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A B S T R A C T   

The properties of emerging, digital, general-purpose technologies make it hard to observe their adoption by firms 
and identify the salient determinants of adoption. However, these aspects are critical since the patterns related to 
early-stage diffusion establish path-dependencies which have implications for the distribution of the techno-
logical opportunities and socio-economic returns linked to these technologies. We focus on the case of artificial 
intelligence (AI) and train a transformer language model to identify firm-level AI adoption using textual data 
from over 1.1 million websites and constructing a hyperlink network that includes >380,000 firms in Germany, 
Austria, and Switzerland. We use these data to expand and test epidemic models of inter-firm technology 
diffusion by integrating the concepts of social capital and network embeddedness. We find that AI adoption is 
related to three epidemic effect mechanisms: 1) Indirect co-location in industrial and regional hot-spots asso-
ciated to production of AI knowledge; 2) Direct exposure to sources transmitting deep AI knowledge; 3) Rela-
tional embeddedness in the AI knowledge network. The pattern of adoption identified is highly clustered and 
features a rather closed system of AI adopters which is likely to hinder its broader diffusion. This has implications 
for policy which should facilitate diffusion beyond localized clusters of expertise. Our findings also point to the 
need to employ a systemic perspective to investigate the relation between AI adoption and firm performance to 
identify whether appropriation of the benefits of AI depends on network position and social capital.   

1. Introduction 

The diffusion of general-purpose technologies (GPTs) emerging in 
the field of information and communication technology (ICT) has been 
more uneven across industries and geography than previous GPTs such 
as electricity (Helpman and Trajtenberg, 1996). This uneven distribu-
tion could be especially pertinent in the case of advanced digital GPTs 
such as artificial intelligence (AI) technology (Brynjolfsson and Petro-
poulos, 2021; Felten et al., 2021; Frank et al., 2019) which is still in the 
early stages of diffusion (Vannuccini and Prytkova, 2023; Rammer et al., 
2022). Theoretically, pervasive use of AI could enable sustained in-
creases in productivity based on continuous technological 

improvements (Bresnahan and Trajtenberg, 1995), and increased rates 
of innovation based on innovation complementarities (Barro and 
Davenport, 2019; Bekar et al., 2018; Cockburn et al., 2019; Krakowski 
et al., 2022). These developments could have substantial effects on 
knowledge production and organizational decision making (Paschen 
et al., 2020; Shrestha et al., 2019; von Krogh, 2018). However, concerns 
have been expressed about the narrow distribution of these benefits due 
to the deployment of AI technology creating technological dependencies 
on few economic actors (Franco et al., 2023; Lundvall and Rikap, 2022). 
Thus, adoption patterns established in the early stages of technology 
diffusion can lead to path dependencies and technological lock-ins/lock- 
outs and potentially divergent economic development across regions 
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and industries (Crespo et al., 2013). 
While understanding the determinants of adoption is a prerequisite 

for effective policymaking (Stornelli et al., 2021), the inherent proper-
ties of AI technology which is emerging, digital, and of general-purpose 
make it hard to capture its adoption by firms empirically and to propose 
a theoretical model of the factors affecting adoption. There is an absence 
of micro-level data which would allow us to trace the use of such 
emerging digital technologies (Cirillo et al., 2022; Rammer et al., 2022) 
as the technological dynamism exhibited by GPTs renders traditional 
indicators (such as patents) mostly unsuitable and outdated (Breznitz, 
2021). This leads to a pacing problem between technological progress 
and scientific inquiry into the societal impacts of new technologies 
(Frank et al., 2019). Their digital manifestations are resulting in intan-
gibility of the technology and lack of knowledge about the comple-
mentary investments in knowledge and skills required for substantial 
adoption (Brynjolfsson and Petropoulos, 2021). Traditional technology 
adoption models focus on the tangible investment in internal resources, 
the characteristics of the technology, and exogenous environmental 
factors (DePietro et al., 1990) to explain and form expectations about 
the economic returns from adoption (Karshenas and Stoneman, 1993). 

It is useful to return to the idea that technology usage ultimately is 
the utilization of knowledge which spreads between firms through social 
processes (Griliches, 1957; Rogers, 1983; Irwin and Klenow, 1994; 
Borgatti and Foster, 2003). Previous technology diffusion research lo-
cates the drivers of technology adoption in a firm's exposure to and 
acquisition of information about the technology in its external envi-
ronment (Mansfield, 1963; Cohen and Levinthal, 1990; Freeman, 1991; 
Salter et al., 2015). The adoption of a digital GPT such as AI is likely to 
depend primarily on the acquisition of knowledge about how to inte-
grate and employ AI (Brock and von Wangenheim, 2019; Chen et al., 
2021; OECD, 2019a). This knowledge does not necessarily need to be 
transferred from other adopters directly but may circulate within inter- 
firm networks (Freeman, 1991; Mueller and Ramkumar, 2023). Since 
social capital determines exposure to sources of stimulation and 
knowledge, it constitutes an intangible asset relevant to the technology 
adoption process (Brynjolfsson and Petropoulos, 2021). Thus, the 
network structure could determine access to knowledge and other assets 
as well as overall patterns of diffusion. Although this idea lies at the core 
of epidemic models of technology adoption and diffusion is not new 
(Freeman, 1991; Powell et al., 1999), social capital and network per-
spectives have remained under-explored in this literature strand since 
the identification of channels of transmission of adoption-related 
knowledge at the micro-level is difficult empirically. By focusing on 
the specific case of AI technology, we seek to address these issues by 
investigating the following research question: To what extent are epidemic 
effects associated with firm-level AI adoption? 

We build new measures based on self-collected web-data to enable a 
comprehensive modeling approach that explains the adoption and 
diffusion of emerging AI technology. We start from the assumption that 
adoption resembles a process of internal and external legitimation of 
organizational technological change which can be detected in organi-
zational communication (Rogers, 1995), and consider the firm's website 
as an expression of the company's organizational identity (Esrock and 
Leichty, 2000; Powell et al., 2016; Scheiber, 2013; Oertel and Thommes, 
2018). We define AI adopters as firms that have developed an AI identity 
which requires that AI is a core part of their products or processes 
(Ulucanlar et al., 2013). To identify relevant pieces of information from 
firm websites (Kinne and Lenz, 2021), we trained and employed a 
transformer language model to classify the depth of AI-related knowl-
edge represented by individual paragraphs. Compared to simple 
keyword-based approaches, this allows more accurate classifications by 
avoiding false positives when working with textual data. We also pro-
cessed hyperlink-connections among firm websites to model the spread 
of AI-related knowledge between firms (Krüger et al., 2020; Abbasi-
harofteh et al., 2021). This yielded comprehensive firm-level data from 
>1.1 million observations extracted from company websites from 

Germany, Austria, and Switzerland (hereafter DACH) in the year 2022, 
and network data for a subset of 380,805 firms. 

We use these web-based metrics to expand traditional epidemic 
models of inter-firm technology diffusion (Mansfield, 1963; Rogers, 
1983; Karshenas and Stoneman, 1993) by integrating the traditional 
mechanisms considered in firm-level adoption models (indirect mimetic 
pressure, direct transmission of knowledge) with relational measure-
ments (network position) of firms. This allows us to extend traditional 
epidemic models explaining the diffusion of emerging digital GPT by 
considering the contingencies created by the depth of the knowledge 
exchanged between firms (Bierly, 1996; Christensen, 2006), and the 
cognitive and geographic proximity to sources of knowledge (Boschma 
and Frenken, 2010; Sorenson et al., 2006; Laursen et al., 2011; Criscuolo 
et al., 2018). We checked the robustness of our findings from this novel 
web-based data using a representative questionnaire-based survey 
sample of almost 1400 firms in Switzerland which gathered self- 
reported information on AI adoption for the years 2019 and 2020. 

Our results show that AI adoption is related to three significant 
channels of epidemic effects. First, the firm's location in an industrial 
and/or regional hot-spot associated with the production of AI knowl-
edge which exposes it to high levels of indirect mimetic pressure leading 
potentially, to bandwagon adoption behavior. Second, strong embedd-
edness of the firm in the AI knowledge network which resembles a rather 
closed system of AI adopters, likely to hinder broader diffusion. Third, 
existence of high intensity of direct firm links which increase the like-
lihood of AI knowledge transfer. However, the effectiveness of direct 
transmission of AI knowledge will depend on the cognitive proximity 
among the partners, link strength, and the depth of the knowledge being 
shared. High intensity direct firm links seem to defy geographic distance 
and thus, offer a potential focus for policy measures to promote diffusion 
beyond local clusters. 

The article is organized as follows: Section 2 discusses the theoretical 
background to the drivers of technology adoption through an epidemic 
model lens. Section 3 describes the data collected and our empirical 
strategy. Section 4 presents the descriptive statistics and the results of 
the regression analysis. Section 5 discusses our findings and provides 
some implications for policy makers and practitioners, as well as it ac-
knowledges some of the limitations of our study. Section 6 concludes the 
paper. 

2. Theoretical considerations and hypotheses 

2.1. Defining AI adoption 

Historically, research on technology adoption focused on the first 
moment of the firm's adoption of a technology (Battisti and Stoneman, 
2003; Hollenstein and Woerter, 2008). However, Battisti and Stoneman 
(2003) argue that this first moment of adoption and use says little about 
the dominance and importance of the technology to the individual firm 
or the industry more broadly and does not help our understanding of its 
diffusion dynamics. A more meaningful focus would include a sufficient 
degree of intra-firm diffusion of the technology (Battisti et al., 2009; 
Woerter et al., 2017) and the definition of adoption as the substantive 
integration of the technology within the organization. This is in line with 
the procedural understanding of the adoption process proposed by 
Rogers (1995) who considers technology adoption as requiring legiti-
mation by the social environment of adopters and acknowledgement as 
part of the organization's identity. Ulucanlar et al. (2013, p. 98) propose 
it as the “discursive presence of the technology that delineates a 
particular set of attributed characteristics and performative expec-
tancies as representative of the technology's distinctiveness and value.” 
These aspects emerge through the social processes of local sensemaking 
and global legitimization in the discourse between organizations and 
stakeholders (Ulucanlar et al., 2013). In what follows, we understand AI 
adopter as meaning that the firm presents the technology as part of its 
organizational identity and actively communicates its integration in 
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core parts of its products or processes. 

2.2. Determinants of adoption and epidemic models of technology 
diffusion 

Firm-level studies on technology adoption generally draw on three 
seminal theoretical models proposed by DePietro et al. (1990), Kar-
shenas and Stoneman (1993), and Rogers (1983). Common to all three 
models are the determinants considered to drive technology adoption: i) 
Organizational characteristics and capabilities (e.g., firm size, work-
force, organizational structure, managerial capabilities); ii) Technolog-
ical context (e.g., relative advantage, compatibility, complexity); and iii) 
External environmental dynamics (e.g., competition, public funding, 
regulation). Empirical contributions which study the economics of AI 
along these lines focus mainly on organizational and technical di-
mensions to explain the adoption decision (Dauth et al., 2017; Graetz 
and Michaels, 2018; Felten et al., 2021; Acemoglu et al., 2022; Chen 
et al., 2021; DeStefano et al., 2022). However, although they control for 
institutional characteristics such as exogenous environmental in-
fluences, they do not account for a more endogenous relation between 
the firm and its engagement with external sources of relevant knowledge 
and inter-firm transmission of that knowledge. 

