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Abstract
We consider generating explanations for neural networks in cases where the network’s 
training data is not accessible, for instance due to privacy or safety issues. Recently, Inter-
pretation Nets ( I-Nets) have been proposed as a sample-free approach to post-hoc, global 
model interpretability that does not require access to training data. They formulate inter-
pretation as a machine learning task that maps network representations (parameters) to a 
representation of an interpretable function. In this paper, we extend the I-Net framework 
to the cases of standard and soft decision trees as surrogate models. We propose a suitable 
decision tree representation and design of the corresponding I-Net output layers. Further-
more, we make I-Nets applicable to real-world tasks by considering more realistic distri-
butions when generating the I-Net’s training data. We empirically evaluate our approach 
against traditional global, post-hoc interpretability approaches and show that it achieves 
superior results when the training data is not accessible.
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1  Introduction

Artificial neural networks (NNs) achieve impressive results for various modeling 
tasks (LeCun et al., 2015; Wang et al., 2020). A downside of their superior performance 
is the interpretability of the learned models. However, in many domains, it is crucial to 
understand the function learned by a NN (Samek et al., 2019; Molnar, 2020). A com-
mon approach to tackle the problem of interpretability without sacrificing the superior 
performance is using a global surrogate model as gateway to interpretability (Molnar, 
2020). Most global surrogate approaches use a distillation procedure to learn the surro-
gate model based on the predictions of the NN (Molnar, 2020; Frosst & Hinton, 2017). 
Therefore, they query the NN based on a representative set of samples and the result-
ing input–output pairs are then used to train the surrogate model. This representative 
sample usually comprises the training data of the original model (Molnar, 2020; Lopes 
et  al., 2017). However, there are many cases where the training data cannot easily be 
exposed due to privacy or safety concerns  (Lopes et  al., 2017; Bhardwaj et  al., 2019; 
Nayak et al., 2019). Without having access to the training data, traditional approaches 
can fail to provide meaningful explanations since the querying strategy can easily miss 
dense regions of the training data such that the resulting samples are a poor approxima-
tion of the true function, as we will show in the following example:

Example 1  The Credit Card Default dataset (Yeh & Lien, 2009) comprises personal, con-
fidential data which usually cannot be exposed to external authorities. The task is to pre-
dict whether a client will default the payment in the current month, which can be solved 
efficiently using NNs. To gain insight into the decision-making process of the NN, we can 
learn a global surrogate model. Unfortunately, if the training data is not accessible, we 
need to query the model using random samples and therefore can’t ensure that the NN is 
properly queried. Figure 1a shows a scenario, where the explanation generated by a sam-
ple-based distillation without training data contains a misconception: It encodes the rule 
that we should always predict No Default if the payment amount of the last month is larger 
than 373, 000 without taking the payment history of the client into account. This mismatch 
between network and surrogate model is also reflected in the low fidelity between the net-
work and surrogate model on the training data. Since we can’t compute this fidelity in a 
real scenario, such misconceptions might go unnoticed, which can lead to wrong assump-
tions about what the network actually learned.

Fig. 1   Explaining NNs for credit card default prediction. The DT on the left is learned by a sample-based 
distillation without access to training data, and the DT on the right is predicted by the I-Net. The I-Net DT 
makes reasonable splits and achieves a significantly higher fidelity on the real data
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As shown in Example 1, knowing the training data is crucial for sample-based methods 
and without access, it is often not possible to generate reasonable explanations. Recent 
approaches tackle this issue by using only a subset of the training data and/or layer acti-
vations to generate a representative set of samples  (Lopes et  al., 2017; Bhardwaj et  al., 
2019; Nayak et al., 2019). However, they still rely on a proper querying of the model and 
use a sample-based distillation. In contrast, the Interpretation Net ( I-Net) approach intro-
duced by Marton et  al. (2022) is a sample-free approach that only accesses the network 
parameters and therefore does not rely on a proper querying. This is achieved by using a 
second NN (the I-Net) which learns a mapping from the network parameters to a human-
understandable representation of the network function. Following this approach, we can 
generate reasonable explanations, even when the training data is not accessible, as shown 
in Example 1.

