
Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

a

b

c

1

o
b
o

d
(

h
1

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents on the
WorldWideWeb

journal homepage: www.elsevier.com/locate/websem

Towards theWeb of Embeddings: Integratingmultiple knowledge
graph embedding spaceswith FedCoder
Matthias Baumgartner a,∗, Daniele Dell’Aglio b,a, Heiko Paulheim c, Abraham Bernstein a

Department of Informatics, University of Zurich, Zurich, Switzerland
Department of Computer Science, Aalborg University, Aalborg, Denmark
Data and Web Science Group, University of Mannheim, Mannheim, Germany

a r t i c l e i n f o

Article history:
Received 1 April 2022
Received in revised form 22 July 2022
Accepted 2 August 2022
Available online 8 August 2022

Keywords:
Knowledge graphs
Knowledge graph embedding
Embedding space integration
Web of Embeddings

a b s t r a c t

The Semantic Web is distributed yet interoperable: Distributed since resources are created and
published by a variety of producers, tailored to their specific needs and knowledge; Interoperable
as entities are linked across resources, allowing to use resources from different providers in concord.
Complementary to the explicit usage of Semantic Web resources, embedding methods made them
applicable to machine learning tasks. Subsequently, embedding models for numerous tasks and
structures have been developed, and embedding spaces for various resources have been published.
The ecosystem of embedding spaces is distributed but not interoperable: Entity embeddings are not
readily comparable across different spaces. To parallel the Web of Data with a Web of Embeddings,
we must thus integrate available embedding spaces into a uniform space.

Current integration approaches are limited to two spaces and presume that both of them were
embedded with the same method — both assumptions are unlikely to hold in the context of a Web
of Embeddings. In this paper, we present FedCoder— an approach that integrates multiple embedding
spaces via a latent space. We assert that linked entities have a similar representation in the latent space
so that entities become comparable across embedding spaces. FedCoder employs an autoencoder to
learn this latent space from linked as well as non-linked entities.

Our experiments show that FedCoder substantially outperforms state-of-the-art approaches when
faced with different embedding models, that it scales better than previous methods in the number
of embedding spaces, and that it improves with more graphs being integrated whilst performing
comparably with current approaches that assumed joint learning of the embeddings and were,
usually, limited to two sources. Our results demonstrate that FedCoder is well adapted to integrate
the distributed, diverse, and large ecosystem of embeddings spaces into an interoperable Web of
Embeddings.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Any problem in computer science can be solved with another level
of indirection attributed to David Wheeler among others1

. Introduction

Semantic Web research has not only had a major impact
n the development and adoption of Knowledge Graphs (KGs)
ut also on making them interoperable. With the endorsement
f Linked Open Data (LOD), a wide and diverse spectrum of

∗ Corresponding author.
E-mail addresses: baumgartner@ifi.uzh.ch (M. Baumgartner),

ade@cs.aau.dk (D. Dell’Aglio), heiko@informatik.uni-mannheim.de
H. Paulheim), bernstein@ifi.uzh.ch (A. Bernstein).
1 See https://en.wikipedia.org/wiki/Butler_Lampson#Quotes.
ttps://doi.org/10.1016/j.websem.2022.100741
570-8268/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
graphs can nowadays be used in unison by having entities that
represent the same real-world concept linked across KGs. In
recent years, embedding methods furthered the versatility of
KGs by making them accessible to machine learning methods.
These methods learn a numerical representation of entities (and
possibly relations) that reflect structural patterns in the graph and
are typically used as a feature vector in downstream classifica-
tion or regression applications. A variety of paradigms has been
explored since, resulting in KG embedding models for different
tasks or specific KG structures [1,2]. A knowledge graph embed-
ding typically only provides representations for the entities in
that KG. Hence its usability is limited to only those applications
that agree with its set of entities. Since the Semantic Web, by
definition, cannot have one graph that covers all possible entities,
we envision an embedding space that spans all (or at least large

parts) of the LOD cloud [3].

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.websem.2022.100741
https://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2022.100741&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:baumgartner@ifi.uzh.ch
mailto:dade@cs.aau.dk
mailto:heiko@informatik.uni-mannheim.de
mailto:bernstein@ifi.uzh.ch
https://en.wikipedia.org/wiki/Butler_Lampson#Quotes
https://doi.org/10.1016/j.websem.2022.100741
http://creativecommons.org/licenses/by/4.0/

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

e
n
a
a
w
i
s
s
t
t
L
o
i
u
t
7
n

q
i
K
a

W
c
f
f
g
s

l
s
w
T
F
t
e
o
d
p
i
K
t
c
s
a
t
i
t
p

It is tempting to embed the whole LOD cloud directly. How-
ver, there are a number of conceptual, organizational, and tech-
ical challenges that render such an endeavor impractical. First
nd foremost, such an approach would require centralization in
n otherwise purposely decentralized KG ecosystem. Second, it
ould require a single institution to finance an infrastructure that

s able to collect, store, and embed billions of triples. Moreover,
ince a KG embedding is tied to the underlying graph, the sub-
tantial effort and cost of embedding incur again whenever any of
he graphs, any alignment between graphs, or the composition of
he LOD cloud changes. Third, with the diversity of graphs in the
OD cloud, it is challenging (or even impossible) to find a suitable
ne-size-fits-all embedding model, and searching for one would
ncrease the cost of embedding further. One could potentially
se joint embedding techniques to relax this last issue, however
hese approaches have so far only been studied for two KGs [4–
], and the LOD cloud is continuously growing, far exceeding this
umber.2
Given the impracticality of one big embedding space, the

uestion arises: how can we combine multiple KG embedding spaces
nto a uniform Web of Embeddings? Embeddings for a variety of
Gs have already been published by different providers, such
s KGVec2Go,3 PyTorch-BigGraph,4 LibKGE,5 and others. Each of

them uses different embedding models and hyperparameters,
adapted to the respective graphs and use-cases they intend to
cover [8–10].

This situation reflects the distributed nature of the Semantic
Web, where different providers share data about the same en-
tities in different contexts. The challenge of building the Web
of Embeddings is that entity embeddings are not readily com-
parable across KG embedding spaces, i.e., entities linked with
the owl:sameAs relation do not have the same embedding vector
despite representing the same real-world concept.

The Web of Embeddings mirrors the core idea of the Semantic
eb that data is distributed yet interlinked: Each KG provider can

hoose the embedding method and hyperparameters that best
it their data, yet an application can combine embedding spaces
rom multiple graphs and use them in a uniform manner. Analo-
ously to the Semantic Web, we must bridge multiple embedding
paces to solve this problem.
To integrate two KG embedding spaces, previous approaches

earned a mapping function from one space to the other, given
ome linked entities as anchors [4–7,11,12]. However, such a pair-
ise mapping becomes inefficient for more than a few graphs.
o address the challenge of a Web of Embeddings, we present
edCoder (Fig. 1), a method that learns a latent space from mul-
iple given embedding spaces by finding mappings from each KG
mbedding into the latent space and vice-versa. So akin to the
riginal vision of RDF as a joint representation that bridges the
ifferent knowledge sources [13, slide 15], we propose to com-
ute a joint latent embedding space to bridge the various special-
zed embeddings. This principle retains the idea of mapping one
G embedding to another by expressing it as a composite of the
wo respective mappings via the latent space, i.e., the latent space
an be seen as a learned hub to which we align KG embedding
paces. In this latent space, we assert that linked entities have
similar embedding. A key idea to enable this approach is that

here should also be a mapping from each embedding space onto
tself via the latent space. We formalize this insight by learning
he latent space through autoencoders [14,15]. The benefit of this
rocedure is that autoencoders are trained in an unsupervised

2 https://lod-cloud.net/
3 http://www.kgvec2go.org/
4 https://github.com/facebookresearch/PyTorch-BigGraph
5 https://github.com/uma-pi1/kge
2

Fig. 1. FedCoder learns a mapping function (Encoder) from each source KG
embedding into a latent space, and an analogous mapping from the latent space
to each target KG embedding (Decoder), such that linked entities have the same
representation in the latent space

fashion, i.e., we can use all entities of a KG instead of only the
linked ones to train the necessary mapping functions.

The Semantic Web is large and diverse: As of May 2020, the
Linked Open Data Cloud2 covers over 1250 distinct resources and
includes graphs from a variety of domains such as geography,
linguistic resources, or scientific publications, as well as cross-
domain resources like DBpedia [16]. Each of those resources
can potentially be embedded, hence the Web of Embeddings is
likewise confronted with heterogeneity in the embeddings and
scalability in terms of graphs. In this paper, we, therefore, answer
two research questions. First, we ask how do different embed-
ding space integration models compare in the face of heterogeneous
embeddings? In the Web of Embeddings, it is unlikely and, as ar-
gued, also undesirable that all embedding providers agree on the
same embedding model since everyone optimizes towards their
own data and goals. When empirically analyzing this question,
we show that FedCoder delivers competitive integration perfor-
mance between KGs when all are embedded with the same model
and outperforms the state-of-the-art when different embedding
models are employed.

Second, we ask how do different embedding space integration
models perform in the presence of multiple KGs? As the Web of
Embedding consists of more than two embedding spaces, it is
essential to analyze the efficiency as well as the effectiveness of
an integration approach, and to investigate how they can lever-
age/combine the knowledge from all KGs. Our results demon-
strate that FedCoder scales better than a pairwise approach in the
number of KGs and that the link prediction performance across
graphs improves as more KGs are integrated simultaneously.

The remainder of this paper is structured as follows. First,
we review related literature and contrast previous approaches
with our work. Second, we introduce notations and give the
necessary background. Third, we present our key ideas and dis-
cuss FedCoder in detail. Fourth, we contrast FedCoder against the
state-of-the-art in their ability to integrate different embedding
models (RQ1). Fifth, we demonstrate the scaling properties of
FedCoder and the relevant baselines (RQ2). Finally, we conclude
our main findings and discuss limitations and potential future
work.

2. Related work

In this section, we review relevant KG embedding models
as well as related embedding space integration methods that
were developed for KG alignment, translation, or multi-modal
embedding. In Table 1, we present an overview that distinguishes
related works into four categories. First, we distinguish them
by what source types they employ. We remark whether meth-
ods use embedding spaces from the same type of data source,

https://lod-cloud.net/
http://www.kgvec2go.org/
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/uma-pi1/kge

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

r
t

m

Table 1
Literature overview.
Categorization Methods Problem setting

Source types Learning framework Integration type Integration model

Homogeneous joint embedding pairwise identity JE [4], MTransE [5],
MGTransE [6], AliNet [7]

KG alignment

translation MTransE [5], MGTransE [6] KG alignment
projection JEwP [4], MTransE [5],

MGTransE [6]
KG alignment

parameter-sharing ITransE [11] KG alignment

latent space replacement Schwenk et al.[17] Translation (sentences)

mapping pairwise orthogonal projection MUSE [18] Translation (words)

Heterogeneous joint embedding pairwise parameter-sharing, identity StarSpace [19] Multi-modal embedding
replacement Wang et al.[20] Multi-modal embedding
identity KADE [21] Multi-modal embedding

latent space orthogonal projection MultiKE [22] KG alignment
e.g., only KG embedding spaces (homogeneous), or if they mix
different source types, e.g., use KG and word embeddings (hetero-
geneous). Second, we classify previous works by which learning
framework they use. While most methods construct two em-
bedding spaces simultaneously (joint embedding), others only
learn a transformation from one pre-trained embedding space
onto another (mapping). Third, we categorize approaches by their
integration type. Specifically, we distinguish between pairwise
approaches that combine two embedding spaces (pairwise) and
latent space methods that combine embedding spaces in an in-
termediate, learned space (latent space). Fourth, we highlight
various integration models, i.e., means to compare embedding
vectors across spaces that have been employed by existing in-
tegration methods. In the remainder of this section, we first
introduce KG embedding methods, then discuss previous works
grouped by which problem setting they consider.

KG embedding models. A KG embedding model constructs a low-
dimensional numerical representation, i.e., an embedding vector,
for every entity and possibly every relation in the KG. The core
idea is that these embeddings capture the structural information
of the KG, such that the similarity of two entities’ embeddings ex-
presses how they are related. KG embedding methods mostly use
this property to perform link prediction, i.e., estimating the most
likely tail entity to a given head entity and a relation. The state-
of-the-art can be coarsely separated into four categories: geo-
metric, matrix factorization, deep learning, and language-based
models [1,23]. Geometric models are based on the idea that
the relation corresponds to a geometric operation between the
head and tail entity in the embedding space. This was first real-
ized in TransE, where the relation implements a translation from
the head to the tail entities’ embeddings [24]. The same idea
was later extended in various ways, e.g., TransH or TransR use
elation-specific projections of entity embeddings [1]. Matrix fac-
orization models decompose the KG’s adjacency tensor6 into two
separate components that characterize the entities or relations,
respectively. The most prominent approaches are RESCAL and
DistMult[25,26]. Both of them use a matrix to represent relations,
but RESCAL uses a full-rank matrix while DistMult simplifies
it to a diagonal matrix. Deep learning models employ a se-
ries of neural network layers with typically non-linear activation
functions to capture patterns in the graph. For example, ConvE
uses a two-dimensional convolutional layer on the head and
relation embedding vectors that can learn elaborate interactions
between them. They then use a fully connected layer with ReLU
activation [27] to combine this with the tail entity embedding
[28]. Language-based models such as RDF2Vec [29], Owl2Vec* [30],

6 The three-way adjacency tensor is constructed by stacking the adjacency
atrices of the KG per relation.
3

OPA2Vec [31], or Onto2Vec [32] convert the graph into a set of
entity sequences, then train a word embedding model [33] on
these sequences.