Rogers (1995) notes that exposure to knowledge and persuasive 
signaling between organizations are often enabled through cosmolite 
(mass media) or local (interpersonal) communication channels. After 
the initial adoption decision, the process concludes with the stages of 
integration of technology into corporate practices, and importantly, 
confirmation. In this final stage, adopters seek to legitimize the decision 
by gathering positive responses from their environment. This highlights 
the importance of considering the inter-firm transmission of information 
which may produce positive network externalities likely to affect de-
cisions about adoption of emerging technologies. These effects may be 
driven primarily by knowledge spillovers across firms (Cassiman and 
Veugelers, 2002; Roper et al., 2017). To understand how knowledge 
spillovers occur calls for consideration of the stream of work which 
compares the diffusion of innovations in the socio-economic system to 
the spread of a virus within the population (Karshenas and Stoneman, 
1993; Sorenson et al., 2006). Karshenas and Stoneman (1993) argue that 
epidemic effects may be particularly relevant for the diffusion of 
emerging digital technologies, as these technologies require smaller 
financial investments and are associated with higher uncertainty about 
short-term returns. Epidemic effects refer “to endogenous learning as a 
process of self-propagation of information about a new technology that 
grows with the spread of that technology” (Karshenas and Stoneman, 
1993, p. 509). Early infections of knowledge lead to more transmission 
of that knowledge and promote adoption as the uncertainty related to 
the technology reduces with the spread of information on the perceived 
benefits of its adoption through established networks (Griliches, 1957; 
Irwin and Klenow, 1994). 

The dynamics of technology diffusion takes an S-shape of slow 
initial, rapid medium-term, and ebbing long-term growth before satu-
ration (Sorenson et al., 2006). However, how the different channels of 
epidemic effects emerge in the initial stages preceding more rapid 
diffusion is unclear. The case of AI demonstrates the profusion and va-
riety of types of AI-related information available to potential adopters 
via a range of different channels. This information is likely to be pro-
cessed differently by different firms, leading to varying effects on tech-
nology diffusion. Karshenas and Stoneman (1993) refer to two types of 
mechanism enabling epidemic effects in relation to technology diffu-
sion: mimetic pressure and direct transmission. The presence of these 
two mechanisms has been shown to matter for several different (digital) 
technologies such as electronic sales technologies (Battisti et al., 2009), 
the internet (Haller and Siedschlag, 2011), and energy savings tech-
nologies (Woerter et al., 2017). 

2.2.1. Mimetic pressure 
Epidemic dynamics can arise from the pressure to emulate observed 

adoption behavior through regular screening activities or other types of 
exposure (e.g., at industry events). Previous research shows that the rate 
of diffusion of a technology observed by a focal firm seems to affect its 
own decision to adopt it (Battisti and Stoneman, 2003; Haller and 
Siedschlag, 2011; Marsh et al., 2017). The underlying mechanism of 
mimetic pressure is based on the probability that the firm will observe 
adoption of the technology in its market environment through inten-
tional market screening activities and/or through less intentional 
knowledge spillovers via the transmission channels of networking 
events, labor mobility, etc. (Audretsch and Keilbach, 2007; DiMaggio 
and Powell, 1983). Glückler (2013) defined observation as one mecha-
nism of collective learning that is non-interactive. This indirect 
engagement allows the effects of mimetic pressure to transcend narrow 
network structures (Cooke, 2004). 

The type of information that promotes emulation is more likely to be 
codified knowledge which is more easily transmissible and does not 
require direct contact (Brusoni et al., 2005; Audretsch and Lehmann, 
2006). DiMaggio and Powell (1983) posit that the copying of best 
practice from another organization is particularly prevalent when or-
ganizations face uncertainties about application of a new technology 
which would be relevant to the case of AI. In what follows, we refer to 
the mechanism of indirect epidemic diffusion as mimetic pressure. 

Since we are considering adoption behavior in the focal firm's 
environment as a relevant factor in that firm's adoption decisions, we 
need to define this environment. There is empirical evidence that the 
transmission of information generally decreases with geographical dis-
tance and that typically firms are myopic in terms of their surrounding 
landscape (Fleming and Sorenson, 2001; Sorenson et al., 2006). The 
effect of geo-spatial diffusion results in the geographic localization of the 
technology (Jaffe et al., 1993; Keller, 2002) and Dahl and Pedersen 
(2004) show that within these localized clusters, even informal contacts 
allow the transmission of useful knowledge. However, in our increas-
ingly digitalized world, knowledge spillovers are increasingly less 
dependent on geo-spatial proximity which suggests the need to consider 
more than just the geographic dimension. The most prominent influence 
on the firm is the industry to which it belongs, representing the cognitive 
similarity among firms (Haller and Siedschlag, 2011; Woerter et al., 
2017). Thus, we will consider mimetic pressure emanating from the 
local geographic and industrial environment. 

H1. : The firm's likelihood of adopting AI is related to the rate of inter- 
firm diffusion of AI in its local environment. 

2.2.2. Direct transmission 
The other epidemic effects channel refers to more direct, intentional 

transmission of information among firms (Karshenas and Stoneman, 
1993). In contrast to indirect exposure to/observation of the technology 
in its environment, direct transmission of technological knowledge is the 
result of explicit linkages such as (R&D) co-operations and formalized 
business engagements with stakeholders which require regular contact. 
This social capital “binds collaborators together in knowledge exchange 
[s]” (Bozeman et al., 2001, p. 723) which can lead to innovative ways of 
producing value (Tsai and Ghoshal, 1998). The link between (R&D) co- 
operations and increased innovation efforts is well established (Cassi-
man and Veugelers, 2002; Laursen and Salter, 2006; Teixeira et al., 
2008). Firms that engage in interactive search strategies seek to estab-
lish links with other socio-economic agents such as firms or public 
research institutions (Roper et al., 2017). This is aimed at leveraging a 
joint knowledge base facilitating the development and adoption of new 
technology (Borgatti and Halgin, 2011). Such cooperative behavior al-
lows the transmission of both codified and tacit knowledge (Polanyi, 
1966; Leonard and Sensiper, 1998) which has been shown to be an 
important driver of firm innovation activity (Cooke and Wills, 1999; 
Dosi, 1988; Hilpert, 2006) and to be relevant to adoption of ICT 
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(Gourlay and Pentecost, 2002; Haller and Siedschlag, 2011; Oulton, 
2002). These direct ties potentially can increase awareness of emerging 
ICT, facilitate access to intangible assets, and increase the willingness to 
adopt as the uncertainty attached to the application potential of new 
technology fleets (Karshenas and Stoneman, 1993). In what follows, we 
refer to such mechanisms as direct transmission of AI-relevant knowledge. 

While we assume that ties to all types of co-operation partners in-
crease the probability of exposure to AI-related knowledge circulating in 
firm networks (the firm's non-specific social capital), it does not guar-
antee transmission of relevant tacit knowledge (Audretsch and Leh-
mann, 2006). Transmission of tacit knowledge requires direct 
interaction with the AI adopting firm or a firm with relevant technical 
skills and resources (Bozeman and Corley, 2004). Therefore, at the in-
dividual firm-level, we consider the firm-specific intensive margin of 
exposure rather than the absolute number of linkages which measure the 
firm's openness to and access to relevant knowledge. In this study, we 
consider the specific number of AI-related linkages relative to the firm's 
total linkages. 

H2. : The share of direct AI-related linkages is associated to the firm's 
likelihood of adopting AI. 

2.2.3. Embeddedness in inter-firm networks 
Social capital theory suggests the firm's position in the network de-

termines its access to informational resources (Lin, 2001; Burt, 1992). 
These, in turn, may trigger mimetic or osmotic processes (Friedkin and 
Johnsen, 1990; Granovetter, 1985; DiMaggio and Powell, 1983). The 
concept of homophily describes a process of convergence between firms 
embedded in inter-firm networks when being exposed to similar signals 
resonating through the network (Borgatti and Halgin, 2011; Owen- 
Smith and Powell, 2004; Schilling and Phelps, 2007). Thus, both 
mimetic behavior and direct transmission are functions of the firm's 
position in the socio-economic network and these network effects are 
likely to motivate technology adoption even beyond the mechanisms of 
direct links to knowledge sources and indirect screening of the envi-
ronment. This is because relevant information may be relayed or even 
reinforced through a string of connected nodes, where the original 
source and the recipient must not be directly connected (Granovetter, 
1985). Network embeddedness has been shown to explain varying levels 
of firm innovation output which suggests that firms that are part of a 
coherent network benefit from positive externalities through knowledge 
spillovers that are additional to direct transmission of information. 
These second-order dimensions of social capital and network theory 
tend not to be examined in firm-level epidemic models of technology 
diffusion but are assumed to play a decisive role in understanding the 
adoption of AI. 

Considering the relational embeddedness of firms as an additional 
determinant of adoption not only contributes to a better understanding 
of the two classical mechanisms of direct and indirect epidemic effects 
but also captures the complexity of knowledge spillovers and their 
propagation through inter-firm networks. While the concept of 
embeddedness percolates research on the development and production 
of novel technologies (due to the possibility of leveraging patent net-
works) (Freeman, 1991; Powell et al., 1999; Ahuja, 2000; Phelps and 
Paris, 2010), we argue that it also explains the usage and diffusion of 
technological applications and suggest that this relational dimension 
should be considered in the context of technology adoption. In our 
empirical context, we propose that stronger embeddedness in the AI 
knowledge network of AI adopters and closely connected firms is a 
determinant of adoption of an emerging digital GPT. 

H3a. : The firm's centrality in the AI knowledge network is related to 
its likelihood of adopting AI. 

Looking beyond the narrow frame of the AI knowledge network, the 
entire firm network provides additional insights on the rate of diffusion 
of AI based on the position of AI adopters in the network (Borgatti and 

Halgin, 2011). On the side of recipients, knowledge flows related to AI 
and complementary information can reach firms by being relayed 
through a string of connected firms, which does not necessarily require a 
direct connection to sources of AI knowledge, but merely a closeness to a 
multiplicity of loci of knowledge (Mueller and Ramkumar, 2023; Vac-
cario et al., 2022). On the side of transmitters, the diffusion of AI-related 
knowledge within networks depends on the AI- knowledge possessor 
filling structural holes in the network and relay knowledge among 
different communities within the network (Burt, 1992; Granovetter, 
1985). Firms may be motivated to act as knowledge diffusers as they can 
achieve comparative advantages from the leveraging of different 
knowledge bases (Burt, 1992). Holding these bridging positions has 
been shown to be related to firm innovativeness (Abbasiharofteh et al., 
2021). If we assume that AI adopting firms are innovative, we can expect 
them to be in a central position in the overall firm network, facilitating 
the transmission of AI knowledge between clusters of firms (Burt, 1992; 
Borgatti and Halgin, 2011). 

H3b. : The centrality of the firm in the overall firm network is related 
to its likelihood of adopting AI. 

2.3. Contingencies 

2.3.1. Proximity 
It has been shown that the transfer of technical expertise is a major 

motivation for firms to engage with AI adopters (Rammer, 2022; OECD, 
2019a). However, as the transmission of information requires firms to 
engage in efforts to locate, receive, process and appropriate the infor-
mation (Nelson and Winter, 1982; Sorenson et al., 2006), effective 
transmission depends not only on the degree of exposure to the infor-
mation and the quality of knowledge shared but also on the cognitive 
and geographical proximity to these sources of knowledge (Haeger-
strand, 1953; Sorenson et al., 2006). How well the relevant knowledge is 
transferred across boundaries depends on these latter aspects (Gruber 
et al., 2013). 

This then questions how these dimensions of proximity between two 
linked firms should be defined. We follow Krüger et al. (2020) and 
distinguish between geographic and cognitive proximity among linked 
firms. Geographic proximity describes how closely two firms are co- 
located, which has been identified as facilitating the transmission of 
information (Glückler, 2013; Hilpert, 2006; Teixeira et al., 2008) by 
increasing the likelihood of frequent personal interactions. Cognitive 
proximity refers to the similarity of cooperating firms' knowledge bases 
(Boschma and Frenken, 2010; Cantner and Meder, 2007). We therefore 
hypothesize that: 

H4. : The relation between transmission of AI-related knowledge and a 
firm's likelihood to adopt AI is moderated by the average proximity 
between the firm and the potential sources of knowledge. 

