from pledged collateral, which reduces losses in case

a borrower defaults (Minetti, 2011). More experience will also enable lenders to identify

more relevant loan covenants and to reduce the transaction costs per loan since applica-

tion reviews can be streamlined and contracts can be standardized (Umbeck & Chatfield,

1982). In the case of syndicated loans in project finance, the predominant financing

structure for renewable energy technologies (IRENA, 2023), experience further allows for

the standardization of deal structures, the conclusion of frame contracts, and the emer-

gence of proven networks comprising financiers and financial/technical/legal advisors –

reducing both transaction costs and necessary risk contingencies (Egli et al., 2018; Gatti,

2013). These findings from empirical interview studies highlight the need for a rigorous

theoretical consideration of market failures and the need for policy if technology-level and

consumer-level externalities have been sufficiently priced in.
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Therefore, we formalize these considerations into a model for bank loans and account

for learning spillovers by building on a recent strand of literature that incorporates learn-

ing effects into models of individual investors’ technology investment decisions. In partic-

ular, Della Seta et al. (2012) model a novel technology whose marginal costs decrease in

cumulative output and find that optimal investment involves significant initial losses that

are compensated by later-stage gains, making the technology particularly prone to down-

side risk. Their model is extended by Sarkar and Zhang (2020), who introduce the option

of debt-financing, which leads to more and earlier investment. They conclude that unless

there are exogenous borrowing constraints, the optimal gearing ratio is higher if costs

decrease faster in cumulative output. Moreover, Way et al. (2019) explore the optimal

portfolio allocation between investments in two technologies under stochastic learning

rates and risk aversion. Their model produces a trade-off between specializing in one

technology to drive down costs and diversifying to hedge against downsides and requires

numerical optimization to be solved as the learning feedback introduces multiple local

optima. Finally, Lehmann and Söderholm (2018) review theoretical rationales for renew-

able energy support schemes in a partial equilibrium framework, including technological

learning where second-period costs decrease convexly in first-period output. Among other

things, they suggest that a subsidy scheme can also overcome financial market failures

caused by inefficiently high risk aversion and discount rates by a private investor.

While these previous modeling studies of technology investment decisions take the

perspective of a single equity investor, we study the interplay between multiple debt

providers, including learning spillovers. By doing so, our paper suggests another impor-

tant reason for credit rationing: a coordination failure between borrowers to gain suffi-

cient experience with a novel clean energy technology, adding to the extensive literature

on credit rationing. In this regard, our work is related to Haas and Kempa (2023), who

explain credit rationing for clean energy technology firms with information asymmetries

and unobservable project characteristics that can be addressed via de-risking. However,

their model does not endogenize risks or financing experience. Therefore, neither their

model nor, to the best of our knowledge, any other paper formally assesses public loan

provision as a policy instrument and its role relative to de-risking measures in the context

of learning effects.

3 General framework

We consider a two-period financial sector model that is populated by a discrete number N

of banks. Banks are homogeneous, and in each period, face loan applications by projects

using a novel clean energy technology. li,t represents the overall amount of loan financing

granted by bank i in period t, which is financed via deposits. We assume that the desired

capacity expansion in the new (low-carbon) technology, and hence the total demand
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for loans, is determined exogenously by policy interventions in the energy sector (e.g.,

renewable portfolio standards, renewable energy auctions, or carbon prices) and denoted

as D for the first period. In contrast, in the second period, it increases by an exogenous

factor ψ > 1. To abstract from the issue of banking sector concentration, which has been

studied extensively elsewhere (cf. Freixas and Rochet, 2023, for an overview), demand is

allocated symmetrically across banks, such that

li,1 ∈ [0,
D

N
], li,2 ∈ [0,

ψD

N
] ∀ i = 1, ..., N (1)

The two-period setup is motivated by two factors. First, the common bifurcation

in financial markets, where technologies are either too novel (and hence risky) for debt

finance or mature enough for debt finance, i.e., ”bankable”; second, the fact that deploy-

ment in novel technologies, particularly under continued policy support, can ramp up

considerably, which is represented by ψ. In our model, each period should be considered

as representing multiple years such that loans are paid out at the beginning of each pe-

riod and paid back with interest by the end of it. In the first, “early-stage” period, the

novel clean energy technology is still financially immature and hence risky. However, its

risk-return structure can improve in the second, “later-stage” period. Therefore, on every

unit of early-stage loans li,1, bank i earns the following risk-adjusted net return

r − c̄− rD (2)

where r denotes the risk-adjusted return that banks can earn on loans at full financial

maturity.1 The primary source of risk is each project’s probability of default, which we

do not model explicitly. Instead, we assume that the risk-adjusted return r increases

monotonously in the expected return and decreases monotonously in the return variance

and the banks’ degree of risk aversion. c̄ represents a strictly positive, constant penalty on

the risk-adjusted return due to financial immaturity, comprising the risk premium related

to novel technology and the higher screening costs due to a lack of experience assessing

credit applications. rD denotes the rate paid out to compensate deposit holders.

On every unit of later-stage loans li,2, bank i earns the following return

r − c
(
L̃i,1

)
− rD (3)

where

1Here, we assume that there is no price feedback between the aggregate loan supply and the interest
rate paid by projects. Relaxing this assumption for, say, a linear demand curve instead would effectively
turn our model into a symmetric two-stage Cournot game, where, if N is finite, interest rate concerns
further depress the number of loans that each bank is willing to supply.
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L̃i,1 := li,1 + γ
∑
j ̸=i

lj,1 (4)

denotes the financing experience from the first period gained by bank i through their

own loan financing and the financing provided by their peers.2 Therefore, early-stage

loans to the novel technology at t = 1 cause a positive experience externality to other

banks by improving their later-stage risk-adjusted return at t = 2. Without early-stage

loan financing by any bank, no learning gains are realized, i.e., c(0) = c̄. Due to di-

minishing returns to experience, we further assume that c decreases convexly in L̃i,1 but

remains non-negative.3. Learning spillovers between banks are imperfect, which is rep-

resented by γ ∈ (0, 1) (cf. Fischer and Newell, 2008). A higher value of γ can denote

that banks are more transparent about their financing experience, that their absorptive

capacity is higher, or that they regard their peers as more competent and, hence, the

financing decisions made by other banks as more instructive.

In this paper, we investigate market failures and policy interventions for novel clean

energy technologies that have sufficient potential to become profitable from a lender’s

perspective at a later stage—but are not immediately attractive at an early stage due

to lack of experience. Therefore, we assume a negative spread between the risk-adjusted

return on loans at full financial immaturity and the deposit rate:

r < c̄+ rD (5)

By contrast, if all banks provide the full amount of early-stage financing, the spread

would turn positive such that

r > c

(
D
Ñ

N

)
+ rD. (6)

where

Ñ := 1 + γ(N − 1) < N. (7)

The term Ñ
N

< 1 accounts for the loss of financing experience due to imperfect

spillovers. As a result, the risk-adjusted return in the second, later-stage period r−c(L̃i,1)
is concavely increasing in L̃i,1 and bounded between r − c̄ and r, as displayed in Figure

1.

2Note that we use capitalized L for aggregates of loan amounts across banks and lowercase l for loan
amounts of individual banks.

3Our restrictions that c ≥ 0, c′ < 0, c′′ > 0 nest the most common functional forms for technological
and financial learning curves in the literature (Della Seta et al., 2012; Egli et al., 2018; Samadi, 2018;
Thompson, 2012).
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Figure 1: Risk-adjusted return on loans in t = 2

Combining the considerations above, the risk-adjusted profits of bank i discounted to

t = 1 can be written as

πi(li,1, li,2, L̃i,1) = (r − c̄− rD) li,1︸ ︷︷ ︸
Early-stage losses

+ β
(
r − c(L̃i,1)− rD

)
li,2︸ ︷︷ ︸

Potential later-stage gains

. (8)

where β ∈ (0, 1) is the discount factor common to all banks. To strike a profit,

early-stage losses must be compensated by later-stage gains. Therefore, bank i will only

provide loans to the novel technology at t = 2 if the financing experience from the first

period L̃i,1 is sufficiently high to push the immaturity-related cost premium c(L̃i,1) below

r − rD. If this is the case, we will refer to the novel technology as being “bankable” at

t = 2. In consequence, the loan decision of bank i at t = 2 only depends on whether

the financing experience gained at t = 1 renders the novel technology bankable – and

causes no externality to other banks. To avoid situations where banks are indifferent

between outcomes, we assume throughout the paper that if two outcomes yield the same

risk-adjusted return or profits, banks strictly prefer the one with less loan financing. This

then gives us the following simple rule for the later-stage loan financing at t = 2:

Lemma 1. Let (li,1, li,2) be the loan financing amounts for any bank i. Then

li,2 =

0 if r − c(L̃i,1) ≤ rD

ψD
N

otherwise
(9)

Proof. Combine Equation 20 in Appendix B.1 with the assumed strict preference for no

loans if the return spread is exactly zero.
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Hence, in the later-stage period, banks either finance the technology’s entire loan

demand if the early-stage financing experience provides a positive return spread or refrain

from any loan financing at t = 2.

Notably, our model is populated by banks only and hence does not feature any ex-

ternalities at the technology or the consumer levels. This serves to clarify if and why

market failures in the banking sector can arise even if other market failures are already

addressed. However, our model can be easily extended to incorporate additional exter-

nalities that bank financing might have if project sponsors are unwilling to move forward

without bank loans.

4 Social optimum and market outcome

In our model, the socially optimal solution maximizes the sum of present-value profits

over all banks:

max
{li,1,li,2}Ni=1

∑
i∈N

πi(li,1, li,2, L̃i,1) s.t. li,1 ∈ [0,
D

N
], li,2 ∈ [0, ψ

D

N
] (10)

The full Karush-Kuhn-Tucker conditions are provided in Appendix B and reflect that

in the unconstrained optimum, li,1 should be chosen to equate the return spread at t = 1

and the marginal learning gain such that

−β(c′(L̃SOi,1 )lSOi,2︸ ︷︷ ︸
Learning gain

to bank i

+ γ
∑
j ̸=i

c′(L̃SOj,1 )l
SO
j,2︸ ︷︷ ︸

Learning gain to peers

) = c̄+ rD − r︸ ︷︷ ︸
Initial return spread

(= loss)

(11)

which might not hold in the constrained optimum if the demand or non-negativity

constraint on li,1 binds. Note that the left-hand side of Equation 11 is positive since

c′ < 0.

An asymmetric solution to the optimization problem in Equation 10 cannot be ruled

out entirely but significantly limits the analytic tractability of our model. Therefore,

we impose symmetry on the social optimum, as is common in the literature (Eslava &

Freixas, 2021). This means that

lSOi,t = lSOt ∀ i = 1, ..., N (12)

which by Lemma 1 also implies symmetry in the later-stage loan financing. This is a

mild assumption because banks are homogeneous and because the profit of each bank πi(·)
is strictly concave in L̃i,1. For this reason, allocating early-stage loan financing amounts

asymmetrically between firms (which leads to a heterogeneous financing experience L̃i,1

as γ < 1) is typically dominated by a symmetric allocation. Combining Lemma 1 with

the first- and second-order conditions then results in the following proposition:
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Proposition 1. Let l∗1 := Ñ−1(c′)−1

(
− c̄+rD−r

β Ñ
N
ψD

)
denote the unconstrained symmetric

solution to the first-order condition in Equation 11 under symmetry and (c′)−1(·) denote
the inverse function of c′.4 Then, the unique symmetric social optimum (lSO1 , lSO2 ) is

either

• an immediate financing scenario, in which every bank provides the full loan financ-

ing amount in the first and second period (D
N

and ψD
N
, respectively), or

• a gradual financing scenario, in which each bank provides l∗1 <
D
N

at t = 1 before

providing full loan financing at t = 2, or

• a no-financing scenario, in which banks do not provide any loan financing in either

period.