The I-Net was originally devised for regression tasks and lower-order polynomials as 
a surrogate model. In this paper, we extend I-Nets to classification tasks and use decision 
trees (DTs) as intrinsically interpretable surrogate models. DTs are frequently used as an 
explainable model for classification tasks since they make hierarchical decisions and there-
fore are easy to comprehend for humans (Frosst & Hinton, 2017). Furthermore, in recent 
literature, soft DTs (SDTs) are successfully used as interpretable surrogate model (Frosst & 
Hinton, 2017). While SDTs make multivariate splits, they usually achieve a higher fidelity 
than standard DTs, but also have a higher level of complexity.

In this paper, we make the following key contributions:

•	 We work out the importance of the data distribution to assess reasonable explanations 
(Sect. 2.2 and Sect. 4.2.1).

•	 We extend I-Nets to classification tasks and propose an improved data generation 
method, making I-Nets applicable in real-world scenarios (Sect. 3.1).

•	 We present an I-Net design that is able to represent standard DTs and SDTs as surro-
gate model (Sect. 3.2) with a high fidelity.

We empirically evaluate our approach against a sample-based distillation and show that it 
achieves superior results when training data is not accessible (Sects.  4.2.1–4.2.3). Addi-
tionally, we present a case study (Sect. 4.2.4) illustrating that sample-based approaches are 
ineffective in producing satisfactory explanations when the training data is unavailable. In 
contrast, I-Nets as sample-free approach are capable of generating reasonable explanations 
even when the training data is not available.

2 � I‑Nets as sample‑free surrogate models

In this section, we summarize the task of explaining NNs, focusing on the case where the 
networks’ training data is not available, followed by a brief introduction to I-Nets. For a 
more in-depth explanation of the I-Nets, we refer to Marton et al. (2022).

2.1 � Global explanations for NNs

We can formalize the task of explaining NNs globally as finding a function g ∶ X → P(Y|X) 
(i.e., a surrogate model) that approximates the decision function of a NN � ∶ X → P(Y|X) , 
such that ∀x ∈ X ∶ �(x) ≈ g(x) for some data X and corresponding labels Y. Since the I
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-Net approach implements a learning task, it is convenient to distinguish between the func-
tions � and g and their representations �� ∈ Θ� and �g ∈ Θg  (Marton et  al., 2022). The 
representation �� consists of the network parameters, i.e., the weights and biases of the NN. 
Similarly, �g is the parameter vector of the surrogate model and depends on the selected 
function family.

The process of generating explanations can be formalized as a function I ∶ Θ� → Θg 
that maps representations of � to representations of g  (Marton et  al., 2022). Traditional 
approaches for generating global surrogate models post-hoc implement I  via a sample-
based procedure. They generate a new dataset, where the labels are obtained by querying � 
based on a set of data points. In the next step, a surrogate model is trained using the gener-
ated dataset, maximizing the fidelity between � and g. As shown by Marton et al. (2022), 
this process is time-consuming, which can be a huge drawback if timely explanations are 
required, as for instance in an online learning scenario. Additionally, it strongly depends 
on the data used for querying the model. Information that is not properly queried cannot 
be contained in the explanation, as shown in Example 1. Therefore, in the literature it is 
suggested to use the original training data or data from the same distribution for querying 
the model (Molnar, 2020; Lopes et al., 2017), which usually yields to meaningful explana-
tions. However, if the training data is not accessible or not existing anymore, the model has 
to be queried based on some sampled data. In this case, it is often not possible to generate 
meaningful explanations with sample-based approaches, since we cannot ensure a proper 
querying and therefore the explanation does not necessarily focus on the relevant aspects.