2.3.2. Depth of AI-related knowledge and reciprocity 
Bosch-Sijtsema et al. (2021) show that among digital technologies, 

AI exhibits one of the largest gaps between the available knowledge 
about the technology and its actual adoption. Although there is abun-
dant information on AI, the quality of the information shared within the 
network might not be convincing or sufficient to motivate adoption. 
Much industry discourse around AI is described as “hot air” (Hockenhull 
and Cohn, 2021). We need to understand the type and depth (usefulness) 
of the knowledge shared between firms (Sorenson et al., 2006; Dahl and 
Pedersen, 2004). Technological knowledge depth refers to its compre-
hensibility and the firm's ability to exploit the technological solution. Its 
usefulness depends also on its limitations and the availability of alter-
native solutions. Technical knowledge depth affects the ability to link 
the new technological possibility to a market opportunity. It depends to 
a degree on the successful or negative experience of past technological 
solutions (Nelson and Winter, 1982; Subbanarasimha et al., 2003; Greve 
and Seidel, 2015). 
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The concept of knowledge depth is embedded in the knowledge- 
based view of the firm and can be a source of competitive advantage 
(Bierly, 1996; Zhou and Li, 2012). Here, we understand knowledge 
depth as the firm's technical expertise to manage the sophistication and 
complexity of the technological knowledge (Bierly, 1996; Christensen, 
2006). The level of technical expertise is related to faster integration in 
and application of the technology in organizational practices and new 
products and processes (Hamel and Prahalad, 1989; Subbanarasimha 
et al., 2003). More superficial knowledge is easier to codify due to its 
lower level of complexity, but it is also less useful because it does not 
take account of the potential user's local context. Deeper knowledge 
tends to more complex and more tacit, making it more difficult to 
transmit but potentially more useful to a firm seeking to adopt a new 
technology (Sorenson et al., 2006). Finally, it should be noted that not 
all linkages transmitting knowledge are of equal strength. Granovetter 
(1973) describes reciprocity as one of the main determinants of link 
strength and Uzzi (1999) points out that reciprocal relationships facili-
tate knowledge transmission between firms. Thus, we assume stronger 
inter-firm linkages can be captured by observing reciprocal knowledge 
flows indicated by bidirectional connections between companies 
(Capaldo, 2007). We assume knowledge depth and reciprocity to 
constitute high-quality linkages and hypothesize that: 

H5. : The relation between transmission of AI-related knowledge and 
the likelihood that the firm will adopt AI depends on the quality of the 
firm's linkages. 

3. Material and methods 

The main analysis is based on a sample of web-scraped data on 
1,140,494 companies. We use the textual content on their websites to 
identify superficial and deep AI knowledge to proxy for AI adoption. For 
380,805 of our sampled firms, we can trace linkages between firms 
based on within-sample hyperlink connections to build inter-firm net-
works. We check the robustness of our results using survey data from a 
representative Swiss firm-level sample (for details see Supplementary 
Materials Section 2.1). 

3.1. Web-scraped data 

It has been shown that firm websites provide comprehensive self- 
representations of organizational identity (Esrock and Leichty, 2000; 
Powell et al., 2016; Scheiber, 2013; Oertel and Thommes, 2018). Esrock 
and Leichty (2000) show that firm websites are aimed at multiple au-
diences but tend to be aimed particularly at investors, customers, the 
broader public (press), and (to a lesser extent) at current and potential 
employees. The diversity of website target groups and content makes it a 
more comprehensive depiction of organizational identity than gained 
from traditional mass media and other channels (Powell et al., 2016; 
Scheiber, 2013). For instance, Oertel and Thommes (2018, p. 1714) 
argue that “websites offer the most comprehensive source of information 
for the study of organizational identities because they encompass the 
identity claims of organizations to all stakeholders, not only to specific 
groups, and because the data is not limited to the perception of specific 
groups such as employees.” 

Recalling the different stages of the adoption processes proposed in 
Rogers (1995), examination of firm websites allows identification of 
those firms that are more likely to engage in early-stage adoption of AI 
based on superficial information on the technology, and firms that could 
be described as mature adopters identified in terms of confirmation and 
signaling activities as part of their organizational identity. We describe 
AI adopters as firms that possess an AI identity expressed through deep 
AI knowledge self-represented on their websites. Since the transmission 
of both deep and superficial AI knowledge can trigger adoption of 
(different degrees of) an AI identity among recipient firms we identify 
AI-positive firms as including companies with both types of AI 

knowledge. 

3.1.1. Identifying AI adoption and AI knowledge 
Based on web scraping and machine learning technology which was 

further advanced by Kinne and Axenbeck (2020), we extracted web- 
based data including textual data, hyperlink-based relational data, and 
meta-data from the business websites of firms in Germany, Austria, and 
Switzerland. We trained a transformer (Vaswani et al., 2017) based 
language model (LM) to distinguish superficial and deep AI knowledge 
based on text paragraphs on company websites. We provide a brief 
description of this inference procedure and an overview in Fig. 1. A 
detailed description of the model training and validation is provided in 
the Supplementary Materials Section 1. 

We obtained the web addresses (URLs) of all economically active 
companies in Austria, Germany, and Switzerland using the ORBIS 
database (Bureau van Dijk, 2022) as the basis for the web-scraping ex-
ercises which was conducted in first quarter of 2022. This first step 
resulted in a data-set containing the textual website content of 1.1 
million firms. In the second step, we conducted a keyword search using a 
list of keywords related to different forms and applications of AI. We 
created our keywords list based on their frequency in a sample of 
websites of validated AI adopters. We then refined this list based on our 
expertise and the definitions of AI proposed by the OECD (2019a, 
2019b) and the Annual AI Report (Perrault et al., 2019; Zhang et al., 
2022). Section 1.1 in the Supplementary Materials contains the keyword 
list. We identified 247,846 text paragraphs that included at least one 
mention of at least one of our keywords. In the third step, we developed 
a manual classification scheme for the supervised training of the trans-
former model. Our categorization scheme allows manual labeling of a 
training data set of 3000 AI related text paragraphs differentiating be-
tween those providing superficial (informational content) and those 
representing deep knowledge (AI-related personnel, products/services, 
internal processes, use of third-party AI solutions). The training data was 
precisely tailored to our aim of proxying AI adoption, meaning the 
integration of AI technology rather than measuring only AI production 
(AI software developers / providers, which are nevertheless also covered 
in our training data). The final model is a cross-lingual paraphrase 
MiniLM model based on a sentence-transformer (Reimers and Gurevych, 
2019); using a pre-trained foundation model reduces the requirement 
for labeled data when fine-tuning it for specific tasks (Malte and Rata-
diya, 2019). In the inference phase, each AI-related paragraph is enco-
ded with the domain adapted sentence transformer, and its category 
predicted by a logistic regression model. We rank a company as a deep AI 
knowledge company if our model categorized at least one of the para-
graphs as containing deep AI knowledge. At the company level, when 
testing against a randomly sampled validation set of 204 companies, we 
found our model to be 91.67 % accurate. We also tested our model on a 
set of 750 European AI companies (EuroAI, 2022) and found that in 
97.16 % of cases it correctly identified presence of deep AI knowledge 
and thus showed outstanding performance in the classification task. 
Appendix Table A.1 provides examples of paragraphs classified by our 
model as deep AI knowledge. 

We further characterized our measure of AI adoption by exploring 
the type of textual topics co-occurring in the paragraphs that included 
the AI keywords. We took a random sample of 100,000 paragraphs and 
computed a neural topic model (TM) using the BERTopic architecture 
(Grootendorst, 2022). The full TM of the 199 topics covered in the AI- 
related paragraphs identified is presented in Supplementary Material 
Section 1.3. Based on the topic probability distribution, the model shows 
that the functionalities of tangible products with integrated AI- 
components constitute a dominant pattern. In addition, we identified 
topics related to a wide variety of procedural use cases such as robots, 
manufacturing, and maintenance, big data analytics, cloud computing, 
marketing, customer relations and chatbots, cyber security, autonomous 
driving, health diagnostics, supply chain management, finance, and 
other cases. The model also isolated shallow informational topics (news, 
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blogs, podcasts, etc.) and website artifacts which shows the relevance of 
our training of the transformer model to allow it to classify this type of 
information as superficial knowledge (keyword-based identification on 
its own would have produced false positives for AI adoption in this case). 

3.2. Empirical strategy 

3.2.1. Econometric framework 
Our empirical strategy is aimed at testing indirect (mimetic pressure 

to adopt AI), direct epidemic effects (linkages allowing transmission of 
AI knowledge), and the association between network embeddedness and 
AI adoption. Fig. 2 provides a conceptual illustration of these three main 
mechanisms which are the core of our econometric model (for 
simplicity, Fig. 2 differentiates only between AI-positive and AI-negative 
firms (either deep or superficial AI knowledge) rather than between 
superficial and deep AI knowledge. Table 1 presents the variables, 
concepts, hypotheses, and variables coverage for the two data-sets. 

Given the bivariate nature of our dependent variable for AI adoption 
(AIA), we estimate Eq. (1) using a generalized linear model, specified as 
a binomial with a logit link function. The condensed form regression 
model in vector notation is written as: 

AIAi,j,r = α+EMUj,rβ1 + LINKi,j,rβ2 +PROXi,j,rβ3 +RELATi,j,rβ4

+FIRMi,j,rβ5 +EEi,j,rβ6 + λj + λr + ϵi,j,r,
(1)  

where i is the focal firm and the subscripts j (r) are sectors (regions). 

3.2.2. Specification of variables 

3.2.2.1. AI adoption (AIA). Our web-based indicators allow us to 
measure the representation of (different depths of) AI-related knowl-
edge. Our binary variable for AI adoption takes the value 1 if the firm's 
website features deep AI knowledge. The choice to represent deep 
knowledge on AI implies that use of AI technology is part of the firm's 
organizational identity which the website is communicating externally. 
In our robustness checks using survey data, we specify a binary variable 
which takes the value 1 if the firm self-reports using AI in any of its 
business units or processes. Since both sets of data rely on self-reporting 
of AI use, we acknowledge the ambiguity linked to the term AI. For the 
web-indicators, we describe AI using the set of keywords employed to 
identify the relevant paragraphs on websites (see above). The survey 
respondents were provided with a definition based on the OECD defi-
nition, which describes an AI system “as a machine-based system that 

can, for a given set of human-defined objectives, make predictions, 
recommendations, or decisions influencing real or virtual environ-
ments” (OECD, 2019a, p.7).1 

3.2.2.2. Indirect mimetic pressure (MIM). To model mimetic pressure, 
we constructed a vector of two variables to capture inter-firm diffusion 
of AI technology around a focal firm. We measured the relative fre-
quency of AI adopters around the focal firm as the share of AI adopters 
external to the focal firm in the related NUTS3 region (AI_reg) and in-
dustrial branch at the NACE 3-digit level (AI_sec). Eq. (2) is an exemplary 
formula to construct the variable at the regional level: 

AI regi,r =

⃒
⃒XAI

r

⃒
⃒ − XAI

i,r

|Xr | − 1
, (2)  

where Xr (Xr
AI) is the set of companies in region r (adopting AI) around 

the focal firm i in that region (Xi,r) which is subtracted from the count to 
avoid simultaneity. The same formula but substituting regions (r) for 
sectors (j)is used for the sectoral ad option rate around the given focal 
firm. 