For the gradual or immediate financing scenario to exist, each bank must strike strictly

positive present-value profits.

Proof. See Appendix B.

Here, l∗1 denotes the loan financing amount for which marginal learning gains and

the initial return spread balance prior to any demand or non-negativity constraints. At

the asset level, comparative statics (see Appendix B) reveal that a more favorable risk-

return profile, i.e., a higher risk-adjusted return at full maturity r and a lower initial

immaturity penalty c̄, make a no-financing optimum less likely and increase the socially

optimal early-stage financing lSO1 . At the financier level, the same holds if the initial loan

demand by projects using the novel technology is higher (D ↑) and grows more strongly

in the second period (ψ ↑), which increases the scope for learning effects, or if deposits are

cheaper (rD ↓). The socially optimal lSO1 is also higher if banks are more patient (β ↑) and
less secretive or more capable of learning from peers (γ ↑). However, a less concentrated

banking sector (N ↑) will decrease the loan financing in the optimum because, ceteris

paribus, this implies more spillover losses of financing experience as long as γ < 1.

Since the social optimum is symmetric and by Lemma 1, li,2 is a binary function of li,1,

we can plot total profits
∑

i πi(·) for all symmetric allocations as a function of L̃1 = Ñ l1.

In the left panel of Figure 2, we show this for the gradual-financing optimum (i.e., for

a scenario under which total profits peak above zero for some L̃1 <
Ñ
N
D). For very low

amounts of financing at t = 1, the risk-adjusted return on loans at t = 2 remains below

rD such that by Lemma 1, banks do not grant any loans and hence make zero profits from

the new technology in the second period. At the same time, profits at t = 1 decrease

linearly since for every unit of l1, each bank loses the initial return spread rD + c̄ − r.

Therefore, small values of early-stage loan financing that are insufficient to render loans

bankable at a later stage reduce overall profits below zero.

4Note that c′ is monotonously increasing, and hence (c′)−1 exists and is monotonously increasing.
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If l1 increases further, however, the risk-adjusted return at t = 2 at some point equals

the deposit rate rD (blue line). Beyond this point, loans become profitable at t = 2,

and hence banks will meet the entire loan demand such that l2 = ψD
N
. Note that profits

increase concavely because returns on financing experience are diminishing as c is convex.

However, the positive profits at t = 2 do not immediately offset the incurred losses at

t = 1. Hence, it takes some additional increase in l1, i.e., further learning gains, until

banks break even in present-value terms (grey line). As long as the marginal return on l1

(i.e., the marginal learning gain to all banks plus r− c̄) exceeds rD, a higher l1 increases

profits further until marginal return and deposit rate equal in the social optimum (green

line). Beyond this point, the marginal learning gain no longer compensates for the early-

stage losses, and profits fall again.

Figure 2: Aggregate bank profits over early-stage loan financing

Visually speaking, the gradual-financing optimum displayed in Figure 2 exists if the

concave section of
∑

i πi(·) peaks within the banking sector’s available resources (for

some L̃1 <
Ñ
N
D) and above zero. The other two potential optima in Proposition 1 have

equally straightforward interpretations and are displayed in the right panel of Figure 2.

The no-financing scenario is optimal if the concave section does not exceed zero for any

L1 ∈ [0, Ñ
N
D]. The immediate-financing optimum requires that the concave section only

peaks after Ñ
N
D, but that total profits at this point already exceed zero.

By contrast, in a market outcome, each individually rational bank carries out the

following profit maximization:

max
li,1,li,2

πi(li,1, li,2, L̃i,1) s.t. li,1 ∈ [0,
D

N
], li,2 ∈ [0, ψ

D

N
] (13)
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The first-order conditions, given in Appendix C.1, are similar to the one given in

Equation 11—except that banks do not take into account how their own early-stage

financing improves the later-stage risk-adjusted return for their peers.

However, the solution to the maximization problem of bank i still depends on their

peers’ behavior. For a fully fragmented banking sector, i.e., if N → ∞, it is trivial

to show that bank i’s contribution to its own financing experience stock L̃i,1 becomes

negligible unless γ → 0. Note that early-stage loans in the model come at a loss in t = 1

and can only be profitable through their impact on L̃i,1 and hence on profits in t = 2.

Therefore, for N → ∞ where li,1 has no meaningful impact on L̃i,1, the only possible

market outcome is (li,1, li,2) = (0, 0) ∀ i = 1, ..., N . However, banking sectors typically do

not exhibit this perfect degree of competition (Freixas & Rochet, 2023; Stiglitz, 1993).

Therefore, we consider a finite number of N , solve for possible Nash equilibria, and arrive

at the following result:

Proposition 2. The set of Nash equilibria under the market outcome can be characterized

as follows:

• The possible Nash equilibria are all symmetric and feature a no-financing equilib-

rium, a gradual-financing equilibrium where each bank provides l∗NE1 := Ñ−1(c′)−1
(
− c̄+rD−r

βψD
N

)
<

D
N

at t = 1, and an immediate-financing equilibrium.

• If the gradual-financing equilibrium exists, the immediate-financing equilibrium does

not exist, and vice-versa. Both require strictly positive profits for each bank to exist.

• Both the gradual-financing and the immediate-financing equilibrium can co-exist

with the no-financing equilibrium.

• The early-stage loan provision in any Nash equilibrium is strictly lower than the

social optimum—except for the trivial case, in which both the social optimum and

the Nash equilibrium are immediate financing or no financing.

Proof. See Appendix C.

The key intuition for the symmetry of the Nash equilibrium can be illustrated as

follows: Consider the simplified case of only two banks i and j and an interior solution, and

assume for contradiction that a Nash equilibrium with lj,1 > li,1 exists. This implies that

bank j’s learning experience (li,1+γlj,1) is greater than bank i’s by exactly (1−γ)(lj,1−li,1).
However, note that i’s and j’s marginal learning gains must be equal in the optimum

because both banks are homogeneous and face the same marginal first-period losses.

Since marginal learning gains are strictly decreasing, that means that both banks’ first-

period learning experience must be identical, which requires that lj,1 = li,1 since γ < 1

(i.e., we have imperfect spillovers).
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Notably, the closed-form expressions for the potential gradual-financing social opti-

mum l∗1 and the gradual-financing Nash equilibrium l∗NE1 are almost identical. However,

the latter features only the individual loan amount at t = 2 (i.e., ψD
N
) and not the overall

loan amount net of spillover losses (i.e., Ñ
N
D). As a result, lNE1 is weakly, but not strictly

lower than lSO1 because if no financing is socially optimal, this is the outcome the market

will provide. In addition, it could theoretically be that the risk-return structure is so ben-

eficial that immediate financing is not only the social optimum but a Nash equilibrium as

well. However, the policy implications of such a setting extrapolate well from the more

relevant setting in which only a gradual financing equilibrium exists, with the main ex-

ception that there is less of a rationale for de-risking measures. For this reason, we place

less emphasis on the case where immediate financing is both the social optimum and a

market equilibrium in the following discussion of market failures and policy instruments.

Since the market outcome must be symmetric, the conditions in Proposition 2 under

which the different Nash equilibria exist have straightforward visual interpretations. We

display the possible market outcomes as well as bank i’s best response function under a

gradual-financing social optimum in Figure 3 below. The no-financing equilibrium (left

yellow ring) exists unless a single bank i can push beyond the “no-financing valley” and

obtain positive profits by unilaterally providing loans to the novel technology at t = 1.5

Therefore, the best response for bank i, if no other bank provides early-stage loans, is to

forego loan financing as well, which is illustrated by the best response function in the lower

panel. However, even if no financing is a possible Nash equilibrium, there might exist

another equilibrium at L̃i,1 = Ñ l∗NE1 if and only if this point falls beyond the no-financing

valley and provides above-zero profits. Once above-zero profits are in reach for bank i

given the behavior of the other banks, the best response switches to providing early-

stage loans until the (cumulative) learning experience reaches L̃i,1 = Ñ l∗NE1 . Beyond

that point, the deposit rate exceeds the marginal return on l at t = 1, excluding learning

spillovers. As a result, bank i will no longer provide any early-stage loan financing, but

it will still free-ride the other banks’ financing experience by financing li,2 = ψD
N

in the

second period. If the point L̃i,1 = Ñ l∗NE1 falls within the no-financing valley or violates

the non-negativity constraint on l, then the gradual-financing Nash equilibrium does not

exist because every bank would be better off by switching to the no-financing equilibrium

instead.

5Note that Figure 3 rests on the assumption that all banks behave symmetrically, so the valley for
such a unilateral financing provision is somewhat shorter because in this case, there would be no spillover
losses of financing experience. In addition, the valley displayed here refers to bank financing for (large-
scale) deployment and hence does not represent the conventional “valley of death” for the transition
between laboratory and commercialization (Popp, 2019).
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Figure 3: Possible Nash equilibria and best response function

Proposition 2 has several important implications regarding market failures in our

model. First, if no financing is socially optimal, then no market failure exists. If gradual

financing is optimal, then we can have two separate elements of market failures: First,

a cooperation problem because banks ignore positive learning spillovers to their peers

and hence choose a suboptimally low amount of early-stage loan financing (as visualized

in Figure 3 above). Second, a potential additional coordination failure because even if a

gradual-financing market outcome exists (which by definition must be profitable for every

bank), the banking sector might remain stuck in the inferior no-financing equilibrium.

Since the closed-form expression for l∗NE1 is very similar to the one of the socially

optimal l∗1, the comparative statics for the gradual-financing social optimum similarly

apply to the early-stage financing under the market outcome. More favorable conditions

at the asset (r ↑, c̄ ↓) and financier level (D ↑, ψ ↑, N ↓, rD ↓, β ↑, γ ↑) make it more

likely that a gradual-financing Nash equilibrium exists and increase the financing amount

in such a market outcome. Regarding the potential early-stage financing gap between

the social optimum and the market outcome, we conclude as follows:

Lemma 2. Let the social optimum be 0 < lSO1 < D
N

(gradual financing). Then, the

minimum early financing gap between the market outcome and the social optimum is as

follows:

lSO1
l∗NE1

=
(c′)−1

(
− c̄+rD−r

βψD
N
Ñ

)
(c′)−1

(
− c̄+rD−r

βψD
N

) (14)
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Ceteris paribus, the minimum early financing gap increases monotonously in γ.

Proof. Combine the expressions from Propositions 1–2 and take the partial derivative,

keeping in mind that (c′)−1 is monotonously increasing and Ñ := 1 + γ(N − 1).

Therefore, the gap between the market outcome and the gradual-financing optimum

is higher if more of a bank’s learning gains spill over to competitors or if competitors are

more capable of absorbing these spillovers (γ ↑). In addition, if the marginal learning gain

c′ decreases more steeply in the cumulative financing experience, this reduces the financing

gap because if returns to experience diminish more rapidly, then taking learning spillovers

into account or not makes less of a difference.6 However, these comparative statics only

hold locally for limited changes in the given parameters since larger changes could also

render the gradual-financing outcome sub-optimal from a societal point of view.

As discussed in Section 2, some papers have suggested that (inefficiently) high dis-

count rates of private actors might prevent clean energy technologies from being financed

(Lehmann & Söderholm, 2018; Mazzucato & Penna, 2016). While we focus on financing

experience and the resulting coordination and cooperation problems here, we note that

such discount rate considerations are easily integrated into our framework by assuming

that banks use a discount factor ϕβ where ϕ ∈ (0, 1), while β denotes the social discount

factor. This would alter Equation 14 as follows:

lSO1
l∗NE1

=
(c′)−1

(
− c̄+rD−r

βψD
N
Ñ

)
(c′)−1

(
− c̄+rD−r

ϕβψD
N

) (15)

This expression shows that the minimum early financing gap between market outcome and

social outcome increases in the time preference discrepancy between banks and society

overall (ϕ ↓).

