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Abstract

Business process models are essential artifacts in organizations. They serve as
a basis for effective business process management and facilitate communication
among various process stakeholders. However, creating these models is a com-
plex task. It requires a combination of domain knowledge and modeling expertise,
which is difficult to find in an individual. Moreover, the distributed nature of these
modeling settings poses challenges in maintaining consistency and clarity in the re-
sulting models, especially in large-scale modeling initiatives involving thousands
of models. These issues have severe consequences, potentially leading to the use of
inaccurate, incomplete, or inconsistent models for downstream analyses and man-
agerial decisions. In light of these challenges, this doctoral thesis focuses on rec-
ommending activities for business process models to support modelers and enhance
their modeling experience. Specifically, it provides the following six key contribu-
tions. First, we publish and analyze the largest publicly available collection of busi-
ness process models. The dataset comprises over one million models in 16 mod-
eling and 41 natural languages, reflecting a high degree of diversity. Second, we
propose an explainable activity-recommendation approach based on rules. It uses
problem-specific templates for rule learning, which makes it very effective. Third,
we explore different approaches to use knowledge graph completion methods for
activity recommendation. Our investigations provide valuable insights into the ap-
plicability of these methods in a context that differs from traditional benchmarks.
Fourth, we develop two approaches for leveraging natural language semantics con-
tained in process models to improve recommendations for models under develop-
ment that differ significantly from those used for training. One approach extends
the rule-based approach with semantic components, while the other is based on a
transformer-based language model. Fifth, our transformer-based approach is the
first activity-recommendation approach that is able to overcome vocabulary limi-
tations of the models used for training. This enables our approach to better adapt
to new recommendation contexts that were not encountered during training. Last,
we enhance the framework for evaluating activity-recommendation approaches in
terms of evaluated recommendation scenarios, simulation procedures, and metrics.
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Zusammenfassung

Geschäftsprozessmodelle sind essenzielle Artefakte in Organisationen. Sie die-
nen als Grundlage für effektives Geschäftsprozessmanagement und erleichtern die
Kommunikation zwischen verschiedenen Stakeholdern von Prozessen. Die Erstel-
lung dieser Modelle ist jedoch eine komplexe Aufgabe. Sie erfordert eine Kom-
bination aus Domänenwissen und Modellierungsexpertise, welche bei einer Ein-
zelperson schwer zu finden ist. Zudem stellt die verteilte Modellierungsumgebung
Herausforderungen bei der Umsetzung von Konsistenz und Klarheit in den resul-
tierenden Modellen dar, insbesondere bei groß angelegten Modellierungsinitiativen
mit Tausenden von Modellen. Diese Probleme haben schwerwiegende Folgen, die
zur Verwendung ungenauer, unvollständiger oder inkonsistenter Modelle für nach-
gelagerte Analysen und Managemententscheidungen führen können. Angesichts
dieser Herausforderungen beschäftigt sich diese Doktorarbeit mit der Empfeh-
lung von Aktivitäten für Geschäftsprozessmodelle, um Modellierer zu unterstützen
und ihre Modellierungserfahrung zu verbessern. Konkret liefert sie die folgenden
sechs Beiträge. Erstens veröffentlichen und analysieren wir die größte öffentlich
verfügbare Sammlung von Geschäftsprozessmodellen. Der Datensatz umfasst über
eine Million Modelle in 16 Modellierungs- und 41 natürlichen Sprachen und spie-
gelt einen hohen Grad an Vielfalt wider. Zweitens stellen wir einen erklärbaren,
regelbasierten Ansatz zur Aktivitätsempfehlung vor. Dieser Ansatz verwendet pro-
blemspezifische Vorlagen zum Regellernen, was ihn sehr effektiv macht. Drittens
untersuchen wir verschiedene Ansätze zur Verwendung von Methoden zur Ver-
vollständigung von Wissensgraphen für die Aktivitätsempfehlung. Unsere Unter-
suchungen liefern wertvolle Erkenntnisse über die Anwendbarkeit dieser Metho-
den in einem Kontext, der sich von traditionellen Benchmarks unterscheidet. Vier-
tens entwickeln wir zwei Ansätze, um die in Prozessmodellen enthaltene Semantik
natürlicher Sprache zur Verbesserung von Empfehlungen für solche Modelle zu
nutzen, die sich wesentlich von denen unterscheiden, die für das Training verwen-
det wurden. Einer dieser Ansätze erweitert den regelbasierten Ansatz um seman-
tische Komponenten, während der andere ein Transformer-basiertes Sprachmodell
verwendet. Fünftens ist unser Transformer-basierter Ansatz der erste Ansatz zur
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Aktivitätsempfehlung, der die Vokabularbeschränkungen der für das Training ver-
wendeten Modelle überwinden kann. Dadurch kann sich unser Ansatz besser auf
neue Empfehlungskontexte, die während des Trainings nicht aufgetreten sind, an-
passen. Schließlich verbessern wir den Rahmen zur Evaluierung von Ansätzen zur
Aktivitätsempfehlung in Bezug auf evaluierte Empfehlungsszenarien, Simulations-
verfahren und Metriken.
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Chapter 1

Introduction

This chapter provides an introduction to this doctoral thesis. In Section 1.1, we
discuss the motivation behind our research on recommending activities for business
process models. Subsequently, in Section 1.2, we highlight the main contributions
of this thesis. In Section 1.3, we then provide an overview of the publications that
have been created in this context. Finally, in Section 1.4, we offer an outline of the
remaining chapters of this thesis.

1.1 Motivation

To motivate the research topic addressed in this thesis, we first provide some back-
ground on Business Process Management (BPM), highlighting the importance of
business process models within this discipline. After discussing common chal-
lenges associated with business process modeling, i.e., the creation of business
process models, we then introduce activity recommendation as an established ap-
proach to support process modelers. Finally, we present problem areas in this
field that need to be addressed to further enhance the process modeling experience
through activity recommendation.

Background. As business environments become increasingly complex and dy-
namic, organizations face the challenge of continuously improving and aligning
their operations to remain competitive [173]. In this regard, BPM plays a cru-
cial role in modern organizations, encompassing all management activities related
to how these organizations operate [107]. Business process managament is cen-
tered around the concept of business processes, which are collections of activities
performed by an organization to deliver value to customers [55]. The successful
execution of these processes depends on a complex interplay of organizational and
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Chapter 1. Introduction 2

Figure 1.1: An example use case of activity recommendation

technical factors, including resources, roles, responsibilities, and supporting infor-
mation systems [183].

To effectively manage business processes, organizations rely on business pro-
cess models, which provide graphical representations of these processes. These
models serve not only to document, analyze, improve and implement the pro-
cesses [37], but also to facilitate understanding and communication among stake-
holders [70], thereby enhancing collaboration and decision-making in organiza-
tions [15]. However, capturing the intricacies of business processes in models is a
challenging task. Business process modeling requires both domain expertise and
modeling skills, a combination that is rarely found in one individual [58]. This
complicates the modeling process and necessitates considerable time and resource
investments in meetings and iterative modeling sessions to bring together both
modeling and domain experts [44]. Moreover, the distributed nature of these mod-
eling settings and the potential for miscommunication and ambiguity among the
involved individuals pose a risk to the consistency and clarity of the resulting pro-
cess models [126, 132]. These risks are amplified in large-scale modeling projects
that span the entire organizational scope.

Overall, these challenges can result in incorrect, incomplete, or inconsistent
models, which can negatively impact subsequent analysis tasks and managerial
decisions [1,9]. To mitigate these risks, various forms of business process modeling
support have been established, one of which is activity recommendation.

Problem statement. This doctoral thesis addresses the activity-recommendation
problem. Activity recommendation aims to suggest suitable labels for activities
that are newly inserted by a modeler in a business process model under devel-
opment. A repository of available business process models typically serves as a
basis for this task. To illustrate this, consider the process model under develop-
ment shown in Figure 1.1, where a user has just inserted an unlabeled activity on
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the model’s right-hand side. The activity-recommendation task is to determine a
suitable activity for this position, i.e., to find an appropriate label for it.

The process model in the figure depicts a process that starts when a purchase or-
der has been received, after which various activities are performed to handle the or-
der. It contains diamond shapes marked with a +, which represent parallel gateways
used to visualize the concurrent execution of activities within the warehouse and
the sales department. After the model synchronizes the two branches of concurrent
activities, a new activity has been inserted, for which the activity-recommendation
task is to suggest one or more suitable labels. As shown, a recommended label is
Archive order. This label is fitting, because the preceding nodes indicate that the
order has been fulfilled, after which it is natural to archive the order.

Our research is concerned with such activity recommendations. Specifically, it
is driven by the need to improve existing work on recommending activities for busi-
ness process models in four central areas: explainability, scalability, generalization,
and evaluation. In the following, we delve into each of these areas, discussing the
current state and identifying improvement opportunities.

Explainability. Research on recommender systems has increasingly acknowledged
the importance of making the recommendation process more transparent to
users [104]. However, this aspect has largely been neglected in the field of ac-
tivity recommendation, where the focus has primarily been on increasing accu-
racy. Activity-recommendation approaches typically use black-box machine learn-
ing techniques that make it difficult to understand how and why a certain activity
recommendation was made. In contrast, explainable approaches provide insights
into the rationale behind a recommendation, making it easier to understand how
the approach arrived at its decision [59]. By providing this transparency, explain-
able approaches can benefit both users and developers of the recommendation ap-
proach. For users, explanations can help them make more informed and faster de-
cisions [163], leading to increased satisfaction [148]. For developers, transparency
can help them better understand how the approach arrived at a particular recom-
mendation, making it easier to debug and improve the system [175]. Therefore,
an activity-recommendation approach that is not only accurate but also explainable
has the potential to provide an improved experience for both users and developers.

Scalability. In today’s business landscape, organizations maintain large repositories
of business process models, often containing several thousand process models [34].
In fact, managing large process model repositories is a key application of BPM [35].
As the number of organizations conducting enterprise-wide and global process
modeling continues to grow [134], scalability has become a crucial factor not only
in process modeling itself, but also in activity recommendation. We consider an
activity-recommendation approach scalable if it maintains its functionality and ef-
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ficiency even as its operational context expands in size. For instance, it should con-
tinue to work effectively when applied to repositories of process models that are
significantly larger in scale. However, most activity-recommendation approaches
have been evaluated on small datasets only, or are simply not feasible for large
repositories of process models. These issues can be contributed to limited avail-
ability of data for developing and evaluating activity-recommendation approaches,
driven by legal concerns and the fear of exposing sensitive information about in-
ternal operations of organizations [161]. The publication of large-scale model col-
lections, commonly seen in related research fields, has been largely hindered by
this inherent dilemma. The extensive scale of process modeling initiatives in orga-
nizations thus introduces two essential needs related to activity recommendation.
First, there is a need to develop and evaluate activity-recommendation approaches
in such a way that they can effectively meet the requirements of organizations with
large repositories of business process models. Second, the availability of large
process model datasets is crucial in facilitating such efforts.

Generalization. In situations where a business process model under development
deviates from the process models of a repository used for training, it is crucial
that an activity-recommendation approach is able to generalize from the learned
patterns to the new recommendation scenario. For example, if the approach has
learned that the activity check invoice is typically followed by send invoice, it
should be able to infer that a similar sequence applies to bills, i.e., check bill
is followed by send bill. However, existing activity-recommendation approaches
face limitations in their ability to generalize across activity labels, which has two
main reasons. First, even though the significance of natural language semantics in
process models has been acknowledged in BPM research [165], e.g., for process
model abstraction [90] or anomaly detection in event logs [166], existing activity-
recommendation approaches largely neglect them. This is disadvantageous, since
the analysis of the natural language semantics of activity labels can reveal more
general patterns, which enable the generation of more relevant recommendations
in a wide range of modeling scenarios. Second, current activity-recommendation
approaches provide recommendations only in the form of labels contained in the
repository at hand, leading to poor recommendations for process models that sig-
nificantly differ from those in the repository. An approach that is able to generate
recommendations beyond the vocabulary of the repository could expand the cover-
age of modeling scenarios, where useful recommendations are generated. Thus, by
leveraging natural language semantics and overcoming the vocabulary limitations
of the given repository, an activity-recommendation approach has the potential to
better generalize across activity labels, improving the quality and relevance of rec-
ommendations in diverse scenarios.
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Evaluation. The evaluation of activity-recommendation approaches is a non-trivial
task, as is the case with recommender systems in general [146]. Typically, these
approaches are evaluated through offline experiments, where completed models
contained in existing datasets are used to simulate varying states of process mod-
els under development, and the performance is measured with metrics such as hit
rate and mean reciprocal rank. Offline experiments offer several advantages. They
do not require interaction with real users, thereby allowing for the comparison of
multiple candidate approaches at a low cost [51]. Also, they enable an effective
evaluation of a large number of recommendation cases. To make the conclusions
drawn from offline experiments applicable beyond the specific experimental set-
tings, it is essential that the experiments are diverse and closely aligned with prac-
tical situations. However, current activity-recommendation research has several
shortcomings in this regard that need to be addressed.

First, as discussed before, activity-recommendation approaches are often eval-
uated on small datasets, which may not fully represent real-world conditions. To
enhance the relevance of the evaluations, it would be beneficial to use larger, more
diverse datasets. Second, there is a research gap regarding the performance of
these approaches in situations, where the repository contains few or even no pro-
cess models that are similar to the process model under development. In particular,
the potential scenario in which the process model under development only contains
unseen labels is highly relevant and should be investigated for a comprehensive
understanding of the recommendation performance. Third, the existing procedures
for simulating a recommendation case provide either few or a lot of context for the
recommendation [72, 73], while others are not even clearly defined [48, 177]. To
enable more comprehensive evaluations that consider varying context lengths, it is
necessary to establish an additional procedure that provides an intermediate level
of context. Last, the two commonly used metrics—hit rate and mean reciprocal
rank—are very strict. For instance, they would consider a recommendation of cre-
ate delivery as a failure if the ground truth is create shipment, despite the similarity
between these two activities. Given that an activity can be described in multiple
ways, such a recommendation could still be very useful to the user. Therefore,
there is a need for well-defined metrics that take such nuances into account.

The evaluation of activity-recommendation approaches could thus overall be
improved by making it more comprehensive and practice-oriented. This could be
achieved by using larger datasets, investigating special but important recommen-
dation cases, refining the procedures used to simulate recommendation cases, and
defining more nuanced evaluation metrics.
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1.2 Contributions

This doctoral thesis focuses on activity recommendation in business process mod-
eling. The contributions of this thesis lead to improvements in the areas of ex-
plainability, scalability, generalization, and evaluation, discussed in Section 1.1. To
begin with, through the publication and analysis of the largest publicly available
collection of business process models to date, we enable advancements in the areas
of scalability and evaluations. Furthermore, we propose several activity-recom-
mendation approaches that outperform existing approaches not only in established
metrics but also in terms of explainability, scalability or generalization. Addition-
ally, we have conducted numerous experiments and developed enhanced evaluation
frameworks that contribute to the improvement of evaluation practices in activity
recommendation. We highlight the contributions of this thesis as follows.

1. Publication and analysis of the largest publicly available collection of business
process models: In 2019, the Business Process Management Academic Initia-
tive published a dataset containing almost 30,000 process models in different
modeling and natural languages [184]. This dataset gained significant attention
and led to the development of various methods for BPM tasks, including activity
recommendation. However, filtering the dataset based on specific criteria, such
as using only process models of a particular modeling and natural language, or
excluding different revisions of process models, significantly reduces its size.
For example, the dataset contains 9,956 BPMN 2.0 models in English, to which
further filters and reductions may be applied to ensure a certain model quality.
Such reductions in size present challenges when training machine learning mod-
els with a large number of parameters or testing the scalability of an approach.
Additionally, they limit the diversity of evaluation cases. To address these is-
sues, we have published the SAP-SAM dataset, which includes over one million
process models, with a notable subset of 157,762 BPMN 2.0 models in English.
In Chapter 4, we provide insights into the characteristics of SAP-SAM. The
dataset comprises models in 16 different modeling and 41 natural languages,
reflecting a high degree of diversity and large dataset sizes, even after filtering.

2. Development of an explainable activity-recommendation approach based on
rules: As discussed in Section 1.1., an activity-recommendation approach that
is not only accurate but also explainable has significant advantages. By provid-
ing explanations for the generated recommendations, users can make informed
decisions and choose from the presented alternatives more quickly. This ul-
timately enhances the overall modeling experience. Therefore, we introduce
in Chapter 5 an activity-recommendation approach that is based on rules and
is as such inherently explainable. Examining the rules that underpin a recom-
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mendation not only helps users, but also assists researchers in debugging and
refining such an approach. Our approach draws inspiration from rule-based
methods used for knowledge graph completion, such as AMIE [46] or Any-
BURL [106]. However, we use our domain-specific knowledge to develop an
approach specifically tailored to meet the unique requirements of activity rec-
ommendation. Moreover, our experiments show that our rule-based approach is
applicable on large-scale datasets and outperforms existing approaches.

3. Exploration of different approaches to use knowledge graph completion meth-
ods for activity recommendation: In our research, we propose an activity-rec-
ommendation approach that is inspired by rule-based methods used in knowl-
edge graph completion. Similarly, there is another approach that employs a
knowledge graph embedding model [177]. However, this approach lacks the
ability to consider more than one preceding activity as a context for an activ-
ity recommendation. This highlights a research gap regarding the application
of methods, originally designed for knowledge graph completion, to activity
recommendation. To address this gap, we suggest in Chapter 6 to transform
the given process model repository and the process model under development
into a large knowledge graph. Then, we formulate the activity-recommendation
task as a completion task within this graph. We explore various approaches
to establish such a knowledge graph, while also experimenting with a diverse
range of both embedding- and rule-based knowledge graph completion meth-
ods. Through our enhanced evaluations, we not only contribute to the under-
standing of the applicability of knowledge graph completion methods to activ-
ity recommendation, but also provide valuable insights into the effectiveness of
these methods in a context that differs from traditional benchmarks.

4. Leveraging natural language semantics contained in business process models:
Natural language semantics in business process models play a crucial role in
understanding the context and meaning of included activities. This semantic
information is valuable for activity recommendation, as it helps to generalize
the activity patterns found in the model repository used for training. This in
turn is particularly useful for generating recommendations for process models
under development that differ significantly from those in the training reposi-
tory. However, as we discuss in Chapter 3, the use of natural language seman-
tics is hardly considered in current activity-recommendation research. In fact,
no existing approach has successfully incorporated natural language semantics
when dealing with large model repositories. In Chapter 7, we address this is-
sue by extending our rule-based approach to additionally consider action and
business-object patterns in the use of activities as well as their semantic sim-
ilarity. In the subsequent Chapter 8, we tackle the challenge through a novel
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activity-recommendation approach that employs a transformer-based language
model and is as such notably scalable. This approach additionally opens new
possibilities in the context of activity recommendation, which we describe in
the following contribution.

5. Overcoming vocabulary limitations of the given repository with a transformer-
based approach: An activity-recommendation approach that is able to generate
label recommendations beyond the vocabulary of the given model repository
has the potential to adapt more effectively to new recommendation scenarios
that it may not have encountered during training. By generalizing from the ex-
amples it was trained on, such an approach can thus handle a broader range of
recommendation scenarios. However, existing approaches are limited to pro-
viding recommendations in the form of labels contained in the given repository
of business process models. In Chapter 8, we address this constraint by leverag-
ing the power of transfer-learning techniques with a transformer-based language
model. This enables our approach to recommend activities that were not present
in the repository, thereby facilitating adaptation to new recommendation scenar-
ios and ultimately increasing the relevance of the generated recommendations.

6. Enhanced evaluation through the introduction of new recommendation scenar-
ios, simulation procedures, and metrics: As outlined in Section 1.1., current
evaluations of activity-recommendation approaches fall short in terms of com-
prehensiveness and practical relevance. For example, the recommendation cases
for evaluation are often very similar to the training examples. In our work,
we aim to alleviate these issues in several respects. First, we evaluate our ap-
proaches on the large-scale SAP-SAM dataset that we publish as part of this
thesis. Second, in the course of this work, we assess the approaches in different
application scenarios, which vary in terms of the availability of process mod-
els in the repository that are similar to the process model under development.
Third, we introduce a novel procedure for simulating recommendation cases
for offline experiments, which provides a level of recommendation context that
strikes a balance between existing procedures. Finally, we establish new sets of
metrics that are able to take semantic similarities between the ground truth and
the recommended labels into account.

1.3 Publications

The research conducted as part of this doctoral thesis has led to the publication
of one journal article, two conference papers, and two workshop papers. Among
these, one workshop paper focuses on the SAP-SAM dataset, while the remain-
ing papers revolve around activity recommendation. The following list provides a
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chronological overview of the publications:

• D. Sola, C. Meilicke, H. van der Aa, and H. Stuckenschmidt, “A rule-based rec-
ommendation approach for business process modeling”, Advanced Information
Systems Engineering (CAISE), 2021, pp. 328-343.

• D. Sola, C. Meilicke, H. van der Aa, and H. Stuckenschmidt, “On the use of
knowledge graph completion methods for activity recommendation in business
process modeling”, Business Process Management Workshops (AI4BPM), 2021,
pp. 5-17.

• D. Sola, H. van der Aa, C. Meilicke, and H. Stuckenschmidt, “Exploiting label
semantics for rule-based activity recommendation in business process model-
ing”, Information Systems, 2022, Article 102049.

• D. Sola, C. Warmuth, B. Schäfer, P. Badakhshan, J. R. Rehse, and T. Kampik,
“SAP Signavio Academic Models: A large process model dataset”, Process Min-
ing Workshops (PQMI), 2022, pp. 453-465.

• D. Sola, H. van der Aa, C. Meilicke, and H. Stuckenschmidt, “Activity recom-
mendation for business process modeling with pre-trained language models”,
European Semantic Web Conference (ESWC), 2023, pp. 316-334.

In the outline of this thesis in Section 1.4, we will mention which parts of this
thesis have been published in one of the listed papers.

Moreover, the author of this doctoral thesis has contributed to a research project
concerned with prompt engineering in business process management, which is be-
yond the scope of this thesis. This project has led to the following publication of a
working conference paper:

• K. Busch, A. Rochlitzer, D. Sola, and H. Leopold, “Just tell me: Prompt engi-
neering in business process management”, International Conference on Business
Process Modeling, Development and Support (BPMDS), 2023, pp. 3-11.

1.4 Outline

The remainder of this thesis is organized into eight more chapters, which we outline
as follows:

• Chapter 2: Machine Learning Foundations. This chapter lays the groundwork
for our activity-recommendation approaches by delving into essential machine
learning foundations. Our research draws inspiration from methods used in the
fields of knowledge graphs and natural language processing. Therefore, we first
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discuss rule-based and embedding-based methods for knowledge graph comple-
tion, followed by an introduction into transformer-based language models.

• Chapter 3: Business Process Modeling. This chapter provides an introduction
into business process modeling within the broader context of BPM. After provid-
ing a general overview of BPM, we focus on business process models. Then, we
highlight the importance of having adequate support for business process mod-
eling and review related research. We conclude this chapter by summarizing the
research gaps that we aim to address.

• Chapter 4: The SAP-SAM Dataset. This chapter presents the SAP-SAM dataset,
which we have published as part of this work. We begin by describing the origins
of the models contained in the dataset. Then, we explore properties of SAP-
SAM as well as possible applications, and examine its limitations. Finally, we
discuss related datasets. The research presented in this chapter is based on the
paper titled SAP Signavio Academic Models: A large process model dataset by
Diana Sola, Christian Warmuth, Bernhard Schäfer, Peyman Badakhshan, Jana-
Rebecca Rehse, and Timotheus Kampik [154]. The author of this thesis was
a main contributor to every section of this chapter, except for the origins and
applications sections, which are included to ensure a comprehensive overview
of the dataset. Additionally, the author made substantial contributions to the
publication of the dataset and related resources.

• Chapter 5: Rule-based Activity Recommendation. This chapter introduces our
rule-based approach for activity recommendation. First, we explain the behav-
ioral abstraction of process models that serves as a basis for our approach. Subse-
quently, we explain the two main phases of the approach: rule learning and rule
application. Through an extensive experimental evaluation, we finally demon-
strate that our approach outperforms a variety of other methods. The research
discussed in this chapter is based on the paper titled A rule-based recommenda-
tion approach for business process modeling by Diana Sola, Christian Meilicke,
Han van der Aa, and Heiner Stuckenschmidt [151], where the author of this the-
sis was the main contributor.

• Chapter 6: Activity Recommendation as Knowledge Graph Completion. This
chapter focuses on activity recommendation as a completion task in a knowl-
edge graph. To this end, we first explore different approaches to constructing a
knowledge graph based on given business process models. Then, we assess the
performance of different rule- and embedding-based methods from the knowl-
edge graph domain for the specific completion task. We also compare their
effectiveness to approaches specifically designed for activity recommendation,
including our rule-based approach. The research presented in this chapter is
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based on the paper titled On the use of knowledge graph completion methods for
activity recommendation in business process modeling by Diana Sola, Christian
Meilicke, Han van der Aa, and Heiner Stuckenschmidt [150], where the author
of this thesis was the main contributor.

• Chapter 7: Rule-based Activity Recommendation with Natural Language Se-
mantics. This chapter presents an extended version of our rule-based approach
that incorporates natural language semantics. We first motivate the extensions
in both rule learning and rule application, before we explain them in detail. In
the subsequent evaluation, we demonstrate that the presented extensions serve as
meaningful additions that can improve the quality of the provided recommenda-
tions. The research discussed in this chapter is based on the paper titled Exploit-
ing label semantics for rule-based activity recommendation in business process
modeling by Diana Sola, Han van der Aa, Christian Meilicke, and Heiner Stuck-
enschmidt [152], where the author of this thesis was the main contributor.

• Chapter 8: Transformer-based Activity Recommendation. This chapter intro-
duces our transformer-based activity-recommendation approach. We start by ex-
plaining how we pose the activity-recommendation problem as a set of sequence-
to sequence tasks in order to employ a pre-trained language model. Through an
extensive experimental study, we then demonstrate that our approach is superior
in terms of semantic accuracy. Moreover, we show that it is capable of hand-
ling and generating activity labels that go beyond the vocabulary of the model
repository. The research presented in this chapter is based on the paper titled Ac-
tivity recommendation for business process modeling with pre-trained language
models by Diana Sola, Han van der Aa, Christian Meilicke, and Heiner Stucken-
schmidt [153], where the author of this thesis was the main contributor.

• Chapter 9: Conclusion. This chapter concludes this thesis by summarizing the
key results of the presented research. In addition, we outline promising future
research directions that have the potential to further enhance our work.



Chapter 2

Machine Learning Foundations

In this section, we cover the machine learning foundations that our activity-recom-
mendation approaches and some related works are based on. Our research draws
inspiration from methods employed in knowledge graph completion and natural
language processing. Therefore, in Section 2.1, we first introduce the concept of
knowledge graphs and discuss both rule- and embedding-based methods for knowl-
edge graph completion. Following this, in Section 2.2, we provide an introduction
into natural language processing, with a particular focus on transformer-based lan-
guage models.

2.1 Knowledge Graph Completion

The concept of knowledge graphs has been discussed for over 50 years [62]. How-
ever, it was not until the introduction of Google’s Knowledge Graph in 2012 [147]
that this concept gained significant prominence. Well-known examples of pub-
licly accessible large-scale knowledge graphs include DBpedia [87], Freebase [10],
Wikidata [174], and YAGO [61].

Knowledge graphs are a form of data representation, which leverages graphs
to represent relationships between various entities in a structured and intuitive
way [62]. These entities could be anything that can be an object of thought [185],
such as the K-means clustering algorithm, the number pi, or the Eiffel Tower. To
define and reason about the semantics of the terms used to describe these enti-
ties and their relationships, standard knowledge representation formalisms, such as
ontologies [13] or rules [68], can be used. Moreover, there are numerous represen-
tations that support the application of machine learning techniques over knowledge
graphs [180]. Thus, the decision to use a knowledge graph enables a range of tech-
niques for integrating knowledge and extracting value from data [62].

12
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Max Jane Joe

Erika

worksWith worksWith

reportsTo reportsTo

Figure 2.1: An example knowledge graph

In a knowledge graph, entities are represented as nodes, while the relationships
between these entities are modeled as edges connecting the nodes. Thus, a knowl-
edge graph is essentially a multi-relational graph composed of nodes (entities) and
different types of edges (relations) [180]. A directed edge from one node to an-
other, labeled with a specific relation, forms a triple (s,r,o), where s is the subject,
r is the relation, and o is the object. This can be interpreted as the fact that the
subject s is in relation r to the object o.