2.2 � Reasonable explanations

In the following, we discuss what constitutes a meaningful explanation for a NN. In gen-
eral, the decision boundary of the surrogate model should closely match the decision 
boundary of the network we want to interpret to achieve a high fidelity. However, we argue 
that it is necessary to take the data distribution into account as well: A decision boundary 
should assign as many samples as possible to the correct class. Therefore, it is crucial that 
the decision boundary is composed correctly in the areas where many samples are located. 
Accordingly, for a reasonable explanation, the decision boundary should match the model 
we want to interpret especially in regions where many samples are located, while it is less 
important that the decision boundaries match in regions with low data density. In other 
words, we are less interested in an explanation that shows us how the model behaves when 
making predictions on data points that do not occur in reality. This concept is visualized in 
Fig. 2. In Sect. 4.2.1, we show that traditional, sample-based approaches cannot generate 
such reasonable explanations when the training data is not available.

2.3 � Explanations for neural networks by neural networks

To renounce the dependency on a proper querying of the model, we can implement I  as a 
NN (Marton et al., 2022) and learn how to distill a model. Accordingly, we transform the 
task of explaining NNs into a machine learning task. The concept of I-Nets involves two 
key steps and is visualized in Fig. 3: 

1.	 We train a set of NNs on synthetic data and extract their parameters.
2.	 We train a second NN, the I-Net, using the parameters extracted in the first step as input 

data.
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Thereby, no supervision in terms of actual labels is required during the training. Instead, 
the fidelity between � and g is computed using a distance measure over a set of data points 
in the loss function. Since the loss is only computed during the training, no data except 
the network parameters is required when applying the I-Net. This is a major advantage to 
sample-based approaches, where the training data is required for each network we want to 
interpret. Accordingly, to generate an explanation, I-Nets only need access to the network 
parameters and therefore, the approach can be applied in scenarios where the training data 

Fig. 2   Good and bad explanations. This figure shows an example of a bad (II) and a good (III) explanation 
for a given model we want to interpret (I). Without considering the data that the model was trained on (a), 
the explanation shown in (II) appears to be reasonable, since the decision boundary of the explanation has 
a large overlap with the decision boundary of the original model. However, when taking the training data 
distribution into account (b), we can see that the small area in the center of the picture is very important, 
since most samples are located in that area. This fact is neglected by the explanation shown in (II) and only 
considered by the explanation shown in (III)

Fig. 3   Overview of the I-Net approach. The I-Net translates network parameters �� = w(1),… ,w(|w|) of a 
NN into a surrogate model representation �g (e.g. a DT) (Marton et al., 2022)
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is not accessible without suffering a performance deficit. The most important part of the I
-Net approach is an efficient training procedure. As for most machine learning tasks, good 
training data (in our case, a set of network parameters Θ� ) is crucial. Therefore, we present 
an improved data generation method making I-Nets applicable for real world scenarios in 
Sect. 3.1.

3 � I‑Nets for decision trees

In this section, we present the main contributions of our paper. Marton et al. (2022) argue 
that I-Nets can be trained solely based on synthetic data. However, it is crucial that this 
synthetic data comprises reasonable learning problems to assure that an application of the 
I-Net is possible in a real-world setting. To achieve this, we will introduce an improved 
data generation method that considers multiple data distributions to create reasonable 
learning tasks (Sect.  3.1). Furthermore, Marton et  al. (2022) focus solely on regression 
tasks. We extend I-Nets to classification tasks and therefore present an adjusted loss func-
tion. In general, the I-Net framework can be applied to arbitrary function families for g, as 
long as we can define a suitable representation �g . In Sect. 3.2, we introduce different DT 
variants and propose corresponding representations �g that allow an efficient training.