5 Policy interventions

The previous section has established that if the social optimum is a gradual-financing

(immediate-financing) outcome, the market outcome will (can) feature an inefficiently low

provision of loan financing at t = 1 and might even fail to provide any loan financing. We

consider two different policy interventions within the framework of our model to address

this market failure. First, the government can improve the risk-adjusted return for banks,

either by increasing the expected return of the loans or by reducing the volatility of returns

(Polzin et al., 2019). Two of the most commonly discussed instruments to do so in the

literature are interest rate subsidies and credit guarantees (Haas & Kempa, 2023). Due to

6The financing gap also decreases for a more concentrated market (N ↓) because if fewer peers
benefit from spillovers, the positive externality is lower. However, this obviously increases the scope for
competition-related market failures, from which our model set-up abstracts.
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our framework of risk-adjusted returns, we can represent both of these options as stylized

state-financed additive premia on the risk-adjusted return of all private banks in both

periods denoted by s1, s2 ≥ 0.7

Second, the government can provide loans directly to projects using the novel tech-

nology in both periods, with loan amounts denoted by g1, g2 ≥ 0. Importantly, public

loan provision also generates financial experience at t = 1 that partially spills over to

the private banks at a rate γg > 0. Public green banks are known for actively sharing

their expertise with the private sector (Geddes et al., 2018), which would imply γg > γ.

However, γg might also be lower than γ if the public loan provider is perceived as less

competent than a commercial bank, thus making banks hesitant to learn from the public

sector’s lending track record. In addition, public loan provision reduces the demand for

loans that each bank faces since overall demand for loans by projects using the novel

technology is policy-induced and hence fixed.8

Subject to the policy interventions, each bank i then carries out the following maxi-

mization problem:

max
li,1,li,2

πi = (r − c̄− rD + s1)li,1 + β

(
r − c(γ

∑
j ̸=i

lj,1 + γgg1 + li,1)− rD + s2

)
li,2 (16)

s.t. li,1 ∈ [0,
D − g1
N

], li,2 ∈ [0, ψ
D − g2
N

]

A direct takeaway from Equation 16 is that public loan provision at t = 2, i.e., once

no further learning gains are possible, only factors into banks’ decision by reducing the

loan demand in t = 2 that they can serve if they do not opt for a no-financing strategy.

Furthermore, we note that neither the de-risking instrument nor the public loan provision

moderate our previous findings with respect to the deterministic rule of behavior for banks

at t = 2, or the symmetric behavior of private banks in any possible Nash equilibrium.

Therefore, Lemma 1 and the symmetry of the market outcome by Proposition 2 continue

to hold (see Appendix D).

We first turn our discussion to the de-risking subsidy. Economic theory suggests that

a subsidy should be calibrated to the magnitude of the unaccounted positive externality

at the social optimum (Pigou, 1932)—which in our model only exists in t = 1. By

incorporating such a well-calibrated de-risking subsidy into the first- and second-order

conditions of individually rational banks, we arrive at the following proposition:

Proposition 3. Let the social optimum be 0 < lSO1 < D
N

(gradual financing) and let

s∗1 := −βγ(N − 1)ψD
N
c′(Ñ lSO1 ) > 0 be the optimally calibrated de-risking subsidy. Then,

7In addition, the government could also adjust capital requirements for banks through a green-
supporting factor (Campiglio et al., 2018), which in our model would have the same effect (r ↑).

8Such a “crowding-out” effect rests on the assumption that financing terms of public loan provision
are usually concessional and hence out-compete the market rates charged by the banks in our model.
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under s1 = s∗1 and for any s2 ≥ 0, the set of Nash equilibria can be characterized as

follows:

• A symmetric Nash equilibrium exists, in which banks behave like in the social opti-

mum.

• Another Nash equilibrium with no financing by any bank exists if and only if no

bank can unilaterally break even by providing loans. If such an equilibrium exists

for s1 = s2 = 0 (i.e., without policy intervention), it also exists for s1 = s∗1, s2 = 0.

• A sufficient condition for the no-financing equilibrium not to exist is s2 > c̄+rD−r.9

Proof. See Appendix D.

Notably, under the optimal de-risking subsidy s∗1 (which is positive since c′ < 0),

there exists a gradual-financing or immediate-financing Nash equilibrium that coincides

with the social optimum—even if prior to the policy intervention, the only possible Nash

equilibrium featured no financing. However, such a well-calibrated subsidy does not

necessarily rule out the coordination failure because even for s1 = s∗1, the return spread

in the first period rD − (r − c̄ + s∗1) remains strictly positive.10 Hence, early-stage loans

still come at a loss, albeit a smaller one, and if bank i cannot ensure bankability at t = 2

unilaterally, it cannot make a profit at t = 2 and no financing remains the best response.

Visually speaking, a reduced initial return spread makes the no-financing valley in Figure

3 less steep without entirely removing it. Hence, if no bank is large enough to reach

the tipping point unilaterally without any policy intervention, then introducing s1 = s∗1

will not remove the no-financing equilibrium. Furthermore, if the government were to set

s1 > s∗1 to resolve the coordination problem, this subsidy would lead to an oversupply of

early-stage loans unless the social optimum is an immediate-financing outcome.

However, Equation 36 demonstrates that the existence of the no-financing Nash equi-

librium can always be ruled out via a sufficiently high de-risking subsidy at t = 2. The

logic behind this is simple: If there is a profitable gradual-financing equilibrium (which

is ensured by s1 = s∗1), the coordination failure only arises because, for low amounts of

early-stage loan financing, banks are not fully committed to providing loans at a later

stage and, therefore, withdraw to the non-financing Nash equilibrium to avoid losses.

This no-financing equilibrium collapses once the de-risking measures at t = 2 improve

the risk-return structure of loans such that unilateral financing of li,2 = ψD
N

suffices for

bank i to make a profit in t = 2—even if all other banks do not grant any loans. A

sufficient condition to ensure this is to set s2 marginally above rD− (r− c̄), i.e., above the
return spread at t = 2 if no bank provided any loan financing. Then, loans will always

9Note that this sufficient condition for s2 is not a necessary one to rule out the no-financing equilib-
rium, but it is more tractable mathematically, thus facilitating policy comparisons.

10To show this, recall that in the social optimum, this expression equates the marginal learning gain
of bank i, excluding spillovers, which is strictly positive.
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be profitable at t = 2. Hence, banks commit to loan financing at t = 2 and always prefer

the gradual-financing Nash equilibrium, which, due to the internalization of spillovers via

s1 = s∗1, coincides with the social optimum.

Turning to a policy intervention in which the government provides loans directly

instead of using the de-risking subsidy, the respective first- and second-order conditions

lead us to the following proposition:

Proposition 4. Let the social optimum be 0 < lSO1 < D
N

(gradual financing), let l∗NE1 |g :=

(c′)−1

(
− c̄+rD−r
ϕβψ

D−g2
N

)
− γg

Ñ
g1 and let g∗1 := 1

γg
c−1(r − rD). Under public loan provision in

the absence of any de-risking subsidy (i.e., s1 = s2 = 0), the set of Nash equilibria can be

characterized as follows:

• Both a zero-financing Nash equilibrium and a symmetric equilibrium where each

bank provides max{0, l∗NE1 |g} in t = 1 and ψD−g2
N

in t = 2 can exist.

• The higher g2, the lower l∗NE1 |g, and the less likely it becomes that the Nash equi-

librium with non-zero financing by each bank exists.

• The zero-financing Nash equilibrium cannot exist if g1 exceeds g∗1 (marginally) as

long as g2 ∈ [0, ψD).

Proof. See Appendix D.3.

Hence, under public loan provision in t = 1, each bank provides only max{0, l∗NE1 −
γg

Ñ
g1} in t = 1 in the gradual-financing equilibrium, instead of l∗NE1 in the equilibrium

without policy intervention. This is because the public loan provision does not alter the

best response function of each bank. If the government provides early-stage loans on top

of the gradual-financing Nash equilibrium, then for every unit of g1, each bank reduces

their own early-stage financing by γg

Ñ
and instead benefits from the credit track record

created by the public sector. The higher the spillover rate γg, the better the public loan

provision substitutes banks’ own financing experience, exacerbating this crowding-out

dynamic. If γg

Ñ
g1 ≥ l∗NE1 , then the best response function of private banks flatlines at

zero (see Figure 3) and private loan financing only occurs at t = 2. As a result, public

loan provision is an inept policy instrument to close the gap between a market outcome

with non-zero loan financing and the social optimum. Furthermore, public loan provision

in t = 2 can only exacerbate the existing market failure. Reducing how much banks

can loan at a later stage lowers the value of early-stage learning and hence the amount

that banks are willing to loan (l∗NE1 |g)—and might even undermine the existence of a

gradual-financing Nash equilibrium altogether.

The last part of Proposition 4, however, demonstrates that a certain minimum amount

of public loan provision at t = 1 can overcome the coordination failure by ensuring

that the no-financing equilibrium no longer exists. Note that for g1 = g∗1, the financing
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experience that spills over to banks is exactly the threshold for later-stage bankability

since r− c(γgg∗1) = rD. Therefore, any g1 > g∗1 ensures that each bank provides ψD−g2
N

of

loan financing at t = 2. Importantly, the required g∗1 decreases the more the public loan

provider can diffuse its own financing experience to market players and the more willing

private banks are to learn from the public sector (γg ↑). However, under g1 > g∗1 the

cooperation problem not only continues to exist, such that the gradual-financing Nash

equilibrium still falls short of the social optimum—the market outcome then features a

strictly lower early-stage contribution by private banks due to free-riding.

By Proposition 3, however, a sufficient de-risking subsidy at t = 2 could reach a

similar outcome—which poses the question of which of the two policy measures is more

cost-effective in our model. A key difference between the two policies is that unlike for

the de-risking subsidy, the money spent on public loan provision is (at least partially)

recovered once loans are paid back, and the accumulated financing experience might be

turned into further profits at t = 2, albeit at the cost of crowding out loans by commercial

banks. To assess this, we define the costs of public loan provision as follows:

PC(g1, g2, l1) := (rgD + c̄− rg)g1 − βg (rg − c(g1 + γNl1)− rgD) g2 (17)

where the parameters rg, rgD > 0, βg ∈ (0, 1) have the same meaning as for private

banks. Hence, policy costs can be understood as the negative of the public loan provider’s

profits. Note that here we allow for model parameters to vary between private banks and

the public sector. For instance, the public loan provider might have a lower discount

rate (such that βg > β), a higher risk appetite (such that rg > r), or access to capital

at better rates than the private sector (rgD < rD). By contrast, the opportunity cost of

public money could also be higher since funds for public loan provision could otherwise

be invested in core public responsibilities, such as military defense or education, with

high, albeit non-financial returns (which could be reflected by rgD > rD).

Furthermore, the cost of the de-risking subsidy paid at t = 2 in the absence of public

loan provision is defined as follows:

PC(s2) := s2 β
gψD rgD (18)

This reflects that if the coordination problem is resolved, this will lead to a policy-

induced Nash equilibrium where lNE2 = ψD
N
, and hence, the subsidy must be paid on

all loans (ψD). Similar to the funds for public loans, the money for de-risking subsidies

must be raised somewhere and hence comes at a cost rgD. Since policy costs only occur

at t = 2, they are discounted at βg.

We first compare the costs of the minimum public loan provision or second-period

de-risking that necessarily rule out the coordination failure if the government parameters

mirror the private sector’s characteristics. Then we consider how deviations from this

starting point change results, which results in the following finding:
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Lemma 3. Let ϵ > 0 and g1 = g∗1 + ϵ and s2 = rD + c̄− r + ϵ. Then, it holds that:

• If g∗1 < βgrgDψD, the costs of the policy intervention g1 are lower than the costs

of the policy intervention s2 if the costs of raising funds (rgD) and risk-adjusted

loan return (rg) for the public loan provision are identical to the rates faced by the

banking sector.

• A higher rgD increases the policy costs of both measures, while the costs of providing

g1 also decrease rg and γg.

