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ABSTRACT
In recent years, countless research papers have addressed the topics
of knowledge graph creation, extension, or completion in order
to create knowledge graphs that are larger, more correct, or more
diverse. This research is typically motivated by the argumentation
that using such enhanced knowledge graphs to solve downstream
tasks will improve performance. Nonetheless, this is hardly ever
evaluated. Instead, the predominant evaluation metrics - aiming
at correctness and completeness - are undoubtedly valuable but
fail to capture the complete picture, i.e., how useful the created or
enhanced knowledge graph actually is. Further, the accessibility
of such a knowledge graph is rarely considered (e.g., whether it
contains expressive labels, descriptions, and sufficient context in-
formation to link textual mentions to the entities of the knowledge
graph). To better judge how well knowledge graphs perform on
actual tasks, we present KGrEaT – a framework to estimate the
quality of knowledge graphs via actual downstream tasks like clas-
sification, clustering, or recommendation. Instead of comparing
different methods of processing knowledge graphs with respect to
a single task, the purpose of KGrEaT is to compare various know-
ledge graphs as such by evaluating them on a fixed task setup. The
framework takes a knowledge graph as input, automatically maps
it to the datasets to be evaluated on, and computes performance
metrics for the defined tasks. It is built in a modular way to be easily
extendable with additional tasks and datasets.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Information systems → Semantic web descrip-
tion languages; Recommender systems; Clustering and classi-
fication.
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1 INTRODUCTION
1.1 Motivation
Knowledge graphs (KGs) have emerged as a powerful tool for organ-
izing and representing structured knowledge in a machine-readable
format. Starting with Google’s announcement of the Google Know-
ledge Graph in 20121, research articles have extensively explored
the creation [3, 18, 24], extension [10, 14], refinement [22], and com-
pletion [1] of KGs, with the aim of producing larger, more accurate,
and more diverse graphs. These efforts are driven by the belief that
leveraging enhanced KGs can lead to improved performance in
downstream tasks. However, comparative evaluations of different
KGs w.r.t. their utility for such tasks are rarely conducted.

In the literature, the vast majority of studies concerned with the
evaluation of KGs have focused on intrinsicmetrics that areworking
exclusively with the triples of a graph. Several works introduce
quality metrics like accuracy, consistency, or trustworthiness and
propose ways to determine them quantitatively [4, 8, 16, 33, 35].
Färber et al. [7] and Heist et al. [11] compare KGs with respect to
size, complexity, coverage, and overlap. Additionally, they provide
guidelines on which KG to select for a given problem.

Another line of work computes extrinsic task-based metrics to
evaluate KG embedding approaches. They use a fixed input KG
with a fixed evaluation setup while varying only the embedding
approach. Frameworks like GEval [23] or kgbench [5] use data
mining tasks like classification or regression for the evaluation,
others, like Ali et al. [2] evaluate primarily on link prediction tasks.

1.2 Contributions
To address the evaluation gap of extrinsic metrics for KGs, we
propose a framework called KGrEaT (KnowledgeGraph Evaluation

1https://blog.google/products/search/introducing-knowledge-graph-things-not/
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via Downstream Tasks).2 KGrEaT aims to provide a comprehensive
assessment of KGs by evaluating them on multiple kinds of tasks
like classification, regression, or recommendation. The evaluation
results (e.g., the accuracy of a classification model trained with
the KG as background knowledge) serve as extrinsic task-based
quality metrics for the KG. By defining a fixed evaluation setup
in the framework and applying it to multiple KGs, it is possible to
isolate the effect of every single KG and compare how useful they
are for solving different kinds of tasks. KGrEaT is built in a modular
way to be open for extensions from the community like additional
tasks or datasets.

Overall, the contributions of this paper are as follows:
• With KGrEaT, we present a framework to judge the utility
of KGs using extrinsic task-based metrics (Section 2).

• In our experiments, we demonstrate the capabilities of the
framework in an evaluation and comparison of several well-
known cross-domain KGs (Section 3).

2 FRAMEWORK
2.1 Purpose and Limitations
KGrEaT is a framework built to evaluate the performance impact
of KGs on multiple downstream tasks. To that end, the framework
implements various algorithms to solve tasks like classification,
regression, or recommendation of entities. The impact of a given
KG is measured by using its information as background knowledge
for solving the tasks. To compare the performance of different KGs
on downstream tasks, we use a fixed experimental setup with the
KG as the only variable. The performance indicators may be used
to make an informed decision when picking a KG for a given task.
Further, they can be used to compare the performance of different
versions of a single KG (e.g., during construction or during its life
cycle).