For the geometric and matrix factorization categories, variants
based on complex numbers were proposed. These models com-
pose the embedding vector from a real and an imaginary part.
Analogous to geometric models, RotatE implements the relation
as rotation in the complex space [34]. For matrix factorization
models, ComplEx factorizes the adjacency matrix in the com-
plex space [35]. While numerous extensions and alternatives
to the embedding models discussed here exist (see [1,23] for
an overview), we focus on TransE, DistMult, RotatE, and Com-
plEx due to their conceptual clarity, conceptual relatedness, and
widespread adoption.

Embedding-based KG alignment. Similar to FedCoder, embedding-
based KG alignment methods establish a means to compare entity
embeddings across KG embedding spaces. The goal of KG align-
ment is to find links between entities of two KGs. Embedding-
based systems assume that linked entities are structurally similar
in both KGs, and as a KG embedding captures a KG’s structural
information, they link entities with similar entity embeddings.
To make entity embeddings comparable across KGs, several in-
tegration models have been proposed, which we review in the
following.

Embedding-based KG alignment methods generally follow the
joint embedding framework, which connects two embedding
methods via a mapping function, then learns both KG embedding
spaces simultaneously. The role of the two KG embeddings is to
capture structural information of the respective graph, and the
role of the integration model is to exchange information between
them such that entity embeddings become comparable. Training a
joint embedding requires the two KGs as well as a set of anchors,
i.e., pairs of linked entities, along which the embedding spaces
are joined. Approaches mostly differ in what integration model
they employ.

In the most elementary view, embeddings of linked entities
should be identical as they represent the same real-world con-
cept. This is implemented by parameter-sharing, where linked
entities share the same embedding by construction [11]. A re-
laxed version of this approach is to use a distance function instead
of a shared embedding [4–7]. This ensures that linked entities
have a similar but not necessarily identical embedding in both
KG embedding spaces. The rationale is to have fewer constraints
on the KG embedding model while still having a close coupling
of the embedding spaces. The benefit of these two approaches
is that the KG embedding integration introduces no additional
parameters. The Semantic Web expresses links between KGs as
relations, such as owl:sameAs. This concept can be mirrored in
joint embedding by handling links between entities in the same

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

t
w
w
i
m
s
t
T
m
t
t
a
d

L

h
o
f
a
e
e
r
t

a
a
h

d
a

d
a
o
{

a
v
m
o
m

3

way as the KG embedding model handles relations. Several works
build on TransE, which expresses relations as translations from
subject to object, hence they likewise implement the mapping
as translation between linked entities [5,6]. In contrast to a dis-
tance function, this approach introduces additional parameters
into the integration model. Finally, multiple approaches suggest
a projection matrix as the integration model [4–6]. Any integra-
tion model introduces additional constraints into the embedding
model, which might have an adverse effect on the embedding
itself. A projection matrix offers more flexibility than a distance or
translation, so the embedding spaces remain loosely coupled, and
different embedding dimensions can be chosen for the two KGs.
This comes at the cost of an increase in parameters to be learned,
which in turn increases the risk of overfitting. MultiKE [22] takes
a different route by utilizing information from multiple modali-
ties (triples, labels, and properties) about an entity. It uses TransE
to embed triples, a custom convolutional neural network for
properties, and an aggregate of pre-trained word embeddings
for labels. Instead of comparing the KGs or modalities directly,
it projects embeddings from all three modalities into a latent
space via an orthogonal projection matrix. The latent space is
trained such that an entity has the same representation across
all modalities, and linked entities have the same representation
across both KGs.

The discussed KG alignment methods differ from our work in
hree aspects: First, they all adopt the joint embedding frame-
ork, i.e., learn an embedding for both involved KGs. In contrast,
e also aim at integrating pre-trained embedding spaces as train-

ng embedding spaces for multiple KGs is impractical. Second,
ost approaches use a pairwise integration and limit their discus-
ion to two KGs. On the other hand, our problem setting requires
he combination of multiple KG embeddings in a scalable way.
hird, all discussed approaches assume the same KG embedding
odel and identical hyperparameters (mostly TransE) to embed

he KGs. This assumption is unrealistic and unenforceable in
he Web of Embeddings, hence we discuss the case where KGs
re embedded with different embedding models and potentially
ifferent hyperparameters.

anguage translation methods. Techniques to integrate multiple
embedding spaces are also found in language translation meth-
ods. Given word or sentence embedding methods, their goal is to
map representations between languages.

Schwenk et al. [17] propose a method that learns a com-
mon representation over sentences in multiple languages at once.
Their approach is similar to ours in that they map every source
language into a latent space and vice-versa. In contrast, they do
not constrain the latent space, instead, they train by translating
from every language into every other.

MUSE [18] is a word translation method that maps two word
embedding spaces onto each other via an orthogonal projection.
Similar to our problem setting, they assume pre-trained embed-
ding spaces and only learn the mapping between them. However,
they integrate embedding spaces pairwise while we take a latent
space approach. Furthermore, they use the same word embedding
model on both languages, while we are faced with different KG
embedding models.

Multi-modal embedding methods. We aim at integrating multiple
eterogeneous embedding spaces, a situation that also naturally
ccurs in multi-modal embedding. There, the idea is that dif-
erent modalities convey different aspects of the same entity,
nd embedding multiple modalities jointly will result in better
ntity embeddings. These methods also typically follow the joint
mbedding paradigm by embedding all modalities with their own
espective embedding model while connecting the embeddings
hrough an integration model. To train the embeddings jointly,
 s

4

they also use a set of cross-modal anchors that are pairs of items
from either modality.

Wang et al. [20] learn an embedding from KG triples and entity
labels. Their KG embedding model is a probabilistic variant of
TransE, for labels, they adapt the skip-gram word embedding
model [33]. To join the two embedding spaces, they use the
entity embedding in place of the respective word’s embedding in
the word embedding model and vice-versa. KADE [21] trains an
embedding over a KG and sentences. They use off-the-shelf meth-
ods, TransE and its derivatives on the graph, and par2vec [36]
for entity descriptions. The embedding spaces of both modal-
ities are trained in an alternating fashion, where information
between the two is exchanged in the form of a regularization
term that minimizes the Euclidean distance between embeddings
of corresponding entities and sentences. StarSpace [19] embeds
multiple modalities with a single embedding model. They build a
vocabulary of objects that includes items from all modalities, then
generate a set of object pairs that are supposed to have similar
embeddings. An object can be an item from any modality, or an
aggregation thereof. They hereby do not distinguish whether or
not items of a pair originate from the same modality. Effectively,
they compare object embeddings via the cosine distance function.
In part, it is also a parameter-sharing approach because it uses
the same embedding if an object occurs in multiple modalities
by construction.

In contrast to our work, these methods learn embedding
spaces for all modalities, whereas we focus on a mapping be-
tween pre-trained embedding spaces. Furthermore, they use cus-
tom or selected embedding models for the involved modalities,
while we cannot choose the embedding models freely but have
to admit any KG embedding model in principle. Lastly, they pre-
dominantly use a pairwise, distance-based integration approach
which is not suited for our purpose.

3. Preliminaries

In this section, we introduce the fundamental concepts and
notations used throughout this paper (also consult Table 2 for a
brief summary of symbols). We then describe a uniform frame-
work to highlight commonalities and differences of state-of-the-
art methods in the context of embedding space integration.

3.1. Knowledge graph

We define a knowledge graph as a structure of three sets
G := (V,R, E), whereas V is a set of entities (such as :turing or
:mathematician), R is a set of relations (e.g., :occupation), and E is
set of triples. In a KG G, a triple τ = (h, r, t) ∈ E represents
statement (e.g. (:turing , :occupation, :mathematician)), where
∈ V is the head entity, t ∈ V is the tail entity, and r ∈ R

is the relation. We interchangeably refer to entities as e, h, or t
epending on whether or not their position in a triple is relevant
nd use the bold notation of these symbols (i.e., e, h, or t) for their

respective embeddings.
Given two KGs, Gi := (Vi,Ri, Ei) and Gj := (Vj,Rj, Ej), we

efine the set of anchors A as pairs of entities that are linked
cross graphs i and j with the owl:sameAs predicate, i.e., a set
f entity pairs that represent the same real-world concept: A =

(ei, ej) ∈ Vi ×Vj}. We assume anchors to be unambiguous so that
n entity from Gi is linked to at most one entity from Gj and vice-
ersa. An entity from one graph can, however, still be linked to
ultiple other graphs. We further assume that at least a portion
f these anchors A are known a priori to train the integration
odel.

.2. Pairwise learning frameworks

To integrate embedding spaces, we can either embed the re-

pective KGs jointly or learn pairwise mappings between

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

i
s
e
g
c
L

L

w

3

t
e
t
o
e
e

s
p
e
t

h
b
e
A
d
w

o

m

E
t

Table 2
Symbols overview.

Symbol Description

Vi Set of entities in KG i.
Ri Set of relations in KG i.
Ei Set of edges in KG i.
Gi The KG i.
h, r, t head, relation, and tail of a triple.
τ A triple (h, r, t).
A Set of anchors between KGs.

N Number of KGs or embedding spaces.
ki The dimension of space i.
Z The latent space.
mi,j A mapping from space i to space j.

h, r, t Embedding vectors of triple components.
ei Embedding vector from space i.
z A vector in the latent space Z .

L Overall loss.
LI Integration loss.
LG

i KG embedding model loss for graph i.
Li Autoencoder loss for space i.
LR Orthogonal regularizer loss.

γ Margin between positive and negative samples.
λ Regularization coefficient.

P A projection matrix.
g An arbitrary transformation function.
h An activation function.
W A weight matrix.
b A bias vector.

pre-trained embedding spaces. In both cases, we formulate an
optimization problem, expressed by a loss L. Joint KG embedding
s the most widespread approach to combining KG embedding
paces in a uniform space. In this framework, we learn the KG
mbedding spaces and connect them along anchors across the
raphs, i.e., linked entities. The loss, therefore, consists of two
omponents: One term for the respective KG embedding model
G
i , and one to integrate embeddings across the graphs LI :

∼

N∑
i=1

LG
i + LI (1)

The advantage of joint embedding is that both embedding spaces
can be adapted to one another.

In the case where KG embedding spaces are pre-trained, we
learn a mapping between each pair of spaces but not the em-
bedding spaces themselves. The loss hence only includes the
mapping:

L ∼ LI (2)

The benefit of this scenario is that it is more efficient than joint
embedding since we take advantage of computations that were
already performed.

3.3. KG embedding models

A KG embedding model constructs a low-dimensional numer-
ical representation, i.e., an embedding vector, for every entity and
possibly every relation in the KG. This is achieved by defining a
triple score function f (τ) : (V × R × V) ↦→ R which assesses the
inverse plausibility of a triple τ = (h, r, t). The embedding vectors
h, r, and t appear as latent vectors of size k (the embedding
5

Table 3
Overview of different KG embedding models’ triple score functions
f . h, r, t denote embedding vectors of a triple’s head h, relation r ,
or tail t . ·̄ denotes the complex conjugate, ⊙ is the Hadamard
product. Re(·) is a function that returns the real part of a complex
vector, and diag(·) returns the diagonal elements of a square
matrix. The matrix factorization models express the triple score
as similarity rather than a distance measure, hence the negative
sign.

Model Triple score function f

TransE ∥h + r − t∥2

DistMult −
hTdiag(r)t


2

ComplEx −
Re{hTdiag(r)t̄}


2

RotatE ∥h ⊙ r − t∥2

dimension) in f . Table 3 summarizes the triple score functions
of the embedding models considered throughout this paper.

True statements are supposed to have substantially lower
scores than false ones. Since KGs typically follow the open-world
assumption, we cannot know whether a statement that is not part
of the KG is false or not. To cope with this, KG embedding models
typically generate negative triples by corrupting either the head
or tail entity of a positive triple. We denote the positive triples as
τ ∈ E+ and negative triples as τ ∈ E−.

Embedding vectors are learned by minimizing the overall loss
LG , which aggregates the scores of all positive and negative
triples in the KG. Models predominantly use a margin-based loss,
which tries to separate positive from negative triple scores by a
margin of γ :

LG
∼ −

∑
τ∈E+

log σ (γ − f (τ)) −

∑
τ∈E−

log σ (f (τ) − γ) , (3)

here σ denotes the sigmoid function and γ is a hyperparameter.