• If the return spread for public loan provision in t = 2, i.e., rg − c(g1 + γNl1)− rgD,

is positive (negative), the costs of this policy intervention decrease (increase) in g2.

Proof. See Appendix E.1. Comparative statics can be derived directly from the definitions

above.

Therefore, even if the public loan provider does not differ systematically from com-

mercial banks, public loan provision will be the cheaper policy instrument unless the

public loan financing required to resolve the coordination problem exceeds βgrgDψD, i.e.,

the entirety of available loan demand at t = 2 plus financing costs discounted by one

period. However, suppose the Nash equilibrium induced via public loan provision suffices

to make loans at t = 2 profitable for the public sector. In that case, a continued public

loan provision in the second period can reduce policy costs, particularly if the public loan

provider has a lower risk aversion than private banks (rg ↑). However, as discussed above,

such later-stage loan provision would come at the cost of exacerbating the market fail-

ure. Furthermore, the more the public sector’s learning gains spill over to private banks

(γg ↑), the lower the required amount of public loan provision to resolve the coordination

problem and, hence, the policy costs.

In conclusion, unlike de-risking subsidies, public loan provision cannot address the

cooperation problem in our model, and later-stage loan provision even exacerbates market

failures. However, early-stage loan provision can be used to overcome the coordination

problem, i.e., to rule out the existence of an inferior no-financing Nash equilibrium, and

is a more cost-effective measure to do so—unless the required loan financing amounts are

excessively large, for example, if spillovers to the private banks are limited. Therefore,

the case for this policy tool strongly depends on which Nash equilibrium policymakers

consider as more likely to realize without any intervention, particularly since public loan

provision will induce free-riding behavior by private banks to some degree—which would

be exacerbated by including price feedbacks if the additional supply of loans reduces

market rates.

These potential limitations of public loan provision as a stand-alone measure stem

from banks’ response function being unaffected, and learning spillovers to peers remain

unaccounted for. This, however, can be addressed by combining public loan provision
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to rule out the zero-financing Nash equilibrium with the optimally calibrated de-risking

subsidy at t = 1 in a policy mix:

Lemma 4. Let ϵ > 0 and the social optimum be 0 < lSO1 < D
N
, and consider the following

policy mix: g1 = g∗1 + ϵ, s1 = s∗1, g2 = s2 = 0. Then, it holds that:

• The unique Nash equilibrium is one where each bank provides lSO1 − γg

Ñ
g1 in t = 1

(i.e., less than in the social optimum) and ψD
N

in t = 2

• The loan financing amount provided by each bank in the policy-mix equilibrium is

higher than in the Nash equilibrium resulting from the same public loan provision

g1 = g∗1 + ϵ without the de-risking subsidy (s1 = 0).

Proof. See Appendix E.2.

Such a policy mix, therefore, removes the risk of any no-financing Nash equilibrium

and ensures a gradual-financing Nash equilibrium. From a private bank’s perspective,

this provides the same financing experience as in the social optimum, although some of

the financing burden shifts from commercial banks to the public sector to avoid the coor-

dination failure. How this affects overall profits and efficiency strongly depends on how

the public loan provider and private banks differ in terms of their risk appetite, discount

rate, and financing or opportunity costs. However, the loan financing amount provided by

private banks under the policy mix of public loan provision and the optimally calibrated

first-period de-risking subsidy is strictly higher compared to public loan provision as a

stand-alone measure and is, therefore, more effective.

Based on our model framework, the relative merits of later-stage de-risking subsidies to

address the coordination failure are primarily that more financing experience is generated

directly within the private sector since no crowding-out occurs and that it induces no free-

riding behavior. Therefore, the social optimum can be obtained, albeit at a relatively

high policy cost, if the policy is successful. Beyond policy costs, however, direct loan

provision has at least two distinctive advantages. First, an institutionalized public loan

provider can easily be re-directed to other novel technologies as they emerge and pose

new coordination problems for the financial sector. By doing so, institutions can leverage

their previous financing experience even if high opportunity costs and crowding-out risks

should force them to withdraw from matured technologies. If new technologies emerge

and the institution’s mandate is sufficiently flexible, then private debt markets for these

technologies can be kickstarted without the need for introducing additional policies, which

can accelerate the ramp-up of deployment. If no such technologies emerge, then selling the

public loan provider to the private sector, as the UK did with its UK Green Investment

Bank in 2017 (Whitney et al., 2020), can further provide an exit strategy to recover policy

costs (partially) by monetizing the accumulated in-house experience.

Second, addressing the coordination failure through early-stage loan provision avoids

the issue of time inconsistency on the government’s side. By Proposition 3, a sufficiently
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high de-risking subsidy at t = 2 suffices to avoid an inferior no-financing equilibrium.

However, once the second period begins, banks have already provided the required early-

stage loan financing. Therefore, merely the anticipation of the support policy at t = 2

rules out the no-financing equilibrium. The actual payment of s2 does not affect total

profits and instead simply redistributes money from the public to the private sector. As

a result, policymakers could be tempted to go back on their promises, which in turn

will reduce policy effectiveness if banks assign a non-zero probability to such an outcome

ex ante. Similar concerns, however, exist with respect to public loan provision at t =

2. A government that initially promised to phase out loan provision once the novel

technology becomes bankable might be tempted to keep providing loans in t = 2 when

they become profitable. These considerations seem particularly relevant for countries with

lower institutional quality and low trust in the public sector or with highly bipartisan

politics on climate change, such that elections pose severe risks of policy reversal. It

also matters for countries with lower creditworthiness that might be forced to revoke

expensive support policies by adverse macroeconomic shocks—as happened to renewable

energy subsidies in Spain and Italy following the Euro crisis (Karneyeva & Wüstenhagen,

2017)—and for technologies with a lower later-stage demand potential ψ where public

loan volumes can account for high market shares.

6 Conclusion

Over the last few years, direct loan provision to clean energy projects via government

bodies and public investment banks has become increasingly popular, but the theoretical

rationale behind this policy tool is not fully understood and lacks a coherent microeco-

nomic framework. By analyzing bank loans to a novel clean energy technology in a model

where cumulative financing experience improves risk-adjusted returns over time and spills

over between banks, we show that the banking sector will not provide the socially optimal

amount of risky early-stage financing due to two issues.

First, the positive learning externality leads to an undersupply of risky early-stage

credit. This cooperation problem cannot be mitigated through public loan provision

because public loans crowd out private investment and create no additional incentive

for banks to provide risky early-stage loans. By contrast, introducing de-risking instru-

ments, such as interest rate subsidies or credit guarantees, at an early stage can close

the gap between the social optimum and a market equilibrium that involves some, albeit

insufficient, early-stage loan financing. Second, the banking sector can remain stuck in

an inferior Nash equilibrium featuring no loan financing due to a coordination failure.

In this case, public loan provision serves to push the market to the preferable market

equilibrium, which can be more cost-effective than resolving the coordination problem by

using de-risking measures. However, public loan provision should always be paired with
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de-risking measures to minimize the gap between market outcome and social optimum

and should be phased out at a later stage when the novel technology has become bankable

to avoid exacerbating the market failures through crowding-out.

Since the findings presented here do not rely on market failures on the technology

or consumer level, such as greenhouse gas emissions and R&D spillovers, they motivate

financial policy intervention even if other first-best instruments, such as carbon pricing

or renewable energy support schemes, are already in place. Therefore, they can guide

policymakers in shaping the rules and mandates for public loan programs and investment

banks that are targeting clean energy projects, such as the clean finance institutions to

be established under the Inflation Reduction Act’s National Clean Investment Fund.

While our model provides a clear framework to conceptualize the role of public loan

provision for clean energy technologies, its simplicity also comes with limitations. First,

by abstracting from externalities at the technology and consumer level, we risk painting a

pessimistic picture of public loan provision as a policy instrument if first-best instruments

cannot be easily implemented due to political constraints. Similarly, assuming a perfectly

inelastic loan demand exacerbates crowding-out issues in our model, which would decrease

in demand elasticity. Thus, we abstract from how supply-demand dynamics might impact

risk-adjusted returns, whereas public loan provision could also address an undersupply of

credit due to market power for a decreasing demand curve and a finite N . Lastly, while

our model features a risk-adjusted return motivated by default risks and risk aversion, we

do not account for within-portfolio correlations, uncertainties about key parameters, such

as the learning rate or the growth potential of the novel technology (ψ), or for systemic

risks and bank heterogeneity, which matter particularly for banking regulation (Freixas

& Rochet, 2023).

Future research can address these limitations by extending our framework to multiple

assets, explicitly incorporating uncertainties about c and ψ, and exploring how a falling

loan demand curve and bank heterogeneity might moderate the findings presented here.

Given the signaling role of public green banks suggested by qualitative studies (OECD,

2016), scholars could also model borrower projects explicitly to explore how co-investing

with commercial banks can increase the policy impact of public loan providers or how

incorporating herding dynamics can affect the conclusions presented here.
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Appendices

A Additional definitions

We introduce a variety of further definitions and conventions to make the subsequent

proofs more concise:

• L̄t :=
∑N

i=1 li,t

• (l1, l2)
N
i=1 denotes any kind of symmetric outcome where each bank provides l1 in

t = 1 and l2 in t = 2.

• L denotes the N × 2 matrix with elements li,t in its i-th row and t-th column.

• L−i and L̄−i,t denote the corresponding matrix and sum, respectively, if bank i is

excluded from it.

• LNE denotes the set of existing Nash equilibria under the market outcome, given

model parameters.

• the notation |g, |s, and |gs after a variable denotes the respective variable’s value

in the presence of a policy intervention (direct loan provision, de-risking subsidy,

or both combined, respectively). For instance, lNE1 |g denotes the symmetric Nash

equilibrium loan financing in t = 1 that results under direct loan provision.

As laid out in the main text, throughout the entire paper, we assume that the initial

return spread over the deposit rate and transaction cost is negative but that for a full

provision of early-stage financing, the return spread in t = 2 can become positive:

Assumption 1. r > rD, r− c̄ < rD and r−c
(
Ñ
N
D
)
> rD, where Ñ := 1+γ(N−1) < N .

B Proofs for Proposition 1 (social optimum)

Using a more formal notation, Proposition 1 can be stated as

Proposition 1. Let l∗1 := Ñ−1(c′)−1

(
− c̄+rD−r

β Ñ
N
D

)
where (c′)−1(·) denotes the inverse func-

tion of c′.11 Then

(lSO1 , lSO2 ) =


(D
N
, D
N
) if l∗1 ≥ D

N
∧ β

(
r − c(Ñ D

N
)− rD

)
> c̄+ rD − r

(l∗1,
D
N
) if l∗1 <

D
N
∧ β

(
r − c(Ñ l∗1)− rD

)
D
N
> (c̄+ rD − r) l∗1

(0, 0) otherwise

11Note that c′ is monotonously increasing, and hence, (c′)−1 exists and is monotonously increasing.
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Ceteris paribus, both l∗1 and the likelihood of the condition for lSO1 , lSO2 > 0 being

satisfied increase monotonously in r, β, D, ψ, and γ, and decrease monotonously c̄ and

N .

Proof. See Appendices B.1 and B.2.

B.1 First- and second-order conditions

The Lagrangian of the social maximization problem stated in Equation 10 is as follows:

max
l1,1,...lN,2

L =
N∑
i=1

(r − c̄− rD)li,1 + β
(
r − c(γL̄−i,1 + li,1)− rD

)
li,2

+ µi,1

(
D

N
− li,1

)
+ µi,2

(
ψ
D

N
− li,2

)
+ µi,3li,1 + µi,4li,2.

Note that here we redefine the Lagrangian multipliers applying to t = 2 as the original

multiplier divided by β, which does not affect results since β ∈ (0, 1), but simplifies the

first-order conditions (FOCs).