The implemented algorithms are not necessarily state-of-the-art
because the primary objective is not to measure how well a task
can be solved with a given KG in absolute numbers, but rather
in comparison to other KGs or different versions of the same KG.
Hence, the absolute numbers of the results only have limited ex-
pressive power. However, the framework tries to reduce the bias
in the results by averaging over multiple preprocessing methods,
datasets, and algorithms.

KGrEaT maps the entities of the KG automatically to the entities
of the dataset using a set of configurable mappers. Undoubtedly,
the quality of this mapping influences the results generated by the
framework. But as the mapping procedure is applied similarly to
all evaluated KGs, the mapping quality is mainly influenced by
the accessibility of the graph (i.e., whether it provides sufficient
context information like labels or descriptions for its entities). To
reduce the influence of the mapping strategy on the overall results,
the framework provides a way to run experiments with multiple
mapping approaches (and possibly average over them).

2.2 Design
The framework is designed in a modular way (c.f. Figure 1), making
it easy to add additional preprocessing steps, mappers, or tasks.

2https://github.com/dwslab/kgreat

Every step of a stage is implemented as an isolated docker con-
tainer3 with its own environment so that additions can be made
without any constraints on the programming language. Another ad-
vantage of the container-based architecture is the easy distribution
of containers via a container hub, eliminating the need for users to
build the framework on their own machines.

The manager is responsible for making necessary preparations
(e.g., downloading the input data or gathering entities to bemapped),
executing the stages (fetching and running containers of the steps),
and visualizing the results (e.g., comparing KG performance on vari-
ous aggregation levels). The Preprocessing and Mapping stages
can be executed in parallel, and the results are then used to execute
the Task stage. The whole process can be steered via a command
line interface (CLI).

The only input to the evaluation process is the KG in the form
of RDF files as well as a configuration. The latter defines how the
stages should be run (i.e., which steps to execute in which order).
Further, every step can be configured in depth to supply relevant
hyper-parameters. For example, one can configure how the KG
should be mapped to the datasets (e.g., via matching labels) and
define an acceptable similarity value for a match.

In the following, we provide details of the three main stages that
are executed when running an evaluation of a KG.

2.3 Preprocessing Stage
The Preprocessing stage creates all pre-computable artifacts that
are needed in the subsequent Task stage (e.g., intermediate repres-
entations or statistics of the KG). So far, this stage comprises the
computation of embeddings (𝑇𝑟𝑎𝑛𝑠𝐸 [6],𝑇𝑟𝑎𝑛𝑠𝑅 [17],𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡 [34],
𝑅𝐸𝑆𝐶𝐴𝐿 [20], 𝐶𝑜𝑚𝑝𝑙𝐸𝑥 [32] via the DGL-KE framework [37], and
RDF2vec [28] via the jRDF2vec framework [25]). Further, it sup-
ports the generation of indices for Approximate Nearest Neighbor
(ANN) search (via the hnswlib library [19]).

2.4 Mapping Stage
In the Mapping stage, the entities of the KG are automatically
mapped to the entities in the datasets. So far, a Same-As mapper
and a Labelmapper are implemented. The former uses the same-as
links of a KG to map its entities to those of the datasets. A dataset
may provide URIs for an entity (e.g., from well-known KGs like
DBpedia or Wikidata), but it has to provide at least one label. This
label is used by the Label mapper to find a corresponding entity
in the KG. It uses the RapidFuzz library4 to estimate the similarity
of labels via token-based edit distance. Mappers are composable,
i.e., they can be executed in sequence. For example, entities are
first mapped via same-as links where available, and the remaining
entities are mapped via label similarity.

2.5 Task Stage
In the Task stage, the task types are executed for all combinations
of datasets and algorithms. Table 1 gives an overview of all possible
constellations. In total, KGrEaT contains 26 tasks (i.e., combinations
of task types and datasets) that are run with one or more algorithms.

3https://www.docker.com
4https://github.com/maxbachmann/RapidFuzz
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Figure 1: An overview of the KGrEaT framework.

Table 1: Implemented tasks together with their algorithms, datasets, and evaluation metrics.

Task Type Datasets Algorithms Evaluation Metrics

Classification AAUP, Cities, Forbes, MillionSongDataset
MetacriticAlbums, MetacriticMovies, ComicCharacters Naive Bayes, KNN, SVM Accuracy ↑

Regression AAUP, Cities, Forbes,
MetacriticAlbums, MetacriticMovies

Linear Regression, KNN,
Decision Tree RMSE ↓

Clustering Cities2000AndCountries, CitiesAndCountries, Teams,
CitiesMoviesAlbumsCompaniesUni, ComicCharacters

DBSCAN, KMeans,
Agglomerative Clustering ARI ↑, NMI ↑, Accuracy ↑

Document Similarity LP50 Cosine Similarity Spearman ↑, Pearson ↑
Entity Relatedness KORE Cosine Similarity Kendall’s Tau ↑