.4. Integration models

In an embedding space, entity similarity is expressed through
he similarity of their respective embeddings. To integrate entity
mbeddings between two KGs, we likewise want linked entities
o have similar embeddings. We achieve this by transforming
ne of the two spaces and by ensuring that transformed entity
mbeddings are close to the embedding of the respective linked
ntity in the other space.
Formally, we define a mapping m from embedding space i to

pace j as a function mi,j(ei) : Rki ↦→ Rkj . As this mapping should
lace an entity embedding from space i close to the respective
ntity embedding from space j (for all linked entities), we want
o minimize the distance d between entity embeddings after
mapping. We hence define the integration loss as:

LI
∼

∑
(ei,ej)∈A

d
(
mi,j(ei), ej

)
(4)

Typically, d is the Euclidean distance, i.e., d(x, y) = ∥x − y∥2,
owever other distance measures like the cosine distance can
e used as well. Note that the mapping m can be applied on
ither embedding space, hence we omit the reciprocal form.
ll embedding space integration approaches use this notion but
iffer in the mapping function m they consider. In the following,
e discuss the different options.
In the simplest case, we compare the entities directly to each

ther. Hence, the Identity mapping is defined as:

i,j(ei) = ei (5)

ffectively, this means that linked entities should ideally have
he same embedding in both spaces [4,11,19–21]. The advantages

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

m

A
e
T

m

t
t
t
c
b
m
g

t
o
e
n
i
a

L

w
i
r
t

4

t
t
f
t
o
o
F
o
s

m

of this integration model are its conceptual simplicity and that
it does not introduce new parameters that have to be learned.
For the same reason, it is, however, only applicable in a joint
embedding framework since it can only combine embedding
spaces by changing the embedding vectors directly. Furthermore,
it requires the embedding dimensions of the KG models to match,
i.e., k = ki = kj, so it can only be applied if the embedding
odels’ hyperparameters match. A high enough weight on LI

forces the respective entity embeddings across the graphs to
become identical, hence we can also interpret this approach as
a soft parameter-sharing model [11,19].

The Translation mapping is defined as:

mi,j(ei) = ei + v (6)

Inspired by TransE’s geometric interpretation of the embedding
space, the mapping can be interpreted as another relation and,
hence, be modeled by a translation vector v in the embedding
space [5,11]. Evidently, this allows the KG embedding spaces to
be offset by a constant, at the cost of additional O(ki) parameters,
and assuming matching embedding dimensions k = ki = kj.
lthough possible in principle, it is unlikely that pre-trained
mbedding spaces have the exact same shape besides an offset.
herefore, this model is only used in a joint embedding approach.
The Projection mapping is defined as:

i,j(ei) = Pijei (7)

By having a projection matrix as mapping, we can cope with
geometric transformations such as a rotation between the two
embedding spaces [4,5,11]. In contrast to the other mapping
functions, it can also be applied if embedding dimensions do not
match, i.e., ki ̸= kj, at the cost of O(kikj) additional parameters
o be learned. At the same time, the additional parameters make
his mapping more flexible than the previous ones, which has
wo benefits: First, the KG embedding models remain loosely
oupled in a joint embedding setup so that they can potentially
etter optimize for their own objective. Second, it is a reasonable
odel when embedding spaces are pre-trained, as it can apply
eometric transformations to warp one space onto another.
Building on the projection mapping, some approaches require

he projection to be orthogonal [18,22]. This additional constraint
n the projection matrix typically helps to prevent overfitting,
specially when the number of anchors is much lower than the
umber of parameters in the mapping. The Orthogonal Projection
s defined like the projection mapping in Eq. (7) but introduces
n additional regularization on the projection matrices Pij:

R
=

∑
i,j

PT
ijPij − 1

2
F

(8)

ith 1 the identity matrix, ∥·∥F the Frobenius norm. This regular-
zation term is added to the mapping loss in Eq. (4), i.e., we can
ewrite the overall losses in Eqs. (1) and (2) as L′

= L+λLR, with
he regularization coefficient λ as a hyperparameter.

. FedCoder

FedCoder builds on two foundations: A latent space and au-
oencoding. The latent space serves as a hub to efficiently in-
egrate multiple KG embedding spaces, circumventing the need
or pairwise space integration. The autoencoder provides a means
o learn the latent space from all entities instead of only linked
nes, based on the idea that every entity embedding should map
nto itself via the latent space. Fig. 2 visualizes both foundations.
edCoder can be employed in the joint embedding framework
r to only compute a mapping between pre-trained embedding
paces.
6

Fig. 2. Schematic view of FedCoder on two embedding spaces. The encoders
realize the mapping from each space into the latent space (mi,S), the decoders
ap latent space vectors into the embedding spaces (mS,i). The encoders and

decoders both have two layers. The black paths indicate the propagation of the
embedding vectors through the layers, the red arrows depict the idea behind
the integration and the autoencoder losses.

4.1. Latent space

Previously, integration approaches learned pairwise mappings
between mostly two KG embedding spaces; Our goal, however, is
to integrate N ≥ 2 embedding spaces. With a pairwise integration
approach, one would have to compute O(N2) mappings — one
from every graph to any other. Clearly, this does not scale well
in the number of graphs. Instead, one may select one KG as a
hub H and only learn mappings between each graph and the hub,
and vice-versa. This reduces the computational effort to O(2N)
mappings. We can still get a mapping between any two graphs
by going through the hub H , i.e., mi,j(ei) := mH,j(mi,H (ei)).

We build on this idea, but instead of selecting an actual KG
as the hub, we propose a latent space Z with kZ dimensions
that takes its role. The benefit of this latent space is three-fold.
First, a latent space can learn from entities linked between any
two graphs. On the other hand, when using a KG as a hub, all
graphs must be linked to the hub. Entities that are not part of
the hub cannot be used to learn the mappings, therefore, valuable
information is not exploited. Second, we do not integrate into a
pre-determined KG embedding space but a learned latent space.
This offers more versatility as the latent space can be adapted
to the specific combinations of graphs to be integrated. Third,
we learn the latent space from all linked entities simultane-
ously. In contrast, a KG hub approach learns pairwise mappings
independently from each other.

When mapping embedding spaces onto one another, the goal
is to have the same (or at least similar) embedding vectors for
linked entities. We adopt the same idea, i.e., two linked entities
should have a similar representation in the latent space Z , as
depicted in Fig. 2. The FedCoder integration loss is hence formally
expressed as:

LI
∼

∑
(ei,ej)∈A

d
(
mi,Z (ei),mj,Z (ej)

)
(9)

Here, d is a distance function, typically the Euclidean or cosine
distance, and the implied dimension kZ of the latent space is a
hyperparameter that can be chosen freely. This formulation is a
generalization of Eq. (4), as here, we transform the embedding
vectors from both spaces into the latent space Z instead of trans-
forming one into the other (via the functions m and m). Note
i,Z j,Z

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

i
e
o
w

I
b
C
t
b
o
s
d
t
r

s
W
r

L

4

s
i
l

l
t
C
t
m

5
t
d

d

that this constraint on the shared space applies to all anchors A,
.e., entities linked between any two KGs. We neither require an
ntity to be linked between all involved graphs nor to a specific
ne. This is in contrast to the setting of using one KG as a hub,
here one could only link to entities contained in this hub.

ntegration loss with negative samples. In the latent space, em-
edding vectors of linked entities are supposed to be similar.
onversely, embedding vectors of distinct entities should be dis-
ant. We thus propose a negative sampling procedure inspired
y the negative sampling in embedding methods: In each pair
f linked entities, we replace one of the two with a randomly
ampled entity from the respective KG. Besides minimizing the
istance between latent-space representations of linked enti-
ies, we also maximize the distance between the latent-space
epresentation of corrupted entity pairs.

We follow the concept presented in Eq. (3), which aims at
eparating positive from negative samples by a margin of γ .
e here omit the input to the distance function (Eq. (9)) for

eadability:

I
∼ −

∑
(ei,ej)∈A

log σ (γ − d(·)) −

∑
(ei,ej)/∈A

log σ (d(·) − γ) (10)

.2. Autoencoding

So far, we discussed mapping an embedding vector ei from
pace i into the latent space Z using a function mi,Z (ei), but this
s only half of what we need: We also require a mapping from its
atent space z to each KG embedding space, i.e., mZ,j(z) Only with
both mappings can we transform an embedding vector between
any two spaces as in mi,j := mZ,j(mi,Z (ei)). We can interpret
this in an encoder–decoder framework, where mi,Z (·) encodes an
embedding from a source embedding space into a latent repre-
sentation, and mZ,j(·) decodes that latent representation into a
target space. Under this view, the latent representation of an en-
tity can be decoded into any of the embedding spaces, including
the one from which it was originally retrieved. In other words,
any entity embedding from a KG embedding space can be mapped
into the same space via the latent one, and naturally, we would
expect to recover the same embedding vector: mZ,i(mi,Z (ei)) = ei.
This is the core idea of autoencoding [14]. Fig. 2 visualizes this
principle via the horizontal red arrows.

The benefit of autoencoding is that it can be trained in an
unsupervised manner, as it only requires input embeddings ei.
In practice, it is often desirable to have a bottleneck in the
autoencoder that forces it to generalize rather than to learn
mappings that copy the input to the output. In our case, this can
be controlled by choosing the size of the latent space smaller than
that of the input embedding space kS < ki, ∀i ∈ [1,N]. With ∥·∥F
the Frobenius norm, we define the autoencoder loss for graph i
as:

LA
i ∼

∑
ei∈Vi

ei − mZ,i(mi,Z (ei))

F (11)

Like the latent space constraints from Eq. (9), this autoen-
coder loss adds constraints on the mappings m. But in contrast
to Eq. (11), it sums over all entities of the KG, not only over the
linked ones given by A. The advantage of this is that with the
autoencoder, we can learn the mappings m, and indirectly the
latent space, using far more training data than only the given
anchors. This is especially useful to prevent overfitting when
there are more parameters in the mapping functions than the
number of anchors we have.
7

4.3. Latent-space learning frameworks

The overall loss function of FedCoder is composed of the
integration loss LI and the autoencoder loss LA

i and follows the
structure of the frameworks presented in Section 3.2. Hence, in
the scenario where embeddings are pre-computed and only the
mapping is trained, the overall loss is

L = LI
+ λ

N∑
i=1

LA
i (12)

with LI being the mapping loss with negative sampling (Eq. (9)
and (10)), and LA

i being the autoencoder loss for graph i (Eq. (11)).
In the joint embedding framework, the overall loss addition-

ally includes the KG embedding loss LG (Eq. (3)):

L =

N∑
i=1

LG
i + LI

+ λ

N∑
i=1

LA
i (13)

In this case, the optimization problem covers not only the pa-
rameters of the mapping functions but also the embedding vec-
tors themselves, irrespective of where in these three terms they
appear. The autoencoder coefficient λ can be chosen freely.

Mapping function. We have not yet specified the mapping func-
tions m, as neither the integration loss (Eq. (9)) nor the au-
toencoder loss (Eq. (11)) assumes a specific one — they do not
even require the same mapping function for different KGs, nor
the same function for the encoder and decoder of one KG. We
can hence assume that m is a multi-layer neural network, i.e., a
composite of transformations g:

mi,j(ei) =
(
g0
i,j ◦ g1

i,j ◦ . . .
)
(ei) (14)

where each layer is specified by a weight matrix of appropriate
dimensions Wij, a bias vector bij, and an activation function h(·):

g l
i,j(x) = h

(
Wl

ijx + bl
ij

)
(15)

The sizes of intermediate layers can be chosen freely, although
the encoder and decoder for one KG are typically symmetrical,
i.e., use the same number of layers and the same layer sizes in
reverse.

FedCoder admits any kind of mapping function between the
KG embedding spaces and the latent space. For special cases of
mapping functions, however, efficient alternatives exist and have
been used previously [22]. Specifically, if the mapping mi,S is an
orthogonal projection matrix PiZ , the inverse mapping mS,i is the
transposed of that projection matrix, i.e., PZi = PT

iZ .
We hence define the Latent Orthogonal Projection integration

model by using the projection mapping as in Eq. (7) in the latent-
space integration loss (9) and adding the soft-orthogonal regular-
izer (8). Analogous to Eq. (12), the integration loss becomes:

L ∼

∑
(ei,ej)∈A

d
(
PiZei, PjZej

)
+ λ

N∑
i=1

PT
iZPiZ − 1

2
F (16)

Structurally, we can interpret the autoencoding loss as a regu-
arizer on the integration loss, hence the orthogonal regularizer
akes the same role in this model as the autoencoder in Fed-
oder. The difference to FedCoder is that this approach is limited
o the projection mapping, while FedCoder can incorporate any
apping function.

. Evaluation #1: How do different embedding space integra-
ion models compare in the face of heterogeneous embed-
ings?

The Web of Embeddings is diverse: There exists a range of
ifferent embedding models adapted to different structures and

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

c

P
e
s
(
e
c
s
s
t
o
e
e
t
(
(

E
b
S
t
b
w
p
p
a
t
d
p
b
i
t

E
p
j
o
N
t

5

K
K
t
e

S
o
u
s
p
b

i

use cases. In a distributed environment, independent parties each
select an embedding model that fits the properties of the re-
spective KG and that matches the tasks they intend to cover.
The Web of Embeddings, therefore, consists of heterogeneous
embedding spaces, as different graphs are likely embedded with
different KG embedding models and/or hyperparameters. Yet,
as of now, embedding space integration approaches implicitly
assume that all KGs are embedded with the same model and the
same embedding dimension. As we cannot make this assumption,
we ask how do different embedding space integration approaches
ompare in the face of heterogeneous embeddings?

rocedure. We answer this question by conducting a series of
xperiments that integrate two KG embedding spaces. In this
cenario, we can either embed both graphs with the same model
homogeneous case) or with different embedding models and/or
mbedding dimensions (heterogeneous case). The homogeneous
ase is analogous to related work and represents a best-case
cenario, as we would expect spaces that are constructed in the
ame manner to compare well. The heterogeneous case mirrors
he situation we face in the Web of Embeddings, and we focus
n heterogeneity in the choice of the embedding models or the
mbedding dimensions across graphs. Specifically, we study four
mbedding models — TransE, RotatE, ComplEx, and DistMult—
hat relate to each other by either building on the same paradigm
geometric or matrix factorization) or the same numeric space
real or complex).

valuation metrics. In an integrated space, we expect the em-
edding vectors of each pair of linked entities to be similar.
pecifically, they should be more similar to each other than to
he remaining entity embeddings in the space, i.e., they should
e nearest neighbors. To quantify the integration performance,
e adopt the measures of embedding literature to assess the link
rediction performance since this is also a nearest neighborhood
roblem. We thus measure the rank of an entity in a testing pair
s the number of entities that are closer in the integrated space
han its truly linked one. This typically produces a long-tail rank
istribution that we characterize by the mean rank (MR) and the
ercentage of ranks below 10 (HITS@10). The mean rank (lower is
etter) gives an impression of how close embedding vectors are
n the average case, HITS@10 (higher is better) states how skewed
he rank distribution is towards the front.

valuation structure. FedCoder can learn the mappings between
re-trained embedding models, or it can embed the two KGs
ointly. The former approach represents the situation of the Web
f Embeddings, the latter one is more common in the literature.
ext, we briefly present the datasets used in our experiments and
hen discuss both cases in Sections 5.2 and 5.3.