The resulting Karush-Kuhn-Tucker conditions tell us that, for each bank i, the fol-

lowing conditions have to hold in the social optimum:

−rD + r − c̄− β

(
c′(L̃SOi,1 )l

SO
i,2 + γ

∑
j ̸=i

c′(L̃SOj,1 )l
SO
j,2

)
− µi,1 + µi,3 = 0 (19)

−rD + r − c(L̃SOi,1 )− µi,2 + µi,4 = 0 (20)

µi,1(
D

N
− lSOi,1 ) = µi,2(ψ

D

N
− lSOi,2 ) = µi,3l

SO
i,1 = µi,4l

SO
i,2 = 0 (21)

µi,1, µi,2, µi,3, µi,4 ≥ 0 (22)

Obviously, the upper and lower bound restrictions on lSOi,1 and lSOi,2 are mutually ex-

clusive. Hence, the complementary slackness conditions expressed by Equation 21 imply

that:

µi,u > 0 → µi,v = 0 ∀ (u, v) ∈ {(1, 3), (3, 1), (2, 4), (4, 2)}

Keeping in mind that banks prefer no loan financing if the return spread is exactly

zero, by Equation 20, we can rule out any scenario where µi,2 = µi,4 = 0, which gives us

a simple rule for lSOi,2 given the optimal solution for all banks other than i, as expressed

in Lemma 1 (see Section 3).
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B.2 Social optimum under symmetry

As laid out in Section 4, we impose symmetry on the social optimum to maintain the

analytical tractability of our model:

Assumption 2. Let (lSOi,1 , l
SO
i,2 ) be the solution to the maximization problem in Equation

10 for any bank i. Then

lSOi,t = lSOt ∀ i = 1, ..., N, t = 1, 2

Based on Lemma 1, there are only six different ways that a given bank i can behave:

1. lSOi,1 = lSOi,2 = 0

2. lSOi,1 = D
N
, lSOi,2 = ψD

N

3. lSOi,1 ∈
(
0, D

N

)
, lSOi,2 = ψD

N

4. lSOi,1 ∈
(
0, D

N

)
, lSOi,2 = 0

5. lSOi,1 = D
N
, lSOi,2 = 0

6. lSOi,1 = 0, lSOi,2 = ψD
N

Under symmetry, we can rule out the two cases involving li,1 > 0, li,2 = 0 because

there is no point in providing early-stage financing if no one benefits from it in t = 2.

Similarly, if all banks behave symmetrically, li,1 = 0, li,2 = ψD
N

cannot be optimal because

due to the absence of learning effects from t = 1, financing provision in t = 2 results in

negative profits. Therefore, one of the three following cases must apply:

• “immediate financing”: (lSOi,1 , l
SO
i,2 ) = (D

N
, ψD

N
) ∀ i = 1, ..., N

• “gradual financing”: (lSOi,1 , l
SO
i,2 ) = (lSO1 , ψD

N
) ∀ i = 1, ..., N with lSO1 ∈ (0, D

N
)

• “no financing”: (lSOi,1 , l
SO
i,2 ) = (0, 0) ∀ i = 1, ..., N

Furthermore, we can show that “immediate financing” and “gradual financing” are

mutually exclusive as critical points of the Lagrangian:

Lemma 5. Let L∗ be the set of critical points satisfying the FOCs of the maximization

problem in Equation 10. Then under Assumption 2, it holds that

• (l1, ψ
D
N
) ∈ L∗ for l1 ∈ (0, D

N
) =⇒ (D

N
, ψD

N
) /∈ L∗

• (D
N
, ψD

N
) ∈ L∗ =⇒ (l1, ψ

D
N
) /∈ L∗ for l1 ∈ (0, D

N
)
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Proof. Due to symmetry, the FOCs in Equations 19-20 simplify to:

−rD + r − c̄− βÑlSO2

(
c′(Ñ lSO1 )

)
− µi,1 + µi,3 = 0 (23)

−rD + r − c(Ñ lSO1 )− µi,2 + µi,4 = 0 (24)

Note that c′ < 0 such that −βÑlSO2
(
c′(Ñ lSO1 )

)
is non-negative. Both under “imme-

diate financing” and “gradual financing”, lSO2 = ψD
N
. Therefore, Equation 23 only differs

in lSO1 (and correspondingly µi,1 and µi,3) between the two outcomes. But if

∃l1 ∈ (0,
D

N
) : −βÑ D

N

(
c′(Ñ l1)

)
= rD − (r − c̄)

then

−βÑ D

N

(
c′(Ñ

D

N
)

)
< rD − (r − c̄)

as c′′ > 0. By the same logic, Equation 23 cannot hold for lSO1 ∈ (0, D
N
) if it holds for

lSO1 = D
N
.

If Equation 23 holds for µi,1 = µi,3 = 0, this gives the following solution:

l∗1 := Ñ−1(c′)−1

(
−rD − r + c̄

βÑψD
N

)

By Lemma 5 and Assumption 2, there can at most be two critical points of the

Lagrangian: one at (0, 0)Ni=1 and one either at (l∗1, ψ
D
N
)Ni=1 or at (D

N
, ψD

N
)Ni=1. Therefore,

regarding the second-order condition (SOC) for an optimum at (l1, ψ
D
N
)Ni=1 where l1 ∈

{l∗1, DN }, it suffices to show that the objective function’s value at this point exceeds the

value at (0, 0)Ni=1. Since π̄i(L = (0, 0)Ni=1) = 0, then the SOC simply requires profits above

zero:

N

(
(r − c̄− rD)l1 + β(r − c(Ñ l1)− rD)ψ

D

N

)
> 0 (25)

Dividing by N and rearranging gives the condition in the Appendix version of Propo-

sition 1.

Since r− c̄−rD < 0 by Assumption 1, this requires r−c(Ñ l1)−rD > 0, which directly

implies that (l1, ψ
D
N
)Ni=1 also satisfies the FOC with respect to li,2:

Lemma 6. Let l1 ∈ {l∗1, DN }. If Equation 25 holds for l1, then Equation 24 holds for

lSO1 = l1, µi,2 > 0.

Proof. For Equation 25 to hold, it must be that r − c(Ñ l1) − rD > 0. Hence, Equation

24 can only hold if µi,2 > 0.

Therefore, the conditions for a social optimum at l1 ∈ {l∗1, DN } given in the Appendix

version of Proposition 1 only include the FOC with respect to li,1 and the SOC (which
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implies the FOC with respect to li,2). Taking partial derivatives of l∗1 and the respective

SOC yields the comparative statics in the Appendix version of Proposition 1.

C Proofs for Proposition 2 (market outcome)

Using a more formal notation, Proposition 2 can be stated as

Proposition 2. Let l∗NE1 := Ñ−1(c′)−1
(
− rD+c̄−r

βψD
N

)
, let LNE be the set of possible Nash

equilibria and let l̄1 := min{l∗NE1 , D
N
}. Then

• LNE = {(0, 0)Ni=1} if l̄1 ≤ 0 and otherwise LNE ∈ P
(
{(l̄1, DN )

N
i=1, (0, 0)

N
i=1}

)
\ ∅

• (0, 0)Ni=1 ∈ LNE if and only if

∄ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β(r − c(li,1)− rD)ψ

D

N
> (rD + c̄− r)li,1 (26)

• (l̄1, ψ
D
N
)Ni=1 ∈ LNE if and only if

l̄1 > 0 ∧ β(r − c(Ñ l̄1)− rD)ψ
D

N
> (rD + c̄− r)l̄1 (27)

Furthermore, for any (l1, l2)
N
i=1 ∈ LNE, it must hold that l1 ≤ lSO1 , with l1 = lSO1 if

and only if

lSO1 = 0 ∨
(
lSO1 =

D

N
= l1 = l̄1

)
. (28)

Proof. See Appendices C.2, C.3, C.4 and C.5.

C.1 First-order conditions

The Lagrangian of the individual maximization problem of bank i stated in Equation 13

is as follows:

max
li,1,li,2

L =(r − c̄− rD)li,1 + β
(
r − c(γL̄−i,1 + li,1)− rD

)
li,2

+ µi,1

(
D

N
− li,1

)
+ βµi,2

(
ψ
D

N
− li,2

)
+ µi,3li,1 + βµi,4li,2.

The resulting Karush-Kuhn-Tucker conditions that any Nash equilibrium must satisfy

are as follows:
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−rD + r − c̄− βc′(L̃NEi,1 )lNEi,2 − µi,1 + µi,3 = 0 (29)

−rD + r − c(L̃NEi,1 )− µi,2 + µi,4 = 0 (30)

µi,1(
D

N
− lNEi,1 ) = µi,2(ψ

D

N
− lNEi,2 ) = µi,3l

NE
i,1 = µi,4l

NE
i,2 = 0 (31)

µi,1, µi,2, µi,3, µi,4 ≥ 0 (32)

C.2 Best response function

Lemma 7. Let li,1 ∈
(
0, D

N

]
. Then,

(li,1, 0) ̸∈ argmax
li∈Li

πi((L−i, li)).

Proof. This is trivial because it cannot be individually optimal to play li,1 > 0 without

profiting from learning effects at t = 2 since by Assumption 1, li,1 > 0 implies losses at

t = 1.

Lemma 8. The individually profit-maximising amount l∗i,2 = argmaxli,2∈[0,ψD
N ]
πi(L−i, (li,1, li,2))

follows a deterministic rule:

l∗i,2 =

0, if r − c(L̃i,1) ≤ rD

ψD
N
, otherwise.

Proof. This follows directly from Equation 30 once we assume that banks prefer no loan

financing if the return spread is exactly zero.

Depending on the behavior of the other banks L−i, we can then show that the best

response of bank i can fall into four different categories:

1. “immediate financing” (IF): bank i finances the full amount of projects in both

periods subject to its demand constraint

2. “gradual financing” (GF): bank i finances some but not all available projects at

t = 1 and all projects at t = 2

3. “free-riding” (FR): bank i invests nothing at t = 1 but finances all available projects

at t = 2

4. “no financing” (NF): bank i does not invest in neither period
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Lemma 9. Bank i’s best response function BRi : L−i 7→ argmaxli,1,li,2 πi(L−i, li) is given

by:

BRi(L−i) =



(
D
N
, ψD

N

)
if r − c̄− βc′(L̃−i,1 +

D
N
)ψD

N
> rD ∧

r − c(L̃−i,1 +
D
N
) > rD ∧

πi(L−i, (
D
N
, ψD

N
)) > πi(L−i, (0, 0))(

l∗i,1, ψ
D
N

)
if ∃li,1 ∈ [0, D

N
) :

r − c̄− βc′(L̃−i,1 + li,1)ψ
D
N

= rD,

r − c(L̃−i,1 + li,1) > rD,

πi(L−i, (li,1, ψ
D
N
)) > πi(L−i, (0, 0))(

0, ψD
N

)
if the prior conditions are not satisfied and in addition,

r − c(L̃−i,1) > rD

(0, 0) otherwise

with

l∗i,1 = (c′)−1

(
−rD − r + c̄

βψD
N

)
− L̃−i,1.

Proof. This follows directly from the FOC in Equation 29 and Lemmas 7 and 8.

C.3 Symmetry of Nash equilibrium

We can show that any Nash equilibrium must be symmetric:

Lemma 10. In any Nash equilibrium, it holds that

¬∃i ∈ {1, ..., N} : li,1 = 0 ∧ li,2 > 0.

Proof. Let li,1 = 0 in a Nash equilibrium. Assume for contradiction that li,2 > 0. By

Lemma 8, this implies that li,2 = ψD
N
.

Then, one of the following cases must hold:

• L̃−i,1 = 0. But by Assumption 1, this would imply that r−c(L̃−i,1+li,1) = r−c̄ < rD.

Then, it is trivial to see that

πi((L−i, (0, 0))) > πi((L−i, (0, li,2))).

Hence, (0, li,2) cannot be a best response to L−i for bank i, and therefore this

strategy cannot be part of a Nash equilibrium.