Semantic Analogies AllCapitalCountryEntities, CapitalCountryEntities,
CityStateEntities, CurrencyEntities Cosine Similarity Accuracy ↑

Recommendation MovieLens, LastFm, LibraryThing Item-Similarity recommender F1 ↑

Additionally, the algorithms are executed with multiple hyperpara-
meter settings. How the individual tasks use the KG information
is dependent on the task and the implemented algorithm. Gener-
ally, the tasks Classification, Regression, and Clustering use
embeddings of the KG’s entities as features of the models, and the
remaining tasks use the distance between the entity embeddings to
find related entities.

Several datasets are taken from Ristoski et al. [27] and from the
GEval framework [23]. The Recommendation datasets MovieLens
[9], LastFm5, and LibraryThing [36] are preprocessed as recommen-
ded by Di Noia et al. [21] with the exception of using all entities
instead of only those for which a mapping to DBpedia exists. For
detailed statistics of all datasets, please refer to the respective pub-
lications and the information in the framework.

Every task type comes with suitable evaluation metrics that are
computed for every constellation. As some KGs might not contain
matches for all entities in the dataset and it would not be fair to
compute metrics only over known entities (and discard unknown
entities) or only over all entities, the framework reports metrics for
both scenarios. Finally, the results can be aggregated over various

5http://www.lastfm.com

levels (e.g., over embeddings, algorithms, and datasets) to produce
metrics with a reduced bias.

3 EXPERIMENTS
To show the capabilities of KGrEaT, we conduct experiments over
multiple large cross-domain KGs and analyze how well they per-
form on the implemented downstream tasks. We first give an over-
view of the evaluated KGs, then define the experimental setup, and
finally discuss the results.

3.1 Experimental Setup
3.1.1 Knowledge Graphs. We use the following KGs in our experi-
ments:

(1) DBpedia [3]: Dumps from 2016-10 and 2022-096
(2) YAGO [18]: Version 3
(3) Wikidata [24]: Dump from 2023-06-07
(4) CaLiGraph [12, 13]: Version 3.1.1
(5) DBkWik [15]: Version DBkWik++7

6Using multiple versions allows us to compare not only between different KGs but
also between different versions (here: with respect to time) of the same KG.
7Combined with DBpedia to also include the well-known entities of Wikipedia
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Table 2: Evaluation results of the KGs aggregated by task type and metric. The results of the KGs are given for the dimensions
PK (precision-oriented, known entities), PA (precision-oriented, all entities), and RA (recall-oriented, all entities).

Task Type Metric DBpedia2016 DBpedia2022 YAGO Wikidata CaLiGraph DbkWik
PK PA RA PK PA RA PK PA RA PK PA PK PA RA PK PA RA

Classification Accuracy 0.576 0.476 0.434 0.561 0.433 0.394 0.559 0.464 0.527 0.559 0.366 0.565 0.467 0.529 0.539 0.467 0.501
Regression RMSE 0.693 1.271 1.320 0.688 1.287 1.284 0.706 1.331 0.720 0.684 1.300 0.734 1.321 0.855 0.718 1.287 1.350
Clustering ARI 0.149 0.218 0.217 0.115 0.176 0.187 0.240 0.216 0.213 0.055 0.076 0.138 0.139 0.125 0.192 0.193 0.199

NMI 0.303 0.248 0.243 0.272 0.213 0.216 0.278 0.245 0.213 0.178 0.164 0.169 0.190 0.132 0.187 0.200 0.191
Accuracy 0.762 0.614 0.633 0.740 0.556 0.577 0.754 0.560 0.699 0.678 0.410 0.708 0.547 0.660 0.691 0.681 0.689

Doc. Sim. Spearman 0.207 0.207 0.207 0.226 0.226 0.226 0.165 0.165 0.160 0.131 0.165 0.203 0.203 0.153 0.200 0.200 0.214
Pearson 0.294 0.294 0.294 0.306 0.306 0.306 0.235 0.235 0.233 0.241 0.069 0.274 0.274 0.226 0.274 0.274 0.283
Harm. Mean 0.241 0.241 0.241 0.257 0.257 0.257 0.184 0.184 0.191 0.172 0.103 0.230 0.230 0.180 0.164 0.164 0.241

Ent. Rel. Kendall’s Tau 0.135 0.104 0.109 0.179 0.108 0.119 0.012 0.015 0.008 0.203 0.071 0.086 0.056 0.078 0.134 0.119 0.117
Sem. Analogies Accuracy 0.253 0.246 0.261 0.265 0.249 0.247 0.221 0.219 0.214 0.001 0.000 0.219 0.187 0.198 0.215 0.212 0.206
Recommend. F1 0.015 0.011 0.011 0.014 0.011 0.010 0.008 0.006 0.006 0.021 0.006 0.013 0.009 0.009 0.011 0.010 0.009

3.1.2 Mapping. We first map the KGs with the Same-As mapper
where applicable. Then we apply two variants of the Labelmapper:
One with a similarity threshold of 1.0 for high-precision matches
and one with a threshold of 0.7 for high recall. For the former, we
compute metrics for known entities (PrecisionKnown - PK) and for
all entities (Precision All - PA); for the latter, being recall-oriented,
we report the metrics only for all entities (Recall All - RA).