.1. Datasets

Our experiments use up to five datasets, each consisting of two
Gs and anchors between them. The five datasets differ in which
Gs they include and the proportion of entities linked between
hem. We summarize their characteristics in Table 4 and discuss
ach of them in turn.7

plit15k-237. We construct two partially aligned KGs on the basis
f FB15k-237, a dataset derived from freebase and commonly
sed to evaluate KG embedding methods [37]. We first randomly
ample a set of about 20% of FB15k-237’s entities that become
art of both KGs and divide the remaining entities randomly
etween the two KGs. Each KG is then populated with triples

7 The datasets and our implementation can both be found at https://gitlab.
fi.uzh.ch/DDIS-Public/fedcoder.
8

Table 4
Dataset characteristics.
Dataset KG Entities Relations Triples Anchors

split15k-237 left 8724 232 110549 2793right 8725 227 98879

WD15k-237 fb 14541 237 292581 14296wd 14295 322 137960

DBPFR-EN
fr 19661 903 105998 15000en 19993 1208 115722

DBPJA-EN
ja 19814 1299 77214 15000en 19780 1153 93484

DBPZH-EN
zh 19388 1701 70414 15000en 19572 1323 95142

DBP-YG dbp 100000 302 386057 100000yg 100000 31 452307

from FB15k-237 whose head and tail are part of the respective
graph. This construction procedure is similar to the one proposed
in [4]. The resulting dataset becomes substantially smaller than
FB15k-237 since it disregards triples with the head and tail in
different KGs. By construction, entities are linked unambiguously
and one-to-one, and only about a fourth of the entities are linked.

Wd15k-237. Since FB15k-237 is one of the most widespread
datasets in embedding research, we also combine it with a sec-
ond, distinct KG extracted from Wikidata. For this, we use a
third-party alignment8 between the two KGs to select the rele-
vant Wikidata entities, then retrieve all Wikidata triples between
them. The alignment is not quite complete, and Wikidata enti-
ties that correspond to more than one entity in FB15k-237 are
discarded, leading to a slightly smaller entity set on the Wikidata
side. This dataset features more triples on both KGs than split15k-
237, whereas all entities from the Wikidata side and most entities
from FB15k-237 are linked.

Dbp15k. We further use three datasets used by embedding-based
KG alignment methods since they naturally come with two KGs
and links between them. The DBP15k dataset collection was
proposed in [38] and was built from different languages of DB-
pedia. It includes three pairs of KGs, each combining English
with another language: Chinese (DBPZH-EN), Japanese (DBPJA-EN),
and French (DBPFR-EN). Each pair of KGs includes 15000 anchors,
which is almost three-quarters of the entities in the respective
graphs.

Dbp-yg. Additionally, we evaluate on the DBP-YG dataset from
[12], which includes subsets of DBpedia and YAGO. This is the
largest dataset in terms of entities and triples and provides links
for all its entities.

5.2. Pre-trained embedding space mapping

We first evaluate FedCoder in the setting where embedding
spaces for the two KGs have already been trained, and only the
mapping between them is learned (see Eqs. (2) and (12)). In this
scenario, we only need the two embedding spaces and anchors,
but not the KGs themselves, for the integration. We compare
FedCoder to three previously proposed alternatives. First, the
Projection model (Proj) according to Eq. (7) and introduced by
[4–6]. Second, the Orthogonal Projection model (Proj+Ortho) given
in Eq. (8) and proposed by [18]. Third, the Latent Orthogonal
Projection model (Latent+Ortho) as defined by Eq. (16) and used
in [22]. The two remaining integration models (Identity and
Translation) are not suited for this scenario as they have little to

8 https://github.com/villmow/datasets_knowledge_embedding

https://gitlab.ifi.uzh.ch/DDIS-Public/fedcoder
https://gitlab.ifi.uzh.ch/DDIS-Public/fedcoder
https://github.com/villmow/datasets_knowledge_embedding

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

T
f
(

no means to learn a mapping between fixed embedding spaces. In
the remainder of this section, we first describe the experimental
setting, then discuss the homogeneous case, and finally show our
results for the heterogeneous scenario.

5.2.1. Setup
We use LibKGE [9] to embed KGs from all datasets with

ransE, RotatE, DistMult, and ComplEx. In a first step, we per-
orm a hyperparameter search over the embedding dimension
{32, 64, 128, 256, 512}), the amount of negative samples
({32, 64, 128, 256, 512, 1024}), dropout ([0.0, 0.5]), and the learn-
ing rate ([0.0003, 1.0]). For each embedding model, we first
select the embedding dimension that gives the best performance
across both KGs of a dataset. This is to create a homogeneous
setting where the two KGs are embedded with the same em-
bedding model and identical embedding dimensions. We then
select the optimal values for the remaining parameters per graph
and embedding model. Having the hyperparameters, we then
train the embedding for a maximum of 1000 epochs or until the
performance starts to decrease (early stopping).

To evaluate the integration models, we randomly sample 20%
of the datasets’ known anchors A as a test set and use the
remaining ones to train the models. We train and evaluate on
five different, randomly sampled train-test splits and report the
averaged results. To train the methods, we use the Adam opti-
mizer with a learning rate of 0.01 (0.001 for DBP-YG) and train for
a maximum of 5000 epochs or until the performance decreases
six consecutive times, whereas we validate every 100 epochs. As
mapping functions for FedCoder, we use single-layer networks
with a linear activation function. We use the Euclidean distance
in all integration models as it resulted in equal or better per-
formance than the cosine distance across all cases. We initialize
all weight and projection matrices with the identity matrix. For
the two latent space methods (FedCoder and Latent Orthogonal
Projection), we use 16 negative samples and a margin of γ =

24 and select the best performing latent space size kZ out of
{32, 64, 128, 256}. Typically, a size of 128 performed best for the
Latent Orthogonal Projection, a size of 256 was ideal for FedCoder.
For FedCoder and the two orthogonal methods (Orthogonal Pro-
jection and Latent Orthogonal Projection) we further search the
optimal regularization coefficient λ ∈ {1.0, 0.1, 0.01, 0.001}.
Consequently, we use λ = 0.01 in all cases except on DBP-
YG, where FedCoder has shown the best performance for λ =

0.001. This hyperparameter optimization is performed as a grid
search on a separate train-test split that is not used in further
experiments.

5.2.2. Homogeneous models
In the homogeneous setting, we integrate KG embedding

spaces that were produced with the same model and with the
same embedding dimension.

Table 5 shows the performance of the different integration
models per dataset and embedding model in terms of mean
rank (MR) and HITS@10. We hypothesize that FedCoder performs
better across all embedding models and datasets than the other
integration approaches. More generally, we also presume that
latent space methods perform better than pairwise methods. The
rationale is that these methods have more trainable parameters
and can hence potentially learn more complex functions.

In Table 5, we can observe that FedCoder has the lowest (i.e.,
best) mean rank in almost all cases and also achieves the best
HITS score in the vast majority of cases. Compared to the Latent
Orthogonal Projection model, it has an improvement in the MR of
46 ranks (22%) on average and shows an average increase in HITS
of 5.4 (16%). Compared to the pairwise methods, FedCoder, on
average, has a 45% lower MR and a 10% higher HITS. The benefit
9

of FedCoder is substantial, with a decrease in MR of up to 1974
ranks (87%, ComplEx on WD15k-237) and an increase in HITS of
up to 16pp (47%, DistMult on WD15k-237). In the worst case
(DistMult on DBPJA-EN), its HITS score is only 7pp (34%) below
that of the there best-performing pairwise model. In particular,
its mean rank is never significantly worse than that of the two
baselines. Both comparisons demonstrate that FedCoder has a
clear advantage over all other integration models.

Concerning latent space versus pairwise models, we observe
that the Latent Orthogonal Projection model achieves a better
mean rank than the two pairwise integration approaches in most
cases. However, its HITS score is worse than the pairwise in-
tegration approaches in 14 out of 24 cases. For ComplEx and
DistMult on DBPJA-EN, the difference is substantial, however, this
might be a case of overfitting. On average, even excluding the
two worst cases, the HITS of the Latent Orthogonal Projection
model is below that of the two pairwise models. Hence, the
Latent Orthogonal Projection improves in the long tail of the rank
distribution (better average rank) at the cost of losing precision
among the best ranks (lower HITS).

Lastly, we want to point out that the two pairwise integration
models do not have a significant difference, with few exceptions.
This is unexpected since the orthogonalization has been shown
to improve the integration of word embedding spaces [18].

5.2.3. Heterogeneous models
In the heterogeneous setting, we integrate KG embedding

spaces that were produced by different embedding models and
potentially different embedding dimensions.

Table 6 lists the integration performance for all embedding
model combinations in terms of the mean rank (MR) and HITS@10
(HITS). As in the homogeneous case, we hypothesize that Fed-
Coder achieves the overall best performance in the heterogeneous
setting and that latent-space methods outperform the two pair-
wise methods. We would, however, not expect that the integra-
tion models reach a better performance in this scenario than in
the homogeneous one since spaces created by the same model
share their notion of embedding vector similarity. Furthermore,
we presume that embedding model combinations that share a
trait (category or numeric space) integrate better than models
with no commonality.

In Table 6, we see that FedCoder outperforms the other inte-
gration models in all but a few cases. FedCoder typically achieves
better MR and HITS scores than the Latent Orthogonal Projection
model. On the DBPJA-EN and DBPZH-EN datasets, the two methods
perform comparably, as the difference between the two is not sig-
nificant. On average, the FedCoder’s mean rank is 85 ranks lower
(25%), and the HITS score is 8.6pp higher (35%) than for the Latent
Orthogonal Projection model, whereas we see improvements in
MR of up to 671 ranks (53%, RotatE vs. ComplEx on DBP-YG), and
in HITS of up to 35pp (138%, DistMult vs. ComplEx on WD15k-
237). In contrast to the two pairwise baselines, FedCoder has a
better MR by 661 ranks (56%) on average and an improvement in
HITS of 7.7 (38%).

With the exception of HITS of the DistMult versus ComplEx
combination on the DBPJA-EN and DBPZH-EN datasets, the latent-
space approaches perform better than the two pairwise inte-
gration models. This corresponds with our observations in the
homogeneous case, where the pairwise models performed better
on the same datasets and embedding models.

We next contrast FedCoder’s performance in the heteroge-
neous case with the performance of the two respective em-
bedding models in the homogeneous setting. The heterogeneous
setting rarely outperforms both respective homogeneous ones (an
example of this is RotatE and DistMult on WD15k-237). However,
in most cases, it achieves a better performance than the worse

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741
Table 5
Integration performance of homogeneous, pre-trained embedding spaces. Results marked with † are not significantly better than the runner-up (Wilcoxon
test at p = 0.05). The best performance is marked in bold font, the worst one is italicized. Proj: Projection, Proj+Ortho: Orthogonal Projection, Latent+Ortho:
Latent Orthogonal Projection.
Dataset Model MR HITS@10

Proj Proj+Ortho Latent+Ortho FedCoder Proj Proj+Ortho Latent+Ortho FedCoder

split15k-237

ComplEx 37.6 38.1 59.7 15.0 51.9 51.6 32.6 66.5
DistMult 49.0 48.3 60.3 21.7 41.3 41.5 23.7 54.4
RotatE 31.2 31.1 23.2 12.8 67.8 67.9 62.0 75.5
TransE 17.3 17.4 10.9 8.9 78.1 78.0 82.2 81.0

WD15k-237

ComplEx 302.4 546.5 158.8 69.2 30.2 23.6 22.1 33.2
DistMult 226.7 225.7 62.3 48.2 33.7 33.8 45.9 49.8
RotatE 122.5 121.8 41.9 34.9 52.1 52.3 55.9 63.2
TransE 163.7 163.4 82.3 60.1 44.0 44.2 42.8 48.5

DBPFR-EN

ComplEx 467.9 468.7 347.5 †327.4 †28.7 †28.7 16.0 23.2
DistMult 439.9 546.7 253.0 151.0 29.6 28.1 27.9 34.7
RotatE 198.8 197.6 78.2 69.4 28.0 28.2 34.1 37.3
TransE 72.6 72.6 340.9 †70.3 66.8 66.9 31.6 69.9

DBPJA-EN

ComplEx 573.6 573.3 1092.8 †554.3 †22.4 22.3 4.7 17.0
DistMult 594.7 594.9 706.4 564.7 †20.2 †20.2 9.2 13.3
RotatE 362.3 361.0 172.7 154.7 17.2 17.3 20.8 22.5
TransE 148.6 148.6 152.6 139.8 49.9 49.9 34.0 53.7