• L̃−i,1 > 0. This implies that there is another bank j with lj,1 > 0 and, concomitantly,
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lj,2 = ψD
N

and

L̃−j,1 = γL̄−i,j,1 < γL̄−i,j,1 + γlj,1 = L̃−i,1.

It follows immediately that L̃j,1 − L̃i,1 = (1− γ)lj,1 > 0. Note that lj,1 > 0 requires

by j’s best response function that

r − c̄− βc′(L̃j,1)ψ
D

N
≥ rD,

while li,1 = 0 requires by i’s best response function that

r − c̄− βc′(L̃i,1)ψ
D

N
< rD.

But since −βc′(·)ψD
N

is strictly decreasing, L̃i,1 < L̃j,1 implies that

r − c̄− βc′(L̃i,1)ψ
D

N
> r − c̄− βc′(L̃j,1)ψ

D

N
≥ rD,

which is a contradiction.

Lemma 11. In any Nash equilibrium with L̄1 ∈ (0, D], it holds that

li,1 ̸= 0 ∀ i = 1, ..., N

Proof. L̄1 ∈ (0, D] implies that there must be another bank j such that lj,1 > 0.

Assume for contradiction that there is a bank i such that li,1 = 0. By Lemma 10, this

implies that li,2 = 0, which means that

πi(L−i, (0, 0)) = 0.

Note that lj,1 > 0 implies that lj,2 > 0 by the contrapositive of Lemma 7, which implies

by Lemma 8 that lj,2 = ψD
N
. Hence, bank j’s profits must be

πj(L−j, (lj,1, ψ
D

N
)) = (r − c̄− rD)lj,1 + β

(
r − c(L̃−j,1 + lj,1)− rD

)
ψ
D

N
.

If the outcome is a Nash equilibrium, it has to hold by j’s best response function that

this yields positive profits—which is the profit made by bank i.

Also, note that

L̃−j,1 − L̃−i,1 = γL̄−i,j,1 − (γL̄−i,j,1 + γlj,1) = −γlj,1 < 0,

which means that L̃−j,1 < L̃−i,1. But since πi(·) is weakly increasing in L̃−i,1, this means

that if bank i were to switch from (0, 0) to adopting bank j’s strategy (lj,1, ψ
D
N
), it must
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hold that

πi(L−i, (lj,1, ψ
D

N
)) ≥ πj(L−j, (lj,1, ψ

D

N
)) > πi(L−i, (0, 0)).

By symmetry, (lj,1, ψ
D
N
) must be feasible for bank i since it is feasible for bank j.

Therefore, (0, 0) cannot be a best response of bank i to L−i and the outcome cannot be

a Nash equilibrium.

Lemma 12. In any Nash equilibrium with L̄1 ∈ (0, D], there is a l∗1 ∈
(
0, D

N

]
such that

lk,1 = l∗1 ∀ k = 1, ..., N.

Proof. In a Nash equilibrium with L̄1 ∈ (0, D], by Lemma 11, it holds that li,1 > 0 ∀ i.
Take any i ̸= j and assume for contradiction that lj,1 > li,1.

This implies that L̃j,1 = γL̄−i,j,1 + γli,1 + lj,1 and L̃j,1 = γL̄−i,j,1 + γlj,1 + li,1. Hence,

L̃j,1 − L̃i,1 = (1− γ)(lj,1 − li,1) > 0.

Note that li,1, lj,1 > 0 implies by Lemma 7 that li,2 = lj,2 = ψD
N
. Furthermore,

lj,1 > li,1 implies that li,1 ∈
(
0, D

N

)
. Since the outcome is a Nash equilibrium, i’s best

response function then requires that

rD = r − c̄− βc′(L̃i,1)ψ
D

N
.

At the same time, lj,1 > 0 implies by j’s best response function that

rD ≤ r − c̄− βc′(L̃j,1)ψ
D

N
.

Combining both expressions yields the requirement that

−c′(L̃j,1) ≥ −c′(L̃i,1).

However, since −c(·) is strictly decreasing and L̃j,1 > L̃i,1, this cannot hold.

Lemma 13. In any Nash equilibrium, it holds that

li,t = l∗t ∀ i, t.

Proof. Simply note that L̄1 ∈ [0, D], which means that one of the following cases has to

hold:

• L̄1 = 0. Then, trivially, li,1 = 0 ∀ i.

• L̄1 ∈ (0, D]. Then, by Lemma 12, li,1 = l∗1 ∀ i.
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Since this implies that L̃i,1 = (1 + γ(N − 1))l∗1 ∀ i, Lemma 8 tells us that li,2 = l∗2 for

some l∗2 ∈
{
0, ψD

N

}
for all i.

C.4 Existence of Nash equilibria

Lemma 14. Let l∗NE1 := Ñ−1(c′)−1(− rD−r+c̄
βψD

N

). Then the symmetric no-financing Nash

equilibrium li,t = 0 ∀ i, t exists if and only if

∄ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (rD − r + c̄) li,1.

Proof. Only if

By Assumption 1, the FOCs in Equation 29 and 30 hold for li,t = 0 ∀ i, t, µi,3, µi, 4 > 0,

i.e., the symmetric no-financing outcome is always a critical point of the Lagrangian since

both FOCs, in this case, reduce to r − c̄ < rD.

By Lemma 9, (li,1, li,2) = (0, ψD
N
) cannot be a best response of bank i given L̄−i,1 = 0.

Therefore, by Lemma 9 the only possible best-response deviations for bank i from the

symmetric no-financing outcome are

(li,1, li,2) = (
D

N
,ψ
D

N
)

or

(li,1, li,2) =

(
(c′)−1

(
−rD − r + c̄

βψD
N

)
− L̃−i,1, ψ

D

N

)
which given L̄−i,1 = 0 can be rewritten as

(li,1, li,2) =

(
Ñ l∗NE1 , ψ

D

N

)
Assume that the symmetric no-financing outcome is not a Nash equilibrium. Then,

one of these two possible deviations must be optimal for bank i given L̄−i = 0, which by

the SOC requires that

∃ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : πi

(
L̄−i,1 = 0, (li,1, ψ

D

N
)

)
> πi

(
L̄−i,1 = 0, (0, 0)

)
= 0

.

Inserting the expression for πi
(
L̄−i,1 = 0, (li,1, ψ

D
N
)
)
and rearranging gives us

∃ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (r − c̄− rD)li,1

.

If
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If

∄ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
≥ (rD − r + c̄) li,1.

holds, then the SOC is violated for any (li,1, li,2) ̸= (0, 0) that satisfies the best response

function given by Lemma 9. Hence, the best response of bank i given L̄−i,1 = 0 must be

(0, 0).

Lemma 15. Let l∗NE1 := Ñ−1(c′)−1
(
− rD−r+c̄

βψD
N

)
. Then the Nash equilibrium (l∗NE1 , ψD

N
)Ni=1

exists if and only if

l∗NE1 ∈ (0,
D

N
] ∧ β

(
r − c(Ñ l∗NE1 )− rD

)
ψ
D

N
> (rD − r + c̄) l∗NE1 (33)

Proof. If

First, we must show that (l∗NE1 , ψD
N
)Ni=1 satisfies the FOC for each bank i. Plugging

this into Equation 29 yields

−rD + r − c̄− βc′(Ñ l∗NE1 )ψ
D

N
− µi,1 + µi,3 = 0

.

Assuming l∗NE1 ∈ (0, D
N
) =⇒ µi,3 = µi,1 = 0 and given the definition of l∗NE1 , this

reduces to

0 = 0

Assuming l∗NE1 = D
N

=⇒ µi,3 = 0, µi,1 ≥ 0, the Equation still holds for µi,1 = 0, which

does not violate the complementary slackness conditions. Hence, in both cases, the FOC

is satisfied.

By Lemma 9, the only possible deviations for bank i from (l∗NE1 , ψD
N
)Ni=1 are (0, 0),

(0, ψD
N
) and (D

N
, ψD

N
). Then, the SOC requires that profits under these deviations are

dominated by (l∗NE1 , ψD
N
).

First, note that

β
(
r − c(l∗NE1 )− rD

)
ψ
D

N
> (rD − r + c̄) l∗NE1

implies that bank i makes an above-zero profit in the potential Nash equilibrium, and

hence (0, 0), which yields zero profits, cannot be an individually rational deviation from

the potential Nash equilibrium.

For the other two deviations, it suffices to show that if li,2 = ψD
N
, then for a given

L−i,1

πi

(
L̄−i,1, (li,1,

D

N
)

)
= (r − c̄− rD)li,1 + β

(
r − c(li,1 + L̃−i,1)− rD

)
ψ
D

N
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is strictly concave in li,1 since the first term is linear, hence weakly concave, in li,1 and

−c(·) is strictly concave by the strict convexity of c. Therefore, any deviation from the

critical point (l∗NE1 , ψD
N
) that still features li,2 = ψD

N
must result in strictly lower profits

and cannot be a best response.

Only if

Assume that the Nash equilibrium (l∗NE1 , ψD
N
)Ni=1 exists. By Lemma 7, this then

implies that

l∗NE1 ̸= 0

and hence, given the demand constraint and the non-negativity condition

l∗NE1 ∈ (0,
D

N
]

.

However, if the Nash equilibrium (l∗NE1 , ψD
N
)Ni=1 exists, then by Lemma 9, this implies

above-zero profits.

Lemma 16. The Nash equilibrium (D
N
, ψD

N
)Ni=1 exists if and only if

r − c̄− βψ
D

N
c′(Ñ

D

N
) ≥ rD ∧ βψ

(
r − c(

Ñ

N
D)− rD

)
≥ rD − r + c̄.

Proof. If

For this part of the proof, we follow the same steps as above for Lemma 15: For

r − c̄− βψ
D

N
c′
(
Ñ
D

N

)
≥ rD

the FOC with respect to li,1 is satisfied and l∗NE1 ≥ D
N
, i.e., a deviation from the potential

Nash equilibrium to li,1 = l∗NE1 would violate the demand constraint. By strict concavity

of profits given li,2 = ψD
N
, deviating away from the critical point l∗NE1 to li,1 = 0 must

yield strictly lower profits. By Lemma 9, the only remaining best response is (0, 0), which

cannot be optimal since

βψ(r − c

(
Ñ

N
D

)
− rD) ≥ rD − r + c̄

implies profits above zero under the potential Nash equilibrium. Hence, the Nash equi-

librium exists.

Only if

First, assume that profits of bank i under (D
N
, ψD

N
)Ni=1 are non-positive. Since we
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assume that for zero profits, (0, 0) is preferred, then this directly implies that the best

response must be (0, 0).

Alternatively, assume that

r − c̄− βψ
D

N
c′
(
Ñ
D

N

)
< rD

. But then by Lemma 9, this implies that the best response cannot be (li,1, li,2) =

(D
N
, ψD

N
).

Lemma 17. Let LNE be the set of Nash equilibria and let l∗NE1 < D
N
. Then (D

N
, ψD

N
)Ni=1 /∈

LNE if (l∗NE1 , ψD
N
)Ni=1 ∈ LNE and vice-versa.

Proof. By Lemma 16, (D
N
, ψD

N
)Ni=1 /∈ LNE requires that

r − c̄− βψ
D

N
c′
(
Ñ
D

N

)
≥ rD

whereas by Lemma 15, (l∗NE1 , ψD
N
)Ni=1 ∈ LNE requires that

r − c̄− βψ
D

N
c′
(
Ñ l∗NE1

)
= rD

As l∗NE1 < D
N

and c′′ > 0, these conditions are mutually exclusive as

−βψD
N
c′
(
Ñ
D

N

)
< −βψD

N
c′(Ñ l∗NE1 )

.

Lemma 18. Let LNE be the set of Nash equilibria. Then if (0, 0)Ni=1 /∈ LNE, it holds that

(l∗NE1 , ψ
D

N
)Ni=1 ∈ LNE ∨ (

D

N
,ψ
D

N
)Ni=1 ∈ LNE

.

Proof. By Lemma 14, (0, 0)Ni=1 /∈ LNE requires that

∃ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (rD − r + c̄) li,1.