3.1 � Improved data generation and training procedure

Data generation method The data generation method proposed by Marton et  al. (2022) 
focuses on maximizing the performance of the I-Net during training by learning func-
tions � that are similar to the function family of g. This is achieved by randomly sampling 
a set of functions from the family of g. These functions are queried to generate labels for a 
uniformly sampled dataset, which is used to learn � . This procedure ensures that the func-
tions � are representative of g, enabling an efficient training. However, a high training per-
formance does not necessarily mean that the model generalizes well to unseen data, i.e., 
NNs trained on real-world datasets. Additionally, Marton et al. (2022) use a uniform data 
distribution to query � for the fidelity calculation in the I-Net loss. However, if we only 
consider a uniform distribution during the training of the I-Net, we might not be able to 
make reasonable predictions if the network we want to interpret was trained using data 
from a substantially different distribution, as we will show in Sect. 4.2.3. This problem is 
related to the general problem that occurs for a machine learning task, if the data we are 
actually interested in (i.e., the test data) is from a different distribution than the data used 
for training the model.

To tackle this issue, we propose using multiple, different distributions during the train-
ing of the I-Net to make it more robust and therefore applicable on real-world datasets. 
In this process, we can also utilize the fact that an I-Net can be trained in a controlled, 
synthetic environment: For each �� ∈ Θ� , we know the data that was used for learning � . 
Therefore, we can use these data points to compute the I-Net loss on a meaningful set of 
samples during the training. The I-Net utilizes this additional knowledge to generalize. 
Since the loss is only calculated during training, we can generate meaningful explanations 
solely based on the network parameters �� . In summary, the process of generating training 
data for I-Net Θ� involves three steps: 

1.	 Generate N datasets D� =
{(

x
(j), y(j)

)}M

j=1
 , each comprising M samples.
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2.	 For each dataset D� , train a network � , extract the network parameters �� and add them 
to the training set Θ�.

3.	 Use Θ� to train an I-Net for the respective function family.

Our improved data generation is visualized in Fig. 4 and formalized in Algorithm 1.

Algorithm 1   Generate Data

Fig. 4   Data generation visualization. This graphic visualizes the generation of a balanced dataset used for 
training a network � where D ∈ {U,N,Γ, B, Poi} . For each feature, a random distribution with two random 
parametrizations is chosen and a random number of data points is sampled from each distribution
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For each feature i, we sample data points from one distribution with k different para-
metrizations, where k is the number of classes. For this paper, we focus on binary clas-
sification tasks and therefore set k = 2 . The distribution Di,k is sampled uniformly from 
{U,N,Γ, B, Poi} for each feature. The distributions were selected to cover a wide range 
of diverse distributions that are reasonable for many real-world phenomena  (Leemis & 
McQueston, 2008; Mun, 2015). The parametrization for the distributions Di,0 and Di,1 are 
again randomly drawn from U(0, p) , where p is a hyperparameter for the data generation 
procedure. The number of samples is selected randomly, where M0 = ⌈U(1,M − 1)⌉ data 
points are sampled from Di,0 and M1 = M −M0 data points are sampled from Di,1 . The gen-
erated datasets are balanced and for each feature and the first M

2
 data points are associated 

with Class 0 and the subsequent M
2
 data points are associated with Class 1.

We can see the proposed data generation method as a generalization of common, syn-
thetic machine learning problems that is able to generate more realistic tasks. We also want 
to note that even though the data generation focuses on balanced datasets, we can still use 
I-Nets to interpret models for imbalanced real-world datasets, as we will show in our eval-
uation (Sect. 4).

Adjusted loss function    While Marton et  al. (2022) focused on regression tasks, we 
extend their approach to binary classification tasks within this paper. Therefore, we adjust 
the loss function by using binary cross-entropy to quantify the fidelity between � and g as

where ⌊⋅⌉ denotes rounding to the closest integer. The I-Net loss for a set of network 
parameters Θ� = {�

(i)

�
}N
i=1

 is then computed as

3.2 � Function families and I‑Net output representation

I-Nets for standard DTs The first function family we will consider as surrogate models are 
standard DTs. DTs and decision rules are frequently used as explanations, since they are 
comparatively easy to understand for most humans (Molnar, 2020).