DBPZH-EN

ComplEx 561.6 561.7 519.1 401.6 †25.7 25.6 14.7 20.8
DistMult 481.3 481.5 526.8 432.2 †30.5 †30.5 17.4 24.9
RotatE 320.8 319.2 152.6 136.2 21.4 21.5 25.1 27.6
TransE 138.1 138.1 90.4 139.8 50.1 50.2 44.7 †53.1

DBP-YG

ComplEx 2512.8 2512.8 710.8 701.7 17.3 17.3 19.5 20.7
DistMult 2826.1 2826.1 845.5 851.3 11.5 11.5 13.9 †14.1
RotatE 1568.5 1551.4 559.8 332.4 21.1 21.3 26.1 27.4
TransE 1345.2 1345.1 427.6 431.3 21.3 21.3 26.7 †26.7
Table 6
Integration performance of heterogeneous, pre-trained embedding spaces. Results marked with † are not significantly better than the runner-up (Wilcoxon
test at p = 0.05). The best performance is marked in bold font, the worst one is italicized. Proj: Projection, Proj+Ortho: Orthogonal Projection, Latent+Ortho:
Latent Orthogonal Projection.
Model split15k-237 WD15k-237 DBPFR-EN DBPJA-EN DBPZH-EN DBP-YG

MR HITS MR HITS MR HITS MR HITS MR HITS MR HITS

TransE vs. RotatE
Proj 33.5 63.6 139.7 46.1 356.8 27.9 380.6 19.9 311.4 23.3 4491.5 8.4
Proj+Ortho 33.7 63.4 141.9 45.9 454.5 24.1 473.8 17.6 400.3 20.4 6102.5 4.4
Latent+Ortho 25.5 63.4 67.4 46.8 251.0 33.8 †183.1 †27.6 †170.9 †30.9 1144.7 15.9

FedCoder 19.0 71.4 45.0 54.7 131.3 41.9 236.0 25.7 205.9 30.4 586.4 19.9
TransE vs. DistMult

Proj 57.7 43.4 242.7 34.5 322.8 38.6 465.2 25.9 419.8 30.9 2817.1 11.5
Proj+Ortho 58.8 42.8 249.0 33.9 433.5 29.9 465.0 25.9 419.9 31.0 2817.1 11.5
Latent+Ortho 49.8 42.2 94.8 35.8 246.7 31.2 450.1 15.7 385.6 25.2 909.0 †12.8
FedCoder 23.6 57.9 57.2 44.0 128.9 51.0 331.3 31.2 292.7 36.5 †908.2 †12.8

TransE vs. ComplEx
Proj 58.3 49.0 268.6 32.2 331.3 37.2 458.7 26.8 458.9 28.5 2665.5 14.8
Proj+Ortho 59.5 48.5 323.0 30.9 331.4 37.2 458.5 26.8 459.0 28.4 2664.6 14.9
Latent+Ortho 40.2 50.7 111.8 28.6 495.6 19.6 677.0 12.4 409.2 20.7 †820.9 15.6

FedCoder 21.9 64.5 78.6 34.5 170.3 46.3 340.2 31.6 338.7 32.8 821.2 †15.7
DistMult vs. ComplEx

Proj 43.4 48.9 260.0 31.9 457.6 29.4 606.8 †20.4 520.7 †27.9 2667.3 14.3
Proj+Ortho 43.8 48.6 379.6 28.5 574.7 26.5 606.8 †20.4 520.9 †27.9 2667.1 14.3
Latent+Ortho 65.0 25.7 108.9 34.2 261.2 28.8 799.6 8.0 614.7 13.8 †774.4 16.6

FedCoder 19.4 61.4 58.9 41.8 168.7 32.7 587.5 15.0 495.8 21.0 778.8 17.3
RotatE vs. ComplEx

Proj 54.7 46.9 260.0 39.9 378.4 27.4 686.2 14.5 557.9 19.3 4257.3 9.0
Proj+Ortho 54.3 46.9 282.0 37.7 454.8 26.3 734.3 13.9 610.6 18.8 5474.5 6.6
Latent+Ortho 39.5 43.8 72.7 38.1 232.4 27.8 †423.6 †18.7 317.0 †24.2 1259.8 14.7

FedCoder 19.3 63.8 53.8 48.0 †179.9 †28.5 470.4 16.8 274.3 24.0 588.8 21.7
RotatE vs. DistMult

Proj 48.1 47.2 170.3 41.9 373.2 29.9 631.1 14.6 543.0 20.9 4355.2 7.7
Proj+Ortho 48.2 47.5 169.7 42.2 400.8 30.1 681.7 14.1 589.1 20.2 5644.3 5.4
Latent+Ortho 50.9 34.4 49.2 49.8 134.8 34.7 †334.9 †18.8 †280.4 †26.0 1202.8 13.6

FedCoder 24.0 58.9 39.8 57.1 114.3 37.3 339.3 17.6 305.2 24.6 613.4 19.7
10

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

c
t
T
f
t
g
e

5

b
a
e
c
t
d

t
[
m
o
s
t
o
d

c
f
t

5

i

of the two homogeneous cases: e.g., on WD15k-237, FedCoder
shows a HITS of 63 for TransE and a HITS of 48 for RotatE in
Table 5, whereas mixing these two models produces a HITS of
54. Meaning that the heterogeneous setting produces an average
but also robust performance.

There is no evidence that suggests that embedding model
ombinations that have some commonality perform better than
hose with no shared trait. The latter is represented by the
ransE-ComplEx and RotatE-DistMult combinations, which per-
orm worst in two out of six datasets. Since they also represent
wo out of six embedding model combinations, this observation
ives no indication that they have a disadvantage over other
mbedding model combinations.

.3. Joint embedding

We next evaluate FedCoder in the setting where two em-
edding spaces are learned jointly (see Eqs. (1) and (13)). This
pproach is popular for KG alignment approaches as we would
xpect the best integration results since both embedding models
an incorporate information from the other while constructing
he embedding space. However, it would not be feasible in a
istributed or large-scale setting since we need to embed all KGs.
We contrast FedCoder to the three most widespread integra-

ion models for joint embedding: The Identity model (Eq. (5))
4–6], the Translation model (Eq. (6)) [5,6], and the Projection
odel (Eq. (7)) [4–6]. In this setting, we separate the discussion
f heterogeneous embedding models and embedding dimensions
ince the first two baselines assume matching dimensions. Fur-
hermore, due to the extensive computational effort, we limit
ur experiments to the split15k-237, WD15k-237, and DBP-YG
atasets.
In the following, we first present the experimental setup, then

ompare the integration models in the homogeneous case, and
inally discuss heterogeneity in either the embedding model or
he embedding dimension.

.3.1. Setup
We perform a grid search on FB15k-237 to determine the

deal margin γ ∈ {6, 12, 24, 32, 64}, and in consequence employ
γ1 = 24. Furthermore, we use 16 negative samples, an embedding
dimension k = k0 = k1 = 100, and a batch size of 2000.

For FedCoder, we use kZ = 50 and an encoder with two
layers of dimensions (ki × 100), (100 × 50) and a decoder with
a single layer of size (50 × ki). The encoders for both graphs
share their second-layer weights in order to reduce the number
of parameters and prevent overfitting. While we experimented
with more layers, this has not shown a significant improvement.
All layers use the linear activation function, and we include
a bias on all layers and initialize their weights with random
orthogonal matrices [39]. As distance function in FedCoder’s in-
tegration loss, we use the Euclidean and cosine distance and
present our results for both. Lastly, we conduct a search for
the regularizer λ in {1, 10, 20, 30}, with λ = 20 producing the
best results. We train each model five times for a maximum of
1000 epochs with the Adam optimizer, whereas we evaluate it
every 100 epochs and stop the training when the performance
decreases two consecutive times. In most cases, the maximum is
not exceeded.

5.3.2. Homogeneous models
In the homogeneous setting, the same embedding model is

applied to both KGs of a dataset. The results of our experiment in
this setting are presented in Table 7. It summarizes the best align-
ment performances in terms of the mean rank (MR) and HITS@10
11
achieved by any of the baseline models (Identity, Translation, Pro-
jection) versus the two FedCoder variants with the Euclidean or
cosine distance. We hypothesize that FedCoder reaches a higher
alignment performance than the baselines. The intuition is that
the performance of an alignment model increases with the num-
ber of parameters it contains, e.g., we would also expect that the
Projection method (O(k0k1) parameters) outperforms Identity (no
parameters).

Table 7 shows that this intuition does not hold, as the Eu-
clidean model outperforms the Projection model in most cases.
However, there is no single alignment model that performs best.
In terms of mean rank, FedCoder shows a stronger overall per-
formance with the exception of RotatE. The HITS@10 measure
gives mixed results, both in which alignment model performs
best as well as in how big the difference between embedding
models is. This can most prominently be seen in the split15k-237
dataset, where FedCoder outperforms the baselines by one order
of magnitude with DistMult while reaching only about two-thirds
of Identity’s performance on RotatE. The difference in HITS@10
between the baselines and FedCoder decreases with the size of
the dataset (DBP-YG includes more than ten times more entities
than split15k-237). As we used an embedding dimension of k =

k0 = k1 = 100 on all datasets, this might indicate that alignment
models with more parameters like ours or the Projection model
overfit. While we cannot claim that FedCoder strictly outperforms
the baseline, our model delivers competitive and robust results
across all embedding models and datasets, and it is important
to note that the results in Table 7 clearly show that FedCoder’s
performance is never the worst one.

5.3.3. Heterogeneous models
The results of the heterogeneous setting, where KGs are em-

bedded with different models, are shown in Table 8. It groups
the KG embedding combinations into six blocks: The first row of
blocks contains models that fall into the same category (geomet-
ric or matrix factorization), the model combinations in the second
row use the same numeric space, and those in the third row or
have no commonality. The table lists the link prediction perfor-
mance as mean rank (MR) and HITS@10 (HITS) for all baselines
as well as the two FedCoder variants. In the following, we first
compare the alignment models on the hypothesis that FedCoder
outperforms the baselines. Second, we contrast heterogeneous
embedding models with the homogeneous setting. Last, we hy-
pothesize that embedding model combinations perform better if
they have some commonality, e.g., use the same numerical space.

Table 8 shows that FedCoder yields substantially higher MR
and HITS@10 scores than the baselines in almost all settings and
datasets, with the exception of the MR of TransE combined with
RotatE on split15k-237 and DBP-YG. In particular, FedCoder with
the cosine distance shows the best overall performance, outper-
forming baselines up to an order of magnitude and featuring the
lowest variance across the results in both MR and HITS@10.

Comparing the heterogeneous setting to the homogeneous one
makes it apparent that the former is more challenging, resulting
in worse MR and HITS@10 scores. However, the difference be-
tween the two settings is lower for the FedCoder variants than the
baselines. Hence, FedCoder is less affected by heterogeneity. Fur-
thermore, in two-thirds of the cases, FedCoder’s heterogeneous
performance lies in between the performance of the respective
embedding models in the homogeneous setting. For example, on
DBP-YG, FedCoder achieves an MR value of 108.4 for the combina-
tion of TransE and DistMult, while in the homogeneous scenario,
TransE achieves an MR of 58.3, but DistMult only produces an MR
of 428.1. Meaning that with heterogeneous embedding models,
the stronger model can compensate for the weaker.

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

p

r

t
M
d
m
t
s
n
t
l

5

w
K
a
r
w
w

Table 7
Integration performance of homogeneous, jointly learned embedding spaces. Results marked with † are not significantly better than the runner-up (Wilcoxon test at

= 0.05). The best performance is marked in bold font, the worst one is italicized.
Dataset Model MR HITS@10

Identity Translation Projection FedCoder
(Euclid)

FedCoder
(Cosine)

Identity Translation Projection FedCoder
(Euclid)

FedCoder
(Cosine)

split15k-237

ComplEx 1308.5 1702.0 1570.5 985.2 480.3 4.3 0.9 2.7 19.7 28.7
DistMult 1554.7 1932.9 1689.2 1100.0 444.6 3.1 0.4 2.1 17.7 29.4
RotatE †149.6 158.4 172.9 240.7 248.9 †71.7 70.4 57.1 46.1 47.3
TransE 99.7 100.5 101.0 94.1 51.0 72.5 †73.0 71.3 70.8 71.2

WD15k-237

ComplEx 180.9 375.2 252.9 205.6 142.6 54.4 20.1 38.4 43.6 39.7
DistMult 189.5 455.2 272.3 200.5 157.9 53.4 15.1 34.8 47.3 38.1
RotatE 56.4 56.0 59.7 46.9 54.3 81.9 †82.1 79.1 75.3 71.2
TransE 40.9 41.0 42.2 41.9 27.7 81.4 81.5 80.0 80.1 †82.6

DBP-YG

ComplEx 739.5 2063.1 1986.8 656.6 208.5 53.9 32.8 26.6 55.5 65.5
DistMult 953.0 2274.0 2630.3 845.7 428.1 †50.7 28.8 18.2 50.0 49.2
RotatE 44.8 39.5 44.7 100.6 66.3 82.2 †83.1 81.1 63.8 74.4
TransE †58.3 58.4 59.8 287.8 †58.3 68.1 68.1 66.3 55.0 †70.8
Table 8
Integration performance of jointly learned embedding spaces with heterogeneous embedding models. Results marked with † are not significantly better than the
unner-up (Wilcoxon test at p = 0.05). The best performance is marked in bold font, the worst one is italicized.
Model split15k-237 WD15k-237 DBP-YG split15k-237 WD15k-237 DBP-YG