3.2.2.3. Direct linkages transmitting knowledge (LINK). The second 
epidemic effects mechanism is direct transmission of superficial or deep 
AI knowledge through inter-firm linkages. We operationalized the var-
iable to measure firm linkages by using the in- and outbound hyperlinks 
connected to each company website in our sample (Krüger et al., 2020; 
Park, 2003). In this case, we differentiate between unidirectional 
(AIshare) and reciprocal (AIrecshare) linkages, and between the two AI 
knowledge types - superficial (supAIshare) and deep (deepAIshare). We 
constructed a ratio variable for the number of the firm's linkages to 
sources of deep AI knowledge relative to the number of its total linkages. 
Rather than an extensive (absolute) measure of connectivity, this 
effectively is an indicator for the given firm's the intensity of direct 
exposure to AI knowledge (which also differentiates this variable from 
network measures of degree centrality in the model). This construction 
provides the ancillary benefit of lower positive skewness (6.55) and 
lower kurtosis (53.15) values than the absolute measure of the number 
of deep AI knowledge ties (12.48 and 470.54, respectively). For these 
ratios of AI-related linkages to all linkages, we tested the moderating 

Fig. 1. Inference procedure using supervised training of a transformer model to identify AI-related knowledge represented in the text on company websites.  

1 Supplementary Materials Section 2.1 provides more detail on the collection 
of the survey data. 
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influences of geographic and cognitive proximity to account for the 
firm's relational capacity (see Eq. (3)). 

AIAi,j,r =α+EMUj,rβ1 +LINKi,j,rβ2+PROXi,j,rβ3+RELATi,j,rβ4

+
(
AI LINKi,j,r ×PROXi,j,r

)
β5 +FIRMi,j,rβ6+EEi,j,rβ7 +λj+λr +ϵi,j,r

(3)  

3.2.2.4. Geographic and cognitive proximities (PROX). Following Krüger 
et al. (2020), we computed different dimensions of relational proximity 
as the average over all of the firm's linkages. Cognitive proximity 
(cogn_mean) is a measure of the similarity between a pair of firms and is 
measured first by vectorizing the individual sub-pages on the companies' 
websites using the BERT-based sentence transformer library (Reimers 
and Gurevych, 2019). Second, we represented the entirety of the text on 
the company website in the vector space based on the mean values of the 
vectors of the individual sub-pages. This allowed us to calculate the text 
similarities between pairs of company websites by relating their repre-
sentative vectors via cosine similarity. Eq. (4) provides the formula to 
compute the average cognitive proximity of all of the firm's linkages. 

cogn meani =

∑Ki
k=1

[

1 − ui ⋅vk
||ui ||2 ||vk ||2

]

Ki
, (4)  

where Ki denotes the number of firms K to which the focal firm i has 
links, and ui and vk are the vectorized website texts of the focal firm i and 
the website texts of each of the linked firms k used to compute the scalar 
product as an expression of Euclidean distance. 

Geographic proximity is a measure of physical distance based on a 
straight-line distance between the geocoded locations of the linked firms 
(geo_mean). All proximities are normalized ∈ (0;1), and geographic 
proximity (originally measured in absolute meters) is inverted to take 
the same range of values. Higher values indicate greater cognitive or 
geographical proximity. 

3.2.2.5. Relational network position (RELAT). For the set of explanatory 
variables capturing the position of firms in the relational inter-firm 
network, we build two undirected networks of hyperlink connections 
among firms using the library graph-tool in Python which is better than 
other libraries at handling big data. The first network includes all the 
interconnected firms in our sample, i.e., the entire inter-firm network. 
For the second network we employ sub-graph filtering to construct a 
network that includes firms that are connected to other firms with either 

superficial or deep AI knowledge, and their linkages to AI-negative 
firms. We call this the AI knowledge network. Table 2 presents the 
basic network characteristics for both networks which resemble scale- 
free networks with the AI knowledge network exhibiting a slightly 
fatter right tail in the degree distribution (see Appendix Fig. A.1). 

We calculate the degree centrality of the firms in the AI knowledge 
network to obtain an indicator for the level of embeddedness in the 
network circulating AI knowledge (degree_ai). To characterize structural 
position of firms in the entire inter-firm network, we compute both 
betweenness (betw_all) and closeness (close_all) centrality. The former 
captures firms bridging between firm clusters; the latter captures the 
average length of the shortest path between the focal firm and all other 
firms in the inter-firm network which can be used to measure the focal 
firm's efficiency in relation to receipt and transmission of information 
from and throughout the entire network. Since path length to all other 
nodes in the network is needed to compute closeness centrality, to 
obtain a consistent measure requires that the whole network is inter-
connected. To exclude fragmented subgraphs, we calculated this mea-
sure based on the largest component which includes 331,462 firms. 

4. Results 

4.1. Descriptives 

Application of our web-based AI adoption identification model to the 
sample of 1,140,494 companies identified overall adoption of AI at 2.2 
% (see Table 3). We observe 1.5 % of all companies with deep AI 
knowledge and 1.3 % of all companies with superficial AI knowledge 
(with some overlaps between the two types). While most regions and 
industries host only a few or no firms with AI knowledge, the share of AI- 
positive firms (i.e., with superficial or deep AI knowledge) in a few 
selected regions and sectors is relatively high. A high share of AI-positive 
firms is in sectors such as ICT services (>11 %), electronics (>6 %), 
consulting (>5 %), and financial services (>4 %). Those sectors with a 
relatively high proportion of deep compared to superficial AI knowledge 
include ICT, engineering, and retail and wholesale. Appendix Fig. A.1 
provides more detailed statistics. 

Fig. 3 presents the geographic distribution of AI adoption and shows 
that it is confined to certain regions. Although urban areas and selected 
regional capitals show relatively high shares of AI-positive companies 
with rates of up to 6 % of the total firm population, there is large vari-
ance among metropolitan regions (e.g., between Hamburg and Munich, 
Germany). There is also a high concentration of AI-positive firms in 

Fig. 2. Stylized conceptualization of the empirical strategy. 
Note: (A) depicts the firm's environmental boundaries in the regional and industrial space; in these environments, adoption rates creating mimetic pressure through 
indirect exposure can be calculated by counting the AI-positive firms (representing either deep or superficial AI knowledge) relative to AI-negative firms (repre-
senting no AI knowledge). (B) depicts the direct linkages to other firms with or without AI knowledge which allows calculation of an intensity variable for the share of 
AI linkages in the firm's total linkages firm whose effect for AI adopters may be moderated by the firm's average cognitive and geographic proximities of direct 
linkages. (C) depicts the focal firm's position in the relational AI-positive and negative firm network. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article). 
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otherwise inconspicuous smaller cities. These hot-spots are associated 
with the locations of the six AI research institutions which make up the 
German Network of National Centers of Excellence for AI Research and 
feature relatively higher shares of deep rather than superficial AI 
knowledge. 

These silos of AI knowledge also emerge clearly in the context of 
interfirm networks. Analysis of the hyperlink connections among the 

firms in our sample shows that 4 % of all firms are linked to AI-positive 
firms, among which only 1 % is involved in links to multiple sources of 
AI knowledge (see Fig. 4). It seems, at first glance, that beyond their 
geographical and relational proximity these firms are highly inter-
connected, but most linkages are between firms in AI hot-spots with 
sparser connections in the geographic periphery. In terms of the position 
of AI adopters in the relational (hierarchically clustered) space, we 
observe that again AI adopters seem to be highly interconnected across 
firm clusters but are located almost exclusively at the lower hierarchical 
levels of the inter-firm network. They seem not to be positioned centrally 
at higher hierarchical levels which would constitute pathways for in-
formation flows between the distant parts of the inter-firm network. 

Table 1 
Overview of variables of interest and controls and availability by sample.  

Variable Description Operationalization Hypothesis Web 
data 

Survey 
data 

AI adoption (AIA) Adoption of AI identity by focal firm     
deepAI firm website featuring deep AI knowledge = 1 if yes  Yes  
supAI firm website featuring superficial AI knowledge = 1 if yes  Yes  
AI_qn firm self-reports usage of AI within company = 1 if yes   Yes 
Indirect mimetic pressures 

(MIM) 
Knowledge transmission through observation and 
emulation 

Average rate in related space subtracting focal firm    

AI_reg Prevalence of AI adoption in relevant geographic 
unit 

Average in NUTS3 around focal firm H1 Yes Yes 

AI_sec Prevalence of AI adoption in relevant industry Average in NACE class (3-digit) around focal firm H1 Yes Yes 
AI_size Prevalence of AI adoption in relevant size class     
AI_sec_reg Prevalence in overlapping sectoral and 

geographical space 
Inner join of AI_reg, AI_sec H1 Yes Yes 

AI_sec_reg_size Prevalence in overlapping sectoral, geographical, 
and size class space 

Inner join of AI_reg, AI_sec, AI_size H1  Yes 

Direct transmissions 
(LINK) 

Knowledge transmission through linkages     

AIsum Number of links to AI positive firms Sum of AI links H2 Yes Yes 
supAIsum Number of links to firms with superficial AI 

knowledge 
Sum of informational AI links H2 Yes  

deepAIsum Number of links to firms with deep AI knowledge Sum of knowledge-intensive AI links H2 Yes  
AIshare AI links over all links Ratio H2 Yes  
supAIshare superficial AI knowledge links over all links Ratio H2, H5 Yes  
deepAIshare deep AI knowledge links over all links Ratio H2, H5 Yes  
rec_supAIshare Only reciprocal links in supAIshare Ratio H4 Yes  
rec_deepAIshare Only reciprocal links in deepAIshare Ratio H4 Yes  
Proximities (PROX) Similarities of firm characteristics over linkages     
cogn_mean Cognitive similarity to linked firms Averaged indicator over all linkages of a firm 

between (0;1) 
H4 Yes Yes 

geo_mean Geographic proximity to linked firms Averaged indicator over all linkages of a firm 
between (0;1), normalized 

H4 Yes Yes 

Relational position 
(RELAT) 

Position in relational inter-firm networks linkages     

degree_ai Degree centrality of firm in subgraph of AI 
knowledge network 

normalized between 0 and 1 H3a Yes Yes 

close_ai Closeness centrality of firm in subgraph of AI 
knowledge network 

sum of edges to firm with deep AI knowledge H3a Yes Yes 

betw_all Betweenness centrality of firm in undirecteed 
graph of firm network 

normalized between 0 and 1 H3b Yes Yes 

Controls 
lnsize Firm size (log) total number of current employees  Yes Yes 
lnage Firm age (log) = current year - founding year  Yes Yes 
urban_d Urban location = 1 if firm is located in an area where population ≥

50,000  
Yes Yes 

export Firm exports = 1 if firm exports >1   Yes 
hrict ICT experts = 1 if employed ICT experts >1   Yes 
foreign Foreign ownership = 1 if company is foreign owned   Yes 
acad Academics Share of employees with academic degree   Yes 
profit Profit margin = (turnover - costs) / turnover   Yes 
rnd Research and development Sales share of R&D expenditure   Yes 
inno Innovativeness (survey) = 1 if firm pursued innovation activities in last 3 

years   
Yes 

InnoProb Innovativeness (web) Predicted probability of innovativeness based on firm 
website  

Yes  

digit Additional digital technologies = 1 if number of other digital tech used >3   Yes 
compet Competition categorical indicating number of close competitors   Yes  

Table 2 
Network statistics.  

Network Nodes Edges Avg. degree Std. dev. 

Inter-firm network  392,406  1,140,494  6.023  0.017 
AI knowledge network  39,151  145,185  7.421  0.061  
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4.2. Estimations 

Our results are summarized in Table 4 which presents the standard 
coefficients of the regressions testing our hypotheses; Fig. 5 presents the 
respective average marginal effects (AME) for the variables of interest. 
Appendix Table A.3 presents the bootstrapped standard errors and 
confidence intervals for a selection of the models. We observe that in all 
the models, mimetic pressure, direct transmission, and network mea-
sures are highly significant for explaining variance in AI adoption. If 
they are added hierarchically, all contribute incrementally to improving 
the model fit. 