I-Nets require a suitable representation �g for standard DTs to enable efficient learning. 
Specifically, we need a one-dimensional encoding of internal and leaf nodes, as shown in 
Fig. 5. The inner node of a DT comprises two major parts: The first part is the feature that 
is considered within the split, and the second part is the split value. The operator is fixed 
to less (<) as it is common practice for representing DTs. Furthermore, we can fix the left 
path to be the true path and the right path as the false path. The feature xi considered in the 
split can be defined by enumerating the features, where i ∈ {0, 1,… , n} . We can represent 
this using n neurons and a softmax activation for each inner node (i.e., we can see it as a 
classification task for which feature to consider at a certain split).

For the split value, we can assume that all features are scaled to be within [0,  1], as 
it is common practice. To represent this in the I-Net output, we can use sigmoid acti-
vations, to constraint the output interval. However, due to the functional form of the sig-
moid activation, the I-Net prefers split values close to 0.5. To counteract this tendency, we 
used a squeezed sigmoid activation, which we define as 1

1+e−3x
 . This supports the I-Net in 

(1)BC
�
��, �g

�
=

1

M

M�

j=1

⌊�
�
x
(j)
�
⌉ × log

�
g
�
x
(j)
��

+
�
1 − ⌊�

�
x
(j)
�
⌉
�
× log

�
1 − g

�
x
(j)
��
,

(2)L
I
=

1

|Θ�|
∑

��∈Θ�

BC(��, I(��)).
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choosing more distinct split values. Furthermore, the output layer does not comprise one 
split value for each split, but n split values for each split (one for each feature). To construct 
the DT, we always use the split value at the index indicated by the feature identifier. This 
design choice is influenced by the fact that we always need to consider the meaning of a 
split value in context with the corresponding feature. In other words, while the split value 
0.7 might be a reasonable threshold for the feature x0 , it might not be reasonable at all for 
the feature x1 . Designing the I-Net output with one split value for each feature and each 
inner node, we can make this interaction easier to learn.

In a standard DT, the leaf nodes comprise the decision for a certain path (i.e., the 
class to be predicted). However, to compute the I -Net loss in Eq. 2, it is necessary that 
g has probabilities as an output. Therefore, we adjust the DTs to not just have a class in 
the leaf node, but a probability. This is similar to the purity in the leaf node of a DT, 
which is also often used as a gateway to predicting probabilities using a standard DT. In 
a binary classification case, we can use a single value to represent the probabilities of 
predicting Class 1 and thereby, the probability of Class 0 is the complementary prob-
ability. In the output layer of the I -Net, we can represent this using a total of 2d neurons 
with sigmoid activations (one neuron for each leaf node). This can easily be extended 
for a multi-class classification problem with k classes by using k × 2d neurons and one 
softmax activation over k neurons.

I -Nets for SDTs SDTs were proposed to overcome the interpretability problem that 
arises from distributed hierarchical representations when using NNs by expressing the 
knowledge using hierarchical decisions of a tree-based structure  (Frosst & Hinton, 
2017). Unlike standard DTs, SDTs do not make hard true/false splits at each internal 
node, but use soft decisions associated with probabilities for each path. In the follow-
ing, we will shortly introduce the functioning of SDTs. For a more in-depth description, 
especially concerning the learning algorithm, we refer to Frosst and Hinton (2017).

For SDTs, each internal node j comprises a filter wj and a bias bj . While the bias is 
a single, learned value, the filter consists of one value for each feature. Accordingly, in 
contrast to a standard DT with univariate decisions, a SDT has a multivariate decision at 
each internal node. This comes with a significantly higher model complexity, especially 