MR HITS MR HITS MR HITS MR HITS MR HITS MR HITS

TransE vs. RotatE DistMult vs. ComplEx
Identity 214.1 43.6 50.5 73.9 65.5 65.8 1727.5 2.2 241.2 41.0 1443.0 34.9
Translation 250.0 39.7 53.1 73.6 60.4 67.2 1960.9 0.6 491.9 11.2 3145.2 20.1
Projection 202.9 44.9 50.3 76.6 51.4 72.2 1726.4 1.8 348.7 26.3 3055.3 13.7

FedCoder (Euclid) †202.4 50.9 40.6 78.9 170.7 66.0 1103.5 17.0 210.6 44.6 716.9 †57.4
FedCoder (Cosine) 243.1 48.1 36.1 †79.7 57.1 †72.4 518.9 26.6 165.6 35.8 380.1 56.0

TransE vs. DistMult RotatE vs. ComplEx
Identity 1574.4 8.9 522.9 19.8 3466.2 32.6 1231.8 25.1 540.9 25.3 4212.6 21.8
Translation 1520.0 8.6 675.7 10.9 3391.9 25.7 1025.4 33.5 616.3 19.5 2886.2 32.4
Projection 1214.8 7.8 311.1 36.4 1226.0 43.7 885.1 18.4 265.4 45.9 1099.2 49.6

FedCoder (Euclid) 1039.6 22.9 308.6 33.4 332.7 59.9 748.2 29.8 272.9 41.0 1025.0 46.2
FedCoder (Cosine) 367.4 42.5 91.4 63.7 108.4 70.1 280.9 47.6 93.5 64.3 172.6 66.7

TransE vs. ComplEx RotatE vs. DistMult
Identity 1638.7 7.2 569.8 16.5 3422.5 28.4 1426.5 19.1 534.9 26.0 3438.0 29.3
Translation 1584.2 6.7 657.0 11.1 2772.4 28.1 1275.7 24.1 659.3 15.8 4444.3 19.4
Projection 1399.2 6.1 364.8 30.4 2070.9 35.2 1053.1 12.6 307.4 37.1 1348.6 39.6

FedCoder (Euclid) 1211.1 18.5 359.1 27.6 373.4 56.9 725.2 30.8 242.5 42.8 884.3 52.2
FedCoder (Cosine) 391.5 36.9 100.8 57.6 119.1 67.7 297.9 44.3 93.4 64.5 185.2 66.1
Contrasting the three groups of embedding model combina-
ions shows that combining a matrix factorization model (Dist-
ult, ComplEx) with a geometric model (TransE, RotatE) pro-
uces a better result than combining the two matrix factorization
odels, however, this does not hold the other way round. Fur-

hermore, mixing embedding models that use the same numerical
pace (real or complex) achieves better scores than if they have
o commonality. Both observations hold for FedCoder as well as
he baseline models, however, they are more pronounced for the
atter.

.3.4. Heterogeneous hyperparameters
Table 9 shows show the alignment performance in the case

here different embedding dimensions are employed on the two
Gs of each dataset. In this case, only the Projection baseline is
pplicable, but not the Identity or Translation baselines, as they
equire the embedding dimensions to match. For this experiment,
e first train every embedding model on each KG of our datasets
ith the embedding dimension varying in {50, 100, 200, 500}

and identify which of those produces the highest link prediction
performance. We then use the ideal dimensions, reported as k0/k1
in Table 9 to train the KG embedding models jointly in the
alignment setting. We first hypothesize that FedCoder achieves
a higher performance than the Projection baseline, and second
that the alignment with heterogeneous embedding dimensions

outperforms the homogeneous case.

12
It is apparent from Table 9 that FedCoder achieves a sub-
stantially better MR and HITS@10 than the Projection baseline
in all but two cases except one (RotatE and TransE on DBP-YG).
Comparing Tables 7 and 9 further shows that in most cases,
FedCoder achieves a higher performance in MR and HITS@10
when the embedding dimension is tuned to the dataset. This is
in contrast to the Projection approach, where typically a better
performance is achieved in the homogeneous scenario, with the
exception of TransE on DBP-YG.

6. Evaluation #2: How do different embedding space integra-
tion models perform in the presence of multiple KGs?

The Web of Embedding is large: The Linked Open Data Cloud
currently includes more than 1300 datasets, and although not all
of these resources have been embedded, we have seen continued
interest in KG embedding and steady growth in the number of
published embedding spaces. Contrarily, previous works on em-
bedding space integration have either produced general-purpose
methods to combine two spaces or tailored their models to a fixed
number of specific sources. For the Web of Embeddings, how-
ever, we require generic methods that can integrate an arbitrary
and potentially large number of embedding spaces. Hence, it is
elementary to ask how do different embedding space integration

models perform in the presence of multiple KGs?

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

l
e
I
t
S
l
b
c
d
p
p

E
t
d
b
p
o

6

T
i

F
a
e
e
h
a
w
c

D
r
[
a
t
a
K

6

r
T
m
i

Table 9
Integration performance of jointly learned embedding spaces with heterogeneous embedding dimensions, k0 and k1 . Results marked with † are not
significantly better than the runner-up (Wilcoxon test at p = 0.05). The best performance is marked in bold font, the worst one is italicized.
Dataset Model k0/k1 MR HITS@10

Projection FedCoder
(Euclid)

FedCoder
(Cosine)

Projection FedCoder
(Euclid)

FedCoder
(Cosine)

split15k-237
ComplEx 100/100 1570.5 985.2 480.3 2.7 19.7 28.7
DistMult 100/200 1944.0 923.8 430.7 0.5 22.4 32.4
RotatE 200/100 140.1 108.7 72.1 46.8 57.9 63.8
TransE 200/500 227.9 93.4 49.9 36.0 64.5 72.9

WD15k-237

ComplEx 50/500 582.0 169.1 117.3 17.0 52.1 47.2
DistMult 50/500 592.1 174.5 129.7 17.5 52.2 38.1
RotatE 100/200 63.2 45.1 55.1 72.3 72.8 76.7
TransE 100/200 51.2 44.9 33.1 70.9 75.9 80.4

DBP-YG
ComplEx 100/500 7544.6 589.3 157.8 3.1 56.6 62.7
DistMult 200/500 5918.6 575.5 196.4 6.8 57.2 60.6
RotatE 100/100 44.7 100.6 66.3 81.1 63.8 74.4
TransE 100/50 49.4 329.6 59.0 73.0 54.1 63.5
i
w
a
o
s
d
b

c
g
b
s
l
p
a
t
t
t
t
o
t
p
d

Procedure. We answer this question in two parts: First, we ana-
yze the computational complexity of different integration mod-
ls with respect to the number of involved embedding spaces.
n the presence of numerous KGs, efficiency becomes paramount
o not putting a limit on how many graphs can be integrated.
econd, we evaluate the integration models on their ability to
earn from all given embedding spaces. Integrating multiple em-
eddings simultaneously can, on the one hand, benefit from more
omprehensive knowledge, on the other hand also poses a more
ifficult problem. For both parts, we contrast FedCoder with the
airwise projection integration model and the latent orthogonal
rojection approach.

valuation structure. In the following, we first briefly describe
he datasets on which we conduct our experiment. We then
iscuss the computational complexity of the three approaches,
oth theoretically and experimentally. Finally, we present our ex-
eriment on the integration performance of the different methods
n multiple embedding spaces.

.1. Datasets

We consider two datasets for our experiments, summarized in
able 10. Both datasets are composed of several graphs and differ
n their sizes and how entities are linked between graphs.

b5. We use FB15k-237, a graph popular in KG embedding liter-
ture, to construct a set of five partially linked KGs [37]. To create
ach sub-graph, we randomly sample 30% from all of FB15k-237’s
ntities, then add all triples for which we sampled both their
ead and tail entity. As entities that do not occur in any triple
re discarded, the effective number of entities in the sub-graph
ill be lower than 30%. Note that in this procedure, we do not
ontrol for the overlap between two graphs.

bp15k. We further use the DBP15k dataset collection as it al-
eady comes with three datasets, each including two linked KGs
38]. DBP15k was sampled from DBpedia in different languages
nd pairs a KG from the English version with a graph from either
he Chinese, the French, or the Japanese DBpedia. The English KGs
re all different from each other hence each constitutes a distinct
G, but they can be trivially aligned via the entity URIs.

.2. Complexity analysis

We first analyze the complexity of integration models with
espect to the number of embedding spaces to be integrated.
wo integration paradigms were presented in this paper: The
ore common pairwise approach, where one embedding space

s mapped onto another, and the latent space approach, where
13
embedding spaces are transformed into a common representa-
tion. In the following, we first compare these integration methods
theoretically and then present an empirical evaluation.

6.2.1. Theoretical analysis
Typically, we face a scenario where we have N embedding

spaces and a set of anchors A that link entity embeddings be-
tween them. Pairwise integration approaches (Eq. (4)) learn a
mapping from a source to a target space, such that embeddings
from both spaces can be compared in the target space. To com-
pare embedding vectors between any two spaces, they hence
have to compute a mapping between each pairwise space com-
bination. Given N spaces, there are N(N−1)

2 possible combinations
of spaces, assuming that no space is mapped onto itself and that
we only need to compute a mapping in one direction for two
given graphs, i.e., we only need to map the source onto the target
but not vice-versa. The computational complexity of pairwise
approaches is therefore O(N2).

Latent space integration methods (Eq. (9)) learn a mapping
from each embedding space into a latent space. For N graphs,
this results in N mappings to be learned. To compare entity
vectors in any given space, these methods may also compute a
mapping from the latent space back into the embedding spaces,
i.e., another N mappings. Hence, the computational complexity of
latent-space approaches is O(2N).

To compute a mapping, we assume the availability of anchors,
.e., pairs of linked entities. All anchors are consumed at least once
hen integrating the embedding spaces. It can be expected that
larger number of graphs is accompanied by a larger number
f anchors. However, this holds for both pairwise and latent-
pace approaches, in the same manner, thus does not lead to a
ifference in their complexity. Clearly, latent space methods scale
etter than pairwise methods.
Finally, we argue that learning an embedding space is more

omputationally expensive than learning a mapping between
iven embedding spaces. The complexity of computing KG em-
edding is proportional to the number of triples in the graph
ince an embedding model must consume the entire graph at
east once, i.e., O(|E|). The complexity of an integration model is
roportional to the number of entities since every entity occurs
t most once in the, i.e., O(|V|). There are always more triples
han entities because every entity must appear in at least one
riple, i.e., |V| ≤ |E|. Typically, the number of triples exceeds
he number of entities, e.g., in the datasets we used throughout
his paper, there are about 6.6 triples per entity. The complexity
f an integration model is therefore substantially lower than
hat of an embedding model. The consequence of this is that if
re-trained embeddings are available, they should be integrated
irectly instead of jointly embedding the KGs a second time.

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

s
F
p

Table 10
Dataset characteristics, with the number of anchors specified for each pair of KGs.
Dataset KG Entities Relations Triples Anchors

FB5 sub0 4169 222 28409
sub1 4086 219 28111
sub2 4130 220 28864
sub3 4096 201 27281
sub4 4154 221 28096

DBP15k ZH 19388 1701 70414
ENZ 19572 1323 95142
FR 19661 903 105998
ENF 19993 1208 115722
JA 19814 1299 77214
ENJ 19780 1153 93484
6.2.2. Empirical analysis
We aim to confirm our theoretical results empirically by mea-

uring the training time of different integration approaches on
B5. From the five graphs available in the dataset, we create all
ossible combinations that include exactly N graphs for all N ∈

[2, 5]. For each of these cases, we then integrate the respective
TransE embedding spaces with the pairwise projection method,
the latent space orthogonal projection approach, and FedCoder
with a single layer and the linear activation function. The embed-
ding dimension is 256, which we also use for the size of the latent
space. We measure the time spent in training, disregarding time
to set up, evaluate, or perform other tasks. The test is conducted
with our PyTorch-based implementation on one Nvidia RTX 2080-
TI GPU and one Intel Xeon 6230 CPU. We train for a maximum
of 5000 epochs, repeat the experiment five times, and report
averaged results.

Fig. 3 reports the training time in seconds, averaged over all
combinations of spaces for a given N . It contrasts the pairwise
projection method with the two latent space methods. We re-
port the number of seconds to train for 1000 epochs, whereas
one epoch consumes the entire training data once. Fig. 3 clearly
mirrors the insights from the theoretical analysis: The two shared
space methods scale linearly, while the pairwise method ex-
hibits N-squared behavior. We also see that the latent orthogonal
projection method is slightly more efficient than FedCoder. This
is because FedCoder uses the entity embeddings of each space
to train the latent space in the autoencoder fashion, while the
orthogonal regularizer is independent of the number of entities
in the graphs.

6.3. Integration performance

Having seen that latent space methods can integrate multiple
embedding spaces efficiently, we next evaluate their integration
performance dependent on the number of spaces that are inte-
grated simultaneously. One could reason that more KGs means
more knowledge about an entity, which would lead to a bet-
ter integration. On the other hand, additional spaces could also
introduce more noise into the learning problem, decreasing the
integration performance. In this section, we hence elaborate on
the integration performance dependent on the number of graphs.