In terms of the indirect epidemic effects capturing mimetic pressure, 
we find that the significance (p ≤ 0.000) and AME of the AI adoption 
rate in the region and sector were among the strongest explanatory 

variables. The rate of diffusion in the firm's regional environment is 
associated with an AME of 0.192 (for model 3), with sectoral mimetic 
pressure showing equally large effect sizes (AME 0.200) and a narrower 
confidence interval. These results provide clear evidence of indirect 
epidemic adoption pressure faced by firms in AI hot-spots which does 
not reject H1. 

Direct linkages to firms with deep AI knowledge show a significant 
positive association with AI adoption (p ≤ 0.000). However, AI adoption 
is more strongly correlated with connections allowing the transmission 
of deep AI knowledge which does not allow us to reject H2. 

For link strength, our results suggest that stronger links based on 
reciprocal connections have a significant (p ≤ 0.000) and even stronger 
positive relation to AI adoption (AME 0.201), closer to the effects of 
mimetic pressure. We observe also that reciprocal linkages transmitting 
only superficial AI knowledge turn insignificant (p ≥ 0.795). The 
evident stronger effects of reciprocal linkages transmitting deep AI 
knowledge do not allow us to reject H5. 

Our network measures capturing relational embeddedness in the 
firm network reveal two things. First, a strongly positive significant ef-
fect of embeddedness in the AI knowledge network (p ≤ 0.000) based on 
degree centrality in this sub-network showing extremely high AME 
(0.259) on AI adoption which does not allow us to reject H3a. It corre-
sponds also to our descriptive findings that many AI adopters are highly 
inter-connected and suggests possible homophily among AI adopting 
firms. Second, we observe a positively significant (p ≤ 0.000) 
betweenness centrality of focal firms bridging communities of firms but 
with rather small marginal effects on AI adoption. While we cannot 
reject H3b, the effect size (AME 0.059) is relatively smaller compared to 
other measures of epidemic effects. This suggests that it is not a prime 
motivation of AI adopters to achieve a brokerage position among firm 
communities. 

When we consider closeness centrality it is even clearer that AI 
adopters do not tend to be in central positions, which are important for 
receiving and relaying knowledge throughout the entire firm network. 
Although we cannot entirely reject H3b (p ≤ 0.000), the marginal effects 
of the variable in model 11 are minuscule (AME of 0.023). Based on our 

Table 3 
Descriptive statistics for variables of interest.  

Variable Observations Mean St. Dev. Min Max 

AI 1,140,494 0.022 0.15 0 1 
supAI 1,140,494 0.013 0.11 0 1 
deepAI 1,140,494 0.015 0.12 0 1 
employees 1,140,494 32.11 975.95 1 294,134 
age 1,140,494 24.46 21.90 3 787 
InnoProb 1,140,494 0.28 0.17 0.04 0.92 
urban_d 1,140,494 0.43 0.50 0 1 
links_count 1,140,494 4.76 7.63 0 139 
cogn_mean 719,526 0.51 0.16 0.00 0.95 
geo_mean 736,682 0.76 0.16 0.00 1.00 
AI_reg 1,140,494 0.02 0.01 0.00 0.06 
AI_sec 1,140,494 0.02 0.03 0.00 0.19 
AIshare 1,140,494 0.01 0.03 0.00 1.00 
supAIshare 1,140,494 0.002 0.02 0.00 1.00 
deepAIshare 1,140,494 0.003 0.03 0.00 1.00 
supAIrecshare 1,140,494 0.0001 0.003 0.00 0.50 
deepAIrecshare 1,140,494 0.0001 0.004 0.00 0.50 
degree_ai 380,805 0.003 0.02 0.00 1.00 
close_all 331,462 0.53 0.12 0.00 1.00 
betw_all 380,805 0.002 0.01 0.00 1.00  
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Fig. 3. Descriptive statistics for AI diffusion in the geographic space of the DACH region (n = 1,140,552) 
Note: (A) depicts the ratio of AI-positive firms to all firms in each NUTS3 region and shows the presence of a few regional hot-spots and many barren regions. (B) 
depicts regions with AI adoption rates above the average (>2 % of AI-positive firms and >15 AI firms) and the share of deep AI knowledge represented across all AI- 
positive (deep and superficial) firms in the region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article). 
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previous findings, we tried to isolate this effect further by accounting 
simultaneously for the focal firm's embeddedness in the AI knowledge 
network (model 13). Closeness centrality maintains it significance (p ≤
0.010), but its effect even turns slightly negative (AME − 0.006).2 

Controlling for interconnectedness in the AI knowledge network 
provides further evidence that AI adopters are not in the most central 
positions in the extant inter-firm network. This confirms our descriptive 
finding from the social network analysis that AI adopters tend to belong 
to an exclusive network rather than occupying central positions in wider 
networks that would facilitate flows of knowledge to distant parts of the 
inter-firm network. The potential existence of closed inter-firm clusters 
of AI adopters possibly explains the overall sluggish rate of diffusion of 
AI technology. 

Considering general relational capacities of firms across all linkages, 
our results suggest that firms that are connected to other firms which on 
average are cognitively more proximate and geographically more 
distant are slightly more likely to adopt AI. Although both general 
measures capturing the proximity across all AI and non-AI linkages 
exhibit negligibly small AME, these metrics become more relevant in 
terms of their role in moderating the effects of direct AI linkages (see 

Section 4.3). The variables capturing firm-level characteristics show a 
significant positive correlation between AI adoption and firm size and a 
negative correlation with firm age. An urban location seems to promote 
adoption of AI-related knowledge. Also, our web-based indicator of firm 
innovativeness is highly significant (p ≤ 0.000) and, depending on the 
model, shows positive effect sizes for AME of around 0.075. It is not 
surprising that innovative firms are generally more likely to adopt AI but 
is an indication also of the relevance of absorptive capacity and inno-
vation capabilities – both are characteristics that we explore further in 
the moderator analysis and the robustness checks using our richer sur-
vey data. 

4.3. Interactions 

To address H4, we constructed interaction terms to test whether the 
epidemic effects captured by direct linkages are moderated by relational 
proximity. Fig. 6 depicts the predicted probabilities of AI adoption for 
different levels of the variables capturing epidemic effects in combina-
tion with the moderating variables. Table 4 shows that the interaction 
terms are positively significant for dependence between the share of AI- 
related linkages and average cognitive proximity. The coefficients hint 
at the relevance of a base of common knowledge between connected 
firms which facilitates successful transmission and absorption of AI 
knowledge. 

Fig. 4. Descriptive AI diffusion networks in the DACH region geographic space (n = 380,805) 
Note: (A) depicts the geographic space related to the sampled firms and the bundled density of all their hyperlink connections. (B) depicts the bundled hyperlink 
connections filtered for linkages from or to AI-positive firms across geographic space and shows a much sparser network with linkages mainly confined to establish 
between large metropolitan hubs. This would suggest that geographic distance matters less for AI diffusion since AI hot-spots are interlinked. (C) shows the good 
quality of our micro-level data depicting unbundled AI-relevant linkages in and around the hotspot of Munich (GER) only (linkages outside this frame are not shown). 
(D) depicts the communities (different colors) in the relational space for all the firms in the sample (largest component, hierarchically clustered). (E) depicts the 
relational network for all of the sample firms (largest component, hierarchically clustered) with AI-positive firms colored black, highlighting their periph-
eral positions. 

2 We checked for variance inflation using two measures of centrality but 
found nothing to raise any concern (see Appendix Fig. A.3). 
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Table 4 
Main regression models explaining AI adoption though epidemic mechanisms.   

Dependent variable  

deepAI  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Indirect mimetic pressures (MIM) 
AI_sec   10.387*** 9.865*** 9.877*** 9.864*** 9.865*** 10.507*** 10.343*** 9.786*** 9.760*** 9.879*** 9.710***    

(0.495) (0.494) (0.493) (0.494) (0.494) (0.499) (0.494) (0.501) (0.530) (0.494) (0.538) 
AI_reg   10.304*** 9.463*** 9.450*** 9.463*** 9.209*** 9.474*** 10.201*** 8.356*** 9.579*** 9.399*** 8.703***    

(1.123) (1.132) (1.132) (1.132) (1.169) (1.130) (1.125) (1.157) (1.199) (1.132) (1.225)  

Direct transmissions (LINK) 
supAIshare    1.427*** 1.430*** 1.427*** 1.428*** 1.408***  0.146 1.106*** 1.390*** 0.216     

(0.226) (0.226) (0.226) (0.226) (0.227)  (0.279) (0.244) (0.228) (0.281) 
deepAIshare    4.258*** 2.244*** 4.296*** 4.061*** 5.252***  3.405*** 3.728*** 4.241*** 3.039***     

(0.131) (0.506) (0.588) (0.287) (0.194)  (0.144) (0.143) (0.131) (0.155) 
supAIrecshare         − 0.354              

(1.433)     
deepAIrecshare         9.821***              

(0.837)      

Proximities (PROX) 
cogn_mean  0.414*** 0.404*** 0.372*** 0.261*** 0.372*** 0.372*** 0.370*** 0.372*** 0.448*** 0.417*** 0.387*** 0.446***   

(0.074) (0.075) (0.076) (0.077) (0.076) (0.076) (0.075) (0.075) (0.078) (0.084) (0.076) (0.085) 
geo_mean  − 1.394*** − 1.380*** − 1.410*** − 1.411*** − 1.408*** − 1.412*** − 1.416*** − 1.407*** − 1.450*** − 1.340*** − 1.416*** − 1.430***   

(0.082) (0.082) (0.082) (0.082) (0.086) (0.082) (0.082) (0.082) (0.085) (0.092) (0.082) (0.093)  

LINK x PROX 
deepAIshare x cogn_mean     3.550***              

(0.866)         
deepAIshare x geo_mean      − 0.049              

(0.731)        
MIM x LINK 
AI_reg x deepAIshare       7.116              

(9.444)       
AI_sec x deepAIshare        − 17.414***              

(3.006)       

Network embeddedness (RELAT) 
degree_ai          12.946***   12.643***           

(0.688)   (0.752) 
close_all           1.069***  − 0.312***            

(0.110)  (0.120) 
betw_all            2.892***              

(0.476)   

Firm characteristics 
lnsize  0.177*** 0.178*** 0.176*** 0.176*** 0.176*** 0.176*** 0.176*** 0.177*** 0.124*** 0.148*** 0.167*** 0.123***   

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009) 
lnage  − 0.214*** − 0.217*** − 0.206*** − 0.207*** − 0.206*** − 0.206*** − 0.207*** − 0.214*** − 0.206*** − 0.211*** − 0.207*** − 0.208***   

(0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.020) (0.019) (0.020) 
InnoProb  4.071*** 3.787*** 3.676*** 3.677*** 3.676*** 3.676*** 3.675*** 3.774*** 3.536*** 3.662*** 3.671*** 3.585***   

(0.066) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.069) (0.072) (0.068) (0.074) 

(continued on next page) 
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To examine this in more detail, panels A-B present the interdepen-
dent effects of the share of linkages connected to deep AI knowledge and 
cognitive or geographic proximity. While we observe a positive rela-
tionship, the probability of AI adoption by firms with a high intensity of 
deep AI knowledge linkages and high average cognitive proximity to 
knowledge sources seems to occur only at very high values of both 
variables. This could be a natural consequence of the fact that adoption 
of AI in the early stages of its diffusion is not pervasive but is limited to 
certain economic niches. 