To illustrate this, consider the example knowledge graph depicted in Figure 2.1.
This knowledge graph, derived from a corporate context, captures the professional
relationships between Max, Jane, Joe, and Erika. For example, the knowledge
graph contains a directed edge from Joe to Erika, labeled reportsTo. This suggests
a hierarchical relationship, where Joe is in a subordinate position to Erika, thus
explaining why Joe reports to her.

Despite their usefulness in various applications, such as web search [147] or
recommendations [53], knowledge graphs are often incomplete as knowledge may
exist implicitly or may be entirely missing [145]. Therefore, knowledge graph
completion is concerned with predicting such missing information in a knowledge
graph using the existing facts. According to Chen et al. [23], knowledge graph
completion methods can be divided into two categories: traditional knowledge
graph completion methods and methods based on knowledge representation learn-
ing. In Section 2.1.1, we delve into a specific type of traditional knowledge graph
completion methods, namely rule-based methods. Then, in Section 2.1.2, we dis-
cuss methods based on knowledge representation learning, which embed entities
and their relationships into a continuous low-dimensional vector space.

2.1.1 Rules

Given the symbolic nature of knowledge, employing rules for knowledge graph
completion is an intuitive choice [75]. In this context, rules are typically expressed
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using the syntax of first-order logic [157]. An example for such a rule is given by

worksWith(Y,X)← worksWith(X,Y). (2.1)

This rule captures a pattern in the knowledge graph depicted in Figure 2.1, namely
that if a person X works with a person Y, then usually Y also works with X.

Within such rules, the smallest component is referred to as an atom. Specifi-
cally, an atom is a formula r(X,Y ), where r denotes a binary relation, and both
X and Y can be variables or constants. In the context of knowledge graphs, con-
stants correspond to specific entities within the graph. The rule (2.1), for instance,
is composed of the atoms worksWith(X,Y) and worksWith(Y,X). Other examples of
atoms include worksWith(Max,Y) and worksWith(Max,Jane). These atoms differ in
the number of constants they contain. We call an atom instantiated if it includes
at least one constant, such as worksWith(Max,Y). If an atom is entirely composed
of constants, like worksWith(Max,Jane), then we consider it as grounded. In terms
of such logical formulas, a specific fact (s, r, o) in a knowledge graph can thus be
expressed as grounded atom r(s, o).

In the context of knowledge graphs, we are typically interested in patterns that
can be described using Horn rules. A Horn rule has the form head←body. Here,
the head corresponds to an atom, while the body consists of a set of atoms. Coming
back to rule (2.1), we can see that it conforms to the format of a Horn rule, with
the body consisting of a single atom. Moreover, rule (2.1) only contains variables,
describing a general pattern. However, rules can also describe specific instances of
a pattern. In this context, we use the term rule grounding to refer to an application
of a rule to a specific case. Specifically, a rule grounding is a variant of the rule,
where all included atoms are grounded. An example of a rule grounding, in the
context of the knowledge graph depicted in Figure 2.1, is given by

worksWith(Max,Jane)← worksWith(Jane,Max).

With the concept of rule groundings at hand, we can define the predictions of
a rule head←body in a knowledge graph K as the set of head atoms of all rule
groundings, where the body atoms appear as facts in K. The predictions of a set
of rules can then be derived as the union of the predictions of each rule [157]. To
illustrate this, consider the knowledge graph in Figure 2.1 and the rule

reportsTo(X,Z)← worksWith(X,Y), reportsTo(Y,Z). (2.2)

This rule expresses that if person X works with person Y, and Y reports to per-
son Z, then X also reports to Z. The predictions of this rule in the knowledge
graph in Figure 2.1 are reportsTo(Jane,Erika), reportsTo(Joe,Erika), and reports-
To(Max,Erika). As the last fact is missing in the knowledge graph, this rule pro-
vides a useful prediction that contributes to the completion of the knowledge graph.
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Before we can use rules to predict missing facts in a knowledge graph, we
first need to learn them. The concept of rule learning is rooted in Inductive Logic
Programming (ILP). Prominent examples of ILP methods include FOIL [128] and
WARMR [57]. In general, ILP methods use a background theory and a set of
positive and negative examples to learn a set of rules, with the rules being designed
to cover all positive examples and none of the negatives [29].

However, traditional ILP methods, such as FOIL and WARMR, are generally
unsuitable for modern knowledge graphs, which has two primary reasons [85].
First, these methods struggle to handle large amounts of facts. Second, they do not
take into account the open world assumption that current knowledge graphs adopt.
The open world assumption suggests that any fact not present in the knowledge
graph could potentially be true or false [113]. In particular, the absence of a fact
does not necessarily mean it is incorrect.

Thus, while a knowledge graph under the open world assumption does provide
a background theory and positive examples through existing facts, it does not pro-
vide negative examples. Without these negative examples, traditional ILP methods
cannot be directly applied. For instance, FOIL operates under the assumption that
the user can provide explicit counter-examples for the rules [128]. On the other
hand, WARMR generates negative examples by assuming that facts not explicitly
available are false, which is in line with the closed world assumption, not the open
world assumption [57].

In response to the limitations of traditional ILP methods in handling modern
knowledge graphs, several rule-based approaches specifically designed for large
knowledge graphs have been proposed. These approaches can be broadly clas-
sified into two categories: top-down and bottom-up approaches [157]. Top-down
approaches start with general rules and iteratively refine them. This refinement pro-
cess continues until the rules become too specific, leading to a number of predicted
positive examples that falls below a certain threshold. On the other hand, bottom-
up approaches initially employ multiple example rules as a basis and progressively
generalize them. This generalization process continues until the rules become too
general, resulting in a number of predicted negative examples exceeding a cer-
tain threshold. In Chapter 5, we will propose a novel rule-based approach tailored
for activity recommendation, which does not conform to the traditional categories.
Our approach uses rule templates to ensure full control over the types of generated
rules, learning only such rules that are relevant for activity recommendation.

Prominent examples for top-down and bottom-up approaches are AMIE [46]
and AnyBURL [106], respectively. AMIE employs three different refinement op-
erators, which take a set of rules as input and return a set of more specific rules.
AnyBURL uses so-called bottom rules, which are grounded rules derived from
sampled paths in a given knowledge graph. After sampling a path from the knowl-
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edge graph and constructing such a bottom rule from that path, a generalization
lattice rooted in the bottom rule is built and all useful rules that appear in the lattice
are stored. In Chapter 6, we will approach the activity-recommendation problem by
framing it as a knowledge graph completion task in order to investigate the suitabil-
ity of AnyBURL for addressing this particular task. In the context of knowledge
graph completion on typical benchmarks, experimental evaluations have demon-
strated that AnyBURL is competitive with knowledge graph completion methods
based on representation learning [106], which we discuss in the following section.

2.1.2 Knowledge Graph Embeddings

Knowledge representation learning models, also known as Knowledge Graph Em-
bedding (KGE) models, are based on the idea of embedding entities and relation-
ships of a knowledge graph into a continuous low-dimensional vector space while
preserving the inherent structure of the knowledge graph [180]. In essence, a KGE
model is an injective function that maps entities and relations to low-dimensional
real value vectors, so-called embeddings, maintaining the intrinsic relationships
between them [157]. For instance, in the context of the knowledge graph shown
in Figure 2.1, we would like to embed the entity Jane in a way that its embedding
is close to the embeddings of the entity Max or other co-workers.

KGE models simplify operations on knowledge graphs, which has two main
reasons [157]. First, they reduce the dimensionality of object representations. This
is particularly valuable when dealing with knowledge graphs that contain millions
of entities. By employing a KGE model, these entities can be represented as em-
beddings of just a few hundred dimensions. Second, the structure of the embedding
space allows for meaningful comparisons of objects that were previously incom-
parable in their original forms. For example, a distance between entities can be
measured by calculating the Euclidean distance between their embeddings.

In general, KGE models involve three steps [180]. The initial step includes
specifying the form in which entities and relations are represented in continuous
low-dimensional vector spaces. This is followed by the definition of a scoring func-
tion that measures the plausibility of facts (s,r,o). Finally, the representations of en-
tities and relations as embeddings are learned by solving an optimization problem
that maximizes the total plausibility of facts contained in the knowledge graph.

The main difference between KGE models lies in their scoring functions [23].
According to Wang et al. [180], we can roughly classify the models into those
that use distance-based scoring functions and those that leverage similarity-based
scoring functions. In the following, we explore one representative model from each
category, namely TransE [11] and DistMult [188], both of which we will employ
in Chapter 6.
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(a) TransE (b) DistMult

Figure 2.2: Illustrations of the KGE models TransE and DistMult, adapted from [75]

As illustrated in Figure 2.2a, TransE embeds both entities and relationships
into the same vector space, representing relationships as translations from subject
to object entities [11]. Specifically, if the fact (s,r,o) holds, then the sum of the
embedding es of subject s and the embedding er of relation r should be close to
the embedding eo of object o. Consequently, the scoring function is defined as the
negative distance between es + er and eo:

fTransE(es, er, eo) = −||es + er − eo||,

where || · || can be the L1 or L2 norm. Note that the scoring function fTransE
uses the negative distance, as it measures the plausibility of a fact. Therefore,
fTransE(es, er, eo) should be large for a fact (s,r,o) in the knowledge graph.

Based on the idea of a translation-based scoring function, many variants of
TransE have been proposed. For example, TransH [181] interprets a relation as
a translating operation on a hyperplane, while TransR [96] introduces relation-
specific projections of the entities.

Similar to TransE, DistMult also embeds entities and relationships into the
same vector space. However, as illustrated in Figure 2.2b, DistMult uses mul-
tiplicative operations to model relations as pairwise interactions between the en-
tity embeddings along the same dimensions [188]. Given the relation embedding
er ∈ Rd, d ∈ N and the entity embeddings es, eo ∈ Rd, the scoring function is thus
given by

fDistMult(es, er, eo) = eTs diag(er)eo =
d∑

i=1

(er)i · (es)i · (eo)i,

where diag(er) ∈ Rd×d denotes the diagonal matrix constructed from the vec-
tor er. As such, DistMult is a simplification of the RESCAL model [117]. Un-
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like DistMult, RESCAL does not restrict to diagonal matrices. Instead, it uses
full matrices to represent relations as pairwise interactions between the entity em-
beddings along all dimensions. In terms of scoring functions, this translates into
fRESCAL(es, er, eo) = eTs Mreo =

∑d
i=1

∑d
j=1(Mr)ij · (es)i · (eo)j , where Mr

denotes the relation matrix.
When it comes to making predictions in a knowledge graph, scoring func-

tions are used for assigning potential triples a score and ranking the candidates
accordingly. For instance, in entity prediction, conventional KGE models compute
scores for all candidate entities and rank them based on these scores. However,
the transformer-based KGT5 model [138] deviates from this approach, as it does
not use a scoring function to make predictions. Transformer-based models origi-
nate from the field of natural language processing, as we explore in the following
section.

2.2 Natural Language Processing

Natural Language Processing (NLP) is an interdisciplinary field that investigates
the use of computational systems for processing natural (i.e., human) language [30].
According to Khurana et al. [77], NLP can be divided into two main components:
natural language understanding and natural language generation. The former fo-
cuses on interpreting natural language and extracting meaning, with tasks like text
classification [47], sentiment analysis [182], and named entity recognition [94].
The latter focuses on generating human-like text, covering tasks like text summa-
rization [38], question answering [116] and machine translation [156].

A crucial aspect of NLP is language representation learning [2]. Similar to
the concept of knowledge representation learning, which we previously discussed
in Section 2.1.2, language representation learning is primarily concerned with de-
riving real-valued vector representations, i.e., embeddings, that capture the inher-
ent semantics of a given text. These representations are essential for making text
machine-processible, and are commonly used in language models. Language mod-
els essentially aim to predict a word given its context [112]. For example, a lan-
guage model may predict the next word in a sentence based on the previous words.

Notable early methods that generate word embeddings include word2vec [111]
and GloVe [124]. Both are unsupervised learning methods and create word em-
beddings that capture semantic meanings of words. In particular, these models
generate word embeddings such that semantically similar words tend to have em-
beddings that are close to each other in the embedding space [111]. Moreover,
the word embeddings can be meaningfully combined using simple algebraic oper-
ations, e.g., eParis − eFrance + eItaly ≈ eRome [111].
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Figure 2.3: Visualization of the attention between the verb run and other words in two
different sentences, i.e., contexts, using the visualization method by Jesse Vig [172]

However, these early methods generate context-independent word embeddings.
In other words, they lack the ability to represent different meanings of words in
different contexts [176]. Thus, they are unable to handle linguistic phenomena like
polysemous words [158], i.e., words with multiple related meanings. For example,
among other meanings, the verb run can imply being in charge (as in she runs the
finance department), or it can mean standing as a candidate in an election (as in
she decided to run for office).

To address this limitation, language models nowadays use contextualized word
representations. Leveraging the sequential nature of textual data, recurrent neural
architectures, such as long short-term memory, can be used to generate such con-
textualized representations [25, 159]. However, it is the transformer architecture
that not only allows for contextualized word embeddings but also brings signifi-
cant improvements in the performance and capabilities of language models [171].

2.2.1 Transformer

The transformer architecture completely relies on the attention mechanism, dis-
pensing with recurrence [171]. This is a significant benefit as recurrent architec-
tures impede efficient parallelization [171], and recurrent neural networks struggle
with capturing long-range dependencies [60].

The attention mechanism enables a language model to selectively pay attention
to relevant parts of a context when making predictions [5]. Figure 2.3 illustrates
the attention mechanism in the previous example of the verb run and its different
meanings. In the sentence she runs the finance department, a part of the attention
mechanism focuses on the word department, as this word is crucial for understand-
ing the contextual meaning of run in this sentence, which is to be in charge. Sim-
ilarly, in the sentence she decided to run for office, the model pays attention to the
words for and office, as they imply that run means standing as electoral candidate
in this particular context.

The use of the transformer architecture in combination with pre-training on
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large volumes of unlabeled text using self-supervised learning allows for pow-
erful language models. These models show remarkable capabilities across a di-
verse range of downstream tasks such as text summarization [99], machine trans-
lation [179], reasoning [80], and many more.

In self-supervised learning, the model is trained on labels generated from the
data itself, as opposed to manually annotated labels. This learning approach has
a major advantage over supervised learning: While supervised learning requires a
large dataset labeled for a specific task, self-supervised learning enables leveraging
the large amounts of unlabeled data that are available in the era of big data [98].

The algorithms for self-supervised learning differ mainly in the strategy for au-
tomatically deriving labels from the data [39], known as the pre-training objective.
For instance, the well-known BERT model [32] uses a masked language modeling
objective, which means that it is trained to predict words in a text that have been
randomly masked, given the unmasked words as context. The T5 model [129],
which we will use in Chapter 8, employs a variation of masked language model-
ing, where contiguous word spans rather than single words are masked, and the
model is tasked with predicting the masked span.

Pre-training a language model using such self-supervised objectives enables it
to develop general-purpose abilities and knowledge that can then be transferred to
downstream tasks [129]. This concept of transfer learning is especially useful in
natural language processing, where pre-training enables a model to capture polyse-
mous disambiguation, lexical and syntactic structures, and factual knowledge [56].

Transfer learning is typically implemented in the fine-tuning paradigm, where a
pre-trained model is further trained on a labeled dataset specific to the downstream
task to turn it into a task-specific model [16]. However, given the remarkable task-
agnostic performance of large language models [16, 142], prompt-engineering has
gained in importance [97]. In the prompt-engineering paradigm, natural language
task specifications, known as prompts, are provided to the language model during
inference. These prompts establish the context for the downstream task without
modifying the language model itself.

Independent of whether fine-tuning or prompt-engineering is employed, the
transformer architecture has an encoder-decoder structure [171]. As such, it maps
a textual input sequence x = (x1, . . . , xT ) to a textual output sequence y =
(y1, . . . , yT ′), where the output length T ′ is unknown a priori and may differ from
the input length T [160]. For example, in the case of machine translation, the input
sequence corresponds to a text in a source language, while the output sequence is
the translated text in a target language.

To map the input sequence x to an output sequence y, the encoder part of
the transformer first generates a contextualized representation x̄ of x. Then, the
decoder generates the output sequence y one element at a time. This generation
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process is auto-regressive, which means that, in addition to the contextualized in-
put sequence x̄, the previously generated elements are used in order to generate
the next element in the output sequence. Formally, the decoder models the con-
ditional probability distribution P (y|x̄) of the output sequence y given the input
representation x̄, which by Bayes’ rule can be written as:

P (y|x̄) =
T ′∏
t=1

P (yt|y1, . . . , yt−1, x̄).

Most decoding methods aim to find the most likely output sequence, i.e., they
want to find the output sequence ŷ = argmaxy P (y|x̄) [71]. A simple decoding
method is greedy search, which selects at each time step the most probable element,
i.e., ŷt = argmaxyt P (yt|y1, . . . , yt−1, x̄) for each t ∈ {1, . . . , T ′}. More sophis-
ticated decoding methods include random sampling and beam search [50]. The
random sampling method generates the output sequence by sampling the next ele-
ment from the conditional probability distribution at each time step. Beam search
with width w, which we will use in Chapter 8, uses the conditional probability
distribution to track the w most likely output sequences at each time step.

Transformer-based encoder-decoder models, also known as transformer-based
sequence-to-sequence models, can not only be used for typical NLP tasks such as
machine translation. As we will explore in Chapter 8, they can also be employed
for recommending activities for business process models in order to enhance busi-
ness process modeling.



Chapter 3

Business Process Modeling

In this chapter, we discuss different aspects of business process modeling, a crucial
sub-discipline of Business Process Management (BPM). The primary goal of BPM
is to enhance the quality of products or services by refining an organization’s busi-
ness processes. In this context, business process models emerge as useful artifacts.
However, creating these models, i.e., business process modeling, is a complex task
that requires adequate support.

This chapter is organized as follows. Section 3.1 provides an overview of BPM
in terms of a lifecycle. Subsequently, Section 3.2 introduces a formal definition
of business process models and explores the notion of process model semantics.
Section 3.3 then discusses common challenges encountered in business process
modeling and provides an overview of related work in the field of business process
modeling support, before Section 3.4 summarizes identified research gaps.

3.1 Business Process Management

Business process management plays an important role in organizations, which
is reflected by the significant interest from both practical and academic perspec-
tives [88]. While organizations are carrying out BPM initiatives to improve their
operational performance, researchers are working on the development of methods
and techniques to facilitate such initiatives [37]. In essence, BPM includes all man-
agement activities related to the way organizations conduct their operations [107].
The central concept driving these activities is the notion of business processes.

Business processes exist in organizations of all types and sizes, across different
industries and sectors. In short, business processes structure the operations of an
organization. However, the notion of business processes has evolved over the years,
which led to multiple definitions emphasizing different aspects. At its core, a busi-
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Figure 3.1: Business process management life cycle, adapted from [37]

ness process can be defined as a collection of activities that are performed by an
organization to create an output, which delivers value to a customer [55]. This core
notion of business processes already captures two important aspects, i.e., the focus
on delivering value to a customer and the creation of output through a collection of
activities. The customer can be either internal or external to the organization [37]
and the activities can be further characterized as logically-related [27], where the
order of the activities is determined by a set of pre-defined conditions [167]. An-
other important aspect is the organizational and technical environment in which
a business process is carried out [183], as it affects the outcome of the business
process. This includes, for example, the resources involved, the roles and respon-
sibilities of actors, or the information systems supporting the process.

In today’s dynamic business environments, “every good process eventually
becomes a bad process” [54] if changes are not recognized or appropriately ad-
dressed. This is where BPM comes to play, as it enables organizations to flexibly
react to constantly changing business environments [88]. The need for continuous
adaption is the reason why BPM activities are typically structured in a life cycle,
allowing for iterative refinement and ongoing improvement. However, the cyclical
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structure of BPM phases is idealistic and does not imply a strict temporal order-
ing in which they need to be executed. For example, BPM initiatives involving
concurrent activities in multiple phases are common [183]. As the core of this the-
sis revolves around business process models, we adopt the comprehensive BPM
life cycle proposed in [37] that allows understanding the significance of business
process models in the life cycle and their usage in different contexts. Figure 3.1
provides a visual representation of the proposed life cycle, along with the outputs
generated by each of its phases. The life cycle consists of six phases, which we
outline as follows:
• Process identification. Given a business problem, relevant processes are identi-

fied and linked, before being represented in a process architecture.
• Process discovery. The current state of relevant processes is documented, yield-

ing a collection of as-is business process models.
• Process analysis. The as-is processes are analyzed to obtain a structured collec-

tion of issues, outlining process weaknesses or potential improvements.
• Process redesign. The identified issues are addressed with redesigned processes,

typically in the form of to-be business process models.
• Process implementation. The redesigned processes are implemented by realiz-

ing the required organizational and infrastructural changes to transform the as-is
processes into the to-be processes.

• Process monitoring and controlling. Based on the data collected during pro-
cess monitoring and the process insights derived, the transformed processes are
continuously controlled.

Although our overview of the lifecycle phases and related activities is concise,
it becomes evident that business process models are crucial artifacts in the con-
text of the BPM lifecycle. Specifically, they can be used to represent as-is and
to-be processes in the discovery and redesign phases, serving as useful means for
the analysis and implementation phases. In essence, business process models cap-
ture information on business processes in a graphical manner. In the next section,
we delve deeper into business process models, providing a formal definition and
introducing the notion of process model semantics.

3.2 Business Process Models

To capture the operations of an organization in a business process model, many
modeling languages are available, e.g., Petri Nets [125] or Business Process Model
and Notation (BPMN) [118]. In this thesis, we aim to formalize business process
models as generically as possible, enabling the development of approaches that are
not constraint by any specific modeling language. Therefore, we adopt an abstract
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view, in which a business process model is defined as a directed attributed graph:

Definition 1 (Business process model) Let T be a set of node types and L be the
universe of node labels. A business process model is a tuple M = (N,A,E, τ, λ),
where
• N is a set of nodes,
• A ⊆ N is a set of activity nodes,
• E ⊆ N ×N is a set of directed edges, such that all nodes of N are connected,
• τ : N → T is a function that maps a node to a type, and
• λ : N → L is a function that maps a node to a label.
The pre-set of a node n ∈ N , i.e., the set of all nodes preceding n in the model, is
given by •n = {m ∈ N | (m,n) ∈ E}.

This definition represents business process models as a set of connected nodes,
where each node has a specific type and label. In its most basic form, a business
process model contains activity and control-flow nodes. While activity nodes rep-
resent actions or indicate that something happens, control-flow nodes capture the
execution flow of activities. Business process models may also include nodes that
represent data objects, resources, roles, or responsibilities.

Compared to a similar view of business process models as directed attributed
graph in [33], Definition 1 explicitly captures the set of activity nodes A, since
these nodes are core to the activity-recommendation problem addressed in this the-
sis. Depending on the modeling language, this set may contain nodes of multiple
types, i.e., there exists a subset of activity types, TA ⊆ T , such that A = {n ∈
N | τ(n) ∈ TA}. As an example, we consider the BPMN model in Figure 3.2. The
model depicts a business process that starts when a purchase order is received, after
which various activities are performed to handle the order. This involves a decision
point, indicated by an XOR-split gateway (diamond shape with an X), where the
order is either rejected, or confirmed and then further processed. For the BPMN
modeling language, set A includes, among others, tasks (e.g., Check stock avail-
ability) and events (e.g., Purchase order received), whereas gateways (e.g., XOR
splits) are not included in A.

Note that the edges in E can capture a partial order between nodes in N , to
allow also for concurrency and alternative executions paths in a process, such as
the two choices following the XOR-split gateway in Figure 3.2.

The business process model depicted in Figure 3.2 demonstrates the use of
BPMN as modeling language to represent a purchase order process. In the context
of BPM, a modeling language employs a notation, i.e., a collection of graphical
symbols, to visually represent a business process. Business process modeling is the
human activity of creating a business process model using such a language [107].
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Figure 3.2: An example business process model in BPMN

In this thesis, we are interested in the semantics of business process models,
which can best be understood by exploring the relationships between syntax, se-
mantics and notation of modeling languages [41]. The syntax includes a set of
constructs represented by the modeling notation, along with rules for combining
these constructs [76]. The semantics, on the other hand, involve assigning mean-
ing to these constructs [88]. The semantics of business process models can thus be
derived from a combination of two aspects [162]:

1. The formal semantics of a modeling language: These dictate how a modeled
process should be executed, capturing aspects such as the execution flow,
choices, and concurrency.

2. The natural language semantics of individual model elements: These ex-
press the meaning of the individual parts of a process model through natural
language labels.

As an illustration of this dual nature of process model semantics, consider
the rightmost element in the business process model depicted in Figure 3.2, la-
beled Purchase order processed. First, this element represents an end event within
BPMN, and as such, adheres to the formal semantics of the modeling language.
This implies, for instance, that no outgoing sequence flow can occur from this
point in the model. Second, this element has the label Purchase order processed,
which, in terms of natural language semantics, indicates that a particular purchase
order has been successfully processed.

Building on this notion of process model semantics, we can identify addi-
tional benefits that business process modeling offers to organizations. Through
the lens of the BPM life cycle, we already recognized that process models can
be used as a basis to effectively document, analyze, improve and implement busi-
ness processes. Through the effective combination of formal and natural language
semantics, business process modeling further facilitates understanding and com-
munication of business processes across different stakeholders [70]. This, in turn,
contributes to enhanced collaboration and decision-making in organizations.
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However, to realize these benefits, several challenges have to be overcome. In
the following section, we outline common challenges associated with business pro-
cess modeling and discuss existing approaches to support and enhance the business
process modeling experience.

3.3 Business Process Modeling Support

Business process modeling is an essential, yet complex task in organizations [101].
On one hand, it heavily relies on the knowledge and experiences of domain ex-
perts [58], who are usually process participants performing the activities of a busi-
ness process on a regular basis [37]. On the other hand, it requires modeling ex-
pertise, which domain experts or casual modelers typically lack [43, 135].

A potential solution to this dilemma is bringing domain and modeling experts
together in order to create business process models in collaboration [44]. However,
this approach necessitates interviews, meetings or workshops, as well as multi-
ple modeling iterations, leading to significant time and costs [140]. In addition,
the distributed nature of such modeling settings makes it difficult to ensure con-
sistency and clarity in the resulting models [126], due to ambiguities or miscom-
munications among the involved individuals [132]. These issues are amplified in
large-scale modeling projects, where business process modeling is conducted on
an organization-wide scope. Ultimately, these difficulties can result in scenarios
where downstream analyses and managerial tasks are based on incorrect, incom-
plete, or inconsistent models [1, 9]. To prevent this, different forms of business
process modeling support have been established.

One such approach involves providing developers of business process models
with a set of modeling guidelines. By adhering to such guidelines, modelers can
ensure the quality of their business process models. Available modeling guidelines
come in different levels of abstraction, ranging from abstract frameworks, such as
the Guidelines of Modeling [7], to directly applicable guidelines, such as the Seven
process modeling guidelines [110], and even to more detailed, pragmatic guidelines
as collected by Moreno-Montes et al. [114]. While these guidelines provide useful
advice for process modelers, they are generic and do not take the current state and
content of a given process model under development into account.

However, there are approaches that support process modelers beyond mere
guideline-based modeling by providing recommendations during modeling time.
These recommendations are based on the current modeling context and are pre-
sented in an autocompletion-like manner. Typically, such recommendation ap-
proaches use previously created business process models collected in a repository
as a basis for the recommendation. In the following, we delve into two central
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categories of these approaches: those that suggest process model fragments and
those that recommend activities. Moreover, we provide an overview of different
approaches within each category.

3.3.1 Recommending Process Model Fragments

In the context of this thesis, process model fragments are business process mod-
els in the sense of Definition 1, i.e., they consist of one or more nodes with types
and labels as well as directed edges connecting the nodes. Beyond the scope of our
work, it is possible that process model fragments do not qualify as business process
models. Other than in our definition, business process models are often considered
as executable, which means that they must fulfill additional criteria such as cor-
rectness or consistency. In that regard, a process fragment differentiates from a
business process model as it is not necessarily executable, but can be extended
to become an executable business process model [144]. More intuitively, a pro-
cess fragment can be understood as a logically coherent set of process elements
belonging together [82]. For example, in the business process model depicted in
Figure 3.2, a process fragment consists of the tasks Check stock availability, Con-
firm order and Reject order and the connecting XOR-split gateway.

The literature offers various approaches for recommending process model frag-
ments, including approaches that are based on tags, graphs or semantic representa-
tions of business process models.

The approach by Hornung et al. [65] uses tags for the recommendation of pro-
cess model fragments. It automatically generates tags from the labels of a business
process model under development, which can then be used to recommend rele-
vant process model fragments to the user. However, this approach requires manual
identification and tagging of process model fragments from a given repository of
business process models before recommendations can be made. Koschmider et
al. [81] propose an extension of this approach, where the automatic tagging mech-
anism incorporates additional information, such as a textual process description
that can optionally be provided by the user.