Fig. 5   Exemplary I-Net output for DTs. The DT representation is predicted by the I-Net using three sepa-
rate output layers with different activation functions. The output shows a DT of depth two for a binary clas-
sification task with two features
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with an increasing number of features. At each internal node, the probability of taking 
the right branch is calculated as

where x is an input sample and S is a sigmoid function defined as S(x) = 1

1+e−x
 . Each leaf 

node l comprises a probability distribution Ql
.
 , which is defined as

for the binary case. Thereby, k ∈ {0, 1} is the output class and �l
.
 is a learned parameter for 

each leaf l. Usually when using SDTs, there is not only a single leaf node considered when 
making a prediction, but all leaf nodes are multiplied with their path probabilities to calcu-
late the final probability distribution. However, Frosst and Hinton (2017) suggest increas-
ing the interpretability of SDTs by just considering the path with the maximum path prob-
ability when calculating the final probability distribution. Since this does not significantly 
affect the performance, we will only consider SDTs using the maximum path probability in 
this paper.

To use SDTs as surrogate models within the I -Net framework, we again need a suit-
able representation �g . Fortunately, the encoding for SDT shown in Fig. 6 is straightfor-
ward: We can represent the internal nodes with n output neurons for the filter (one for 
each feature) and one output neuron for the bias. Since there are no specific ranges for 
the filter and bias value in the SDT, we use linear activations. The same accounts for 
�l
.
 , where we need k output neurons for each leaf node. Again, we can use linear activa-

tions here, since the final probabilities are calculated by Ql
k
 and no specific range for �l

.
 

is required.

(3)Pj(x) = S
(
xwj + bj

)
,

(4)Ql
k
=

e�
l
k

e�
l
0 + e�

l
1

Fig. 6   Exemplary I-Net Output for SDTs. The SDT representation is predicted by the I-Net using three 
separate output layers with linear activation functions. Here, we show a SDT of depth two for a binary clas-
sification task with two features
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4 � Evaluation

The goal of our evaluation is to show that I -Nets are able to interpret NNs trained on 
real-world datasets without requiring access to the training data, and achieve a higher 
fidelity than sample-based approaches in most of the cases. Therefore, we will address 
the following in our evaluation:

•	 We illustrate which effects occur once the training data is not accessible for query-
ing the model and thereby show that it is crucial for sample-based approaches to 
access the training data (Sect. 4.2.1).

•	 We evaluate the fidelity of the I -Net in comparison to sample-based approaches on 
real-world datasets if the training data is not accessible (Sect. 4.2.2).

•	 We perform an ablation study showing the impact of our improved data generation 
method for real-world datasets (Sect. 4.2.3).

•	 We present a case study of credit card default prediction, comparing the explanations 
for a NN generated by the I -Net and sample-based approaches (Sect. 4.2.4).

4.1 � Experimental setup

In our experiments, we compare I -Nets with standard distillation approaches for a sce-
nario where the training data is not available. For I -Nets, we used the representations 
Θg described in Sect. 3.2. The sample-based distillation was conducted as follows:

•	 Standard DTs:  We used the implementation from sklearn, which uses the CART 
algorithm for DT induction (Breiman et al., 1984).

•	 SDTs:  We used the algorithm proposed by Frosst and Hinton (2017).

Since we assume that the training data is not available, we needed to generate data to 
query the NN for the distillation using sample-based approaches. Therefore, we selected 
three sampling strategies for generating the query data as benchmarks: 

1.	 Multi-Distribution:  According to Algorithm 1, i.e., considering different data distribu-
tions to allow for a fair comparison with the I-Net.

2.	 Standard Uniform:  A standard uniform distribution U(0, 1).
3.	 Standard Normal:  A standard normal distribution N(0, 1).

For each sampling strategy, we sampled 10, 000 data points. Increasing the number of 
sampling points further did not enhance the fidelity of sample-based approaches, but 
only increased their runtime.

The network parameters Θ� for training the I -Net were generated using data accord-
ing to Algorithm 1. We excluded all datasets that were linearly separable during the data 
generation to focus on more complex and reasonable datasets. The hyperparameter p 
which defines the maximum value for the distribution parameters was fixed to 5 for all 
experiments. The I -Net hyperparameters were optimized using a greedy neural archi-
tecture search according to Jin et al. (2019). We selected one I -Net architecture for each 
of the three function families. The code of our implementation along with all datasets 
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and used hyperparameters is available under: https://​github.​com/s-​marton/​expla​ining-​
neural-​netwo​rks-​witho​ut-​train​ing-​data.