We also tested the moderating effect of average cognitive proximity 
and embeddedness in the AI knowledge network measured in terms of 
degree centrality (see Panel F). We found a strong positive additional 
effect for a given linkage intensity for an increasing average cognitive 
proximity. The curvature of the lines plotting the predicted probabilities 
would seem to suggest that these added effects are particularly pro-
nounced for cognitive proximity increasing from very low to medium 
levels, whereas additional increases to higher levels of cognitive prox-
imity show a smaller additional effect on the outcome of AI adoption. 
This finding implies that the effects of strong network embeddedness are 
to an extent conditional on fostering a medium level of cognitive prox-
imity across linkages to enable absorption of the relevant knowledge. 

The interaction term in regression model 7 for the moderating effect 
of geographic proximity is insignificant. Fig. 6 panel B shows that the 
change in the predicted probabilities for different levels of both vari-
ables is marginal and that the majority of observations are found at low 
levels of intensity of connecting to deep AI knowledge which counters 
the potentially negative effect that can be seen at higher levels of in-
tensity but for fewer observations. This latter indication suggests that 
firms with a high number of linkages to sources of deep AI knowledge 
seem to be able to overcome the effects of geographic distance for the 
effective exchange of knowledge. In combination with the strong effect 
of AI knowledge network embeddedness, these findings are in line with 
our descriptive assessment of the network of AI linkages which sug-
gested that AI hot-spots tend to be highly inter-connected regardless of 
their geographic location but that connections to peripheral locations 
are sparse. 

We examined potential additionalities by interacting the indirect 
epidemic mechanisms of regional and sectoral diffusion dynamics 
(panels C and D) with the direct mechanisms of linkages. In the case of 
mimetic pressure stemming from the region, most observations show 
few or no additional effects. Mimetic pressure from the sectoral space is 
a more interesting case. Although on average we observed no significant 
effects, the plotted predicted probabilities suggest that increased 
mimetic pressure from the sectoral environment has a considerable 
positive effect on the likelihood of AI adoption at lower levels of AI 
linkages. These additional effects dissipate for firms with higher relative 
levels of AI linkages and start to turn negative at the very highest levels. 
This is in line with the intuition since high levels of indirect environ-
mental pressure are likely to be less relevant for companies that main-
tain good links to deep AI knowledge. 

To support our theoretical arguments about absorptive capacity, we 
examined the interactions between the firm's overall innovation ca-
pacity and the share of deep AI knowledge connections it maintains. 
Panel E shows that for the vast majority of our observations (lower left 
triangle) this interaction seems not to be associated with an increased 
likelihood of AI adoption. 

4.4. Robustness checks 

We ran a series of robustness checks on our candidate web-based 
data models. First, following the argument in Acemoglu et al. (2022), 
we excluded the ICT sector from our regression analysis. Second, we 
substituted our dependent variable for deep AI knowledge as a proxy for 
AI adoption with a binary variable which takes the value of 1 if the firm 
is AI-positive (deep or superficial AI knowledge). Third, we use a cate-
gorical scale, binning the number of AI-relevant linkages of firms. Ta
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Although the results are nuanced, they do not cast doubt on the con-
sistency of our main results. Fourth, using our complementary mea-
surements from the representative Swiss innovation survey, we observe 
that the significance of all the epidemic effects channels holds when we 
test their explanatory power against self-reported AI usage for this much 
smaller sample. The survey data reveal also a potential mediating effect 
between skilled human capital and AI-relevant social capital. The Sup-
plementary Material Section 2 reports the results of the robustness 
checks. 

5. Discussion 

The findings from our web-data are consistent with the basic char-
acterization of AI adopters in other studies of AI adoption that use more 
traditional indicators (Calvino and Fontanelli, 2023; Rammer, 2022). 
Although the share of AI adopters identified using the web data is sub-
stantially lower compared to the share based on the survey data which is 
around 10 % for several European countries (see e.g. Calvino and Fon-
tanelli (2023); Supplementary Materials Section 2.1), this is because the 
data published on firms websites are less likely to capture cases of 
minimal usage and are aimed more at indicating integration of the 
technology in core business practices. The adoption rates observed are in 
line with other studies using similar web-based empirical strategies 
including Calvino et al. (2022) whose study uses web data and finds the 
rate of AI adoption to be 6 %. However, their study relies only on a 
keyword approach which is likely to produce more false positives. In 
terms of patterns of adoption, we found concentration of AI adoption in 
a few geographical, sectoral, and relational parts of the DACH economy, 
similar to the findings in other works on the economics of AI (Acemoglu 
and Restrepo, 2020; Acemoglu et al., 2022; Calvino et al., 2022; Felten 
et al., 2021; Vannuccini and Prytkova, 2023). 

We found that mimetic pressure had very high AME on the 

probability of AI adoption at both the regional and sectoral levels. The 
relevance of mimetic pressure is generally in line with the literature on 
inter-firm diffusion of other types of complex technologies (Battisti and 
Stoneman, 2003; Audretsch and Keilbach, 2007; Haller and Siedschlag, 
2011); however, the magnitude of the effects for AI technology is of 
particular importance. Since environmental pressure to emulate 
observed adopters is transmitted through indirect channels, its effect can 
lead to bandwagon adoption behavior by firms surrounded by many AI 
adopters. Previous much-hyped technologies have produced similar ef-
fects (Gurbaxani, 1990; Kumar and Kumar, 1992). 

Our relational measures of network position show that AI adopters 
tend to be highly interconnected within the AI knowledge network and 
to have relevant social capital (Calvino and Fontanelli, 2023; Rammer, 
2022; Yli-Renko et al., 2001). However, other centrality measures sug-
gest that AI adopters generally belong to a closed system of actors 
beyond which the technology does not diffuse to the entire firm 
network. 

The intensity of the firm's linkages is associated positively with AI 
adoption and opportunities to access tacit knowledge such as partici-
pation in AI-related projects (Rammer, 2022) and to increase technical 
AI-related expertise (Alekseeva et al., 2021). While the overall effect size 
is relatively small, linkage intensity has a stronger effect on the proba-
bility of AI adoption in relation to flows of deep rather than superficial 
knowledge, and reciprocity. We found that greater cognitive proximity 
strongly moderates the positive effects of inter-firm linkages allowing 
the transmission of deep AI knowledge (Boschma, 2005; Sorenson et al., 
2006). This implies that AI-related cooperation is motivated not only by 
access to AI expertise but also depends on the identification of partners 
working in a related business context to enable transfers of knowledge. 

In contrast to research that emphasizes the importance of geographic 
proximity for the transmission of complex (technological) knowledge 
(Sorenson et al., 2006; Boschma and Frenken, 2010), we observed high 

0.0
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AI_reg betw_all cogn_mean deepAIrecshare deepAIshare degree_ai geo_mean InnoProb supAIrecshare supAIshare
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Fig. 5. Average marginal effects of the variables of interest and for selected models 
Note: This figure shows the AME with confidence intervals for the models explaining adoption of deep AI knowledge. The regression model numbers correspond to 
the numbering in Table 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

J. Dahlke et al.                                                                                                                                                                                                                                  



Research Policy 53 (2024) 104917

14

Fig. 6. Predicted probability of AI adoption based on levels of variables capturing epidemic mechanisms 
Note: This figure depicts the predicted probabilities of AI adoption for interactions of variables along varying levels. The axes represent variables (rugs indicate 
observation density); the lines represent isoquants along (between) which the predicted probabilities for AI adoption are stable (change). The lines correspond to the 
colouring going from low (blue) to high (red) to represent the predicted probabilities. (A) and (B) depict the predicted probabilities of interactions between intensity 
of linkages to deep AI knowledge and levels of cognitive (left) and geographic (right) proximity. (C) and (D) are the predicted probabilities of the interdependencies 
between sectoral (left) and regional (right) environmental mimetic pressure. (E) depicts the added effect of absorptive capacities on the predicted probabilities 
considering level of firm innovativeness vis-à-vis deep AI linkage intensity. (F) depicts the contingent effects of cognitive proximity and degree of embeddedness in 
the AI knowledge network (degree centrality, normalized). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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negative interaction effects between geographical proximity and AI 
linkage intensity on the probability of AI adoption. This suggests, first, 
that the transmission of deep AI knowledge is not affected by geographic 
distance, and second, this expresses the tendency of AI adopters to 
network with other regional AI hot-spots, albeit across geographical 
distance in the DACH region. 

5.1. Socio-political implications 

National strategies to develop AI competencies in the DACH coun-
tries, especially Germany, are designed to create local hubs of knowl-
edge generation. This is enabled by investments in specific competence 
centers of AI research excellence, innovation funding for specific sectors 
and geographical areas, and networking programs designed to connect 
actors within and between knowledge hubs (Van Roy et al., 2021). Our 
results show that AI adoption emerges in close proximity to these AI 
production hot-spots and are aligned to the geographical focuses of 
national AI strategies. This results in both a regional and industry- 
specific concentration of explicit AI knowledge. Large parts of the 
remaining geographic and relational space have no exposure to AI- 
relevant knowledge which is in line with literature on the cluster pre-
mium in relation to the production and diffusion of knowledge 
(Audretsch and Feldman, 1996; Baptista and Swann, 1998; Spencer 
et al., 2010). Felten et al. (2021, p. 2210) found strong geographic 
localization patterns related to AI knowledge and argue that “it is 
possible that a region's exposure to AI generates tacit knowledge about 
how to work with and benefit from the technology that in turn consti-
tutes a capability upon which future innovation will build.” This high-
lights the risk of creation of economic disparity induced by cluster 
policies, as they may further disadvantage structurally weaker regions 
(Hassink and Gong, 2019) and create threats of technological lock-in 
(Boschma and Frenken, 2010; Crespo et al., 2013). 

In AI adoption clusters, early exposure to knowledge can lead to 
virtuous cycles of knowledge spillovers through network effects (Sor-
enson et al., 2006; Hekkert and Negro, 2009) which ultimately will 
affect the performance of selected firms in local hot-spots (Cassiman and 
Veugelers, 2002; Roper et al., 2017). Broekel et al. (2015) show that 
policy interventions can exacerbate these disparities by increasing 
likelihood of obtaining an R&D subsidy, further intensifying embedd-
edness in relevant R&D networks (Chowdhury et al., 2022). 

While a non-neutral strategy in relation to region and sectors (Foray, 
2016) and support for the production of a given technology may be 
warranted by the need for complex and related knowledge (Balland and 
Boschma, 2021), diffusion of applications of the technology may need 
different types of policy instruments which overcome the local cluster 
effect. Too great an emphasis on the production of knowledge within 
specific regions or specific industries could lead to closed systems of 
adoption which exclude numerous national regions and sectors. These 
path dependencies could lead also to a narrow distribution of value 
creation across firms, lowering the societal returns from AI as expertise 
and intangible assets become concentrated among a few suppliers of AI 
solutions and impede technological autonomy of those firms that 
depend on these suppliers (Franco et al., 2023). Rikap and Lundvall 
(2022) describe this as resulting from emerging corporate innovation 
systems where valuable intangible assets are pooled among central firms 
(see also Lundvall and Rikap, 2022) leading to what Bodrožić and Adler 
(2022) call a digital oligarchy which often is correlated with geographic 
localization. 

The development of large language models (LLM) and their appli-
cations in generative AI can be associated with our research in relevant 
ways. First, open access to use LLMs as platform technology (foundation 

model) could enable greater access to state-of-the-art technology by 
reducing the amount of deep knowledge and the computational infra-
structure needed to employ AI-based technologies. The reduced need for 
deep knowledge and intangible assets would overcome the problem of 
silos of adoption identified in our paper. However, reliance on founda-
tion models could lead to a greater concentration of the benefits of the 
technology (Franco et al., 2023). While the emergence of foundation 
models could spur diffusion of AI-based augmentations to users' existing 
processes, reliance on these models could hamper more innovative use 
of AI technology, and especially if an intended use is incompatible with 
the dominant foundation model design. Were both these scenarios to 
apply (Dahlke and Ebersberger, 2023), this would further muddy the 
picture of the link between AI technology and economic development at 
the larger scale. This calls for more research investigating the relation-
ship between technology usage (aggregate diffusion) and firms' eco-
nomic performance (economic systems). 