Several approaches [19, 31, 95] utilize abstractions of business process mod-
els as directed graphs to recommend process model fragments. These approaches
employ graph-mining techniques to extract fragments from a repository of process
models, before they use common subgraph distance [19] or edit distance [19,31,95]
to measure the similarity of the business process model under development and pat-
terns in the repository. Mazanek and Minas [102] introduce another graph-based
approach that relies on graph grammars for business process models. However,
their method is strictly syntax-based, which means that the elements in the sug-
gested process model fragments only have default labels. Mazanek et al. [103]
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Table 3.1: Overview of approaches for recommending process model fragments: For each
approach, we show its type, the automation level of the two components for identifying
and matching process model fragments, the ability to recommend labeled fragments and
the applicability on large repositories of business process models.

Approach type / Authors Automated
identification
component

Automated
matching

component

Labeled
process model

fragments

Large process
model

repositories

Tag-based
Hornung et al. [65] ✗ ✓ ✓ ✗

Koschmider et al. [81] ✗ ✓ ✓ ✗

Graph-based
Li et al. [95] ✓ ✓ ✓ ✗

Deng et al. [31] ✓ ✓ ✓ ✗

Cao et al. [19] ✓ ✓ ✓ ✗

Mazanek and Minas [102] ✓ ✓ ✗ ✓

Mazanek et al. [103] ✓ ✓ ✗ ✓

Based on semantic
representations

Hornung et al. [66, 67] ✗ ✗ ✓ ✗

Wieloch et al. [186] ✓ ✗ ✓ ✗

extend this approach by incorporating sketch recognizers, allowing for the recom-
mendation of process model fragments for sketched business process models.

Semantic representations of business process models are used in the approaches
by Hornung et al. [66, 67] and Wieloch et al. [186]. Hornung et al. use the Web
Ontology Language OWL [3], a Semantic Web language, for representing business
process models and for computing the semantic similarity between process model
fragments in a repository and the process model under development. Additionally,
they integrate constraints imposed by business rules using the Semantic Web Rule
Language [68]. In contrast to Hornung et al.’s approach, which requires manual
identification of process model fragments, Wieloch et al.’s method uses an algo-
rithm [170] to automatically detect so-called single entry single exit fragments. To
recommend process model fragments, Wieloch et al. leverage the semantic anno-
tations of processes according to the Business Process Modeling Ontology [18].
This ontology is part of a specialized approach to model business processes, en-
compassing knowledge about organizational context, workflow activities, and Se-
mantic Web services.

The previously described approaches share two fundamental components: one
that identifies process model fragments in a repository of business process models,
and another that matches the process model fragments with the business process
model under development. The approaches by Mazanek et al. [102, 103] are an
exception to this, as they are purely syntax-based, i.e., the elements in the rec-
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ommended process model fragments are not labeled. As such, these approaches
offer limited modeling support only. The other approaches differ in the automation
level of the identification and matching components. While the graph-mining ap-
proaches [19,31,95] automate both components, the tag-based approaches [65,81]
require manual work for the identification component. The approaches based on
semantic representations of business process models [66, 67, 186] have the limita-
tion that these representations are crucial for the matching component. However,
semantic annotations are typically not available in practice, or additional manual
effort is required to obtain them.

The automation level of the two components has a direct effect on the feasi-
bility of the approaches for large organizations, which may possess repositories
containing hundreds or even thousands of business process models [135]. Since
the tag-based approaches and the approaches based on semantic representations
require manual work, they are not feasible for organizations with repositories con-
taining hundreds of business process models. The graph-mining approaches do not
require manual work to identify and match process model fragments. However,
as demonstrated by Wang et al. [177], they cannot deal with large repositories of
process models from practice.

Table 3.1 summarizes our survey of approaches for recommending process
model fragments.

3.3.2 Recommending Activities

In this thesis, we are specifically interested in recommendation approaches of the
second category, i.e., those that recommend activities, or, more precisely, labels
for activity nodes. In contrast to approaches that suggest process model fragments,
activity-recommendation approaches are used iteratively to support users modeling
business processes in an interacting way.

According to our notion of business process models as captured in Definition 1,
all nodes, not just activity nodes, can be labeled. However, nodes other than activ-
ity nodes, such as control-flow nodes, often have empty labels, which is why the
focus is usually on activity (node) labels. If needed, approaches that recommend
activities can be extended to recommend labels for all nodes in a model.

To put it formally, activity recommendation targets a situation in which a pro-
cess model under development contains exactly one activity node that has not yet
received a label1, such as seen in Figure 1.1. We refer to such a model as an in-
complete process model:

1Note that process model nodes may have empty labels (λ(n) = ϵ), such as the XOR-join in
Figure 3.2, which is different from a node being unlabeled (λ(n) = ⊥).
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Definition 2 (Incomplete process model) An incomplete process model MI =
(N,A,E, τ, λ, n̂) is a process model (N,A,E, τ, λ) that has exactly one unla-
beled activity node n̂ ∈ A with a non-empty preset, i.e., λ(n) ∈ L is given for all
n ∈ N \ {n̂}, λ(n̂) = ⊥ and • n̂ ̸= ∅.

Given an incomplete process model MI , activity recommendation sets out to sug-
gest one or more suitable labels for the unlabeled activity node n̂.

Compared to the research focused on recommending process model fragments,
which we discussed earlier, a relatively smaller body of work is dedicated to ac-
tivity recommendation. Existing approaches employ standard machine learning,
embeddings or pre-trained language models, as we explore in further detail below.

Jannach et al. [72,73] propose a variety of approaches that are based on differ-
ent concepts from standard machine learning, i.e., k-nearest neighbors, co-occur-
rence, and frequently linked elements. Originally designed to support users in the
field of data analysis workflows, these approaches are evaluated using a dataset of
over 6,600 machine learning workflows. However, as we will show in Chapter 5,
the approaches can also be used to suggest activities for business process models.

For their evaluation, Jannach et al. divide the dataset into training and test
subsets and employ different procedures to simulate recommendation cases from
complete models in the test set. The given-n procedure reflects a cold-start setting,
where limited context is available for the recommendation. On the other hand, the
leave-one-out and hide-last-two procedures maintain nearly complete models, thus
providing a lot of information for the recommendation. As metrics, they use recall
and mean reciprocal rank.

The embedding-based approach RLRecommender was proposed by Wang et
al. [177]. Based on the Knowledge Graph Embedding (KGE) model TransE [11],
their approach extracts relations between activities of the business process models
and embeds both activities and relations into a continuous low-dimensional space.
The embeddings and their distances in the space are then used to recommend activ-
ities. However, a limitation of this approach is that it only considers one preceding
activity in the process model under development, along with its inter-relation with
the unlabeled activity, as a context for the recommendation. In Chapter 5, we will
demonstrate that this leads to comparatively low performance of RLRecommender.

To evaluate their approach, Wang et al. employ a dataset consisting of 23,576
models, which they split into training, validation and test sets. They assess the
performance of their approach for each position in the test set models, using one
preceding activity, and measure the results using hit rate and F1 as metrics.

Goldstein et al. [48] propose an approach that uses the pre-trained language
model Universal Sentence Encoder (USE) [20] to leverage semantic similarity of
sequences in business process models. Their approach involves generating se-
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quence embeddings using USE and computing cosine similarities of the embed-
dings to compare sequences from the process model under development with those
in the available repository of business process models. The label that followed the
most similar sequence is then recommended. Although Goldstein et al.’s approach
represents a first step towards the use of transfer-learning techniques from NLP for
activity recommendation, it is limited to the use of a pre-trained language model
without fine-tuning.

For their evaluation, Goldstein et al. employ small datasets consisting of nine
to 40 business process models. They evaluate their approach on each dataset sepa-
rately in a leave-one-group-out cross validation, where each process model is eval-
uated against the rest of the models that is used for training. Since the datasets
each consist of models describing the same or highly similar processes, the evalua-
tion cases closely resemble the training examples. In the course of the experiments
in Chapter 8, we will demonstrate that Goldstein et al.’s approach is not feasible
for recommending activities when dealing with extensive process model reposito-
ries. This is due to the hundreds of thousands of cosine similarities that need to
be calculated in this case, resulting in significant runtime costs. Consequently, rec-
ommendation generation times may reach ten minutes or more, which we consider
unacceptable in real-world applications, where repositories may contain thousands
of business process models [34]. For the experimental evaluation, Goldstein et al.
simulate recommendations cases from the complete models in the datasets. How-
ever, the procedure for this simulation is not clearly explained in detail. To evaluate
the quality of recommendations, they employ two types of metrics. The first type
includes standard recommender system metrics, namely precision and recall. The
second type measures the quality of predictions that are semantically similar to
the ground truth. To assess this, the metrics BLEU, METEOR, and cosine simi-
larity are used, which quantify the similarity between two terms. However, their
work lacks details about how the metrics can be used to evaluate a list containing
multiple recommendations rather than a single recommendation.

The described approaches can be reviewed based on the semantic informa-
tion in the business process models used for recommending activities. In general,
activity-recommendation approaches can leverage both the formal and the natural
language semantics in business process models. Formal semantics are valuable
for understanding structural relationships between activities. Considering them is
crucial for identifying patterns, such as activities that frequently co-occur or follow
each other. Natural language semantics provide information about the meaning and
context of each activity, which allows generalizing activity patterns in the repos-
itory. Approaches that incorporate natural language semantics can, for example,
recognize the similarity between activities such as send invoice and send bill, and
use this additional information to make more informed recommendations. Among
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Table 3.2: Overview of approaches for recommending activities: For each approach, we
show its type, its capability to incorporate formal or natural language semantics, its ability
to generate labels beyond the vocabulary of the available model repository, and its appli-
cability on large repositories of business process models.

Approach type / Authors Formal
semantics

incorporated

Natural
language
semantics

incorporated

Labels beyond
repository
vocabulary

Large process
model

repositories

Based on standard
machine learning

Jannach et al. [72, 73] ✓ ✗ ✗ ✓

Embedding-based
Wang et al. [177] ✓ ✗ ✗ ✓

Based on language model
Goldstein et al. [48] ✓ ✓ ✗ ✗

the activity-recommendation approaches discussed above, only the approach based
on a pre-trained language model considers natural language semantics in addition
to formal semantics. The embedding-based approach and the methods based on
standard machine learning solely rely on activity patterns learned from the given
repository, disregarding the meaning of activities. This makes these approaches in-
applicable in situations where a process model under development entirely consists
of activities that were not included in the repository’s models, since the extracted
patterns cannot be used to make a recommendation in these cases.

A limitation that all described activity-recommendation approaches have in
common is that they can only provide recommendations in the form of labels con-
tained in the repository of business process models at hand. In other words, they
are restricted to the vocabulary of the model repository. This leads to poor recom-
mendations for process models that strongly differ from those in the repository.

We summarize our survey of approaches recommending activities in Table 3.2.

3.3.3 Further Support Approaches

Beyond the scope of guidelines and the recommendation of process model frag-
ments or activities during modeling time, there are several other ways to support
business process modeling [41], for example, by detecting lexical ambiguity [126]
or violations of naming conventions [89] in business process models. In general,
several works (e.g., [108], [149], [91]) are concerned with the analysis of activ-
ity labels to support business process modeling. Other approaches focus on the
executability of business process models and support the identification of relevant
services that are needed to execute the model [12, 21]. However, these approaches
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are designed to refactor business process models rather than to support modelers
during modeling time.

3.4 Summary

In this chapter, we provided an introduction to business process modeling as a
crucial subfield within the broader scope of business process management. We
emphasized the importance of having adequate support for business process mod-
eling and explored related research. Our analysis reveals the following research
gaps that motivate our research:
• Large process model dataset. The evaluation of support approaches for busi-

ness process modeling is often limited to small datasets. Moreover, some ap-
proaches are not even feasible when dealing with large repositories of business
process models, especially those that recommend process model fragments. One
of the reasons for these issues is that researchers rarely have access to large col-
lections of process models from practice. As part of our work, we aim to bridge
this gap by publishing the–at the time of writing–largest publicly available col-
lection of business process models. We present this dataset in Chapter 4.

• Explainable approach. The activity-recommendation approaches that are based
on embeddings or a pre-trained language model are highly sophisticated but lack
transparency. This lack of transparency makes it difficult for the user to decide
between the provided recommendations. To address this gap, we propose a rule-
based approach tailored for activity recommendation in Chapter 5. Rule-based
approaches are explainable by design, which helps to improve the transparency
and trustworthiness of recommendation approaches [190].

• Existing knowledge graph completion approaches. While there is an activity-
recommendation approach that employs a KGE model, it lacks the ability to
integrate more than one preceding activity as a context for the recommendation.
Therefore, in Chapter 6, we explore how existing KGE models can be applied
to the activity-recommendation problem such that the entire process model un-
der development is considered as recommendation context. We also explore the
potential of an existing rule-based knowledge graph completion method for this
purpose. Moreover, we compare the performance of these methods to the perfor-
mance of approaches specifically designed for activity recommendation.

• Natural language semantics. Natural language semantics contained in business
process models are important for activity recommendation, since they provide
valuable information about the meaning and context of activities. However, de-
spite their relevance, there is no existing approach that effectively incorporates
natural language semantics while also being applicable on large repositories of
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business process models. In Chapters 7 and 8, we therefore explore different
ways to consider natural language semantics for activity recommendation, which
are feasible also when dealing with large model repositories.

• Labels beyond repository vocabulary. The ability to process and recommend
activity labels beyond the vocabulary of a given process model repository can be
highly beneficial, particularly when the process model under development devi-
ates significantly from the process models in the repository. However, existing
approaches are unable to recommend labels that are not already present in the
repository. To address this limitation, we introduce a novel transformer-based
approach in Chapter 8.

• Evaluation. To make experimental findings applicable in broader contexts, it is
crucial to conduct diverse experiments aligned with practical situations. How-
ever, current activity-recommendation research falls short in this aspect. In our
evaluations in Chapters 5, 6, 7, and 8, we conduct comprehensive experiments
that enhance existing evaluation frameworks in terms of metrics, simulations of
recommendation cases, and availability or absence of similar business process
models in the repository.



Chapter 4

The SAP-SAM Dataset

In this chapter, we present the SAP Signavio Academic Models (SAP-SAM) dataset,
which is the–at the time of writing–largest publicly available collection of business
process models and related business models, e.g., of business decisions. As part
of our work, we have published the SAP-SAM dataset1 and conducted an initial
analysis of its contents. To assist students and researchers interested in SAP-SAM,
we provide source code for querying the dataset, along with the analysis source
code used in this chapter2.

This chapter is organized as follows. Section 4.1 describes the origins of SAP-
SAM, explaining how the models contained in the dataset have been collected.
Subsequently, Section 4.2 provides an exploration of the properties of SAP-SAM.
Section 4.3 discusses potential applications of the dataset and Section 4.4 its limi-
tations. Finally, Section 4.5 examines datasets related to SAP-SAM.

4.1 Origins

SAP-SAM contains 1,021,471 business process models and related business mod-
els that were created using the software-as-a-service platform of the SAP Signavio
Academic Initiative (SAP-SAI)3. SAP-SAI allows academic researchers, teach-
ers, and students to create, execute, and analyze process models, as well as re-
lated business models. The usage of SAP-SAI is restricted to non-commercial
research and education. Upon registration, users consent that the models that they
create can be made available for research purposes, either anonymized or non-
anonymized. SAP-SAM contains those models for which users have consented

1SAP-SAM is publicly available at https://zenodo.org/record/7012043.
2The source code can be found at https://github.com/signavio/sap-sam.
3See https://www.signavio.com/academic-and-research-alliances/.
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to non-anonymized sharing. Still, anonymization scripts were run to post-process
the models, in particular to remove e-mail addresses, student registration numbers,
and—to the extent possible—names.

The models in SAP-SAM were created between July 2011 and (incl.) Septem-
ber 2021 by a total of 72,996 users, based on a count of distinct user IDs that are as-
sociated with the creation or revision of a model. The models were extracted from
the MySQL database of SAP-SAI and are in SAP Signavio’s proprietary JSON-
based data format. The total number of models contained in SAP-SAM includes
vendor-provided example models, which are automatically added to newly created
workspaces, i.e., process repositories that users register. About 470,000 models in
the dataset have the name of an example model4. However, given that the example
models could have been edited or even completely replaced in the automatically
added model files, this number can only be a rough estimate of the number of
example models in the dataset.

4.2 Properties

The SAP-SAM dataset consists of models in various modeling and natural lan-
guages, with differing levels of complexity. In this section, we provide an overview
of the key properties of SAP-SAM.

Modeling languages. SAP-SAM contains models in the following modeling lan-
guages:
• Business Process Model and Notation (BPMN): BPMN is a standardized lan-

guage for modeling business processes [118]. SAP-SAM distinguishes between
BPMN process models, collaboration models, and choreography models, and
among BPMN process models between BPMN 1.1 and BPMN 2.0 models.

• Decision Model and Notation (DMN): DMN is a standardized language for mod-
eling business decisions, complementing BPMN [120].

• Case Management Model and Notation (CMMN): CMMN is an attempt to sup-
plement BPMN and DMN with a modeling language that focuses on agility and
autonomy [119].

• Event-driven Process Chain (EPC): EPC [141] is a process modeling language
that enjoyed substantial popularity before the advent of BPMN.

• Unified Modeling Language (UML): UML is a language used to describe soft-
ware (and other) systems. It is subdivided into class and use case diagrams.

• Value Chain: A value chain is an informal modeling language for sketching high-
level end-to-end processes and process frameworks.

4The names of the example models provided by the SAP-SAI system can be found in Appendix A.
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• ArchiMate: ArchiMate is a language for the integrated modeling of information
technology and business perspectives on large organizations [86].

• Organization Chart: Organization charts are tree-like models of organizational
hierarchies.

• Fundamental Modeling Concepts (FMC) Block Diagram: FMC block diagrams
support the modeling of software and IT system architectures.

• (Colored) Petri Net: Petri nets [125] are a popular mathematical modeling lan-
guage for distributed systems and a crucial preliminary for many formal foun-
dations of BPM. In SAP-SAM, colored Petri nets [74] are considered a separate
modeling language.

• Journey Map: Journey maps model the customer’s perspective on an organiza-
tion’s business processes.

• Yet Another Workflow Language (YAWL): YAWL is a language for modeling
the control flow logic of workflows [168].

• jBPM: jBPM models allowed for the visualization of business process models
that could be executed by the jBPM business process execution engine before
the BPMN 2.0 XML serialization format existed. However, recent versions of
jBPM rely on BPMN 2.0-based models.

• Process Documentation Template: Process documentation templates support the
generation of comprehensive PDF-based process documentation reports. These
templates are technically a model language, although they may practically be
considered a reporting tool instead.

• XForms: XForms is a (dated) standard for modeling form-based graphical user
interfaces [17].

• Chen Notation: Chen notation diagrams [22] allow for the creation of entity-
relationship models.

Figure 4.1 depicts the number of models in the different modeling languages in
the dataset, as well as the according percentages (in brackets). We aggregate lan-
guages which are used for less than 100 models, respectively, into Other: Process
Documentation Template (86 models), jBPM 4 (76 models), XForms (20 mod-
els), and Chen Notation (3 models). The primarily used modeling language is
BPMN 2.0, which confirms that it is the de-facto standard for modeling business
processes [24]. Therefore, we will focus on BPMN 2.0 models as we examine
further properties.

Natural languages. Since SAP-SAI can be used by academic researchers, teach-
ers and students all over the world, the models in SAP-SAM are created using
different natural languages. For example, SAP-SAM includes BPMN 2.0 models
in 41 different languages. Figure 4.2 shows the ten most frequently used languages
for BPMN 2.0 models. Note that the vendor-provided example models, which are
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Figure 4.1: Usage of different modeling languages
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Figure 4.2: Usage of different natural languages for BPMN 2.0 models

added to newly created workspaces, exist in English, German, and French. When
a SAP-SAI workspace is created, the example models added to it are in German
or French if the language configured upon creation is German or French, respec-
tively; otherwise, the example models are in English. This contributes to the fact
that more than half of the BPMN 2.0 models (57.43 %) are in English.

Elements types. Figure 4.3 illustrates the occurrence frequency of different el-
ement types in the BPMN 2.0 models of SAP-SAM. It can be recognized that
the element types are not equally distributed, which confirms the findings of prior
research [115]. The number of models that contain at least one instance of a par-
ticular element type is much higher for some types, e.g., sequence flow (98.88 %)
or task (98.11 %), than for others, e.g., collapsed subprocess (25.23 %) or start
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Figure 4.3: Occurrence frequency of different BPMN 2.0 element types

Table 4.1: Statistics of the number of elements per BPMN 2.0 model by type (grouped)

Element type groups Mean Std Min 25% 50% 75% Max

Activities 8.6 8.4 0 4 7 10 1,543
Events 5.2 5.1 0 2 5 6 157
Gateways 3.7 4.4 0 2 3 4 303
Connecting Objects 23.1 21.8 0 14 20 25 2,066
Swimlanes 3.8 2.6 0 3 4 5 227
Data Elements 1.3 3.4 0 0 0 2 266
Artifacts 0.9 4.0 0 0 0 1 529

message event (25.42 %). Note that Figure 4.3 only includes element types that are
used in at least 10 % of the BPMN 2.0 models. More than 30 element types are
used by less than 1 % of the models. On average, a BPMN 2.0 model in SAP-SAM
contains 11.3 different element types (median: 11) and 46.7 different elements, i.e.,
instances of element types (median: 40).

Table 4.1 shows the number of elements per model by type. For a compact
representation, we aggregate similar element types by arranging them into groups.
The employed mapping from element types to element type groups can be found
in Table A.1 in Appendix A. On average, connecting objects, which include asso-
ciations and flows, make up the largest proportion of the elements in a model.
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Figure 4.4: Empirical cumulative distribution function of the label usage frequency in
BPMN 2.0 models

Figure 4.5: Word cloud of the labels contained in BPMN 2.0 models



Chapter 4. The SAP-SAM Dataset 42

Labels. In a BPMN 2.0 model, every element can be labeled by the modeler.
This leads to a total of 2,820,531 distinct labels for the 28,293,762 elements of
all BPMN 2.0 models in SAP-SAM. Figure 4.4 illustrates the distribution of label
usage frequencies. Specifically, the figure shows the empirical cumulative distribu-
tion function, which indicates the cumulative proportion of labels corresponding to
each usage frequency. The distribution of label usage frequencies is highly skewed,
which becomes even more evident when considering the log scale used for the vi-
sualization. Approximately 65 % of the labels are used only once, meaning they
are assigned to just one element in all BPMN 2.0 models. Conversely, the nearly
vertical line on the right side of the graph reveals that a small number of labels
are used frequently. In fact, 10 % of the labels are used for around 74 % of the
elements in the BPMN 2.0 models. The uneven distribution of label usage can be
partially attributed to vendor-provided examples in the dataset, as labels from these
example processes appear with high frequency.

To give an insight into the most frequently used labels, Figure 4.5 shows a word
cloud of the labels contained in the BPMN 2.0 models of SAP-SAM.

4.3 Applications

Large process model collections like SAP-SAM are a valuable and critical resource
for research. Process models from practice codify organizational knowledge about
business processes and methodical knowledge about modeling practices. Both
types of knowledge can be used by research, for example, for deriving recom-
mendations for the design of process models. In addition, large process model
collections are required for evaluating newly developed algorithms and techniques
regarding their applicability in practice.

To illustrate the potential value of SAP-SAM for the BPM community, the
following list describes possible application scenarios that we consider to be par-
ticularly relevant. It is neither prescriptive nor comprehensive; researchers can use
SAP-SAM for many other purposes.

Knowledge Generation. Process models depict business processes, codifying
knowledge about the operations within organizations. This knowledge can be ex-
tracted and generalized to a broader context. Hence, SAP-SAM can be considered
as a knowledge base to generate new insights into the contents and the practice of
organizational modeling. Example applications include:

• Reference model mining [131]: Reference models provide a generic tem-
plate for the design of new processes in a certain industry. They can be
mined by merging commonalities between existing processes from different
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contexts into a new model that abstracts from their specific features. By ap-
plying this technique to subsets of similar models from SAP-SAM, we can
mine new reference models for process landscapes or individual processes,
including, e.g., the organizational perspective. Similarly, we could identify,
analyze, and compare different variants of the same process.

• Identifying modeling patterns [42]: Process model patterns provide proven
solutions to recurring problems in process modeling. They can help in stream-
lining the modeling process and standardizing the use of modeling concepts.
A dataset like SAP-SAM, which contains process models from many differ-
ent modelers, provides an empirical foundation both for finding new mod-
eling patterns and for validating existing ones. This also extends to process
model antipatterns, i.e., patterns that should be avoided, as well as modeling
guidelines and conventions.

Modeling Assistance. The modeling knowledge that is codified in SAP-SAM can
also be used for automated assistance functions in modeling tools. Such assistance
functions support modelers in creating or updating process models, accelerating
and facilitating the modeling process. However, for the development of innova-
tive assistance functions based on novel machine learning techniques, a substantial
training dataset is typically required to generate meaningful and valuable results.
With its large amounts of contained modeling structures and labels, SAP-SAM
offers such a substantial training set, for example, for the following applications:

• Activity recommendation: By providing recommendations on possible la-
bels for activities that are newly inserted by a modeler in a process model
under development, activity recommendation can speed up modeling and fa-
cilitate consistency of the terms and modeling patterns that are used by an
organization. As we will demonstrate in Chapter 8, SAP-SAM can be used
to train and evaluate methods for this purpose.

• Automated abstraction techniques [178]: One important function of BPM is
process model abstraction, i.e., the aggregation of model elements into less
complex, higher-level structures to enable a better understanding of the over-
all process. Such an aggregation entails the identification and assignment of
higher-level categories to groups of process elements. SAP-SAM can pro-
vide the necessary training data for an NLP-based automated abstraction.

Evaluation. Managing large repositories of process models is a key application
of BPM [35]. Researchers have developed many different approaches to assist
organizations with this task. To make these approaches as productive as possible,
they need to be tested on datasets that are comparable to those within organizations.
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Since SAP-SAM goes well beyond the size of related datasets, it can be used for
large-scale evaluations of existing process management approaches on data from
practice. Examples for these approaches include process model querying [127],
process model matching [4], and process model similarity [34].

4.4 Limitations

Considering the nature of SAP-SAM as a model collection that has been generated
by academic researchers, teachers, and students, the following limitations must be
considered:

• SAP-SAM contains models that exist multiple times, either as direct duplicates
(copies) or as very similar versions. This includes vendor-provided example
models or standard academic examples that are frequently used in academic
teaching and research. The existence of these models can be used to evaluate
variant identification and fuzzy matching approaches in process querying, but it
negatively affects the diversity, i.e., the breadth of the dataset.

• Models contained in SAP-SAM may be of low technical quality, in particular the
models that are created by process modeling beginners, i.e., early-stage students,
for learning purposes. Although it can be interesting to analyze the mistakes or
antipatterns in such models, the mistakes that students make are most likely not
representative of mistakes made by process modeling practitioners.

• Since many of the models in SAP-SAM have most likely been created for ei-
ther teaching, learning, or demonstrating purposes, they presumably present a
simplistic perspective on business processes. Even when assuming that all re-
searchers, teachers, and students are skilled process modelers and have a precise
understanding of the underlying processes when modeling, the purpose of their
models is typically fundamentally different from the purpose of industry process
models. Whereas academic models often emphasize technical precision and cor-
rectness, industry models usually focus on a particular business goal, such as the
facilitation of stakeholder alignment.

Let us note that this list may not be exhaustive; in particular, limitations that
depend on a particular use case or evaluation scenario need to be identified by
researchers who use this dataset. Still, it is also worth highlighting that the partially
messy nature of the model collection reflects the reality of industrial data science
challenges, in which a sufficiently large amount of high-quality data (or models)
is typically not straightforwardly available [69]; instead, substantial efforts need
to be made to separate the wheat from the chaff, or to isolate use-cases in which
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Figure 4.6: Correlation of the number of nodes and edges in BPMN 2.0 models

the flaws in the data do not have an adverse effect on business value, or any other
undesirable organizational or societal implications. However, most process models
go beyond A-B-C toy examples from exercises and the overall SAP-SAM dataset
is of sufficient diversity, relevance and quality for facilitating research.

When using SAP-SAM for academic research purposes, it typically makes
sense to filter it, i.e., to reduce it to a subset of models that satisfy desirable proper-
ties. In the context of this thesis, we have found the following filters to be useful:

• We filter out potential vendor-provided example models by excluding any models
with names that match those of the example models provided by the SAP-SAI
system during workspace creation.