3.1.3 Embeddings. To reduce the influence of the different em-
bedding approaches on the overall results, all experiments are ex-
ecuted with four embedding types (𝑇𝑟𝑎𝑛𝑠𝐸, 𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡 , 𝐶𝑜𝑚𝑝𝑙𝐸𝑥 ,
and 𝑅𝐷𝐹2𝑣𝑒𝑐). For Wikidata, we could not compute all these em-
beddings due to the amount of computational resources necessary.
Instead, we use pre-computed𝑇𝑟𝑎𝑛𝑠𝐸 embeddings8 with a compar-
able training configuration.

3.1.4 Hardware. All experiments are executed on NVIDIA RTX
2080 Ti graphic cards and Intel Xeon E5 processors (2.6GHz). On
average, a full evaluation of a single KG takes roughly 30 hours
with 20 hours of embedding computation, 4 hours of mapping, and
6 hours of task execution.

3.2 Results and Discussion
Table 2 shows the final results of our evaluation for the three scen-
arios 𝑃𝐾 , 𝑃𝐴, and 𝑅𝐴. The results are averaged after aggregating
over all embeddings, datasets, and algorithms. The complete results
of the experiments are publicly available.9

For Classification, DBpedia2016 shows the best results in
the precision setting, while CaLiGraph and YAGO achieve the best
results in the recall setting. For Regression, both DBpedia ver-
sions and Wikidata perform well in the precision setup, while again
YAGO and CaLiGraph achieve the best results in the recall setting.
The Clustering task is solved best by DBpedia2016, YAGO, and
DbkWik. For Document Similarity, version 2022 of DBpedia is
the clear winner. For the Entity Relatedness task, using DBpe-
dia2022, Wikidata, or DbkWik as background knowledge produces
the best results. Recommendation is solved best using DBpedia or
Wikidata, Semantic Analogies is also solved best by DBpedia.

In general, DBpedia dominates the results to a large extent which
may be explained by the fact that some of the datasets used in the
8https://torchbiggraph.readthedocs.io/en/latest/pretrained_embeddings.html
9https://doi.org/10.5281/zenodo.8050446

framework have been derived from the 2015 version of DBpedia.
This might also explain that there is no clear advantage of the 2022
version of DBpedia over the older 2016 version. However, both
versions of DBpedia perform strongly on the Recommendation task
which has no direct relation to DBpedia or even Wikipedia.

Our assumption that the KGswithmore entities (YAGO,Wikidata,
CaLiGraph, and DBkWik) will have an advantage, especially in the
Recommendation tasks, did only partially prove to be true. However,
they have shown strong performances, especially in recall-oriented
settings. A reason for this unsteady performance may lie in the
increased complexity of training expressive embeddings for large
KGs. In the future, we want to explore this further by running eval-
uations not only with multiple types of embeddings but also with
multiple embedding configurations (e.g., number of trained epochs).
Another interesting direction to explore is whether combining two
KGs (e.g., by concatenating their entity vectors) yields improved
results [31].

4 CONCLUSION AND OUTLOOK
We presented KGrEaT, a framework for evaluating the performance
of KGs on multiple downstream tasks. In our experiments, we
found that, depending on the task, the performance of the KGs
varies enormously. To judge the quality of a KG in its completeness,
extrinsic evaluation metrics provided by KGrEaT can serve as a
valuable addition to the established intrinsic evaluation criteria.

In the future, we want to improve the framework in various
ways, e.g., by providing more embedding methods such as RDF2Vec
[29] as well as more tasks like KG Question Answering [30].

Further, we plan to include a more comprehensive mapper that
uses all information of an entity (such as comments and relations
to other entities). To that end, we transform the entities of the
datasets into a small KG which is then mapped to the entities of the
KG under evaluation. In such a case, systems participating in the
Ontology Alignment Evaluation Initiative (OAEI) [26] may prove
useful.

To open the framework for users unfamiliar with programming
and docker, we will introduce a graphical user interface, allowing
them to analyze KGs in a faster and more intuitive way.
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