The goal of embedding space integration is to be able to
compare embedding vectors of linked entities to one another,
i.e., linked entities should have a similar representation in the
latent space. As in Section 5, this notion is related to the link
prediction task in embedding spaces, hence we, again, adopt their
standard measures to quantify the integration performance: The
mean rank (MR), HITS@10, and the mean reciprocal rank (MRR).

In the following, we first describe the experimental setup, then
present our findings.
14
Fig. 3. Training time of pairwise and latent-space integration models, with
respect to the number of integrated embedding spaces from FB5. The shading
indicates the lowest and highest measured time of each method per N . The
black dotted lines are linear and cubic functions fitted to the latent-space and
pairwise methods, respectively.

6.3.1. Setup
To evaluate the integration performance for an increasing

number of embedding spaces, we build all possible combinations
of N graphs from the respective dataset, whereas we increase N
from two to the number of graphs in the dataset. For each com-
bination of N graphs, we select two graphs on which we evaluate
the integration performance. For those two, we randomly sample
20% of their anchors to be reserved for testing. The remaining an-
chors and all anchors between the other graphs can, in principle,
be used for training. However, two testing entities may be linked
implicitly via an intermediate graph, which, assuming that KG
alignment is transitive, would leak information about the testing
set. In such cases, we disregard the link to either of the testing
graphs, i.e., we ensure that at most one of the two testing graphs
is in the transitive closure of each testing entity. We select each
pair out of the N graphs once for testing and create five random
train-test splits in all of those cases.

To train the integration models, we re-use the TransE embed-
dings from Section 5.2 that were independently learned for each
KG with LibKGE. We train each integration model with a learning

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

u
s
p
m
s
b
D

6

t
i
s
o
C
P

r
r
A
a
g
o
s
i
t

t
s
i
d
t
n

Fig. 4. Integration performance by the number of jointly integrated embedding spaces in MR, HITS@10, and MRR (from left to right). The lines represent the average
performance, the shading indicates the standard deviation.
a
t
l

rate of 0.01 for a maximum of 5000 epochs or until convergence.
For both latent space methods, we set the margin to γ = 32 and
se 16 negative samples. The mapping functions in FedCoder are
ingle-layer networks with the linear activation function, and all
rojection and weight matrices are initialized with the identity
atrix. We perform a hyperparameter search to determine the
ize of the latent space kZ and the regularization coefficient λ for
oth datasets. On FB5, we thus set kZ = 64 and λ = 0.01, and on
BP15k, we use kZ = 256 and λ = 0.001.

.3.2. Results
In this experiment, we evaluate the integration performance of

he FedCoder and the Latent Orthogonal Projection model for an
ncreasing number of integrated embedding spaces. We hypothe-
ize that the integration performance increases with the number
f involved embedding spaces. We further presume that Fed-
oder performs better in this setting than the Latent Orthogonal
rojection baseline.
Fig. 4 shows the integration performance in terms of mean

ank (MR), HITS@10, and the mean reciprocal rank (MRR), with
espect to the number of graphs N that are jointly integrated.
ll measures are averaged over all combinations of graphs for
particular N , all of their respectively selected pair of testing
raphs, and the five train-test splits of all those cases. The abscissa
f all figures, indicating the number of integrated embedding
paces (N), starts at two since we at least need two spaces to
ntegrate. Each plot contrasts the performance of FedCoder and
he Latent Orthogonal Projection method.

Fig. 4 shows that the integration performance of both la-
ent spaces improves with an increasing number of integrated
paces in the mean rank (MR) and HITS@10. Despite the general
mprovement with more spaces, the MRR of FedCoder slightly
ecreases with the last space on the FB5 dataset. The source of
his effect can be found in a slight decrease of HITS@1 as the
umber of embedding spaces increases. So whilst the top 10
15
results are improving (see HITS@10), the very top one becomes
less precise.

FedCoder typically performs better than the Latent Orthogonal
Projection model, especially when many embedding spaces are
integrated. While both models deliver comparable performance
on the DBP15k dataset, FedCoder improves more constantly and
to a higher performance with more spaces being integrated. Its
higher HITS@10 and MRR show that it performs better towards
the top of the rank distribution, while the slightly worse MR
means that this comes at the cost of losing precision on the tail
end of that distribution.

7. Discussion & limitations

In this section, we first summarize our findings and discuss
them in the light of the Web of Embeddings, then highlight some
limitations.

7.1. Summary and discussion of results

We identified two key challenges that we face in a Web of Em-
beddings: The heterogeneity of embedding models that we want
to integrate and the need for integrating multiple embedding
spaces. We addressed both challenges in this paper in Section 5
and Section 6, respectively.

Heterogeneous and homogeneous embeddings. Concerning hetero-
geneity, we discussed the scenario where embedding spaces
are pre-trained and the scenario where embeddings are learned
jointly. In both scenarios, we evaluated the integration perfor-
mance of FedCoder and its viable baselines in the homogeneous
and the heterogeneous case. We found that in the heterogeneous
setting, FedCoder outperforms the state-of-the-art in almost all cases,
nd in many, its advantage is substantial. In a few cases, FedCoder
ies with the Latent Orthogonal Projection model, indicating that
atent-space approaches are preferable over pairwise methods in

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

f
t
b
e
i
b
t

o
e
a
s
w
a
h
e
e
—
a

M
p
i
m
n
d
—
h
c
a
b
g
a
E
i
m
b
n
o

7

o

S
a
t
a
t
h
m
c
s
p
r
t
t
a
c
W
m
c
r
t

our setting. For the Web of Embeddings, this is a promising result
since latent-space methods also scale better than pairwise ones.

In the homogeneous setting, FedCoder delivers competitive per-
ormance to the respective baselines. It outperforms the state-of-
he-art in many scenarios, and while it may not always be the
est choice, it is typically also not the worst one. In particular,
ven when FedCoder has a lower HITS score than other methods,
t often achieves a better mean rank, meaning that it produces a
etter average performance at the cost of a reduced precision in
he top ranks.

Our results hold in both the joint embedding and mapping-
nly scenarios. Contrasting these two settings, we find that joint
mbedding reaches a better integration performance on the larger
nd sparser datasets, whereas mapping of pre-trained embedding
paces works better on smaller to mid-size graphs. This behavior
as expected since joint embedding methods can use the graph
lignment as additional information when embedding, which can
ave a large impact, especially on entities with few neighbors in
ach graph. While re-using pre-trained embeddings is the more
fficient — and for a true Web of Embeddings the only practical
approach, it shows that this comes at a price as it typically

chieves a reasonable yet not ideal integration.

ultiple embedding spaces. Concerning the integration of multi-
le embedding spaces, we analyzed the computational complex-
ty of latent-space methods and compared the integration perfor-
ance of latent-space approaches with regard to an increasing
umber of integrated spaces. We theoretically and empirically
emonstrated that pairwise integration methods — unsurprisingly
have a complexity of O(N2), while latent-space methods only

ave a complexity of O(2N). We suspect that it will be diffi-
ult to decrease the complexity much further without additional
ssumptions, as an integration method has to consider each em-
edding space at least once. This is a promising result that sug-
ests that we should shift from the predominantly used pairwise
pproaches to latent-space methods when creating the Web of
mbeddings. We have also shown that it can be beneficial to
ntegrate multiple embedding spaces jointly, as both latent-space
ethods improve when faced with more spaces. For the Web of Em-
eddings, this means that embedding space integration produces
ot only a more comprehensive space but also a more consistent
ne.

.2. Limitations and future work

In the following, we present a number of limitations and
utline possible areas for future work.

ource-specific mapping functions. While FedCoder would admit
rbitrary mapping functions, we only experimented with rela-
ively simple neural networks composed of one or two layers
nd a linear activation function. The benefit of such simple func-
ions is that they can be trained efficiently. Over the past years,
owever, there has been tremendous progress in the develop-
ent of novel and intricate neural architectures, such as graph
onvolutional networks. It remains to be seen in which contexts
uch methods will be useful. Moreover, we use the same map-
ing function on all embedding spaces, although this is not a
equirement in FedCoder. Mapping functions that are tailored to
he properties of each embedding space — using knowledge about
he graph or embedding model used — could possibly lead to
substantial improvement in the integration performance. The
hallenge in both of these possible future directions is overfitting:
e have observed that already our simple mapping functions
ay overfit, and the risk thereof greatly increases when more
omplex functions are used. It could thus also be interesting to
egularize the mapping functions and the latent space stronger
o prevent such an outcome.
16
Embedding models. We evaluated FedCoder and its baselines on
four popular KG embedding models, but since numerous alter-
natives exist, one might ask if our findings generalize to other
embedding model choices [1,23]. We assumed that a KG embed-
ding model represents each entity by one embedding vector. Most
KG embedding models satisfy this constraint, and we expect no
conceptual complications in these cases. More challenging would
be to incorporate models like BoxE [40] that represent entities
by multiple embedding vectors. The straightforward approach
for the baseline methods to cope with this is concatenating all
vectors of one entity. However, this loses the semantics of the
different vectors. For FedCoder, we could instead devise a map-
ping function that learns how to combine all embedding vectors
of an entity into a single representation more effectively. In either
case, an integration method needs not to be aware of how an
embedding space was constructed, i.e., the embedding model’s
triple score function, as apparent in our experiments on pre-
trained embedding spaces. However, the integration performance
depends on how easily one embedding space can be mapped onto
another. In particular, deep learning models like ConvE [28] that
include non-linearity might produce an embedding space that is
vastly different from spaces of linear methods like TransE. In this
scenario, we would expect more expressive integration models
like FedCoder and the projection-based ones to yield a substan-
tially better performance than simpler models. In particular, as
FedCoder can operate on arbitrary mapping functions, we could
adjust them to the increased complexity, e.g., by using non-linear
activation or deeper networks.

Multi-modal embedding spaces. While we focused on KG embed-
ding spaces, it would be of great benefit to the Web of Em-
beddings to integrate not only KG embedding spaces but also
embeddings of other modalities like text or images. Such an en-
deavor would be particularly interesting since we could combine
these implicitly structured data sources with structured, curated,
and semantic KGs.

Data evolution. The Web of Embeddings is affected by two types
of data evolution: Updates within a KG and changes in the com-
position of the KG ecosystem. The first type of data evolution
concerns the KG embedding providers, as many KG embedding
models have to be re-computed whenever the KG changes. The
maintainer of a quickly evolving graph can solve this issue of
high reincurring computational costs by resorting to embedding
models that were proposed for this particular scenario [41,42].
The second type of data evolution concerns the maintainer of
the Web of Embeddings, who wants to integrate any newly
emerged embedding space. In FedCoder, we can keep the inte-
gration costs low by taking advantage of pre-trained embedding
spaces. However, even this approach might become impractical
for many spaces or a fast-paced ecosystem. Instead, it would
be preferable to integrate an additional embedding space into
an existing, previously learned representation. A straightforward
solution to this problem is to train only the new graph’s mapping
functions while keeping the previous latent representations fixed.
Such an approach would be efficient, but the result may not
optimal since the previous representations are not adapted to the
new graph and would not profit from its added knowledge. To
alleviate such effects, we could first train only the new graph’s
mappings, then fine-tune all latent representations and mapping
functions together. Fundamentally, the required fine-tuning effort
depends on whether or not FedCoder converges to a universal
representation given enough KGs, which we leave for future work
to explore.

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741

p
g
i
h
a
b

E
t
d
d
a
t
p
s
o

8

e
t
W
t
l
t
a
H
a
(
h
o
b
c

c
w
j
c
t
a

s
n
c
s
s
a
r
i
d
t
t

m
t
h
o
t

Fine-tuning. We experimented with joint embedding and map-
ing of given embedding spaces, however, there is a middle
round: Pre-trained embedding spaces can be fine-tuned in the
ntegration setting, i.e., trained for only a few epochs. As we
ave seen differences in performance between the two extremes,
fine-tuning approach could provide a reasonable compromise
etween efficiency and performance.

valuation datasets. Finally, as always in such investigations,
he generalizability of our findings is limited by the underlying
atasets. Whilst we did our utmost to collect a good set of
atasets, going beyond two KGs — the usual number used in KG
lignment competitions — proved to be very hard. We, therefore,
hink that a major building block for accelerating the research and
ractice of the Web of Embeddings would be to collect a large
et of KGs and their alignments (e.g., by building on the work
f [43,44]).

. Conclusion

In this paper, we argue for building a Web of Embeddings: an
cosystem of KG embedding spaces as diverse and distributed as
he Web of Data or the Semantic Web. From years of Semantic
eb research, we know that it is desirable and also possible

o achieve interoperability in such an environment. The main
essons from the Semantic Web are that such an effort will have
o acknowledge local authority over the published content as well
s have to be able to cope with an arbitrary number of KGs.
ence, any attempt to build the Web of Embeddings will have to
ccept that the published embedding spaces will follow whatever
embedding) procedure, use whatever hyperparameters, and ex-
ibit whatever dimensionality that the publishers chose for their
wn goals. Furthermore, the Web of Embeddings will have to
e able to integrate a large number of embedding spaces into a
ommon representation or space.
Following the computer science ‘mantra’ that ‘‘Any problem in

omputer science can be solved with another level of indirection’’,9

e propose to map the individual KG embedding spaces into a
oint Web of Embedding space. Specifically, addressing the above
hallenges, we presented FedCoder, which jointly integrates mul-
iple heterogeneous KG embedding spaces via a latent space and
utoencoders.
We established in a series of experiments that FedCoder sub-

tantially outperforms state-of-the-art baselines in a heteroge-
eous setting. Our results imply that each KG embedding provider
an and should optimize for their own graphs. We further demon-
trated that FedCoder scales linearly in the number of embedding
paces and improves with more integrated spaces, making it suit-
ble to integrate even large numbers of embedding spaces. These
esults may also provide a first indication that the complexity of
ntegrating many embedding spaces could actually benefit from
oing so over an increasing number — an observation that seems
o echo the findings of learning large-scale transformer models in
he text and image processing domain.