• We consider only process models with English labels.

• We remove process models with either a small or a large number of elements. As
can be expected for BPMN 2.0 models and is shown in Figure 4.6, the number
of nodes and the number of edges in a model are highly correlated. Hence, it is
sufficient to filter based on the number of nodes.

• We exclude process models where the element labels have an average length of
less than, for example, three characters to ensure that only models with useful
labels are included.
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4.5 Related Datasets

While there are several existing process model collections, they are relatively small
when compared to SAP-SAM. For example, the BPMN Artifacts Dataset consists
of 79,713 BPMN models that were mined from 18,534 open source projects on
GitHub.com [164]. Another collection, Camunda BPMN for research 5, contains
3,721 models that were created during BPMN training sessions provided by Ca-
munda. The hdBPMN dataset [139] includes 704 handwritten BPMN 2.0 models
that can be parsed as BPMN 2.0 XML. Further, RePROSitory [26] is an open col-
lection of business process models that allows users to contribute their own data.
At the time of writing, RePROSitory contains approximately 700 models.

In the process mining community, the BPI challenge datasets, e.g., the BPI
challenge 2020 [169], have become important benchmarks. Unlike SAP-SAM,
these datasets consist of event logs from practice. Therefore, the applications of
the BPI challenge datasets only partially overlap with those of SAP-SAM.

Some models included in SAP-SAM have already been published [184] as
Business Process Management Academic Initiative collection. The previously pub-
lished dataset contains 29,810 models that were collected over a shorter period of
time. In contrast to SAP-SAM, this dataset explicitly contains several revisions,
i.e., versions, of process models. In the following chapters, we will either use this
subset of SAP-SAM or the whole SAP-SAM dataset.

5https://github.com/camunda/bpmn-for-research
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Rule-based Activity
Recommendation

In this chapter, we introduce a rule-based approach to tackle the activity-recommen-
dation task. Originating from the field of inductive logic programming [28], rule-
based approaches have proven to be competitive in applications such as knowledge
graph completion [106]. One of the key advantages of rule-based over black-box
approaches is their inherent explainability, which enhances the transparency, trust-
worthiness, and user satisfaction of a rule-based recommendation approach [190].

As shown in Figure 5.1, our rule-based approach consists of two main phases:
rule learning and rule application. First, rule learning derives logical rules that
capture activity inter-relations from the process models in a provided repository.
Our rule learner is specifically tailored for activity recommendation, supporting a
process-oriented language. Second, rule application employs the learned rules to
recommend the most suitable labels for a new activity node in a process model
under development, i.e., the recommended activity. The rule-learning phase has to
be performed only once, for a given repository of process models, whereas the rule-
application phase is repeated throughout the process-modeling task to iteratively
provide activity recommendations.

The remainder of this chapter is organized as follows. Section 5.1 describes the
process model abstraction, including the behavioral relations, used in the approach.
Sections 5.2 and 5.3 cover the two main phases of the approach, rule learning
and rule application, respectively. Section 5.4 presents the results of an extensive
experimental evaluation, followed by conclusions and limitations in Section 5.5.

47
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Figure 5.1: Illustration of the two main phases of our rule-based approach: 1. Rule learn-
ing, and 2. Rule application

5.1 Behavioral Abstraction

In this section, we provide essential details on the employed formalization of busi-
ness process models, which includes the behavioral relations that our recommen-
dation approach uses as a basis.

Our work is not limited to any specific modeling language for capturing busi-
ness processes, such as Petri nets or BPMN. Instead, we employ the generic rep-
resentation (N,A,E, τ, λ) of business process models described in Definition 1.
However, our rule-based approach only considers activity nodes in business pro-
cess models, i.e., N = A, and does not distinguish between various types of activ-
ity nodes, making τ redundant. To represent the execution flow of activities without
control-flow nodes, we introduce a function ρ : E → P(R) that associates an edge
with a set of behavioral relation types (e.g., directly follows), whereR denotes the
set of all behavioral relation types, and P(R) denotes the power set of R. Con-
sidering these specifics of our rule-based approach, we change the tuple notation
(N,A,E, τ, λ) of a business process model from Definition 1 to (N,E, λ, ρ).

To convert a business process model in an arbitrary modeling language to the
generic representation (N,E, λ, ρ), we use an abstraction procedure. This proce-
dure has several degrees of freedom: We might, for example, drop (or keep) certain
types of nodes and have to select the types of behavioral relations that we use and
assign to edges via the function ρ. In the following, we use a transformation from
Petri nets to the generic process model representation (N,E, λ, ρ) as an illustration
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of the abstraction procedure and the various relations that our approach can use as
basis. However, similar abstraction procedures can be derived for other modeling
languages. For instance, BPMN models can first be translated into Petri nets [36]
before applying the abstraction approach.

Given a Petri net, we consider transitions, which correspond to activities, as
nodes in (N,E, λ, ρ) and omit its places. The label function λ results from the
transitions’ labels. Then, for any pair of nodes m,n ∈ N , we decide if we create
a directed edge e = (m,n) ∈ E and which relation types ρ(e) from a set R to
assign to this directed edge. For this procedure, we follow Wang et al. [177], who
propose three abstraction strategies, based on different sets of behavioral relations.
We refer to [177] for details and here stick to an intuitive explanation.

• Directly-follows abstraction: This abstraction strategy only considers which
activities may follow each other during process execution, captured in the fol-
lowedBy relation. Formally, if a node m can be directly followed by a node n,
we add an edge e = (m,n) with ρ(e) = {followedBy}. Naturally, this strategy
loses part of the semantics expressed in the original Petri net. For instance, it
does not distinguish between transitions that exclude each other (XOR split) and
those that can be executed concurrently (AND split).

• Causal abstraction: The second strategy reduces the abstraction loss by dis-
tinguishing between alwaysCausal and sometimesCausal relations, and their in-
verse counterparts. A pair of activities (m,n) is in the alwaysCausal relation
if any occurrence of m is always followed by an occurrence of n, whereas the
sometimesCausal relation applies if this is sometimes the case (due to an XOR-
split in the process). Conversely, m and n are in the inverseAlwaysCausal re-
lation if any occurrence of n is always preceded by an occurence of m, while
the inverseSometimesCausal relation holds if this is sometimes the case (due
to an XOR-join in the process). Since this distinction is assymetric, e.g., an
alwaysCausal relation does not guarantee an inverseAlwaysCausal relation
between two activities, we assign the forward and the inverse relation between
m and n to the edge e = (m,n), e.g., ρ(e) = {alwaysCausal,inverseSometimes-
Causal}.

• Causal and concurrent abstraction: Finally, the third strategy introduces ad-
ditional relations that can be used to describe types of concurrency between ac-
tivities, on top of the aforementioned causal ones. These relations are called al-
waysConcurrent, sometimesConcurrent, and neverConcurrent, reflecting whether
two activities can, must, or must not occur concurrently.

In the remainder, we use RX to denote a set of relation types that has been used in
an abstraction strategy X . For example, Figure 5.2 shows a BPMN 2.0 model (top)
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Figure 5.2: An example BPMN 2.0 model (top) and its abstracted version using the rela-
tion typesRcausal+concurrent (bottom)

and its abstracted version based on Rcausal+concurrent(bottom). Although the ab-
stracted version of the business process model omits from some details, the overall
structure and sequence of activities is preserved with respect to the original model.
Note that aRcausal-model can be obtained by omitting the dashed edges from Fig-
ure 5.2, while a RfollowedBy-model corresponds to the Rcausal-model in which all
relation types are replaced by followedBy.

5.2 Rule Learning

During the rule-learning phase, we generate logical rules that capture regularities
in the use of activity labels within a given repository of business process models B.

One potential solution to the rule-learning problem involves defining a refine-
ment operator that guides the learning algorithm to specialize a rule head← body
by incrementally adding atoms to the rule’s body. This approach is commonly im-
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plemented in classic ILP systems, as well as in more recent top-down methods,
such as AMIE [46]. The refinement operator’s definition implicitly encompasses a
wide range of possible rules that can be constructed through its repeated applica-
tion. However, we are proposing a different approach to maintain full control over
the types of generated rules.

Specifically, our approach employs a set of rule patterns, i.e., templates, from
which we derive a set of rules that apply to the repository B. The use of rule tem-
plates ensures that we focus on rules that are useful for activity recommendation
in business process modeling, which makes the rule learning overall more targeted
than the use of already available rule-learning systems.

In the following, we first introduce the employed rule templates of our ap-
proach (Section 5.2.1), before we describe how instantiations of these templates
are learned from the provided model repository (Section 5.2.2).

5.2.1 Rule Templates

For the definition of the rule templates, we first need to describe the abstracted
business process models in terms of logical formulas, i.e. atoms.

Rule atoms. We translate each business process model B = (N,E, λ, ρ) ∈ B as
follows:

• For each node n ∈ N we add an atom label(n, λ(n)), e.g., label(n,check pur-
chase order), to express that n has the label λ(n).

• For each edge e = (m,n) ∈ E and each relation type r ∈ ρ(e) we add an atom
r(m,n) that captures the type of relation between m and n, e.g., followedBy(m,n)
or alwaysCausal(m,n).

• For each pair of nodes m ̸= n ∈ N we add the atoms inSameProcess(m,n)
and inSameProcess(n,m) to express that m and n appear in the same business
process model.

Given a set of relationsRX, we thus use |RX|+2 (+2 for inSameProcess and label)
binary predicates to capture the structure of the process models in the repository B.

Rule templates and instantiations. When defining our templates, we use h, j,
k and l to refer to placeholders for labels of an activity, e.g., l = check purchase
order. An instantiation of a rule template is a rule in which those placeholders are
all substituted by activity labels from the universe of node labels L. The variables
W,X, Y and Z in the templates stand for activity nodes. A rule grounding is an
instantiation of a rule template, where these variables are replaced by concrete
nodes, e.g., W = a1, X = a2, Y = a3, Z = a4 ∈ N .
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In our approach, we use a special form of horn rules. Particularly, we are
interested in rules that have the form label(Z,l)← . . ., which are rules that capture
the regularities of activity Z being labeled with l.

To capture inter-relations between activities, we define the following rule tem-
plates for a setting using the directly-follows abstraction, i.e., with followedBy as
the only relation type inRfollowedBy:

R.1 label(Z,l)← inSameProcess(Y,Z), label(Y,k)

R.2 label(Z,l)← followedBy(Y,Z), label(Y,k)

R.3 label(Z,l)← inSameProcess(X,Y), inSameProcess(Y,Z), label(X,j), label(Y,k)

R.4 label(Z,l)← inSameProcess(X,Y), followedBy(Y,Z), label(X,j), label(Y,k)

R.5 label(Z,l)← followedBy(X,Y), followedBy(Y,Z), label(X,j), label(Y,k)

R.6 label(Z,l) ← followedBy(W,X), followedBy(X,Y), followedBy(Y,Z), label(W,h), la-
bel(X,j), label(Y,k)

An example for an instantiation of rule template R.1 is given by:
label(Z,approve purchase order)← inSameProcess(Y,Z), label(Y,parts required).

This rule captures that when an activity Z occurs in a process model that already
contains an activity labeled parts required, a possible recommendation for a label
for Z is approve purchase order.

In general, each of the defined templates captures a certain type of probabilistic
regularity about activity inter-relations in process models. More specifically, the
above rule templates describe which activities or combinations of activities with
certain labels have to be in the same process or must appear before activity Z to
predict l as the label of Z. We will later introduce confidence as a metric to estimate
the probability that a rule makes correct predictions. The probability of a rule that
instantiates template R.1, for example, expresses how likely it is that, if an activity
(label) k is used in a process, activity l appears in that process as well, whereas
the probability of a R.2-rule tells us how probable it is that an activity k is directly
followed by an activity with label l.
Rule specificity. Certain rules inherently relate to each other. For instance, any
grounding Y = a1, Z = a2 ∈ N of a R.2-rule is a grounding of the corresponding
R.1-rule as well. This is the case because inSameProcess(Y, Z) is true for Y = a1
and Z = a2 if followedBy(Y,Z) is true for Y = a1 and Z = a2, i.e., if a1 is
followed by a2, then a1 and a2 are naturally also part of the same process model.
Since the inverse is not true, i.e., followedBy(Y,Z) ← inSameProcess(Y, Z) does
not have to hold, we say that a R.2-rule is more specific than a R.1-rule.

Similar inter-relations also exist for the other rule templates. Figure 5.3 shows a
complete specificity lattice of the rule templates. Most of the arcs in the specificity
lattice can be explained analogously to the simple rule shown above, or the fact
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(R.1)

(R.2) (R.3)

(R.4)

(R.5)

(R.6)

Figure 5.3: Template specificity lattice

that the body of one rule is a subset of another rule’s body. Rules that instantiate
template R.6 are the most specific rules. Whenever a rule r is more specific than
a rule r′, rule r tends to make fewer and more specific predictions compared to
rule r′.

Templates in other abstraction settings. The rule templates in theRcausal setting
can be derived by replacing each occurrence of followedBy in the templates by
each of the four types of causal relations in Rcausal. Due to repeated occurrences
of followedBy in certain templates, this results in a total of 90 templates for the
Rcausal setting, primarily due to 4× 4 = 16 different versions of template R.5 and
4× 4× 4 = 64 of template R.6. For brevity, we refer to the versions derived from
one of the templates R.1-R.6 as a template group in the remainder. To additionally
incorporate the three types of concurrent relations in the Rcausal+concurrent setting,
we introduce a further template group R.7, which contains three templates that are
similar to template R.2, but in which the followedBy relation in R.2 is replaced
by one of the three concurrent relations, e.g., label(Z,l)← alwaysConcurrent(Y,Z),
label(Y,k).

Approach extensibility. Note that our approach is further extendable, since the
rule templates can be modified or complemented with additional ones. It is also
possible to support even more specific and longer rules templates. In Chapter 7, we
will add rule templates that take the natural language semantics of process models
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into account. However, it should be taken into account that longer rule templates
and a higher number of templates greatly expand the search space, which may
limit the applicability of the approach on large datasets. Thus, it is always a trade-
off between expressiveness and efficiency which guides the final selection. With
rule template R.6, for example, we already added a rather specific rule template,
which requires that three activities with certain labels appear in a sequence. This
condition will usually result in highly accurate predictions, however, at the same
time we know that this rule can only be applied if the model under development is
very similar to models in the repository.

5.2.2 Rule Generation

To receive a set of rules from the given repository of process models, we instantiate
the rule templates by replacing all placeholder variables with the labels LB ⊂ L
used in the repository B. In theory, this means that we, for example, have |LB| ∗
|LB| = |LB|2 possible instantiations of templates R.1 and R.2. However, when
learning the rules, it would be infeasible to instantiate the rule templates with all
possible combinations of labels and to check then if the rules apply in the given
repository. Instead, we generate only such rules for which the conjunction of rule
body and rule head hold at least once in the repository.
Instantiations. For each rule template, we start with a relation atom between two
activity nodes, for instance, inSameProcess(X,Y), and limit the instantiations of the
template to those activities X and Y that are indeed in this relation in the given
repository, i.e., activities X and Y occur in the same model at least once. This spec-
ifies the values in the associated label atoms. If we are looking for instantiations of
rule template R.4, for example, and two activity nodes with the labels loan needed
and determine needs are in the inSameProcess-relation in the repository, then we
add this pair of labels to the set of actual instantiations of j and k in template R.4.
Then, we repeat this procedure for the remaining relation atoms of the template
on the narrowed set of actual instantiations. With every additional relation atom
between two activity nodes in the rule template, the number of actual instantiations
decreases. Once there are no relation atoms left, we instantiate the rule template
with the determined combinations of labels.
Rule confidence. For each rule that is an instantiation of one of the rule templates,
we compute its confidence as a measure of its quality. For this, we follow the
definition by Galárraga et al. [46], which states that the support of a horn rule head
← body shall be computed by counting all rule groundings for which both the head
and body of the rule are true. Then, to compute a rule’s confidence, we divide
its support by the number of those groundings that make the body true. Thus, the
confidence of a rule can be understood as the probability that the rule makes a
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Figure 5.4: A process model under development, where an activity recommendation is
given by Submit purchase order

correct prediction within the given repository of business process models B. For
instance, the following two rules are related to activities that are in the same process
with a parts required activity:
r1 = label(Z,submit purchase order) ← inSameProcess(Y,Z),

label(Y,parts required)
r2 = label(Z,analyze quotation) ← inSameProcess(Y,Z),

label(Y,parts required)
The body of both rules is the same. Suppose that it holds 15 times over B, i.e, the
pattern described by the body appears 15 times in the process models fromB. In the
example at hand, this means that there are 15 activity nodes in the repository that
are labeled parts required. Considering that the head is additionally true, assume
that these numbers go down to 10 and 5, respectively. For example, in ten out
of the 15 cases, a parts required activity appears in the same process model as a
submit purchase order activity. Then, we have support(r1) = 10, support(r2) = 5,
confidence(r1) = 10/15 = 0.667, and confidence(r2) = 5/15 = 0.333.

5.3 Rule Application

Given an incomplete business process model B with its unlabeled node n̂, we use
the rules learned from the repository B, as described in Section 5.2, and apply them
on n̂, while taking the current state of B into account.
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Recommendations. To do this, we set Z = n̂ for all rules that we have learned and
check if the model under development contains activities that can ground the rules,
such that the bodies of the rules are true for the model. An example for a rule that
instantiates template R.4 in the Rcausal setting is given by (∗). It is also a rule that
could lead to the top-ranked recommendation for the model under development
depicted in Figure 5.4, where n̂ is the rightmost node.

label(n̂,submit purchase order)← inSameProcess(X,Y ), inverseAlwaysCausal(Y, n̂),
(∗)

label(X, create and submit the quotation), label(Y, quotation received)

If we compare this rule to Figure 5.4, we can see that the body of the rule is indeed
true, as we can map X and Y to nodes that have the respective labels.

Once the body of a rule is true, an activity recommendation is given by its head.
More specifically, it is directly given by the second argument of the head’s label
atom. Rule (∗), for example, recommends submit purchase order as the label for n̂.

Confidence aggregation. During the rule-application phase, we gather the rec-
ommendations of all rules where the body is true with respect to the incomplete
process model B and weight the recommendations according to the confidence of
their respective rules. If several rules lead to the same recommendation, i.e., pre-
dict the same label, we aggregate their confidence scores, such that we can assign
the recommendation a single score and rank it accordingly.

For this, we consider two aggregation methods, which we will compare in our
experiments in Section 5.4. With the maximum-aggregation method [106,121], we
assign the maximum confidence of the applicable rules to the recommendation. If
two recommendations have the same maximum probability, we sort them based on
their second-highest probability, if available. Analogously, if two recommenda-
tions share maximum and second-highest probability, we continue until we find a
probability that makes a difference. The noisy-or method multiplies the comple-
ment to 1 of all confidence scores and assigns the complement to 1 of this product
to the recommendation. This method is based on the noisy-or distribution, which
represents a simplification of dependency relations in Bayesian networks [137].
After applying an aggregation method, we obtain a ranked list of recommenda-
tions for the recommendation task at hand, each with its own confidence score.

Then, we remove all recommendations from the set that refer to a label that is
already used in B, since it is generally undesirable to have multiple activities with
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the same label in a single model 1.

Recommendation transparency. One of the advantages of our approach is that the
rules that serve as a basis for the recommendations allow to better understand them.
In particular, the rules can be used to explain the recommendations to the user.
With respect to the recommendation that results from rule (∗), such an explanation
can be phrased like this: Since the previous activity is quotation received and the
process also includes a create and submit the quotation activity, there is a rather
strong indication (high confidence score) that the activity should be labeled submit
purchase order.

Such an explanation might raise the confidence of the user in the given rec-
ommendation and might make it easier for them to make a choice between the
presented alternatives. In addition, the recommender system could also provide
links to the business process models in the repository that support this recommen-
dation, i.e., where the corresponding rules that lead to the recommendation are
true. Hence, the user could take a look at similar processes, which might further
help them with the current modeling task.

Finally, should a user find that suggestions that they consider to be wrong have
been learned from the available dataset, it is possible to identify the rules that
resulted in this recommendation and to remove them from the rule base. In fact,
this is considerably easier than it would have been to avoid such recommendations
when using, e.g., embeddings-based or neural network approaches, which are more
of a black box, for which it is harder to pinpoint and omit specific relations that
were learned.

5.4 Evaluation

In this section, we report about our experimental studies, in which we assess the
quality of the activity recommendations provided by our rule-based and other ap-
proaches. Before we get to the experiments, we introduce the employed dataset
(Section 5.4.1) and the evaluation setup (Section 5.4.2). In the first part of the ex-
periments (Section 5.4.3), we compare our approach to other activity-recommen-
dation approaches, using different evaluation procedures. The second part (Sec-
tion 5.4.4) comprises an ablation study that provides insights into the types of rules
that are most important for our recommendation approach.

1Note that this assumption is not contradicting the fact that the same activity can be performed
several times in a concrete execution of a process. However, this should not be caused by having the
same activity twice in the model, but via a cycle in the process flow. There might be some specific
cases, where our assumption is not true, e.g., using the same label for activities in different swim
lanes in a BPMN model. For such cases, it is possible to implement a language-specific exception.
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5.4.1 Dataset

To conduct the experiments, we use models from the BPMAI [184] collection.
These models are available in different revisions, which is useful for our purposes,
since we consider each revision as a separate process model and thus ensure that
most activities appear repeatedly across different processes in the repository.2

For our evaluation, we used all BPMN 2.0 models of the collection with 3 to
50 activities described by English labels. The resulting dataset comprises 15, 365
process models and 27, 235 unique activity labels. Note that these process models
result from 3, 688 processes and their revisions. On average, the process models
involve 15.7 activities while half of the processes comprise 14 activities or less
(median). The standard deviation is 9.2.

5.4.2 Evaluation Setup

The evaluation setup involves cross validation as well as different evaluation pro-
cedures, metrics, and approaches to be assessed.

Cross validation. For the evaluation, we employ a 10-fold cross validation. Thus,
we randomly split the data into ten folds and use nine of those to train a recom-
mendation approach. The remaining fold is then used to establish recommendation
tasks in the evaluation. We repeat this procedure, such that each of the folds is used
once as the evaluation set. In the remainder, we report the mean results obtained
over the 10 folds of the cross validation.

Evaluation procedures. We evaluate our work in various modeling situations, as
is common practice for activity-recommendation approaches [72]. Therefore, we
use three evaluation procedures, reflecting varying states of process models under
development, which results in a variety of recommendation tasks. Specifically,
we adopt the given-k and hide-last-two procedures by Jannach and Fisher [72],
and additionally introduce the full-breadth procedure. In the following, we first
provide a general overview of how the procedures work before diving into their
specific details.

The evaluation procedures work in two steps. First, given a business process
model B, one of its nodes is selected as the node n̂, for which a label must be
recommended. Then, as visualized in Figure 5.5, we alter the state of the process
model under development by removing some of the other nodes and their asso-
ciated edges from the model, according to one of the evaluation procedures. The

2Note that with the decision to keep these different revisions, we follow the setup used to evalu-
ate the embedding-based activity-recommendation approach RLRecommender [177]. In Chapters 6
and 7, we will also evaluate in settings where only the last revision of a process model is considered.
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remaining model and the selected node n̂ then define a specific activity-recommen-
dation task. The different procedures result in different degrees of information that
is available as a basis for recommendations, i.e., they represent different ways to
simulate the current status of a business process model under development. The
specifics of the given-k, hide-last-two and full-breadth procedures are as follows.

(a) given-3 (b) hide-last-two (c) full-breadth

Figure 5.5: Illustration of the different evaluation procedures

• given-k. In the given-k procedure, we pick a path of length k + 1 which is a
longest path from a source node (node with no incoming edges) to the activity
at position k + 1 and aim to predict the label of this activity. Especially for low
values of k, the given-k procedure allows us to compare different recommenda-
tion approaches in a cold-start setting, in which only little information is given.
Important here is that this setting only provides a single sequence of activities as
information for a recommendation task. In the evaluation, we use the values 1,3,
and 5 for k.

• hide-last-two. The opposite to this is the hide-last-two procedure, which main-
tains a nearly complete process model. Particularly, one sink node ns (node with
no outgoing edges) is randomly chosen and hidden. Then, we randomly select a
node that precedes ns as the node n̂ for which a label shall be predicted, while
taking all other (non-hidden) activities into account.

• full-breadth. Finally, we have implemented a full-breadth evaluation procedure,
where one activity, which is neither a source nor sink node, is randomly chosen
as the one to be predicted. Then, using s to denote the shortest path from a source
node to the selected activity, activities that are on a path of length s starting from
a source node are used as a context for the prediction, while all other activities
are hidden.

Figure 5.5 illustrates the given-3, hide-last-two and full-breadth procedures.
Overall, the given-3 procedure provides the least information as a basis for rec-
ommendations, whereas hide-last-two maintains the given process model almost
completely. Finally, the amount of information given by the full-breadth procedure
usually lies in between them.
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Evaluation metrics. To quantify the relevance of the provided recommendations,
we employ two established evaluation metrics.

First, we use the hit rate Hits@10 to report on the fraction of hits in the top 10
recommendations, i.e., the fraction of cases where the activity label that was ac-
tually used in the process model is among the ten most likely recommendations
provided by a recommendation approach. This metric is well suited for activity
recommendation and other recommendation applications, where it is sufficient that
the recommendation list contains one item that the user selects [52].

Second, we report on the Mean Reciprocal Rank (MRR). The reciprocal rank
of a recommendation list has the value 0 if the actually chosen activity is not in
the provided list and 1/p otherwise, where p denotes the position of the hit in the
list. Then, the MRR is computed by taking the mean of the reciprocal ranks of all
generated recommendation lists. Note that, as for the hit rate, we also consider a
recommendation list of length 10 for computing the MRR. This provides a close
approximation of the MRR that is based on the full ranking, while at the same time
being more realistic than assessing a ranking over all recommendations, as the list
of recommendations shown to users will in practice have a limited length as well.

While the hit rate only captures if the recommendation list covers the actually
used activity label, the MRR also takes the position of the correct prediction into
account. Note that the change of the MRR is much larger when an activity is ranked
on position 2 instead of position 1 (0.5) compared to the difference between ranks
9 and 10 (0.01). The MRR thus weights higher positions more heavily.

In the ablation study, we additionally report the average number of generated
recommendations (i.e., the length of the recommendation list) per recommendation
task as ∅|Rec|.
Approach configurations. We evaluate different configurations of our rule-based
recommendation approach by varying two aspects. First, we vary the behavioral re-
lations taken into accounts, i.e., we consider configurations that use the followedBy,
causal, or causal+concurrent relations described in Section 5.1. Second, we vary
the aggregation method over the maximum and noisy-or methods described in Sec-
tion 5.3. Combining these two aspects results in six different configurations, which
we denote, for example, as RULES followedBymaximum.
Baselines and other approaches. To contextualize the results of our activity-
recommendation approach, we compare them to results obtained from baselines
and methods, derived from various existing works:

• COOCCUR [72]: This technique is based on the conditional probabilities of the
simultaneous occurrence of activity pairs in a process. Hence, this strategy rec-
ommends activities that co-occur most often with the activities that are already
present in the process model under development.
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• kNN [72]: kNN is a weighted k-nearest-neighbors-based technique. It represents
each process model as a vector containing Boolean values that capture whether or
not the corresponding activity is present in a model. kNN recommends activities
that appear in similar models in the repository, where the vectors of the processes
are used to compute the similarity.

• LINK-CTX [73]: Unlike the prior techniques, the link-based LINK-CTX tech-
nique takes the order of activities in process models into account. Specifically,
it considers the current modeling context and counts in the given repository of
processes which activities occurred directly after the last element in the process
under development. The score of an activity is hence calculated as the number of
times it is a successor to the context’s last activity in the repository. LINK-CTX

then recommends the activity with the highest score.

• CHAIN-CTX [73]: The chain-based method CHAIN-CTX generalizes LINK-
CTX by considering not only activity chains of length two but also longer chains
of activities. If longer chains in the modeling context are matched in the repos-
itory processes, then CHAIN-CTX gives higher scores to the corresponding rec-
ommended activities.

• HYBRID-CTX [73]: The HYBRID-CTX technique combines the kNN strategy,
kNN, with LINK-CTX to incorporate two methods that focus on different pat-
terns. HYBRID-CTX is a weighting strategy which gives more weight to the kNN
technique for larger processes under development, while LINK-CTX receives a
higher weight for smaller ones.

• RLREC [177]: The RLRecommender approach embeds activities and behavioral
relations into a continuous low-dimensional space. The embedded vectors and
their distances are then used to provide activity recommendations.