This condition holds under two cases:

Case 1:

∃ li,1 = Ñ l∗NE1 ∈ (0,
D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (rD − r + c̄) li,1.

Since this implies that l∗NE1 ∈ (0, D
N
), both conditions in Lemma 15 are satisfied such that

(l∗NE1 , ψD
N
)Ni=1 ∈ LNE.
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Case 2:

Ñ l∗NE1 /∈ (0,
D

N
] ∧ βψ

(
r − c(

D

N
)− rD

)
D

N
> (rD − r + c̄)

D

N
.

By Lemma 9, the latter expression (i.e., bank i can obtain positive profits unilaterally)

requires that

r − c̄− βψ
D

N
c′(
D

N
) > rD

Since Ñ l∗NE1 is implicitly defined by

r − c̄− βψ
D

N
c′(Ñ l∗NE1 ) = rD

and c′′ > 0, this implies that Ñ l∗NE1 > D
N
.

Now, we need to distinguish two further cases:

Case 2a: l∗NE1 ≤ D
N
.

We know that

β

(
r − c(

D

N
)− rD

)
ψ
D

N
> (rD − r + c̄)

D

N

and that l∗NE1 ≤ D
N

while Ñ l∗NE1 > D
N
. Then it directly follows that

β
(
r − c(Ñ l∗NE1 )− rD

)
ψ
D

N
> (rD − r + c̄) l∗NE1

. since c′ < 0 and by Assumption 1, rD − r + c̄ > 0. Hence, both conditions in Lemma

15 are satisfied such that (l∗NE1 , ψD
N
)Ni=1 ∈ LNE.

Case 2b: l∗NE1 > D
N
.

Again, we can directly conclude that

β

(
r − c(Ñ

D

N
)− rD

)
ψ
D

N
> (rD − r + c̄)

D

N

.

Hence, both conditions in Lemma 16 are satisfied such that (D
N
, ψD

N
)Ni=1 ∈ LNE.

C.5 Early financing gap

Lemma 19. Let LSO be the set of socially optimal solutions and LNE be the set of Nash

equilibrium solutions. Then, if (0, 0)Ni=1 ∈ LSO, then LNE = {(0, 0)Ni=1}.

Proof. By the social planner’s SOC, (0, 0)Ni=1 ∈ LSO implies that, for any L̄1 ∈ [0, D], L̃1 ∈
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[
0, Ñ

N
D
]
,

0 ≥ (r − c̄− rD)L̄1 + β(r − c(L̃1)− rD)ψD.

Dividing both sides of this inequality by N , it is immediately clear that this is equivalent

to

0 ≥ (r − c̄− rD)l1 + β(r − c(L̃1)− rD)ψ
D

N
(34)

for any l1 ∈
[
0, D

N

]
, L̃1 ∈

[
0, Ñ

N
D
]
.

Now, assume for contradiction that there is a different Nash equilibrium. This implies

that there is at least one bank i, for which li,1 ∈
(
0, D

N

]
and L̃−i,1 ∈

[
0, Ñ−1

N
D
]
. However,

by bank i’s best response function, this would require that

0 < (r − c̄− rD)li,1 + β
(
r − c(L̃−i,1 + li,1)− rD

)
ψ
D

N
.

But since L−i,1 + li,1 ∈
[
0, Ñ

N
D
]
, this would directly contradict the condition in Equation

(34) above.

Lemma 20. Let the unique socially optimal solution be such that L̄SO1 ∈ (0, D). Let LNE

be the set of Nash equilibrium solutions. Then, for any L ∈ LNE and N > 1, it must

hold that L̄1 < L̄SO1 .

Proof. Assume for contradiction that L̄1 ≥ L̄SO1 . By Lemma 13 (symmetry of the Nash

equilibrium), this implies that li,1 = l1 = L̄1

N
∈
(
0, D

N

]
∀ i. It also requires that there is

at least one bank i with lSOi,1 ≤ l1 and L̄−i,1 = L̄1 − l1 ∈
[
0, N−1

N
D
]
. Let i be this bank.

By the banks’ best response function, this implies that

−c′(γL̄−i,1 + l1) ≥
rD − r + c̄

β

N

ψD
,

where the condition holds with strict inequality if and only if l1 =
D
N
. On the other hand,

the FOCs for bank i in the social planner’s problem tell us that

−c′(γL̄SO−i,1 + lSOi,1 ) ≤
rD − r + c̄

β

N

ψD

1

Ñ
,

where the condition holds with strict inequality if and only if lSOi,1 = 0.

As N > 1, we know that

rD − r + c̄

β

N

ψD
>
rD − r + c̄

β

N

ψD

1

Ñ
,
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and hence that

−c′(γL̄−i,1 + l1) > −c′(γL̄SO−i,1 + lSOi,1 ).

Since c(·) is strictly decreasing and convex, −c′(·) is strictly decreasing, this implies that

γL̄−i,1 + l1 < γL̄SO−i,1 + lSOi,1 . Rearranging yields

L̄1 +
1− γ

γ
(l1 − lSOi,1 ) < L̄SO1 .

Since l1 − lSOi,1 ≥ 0, this implies that L̄1 < L̄SO1 , which contradicts L̄1 ≥ L̄SO1 .

Lemma 21. Let (D
N
, ψD

N
)Ni=1 be the unique socially optimal solution (immediate financ-

ing). Let LNE be the set of Nash equilibrium solutions. Then, (D
N
, ψD

N
)Ni=1 ∈ LNE if and

only if

−c′(Ñ
N
D) ≥ rD − r + c̄

β

N

ψD
. (35)

Proof. If (D
N
, ψD

N
)Ni=1 is the solution to the social maximization problem, the SOC implies

that total profits exceed zero, i.e.,

β

(
r − c(Ñ

D

N
)− rD

)
ψ
D

N
> (r − c̄− rD)

D

N

.

which satisfies the second condition in Lemma 16. The condition stated above is then

simply the first condition in Lemma 16 restated.

D Proofs for Propositions 3 and 4 (stand-alone pol-

icy interventions)

Using a more formal notation, Propositions 3 and 4 can be stated as follows:

Proposition 3. Let lSO1 ∈ (0, D
N
), let s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0 and let LNE|s

be the set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, it holds

that

• (lSO1 , lSO2 )Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 ≥ 0

• (0, 0)Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 ≥ 0 if and only if

∄ li,1 ∈ {Ñ lSO1 ,
D

N
} ∩ (0,

D

N
] : (36)

β (r − c(li,1)− rD + s2)ψ
D

N
≥ (c̄+ rD − r − s∗1) li,1
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• (0, 0)Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 = 0 if

(0, 0) ∈ LNE|s for s1, s2 = 0 ∧ r − rD ≤ c(
D

N
) (37)

• LNE|s = {(lSO1 , lSO2 )Ni=1} ∀ s1 = s∗1, s2 > c̄+ rD − r

Proof. See Appendix D.2.

Proposition 4. Let lSO1 ∈ (0, D
N
) and let LNE|g be the set of possible Nash equilibria

for a given g1, g2 ≥ 0 and s1, s2 = 0. Let l∗NE1 |g := (c′)−1

(
− c̄+rD−r
ϕβψ

D−g2
N

)
− γg

Ñ
g1 and let

g∗1 := 1
γg
c−1(r − rD). Then, it holds that

• LNE|g ∈ P
({(

max{0,min{l∗NE1 |g, D−g1
N

}}, ψD−g2
N

)N
i=1

, (0, 0)Ni=1

})
\ ∅

• (0, 0)Ni=1 /∈ LNE|g ∀ g1 ∈ (g∗1, D), g2 ∈ [0, ψD)

• l∗NE1 |g decreases in g2

• The parameter space for which
(
max{0,min{l∗NE1 |g, D−g1

N
}}, ψD−g2

N

)N
i=1

∈ LNE|g
decreases in g2

Proof. See Appendix D.3. The comparative statics for l∗NE1 |g follow directly from its

definition, keeping in mind that (c′)−1 is monotonously increasing.

D.1 First-order conditions

The first-order conditions for the maximization problem by bank i given in Equation 16

are as follows:

r − c̄− rD + s1 − βc′

(
γ
∑
j ̸=i

lNEj,1 + γgg1 + lNEi,1

)
lNEi,2 − µi,1 + µi,3 = 0 (38)

r − c

(
γ
∑
j ̸=i

lNEj,1 + γgg1 + lNEi,1

)
− rD + s2 − µi,2 + µi,4 = 0 (39)

µi,1(
D

N
− lNEi,1 − g1

N
) = µi,2(ψ

D

N
− lNEi,2 − g2

N
) = µi,3l

NE
i,1 = µi,4l

NE
i,2 = 0 (40)

µi,1, µi,2, µi,3, µi,4 ≥ 0 (41)

Considering Equations 38-39, ∀s1, s1, g1, g2 ≥ 0, we could simply redefine r∗ := r +

s2, r
∗
D := rD − s1 + s2 and c̄∗ := c(γgg1) and c∗(x) = c(x + γgg1) and then face the

same maximization problem as before. Then one can follow the steps in Appendix C.3

again to derive that any resulting Nash equilibrium under the policy intervention must

Page 44



be symmetric and take the shape of a no-financing, gradual-financing or immediate-

financing equilibrium—in addition, however, it is now also possible that (0, ψD−g2
N

)Ni=1 is

a Nash equilibrium if the policy intervention alone suffices to ensure bankability at t = 2.

Nevertheless, the existence of this additional outcome does not affect the logical steps

that underlie the symmetry of the Nash equilibrium:

Lemma 22. Let LNE|gs be the set of possible Nash equilibria for a given s1, s2, g1, g2 ≥ 0.

Then for any (lNE1 , lNE2 ) ∈ LNE|gs it holds that

lNEi,t = lNEt ∀ i = 1, ..., N, t ∈ {1, 2}

Proof. Omitted as this involves the same steps as for Lemma 13 with the redefined

maximization problem.

D.2 De-risking subsidy

Lemma 23. Let lSO1 ∈ (0, D
N
). Then s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) < rD − r + c̄.

Proof. If lSO1 ∈ (0, D
N
), then by Equation 19 it holds that:

r − rD − c̄− βc′(Ñ lSO1 )ψ
Ñ

N
D = 0

Recalling that Ñ := 1 + γ(N − 1), we can rewrite this as

−βc′(Ñ lSO1 )ψ
D

N
− βc′(Ñ lSO1 )γ(N − 1)ψ

D

N
= rD − r + c̄

As c′ < 0, both terms on the LHS equals are strictly positive. The second term on

the LHS is equal to s∗1. Therefore, s
∗
1 < rD − r + c̄.

Lemma 24. Let lSO1 ∈ (0, D
N
), let s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0 and let LNE|s be

the set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then (lSO1 , lSO2 ) ∈
LNE|s ∀ s1 = s∗1, s2 ≥ 0.

Proof. Imposing symmetry by Lemma 22 and inserting s1 = s∗1, g1 = g2 = 0 into Equation

38 yields:

r − c̄− rD − βγ(N − 1)lNE2 c′(Ñ lNE1 )− βc′(Ñ lNE1 )lNE2 − µi,1 + µi,3 = 0

Note that this equals the FOC for the social optimum, such that we can replace

(lNE1 , lNE2 ) with (lSO1 , lSO2 ) and, in addition, set lSO2 = ψD
N
, which directly follows from

lSO1 ∈ (0, D
N
):

r − c̄− rD − βÑψ
D

N
c′(Ñ lSO1 )− µi,1 + µi,3 = 0
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Note that this is identical to Equation 19 at lSO2 = ψD
N
. By the Appendix version

of Proposition 1, lSO1 ∈ (0, D
N
) then implies that this satisfies the FOCs of banks. By

the Appendix version of Proposition 1, the SOC of above-zero profits (Equation 25)

must hold, which by symmetry implies above-zero profits for each bank i. Hence, both

conditions in Lemma 15 are met and (lSO1 , lSO2 ) ∈ LNE|s.