In consequence, whilst many challenges remain, and the com-
unity needs to embark on an effort of large-scale experimenta-

ion, we believe that our highly flexible FedCoder approach can
elp break ground and serve as a foundation for a future Web
f Embeddings that might significantly increase the usefulness of
he Web of Data.

9 See https://en.wikipedia.org/wiki/Butler_Lampson#Quotes.
17
CRediT authorship contribution statement

Matthias Baumgartner: Conceptualization, Methodology, Soft-
ware, Formal analysis, Investigation, Data curation, Writing –
original draft, Writing – review & editing, Visualization. Daniele
Dell’Aglio: Conceptualization, Methodology, Writing – original
draft, Writing – review & editing, Supervision. Heiko Paulheim:
Conceptualization, Methodology, Writing – original draft, Writ-
ing – review & editing. Abraham Bernstein: Conceptualization,
Methodology, Resources, Writing – original draft, Writing – re-
view & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We thank the Swiss National Science Foundation for their
partial support under contract number #407550_167177. We also
thank Swiss Re’s Advanced Analytics team for their support and
practical exchange, Sven Hertling for a constructive discussion,
and the anonymous reviewers for their insightful comments.

References

[1] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey
of approaches and applications, IEEE Trans. Knowl. Data Eng. 29 (12) (2017)
2724–2743.

[2] M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A review of relational
machine learning for knowledge graphs, Proc. IEEE 104 (1) (2016) 11–33.

[3] M. Kejriwal, P.A. Szekely, Co-LOD: Continuous space linked open data, in:
ISWC (Satellites), in: CEUR Workshop Proceedings, vol. 2456, CEUR-WS.org,
2019, pp. 333–337.

[4] Y. Hao, Y. Zhang, S. He, K. Liu, J. Zhao, A joint embedding method for entity
alignment of knowledge bases, in: CCKS, in: Communications in Computer
and Information Science, vol. 650, Springer, 2016, pp. 3–14.

[5] M. Chen, Y. Tian, M. Yang, C. Zaniolo, Multilingual knowledge graph
embeddings for cross-lingual knowledge alignment, in: IJCAI, ijcai.org,
2017, pp. 1511–1517.

[6] W. Liu, J. Liu, M. Wu, S. Abbas, W. Hu, B. Wei, Q. Zheng, Representation
learning over multiple knowledge graphs for knowledge graphs alignment,
Neurocomputing 320 (2018) 12–24.

[7] Z. Sun, C. Wang, W. Hu, M. Chen, J. Dai, W. Zhang, Y. Qu, Knowledge graph
alignment network with gated multi-hop neighborhood aggregation, in:
AAAI, AAAI Press, 2020, pp. 222–229.

[8] J. Portisch, M. Hladik, H. Paulheim, Kgvec2go - knowledge graph embed-
dings as a service, in: LREC, European Language Resources Association,
2020, pp. 5641–5647.

[9] S. Broscheit, D. Ruffinelli, A. Kochsiek, P. Betz, R. Gemulla, LibKGE - a
knowledge graph embedding library for reproducible research, in: EMNLP:
System Demonstrations, 2020, pp. 165–174, URL https://www.aclweb.org/
anthology/2020.emnlp-demos.22.

[10] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, A. Peysakhovich,
Pytorch-BigGraph: A large scale graph embedding system, in: MLSys,
mlsys.org, 2019.

[11] H. Zhu, R. Xie, Z. Liu, M. Sun, Iterative entity alignment via joint knowledge
embeddings, in: IJCAI, ijcai.org, 2017, pp. 4258–4264.

[12] Z. Sun, W. Hu, Q. Zhang, Y. Qu, Bootstrapping entity alignment with
knowledge graph embedding, in: IJCAI, ijcai.org, 2018, pp. 4396–4402.

[13] T. Berens-Lee, Semantic web concepts, 2015, URL http://www.w3.org/2005/
Talks/0517-boit-tbl/.

[14] H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and
singular value decomposition, Biol. Cybernet. 59 (4) (1988) 291–294.

[15] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, Vol. 1, no.
2, MIT press Cambridge, 2016.

[16] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, S.
Hellmann, Dbpedia - A crystallization point for the web of data, J. Web
Semant. 7 (3) (2009) 154–165.

[17] H. Schwenk, M. Douze, Learning joint multilingual sentence representa-
tions with neural machine translation, in: Rep4NLP@ACL, Association for
Computational Linguistics, 2017, pp. 157–167.

https://en.wikipedia.org/wiki/Butler_Lampson#Quotes
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb1
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb1
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb1
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb1
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb1
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb2
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb2
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb2
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb3
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb3
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb3
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb3
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb3
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb4
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb4
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb4
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb4
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb4
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb5
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb5
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb5
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb5
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb5
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb6
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb6
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb6
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb6
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb6
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb7
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb7
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb7
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb7
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb7
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb8
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb8
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb8
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb8
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb8
https://www.aclweb.org/anthology/2020.emnlp-demos.22
https://www.aclweb.org/anthology/2020.emnlp-demos.22
https://www.aclweb.org/anthology/2020.emnlp-demos.22
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb10
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb10
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb10
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb10
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb10
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb11
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb11
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb11
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb12
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb12
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb12
http://www.w3.org/2005/Talks/0517-boit-tbl/
http://www.w3.org/2005/Talks/0517-boit-tbl/
http://www.w3.org/2005/Talks/0517-boit-tbl/
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb14
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb14
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb14
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb15
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb15
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb15
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb16
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb16
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb16
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb16
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb16
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb17
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb17
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb17
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb17
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb17

M. Baumgartner, D. Dell’Aglio, H. Paulheim et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100741
[18] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou, Word translation
without parallel data, 2017, CoRR abs/1710.04087.

[19] L.Y. Wu, A. Fisch, S. Chopra, K. Adams, A. Bordes, J. Weston, Starspace:
Embed all the things!, in: AAAI, AAAI Press, 2018, pp. 5569–5577.

[20] Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph and text jointly
embedding, in: EMNLP, ACL, 2014, pp. 1591–1601.

[21] M. Baumgartner, W. Zhang, B. Paudel, D. Dell’Aglio, H. Chen, A. Bernstein,
Aligning knowledge base and document embedding models using regular-
ized multi-task learning, in: ISWC, in: Lecture Notes in Computer Science,
vol. 11136, Springer, 2018, pp. 21–37.

[22] Q. Zhang, Z. Sun, W. Hu, M. Chen, L. Guo, Y. Qu, Multi-view knowledge
graph embedding for entity alignment, in: IJCAI, ijcai.org, 2019, pp.
5429–5435.

[23] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, P. Merialdo, Knowledge graph
embedding for link prediction: A comparative analysis, ACM Trans. Knowl.
Discov. Data 15 (2) (2021) 14:1–14:49.

[24] A. Bordes, N. Usunier, A. García-Durán, J. Weston, O. Yakhnenko, Trans-
lating embeddings for modeling multi-relational data, in: NIPS, 2013, pp.
2787–2795.

[25] B. Yang, W. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations
for learning and inference in knowledge bases, in: ICLR (Poster), 2015.

[26] M. Nickel, V. Tresp, Tensor factorization for multi-relational learning, in:
ECML/PKDD (3), in: Lecture Notes in Computer Science, vol. 8190, Springer,
2013, pp. 617–621.

[27] V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann
machines, in: ICML, Omni Press, 2010, pp. 807–814.

[28] T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D
knowledge graph embeddings, in: AAAI, AAAI Press, 2018, pp. 1811–1818.

[29] P. Ristoski, J. Rosati, T.D. Noia, R.D. Leone, H. Paulheim, RDF2Vec: RDF
graph embeddings and their applications, Semantic Web 10 (4) (2019)
721–752.

[30] J. Chen, P. Hu, E. Jiménez-Ruiz, O.M. Holter, D. Antonyrajah, I. Horrocks,
OWL2Vec*: embedding of OWL ontologies, Mach. Learn. 110 (7) (2021)
1813–1845.

[31] F.Z. Smaili, X. Gao, R. Hoehndorf, OPA2Vec: combining formal and informal
content of biomedical ontologies to improve similarity-based prediction,
Bioinform. 35 (12) (2019) 2133–2140.
18
[32] F.Z. Smaili, X. Gao, R. Hoehndorf, Onto2Vec: joint vector-based representa-
tion of biological entities and their ontology-based annotations, Bioinform.
34 (13) (2018) i52–i60.

[33] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed repre-
sentations of words and phrases and their compositionality, in: NIPS, 2013,
pp. 3111–3119.

[34] Z. Sun, Z. Deng, J. Nie, J. Tang, Rotate: Knowledge graph embedding by
relational rotation in complex space, 2019, CoRR abs/1902.10197.

[35] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex em-
beddings for simple link prediction, in: ICML, in: JMLR Workshop and
Conference Proceedings, vol. 48, JMLR.org, 2016, pp. 2071–2080.

[36] Q.V. Le, T. Mikolov, Distributed representations of sentences and docu-
ments, in: ICML, in: JMLR Workshop and Conference Proceedings, vol. 32,
JMLR.org, 2014, pp. 1188–1196.

[37] K. Toutanova, D. Chen, Observed versus latent features for knowledge base
and text inference, in: Proceedings of the 3rd Workshop on Continuous
Vector Space Models and their Compositionality, 2015, pp. 57–66.

[38] Z. Sun, W. Hu, C. Li, Cross-lingual entity alignment via joint attribute-
preserving embedding, in: ISWC (1), in: Lecture Notes in Computer Science,
vol. 10587, Springer, 2017, pp. 628–644.

[39] A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the nonlin-
ear dynamics of learning in deep linear neural networks, in: ICLR,
2014.

[40] R. Abboud, I.I. Ceylan, T. Lukasiewicz, T. Salvatori, Boxe: A box embedding
model for knowledge base completion, in: NeurIPS, 2020.

[41] T. Wu, A. Khan, H. Gao, C. Li, Efficiently embedding dynamic knowledge
graphs, 2019, CoRR abs/1910.06708.

[42] Y. Tay, A.T. Luu, S.C. Hui, Non-parametric estimation of multiple embed-
dings for link prediction on dynamic knowledge graphs, in: AAAI, AAAI
Press, 2017, pp. 1243–1249.

[43] A. Hofmann, S. Perchani, J. Portisch, S. Hertling, H. Paulheim, DBkWik:
Towards knowledge graph creation from thousands of Wikis, in: ISWC
(Posters, Demos & Industry Tracks), in: CEUR Workshop Proceedings, vol.
1963, CEUR-WS.org, 2017.

[44] S. Hertling, H. Paulheim, DBkWik: A consolidated knowledge graph
from thousands of Wikis, in: ICBK, IEEE Computer Society, 2018,
pp. 17–24.

http://refhub.elsevier.com/S1570-8268(22)00027-0/sb18
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb18
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb18
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb19
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb19
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb19
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb20
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb20
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb20
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb21
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb21
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb21
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb21
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb21
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb21
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb21
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb22
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb22
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb22
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb22
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb22
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb23
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb23
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb23
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb23
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb23
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb24
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb24
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb24
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb24
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb24
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb25
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb25
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb25
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb26
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb26
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb26
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb26
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb26
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb27
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb27
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb27
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb28
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb28
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb28
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb29
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb29
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb29
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb29
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb29
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb30
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb30
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb30
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb30
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb30
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb31
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb31
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb31
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb31
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb31
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb32
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb32
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb32
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb32
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb32
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb33
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb33
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb33
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb33
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb33
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb34
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb34
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb34
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb35
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb35
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb35
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb35
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb35
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb36
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb36
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb36
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb36
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb36
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb37
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb37
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb37
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb37
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb37
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb38
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb38
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb38
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb38
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb38
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb39
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb39
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb39
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb39
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb39
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb40
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb40
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb40
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb41
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb41
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb41
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb42
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb42
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb42
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb42
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb42
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb43
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb43
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb43
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb43
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb43
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb43
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb43
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb44
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb44
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb44
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb44
http://refhub.elsevier.com/S1570-8268(22)00027-0/sb44

	Towards the Web of Embeddings: Integrating multiple knowledge graph embedding spaces with FedCoder
	Introduction
	Related Work
	Preliminaries
	Knowledge Graph
	Pairwise learning frameworks
	KG embedding models
	Integration models

	FedCoder
	Latent space
	Autoencoding
	Latent-space learning frameworks

	Evaluation #1: How do different embedding space integration models compare in the face of heterogeneous embeddings?
	Datasets
	Pre-trained embedding space mapping
	Setup
	Homogeneous models
	Heterogeneous models

	Joint embedding
	Setup
	Homogeneous models
	Heterogeneous models
	Heterogeneous hyperparameters

	Evaluation #2: How do different embedding space integration models perform in the presence of multiple KGs?
	Datasets
	Complexity analysis
	Theoretical analysis
	Empirical analysis

	Integration performance
	Setup
	Results

	Discussion & Limitations
	Summary and Discussion of Results
	Limitations and Future Work

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