While the contextualized methods (LINK-CTX, CHAIN-CTX, and HYBRID-
CTX) consider the longest path to the unlabeled activity in the process model un-
der development as the current modeling context for the recommendation, RL-
REC [177] considers one preceding activity in the process model under devel-
opment and its inter-relation with the unlabeled activity as a context for the rec-
ommendation. The methods COOCCUR and kNN can be understood as simple
baselines. The other methods are more sophisticated techniques that have espe-
cially been designed to perform well in the given (or a highly similar) activity-
recommendation scenario.

Similar to the configurations of our approach, we assess the performance of
RLREC for configurations that consider different behavioral relations, i.e., RL-
REC followedBy, RLREC causal, and RLREC causal+concurrent. The other ap-
proaches cannot distinguish between different relations, which means that we apply
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given-1 given-3 given-5 full-breadth hide-last-two
Method H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR

COOCCUR 0.290 0.099 0.333 0.105 0.302 0.081 0.215 0.058 0.207 0.049
kNN 0.296 0.121 0.721 0.321 0.749 0.313 0.804 0.434 0.914 0.658

LINK-CTX 0.495 0.389 0.864 0.672 0.875 0.671 0.777 0.577 0.812 0.615
CHAIN-CTX 0.495 0.389 0.928 0.781 0.929 0.765 0.816 0.644 0.855 0.697
HYBRID-CTX 0.495 0.389 0.889 0.721 0.909 0.728 0.857 0.731 0.732 0.646

RLREC followedBy 0.470 0.344 0.830 0.590 0.838 0.602 0.738 0.504 0.776 0.524
RLREC causal n/a n/a n/a n/a n/a n/a 0.742 0.528 0.786 0.561
RLREC causal+conc n/a n/a n/a n/a n/a n/a 0.742 0.528 0.786 0.561

RULES followedBymaximum 0.482 0.380 0.930 0.793 0.941 0.797 0.886 0.833 0.929 0.878
RULES followedBynoisy-or 0.483 0.377 0.930 0.792 0.935 0.791 0.883 0.832 0.928 0.873

RULES causalmaximum n/a n/a n/a n/a n/a n/a 0.890 0.837 0.929 0.886
RULES causalnoisy-or n/a n/a n/a n/a n/a n/a 0.890 0.841 0.930 0.880

RULES causal+conc.maximum n/a n/a n/a n/a n/a n/a 0.891 0.840 0.931 0.888
RULES causal+conc.noisy-or n/a n/a n/a n/a n/a n/a 0.892 0.845 0.931 0.882

Table 5.1: Experimental results of the different approaches (best results per evaluation
procedure and metric are in bold)

them in the RfollowedBy setting only. However, the approaches can be appropriately
applied to the generic representations of process models that we also use as input
for our approach and RLREC, as they only consider which pairs of activities occur
in the same process model and which directly follow each other. The representa-
tions can losslessly capture this in the inSameProcess and followedBy relations.

Note that, since the given-k evaluation procedure always captures the current
status of the process under development as a sequence of successive activities,
it is pointless to consider different causal or concurrent relations for this setting.
Therefore, we only consider theRfollowedBy setting for the given-k procedure.

5.4.3 Evaluation Results

The results of our experiments are shown in Table 5.1. Except for the specific
cold-start evaluation procedure given-1, our rule-based activity recommendation
approach outperforms all other methods.

The COOCCUR baseline performs comparably poor, while recommendation
strategies such as LINK-CTX, which also take structural process patterns into ac-
count, achieve better results. This is because they avoid recommending activities
that have high co-occurrence statistics, but are not relevant at the current model po-
sition. The simple kNN technique performs surprisingly well in cases where more
information is given.

RLREC causal and RLREC causal+conc achieve equal results because RL-
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Recommender bases its recommendations on one edge (m, n̂) between the activ-
ity n̂ that has to be labeled and another activity m in the given incomplete process
only. In other words, the method does not collect and aggregate predictions from
other edges, i.e., relations of activity pairs. Therefore, RLRecommender obtains
the longest path to n̂ as the context for the recommendation. This specifies the
considered edge for the recommendations as edge (m, n̂) ∈ E, where m is in the
pre-set of n̂, i.e., m ∈ • n̂ and m lies on the longest path to n̂. The relation for the
prediction thus cannot have a concurrent type, since we only consider sequential
activities in the determination of the longest path. This limitation in incorporating
contextual information also leads to the comparably low H@10 and MRR numbers.

Our rule-based approach can best exploit its potential when more details are
given for the recommendation, i.e., if the given process under development already
contains several activities and when applying the more precise relation extraction
strategies Rcausal and Rcausal+concurrent. The use of the maximum aggregation in
general leads to better overall results, only in the full-breadth procedure is the
noisy-or aggregation the better choice. Nevertheless, the differences between our
configurations are relatively small in comparison with the differences between our
approach and the other ones. This is in particular true when considering the full-
breadth and the hide-last-two evaluation procedures. In the latter procedure, for
example, our approach is almost 20% better in terms of MRR. This illustrates that
our approach is much more capable of leveraging contextual information, while
the other methods only benefit from the additional information to a limited degree.

The average time required to provide a recommendation with our rule-based
approach is generally below 0.65s when running on an Intel® Xeon® E5-2623
v3@16x3.00 GHz CPU computer with 256G RAM. The leave-one-out procedure
using maximum aggregation is an exception to this, which may require 1.1s on
average to provide recommendations.

5.4.4 Ablation Study

We investigate the importance of the individual rule templates (and groups) through
an ablation study3. In particular, we evaluate the performance of our approach
when only learning and applying rules from one template group, e.g., a configura-
tion R.1 only considers rules that are instantiations of template R.1. Note that we
apply the RfollowedBy setting for the given-5 evaluation procedure while we adopt
theRcausal+concurrent setting for the full-breadth and hide-last-two procedures. Fur-
ther, we employ the maximum aggregation for all settings.

The results in Table 5.2 reveal that the templates that include at least one fol-

3For brevity, we use template and template group interchangeably in this section.
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given-5 full-breadth hide-last-two
Rule templates H@10 MRR ∅|Rec| H@10 MRR ∅|Rec| H@10 MRR ∅|Rec|

R.1 0.739 0.298 7280.5 0.773 0.428 10455.1 0.877 0.609 10888.6
R.2 0.865 0.676 40.0 0.784 0.673 227.5 0.828 0.723 140.1
R.3 0.761 0.310 428.6 0.764 0.432 2616.4 0.881 0.627 2849.4
R.4 0.928 0.791 24.2 0.843 0.802 28.6 0.909 0.874 58.7
R.5 0.901 0.759 5.5 0.687 0.643 3.6 0.776 0.736 4.3
R.6 0.898 0.767 2.1 0.508 0.487 1.2 0.654 0.632 1.3
R.7 0.399 0.355 20.1 0.394 0.349 13.6

RULES 0.941 0.797 7280.5 0.891 0.840 10455.1 0.931 0.888 10888.6

Table 5.2: Results of the ablation study

lowedBy relation, i.e., R.2, R.4, R.5 and R.6, achieve good results in the given-5
case, in which the least information is given for the recommendation. The more in-
formation is given, the better the performance of rule templates R.1 and R.3, which
consider co-occurrence through inSameProcess relations. When using rule tem-
plate R.4 exclusively, we achieve the best results, which reflects the importance of
rule templates that consider structural and co-occurrence patterns simultaneously.
Considering concurrent relations in isolation, as done in R.7, does not work well,
which is not surprising.

The results also reflect that certain rule templates are more specific than oth-
ers. For example, template R.2 is more specific than R.1, thus, it leads to fewer,
but more targeted predictions with a higher confidence, which typically yield a
higher recommendation accuracy. However, templates R.5 and R.6 are so specific
that exclusive use of them cannot fill a recommendation list of length 10, result-
ing in comparably lower performance. Given this trend, considering longer rule
templates, e.g., that depend on longer activity sequences, is likely unfruitful.

Finally, it is interesting to recognize that the combined configuration, RULES,
achieves better results than R.1 to R.7 in every procedure. Furthermore, we also
conducted inverted experiments, where we used all but one rule template. While
some combinations yielded slightly better results than achieved by combining all
rules, this improvement was never consistent across all evaluation procedures. This
shows that all rule templates make valuable contributions in certain situations,
which is why the full approach yields a recommendation quality that is overall
higher than the quality achieved by partial configurations.
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5.5 Conclusion

In this chapter, we presented a rule-based approach for activity recommendation
in business process modeling. We demonstrated different configurations of our
approach, highlighting its extendable nature. Our extensive experiments showed
that it outperforms a variety of other methods [72, 73] including an embedding-
based approach [177]. In contrast to these methods, our rule-based approach is,
furthermore, able to provide explanations alongside the given recommendations.

While our experimental evaluation focused solely on comparisons with exist-
ing activity-recommendation methods, our approach was inspired by rule-based
methods used, e.g., for knowledge graph completion. Therefore, in Chapter 6,
we explore the application of methods originally developed for knowledge graph
completion to activity recommendation in business process modeling. We will also
compare the performance of various such approaches in an experimental study.

The presented approach has certain limitations, as it only learns rules for en-
tirely equivalent activity labels. Due to this inflexibility, the existing method cannot
fully generalize the information embedded within activity labels and requires some
degree of similarity between the process model under development and those in the
repository. However, these limitations can be addressed by considering the natural
language semantics of the process models. We will demonstrate this by extending
the rule-based approach in Chapter 7 and introducing a novel transformer-based
approach in Chapter 8.



Chapter 6

Activity Recommendation as
Knowledge Graph Completion

The activity-recommendation problem can be framed in terms of a representation-
learning task, enabling the use of Knowledge Graph Embedding (KGE) mod-
els [177]. A knowledge graph captures data on a specific domain in the form
of entities and their inter-relations. In our setting, we propose to turn a process
model repository and a process model under development into a large knowledge
graph, which thus captures knowledge on the relations between activities in the
models, e.g., activities that commonly follow each other. Then, the recommen-
dation of an appropriate activity is interpreted as a completion task in the graph,
to which so-called knowledge graph completion approaches can be applied. This
completion task has attracted lots of attention in the last decade, with the majority
of the approaches being based on the idea to embed the knowledge graph into a
low dimensional space [180]. More recently, rule-based approaches have shown to
be competitive alternatives [106].

In this chapter, we thus investigate how methods that have originally been de-
veloped for knowledge graph completion can be applied for activity recommen-
dation in business process modeling and compare the performance of different ap-
proaches in an experimental study. In an error analysis, we found some weaknesses
of the methods that can partially be fixed through problem-specific post-processing.

The remainder of this chapter is organized as follows. Section 6.1 introduces
different approaches for constructing a knowledge graph from given business pro-
cess models. Section 6.2 discusses the results of our experimental study, in which
we compare various approaches to generate activity recommendations. Finally,
Section 6.3 concludes the chapter.
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6.1 Knowledge Graph Construction

In this section, we discuss different approaches to construct a knowledge graph
from given process models such that we can apply KGE models and a rule-based
method for knowledge graph completion to the activity-recommendation problem.

A knowledge graph is a collection of triples (subject, relation, object). While
the subject and object entities are represented as nodes in the graph, the relation be-
tween two entities is given as a labeled edge. To apply methods that have originally
been developed for knowledge graph completion to the activity-recommendation
problem, we need to describe each business process model B ∈ B of the given
repository as well as the process model under development in terms of such triples.
For the knowledge graph construction, we use the process model abstraction B =
(N,E, λ, ρ) from Section 5.1. The partial knowledge graph resulting from a model
B can, for example, comprise the nodes N and the activity labels L as entities. We
developed three different approaches to translate a business process model into a
set of triples, which vary in the used sets of entities and relations.

The simplest approach uses the relations hasLabel and followedBy. These two
relations are the basis for all approaches, as they capture the core information of a
business process model as knowledge graph, i.e., a triple (n, hasLabel, λ(n)) ex-
presses that a node n has the label λ(n), whereas an edge (m,n) becomes the triple
(m, followedBy, n). The other two approaches are alternative extensions which, in
addition to the structural patterns captured by followedBy, consider co-occurrence
patterns by using the relations inSameProcess and inProcess, respectively. This
results in the following three translation approaches:

1. For each node n ∈ N , we add a triple (n, hasLabel, λ(n)). Furthermore, we
add for each edge (m,n) ∈ E a triple (m, followedBy, n).

2a. This approach extends the first one by additionally using the relation inSame-
Process: In addition to the first approach, we add for each pair of nodes
m ̸= n ∈ N the triples (m, inSameProcess, n) and (n, inSameProcess,m)
to link all nodes that belong to the same process.

2b. This approach is another extension of the first one and an alternative to 2a,
where the additional relation is given by inProcess: Let P be a set of pro-
cess identifiers and π be a function that maps each given business process
model B to its unique identifier π(B) ∈ P . In addition to the triples of the
first approach, we add for each node n ∈ N a triple (n, inProcess, π(B)).

The different translation approaches are closely related. In particular, in 2b the
two triples inProcess(m, p) and inProcess(n, p) imply inSameProcess(m,n) in
2a and vice versa. However, there is a slight difference. In 2a two activities m
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and n are not in the same process, if the triple inSameProcess(m,n) does not ex-
ist. In 2b they are not in the same process, because we have inProcess(m, p) and
inProcess(n, p′) with p ̸= p′. Detecting that two activities m and n are in the
same process with approach 1 is a bit more complicated, as it requires identifying
a sequence of followedBy triples (the direction does not matter) which establishes
a path that connects m and n. This path might be relatively long. When working
with translation approach 1 it is thus more complicated to make use of the implicit
information that two activities are or are not in the same process model. As we
will see in the evaluation in Section 6.2, the different approaches have their merits
depending on the choice of the applied knowledge graph completion method.

For the construction of a knowledge graph from the business process models
of the given repository and the process model under development, each of the busi-
ness process models is translated to a partial knowledge graph by one of the above
approaches. The partial knowledge graphs of the different process models are con-
nected by the activity labels that they share, while an activity node always belongs
to exactly one process model. If, for example, two process models both contain an
activity Register, then the two respective activity nodes are both linked to the node
that represents the label Register in the graph.

Given an obtained knowledge graph, we are interested in predictions of the
completion task (n̂, hasLabel, ?), where n̂ denotes the unlabeled node in the pro-
cess model under development for which we want to suggest a suitable label. For
this task, existing completion approaches can be employed, as shown next.

6.2 Evaluation

In this section, we report on the design and results of our study, in which we in-
vestigate the performance of different approaches for applying existing knowledge
graph completion methods that have not specifically been designed for activity rec-
ommendation. Additionally, we compare the approaches to the embedding-based
activity-recommendation approach RLRecommender [177] and to our rule-based
approach presented in Chapter 5. Before discussing the evaluation results in Sec-
tion 6.2.3, we provide information about the employed dataset and the evaluation
setup in Sections 6.2.1 and 6.2.2, respectively.

6.2.1 Dataset

For the experiments, we employ the BPMAI process model collection [184]. Un-
like in the evaluation of our rule-based approach in Section 5.4, we only use the
last revisions of the BPMN 2.0 models in the collection. In contrast to using all
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revisions, we thus represent the possible case that the recommendation methods
sometimes only have few or even none domain-specific reference models for the
suggestion of activities available. Moreover, the runtimes of the evaluated KGE
models remain in a reasonable range of maximum 48 hours for the hyperparameter
search given a particular translation approach for knowledge graph completion1.

Out of all last-revision BPMN 2.0 models, we use those that contain a chain of
at least 3 different activities when executed and no more than 50 activities in total.
In addition, we only include process models with English labels. These selection
criteria result in a dataset consisting of 3, 672 process models. On average, the
processes involve 14.3 activities, with a standard deviation of 8.3. The median
number of activities per process model is 13.

6.2.2 Evaluation Setup

Our evaluation setup involves the dataset split and statistics, evaluation procedures
and metrics, as well as approaches to be evaluated and their hyperparameters.

Dataset split. We randomly separate the dataset into three parts for training, val-
idation and test, respectively. More precisely, we use 80 % of the process models
for training each method, while 10 % of the models are used for validation and
another 10 % for evaluation.

Evaluation procedure. For the evaluation, we create one recommendation task for
every process model in the validation and test split using the full-breadth evaluation
procedure described in Section 5.4.2.

Evaluation metrics. To assess the relevance of the generated recommendations,
we utilize the hit rate Hits@10 and the MRR, which we previously introduced
in Section 5.4.2.

Approach configurations. We combine each of the three translation approaches
defined in Section 6.1 with three existing knowledge graph completion methods.
For this, we employ the TransE [11] and DistMult [188] KGE models (also referred
to as embedding-based methods), as well as the rule learner AnyBURL [106]2.
For the application of the KGE models, we use the PyTorch-based framework
libKGE [14]. While these models are rather old, they have proven to yield good
results when trained appropriately [136].

Other approaches. Additionally, we include our in Chapter 5 proposed rule-based
approach (RULES followedBymaximum ) and the embedding-based approach RLRec-

1Note that we performed the experiments dividedly on two computers: Intel® Xeon® CPU E5-
2640 v3@40x2.40 GHz and Intel® Xeon® Silver 4114 CPU@40x2.20 GHz.

2We also tested other popular KGE models (ComplEx, ConvE) but they yielded comparatively
poor results that we do not report here.
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Translation
approach

Entities Relations Training
triples

Validation
triples

Test
triples

1 70, 876 2 105, 150 358 362
2a 70, 876 3 955, 492 358 362
2b 74, 548 3 153, 827 358 362

Table 6.1: Overview of the dataset statistics for the embedding-based methods

ommender by Wang et al. [177] (RLREC followedBy), which have both been de-
veloped with a special focus on activity recommendation. Note that we apply the
RfollowedBy setting, since we also used the followedBy-relation for the knowledge
graph completion methods (see Section 5.1). Additionally, we use the maximum
aggregation method in our rule-based approach (see Section 5.3).

Dataset statistics. Table 6.1 shows the statistics of the dataset for each translation
approach when combined with embedding-based methods, i.e., the number of en-
tities and relations as well as the number of triples in the training, validation, and
test sets. While the translation approaches 1 and 2a yield 70, 876 entities, which is
the sum of the total number of activity nodes (48, 677) and activity labels (22, 199),
approach 2b also considers processes as entities, which adds the total number of
processes in the evaluation (3, 672) to the sum.

The large difference in the number of triples between the training set and the
validation and test sets has two reasons. First, we are only interested in one special
prediction task, which is the prediction of objects in triples (n̂, hasLabel, λ(n̂)),
where n̂ denotes the node for which we want to recommend an activity label λ(n̂).
Therefore, the validation and test sets comprise for each process model in the val-
idation or test split only one triple (n̂, hasLabel, λ(n̂)), whereas the training set
contains all triples of the process models in the training split that result from the
translation approach.

Second, we want to consider the context of the process model under develop-
ment, i.e., the activities and relations so far included in the process model. Since,
for embedding-based methods, the entity that appears in the completion task needs
to be part of the learned embeddings, this means that the contexts of the process
models in the validation and test splits must be included in the training set. As
such, the training set additionally contains all context triples of the validation and
test process models. This is not necessary for rule-based approaches such as Any-
BURL, since they naturally allow for the consideration of the context, which thus
does not have to be included in the training set.

Hyperparameters. For the KGE models, we basically employed the large hy-
perparameter space presented by Ruffinelli et al. [136]. However, we additionally
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Translation
approach

Method Hits@10 MRR

1
TransE 34.0 % 8.4 %

DistMult 35.9 % 15.0 %
AnyBURL 36,1 % 14,8 %

2a
TransE 20.7 % 4.2 %

DistMult 34.3 % 19.1 %
AnyBURL 37.2 % 15.2 %

2b
TransE 33.4 % 8.0 %

DistMult 36.5 % 15.6 %
AnyBURL 35.8 % 14.5 %

RLREC followedBy 35.1 % 23.8 %

RULES followedBymaximum 47.5 % 41.4 %

Table 6.2: Experimental results of the different approaches

considered the embedding sizes 32 and 64. While our previously proposed rule-
based activity recommendation approach has no hyperparameters, we have set the
following hyperparameters for AnyBURL: We increased the length of cyclic rules
to 5 and the length of acyclic rules to 2 (a higher parameter is not supported by
AnyBURL). Also note that rule-based approaches usually do not fine-tune their
hyperparameters against the validation set. Thus, both AnyBURL and our rule-
based activity-recommendation approach from Chapter 5 do not make any use of
the validation set.

6.2.3 Evaluation Results

The results of our experiments are shown in Table 6.2. With Hits@10 numbers
that are at least 10 % worse than our rule-based activity recommendation approach
and low MRR numbers, no combination of translation approaches and knowledge
graph completion methods works well. The two specialized methods, in particu-
lar the rule-based method, that are shown in the last two lines of the table work
significantly better.

Analysis of predictions. In order to understand the reasons behind the unexpected
results, we examined some specific cases. Figure 6.1 shows a process model in
the validation set, where the activity Search for Units Available has been randomly
selected as the one to be predicted. The use of translation approach 1 combined
with TransE yields the following top 10 recommendations:
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Figure 6.1: An example of a process model in the validation set, where the completion
task (n4, hasLabel, ?) has to be solved

1. Register
2. Upload Documents
3. Enter Personal Details
4. Enter Details of Unit for Rent
5. Upload Pictures
6. n4
7. Select Units for Inspectation
8. Search For Units Available
9. Start

10. n3

The correct activity Search for Units Available is at position eight of the rec-
ommendation list, which means that the MRR would be 1/8 = 0.125, if this was the
only completion task of the whole evaluation. Other items of the recommendation
list include some nodes of the given process model, i.e., n3 and n4, as well as ac-
tivities like Register or Enter Personal Details that have already been used in the
process model. Clearly, the recommendation of nodes is not useful since we are
interested in the prediction of activities. Also, it is likely that activities that have al-
ready been inserted into the process model are not added a second time. Therefore,
we decided to do a post-processing in which we filter out other recommendations
than labels, i.e., nodes and processes, as well as activities that are already present in
the given process model. In the example of Figure 6.1, this means that the correct
prediction moves to position four of the recommendation list, which is an MRR
improvement from 0.125 to 0.25.
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Translation
approach

Method Hits@10 MRR

1
TransE 41.7 % (+ 7.7 %) 24.9 % (+ 21.1 %)

DistMult 38.7 % (+ 2.8 %) 29.8 % (+ 14.8 %)
AnyBURL 36.9 % (+ 0.1 %) 24.4% (+ 9.6 %)

2a
TransE 37.0 % (+ 16.3 %) 20.8 % (+ 16.6 %)

DistMult 37.3 % (+ 3.0 %) 29.2 % (+ 10.1 %)
AnyBURL 38.6 % (+ 1.4 %) 24.2 % (+ 9.0 %)

2b
TransE 42.5 % (+ 9.1 %) 29.3 % (+ 21.2 %)

DistMult 39.8 % (+ 3.3 %) 31.4 % (+ 15.8 %)
AnyBURL 36.4 % (+ 0.5 %) 24.4 % (+ 9.8 %)

RLREC followedBy 35.1 % 23.8 %

RULES followedBymaximum 47.5 % 41.4 %

Table 6.3: Experimental results of the different approaches with post-processing

Results with Post-processing. The results of the experiments with post-processing
are shown in Table 6.3. The percentages in brackets indicate the improvement of
the associated Hits@10 or MRR numbers in comparison to the results without
post-processing.

The KGE model TransE profits most from the post-processing. However, the
TransE results strongly depend on the translation approach. This effect is smaller
when using DistMult or AnyBURL. For the embedding-based methods TransE
and DistMult, translation approach 2b is the best, which shows that the additional
explicit information given by the triples with the relation inProcess is useful. In
contrast, approach 2a works comparably poor in combination with the embedding-
based methods. One reason for this could be that in approach 2a the nodes are
strongly interconnected via the relation inSameProcess. Thus, the interconnection
of the nodes via inSameProcess is more prominent than via the relation followedBy.
This can be disadvantageous since the co-occurrence patterns depicted by inSame-
Process are often less relevant than the structural patterns captured by followedBy,
which avoid recommending activities that have high co-occurrence statistics, but
are not relevant at the current model position.

Unlike the embedding-based methods, AnyBURL achieves the best results
when using the translation approach 2a. While this approach only needs one triple
(m, inSameProcess, n) to express that two nodes m and n are in a process p, ap-
proach 2b needs the two triples (m, inProcess, p) and (n, inProcess, p). This has
a direct impact on the regularities that can be captured by AnyBURL. A rule as
hasLabel(X, register) ← inSameProcess(X,Y ), hasLabel(Y, upload documents)
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is within the supported language bias, while the equivalent rule, based on transla-
tion approach 2b, has a body length of three and is thus out of scope.

If we now compare the results of the standard knowledge graph completion
methods with post-processing to the results of the specialized methods RLRecom-
mender and the rule-based activity-recommendation approach, we observe that the
gap between standard and specialized methods has become less significant after
post-processing. As discussed in Chapter 5, RLRecommender [177] is based on
a rather specific approach to use embeddings in which only one related activity in
the process model is used for the recommendation of an activity, thus its results
are slightly worse compared to the results of our approaches for using TransE and
DistMult. This holds in particular for translation approach 2b where both TransE
and DistMult are better in Hits@10 and MRR.

Our rule-based approach, which has specifically been designed for activity rec-
ommendation, is still at least 5 % better in Hits@10 and 10 % better in MRR.
These significant differences illustrate that a standard knowledge graph completion
method cannot compete with an approach which has specifically been designed for
activity recommendation in business process modeling. This holds even though we
tried out different translation approaches and developed a problem-specific filtering
as post-processing step to increase the quality of the results.

It seems that the specific regularities which are important for making a good
activity recommendation seem to influence the resulting embedding space only to
a limited degree. These specifics are reflected in the types of rules supported by
our rule-based recommendation approach that are also more expressive compared
to the general rule types supported by AnyBURL. We can conclude that standard
methods for knowledge graph completion are not flexible enough to adapt to the
given problem, resulting in a relatively low prediction quality.

6.3 Conclusion

In this chapter, we presented different approaches to use embedding- and rule-
based knowledge graph completion methods for activity recommendation in busi-
ness process modeling. By incorporating a problem-specific filtering as a post-
processing step, we were able to improve the quality of recommendations. Never-
theless, our rule-based activity recommendation approach still achieved better re-
sults than the application of standard knowledge graph completion methods, which
revealed their lack of flexibility to adapt to the given problem.

Although the primary focus of this chapter was the application of knowledge
graph completion methods to activity recommendation for business process mod-
eling, the findings are also interesting from a broader perspective. Typically, works
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proposing knowledge graph completion methods evaluate their performance on
well-established datasets that have been used in the community for many years. In
contrast, our research applied existing methods to a different dataset and an evalu-
ation scenario reflecting a task from practice. Our findings suggest that the perfor-
mance of knowledge graph completion methods in standard benchmarks may not
always translate to success in practical use cases.



Chapter 7

Rule-based Recommendation
with Natural Language Semantics

In Chapter 5, we introduced a rule-based approach to recommend activities during
business process modeling. Although our experimental evaluation revealed that
the rule-based approach outperforms both standard machine learning [72, 73] and
embedding-based [177] methods, it is limited by the fact that it only learns rules
for completely equivalent activity labels.

To address this limitation, this chapter presents a semantics-aware recommen-
dation approach that takes into account the natural language semantics of business
process models. Specifically, we extend our existing approach by introducing new
rule types that capture action and business-object patterns in process models. In
this manner, the proposed approach is able to, e.g., learn which actions (or busi-
ness objects) commonly co-occur or follow each other. In addition to improving the
rule-learning phase with these new rule types, we also develop a novel extension
of the rule-application phase that considers the semantic similarity of actions and
business objects. In an experimental study, we show that the semantic extensions
indeed improve the existing approach. Additionally, we investigate the impact of
the different rule types in an ablation study, which reveals that particularly struc-
tural and action patterns are useful for the recommendation of activities.

The remainder of this chapter is organized as follows. Section 7.1 illustrates
the advantages of considering natural language semantics for activity recommen-
dation, before Sections 7.2 and 7.3 present the semantic-based extensions in rule
learning and rule application, respectively. Section 7.4 discusses the experimental
evaluation, followed by the conclusion in Section 7.5.
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7.1 Overview of Semantic Extensions

In this section, we motivate the semantic extensions of our rule-based approach,
which we propose in this chapter. As a basis for this motivation, we use the ex-
ample process model under development depicted in Figure 7.1, in which the user
has just inserted an unlabeled activity on the right-hand side. The recommendation
task is to suggest an appropriate label for this newly inserted activity node.