In our study we identified large-scale quantitative indicators for the 
dimensions of diffusion which reveal concentrations of economically 
useful AI knowledge. However, the closed nature of what we call the AI 
knowledge network can be represented only in static, structural terms. 
Future research could focus on the qualitative nature of firm linkages by 
specifically identifying buyer-supplier relationships within these net-
works in the form of digital value chains. Our hyperlink data allowed us 
to identify the network positions of firms and to relate their centrality to 
the level of accumulated expertise (and potential returns) over time. 
From a policy perspective, this could increase the ability to monitor the 
diffusion and impact of AI technology (e.g., Manzoni et al., 2022; Arranz 
et al., 2023) by capturing a systemic perspective based on firm-level data 
rather than individual cases or loosing structural properties in broad 
aggregates on the industry or regional level. A systemic perspective al-
lows selection among promising candidate firms (or communities) to 
broaden diffusion through inter-firm networks (Abbasiharofteh et al., 
2021), or detect patterns of adoption among firms that could lead 
potentially to technological lock-ins and lock-outs. A production- 
oriented technology policy could be complemented by a technology 
policy with diffusion-based incentive schemes to motivate technology 
producers to engage in knowledge and technology dissemination ac-
tivities (Hahn and Yu, 1999). However, the question remains how these 
policies may transcend local clusters if production and application are 
closely linked. Chowdhury et al. (2022) suggest following the US 
establishment of geographically dispersed research centers as part of any 
national AI strategy. However, in the DACH region in particular, the 
level of capabilities required to establish AI research institutions is 
unclear. 

Balland and Boschma (2021) suggest that that cooperation among 
regions with sufficient relatedness among economic activities can 
facilitate transfers of complex knowledge and could help less developed 
regions to diversify into more complex technologies. Our results suggest 
that a similar mechanism might support the diffusion of AI application 
across firms. Since we show that a certain level of cognitive proximity 
among connected firms can facilitate the transfer of deep AI knowledge, 
but that geographical proximity is not a necessary condition. As estab-
lishing links between cognitively proximate firms or communities of 
firms is not feasible within some regions, Janssen et al. (2020) show that 
cognitive proximity can be substituted by the presence of systemic 
innovation intermediaries able to bridge cognitive distance between 
otherwise distant actors and facilitate exchanges of know-how instead of 
creating unidirectional dependencies. 

Analysis of our complementary survey data shows the significance of 
ICT experts and high-skilled human capital for building social capital to 
enable adoption of AI technology and suggests that these seed 

J. Dahlke et al.                                                                                                                                                                                                                                  



Research Policy 53 (2024) 104917

16

investments could trigger virtuous cycles of AI knowledge diffusion 
(Alekseeva et al., 2021). However, investments in AI-specific education 
are unlikely to reap rewards without the presence of related skills and 
activities, and this underlines the importance of interregional linkages 
(to AI hot-spots). To avoid the construction of digital oligarchies, Rikap 
and Lundvall (2022, p. 408) suggest the need for a “global knowledge 
commons with an equal and fair distribution of the tools to access and 
use knowledge both within and across national borders.” 

5.2. Managerial implications 

The impact of epidemic transmission of AI knowledge through 
various channels has practical implications for managers. First, we have 
shown that indirect mimetic pressure from the firm's environment has a 
stronger effect on AI adoption than the intensity of direct linkages while 
environmental pressure from the industry sector matters especially for 
firms with low intensity AI linkages. In the regional case, these two 
transmission channels are orthogonal which suggests that for some 
firms, the adoption of AI is based on bandwagon behavior (Abrahamson 
and Rosenkopf, 1993) that is a herd mentality to adoption of the tech-
nology reinforced by positive feedback loops. While the decision to 
leverage positive externalities may be as much rational as the result of 
social conformity, future research could examine more accurate ways to 
identify relevant peer groups with better information on AI technology 
adoption and reduce potentially irrational decision-making based on a 
bandwagon effect and response to mimetic pressure from the general 
environment. 

Lanzolla and Suarez (2012) show that bandwagon behavior related 
to technology adoption decisions can be the result of the different types 
of information processed at different managerial levels within the or-
ganization. Indirect mimetic pressure is more likely to be received and 
absorbed by higher level managers who may not be completely aware of 
the technical expertise in the organization's lower hierarchical levels. In 
turn, this could determine how long it takes to progress from the initial 
moment of adoption to intensive use of the technology. In some cases, 
misalignment in the motivations to adopt AI across managerial hierar-
chies could create tensions and frustrations that are a barrier to the 
organization's effective integration of the technology in the company's 
processes (Strang and Macy, 2001; Lanzolla and Suarez, 2012). Since for 
selected firms in AI hot-spots these mimetic pressures can be strong, the 
decision to adopt AI technology requires reflexive and inclusive pro-
cesses and practices across multiple hierarchical levels within the or-
ganization. Future research could explore how these organizational 
practices and capabilities could be better aligned across hierarchical 
levels which would improve our understanding of these relationships 
and their implications for AI adoption and performance. 

Second, we offer evidence on the positive effects of deep AI knowl-
edge transmitted through direct linkages but also show how sensitive 
these effects are with respect to contingent factors such as cognitive 
proximity and strength of linkages. This suggests a strong need for 
managerial attention in building up the right social capital and their 
ability to search, acquire, assimilate, and transform knowledge relevant 
to facilitate AI adoption. These multiple relations to These types of social 
capital and capabilities instill trust in the reliability of the new tech-
nological knowledge (Uzzi, 1996; Smith and Papachristos, 2016), and 
reduce uncertainty about emerging technology. The fostering of direct 
linkages to sources of deep AI knowledge may be especially important if 
mimetic pressure is otherwise encouraging sub-optimal adoption de-
cisions. Knowledge transmitted through direct linkages often is chan-
neled through lower levels of managerial hierarchies that embody the 
firm's practical realities (Strang and Macy, 2001; Lanzolla and Suarez, 

2012). 
Search to facilitate AI adoption needs to go beyond the firm's im-

mediate geographic vicinity. Our results suggest that fostering links with 
distant sources of knowledge are feasible and cooperation partners 
should be selected on the basis of a shared knowledge base which will 
enable transfers of context-specific knowledge on AI applications. This 
adds to the findings in Rammer (2022) by showing the importance of 
absorptive capacity in sourcing deep AI knowledge (Cohen and Levin-
thal, 1990) and the importance also of the compatibility between the 
external knowledge and the firm's existing knowledge (Ebersberger and 
Herstad, 2011). 

5.3. Limitations 

Our study suffers from several limitations related to use of nontra-
ditional, non-longitudinal data to map new and emerging digital tech-
nologies. First, our web-based measurements are related to information 
provided on company websites and the presence of hyperlink connec-
tions established between firms. They rely on a firm's efforts, capabil-
ities, and needs to advertise their usage of technology. This raises 
questions about whether this communication strategy would be equally 
important for firms in different sectors, size classes, regions, and so on. 
Our model is particularly capable of identifying the types of AI adopters 
that specifically develop AI solutions, as these firms advertise this very 
prominently. Our model can identify less obvious AI adopters, but 
maybe with less accuracy. For example, cases of AI application in the 
human resources function might not be advertised on the firm's website 
which creates a reporting bias and underestimation of AI adoption. 
Another question refers to the types of relationships among firms 
captured by hyperlinks. Our analysis shows that reciprocal links have 
high levels of explanatory power in relation to AI adoption but inferring 
types of cooperation across millions of linkages is an ongoing challenge. 

Bearing in mind that other traditional innovation metrics do not 
come without similar baggage, we may address this caveat by pointing 
toward the geographic and sectoral distribution of our web-sample 
which seems to carry external validity when compared to other 
studies of technology diffusion (Bresnahan, 2021; Acemoglu and 
Restrepo, 2020; Acemoglu et al., 2022; Vannuccini and Prytkova, 2023), 
and especially those focused on the same region (Rammer, 2022). Our 
control variables capture basic firm characteristics and technological 
complementarities and are in line with other recent AI adoption studies 
(Chen et al., 2021; DeStefano et al., 2022; Felten et al., 2021) which adds 
to the validity of our results. Most importantly, we replicated our results 
for the core mechanisms of epidemic effects using a smaller and repre-
sentative survey sample of Swiss firms. 

Second, there might be concern related to our empirical strategy and 
cross-sectional data. We emphasize that our model must be interpreted 
in a correlational, non-causal manner. Considering the correlative 
diffusion patterns revealed provides some first indications for policy 
makers and managers. To limit concerns about simultaneity in the 
modeling of indirect mimetic pressure, we excluded the focal firm in our 
computation of aggregate indicators and constructed an intensity vari-
able for direct transmission (share of AI linkages). However, our 
network-based metrics involve some endogeneity issues. There could be 
some degree of reverse causality which is frequent in the context of 
homophilous behavior (in contrast to contagion) in social networks 
(Granovetter, 1985). To introduce some degree of exogeneity, we con-
ducted a very simplistic test using the survey-based AI adoption indi-
cator and the two waves of observations collected. Appendix Table A.4 
shows that when explaining AI adoption at time t using the lagged 
adoption indicator in addition to the sum of deep AI knowledge ties as 
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explanatory variable, the interaction between these latter two variables 
is positively significant, providing a slight indication that the delta in AI 
adoption over time correlates with network embeddedness. Future 
research could address the question of causality employing longitudinal 
data and more intricate network measures. 

6. Conclusions 

Our findings suggest that patterns of diffusion of AI are strongly 
related to epidemic and network effects and are also strongly localized 
and predominant in narrow industry sectors and regions. This is 
particularly true for indirect mimetic pressures emanating from the 
environment, but network measurements show that AI adoption also 
resembles a process of homophily in the inter-firm relational space. AI 
adoption seems to primarily take place within a closed network of AI- 
related knowledge where deeper embeddedness in these networks is 
associated with an increased likelihood of AI adoption by individual 
firms. However, rather than occupying central positions in the entire 
firm network these firms are located on the periphery. This might 
explain the slow rate of adoption at the macro-economic level since the 
locations of the sources of AI knowledge do not facilitate diffusion of AI- 
related knowledge across the entire inter-firm network. In the long run, 
these dynamics could potentially create structural competitive disad-
vantages and economic inequality related to the transformative poten-
tial of AI technology. However, our results suggest a potential lever to 
transcend local clusters, as direct linkages between firms seem to 
transmit AI knowledge even over longer geographic distances. This 
channel of transmission is complex, and its potential can be exploited 
only in the presence of specific conditions. These include links to sources 
of deep as opposed to superficial AI knowledge, reciprocal relations, 
extended search for sources of deep AI knowledge, and a sufficient 
number of linkages to cognitively similar firms. At the policy level, this 
calls for more fine-grained efforts to monitor technology diffusion using 
more dynamic and timely innovation metrics such as web-based mea-
surements focused on individual firm clusters. Policy instruments to 
promote use of AI technologies should support both the production and 
application of AI technologies and linkages across disconnected clusters. 
At a managerial level, our results highlight the relevance of investigating 
how different channels of knowledge transmission are related to effec-
tive adoption of AI technology. Finally, the comprehensive modeling 
approach proposed in this paper could be used to study diffusion of 
related emerging technologies. 
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Appendix A  

Table A.1 
Examples of paragraphs classified as deep AI knowledge.  