Lemma 25. Let lSO1 ∈ (0, D
N
), let s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0 and let LNE|s be

the set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then (0, 0) ∈
LNE|s ∀ s1 = s∗1, s2 ≥ 0 if and only if

∄ li,1 ∈ {Ñ lSO1 ,
D

N
} ∩ (0,

D

N
] : (42)

β (r − c(li,1)− rD + s2)ψ
D

N
> (rD − r + c̄− s∗1) li,1 (43)

Proof. This simply reflects the condition in the Appendix version of Proposition 2 for

the adjusted maximization problem allowing for s1, s2 ≥ 0. Note that under s1 = s∗1 and

for lj,1 = 0 ∀ j ̸= i, the loan financing amount, for which bank i’s FOC w.r.t. li,1 holds

with equality, is Ñ lSO1 —that is, the amount of loan financing (net of spillover losses) in

the social optimum. Then, the remaining proof can be derived in the same steps as for

Lemma 14.

Lemma 26. Let lSO1 ∈ (0, D
N
), let s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0 and let LNE|s be

the set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, it holds

that (0, 0) ∈ LNE|s ∀ s1 = s∗1, s2 = 0 if

r − c(
D

N
) ≤ rD

Proof. Inserting s2 = 0 into the condition in Lemma 25 for the existence of a zero-

financing Nash equilibrium yields:

β (r − c(li,1)− rD)ψ
D

N
> (rD − r + c̄− s∗1) li,1

By Lemma 23, the right-hand side is positive if li,1 > 0. But by r − c(D
N
) ≤ rD, the

left-hand side is non-positive for all li,1 ∈ [0, D
N
]. Hence, the condition in Lemma 25 is

satisfied as the inequality condition cannot hold for any li,1 ∈ [0, D
N
].

Lemma 27. Let lSO1 ∈ (0, D
N
), let s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0 and let LNE|s be

the set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, it holds

that LNE|s = {(lSO1 , lSO2 )} ∀ s1 = s∗1, s2 > rD + c̄− r

Proof. By the Appendix version of Proposition 2, if lSO1 ∈ (0, D
N
) then

LNE ∈
{
{(0, 0)Ni=1}, {(0, 0)Ni=1, (l

∗NE
1 , ψ

D

N
)Ni=1}, {(l∗NE1 , ψ

D

N
)Ni=1}

}
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The same steps can be followed for the re-defined maximization problem under policies

in Equation 16 such that

LNE|s ∈
{
{(0, 0)Ni=1}, {(0, 0)Ni=1, (l

∗NE
1 |s, ψD

N
)Ni=1}, {(l∗NE1 |s, ψD

N
)Ni=1}

}
By Lemma 24, it holds that

(lSO1 , ψ
D

N
)Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 ≥ 0

By Equation 39, the FOC with respect to li,2 requires that:

r − c(γ
∑
j ̸=i

lNEj,1 |s+ γgg1 + lNEi,1 |s)− rD + s2 − µi,2 + µi,4 = 0

which, since c(·) ≤ c̄, can only hold for g1 = 0, s2 > rD − (r − c̄) if µi,2 > 0, i.e., for

lNEi,2 |s = ψD
N
. Hence, (0, 0)Ni=1 /∈ LNE|s.

D.3 Public loan provision

Lemma 28. Let lSO1 ∈ (0, D
N
) and let LNE|g be the set of possible Nash equilibria for a

given g1, g2 ≥ 0 and s1, s2 = 0. Let l∗NE1 |g := (c′)−1

(
− c̄+rD−r
ϕβψ

D−g2
N

)
− γg

Ñ
g1. Then, it holds

that

LNE|g ∈ P

({(
max{0,min{l∗NE1 |g, D − g1

N
}}, ψD − g2

N

)N
i=1

, (0, 0)Ni=1

})
\ ∅

Proof. By Lemma 22, every solution in LNE|g must be symmetric. By Lemma 2, lSO1 < D
N

implies that l∗NE1 < D
N
, but for very low values of γ and very high values of g1, it is still

possible that the demand constraint li,1 ≤ D−g1
N

binds.

Under public loan provision, the FOC with respect to li,2 now requires that

r − c(L̃NEi,1 |g + γgg1)− rD − µi,2 + µi,4 = 0

The deterministic rule for lNEi,2 |g then becomes

lNEi,2 |g =

0, if r − c(L̃i,1 + γgg1) ≤ rD

ψD−g2
N

, otherwise.
(44)

Therefore, γgg1 ≥ c−1(r − rD) implies that lNE2 |g = ψD−g2
N

.

Similarly, the best response function derived under the steps followed for Lemma 9

changes as follows:

Page 47



BRi(L−i)|g =



(
D−g1
N

, ψD−g2
N

)
if r − c̄− βc′

(
γL−i,1 + γgg1 +

D−g1
N

)
ψD−g2

N
> rD ∧

r − c(γL−i,1 + γgg1 +
D−g1
N

) > rD ∧

πi(L−i, (
D−g1
N

, ψD−g2
N

)) > 0(
l∗i,1|g, ψ

D−g2
N

)
if ∃li,1 ∈ [0, D−g1

N
) :

r − c̄− βc′ (γL−i,1 + γgg1 + li,1)ψ
D−g2
N

= rD,

r − c(γL−i,1 + γgg1 + li,1) > rD,

πi(L−i, (li,1, ψ
D−g2
N

)) > 0(
0, ψD−g2

N

)
if the prior conditions are not satisfied and in addition,

r − c(γL−i,1 + γgg1) > rD

(0, 0) otherwise

with

l∗i,1|g = (c′)−1

(
rD − r + c̄

βψD−g2
N

)
− γL−i,1 − γgg1.

Steps to derive the possible Nash equilibria are the same as in Appendix C.2—with

one important difference: By Equation 44, it is now possible that (0, ψD−g2
N

)Ni=1 ∈ LNE|g
if γgg1 > c−1(r − rD).

Deriving the symmetric amount of loan financing that solves the FOC with respect

to li,1 yields:

Ñ l∗NE1 |g = (c′)−1

(
rD − r + c̄

βψD−g2
N

)
− γgg1.

which, subject to the non-negativity and the demand constraint, leads to the possible

definitions of LNE|g in Lemma 28.

Lemma 29. Let lSO1 ∈ (0, D
N
) let LNE|g be the set of possible Nash equilibria for a given

g1, g2 ≥ 0 and s1, s2 = 0. Then the parameter space, for which
(
min{l∗NE1 |g, D−g1

N
}}, ψD−g2

N

)N
i=1

∈
LNE|g, decreases in g2.

Proof. Based on the best-response function BRi(Li)|g above, the requirement for a Nash

equilibrium with lNE1 |g > 0 requires that

r − c̄− βc′
(
Ñ lNE1 |g + γgg1

)
ψ
D − g2
N

≥ rD

As c′ < 0, this is, ceteris paribus, less likely to hold for g2 ↑.
The FOC w.r.t. li,2 does not depend on g2, while bank profits πi ceteris paribus

also decrease weakly monotonously in g2, making the profitability condition in the best-
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response function less likely to hold as well. Therefore, all three conditions for a Nash

equilibrium with lNE1 |g > 0 are either less likely to hold or unaffected by g2 ↑.

Lemma 30. Let lSO1 ∈ (0, D
N
) and let LNE|g be the set of possible Nash equilibria for

a given g1, g2 ≥ 0 and s1, s2 = 0. Let g∗1 := c−1(r−rD)
γg

. Then if g1 > g∗1, it holds that

(0, 0) /∈ LNE|g.

Proof. This follows directly from Equation 44 since g1 > g∗1 implies that lNE2 |g = ψD−g2
N

.

Importantly, this is a sufficient but not a necessary condition for (0, 0) /∈ LNE|g because

a value for g1 that is (slightly) below g∗1 might still enable an individual bank i to reach

positive profits by deviating unilaterally from the (0, 0) Nash equilibrium.

E Proofs for Lemmas 3 and 4 (policy costs & policy

mix)

E.1 Comparing the de-risking subsidy and public loan provision

for addressing the coordination failure

Lemma 31. Let lSO1 ∈ (0, D
N
), g1 = g∗1 + ϵ, g2 = s1 = 0 and s2 = rD + c̄ − r + ϵ where

ϵ > 0 is an infinitesimally small positive constant. Then, it holds that

g∗1 < βgrgDD =⇒ PC(g1) < PC(s2) ∀ rgD = rD, r
g = r, βg ≥ 0, g2 ≥ 0, lNE1 |g ≥ 0

Proof. If the characteristics of the public loan provider and private banks are identical

and ϵ is negligible, then

PC(s2) ≈ (rD + c̄− r)βψDrD

PC(g1) = (rD + c̄− r)g1 − β
(
r − c(g1 + γNlNE1 |g)− rD

)
g2

Since g2 can always be set to zero if second-period public loans are non-profitable,

i.e., if r − c(g1 + γNlNE1 |g) ≤ rD, this implies that

PC(g1) ≤ (rD + c̄− r)g1

such that any g1 < βψDrD satisfies PC(g1) < PC(s2).

E.2 Policy mix

Using a more formal notation, Lemma 4 can be stated as follows:
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Lemma 32. Let lSO1 ∈ (0, D
N
), let LNE|gs be the set of possible Nash equilibria given

g1 = g∗1 + ϵ and s1 = s∗1, g2 = s2 = 0. Then, it holds that

• LNE|gs = {(lSO1 − γg

Ñ
g1, ψ

D
N
)Ni=1} ∀ g2 ≥ 0

• lNE1 |g < lNE1 |gs < lSO1

Proof. Note that the FOC with respect to li,2 in Equation 39 is unaffected by s1 = s∗1.

Hence, Lemma equally applies such that (0, 0)Ni=1 /∈ LNE|gs for g1 = g∗1 + ϵ.

By lSO1 ∈ (0, D
N
) and Equation 11, we know that

−βψD
N
c′(Ñ lSO1 ) (1 + γ(N − 1)) = rD + c̄− r

Under the given policy mix, the FOC with respect to li,1 from the individual bank’s

profit maximization in Equation 38 then yields

−βψD
N
c′(Ñ l∗NE1 |gs+ γgg1) + s∗1 = rD + c̄− r

Inserting the definition of s∗1 then gives us

−βψD
N

(
c′(Ñ l∗NE1 |gs+ γgg1) + γ(N − 1)c′(Ñ lSO1 )

)
= rD + c̄− r

Since bank i takes g1 as exogenous, combining this with the FOC from the social

maximization problem requires

Ñ lSO1 = Ñ l∗NE1 |gs+ γgg1

Note that by the Appendix version of Proposition 1, lSO1 ∈ (0, D
N
) implies strictly

positive overall profits. Given the definition of g1, this implies that

Ñ lSO1 > γgg1

because for L̄1 = 0, g1 = g∗1 + ϵ, the return spread at t = 2 is zero, and banks make zero

profits in both periods. Therefore,

lSO1 − γg

Ñ
g1 > 0

such that l∗NE1 |gs ∈ (0, D
N
).

Regarding the second statement in Lemma 32, lNE1 |gs < lSO1 follows directly from

lNE1 |gs = lSO1 − γg

Ñ
g1

since γg, g1, Ñ > 0.
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By the Appendix version of Proposition 4, the maximum value lNE1 |g that can take

for any g1 is (c′)−1

(
− c̄+rD−r
ϕβψ

D−g2
N

)
− γg

Ñ
g1. Given g2 = 0, this is equivalent to l∗NE1 − γg

Ñ
g1,

where l∗NE1 is the unconstrained symmetric solution to the market outcome FOC w.r.t.

li,1 in the absence of any policy intervention. From the Appendix version of Proposition

2, it follows that

l∗NE1 < lSO1

This implies that

l∗NE1 − γg

Ñ
g1 < lSO1 − γg

Ñ
g1

which is equivalent to

lNE1 |g < lNE1 |gs
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