Figure 7.1: A process model under development, where an activity recommendation is
given by Analyze order template

In our work, we use a repository of business process models as a basis to learn
recommendation rules from. So far, our rule-based approach learns rules that cap-
ture activity inter-relations in the given repository. In this manner, we find regu-
larities such as “create order template is followed by approve purchase order” or
“check purchase order and create delivery appear in the same process”. Such rules
are then employed to suggest suitable labels in an activity-recommendation task.
For example, this might result in the recommendations of approve purchase order
and create delivery for the task depicted in Figure 7.1, if such rules can indeed be
learned from similar models in the available repository.

However, if the labels included in the process model under development and
the ones in the available repository are disjoint, our existing work would not be able
to provide any recommendations, since it has not learned any rules that relate to the
current recommendation task. Therefore, in this work we recognize that an analysis
of the natural language semantics of activity labels can yield more general patterns,
allowing us to improve the completeness and quality of activity recommendations.
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In particular, our work sets out to provide additional recommendations based on
action patterns, business-object patterns, and semantic similarity:

• Action patterns. By parsing activity labels, we may learn that for activities that
apply to the same business object, a label with a create action (e.g., create re-
quest) is commonly followed by a label involving an analyze action (e.g., analyze
request). This allows us to learn a general pattern that “create β is followed by
analyze β”, where β can be replaced by any specific business object. Based on
this rule, we would then be able to recommend analyze order template as a suit-
able label for the activity in Figure 7.1, given its preceding create order template
activity. The action pattern thus enables providing this recommendation, even if
the available repository does not specifically contain any of these labels.

• Business-object patterns. By also considering inter-relations between business
objects, we may learn from a repository that labels related to order template
and delivery business objects commonly appear in the same process, while being
complemented by the same action. We might, for example, observe a model
that contains the activities check order template and check delivery, and another
model that includes the activities process order template and process delivery.
From this, we may learn the business-object pattern that there is a co-occurrence
of α order template and α delivery, where α can be replaced by any specific
action. Given this pattern, we can then recommend a create delivery label for the
task in Figure 7.1, even if we never observed create order template and/or create
delivery in the available repository.

• Semantic similarity. The activity labels used in the given repository of process
models can also consist of action and business objects that are not exactly the
same as the ones used in the process model under development. However, if
we have learned the pattern that “generate * is followed by analyze *”, where *
can be replaced by any specific business object, then it is likely that actions that
are similar to generate, e.g., create, are also followed by analyze. Analogously,
we can expect that the business-object pattern “* order form and * delivery are
in the same process” can also be applied to business objects that are similar to
order form, e.g., “* order template and * delivery are in the same process”. Both
observations are based on the similarity of actions or business objects and lead
in the example of Figure 7.1 to the recommendations analyze order template and
create delivery, respectively, even if neither create nor order template can be
observed in the available repository.

In our approach, the identification of action and business-object patterns constitute
rule-learning extensions, while we can consider the similarity of actions and busi-
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ness objects during rule application. In the following two sections, we delve into
the details of these extensions.

7.2 Rule Learning with Semantic Patterns

Our rule-based approach employs a set of rule templates to generate logical rules.
The rules then capture regularities in the use of labels within a given repository of
business process models B. To take into account the natural language semantics of
process models, we complement the rigid rule templates, previously discussed in
Section 5.2.1, by novel semantic rule templates. While the rigid rule templates de-
scribe activity inter-relations in terms of complete activity labels, the semantic rule
templates consider natural language semantics in the form of action and business-
object patterns. More specifically, they capture regularities in the use of specific
actions and business objects throughout a model repository. Corresponding to es-
tablished work on the semantic analysis of activity labels in process models [109],
we use the term business object to refer to an entity to which a label relates, e.g.,
requirements, order template or parts from stock. Actions of a label operate on
business objects, e.g., specify (action) requirements (business object).

To formalize the semantic patterns that we want to detect in a set of business
process models B, we concentrate on separable activity labels for the semantic
rule templates. We refer to an activity as separable if it allows for a clear separa-
tion between the actions and the business objects of its label, for example, as in the
activities specify (action) requirements (business object), update and review (ac-
tions) requirements (business object) or match (action) goods receipt and purchase
order (business objects). In particular, separable activities can involve multiple ac-
tions or business objects. For a separable label λ, we denote by α(λ) the action part
of the label while β(λ) denotes the business-object part, such that λ = α(λ) β(λ)
or λ = β(λ) α(λ). The functions α and β can be instantiated using existing ap-
proaches for the analysis of activity and event labels, cf., [92, 130]. Since we do
not distinguish between other semantic roles than actions and business objects, this
means in practice that, given a label, we first identify the action(s) of the label and
consider the rest of the label as business object(s).
Rule atoms. For the semantic rule templates, we add the following atoms to the
translation of a business process model B = (N,E, λ, ρ) ∈ B in addition to the
ones previously specified in Section 5.2.1, where we denote by LB ⊂ L the labels
that are used in repository B:

• For each separable label λ ∈ LB with action part a we add a formula α(λ) = a
to capture the actions of the labels that are used in the repository, e.g., α(create
order template)=create or α(update and review invoice)=update and review.
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• Analogously, we add for each separable label λ ∈ LB with business object b a
formula β(λ) = b to also add the business objects of the labels, e.g., β(create
order template)=order template or β(update and review invoice)=invoice.

Moreover, we define the replace functions replaceAction, replaceActionAnd-
Flip, replaceBusinessObject and replaceBusinessObjectAndFlip, which we apply
on separable labels only. The function replaceAction : (λ, a)→ replaceAction(λ, a)
copies label λ and replaces its action part α(λ) by the action part a while the
business-object part remains the same, e.g., replaceAction(create request, ana-
lyze)=analyze request. The function replaceActionAndFlip has the same effect as
the function replaceAction but additionally flips the order of action and business-
object part of the generated label, e.g., replaceActionAndFlip(analyze request, ap-
proved)=request approved. The functions replaceBusinessObject and replaceBusi-
nessObjectAndFlip can be explained analogously.

The aforementioned replace functions cover all possible combinations of ac-
tion and business-object parts of separable labels in the repository. Since separable
labels consist of two parts, they can occur in both orders, i.e., action part - business-
object part and business-object part - action part. Since either might be used in
practice, we support both orders. While the replaceAction and replaceBusiness-
Object functions combine different parts maintaining their positions in the labels,
the replaceActionAndFlip and replaceBusinessObjectAndFlip functions combine
different parts flipping their order in the labels.

Rule templates and instantiations. We define four additional template sets, which
adapt the R templates defined in Section 5.2.1 to capture patterns on actions and
business objects, as well as their flipped forms. We here provide the A templates
for action patterns (referred to as A.1 to A.6) in detail, whereas the other sets are
described more briefly. To capture action patterns, we define the following rule
templates in theRfollowedBy-setting, where a and a′ indicate action parts used in LB:

A.1 label(Z,replaceAction(K,a′))← inSameProcess(Y,Z), label(Y,K), α(K)=a

A.2 label(Z,replaceAction(K,a′))← followedBy(Y,Z), label(Y,K), α(K)=a

A.3 label(Z,replaceAction(K,a′))← inSameProcess(X,Y), inSameProcess(Y,Z), label(X,j),
label(Y,K), α(K)=a

A.4 label(Z,replaceAction(K,a′)) ← inSameProcess(X,Y), followedBy(Y,Z), label(X,j),
label(Y,K), α(K)=a

A.5 label(Z,replaceAction(K,a′)) ← followedBy(X,Y), followedBy(Y,Z), label(X,j), la-
bel(Y,K), α(K)=a

A.6 label(Z,replaceAction(K,a′))← followedBy(W,X), followedBy(X,Y), followedBy(Y,Z),
label(W,h), label(X,j), label(Y,K), α(K)=a
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To yield rules that instantiate the templates, the placeholders h and j have to
be replaced by concrete labels from LB, whereas a and a′ have to be replaced by
concrete action parts used in LB.

The A templates provide action-based counterparts for the R templates. For
example, whereas R.1 captures patterns on the co-occurrence of entire labels, the
corresponding A.1 template captures co-occurrence patterns between actions. An
example instantiation of this template is:

label(Z,replaceAction(K,approve))←inSameProcess(Y,Z), label(Y,K),
α(K)=create.

This rule captures that when an activity Z occurs in a process model that already
contains an activity with a label K = create someObject, a possible recommen-
dation for a label for Z is approve someObject. This recommendation is defined
by replaceAction(K, approve), which replaces the action of label K with approve
while preserving its business object (someObject).

Similarly, the following is an instantiation of the behavioral template A.2:
label(Z,replaceAction(K,analyze))← followedBy(Y,Z), label(Y,K), α(K)=create.

This rule describes that an activity Y with action create is followed by an activity
Z with action analyze while the business objects of Y and Z are the same.

The templates A.3-A.6 combine behavioral or co-occurrence action patterns
with regularities that involve whole activity labels, as in the R templates. For ex-
ample, the probability of a rule that instantiates template A.3 tells us how likely it
is that, if an activity X labeled j is used in the same process with an activity Y with
label K, where K includes action part a, then the label of activity Z in the same
process consists of action part a’ and the business-object part of K.

Additional template sets. The function replaceActionAndFlip is used in another
type of rule templates denoted by AF.1-AF.6, where we replace each occurence of
replaceAction in the templates A.1-A.6 by replaceActionAndFlip. For example, an
instantiation of rule template AF.2 is:
label(Z,replaceActionAndFlip(K,check))←inSameProcess(Y,Z), label(Y,K),

α(K)=create.
This rule captures that when an activity Z occurs in a process model that already
contains an activity with a label K=create someObject, a possible recommenda-
tion for a label for Z is someObject check. This recommendation is defined by
replaceActionAndFlip(K,check), which replaces the action of label K with check
while preserving its business object (someObject) and additionally flips the order
of action part and business-object part in the label Z as compared to the order in
label K.

The A and AF rule templates thus capture the regularities of two actions fol-
lowing each other and two actions co-occurring in one process, where the functions
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Figure 7.2: Extended template specificity lattice

replaceAction and replaceActionAndFlip are instructions on how the label l of ac-
tivity Z is composed.

Analogously, we receive another two types of rule templates B.1-B.6 and BF.1-
BF.6 for capturing business-object patterns by replacing action and replaceAction
in A.1-A.6 by businessObject and replaceBusinessObject or replaceBusinessOb-
jectAndFlip, respectively.

The rule templates in the Rcausal- and in the Rcausal+concurrent-setting can be
derived as described in Section 5.2.1 for the rigid rule templates.

Rule specificity. Turning back to the specificity lattice of the rigid rule templates
in Figure 5.3, we can extend it by the semantic rule templates as shown in Fig-
ure 7.2. The grey arcs show the specificity relations of the A and B rule templates,
which are similar to those of the rigid templates. Also, Figure 7.2 illustrates the
inter-relations between the rigid rule templates R.1-R.6 and the semantic rule tem-
plates A.1-A.6 and B.1-B.6. For instance, whenever the body of an R.1-rule is true,
then the corresponding A.1 and B.1 rules are true as well. In general, the A and
B rules are weaker forms of their R counterparts, which reflects that the semantic
rule templates are more widely applicable than the rigid rule templates, i.e., the
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rules can be applied when labels just share an action or a business object, rather
than being fully identical. Thus, the semantic rule templates make our approach
as a whole more broadly applicable. For clarity, we did not include the AF and
BF templates in Figure 7.2, since the specificity of these templates is equivalent to
their non-flipped A and B counterparts.

Rule generation. Analogously to the rule generation based on the rigid rule tem-
plates described in Section 5.2.2, we instantiate the semantic rule templates by
replacing all placeholder variables with labels, actions, or business objects from
the repository. Due to the functions replaceAction, replaceActionAndFlip, replace-
BusinessObject or replaceBusinessObjectAndFlip, we additionally limit the instan-
tiations of the rule templates to those activities Y and Z that have separable labels
and that relate to the same business object (for action templates in A and AF) or
to the same action (for business-object templates in B and BF). In the case of rule
template A.6, for instance, the labels of the activities that replace Y and Z need to
be separable, and their business objects have to be equal.

For each rule that is an instantiation of one of the semantic rule templates, we
compute its confidence as described in Section 5.2.2.

Default rules. Finally, to further enhance the ability to provide recommendations
for unseen activity labels and for a sufficient number of recommendations, we also
introduce default rules in this chapter. Our approach learns ten default rules [45],
which recommend the most common labels from a repository. Since these default
rules simply predict the activities that occur most often in the repository, the con-
fidences of these rules are low, such that they should only appear in the top ten
recommendations list if no other recommendation can be made, i.e., if a prediction
task is not covered by any of the actual rules. An example for a default rule is
given by label(Z,send invoice)← true. The confidence of this rule is computed by
dividing the number of occurrences of the label send invoice by the number of all
activity nodes in the repository.

7.3 Rule Application with Semantic Similarity

To apply rules derived from semantic rule templates, we can follow the same pro-
cedure as outlined for rigid rule templates in Section 5.3. However, if a rule instan-
tiates one of the semantic rule templates, then the activity recommendation isn’t
directly provided by the rule’s head. Instead, an additional step is required: We
need to evaluate the function in the second argument of the head’s label predi-
cate. To illustrate this, consider the following rule, which is an instantiation of rule
template A.2 in theRcausal-setting:
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label(n̂,replaceAction(K,analyze))← alwaysCausal(Y,n̂), label(Y,K), action(K,create)
(2∗)

Comparing this rule to the process model in Figure 7.1, we can map Y to the
activity node with label K=create order template, such that the body of the rule is
true. The rule thus provides the recommendation analyze order template, since we
replace the create action of the label create order template with analyze.
Similarity-based recommendations. We equip our rule-application procedure
with an optional extension so that it can also make recommendations if the bodies
of rules are not exactly true for the given model, but for which the rule’s action
or business-object part is semantically similar to the actions or business objects in
the process model at hand. Consider, for example, the case that rule (3∗) is given
instead of (2∗), i.e., instead of a rule related to a create action, it now captures a
pattern for generate:

label(n̂,replaceAction(K,analyze))← alwaysCausal(Y,n̂), label(Y,K), action(K,generate)
(3∗)

Because of the semantic similarity of the generate and create actions, we can
nonetheless map Y to the activity node with label K=create order template in Fig-
ure 7.1. In this way, rule (3∗) is fulfilled in a semantically similar sense. As before,
this would then lead to the recommendation analyze order template.

This optional extension makes the rule application procedure more general:
Instead of collecting only the recommendations of all rules, where the body is
exactly true with respect to the incomplete process model B, we also consider the
recommendations stemming from rules, where the bodies are true in a semantically
similar sense.

While such recommendations based on semantic similarity can be highly valu-
able, we still take into account that these stem from rules where the bodies are not
exactly true. Therefore, we diminish the confidence scores of these recommen-
dations by a factor that measures the similarity between the actions or business
objects used in the model under development and the one involved in the rule with
a value between 0 and 1. If, for instance, rule (3∗) has the confidence 0.92 and the
similarity score of the pair (generate, create) is given by 0.70, then the recommen-
dation analyze order template receives the score 0.92 · 0.70 = 0.644.

To obtain a score that measures the similarity between two action or business-
object parts, we can employ any technique from natural language processing that
measures the similarity between two terms. Such techniques typically use vector
representations of words, i.e., embeddings, which capture semantic information of
words so that similar ones are closer in the vector space, e.g., word2vec [111].
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The embedding for a term consisting of multiple words is typically obtained by
taking the average of the individual word embeddings, e.g., the embedding of order
template is the average of the embeddings of order and template. The similarity
of two terms is then calculated as the similarity of the corresponding embeddings,
which is often measured using the cosine similarity.

Confidence aggregation. To establish a ranked recommendation list, we assign
weights to the recommendations that stem from (semantically similar) rules. Anal-
ogously to our approach when using only rigid rule templates, we employ the re-
spective (diminished) confidence scores of the rules for the weighting. Then, we
can apply either maximum or noisy-or aggregation to the recommendations of all
rules, as detailed in Section 5.3, to obtain the ranked recommendation list for the
task at hand.

7.4 Evaluation

In this section, we present an extensive experimental study that we conducted to
evaluate our semantics-aware approach for activity-recommendation. We begin by
discussing the dataset employed for this study (Section 7.4.1), followed by an out-
line of the evaluation setup (Section 7.4.2). In the first part of the experiments (Sec-
tion 7.4.3), we compare our approach to other activity-recommendation approaches
in two different scenarios, employing diverse evaluation procedures. The second
part (Section 7.4.4) consists of an ablation study, where we investigate the impact
of different rule templates and the added value of considering semantic-aware pat-
terns. Finally, we present a study that examines the extension with similarity-based
recommendations (Section 7.4.5).

7.4.1 Dataset

Similar to the experimental studies in Chapters 5 and 6, we employed models from
the BPMAI process model collection. However, in this study, we use Petri nets in
addition to BPMN 2.0 models. From these models, we only included those with 3
to 50 activities described by English labels. Given that the BPMAI collection con-
tains multiple versions (i.e., revisions) of business process models, we obtain a
total of 4 128 process models and 18 908 model versions. On average, the process
models have 14.5 activities, with a standard deviation of 8.1. The models cover a
wide range of domains, resulting in a total of 29 223 distinct activity labels (out of
a total of 311 007 activities).

We employ the models in two different application scenarios. In the first sce-
nario, we use the entire set of 18 908 process model versions, i.e., including mul-
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tiple revisions per process, which reflects the situation that the given repository
contains models that are similar to the one for which recommendations shall be
provided. In the second scenario, we focus on the opposite case by only selecting
the last revision of each of the 4 128 models. This scenario thus results in harder
recommendation tasks, given that the repository used to train a recommendation
approach will have fewer models (if any) that are similar to the process model for
which recommendations shall be made 1.

As input for the semantic rule templates, we identified that 82.5% of the labels
are separable, i.e., consist of an individual action and a business-object part (see
Section 7.4.2 for details on the parsing procedure). The remaining 17.5% includes
labels that are truly non-separable, e.g., receive error report new bill or analyze
field and identify processes, yet also includes ones that simply lack semantics, e.g.,
task or p t, turn out to actually not be in English, despite the model being marked as
such, or consist of just an action or business object, rather than both, e.g., accept,
shipping, or simple claim. Note that we purposefully do not filter out even the
nonsensical or non-English labels, in order to avoid biasing the results in favor of
our approach.

7.4.2 Evaluation Setup

The evaluation setup involves cross validation, various evaluation procedures and
metrics, implementation details, as well as different approaches to be evaluated.

Cross validation. We evaluate the approaches employing a 10-fold cross valida-
tion as described in Section 5.4.2.

Evaluation procedures. In addition to evaluating our work in two different appli-
cation scenarios (with and without model revisions), we also assess the accuracy in
various modeling situations. To accomplish this, we employ three evaluation pro-
cedures: given-3, full-breadth, and hide-last-two. We described these procedures
in detail in Section 5.4.2.

When using the whole dataset (with revisions), we create one recommendation
task for every business process model in the evaluation set for every evaluation
procedure, i.e., we select a single node per process model as n̂ for each procedure.
For the last-revision dataset, we compensate for the smaller amount of available
process models by instead evaluating all recommendation tasks per model that the
given evaluation procedure can provide, e.g., for the full-breadth case, any node in
the model that is neither source nor sink node is used as node n̂ in a recommenda-
tion task.

1While the first application scenario reflects the one used in the evaluation in Chapter 5, the
second scenario was employed in Chapter 6.
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Implementation details. To operationalize the semantic rule templates, our im-
plementation uses the label-parsing approach by Rebmann and Van der Aa [130]
to instantiate the α and β functions that, respectively, determine the action and
the business-object parts of activity labels. To improve the recognition of actions
in ambiguous labels, such as offer immediate help, we post-process all labels for
which the parser does not detect any action (and only business objects) using the
spaCy library [64]. Specifically, we use spaCy’s part-of-speech tagging feature to
determine if any terms in the label are commonly recognized as verbs. If so, this
term is then marked as an action, while the other words remain tagged as business
objects. This results, e.g., in correctly recognizing offer as the action in the afore-
mentioned label. As described in Section 7.2, we only consider separable labels
when identifying action and business-object patterns, i.e., labels that comprise one
action part followed by a business-object part, or vice versa.

We also employ spaCy to compute the similarity between two action or busi-
ness-object parts. spaCy determines the similarity of two terms using the co-
sine similarity of the corresponding embeddings. The similarity score lies be-
tween 0 and 1, where a higher value indicates a greater similarity. The employed
spaCy large English model, en-core-web-lg, contains almost 700 thousand 300-
dimensional vectors generated from a large corpus of written text and is thus fully
sufficient for our use.

Evaluation metrics. For the evaluation of the provided recommendations, we em-
ploy the hit rate Hits@10 and the MRR. Both of these metrics have been previously
discussed in Section 5.4.2.

Approach configurations. We evaluate our rule-based approach using the rigid as
well as the semantic rule templates in all experiments, while the similarity-based
extension is used in the last part of the experiments in Section 7.4.5. Note that we
assess the added value of the semantic rule templates in Section 7.4.4 as part of an
ablation study, whereas the similarity-based extension is assessed in Section 7.4.5.
Further, we evaluate our rule-based approach in different configurations that vary
in the applied confidence-aggregation method and the used set of behavioral rela-
tions. In particular, we combine the in Section 5.3 introduced maximum and noisy-
or aggregation with each of the in Section 5.1 presented abstraction strategies, i.e.,
followedBy, causal and causal+concurrent. This leads to six different configu-
rations, which we denote, for instance, by RULES followedBymaximum. Since the
given-3 evaluation scenario always yields a sequence of successive activities, there
is no point in considering concurrent or causal relations. Therefore, we only report
on theRfollowedBy setting for the given-3 scenario.

Baselines and other approaches. To provide context for the results of our activity
recommendation approach, we conducted a comparative analysis with baselines
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and methods derived from other works [72,73]. The baselines used in our study in-
clude COOCCUR [72] and kNN [72], as well as the contextualized methods LINK-
CTX [73], CHAIN-CTX [73], and HYBRID-CTX [73]. Detailed explanations of
these baselines and methods can be found in Section 5.4.2. In addition, we intro-
duce the contextualized versions COOCCUR-CTX and kNN-CTX of the respective
baselines, along with an additional baseline named MOSTFREQ:

• MOSTFREQ [72]: This method always recommends the ten activities most fre-
quently used in the available process model repository.

• COOCCUR-CTX [73]: This contextualized version of COOCCUR only considers
activities that are part of the current modeling context and recommends activities
that co-occurred most often with them.

• kNN-CTX [73]: kNN-CTX is a contextualized version of kNN. Compared to
kNN, kNN-CTX increases the weight of the neighbor process models that con-
tain activities, which are also included in the current modeling context of the
process model under development.

Note that the contextualized methods consider the longest path to the unlabeled
activity in the process model under development as the current modeling context
for the recommendation.

7.4.3 Evaluation Results

Table 7.1 shows the experimental results of the evaluated approaches and configu-
rations on the whole dataset, i.e., in an application scenario where multiple similar
business process models can be found in the repository. As highlighted in bold, our
rule-based recommendation approach achieves the best results in every evaluation
procedure.

Baseline comparison. Before we get to the results that we measured for differ-
ent configurations of our rule-based approach, we take a closer look at the other
approaches. As expected, the results of the simple baselines MOSTFREQ, COOC-
CUR and kNN are comparatively low. However, the kNN method achieves up to
three times better results than COOCCUR, which indicates that the sole consider-
ation of pairwise co-occurrence patterns is less suited for activity recommenda-
tion than considering the processes and their similarities as a whole. The methods
COOCCUR-CTX and kNN-CTX work better than their non-contextualized coun-
terparts. This shows that the current modeling context as considered by Jannach et
al. [73] can be of importance, i.e., it can be useful to give greater consideration to
certain parts of the process model under development.
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given-3 full-breadth hide-last-two
Approach H@10 MRR H@10 MRR H@10 MRR

MOSTFREQ 0.033 0.010 0.015 0.005 0.006 0.003
COOCCUR 0.312 0.104 0.231 0.076 0.212 0.067
kNN 0.684 0.227 0.607 0.200 0.642 0.211

COOCCUR-CTX 0.312 0.104 0.271 0.087 0.263 0.082
kNN-CTX 0.817 0.633 0.768 0.570 0.833 0.651
LINK-CTX 0.852 0.669 0.725 0.556 0.766 0.598
CHAIN-CTX 0.934 0.820 0.774 0.643 0.827 0.713
HYBRID-CTX 0.892 0.730 0.807 0.627 0.861 0.695

RULES followedBymaximum 0.938 0.824 0.889 0.798 0.930 0.857
RULES followedBynoisy-or 0.938 0.827 0.875 0.783 0.895 0.771
RULES causalmaximum n/a 0.887 0.803 0.931 0.872
RULES causalnoisy-or n/a 0.883 0.786 0.910 0.781
RULES causal+conc.maximum n/a 0.889 0.811 0.933 0.876
RULES causal+conc.noisy-or n/a 0.884 0.791 0.911 0.784

Table 7.1: Experimental results of the different approaches on the whole dataset (best
results per evaluation procedure and metric are in bold)

Methods that (additionally) consider structural patterns rather than co-occurr-
ence patterns only avoid recommending activities that could be useful in the model
under development but not at the current modeling point. Therefore, LINK-CTX,
CHAIN-CTX, HYBRID-CTX and RULES achieve better results than COOCCUR.
CHAIN-CTX achieves better results than LINK-CTX, which demonstrates that tak-
ing into account longer chains of activities is useful. By combining LINK-CTX and
kNN-CTX, HYBRID-CTX can improve the results of the individual methods in ev-
ery evaluation procedure. In the full-breadth and hide-last-two procedures, where
more context is given, HYBRID-CTX works even better than CHAIN-CTX, which
indicates that considering different patterns in the use of activities can be useful.
All in all, the comparison of the baselines shows similar trends as the comparison
in the work by Jannach et. al [73]: HYBRID-CTX and CHAIN-CTX achieve the
best results, the performance of COOCCUR-CTX is rather poor and kNN-CTX can
keep up with the methods that take the order of activities into account.

Results per configuration. Overall, the use of the maximum aggregation leads to
better results of our approach. Only in the given-3 procedure, the noisy-or aggrega-
tion is the better choice, because of a slightly better MRR. The noisy-or aggregation
multiplies the confidence scores of all rules that lead to one particular recommen-
dation. Naturally, rules with inSameProcess predicates fire more often than those
with followedBy predicates, thus, this aggregation method gives more weight to
co-occurrence patterns than to structural patterns, which is generally unfavorable.
This effect exists only to a limited degree in the given-3 procedure, because of the
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small context in this case.
In general, the more precise the abstraction of business process models, i.e.,

the more relations used in the abstraction strategy, the better the results of our rule-
based approach. However, the hit rate H@10 of RULES causalmaximum is slightly
worse than the one of RULES followedBymaximum in the full-breadth case. This
can be explained by the fact that we learn the rules on the whole processes of the
training set while we apply them on the partial processes of the test set. When
generating a partial process from a given process model, some of the nodes and
edges are removed, which can lead to a change of the relation types assigned to a
remaining edge. If, for example, a node m can be followed by node n or node o in
the complete process model and node o is removed for the partial model, then node
m can only be followed by node n. This changes the corresponding relation type
of edge (m,n) from sometimesCausal to alwaysCausal. Consequently, the rules
learned from highly similar process models in the repository cannot be applied
to the obtained partial process. Therefore, it could be better to learn the rules on
partial processes rather than complete processes. In practice, this would necessitate
information about the modeling behavior of the user, which is not available in the
for the experiments employed dataset.

All in all, the variations in the results of the different configurations of our
rule-based approach are small compared to the differences to the other approaches.
Especially in the cases where more context is given, i.e., full-breadth and hide-last-
two, our approach outperforms the other approaches by up to 10 % in H@10 and
15 % in MRR. This shows that our approach is much better at using the additional
context for providing suitable activity recommendations.

Last-revision dataset. The experimental results of the evaluated approaches on
the last-revision dataset, where only few or even no similar models are available for
the recommendation of an activity, are shown in Table 7.2. The absolute numbers
go down significantly in comparison to the results obtained for the dataset with
revisions. However, the general trends to be observed largely remain the same.