Category Examples 

Deep AI knowledge (general AI 
identity) 

“We are a leading specialty chemicals company based in [German city]. The core business is the development, manufacturing and marketing of 
chemical intermediates, additives and consumer protection products with annual sales of EUR [number] billion (2022). We manage our operating 
business through four segments: Advanced Industrial Intermediates, Specialty Additives and Consumer Protection. […] We focus on our 
customers' requirements in order to drive progress and reliably provide innovative product, material and service solutions. When developing new 
materials, we also work with artificial intelligence to reduce development times for our customers. Our manufacturing, administration and 
logistics processes are designed efficiently and with a focus on performance. Sustainability and responsibility are key factors behind our 
successful business operations. They help us become an even more efficient and competitive company while also supporting social goals such as 
protecting the environment. Our products also play a role in this, providing sustainable solutions in key areas such as electric mobility. This is 
[company].” 

Deep AI knowledge (products) “In addition, [company producing household equipment] developed the pioneering Cold Brew Process – a refreshing top innovation in the truest 
sense of the word. Cold water is slowly pulsed through freshly ground coffee under high pressure offering a coffee that is refreshing, energizing 
and with a wonderfully balanced aroma. The superlative and fully automatic machine can be controlled via a twice as fast 4.3” touch display and 
a Blue Crystal Rotary Switch. The specialty selection menu and artificial intelligence make operation particularly easy and intuitive” 
(translated from German). 

Deep AI knowledge (services) “Our approach offers a new level of precision in flower thinning. It is able to reach an optimum thinning rate even in highly variable environments 
and, at the same time, it avoids overspray completely, reducing the volume of chemicals sprayed by a vast amount, meaning much less 
environmental impact and much less chemical residue left on harvested apples. […]. Thanks to artificial intelligence methods, it will be able 
to reach an optimum thinning rate even in highly variable environments and it will significantly reduce the volume of chemicals sprayed.” 

Deep AI knowledge (processes) “How artificial intelligence is making our logistics fit for the future. [employee's name] works in Sales & Supply Chain Management at 
[company]. With the expansion of the pacemaker® solution, he ensures efficient and green supply chains. For our #DigiJob series, he explained 
to us what tomorrow's logistics will look like thanks to digital innovations.” 

Deep AI knowledge (talent) “Basic apprenticeship year at the vocational training center (BBC) in [city] and learn important basics for your job. In the subsequent three years 
of training at [company], you will expand your skills and knowledge in the frontend and backend and get to know modern and agile working 
methods. You help determine the focus for the final year of training based on your interests and skills. Digital transformation is a big topic at 
[company], which is why you will work on various exciting future topics such as robotics or artificial intelligence during your apprenticeship” 
(translated from German). 

Deep AI knowledge (external) “[partner company] has been supporting [company, “us”] in the exploitation of emerging technologies such as artificial intelligence (AI) 
and machine learning (ML) to improve both the quality and efficiency of numerical weather prediction. Recently, [company, “we”] signed an 
agreement with [partner company] to explore the benefits of AI/ML for enhancing the use of satellite and environmental data to enhance their 
mission of better protecting lives and property through more accurate and timely forecasts […]”  

Fig. A.1. Total degree distribution for (A) the entire inter-firm network and (B) AI knowledge network.   
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Fig. A.2. Descriptive statistics on share of AI companies by sector. 
Note: (A) depicts share of AI-positive firms by sector in the DACH-region; (B) depicts absolute number of companies in various sectors with superficial or deep AI 
knowledge (where both exist, we count only deep knowledge).  
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Table A.2 
Correlation matrix for variables of interest.   

AI deepAI supAI AI_sec AI_reg cogn_mean geo_mean supAIshare deepAIshare supAIrecshare deepAIrecshare degree_ai betw_all close_all InnoProb urban_d lnsize 

AI 
deepAI  0.81***                 
supAI  0.79***  0.43***                
AI_sec  0.22***  0.19***  0.18***               
AI_reg  0.10***  0.08***  0.09***  0.16***              
cogn_mean  0.02***  0.01***  0.02***  0.01***  0.02***             
geo_mean  − 0.08***  − 0.07***  − 0.07***  − 0.09***  − 0.08***  0.07***            
supAIshare  0.05***  0.03***  0.05***  0.08***  0.04***  0.01***  − 0.02***           
deepAIshare  0.10***  0.10***  0.08***  0.12***  0.04***  0.01***  − 0.03***  0.01***          
supAIrecshare  0.02***  0.01***  0.03***  0.02***  0.01***  0.01***  0.00  0.18***  0.00         
deepAIrecshare  0.05***  0.05***  0.03***  0.03***  0.01***  0.02***  0.00  0.00  0.15***  0.01***        
degree_ai  0.28***  0.21***  0.25***  0.14***  0.08***  0.01***  − 0.05***  0.16***  0.21***  0.03***  0.04***       
betw_all  0.07***  0.05***  0.06***  0.06***  0.05***  0.00**  − 0.01***  0.03***  0.04***  0.00  0.00  0.55***      
close_all  0.08***  0.06***  0.08***  0.07***  0.07***  0.00**  − 0.10***  0.09***  0.10***  0.00*  0.00*  0.28***  0.34***     
InnoProb  0.23***  0.20***  0.19***  0.40***  0.18***  0.00  − 0.22***  0.06***  0.10***  0.02***  0.03***  0.16***  0.09***  0.13***    
urban_d  0.08***  0.06***  0.07***  0.14***  0.55***  0.02***  − 0.06***  0.04***  0.03***  0.01***  0.01***  0.07***  0.05***  0.07***  0.13***   
lnsize  0.07***  0.06***  0.06***  − 0.02***  0.02***  0.07***  − 0.04***  0.01***  0.02***  0.01***  0.01***  0.12***  0.14***  0.19***  0.15***  0.03***  
lnage  − 0.03***  − 0.04***  − 0.03***  − 0.11***  − 0.06***  0.02***  0.06***  − 0.02***  − 0.03***  0.00  − 0.01***  0.01***  0.04***  0.08***  − 0.07***  − 0.04***  0.33*** 

* p < 0.1. 
** p < 0.05. 
*** p < 0.01.  
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Fig. A.3. Variance inflation factor for variables constructed using network centrality measures and direct linkages included in model 13 (see Table 4). 
Note: The dashed line indicates a threshold of 5 suggesting severe collinearity is affecting the estimates. In this model the regressors are well below this threshold at 
close to 1.  

Table A.3 
Average marginal effects for candidate models.  

Model Variable AME SE z p lower upper  

3 AI_reg  0.1917  0.0216  8.8706  0.0000  0.1494  0.2341  
3 AI_sec  0.1999  0.0100  20.0534  0.0000  0.1804  0.2194  
3 cogn_mean  0.0075  0.0015  4.9445  0.0000  0.0045  0.0105  
3 deepAIshare  0.0863  0.0027  32.1401  0.0000  0.0810  0.0915  
3 geo_mean  − 0.0286  0.0018  − 16.1426  0.0000  − 0.0320  − 0.0251  
3 InnoProb  0.0745  0.0015  48.9033  0.0000  0.0715  0.0775  
3 supAIshare  0.0289  0.0044  6.5009  0.0000  0.0202  0.0376  
9 AI_reg  0.2084  0.0252  8.2646  0.0000  0.1590  0.2578  
9 AI_sec  0.2113  0.0086  24.4570  0.0000  0.1943  0.2282  
9 cogn_mean  0.0076  0.0016  4.8464  0.0000  0.0045  0.0107  
9 deepAIrecshare  0.2006  0.0177  11.3219  0.0000  0.1659  0.2353  
9 geo_mean  − 0.0287  0.0019  − 14.9833  0.0000  − 0.0325  − 0.0250  
9 InnoProb  0.0771  0.0014  53.9156  0.0000  0.0743  0.0799  
9 supAIrecshare  − 0.0072  0.0279  − 0.2597  0.7951  − 0.0618  0.0474  
11 AI_reg  0.2026  0.0247  8.1934  0.0000  0.1541  0.2510  
11 AI_sec  0.2064  0.0115  17.9087  0.0000  0.1838  0.2290  
11 close_all  0.0226  0.0023  9.9858  0.0000  0.0182  0.0270  
11 cogn_mean  0.0088  0.0015  5.8631  0.0000  0.0059  0.0118  
11 deepAIshare  0.0788  0.0031  25.3630  0.0000  0.0727  0.0849  
11 geo_mean  − 0.0283  0.0019  − 14.5843  0.0000  − 0.0322  − 0.0245  
11 InnoProb  0.0774  0.0018  44.1039  0.0000  0.0740  0.0809  
11 supAIshare  0.0234  0.0049  4.7495  0.0000  0.0137  0.0330  
12 AI_reg  0.1904  0.0215  8.8648  0.0000  0.1483  0.2324  
12 AI_sec  0.2001  0.0093  21.4495  0.0000  0.1818  0.2184  
12 betw_all  0.0586  0.0089  6.5503  0.0000  0.0410  0.0761  
12 cogn_mean  0.0078  0.0015  5.2541  0.0000  0.0049  0.0108  
12 deepAIshare  0.0859  0.0028  30.7391  0.0000  0.0804  0.0914  
12 geo_mean  − 0.0287  0.0016  − 17.4362  0.0000  − 0.0319  − 0.0255  
12 InnoProb  0.0743  0.0014  54.4261  0.0000  0.0717  0.0770  
12 supAIshare  0.0281  0.0046  6.1162  0.0000  0.0191  0.0372  
13 AI_reg  0.1786  0.0240  7.4394  0.0000  0.1315  0.2256  
13 AI_sec  0.1992  0.0107  18.6512  0.0000  0.1783  0.2202  
13 close_all  − 0.0064  0.0024  − 2.6912  0.0071  − 0.0111  − 0.0017  
13 cogn_mean  0.0092  0.0015  6.1612  0.0000  0.0062  0.0121  
13 deepAIshare  0.0624  0.0034  18.2656  0.0000  0.0557  0.0690  
13 degree_ai  0.2594  0.0148  17.5879  0.0000  0.2305  0.2884  
13 geo_mean  − 0.0293  0.0019  − 15.4571  0.0000  − 0.0331  − 0.0256  
13 InnoProb  0.0736  0.0017  44.4817  0.0000  0.0703  0.0768  
13 supAIshare  0.0044  0.0058  0.7604  0.4470  − 0.0070  0.0158   
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Table A.4 
A crude attempt at addressing simultaneity of AI adoption and fostered AI linkages.  

AI_qnt (0/1), OLS (1) (2) (3) (4) 

AI_qnt-1 0.526*** 
(0.067) 

0.491*** 
(0.075) 

0.484*** 
(0.072) 

0.439*** 
(0.079) 

deepAIsum 0.063*** 0.035 0.051** 0.023  
(0.020) (0.028) (0.026) (0.030) 

AI_qnt-1 x deepAIsum  0.073* 
(0.040)  

0.108* 
(0.056) 

lnsize   0.021** 0.021**    
(0.009) (0.009) 

lnage   0.005 0.004    
(0.015) (0.015) 

export   0.008 0.010    
(0.024) (0.024) 

ICTexperts   − 0.013 − 0.012    
(0.020) (0.020) 

foreign   − 0.020 − 0.020    
(0.027) (0.027) 

inno   0.006 0.010    
(0.020) (0.020) 

R&D_int   − 0.185 − 0.389**    
(0.260) (0.198) 

digit   0.034 0.031    
(0.030) (0.030) 

urban_d   0.034 0.032    
(0.025) (0.025) 

compet   − 0.004 − 0.005    
(0.007) (0.007) 

Constant 0.051 0.058 − 0.065 − 0.052  
(0.037) (0.037) (0.070) (0.069) 

Sector Yes Yes Yes Yes 
Region Yes Yes Yes Yes 
Obs. 790 790 733 733 
R2 0.261 0.265 0.252 0.260 
R2_adj 0.251 0.255 0.231 0.238 

Robust standard errors. 
* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 

Appendix B. Supplementary material 

Supplementary material to this articule (including a detailed account of the procedures to train and validate the web-based AI indicator) can be 
found online at https://doi.org/10.1016/j.respol.2023.104917. 
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