Even though the evaluation on the last-revision dataset reflects a challenging
scenario, the hit rate Hits@10 is around 50%, which means that, in one out of two
cases, the actual activity label is among the top 10 recommendations. Moreover,
the comparably high MRR indicates that the actually used label can be found on
the first positions of the recommendation list, in case it is indeed in the top-10
recommendations. This means for a concrete modeling task that our approach
suggests the correct label in half of the cases within a short recommendation list,
whenever a new activity is added to the model. Our approach is thus still beneficial
in situations where the modeling domain is only sparsely represented in the given
model repository.
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given-3 full-breadth hide-last-two
Approach H@10 MRR H@10 MRR H@10 MRR

MOSTFREQ 0.044 0.017 0.025 0.009 0.013 0.006
COOCCUR 0.182 0.069 0.149 0.049 0.139 0.045
kNN 0.304 0.101 0.300 0.090 0.331 0.101

COOCCUR-CTX 0.182 0.069 0.164 0.052 0.165 0.051
kNN-CTX 0.381 0.276 0.415 0.280 0.433 0.294
LINK-CTX 0.425 0.323 0.418 0.313 0.400 0.297
CHAIN-CTX 0.446 0.371 0.443 0.358 0.422 0.341
HYBRID-CTX 0.432 0.338 0.451 0.328 0.456 0.328

RULES followedBymaximum 0.469 0.386 0.500 0.419 0.504 0.413
RULES followedBynoisy-or 0.473 0.389 0.497 0.409 0.488 0.369
RULES causalmaximum n/a 0.506 0.428 0.508 0.423
RULES causalnoisy-or n/a 0.509 0.419 0.495 0.374
RULES causal+conc.maximum n/a 0.515 0.440 0.516 0.434
RULES causal+conc.noisy-or n/a 0.514 0.428 0.500 0.381

Table 7.2: Experimental results of the different approaches on the last-revision dataset
(best results per evaluation procedure and metric are in bold)

Ranking. To better understand the ability of our rule-based approach to rank the
right activity on the first positions of the recommendation list, we investigate the hit
rates Hits@k for k≤10. Figure 7.3 shows these hit rates of our rule-based approach
in the Rcausal+concurrent setting with maximum aggregation when evaluated in the
full-breadth procedure on the whole (top) and on the last-revision (bottom) dataset.
Note that the scale of the two graphs differs for the purpose of the figure. When
using other settings for our approach or the evaluation, the curves look similarly.
Both curves in Figure 7.3 rise steeply at the beginning, while the slope already
decreases considerably from Hits@3 onwards. This shows that our approach will
in most cases still be able to give the correct recommendation even if only a shorter
recommendation list is considered.

Confidence scores. In our evaluation, we have not yet considered the confidence
scores, which come along with the recommendations of our rule-based approach.
For the hit rate Hits@10 and the MRR, we shortened the generated recommen-
dation list to a top 10 list. However, it is also possible to further shorten the list
based on the confidence scores. Then, we only include the recommendations with
a confidence score above a certain threshold. Figure 7.4 shows the length of the
recommendation list (top) and the recall (bottom) depending on the chosen con-
fidence score threshold when we use our approach in the Rcausal+concurrent setting
with maximum aggregation and evaluate in the full-breadth procedure on the whole
dataset. As before, the graphs look similarly when using other settings for our ap-
proach or the evaluation. The recall is similar to the hit rate, i.e., it is the fraction
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Figure 7.3: Different hits rates of RULES causal+conc.maximum in the full-breadth evalua-
tion procedure on the whole (top) and on the last-revision dataset (bottom)

of cases where the activity label that was actually used in the process model can be
found in the generated recommendation list. In contrast to the hit rate, which we
investigated previously, the length of the recommendation list here depends on the
confidence score for the recall.

The top curve in Figure 7.4, which depicts the recommendation list length de-
pending on the confidence score threshold, declines steeply until the confidence
threshold 0.2, where the recommendation list length is about 3. Then it slowly fur-
ther decreases with an exception at the confidence score 0.5, where the length again
drops sharply. The bottom graph in Figure 7.4 has the same exception at the confi-
dence score 0.5 and two other exceptions at 0.34 and 0.67. These exceptions result
from a large portion of rules having the confidence scores 1

2 , 1
3 or 2

3 , because there
are often two or three options with the same likelihood. Apart from that, the re-
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Figure 7.4: Length of recommendation list (top) and recall (bottom) for different confi-
dence score thresholds when using RULES causal+conc.maximum in the full-breadth evalua-
tion procedure on the whole dataset

call decreases with increasing confidence score threshold relatively monotonously.
Bringing these two graphs together, it could in our example be useful to have a
confidence score threshold of 0.2 to make the recommendation lists considerably
shorter without decreasing the recommendation quality too much.

Runtime. The average time required to provide a recommendation is generally
below 0.74s in our execution environment, which employed an Intel® Xeon® E5-
2623 v3@16x3.00 GHz CPU computer with 256G RAM. The hide-last-two sce-
nario using maximum aggregation is an exception to this, which requires 1.59s
on average to provide recommendations. The rule learning, which has to be per-
formed only once for a given repository of process models, takes a maximum of
2 086s (34.8 minutes) on the whole dataset and 383s (6.4 minutes) on the last-
revision dataset. Since the implementation of our approach is prototypical, it can
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be assumed that these runtimes can be shortened considerably for an application of
the work in practice.

7.4.4 Ablation Study

We investigate the impact of the different rule templates in an ablation study. More
specifically, we evaluate the performance of our approach when learning and ap-
plying rules from different combinations of rule types and template groups. Note
that the numbers in Table 7.3 result from the application of the RfollowedBy set-
ting for the given-3 evaluation procedure and the Rcausal+concurrent setting for the
full-breadth and hide-last-two procedures. Moreover, we employed the maximum
aggregation for all procedures, and the last-revision dataset.

given-3 full-breadth hide-last-two
Employed templates H@10 MRR H@10 MRR H@10 MRR

R.1 0.342 0.143 0.315 0.111 0.326 0.115
R.1, R.2 0.444 0.335 0.467 0.349 0.462 0.345
R.1 - R.3 0.447 0.337 0.464 0.348 0.457 0.343
R.1 - R.4 0.456 0.367 0.488 0.414 0.483 0.404
R.1 - R.5 0.456 0.373 0.489 0.416 0.483 0.408
R.1 - R.6 0.457 0.376 0.489 0.417 0.483 0.409
R.1 - R.7 0.457 0.376 0.499 0.430 0.492 0.421

R and A templates 0.467 0.384 0.513 0.439 0.513 0.433
R and AF templates 0.460 0.379 0.502 0.431 0.497 0.423
R and B templates 0.457 0.376 0.500 0.430 0.493 0.421
R and BF templates 0.457 0.376 0.499 0.430 0.492 0.421

RULES (all templates) 0.469 0.386 0.515 0.439 0.516 0.432

Table 7.3: Results of the ablation study

In the first part of the ablation study, we investigate the rigid rule templates.
We start by employing just template R.1 and then add the other rule templates one
after another. The first step from using template R.1 to using templates R.1 and R.2
shows that the use of the followedBy relation and the associated consideration of
structural patterns improves the results significantly. In the next step, we add tem-
plate R.3, which leads to further improvement in the given-3 case while the results
in the other procedures full-breadth and hide-last-two decline. Rules with two in-
SameProcess relations thus rather have a positive effect in the case that less context
is given. Adding rule template R.4 with one followedBy and one inSameProcess
relation again improves the results in every evaluation procedure. This emphasizes
the importance of considering structural patterns and co-occurrence patterns simul-
taneously. In the next steps, we add R.5 and R.6, which still improves the results
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but only to a limited degree. Consequently, considering even longer templates,
e.g., that depend on longer activity sequences, is likely unfruitful. On the contrary,
adding the rules from template group R.7, which employ the concurrent relations,
has a strong positive effect on the results again. This is as expected since the results
of RULES causal+conc.maximum are better than the ones of RULES causalmaximum in
Table 7.2. Note that in the given-3 case the results of R.1-R.6 and R.1-R.7 are the
same as we employ theRfollowedBy setting there.

In the second part of the study, we analyze the added value of the semantic
rule templates by adding each of the four different types, i.e., A, AF, B and BF
templates, to the rigid rule templates. While the BF templates do not influence the
results, the other semantic rule templates all contribute to better numbers. Espe-
cially the A templates lead to improvements. Given these results, we could use our
semantic-aware rule-based approach without the BF templates, since it is likely that
they do not make a valuable contribution. Comparing the results of R.1-R.7, where
we use the rigid rule templates only, to the results of RULES, we can conclude that
the extension of our rule-based approach with the semantic rule templates leads to
consistent improvements.

Employing the semantic rule templates in addition to the rigid rule templates is
naturally associated with higher runtimes. When using the rigid rule templates
only, the average time required to provide a recommendation is generally be-
low 0.70s, where the hide-last-two scenario using maximum aggregation requiring
1.56s is an exception to this. These numbers are to be compared with the runtimes
reported in Section 7.4.3 for our method with rigid and semantic rule templates,
which are 0.74s and 1.59s, respectively. The rule learning time increases from
1 978s (33.0 minutes) to 2 086s (34.8 minutes) on the whole dataset and from 360s
(6 minutes) to 383s (6.4 minutes) on the last-revision dataset.

7.4.5 Experiments with Similarity-based Recommendations

In these last experiments, we want to investigate the performance of our approach
when using the similarity-based extension of the rule-application phase, which pro-
vides additional recommendations based on the semantic similarity of terms.

Until now, we used the Hits@10 and MRR evaluation metrics, which are strict
metrics in the sense that they count a hit only if the given recommendation and
the actual activity label are an exact match. If, for instance, the recommendation
is create delivery, but create shipment is used in the business process model, then
the recommendation would not count as a hit. The same holds for the pair of ac-
tivity labels analyse order template and analyze order template. However, in both
cases the given recommendation would arguably still be highly useful for the user,
given their similarity from a semantic point of view. Therefore, when evaluating
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given-3 full-breadth hide-last-two
Metric RULES RULES + sim RULES RULES + sim RULES RULES + sim

Hits@100.7 0.827 0.830 0.885 0.894 0.926 0.940
Hits@100.8 0.644 0.644 0.702 0.708 0.727 0.736
Hits@100.9 0.540 0.533 0.584 0.583 0.591 0.591
Hits@10 0.469 0.461 0.515 0.509 0.516 0.507

MRR0.7 0.589 0.592 0.652 0.655 0.680 0.684
MRR0.8 0.494 0.491 0.554 0.554 0.565 0.566
MRR0.9 0.432 0.426 0.485 0.482 0.484 0.481
MRR 0.386 0.379 0.440 0.434 0.434 0.427

Hits@100 0.514 0.517 0.564 0.569 0.565 0.572

Table 7.4: Results with and without similarity-based recommendations (best results per
evaluation procedure and metric are in bold)

recommendations made using the semantic-similarity extension, we additionally
consider relaxed versions of Hits@10 and MRR that consider the similarity of ac-
tivitiy labels.

For the relaxed metrics, we compute the similarity of each of the top-10 recom-
mendations to the activity label that was actually used and assign these similarity
scores to the recommendations. If x denotes a similarity score threshold, then
Hits@10x considers a recommendation to be a hit if its similarity score is equal
or higher than x. Similarly, MRRx determines the reciprocal rank of a recommen-
dation list as 1/p, where p denotes the position of the first recommendation with
similarity score equal or higher than x. As for the regular MRR, we consider rec-
ommendation lists of length 10 for the MRRx, thus, the reciprocal rank is 0 if none
of the top-10 recommendations has a similarity score ≥ x. The MRRx is then
computed by taking the mean of the in this way determined reciprocal ranks of all
recommendation lists. Note that we used cosine similarity to determine the similar-
ity scores of recommendations and actually used activity (see the implementation
details in Section 7.4.2).

Table 7.4 shows the results of our approach when using the similarity-based ex-
tension (RULES+sim) in comparison to the results of the approach with regular rule
application (RULES), for varying similarity thresholds. We chose the three simi-
larity thresholds 0.7, 0.8 and 0.9 for the weak version of Hits@10 and MRR. As
in the ablation study, we applied the RfollowedBy setting for the given-3 evaluation
procedure, the Rcausal+concurrent setting for the full-breadth and hide-last-two pro-
cedures and the maximum aggregation for all procedures. Further, we employed
the last-revision dataset.

In the given-3 procedure, where the least context for the recommendation is
provided, RULES+sim leads to better results than RULES for the most relaxed
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threshold, i.e., when x = 0.7. For the full-breadth and hide-last-two procedures,
RULES+sim performs better for both x = 0.7 and x = 0.8. From this, we observe
that the similarity-based extension can thus provide additional recommendations
that are highly similar to the actual label used in a process model. Notably, the
more context information is available, the higher the similarity of these recom-
mendations to the actual label.

However, we also observe that the performance in terms of the strict Hits@10
and MRR metrics is better without the similarity-based extension. Because of this
rather surprising result, we had a look at the Hits@100 rates, i.e., the fraction of
hits in the top-100 recommendations found by the approach. Here, we found that
the approach with the extension achieves better Hits@100 scores in every evalua-
tion procedure. On the one hand, this shows that the similarity-based extension can
more often recommend the actual activity label used in a process model. On the
other hand, though, it also shows that the approach assigns relatively low likelihood
to such recommendations, since they often only appear in the top-100 recommen-
dations, as evidenced by the lower Hits@10 and MRR scores. Consequently, it
seems that diminishing the confidence scores of the similarity-based recommenda-
tions, as described in Section 7.3, does not achieve the desired result and needs to
be improved in future work.

7.5 Conclusion

In this chapter, we presented a rule-based approach to support process modelers
with activity recommendations, which uses natural language semantics. In partic-
ular, our approach considers not only activity inter-relations in terms of complete
activity labels but also action and business-object patterns in the use of labels as
well as the labels’ semantic similarity. Our extensive experiments showed that
considering the natural language semantics of the process models is a meaning-
ful addition that improves the quality of the provided recommendations. Still, our
rule-based approach is subject to some limitations.

First, in our experiments, the extension with the similarity-based recommenda-
tions did not improve our approach in terms of Hits@10 and MRR. However, it led
to an improvement in terms of the relaxed metrics, which means that the extension
is able to generate recommendations that are similar to the actually chosen activity
and can thus be highly useful for the modeler. Also, the Hits@100 results showed
that the approach with similarity-based extension recommends the actual activity
more often, but not in the first positions. With a better method to integrate the rec-
ommendations stemming from the similarity-based extension, the approach could
thus be improved even more.
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A second limitation relates to the labeling style of the process models. While
the rigid rule templates work independently of the labeling style, the semantic rule
templates and the semantic-based recommendation work on separable labels only.
In the available dataset, this applied to more than 80% of the labels. However,
even if none of the labels follow the labeling style needed for the semantic exten-
sions, our approach will be able to make recommendations based on the rigid rule
templates. Therefore, the use of the semantic extensions with their labeling style
requirement will not reduce the number of process models that can be leveraged
for the recommendation approach. Rather, they offer the opportunity to leverage
other patterns in the labels to make recommendations.

Third, our approach still requires some similarities of the process model under
development and the process models in the repository. For rules that instantiate
rigid rule templates, this means that the process model under development and
the available models need to share some labels. With the semantic extensions we
were able to partially overcome this limitation such that the process model un-
der development and the available models only need to share actions or business
objects (for rules that instantiate semantic rule templates) or semantically similar
labels (for similarity-based recommendation). Since our method is able to learn ac-
tion and business-object patterns across different domains, companies with a small
number of available process models or repositories with limited representativeness
can additionally use other available datasets for learning the rules, e.g., the BPMAI
dataset that we used in the experiments.

While we successfully incorporated natural language semantics into our rule-
based approach, its limitations indicate potential areas where an activity-recom-
mendation could be more flexible. The limitations exist largely due to the fact
that the rule-based approach is entirely dependent on the patterns learned from
the process models in the given repository. In the subsequent Chapter 8, we aim
to overcome this by leveraging transfer-learning techniques from natural language
processing. Therefore, we develop a transformer-based activity-recommendation
approach that extends its recommendation capabilities to process models and ac-
tivities beyond those contained in the available training data.



Chapter 8

Transformer-based Activity
Recommendation

Existing activity-recommendation approaches have a limitation in that they can
only provide recommendations in the form of labels contained in the given repos-
itory of business process models. This leads to poor recommendations for process
models that strongly differ from those in the repository. By considering the natural
language semantics in process models, our rule-based approach, presented in Chap-
ter 7, is able to alleviate this issue to some extent. However, it can only recommend
combinations of actions and business objects already present in the repository.

In this chapter, we aim to overcome this limitation by employing transfer-
learning techniques from Natural Language Processing (NLP). We operationalize
this by introducing BPART5 – a Business Process Activity Recommendation ap-
proach using the pre-trained language model T5 [129], which is based on the trans-
former architecture [171]. Our experimental study reveals that BPART5 outper-
forms the rule-based approach in generating relevant recommendations in terms of
semantic accuracy. Furthermore, we show that it is able to leverage the pre-trained
language model to generate recommendations that go beyond the vocabulary of the
model repository used for training. Specifically, BPART5 recommends numerous
activities that are not present in the training data and is also able to provide better
recommendations for process models consisting of activities that are not included
in the repository’s models.

The remainder of this chapter is organized as follows. Section 8.1 presents our
BPART5 approach, explaining how we pose the activity-recommendation problem
as a set of textual sequence-to-sequence tasks to employ a pre-trained language
model. Section 8.2 discusses the details and results of our experimental study,
before Section 8.3 concludes the chapter.

99
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8.1 The BPART5 Approach

Given a repository of business process models to learn from, activity-recommen-
dation approaches typically mine relations between activities in the available pro-
cess models and use the learned patterns to provide recommendations in the form
of labels contained in the repository at hand. However, such approaches are re-
stricted to the model repository available for training, which is a strong limitation
and results in two key issues. First, this makes these approaches inapplicable in
situations where a process model under development entirely consists of activities
that were not included in the repository’s models, since the extracted patterns can-
not be used to make a recommendation in these cases. Second, existing approaches
can only recommend activity labels that are already present in the available model
repository, which leads to poor recommendations for process models that strongly
differ from those in the repository.

To overcome these issues, we propose to capture an instance of the activity-
recommendation problem as a set of textual sequence-to-sequence tasks, which en-
ables the application of transfer-learning techniques from NLP. Transfer learning,
where a model is first pre-trained on a data-rich task to develop general-purpose
abilities and then fine-tuned on a downstream task, has emerged as a powerful tech-
nique in NLP [129]. By applying such techniques to the activity-recommendation
problem, we can use the general-purpose knowledge of pre-trained language mod-
els as an additional source to the problem-specific knowledge contained in a pro-
cess model repository, thus enabling us to provide relevant recommendations in
more settings.

As illustrated in Figure 8.1, our proposed BPART5 approach for activity rec-
ommendation consists of two phases: fine-tuning and generation. It uses the pre-
trained language model T5 at its core1. Since T5 requires totally ordered, textual
sequences as input, whereas process model nodes can be partially ordered, Sec-
tion 8.1.1 describes how we lift activity recommendation to the format of sequence-
to-sequence tasks. In Section 8.1.2, we describe how we use this procedure in
the first phase to fine-tune T5 for activity recommendation based on extracted se-
quences of the process model repository. Finally, Section 8.1.3 describes how we
use our fine-tuned T5 model in the second phase to iteratively solve instances of the
activity-recommendation problem by first solving multiple sequence-to-sequence
tasks and then aggregating their results.

1Note that our approach employs T5 as pre-trained language model, but any other model could
be used just as well.
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Figure 8.1: Illustration of the two phases of our BPART5 approach: 1. Fine-tuning, and 2.
Generation

8.1.1 Deriving Sequence-to-Sequence Tasks

Sequence-to-sequence tasks are concerned with finding a model that maps a se-
quence of inputs (x1, . . . , xT ) to a sequence of outputs (y1, . . . , yT ′ ), where the
output length T ′ is unknown a priori and may differ from the input length T [160].
A classic example of a sequence-to-sequence problem from the NLP field is ma-
chine translation, where the input sequence is given by text in a source language
and the output sequence is the translated text in a target language.

In the context of activity recommendation, the output sequence corresponds
to the activity label λ(n̂) to be recommended for node n̂, which consists of one
or more words, e.g., notify about outcome. Defining the input sequence is more
complex, though, since the input to an activity-recommendation task consists of an
incomplete process model MI , whose nodes may be partially ordered, rather than
form a single sequence.

To overcome this, we turn a single activity-recommendation task into one or
more sequence-to-sequence tasks. For this, we first extract multiple node se-
quences from MI that each end in n̂. Formally, we employ Definition 1 and write
that Sn̂

l = (n1, . . . , nl) is a node sequence of length l, ending in node n̂ (nl = n̂),
for which it must hold that ni ∈ •ni+1 for all i = 1, . . . , l − 1. Finally, since an
input sequence should consist of text, rather than of nodes, we then apply verbal-
ization to the node sequence, which strings together the types and (cleaned) labels
of the nodes in Sn̂

l , i.e., τ(n1) λ(n1) . . . τ(nl−1) λ(nl−1) τ(n̂).
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Figure 8.2: A process model under development, where an activity recommendation is
given by Notify about outcome

As an example, consider the process model depicted in Figure 8.2, which starts
when a claim has been received, followed by various activities that handle the
claim. This involves a decision point, indicated by an XOR-split gateway (diamond
shape with an X), where a claim is either rejected, or its payment is authorized and
scheduled. Following this decision, the model synchronizes the two branches us-
ing an XOR-join gateway. After this gateway, a new activity has been inserted,
for which the activity-recommendation task is to suggest one or more suitable la-
bels. Using sequences of length four, for example, we obtain two verbalized input
sequences for the recommendation problem in the figure:
• task authorize repair task schedule payment xor task
• xor valid claim task reject claim xor task
We use this notion of sequence extraction and verbalization to fine-tune T5 for
activity recommendation, as described next.

8.1.2 Fine-Tuning

For our approach, we use the sequence-to-sequence model T5 [129], which is based
on the transformer architecture [171]. T5 is pre-trained on a set of unsupervised and
supervised tasks, where each task is converted into a text-to-text format. We fine-
tune T5 for activity recommendation by extracting a large number of sequence-
to-sequence tasks from the models in an available repository of business process
models B. Specifically, for each model B ∈ B, we extract all possible sequences
of a certain length l that end in an activity node, i.e., (n1, . . . , nl) with nl ∈ A.
Afterward, we apply verbalization on this node sequence to get the textual input
sequence, as described in Section 8.1.1, whereas the output sequence corresponds
to the label of nl.



Chapter 8. Transformer-based Activity Recommendation 103

Figure 8.3: An order-to-cash process model

To illustrate this, consider the example training process model depicted in Fig-
ure 8.3. Setting l = 4, the model contains nine sequences of length four that
end in an activity node. After verbalization, these result in the following textual
(input,output) sequences, which we use to fine-tune T5:
• (start purchase order received task check stock availability xor items in stock

task, confirm order)
• (start purchase order received task check stock availability xor items in stock

task, reject order)
• (task check stock availability xor items in stock task reject order end, purchase

order processed)
• (xor items in stock task confirm order and task, ship goods)
• (xor items in stock task confirm order and task, emit invoice)
• (and task ship goods and task, archive order)
• (and task emit invoice and task, archive order)
• (task ship goods and task archive order end, purchase order processed)
• (task emit invoice and task archive order end, purchase order processed)

8.1.3 Generating Recommendations

Given an incomplete process model MI with an unlabeled activity node n̂, for
which we want to provide label recommendations, we first extract all sequences of
length l that end in n̂. We then verbalize all these sequences and feed the resulting
input sequences as sequence-to-sequence tasks into our fine-tuned T5 model. For
instance, for the example of Figure 8.2, this results in the two input sequences
described earlier when using l = 4, which are:
• I1: task authorize repair task schedule payment xor task
• I2: xor valid claim task reject claim xor task
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Output sequence generation. We solve the individual sequence-to-sequence tasks
by feeding each input sequence into our fine-tuned T5 model, generating 10 alter-
native output sequences, i.e., 10 possible label recommendations, per input. To do
this, we use beam search [50] as a decoding method, with beam width w = 10.
The beam search algorithm uses conditional probabilities to track the w most likely
output sequences at each generation step.

A downside of the beam search algorithm is that it can lead to output sequences
that repeat words or even short word sequences, i.e., n-grams. Following activity
labeling convention [109,110,126], we favor the suggestion of short labels that do
not contain any recurring terms. For example, rather than suggesting labels such
as check passport and check visa, our approach would suggest the non-repetitive
alternative: check passport and visa. To achieve this, we apply n-gram penalties
[79, 123] during beam search. Specifically, we penalize the repetition of n-grams
of any size (including single words) by setting the probability of next words that
are already included in the output sequence to zero.

In general, another disadvantage of the beam search algorithm is that it fol-
lows a distribution of highly probable words, while this is not the case for human-
generated text of high quality [63]. In contrast, humans try to generate unpre-
dictable and surprising text. However, this does not constitute a disadvantage in
the context of activity recommendation, as activity labeling is supposed to con-
tribute to consistency and clarity in process models [126]. Thus, activity labeling
is a rational task which requires high precision rather than creativity, making beam
search a good choice for generating activity recommendations.

Tables 8.1a and 8.1b show the alternative output sequences (and probabilities)
that the fine-tuned T5 model generates for input sequences I1 and I2 when using
beam search in the example of Figure 8.2.

Output sequences for I1 Score

notify about outcome 0.64
send notification 0.48
inform about outcome 0.47
send claim rejection 0.38
submit claim to system 0.37
notify claim rejection 0.37
notify customer 0.36
send email notification 0.36
submit claim to management 0.34
notify claimant 0.33

(a) Output sequences and
probabilities based on I1

Output sequences for I2 Score

send email to customer 0.46
email notification 0.46
notify about outcome 0.42
send email to client 0.40
customer notified 0.36
email 0.34
notification sent to customer 0.31
process end 0.29
send email notification 0.28
process claim 0.26

(b) Output sequences and
probabilities based on I2

Label recommendations Score

notify about outcome 0.64 (0.42)
send notification 0.48
inform about outcome 0.47
send email to customer 0.46
email notification 0.46
send email to client 0.40
send claim rejection 0.38
submit claim to system 0.37
notify claim rejection 0.37
send email notification 0.36 (0.28)

(c) Final list of label recom-
mendations

Table 8.1: Example maximum aggregation
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Result aggregation. Finally, we aggregate the different lists of output sequences,
obtained by using beam search to solve individual sequence-to-sequence tasks, in
order to end up with a single list of recommended activity labels. To do this, we
aggregate the contents of the lists using the maximum method, which we already
used in our rule-based approach to rank proposed activities according to the differ-
ent confidence values of the rules that suggested them (see Section 5.3).

To apply the maximum aggregation method, we establish an aggregated rec-
ommendation list, sorted according to the maximal probability score that a recom-
mended label received in the output generation based on beam search. For instance,
the notify about outcome label receives a score of 0.64, from the output sequences
generated for I1, although the label also appears in I2’s list, yet with a score of
0.42. Thus, this label has the score 0.64 in the recommendation list. In the end,
BPART5 provides a list of ten activity recommendations for the unlabeled node
n̂ that are the most probable candidates, according to the sequences contained in
the process model under development, the fine-tuned T5 model, and the maximum
aggregation method.

The final list obtained for the process model under development depicted in Fig-
ure 8.2 is shown in Table 8.1c. Notably, the top five recommendations represent
alternative manners to inform an applicant, e.g., in the form of notify about out-
come, send notification, or send email to customer. This indeed appears to be the
appropriate process step given that the preceding nodes indicate that the outcome
of a claim has been determined, after which it is natural to inform the claimant.

8.2 Evaluation

In our experimental evaluation, we assess the performance of BPART5 and com-
pare it to our rule-based approach, which we presented in Chapter 7. We first
introduce the employed dataset in Section 8.2.1, then we describe the experimen-
tal setup in Section 8.2.2. Finally, we present the results of our experiments in
Section 8.2.3.

8.2.1 Dataset

To conduct the experiments, we employ the SAP-SAM dataset presented in Chap-
ter 4 and filter it as follows. We select all BPMN 2.0 models in English with 3
to 30 nodes (including gateways), where each activity label is composed of at least
three non-empty characters. Moreover, we exclude default vendor-provided exam-
ple models included in SAP-SAM. Note that for filtering and pre-processing the
models of SAP-SAM we apply label cleaning, in which we turn non-alphanumeric
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characters into whitespace, handle special cases as line breaks, change all letters
into lowercase and delete unnecessary whitespace. This results in a filtered dataset,
which consists of 77,239 process models containing an average of 14.7 nodes (me-
dian: 13) and a total of 241,283 unique node labels with an average length of 26.5
characters (median: 24).

8.2.2 Evaluation Setup

The evaluation setup involves the dataset split, different evaluation procedures and
metrics, implementation details, as well as configurations of BPART5 and the rule-
based approach.
Dataset split. We randomly divided the models in the filtered dataset into three
parts for training, validation, and test, respectively. More precisely, we train each
approach on 85 % of the process models while we use 7.5 % of the models for
validation and evaluation, respectively. From the training split, we extracted a total
of 688.584 sequences, which we verbalized and used to fine-tune T5 for BPART5.
Evaluation procedure. For the evaluation, we employ the full-breadth procedure
as described in Section 5.4.2. For each process model in the test split, we generate
several evaluation cases by carrying out the full-breadth procedure for each activity
node, where the shortest sequence to a source node has the minimum length three.
This leads to a total of 36.143 evaluation cases, i.e., activity-recommendation tasks.
Implementation details. Our implementation of BPART5 and the metrics uses
the Huggingface library [187]. For tokenizing sequences, we used the fast T5 tok-
enizer backed by HuggingFace’s tokenizer library, which is based on Unigram [83]
in conjunction with SentencePiece [84]. We fine-tuned T5-Small2 employing the
Adam algorithm [78] with weight decay fix as introduced in [100] and constant
learning rate 0.0003. Moreover, we set the batch size to 128 and trained the model
until the validation loss did not improve for 20,000 steps. The experiments were
carried out using two Nvidia RTX A6000 GPUs.
Evaluation metrics. In this chapter, we assess the performance of the recom-
mendation approaches using four different metrics, namely Hits@k, BLEU@k,
METEOR@k and Cos@k:

• Hits@k. First, we report on the standard hit rate Hits@k, which we used in the
previous evaluations in Chapters 5, 6, and 7, too.

• BLEU@k. The BLEU [122] metric is typically used in machine translation,
where a candidate translation is compared to one or more reference translations.

2Compared to T5-Base with its 220 million parameters, T5-Small is a model checkpoint that has
only 60 million parameters.
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In the context of activity recommendation, BLEU basically compares n-grams
of the recommended activity with n-grams of the ground-truth activity and cal-
culates a modified precision based on n-gram matches. Similarly to the standard
hit rate Hits@k, we can define the BLEU@k hit rate as the maximum BLEU
score of the top-k recommendations. This results in a single score for a recom-
mendation list of length k instead of the k BLEU scores of each recommendation
in the list.

• METEOR@k. Just as BLEU, the METEOR [6] metric is also typically used to
assess the quality of machine translations3. In our context, METEOR evaluates
the quality of an activity recommendation based on unigram matches with the
ground-truth activity. In addition to exact matches, it also considers semantic
similarity in the form of stemmed matches and WordNet-based [40] synonym
matches. Analogously to BLEU@k, the meteor hit rate METEOR@k is given
by the maximum METEOR score of the first k recommendations.

• Cos@k. The cosine similarity [93] requires representations of the activity rec-
ommendation and the ground-truth activity as embeddings, enabling the calcu-
lation of the similarity of the two activities in the form of the cosine similarity
of their embeddings. Cos@k is then the maximum cosine similarity score of
the top-k recommendations. In our evaluation, we use the Universal Sentence
Encoder [20] to generate the embeddings of activities, which allows Cos@k to
consider the semantic similarity of the recommendations and the actual used ac-
tivity.

In a user study, Goldstein et al. [49] showed that BLEU, METEOR and co-
sine similarity strongly correlate with experts’ ratings of activity recommendations.
Thus, they can be confidently used to measure the quality of activity recommen-
dations. However, their work lacks details about how the metrics can be used to
evaluate a recommendations list rather than a single recommendation. We address
this gap with the above definitions of BLEU@k, METEOR@k, and Cos@k as the
semantic counterparts of Hits@k.

Employing four metrics allows us to gain different kinds of insights. The stan-
dard hit rate, Hits@k, is a strict metric in the sense that a hit is realized only if
a recommendation and the ground truth are an exact match. If, for example, a
recommendation is given by Notify about outcome while Inform about outcome is

3Note that BLEU and METEOR are designed for the comparison of (long) sentences or text
corpora. Penalties in the definitions of the metrics can thus cause the metrics to be (close to) zero
for short activity recommendations, even if ground truth and recommendation match. Therefore, we
manually set the BLEU and METEOR scores to 1 if a recommended activity and the ground-truth
activity are an exact match.
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Recommended activity label BLEU METEOR Cosine Similarity

Notify about outcome 1.0 1.0 1.0
Send notification 0.0 0.0 0.46

Inform about outcome 0.58 0.63 0.80
Send email to customer 0.0 0.0 0.27

Table 8.2: Values of BLEU, METEOR and cosine similarity for different recommenda-
tions given the ground truth Notify about outcome

used in the test process model, then the recommendation would not count as a hit
and the recommendation approach would be considered unsuccessful in this case.
However, given its similarity and the fact that there are several possible manners of
describing an activity with a label, the recommendation would still be highly useful
for the modeler. In this sense, the semantic hit rates BLEU@k, METEOR@k and
Cos@k are more practice-oriented. By taking the similarity of recommendations
to the ground truth into account, they measure the semantic accuracy of the recom-
mendations. The values of the semantic hit rates are always bigger or equal to the
Hits@k values. To illustrate the different levels of similarity that are measured by
the three semantic hit rates, Table 8.2 shows the values of BLEU, METEOR and
cosine similarity for four example recommendations from the list in Table 8.1c,
given that the actual used activity label is Notify about outcome.

Approach configurations. In our experiments, we choose a sequence length l=4
for our BPART5 approach, i.e., we extract sequences of length four that end in
node n̂. This choice follows findings from prior research [48], which showed that
considering three previous nodes for activity recommendation works well across
different datasets.

Other approaches. To provide a comparative analysis, we compare the perfor-
mance of BPART5 to the performance of our rule-based approach (RULES). We
presented the rule-based approach in Chapter 7, where we also showed that it
outperforms several other activity-recommendation methods. For consistency, we
used theRfollowedBy setting for our rule-based approach in this chapter’s evaluation,
as we did not differentiate between other behavioral relations of activities beyond
the followedBy-relation in BPART5 (see Section 5.1). Moreover, we employ the
maximum aggregation method in our rule-based approach (see Section 5.3).

We also considered including the approach proposed by Goldstein et al. [48] in
our analysis. Their approach employs a pre-trained language model without fine-
tuning to retrieve activities from the given repository of business process models as
recommendations. However, their approach involves calculating cosine similarities
of the sequences in the process model under development and all sequences in the
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training dataset. In our experiments, we extracted 688.584 sequences from the pro-
cess models in the training dataset, resulting in the calculation of 688.584 cosine
similarities for each considered sequence in the process model under development.
As a result, it took us around ten minutes per evaluation case to generate recom-
mendations using their approach. Given that we evaluate 36,143 recommendation
cases, it was infeasible to include this approach in our study.

8.2.3 Evaluation Results

In this section, we first consider the overall results, after which we assess how well
BPART5 deals with the key limitations it aims to address: the ability to generate
and handle activity labels not contained in the training data.

List size Approach Hits@k BLEU@k METEOR@k Cos@k

k = 10
RULES 0.3102 0.3358 0.4149 0.5925

BPART5 0.2800 0.3876 0.5154 0.6679

k = 1
RULES 0.0625 0.0714 0.1049 0.2539

BPART5 0.0322 0.1179 0.2269 0.4112

Table 8.3: Experimental results of the different approaches (best results per metric are in
bold)

Overall results. The overall results of our experiments, in which we compare
BPART5 to the rule-based recommendation approach from Chapter 7, are shown
in Table 8.3.4 Considering a recommendation list of length k=10, RULES outper-
forms BPART5 by 11% in terms of the rigid hit rate Hits@10. However, when
considering the semantic hit rates, which recognize that activity recommendations
that are semantically similar to the ground-truth activity are also useful for model-
ers, then BPART5 turns out to be superior. It outperforms RULES by 15%, 24%,
and 12% in BLEU@10, METEOR@10, and Cos@10, respectively. Turning to
the hit rates for k=1, i.e., the hit rates of the top recommendation of each list, it
is equally apparent that RULES performs better in terms of the standard hit rate,
whereas BPART5 achieves better results in terms of the semantic hit rates. Thus,
the results indicate that RULES is more accurate in giving recommendations that
correspond exactly to the ground truth. BPART5 is better in generating recom-
mendations that are not an exact match but have a high semantic similarity to the

4We performed t-tests for all reported differences between the evaluated approaches, which
showed that the differences are statistically significant (p < 0.001).
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Figure 8.4: Results for different lengths of the displayed recommendation list

ground truth, though, which means that BPART5 provides in general more relevant
recommendations.

Regarding the ranking of suitable activities within a recommendation list, Fig-
ure 8.4 shows the courses of the standard hit rate Hits@k and the semantic hit rates
BLEU@k, METEOR@k and Cos@k for recommendation lists of lengths k=1 to
k=10. Figures 8.4a and 8.4b show that the lines from the Hits@1 to the Hits@10
and from the BLEU@1 to the BLEU@10 values are rather straight. The likelihood
of finding a—in terms of these metrics—suitable recommendation thus increases
linearly with each additional activity in the recommendation list. In the case of
METEOR@k and Cos@k (Figures 8.4c and 8.4d, respectively), the curves rise
more steeply for smaller lengths of the recommendation list, which indicates that
both approaches are able to rank recommendations that are semantically similar to
the ground truth on the first positions of the recommendation list.

Ability to generate new activity labels. To investigate the ability of the ap-
proaches to generate new activity labels, i.e., labels that have not been used in
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the process models used for training, we performed an in-depth analysis of the la-
bels recommended by both approaches. Overall, the approaches made a total of
361.430 label recommendations, which corresponds to the number of evaluation
cases (36.143) multiplied by the length of the generated recommendation list per
evaluation case (ten). The proportion of recommended labels that are newly gener-
ated, i.e., do not exist in the process models in the training dataset, is 0 % for RULES

and 36.2 % for BPART5. In the case of RULES, 16.551 of the recommended la-
bels are unique, while BPART5 generated 98.857 unique label recommendations,
of which 75.6 % do not exist in the training dataset.

The difference in the unique numbers of generated label recommendations in-
dicates that BPART5 achieves a higher diversity of recommended labels, while
RULES is dependent on the knowledge in the process models used for training and
thus more limited in its recommendations. Based on the percentages of newly gen-
erated labels, it can be inferred that incorporating natural language semantics into
RULES enhances the ranking of recommendations, but doesn’t necessarily result
in the generation of new labels. Additionally, it can be concluded that BPART5 is
able to leverage the knowledge contained in the pre-trained language model and
recommend activity labels that go beyond the vocabulary of the process models in
the training set. On the one hand, BPART5 performs worse in terms of hit rate for
this reason, on the other hand, this leads to less dependency on the given process
models used for training and therefore a higher semantic accuracy of BPART5.

Handling models with only unseen labels. Finally, we assess how well BPART5
is able to recommend activity labels for business process models that are vastly
different from those included in the training set, i.e., that contain only unseen
node labels. In general, such cases represent a considerable challenge for activity-
recommendation approaches, as they face a recommendation task that is com-
pletely unfamiliar to them.

Out of the total of 36.143 evaluation cases, we found 1.726 evaluation cases
from 589 process models that meet this criterion, i.e., where none of the node
labels in the process model under development were contained in the training data.
We evaluated the approaches on this subset in the same manner as in the evaluation
on the whole set of evaluation cases.

The results of the study are presented in Table 8.4. While the absolute numbers
of the metrics on this subset are naturally low, due to the challenging nature of the
cases, the results show that BPART5 clearly outperforms RULES on the subset in
terms of all metrics. Although RULES is restricted to the knowledge contained in
the process model repository, it is able to generate a few useful recommendations,
mainly in the form of default label recommendations. Specifically, it recommends
the ten most often used activities of the repository whenever none of the rules
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Approach Hits@10 BLEU@10 METEOR@10 Cos@10

RULES 0.0070 0.0079 0.0628 0.2892
BPART5 0.0232 0.0963 0.2112 0.4452

Table 8.4: Results on the subset of evaluation cases with only unseen labels (best results
per metric are in bold)

it learned matches the process model under development, as is applicable to the
cases at hand. Nevertheless, the difference between the results of both approaches
is much larger than on the complete set of evaluation cases. This makes BPART5
the approach of choice when generating recommendations in situations that differ
considerably from the available training data.

8.3 Conclusion

In this chapter, we presented the BPART5 approach for activity recommendation,
which leverages both formal and natural language semantics contained in pro-
cess models to enable the application of pre-trained language models. Unlike the
rule-based approach, BPART5 is not inherently explainable, since it is based on a
transformer-based language model. However, our experiments have demonstrated
two key advantages of BPART5.

First, BPART5 consistently outperformed our rule-based approach in terms
of providing relevant recommendations, as evidenced by the semantic hit rates.
This means that is better in generating recommendations that may not be an exact
match with the ground truth but have a high degree of semantic similarity. Sec-
ond, BPART5 stands out as the first activity-recommendation approach capable of
generating label recommendations that extend beyond the vocabulary of the model
repository used for training. This is achieved by leveraging a pre-trained language
model. Consequently, BPART5 is able to deal with input that significantly deviates
from what it has seen before, even when process models consist of unseen labels
only. In conclusion, these strengths position BPART5 as the preferred approach,
when it comes to recommendations for models with unseen activities.



Chapter 9

Conclusion

In this chapter, we conclude this doctoral thesis. First, in Section 9.1, we provide a
summary of the key results obtained throughout our research. Then, in Section 9.2,
we offer an outlook on potential directions for future research.

9.1 Summary of Results

In this thesis, we primarily focused on activity recommendation to support business
process modeling. To this end, we proposed various approaches that we evaluated
in comprehensive experimental studies. Additionally, we published and analyzed
the largest publicly available collection of business process models. We employed
this collection for our activity-recommendation research and expect it to facilitate
the development of approaches for other business process management tasks as
well. The key findings and outcomes of this thesis can be summarized as follows:

1. Publication and analysis of the largest publicly available collection of busi-
ness process models: In Chapter 3, we conducted a review of existing support
approaches for business process modeling, which assist modelers by recom-
mending activities or process fragments. However, our review revealed a com-
mon limitation in the evaluation of these approaches: It often relies on small
datasets. Moreover, most of the discussed approaches are infeasible when deal-
ing with large process model datasets. These limitations present a significant
issue, given that organizations typically manage thousands of process models
in practice. One of the main reasons for these limitations is the lack of ac-
cess that researchers have to large process model collections. This lack not
only affects the evaluation of existing approaches but also presents challenges
when developing novel approaches based on large machine learning models,
as limited dataset sizes make it difficult to effectively train such models. To

113
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address these issues, we introduced the SAP-SAM dataset in Chapter 4. This
dataset contains over one million process models, characterized by a variety of
modeling languages, natural languages, and complexity levels, thus providing
significant diversity. We have made the SAP-SAM dataset publicly available1,
aiming to foster the development and evaluation of methods and tools for activ-
ity recommendation, as well as for other business process management tasks. In
addition, we have provided example code to assist users in effectively utilizing
this resource2.

2. Development of an explainable activity-recommendation approach based on
rules: Even though explanations help users make more informed decisions and
choose from the presented alternatives more quickly, this aspect has largely
been neglected in the field of activity recommendation. Therefore, in Chapter 5,
we introduced an activity-recommendation approach based on rules, which is
as such inherently explainable. Specifically, the recommendations can be ex-
plained in terms of the rules that generated them. Examining the underlying
rules of a recommendation has also proven useful for developers in debug-
ging and refining the approach. Our approach consists of two main phases:
rule learning and rule application. The rule-learning phase occurs once for a
given repository of process models, while the rule-application phase is repeated
throughout the process-modeling task to iteratively provide activity recommen-
dations. Unlike classical top-down or bottom-up approaches, our rule-based ap-
proach uses process-oriented rule templates for rule learning. This ensures that
we meet the unique requirements of activity recommendation and only learn
rules that are relevant for this problem. In the rule application phase, we apply
the learned rules to a process model under development and aggregate the rec-
ommendations of different rules into a single recommendation list. We can use
different methods for this aggregation procedure and also modify the set of rule
templates, which highlights the extendable nature of our approach. Through
experiments, we demonstrated that our approach outperforms other activity-
recommendation approaches in various evaluation procedures. Furthermore,
we have shown that our approach can successfully be applied on large process
model datasets, indicating its scalability and effectiveness.

3. Exploration of different approaches to use knowledge graph completion meth-
ods for activity recommendation: In Chapter 6, we addressed the activity-recom-
mendation problem by exploring the use of existing knowledge graph comple-
tion methods. Specifically, we suggested transforming the process model repos-
itory and the process model under development into a single knowledge graph.
1https://zenodo.org/record/7012043.
2https://github.com/signavio/sap-sam

https://zenodo.org/record/7012043
https://github.com/signavio/sap-sam
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Within this graph, we framed the activity-recommendation task as a comple-
tion task. We explored various approaches to construct such a knowledge graph
and experimented with both embedding- and rule-based knowledge graph com-
pletion methods. Our work is the first to apply knowledge graph completion
methods to activity recommendation while considering the entire process model
under development as a context for the recommendation. During our investiga-
tions, we discovered that standard knowledge graph completion methods lacked
the necessary flexibility to adapt to the specific problem at hand. However, by
implementing problem-specific filtering as a post-processing step, we were able
to enhance the quality of the recommendations. Despite this improvement, our
rule-based approach, which was specifically tailored for activity recommenda-
tion, consistently outperformed the application of standard knowledge graph
completion methods. This suggests that the success of these methods in stan-
dard benchmarks may not necessarily translate to a context that deviates from
these benchmarks.

4. Leveraging natural language semantics contained in business process models:
Natural language semantics in business process models are hardly considered
in existing activity-recommendation research, even though they are crucial in
understanding the context and meaning of included activities. To fill this gap,
we dedicated two chapters of this thesis to this topic. First, in Chapter 7, we
equipped our rule-based approach with two semantic extensions for rule learn-
ing and rule application, which enable a more effective generalization of pat-
terns found in the repository. Specifically, we introduced new rule templates that
capture action and business object patterns in process models, and enhanced the
rule-application phase to consider semantic similarities of actions and business
objects. Second, in Chapter 8, we presented the alternative BPART5 approach
that leverages a pre-trained language model to generate activity recommenda-
tions, instead of retrieving them from the repository. Through transfer learning,
BPART5 benefits from the general-purpose knowledge of the pre-trained lan-
guage model in addition to the problem-specific knowledge contained in the
model repository. Our extensive experiments showed that considering the nat-
ural language semantics is a valuable addition and improves the quality of the
provided recommendations, especially for process models under development
that differ significantly from those in the training repository.

5. Overcoming vocabulary limitations of the given repository with a transformer-
based approach: An activity-recommendation approach that generates recom-
mendations beyond the vocabulary of the given process model repository adapts
more effectively to new recommendation scenarios that were not encountered
during training. However, existing approaches can only provide recommenda-



Chapter 9. Conclusion 116

tions in the form of labels contained in the repository. While our rule-based
approach with semantic extensions can partially overcome this constraint by
combining actions and business objects from the repository into activity recom-
mendations, our BPART5 approach stands out as the first approach to fully over-
come this limitation. It is based on the idea of transforming a single activity-
recommendation task into one or more sequence-to-sequence tasks in order to
employ a transformer-based language model. This idea is employed in both
phases of the approach. In the first phase, a transformer-based language model
is fine-tuned using sequence-to-sequence tasks derived from the models con-
tained in the repository. In the second phase, a recommendation list is created
by aggregating predictions from sequence-to-sequence tasks extracted from the
process model under development. Our experiments revealed that our rule-
based approach is more accurate than BPART5 in providing recommendations
that exactly match the ground truth. On the other hand, they showed that
BPART5 is better in generating recommendations that may not be an exact
match but are relevant due to their high semantic similarity to the ground truth.
This, combined with BPART5’s ability to generate recommendations beyond
the repository’s vocabulary, makes it the preferred approach, when providing
recommendations for process models with unseen activities.

6. Enhanced evaluation through the introduction of new recommendation scenar-
ios, simulation procedures, and metrics: Our analysis of existing work on sup-
port approaches for business process modeling in Chapter 3 revealed that these
approaches are often evaluated in a limited scope that lacks practical relevance.
This hampers the applicability of experimental findings in broader contexts. For
instance, the evaluated recommendation cases are very similar to the training
examples. Therefore, we extended the evaluation framework in several ways.
In Chapter 5, we introduced the full-breadth procedure for simulating recom-
mendation cases. This novel procedure provides a level of recommendation
context that strikes a balance between existing procedures, enabling more di-
verse evaluation cases. In Chapters 5 and 6, we established two different appli-
cation scenarios to assess the approaches. The first scenario reflects a situation
where the given repository may contain models that are similar to the process
model under development. The second scenario simulates a situation where the
repository contains fewer models, if any, that resemble the process model under
development. In Chapters 7 and 8, we defined new metrics: relaxed versions
of Hits@10 and MRR that consider semantic similarities between the ground
truth and the recommended labels. These metrics account for the fact that activ-
ities can be described in multiple, yet semantically similar, ways. Moreover,
in Chapter 8, we evaluated our approaches using the large-scale SAP-SAM



Chapter 9. Conclusion 117

dataset and additionally investigated the performance of our approaches in rec-
ommendation cases where the process models under development are vastly
different from those in the training set, i.e., contain only unseen labels. Such
cases usually present considerable challenges for activity-recommendation ap-
proaches, but are of particular interest.

9.2 Future Research

In this thesis, we proposed different activity-recommendation approaches and pre-
sented a dataset that can be used to train and evaluate such, as well as other, ap-
proaches. Future research could focus on improving, extending, and evaluating our
work in several directions. In the following, we outline seven such directions.

Improving. To begin with, the proposed approaches could be improved by ad-
dressing their limitations. This includes (i) the aggregation method used in the
application phase of our rule-based approach, (ii) the consideration of recommen-
dation context in our approaches that use Knowledge Graph Embedding (KGE)
models, and (iii) the sequence length for the derivation of sequence-to-sequence
tasks in our BPART5 approach:

(i) Aggregation method. Rule aggregation methods, which aggregate the con-
fidence scores of different rules that make the same prediction, represent an
active field of research [8]. Our rule-based approach employed two simple
yet effective aggregation methods: maximum and noisy-or aggregation. To
improve the ranking of the provided recommendations, novel aggregation
methods could be tested. This could be particularly useful for the integration
of the recommendations stemming from our similarity-based extension.

(ii) Recommendation context. In our approaches that use KGE models for the
activity-recommendation problem, we incorporated the current state of the
process model under development as a context for the recommendation into
the training set. Consequently, the KGE models need to be retrained after
every activity that has been added to the process model under development,
which is very time-consuming. To address this issue, future research could
explore ways to avoid the need for complete retraining, e.g., by employing
approaches from the field of continual learning [155]. In combination with
alternative, not yet tested, techniques working on knowledge graphs, such as
Graph Convolutional Networks [143], RDF2Vec [133], or KG-Bert [189],
this could lead to effective approaches for activity recommendation.

(iii) Sequence length. Our BPART5 approach converts an activity-recommenda-
tion task into one or more sequence-to-sequence tasks. The extracted se-
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quences have a pre-defined length, which necessitates node sequences of a
specific length to generate recommendations. In future research, it would be
valuable to explore the potential of using not only sequences of a specific
length, but also arbitrary sequences from the process model under develop-
ment to generate activity recommendations.

Extending. Moreover, there are untapped sources of information that could be
used by future research to extend our work in several regards. This includes (iv)
dictionary entries linked to process models and (v) additional process information:

(iv) Dictionary entries. The SAP-SAI platform, which was used to create the
process models contained in SAP-SAM, supports the creation of dictionary
entries. These dictionary entries represent various entities such as organiza-
tional roles, documents, or IT systems, and can be linked to models for reuse
across a process landscape. The SAP-SAM dataset could be augmented by
including the dictionary entries, allowing future work to better understand
and analyze complex process landscapes.

(v) Process information. Our approaches could be enhanced by incorporating
information beyond activity labels and their inter-relations into the recom-
mendation procedure, if available. Potential sources for such information in-
clude edge labels, resources associated with activities, or process model an-
notations. In the case of our rule-based approach, new rule templates could
be introduced to incorporate this information. When applying knowledge
graph completion methods, additional information could be considered dur-
ing the construction of the knowledge graph. The BPART5 approach could
be enriched by integrating the information into the verbalization process.

Our work could also be extended by (vi) developing an ensemble method that
combines our approaches to obtain better recommendations:

(vi) Ensemble method. In this thesis, we developed two distinct main approaches,
each with its own strengths: a rule-based approach and the transformer-based
BPART5 approach. In our experiments, the rule-based approach performed
well in generating recommendations that match the ground truth. On the
other hand, the transformer-based approach demonstrated its proficiency in
adapting to new recommendation scenarios, providing relevant recommen-
dations that have a high semantic similarity to the ground truth. By combin-
ing both approaches into a unified ensemble method, potentially a superior
recommendation method, which performs well across various metrics and
recommendation scenarios, could be developed. A possible approach to con-
structing such an ensemble method could draw inspiration from the work of
Meilicke et al. [105], who successfully developed a method for combining
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rule-based and embedding-based approaches in the domain of knowledge
graph completion through a post-processing step.

Evaluating. Finally, online experiments and user studies could be conducted
to (vii) evaluate the proposed approaches using user feedback:

(vii) User feedback. In this thesis, we used offline experiments to evaluate activity-
recommendation approaches. Specifically, we employed various procedures
to simulate varying states of process models under development from com-
pleted models. This allowed us to effectively evaluate multiple approaches
at large scale. Our findings could be used to identify a group of promising
approaches and configurations, which can be further tested through more
costly online experiments or user studies [51], investigating the perceived
usefulness of the recommendations.
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with semantic autocompletion of processes. In BPM Forum, pages 20–36.
Springer, 2021.

[49] Maayan Goldstein and Cecilia González-Álvarez. Evaluating semantic au-
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Appendix A

SAP-SAM Details

The following mappings from element types to element type groups have been used
for the statistics in Table 4.1:

Table A.1: Element types and their groups

Element type Element type group Element type Element type group

Task Activities Intermediate message event catching Events
Collapsed subprocess Activities Intermediate timer event Events
Subprocess Activities Intermediate escalation event Events
Collapsed event subprocess Activities Intermediate conditional event Events
Event subprocess Activities Intermediate link event catching Events
Exclusive databased gateway Gateways Intermediate error event Events
Event-based gateway Gateways Intermediate cancel event Events
Parallel gateway Gateways Intermediate compensation event catching Events
Inclusive gateway Gateways Intermediate compensation event catching Events
Complex gateway Gateways Intermediate signal event catching Events
Pool Swimlanes Intermediate multiple event catching Events
Collapsed pool Swimlanes Intermediate parallel multiple event catching Events
Lane Swimlanes Intermediate event Events
Vertical pool Swimlanes Intermediate message event throwing Events
Collapsed vertical pool Swimlanes Intermediate escalation event throwing Events
Vertical lane Swimlanes Intermediate link event throwing Events
Process participant Swimlanes Intermediate compensation event throwing Events
Group Artifacts Intermediate signal event throwing Events
Text annotation Artifacts Intermediate multiple event throwing Events
IT system Artifacts End none event Events
Data object Data Elements End message event Events
Data store Data Elements End escalation event Events
Message Data Elements End error event Events
Start none event Events End cancel event Events
Start message event Events End compensation event Events
Start timer event Events End signal event Events
Start escalation event Events End multiple event Events
Start conditional event Events End terminate event Events
Start error event Events Sequence flow Connecting objects
Start compensation event Events Association undirected Connecting objects
Start signal event Events Association unidirectional Connecting objects
Start multiple event Events Association bidirectional Connecting objects
Start parallel multiple event Events Message flow Connecting objects
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The following list contains all names of the example processes provided by the
SAP-SAI system:

• Lieferung-zu-Bezahlung
• Bestellung-zu-Lieferung
• BANF-zu-Bestellung
• Wertschöpfungskette: Beschaffung
• Ebene 1 - Prozesslandkarte ACME AG
• Ebene 2 - Prozessbereich: Auftragsdurchführung
• Ebene 2 - Prozessbereich: Produktentwicklung
• Ebene 2 - Prozessbereich: Personalwesen
• Teile beschaffen
• Wareneingang
• Menge und Qualität überprüfen
• Arbeitsmittel beschaffen
• Bewerbungseingang
• Bewerber prüfen
• Mitarbeiter Onboarding
• Purchase Order-to-Delivery
• Delivery-to-Payment
• Purchase Requisition-to-Purchase Order
• Value chain: Procurement
• Level 1 - Value Chain ACME AG
• Level 2 - Process Area: Product Development
• Level 2 - Process Area: Order Processing
• Level 2 - Process Area: Human Resources
• Procure parts
• Check quantity and quality
• Receipt of Goods
• Receipt of Application
• Verify applicant
• Employee Onboarding
• Procurement of Work Equipment
• Niveau 1 - Chaine de valeur d’ACME AG
• Niveau 2 - Processus des Ressources Humaines
• Niveau 2 - Processus de développement produit
• Niveau 2 - Processus de gestion des commandes
• Donner l’équipement de travail
• Vérifier le candidat
• Installation d’un employé
• Réception d’une candidature
• Contrôler la quantité et la qualité
• Commande de pièces
• Réception de biens
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