4.2 � Experimental results

In the following, we will summarize our results and findings. The fidelity between the sur-
rogate model and the NN was calculated based on the test split of the original data.

4.2.1 � Visual evaluation for different distributions

In this experiment, we assess the importance of knowing the distribution of the training 
data in a controlled, synthetic setting. We use a two-dimensional dataset to allow a visual 
comparison of the decision boundaries (Fig. 7). The data used for training the NNs for this 
experiment was generated randomly according to Algorithm 1 but is distinct to the data 
used for training the I-Net to ensure a fair comparison.

Figure  7a shows a decision boundary learned by a NN that ranges from the bottom 
left corner to the middle right. Thereby, many data points that were assigned to Class 0 
by the NN are located in the bottom left corner. In contrast, the top right part contains 
few to no data points. When the training data is available (II), the standard DT learned a 
decision boundary that closely matches the decision boundary of the NN, including the 
area in the bottom left. However, if the training data is not available, the sample-based 
approach (III–V) only comprises the large area towards the top and neglects the small area 

Fig. 7   Visual decision boundary evaluation. This figure shows the decision boundaries of the NN we want 
to interpret (I), followed by the decision boundary of explanations generated by different approaches, along 
with their performance for three different datasets and function families. Only when the training data is 
accessed (II) and when using the I-Net (VI), the explanation comprises the relevant aspects of the model. 
When the training data is not accessible (III)-(V), sample-based approaches are not able to generate reason-
able explanations

https://github.com/s-marton/explaining-neural-networks-without-training-data
https://github.com/s-marton/explaining-neural-networks-without-training-data
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at the bottom left. Considering just the shapes and size of the areas created by the decision 
boundary, this seems to be a reasonable explanation. However, as explained in Sect. 2.2, if 
we take the data into account, it becomes apparent that the neglected part of the decision 
boundary at the bottom left is much more important, since many data points are located in 
this area. In contrast, the explanation generated by the I-Net as sample-free approach (VI) 
correctly separates the samples at the bottom left with its decision boundary and neglects 
the part at the top right, which is not relevant when taking the data into account. We can 
confirm this by taking the fidelity scores into account: The I-Net achieved a fidelity of 
99.8% , while the sample-based distillation without training data only achieved a maximum 
fidelity of 36.2% . For SDTs in Fig. 7(b), we can observe similar results: The fidelity for the 
sample-based approaches (III)–(V) significantly decreased if the training data is not avail-
able and the explanation focused on irrelevant areas. In contrast, the I-Net (VI) was able to 
generate high-fidelity explanations without accessing the training data.

4.2.2 � Real world datasets performance comparison

For the evaluation, we selected 8 commonly used real-world datasets, mostly from the 
banking and medical domain, comprising confidential data where it is realistic to assume 
that the training data cannot be exposed. In this experiment, we compare the performance 
of the I-Net and a sample-based distillation without access to training data for standard 
DTs (Table 1) and SDTs (Table 2). We report the mean and standard deviation over 10 tri-
als. While for the standard uniform and standard normal sampling only the sampled data 
points differ, we sampled a new set of distributions and parameters for each trial in the 
multi-distribution case. Results for the best method, as well as results that are not signifi-
cantly different in a paired t-test ( � = 0.05 ) are highlighted in bold (Tables 1, 2, 3).

Standard DTs Comparing the results for standard DTs as surrogate model in Table 1, 
the I -Net was the best method on 6/8 datasets and achieved the highest average perfor-
mance ( 86.19% ). For a sample-based distillation, multi-distribution sampling achieved 
the best average performance 73.20% , even though it did not achieve the best results on 
any dataset. Sampling from a standard uniform distribution achieved a similar average 
performance ( 72.75% ) and was the best method on 2/8 datasets. A standard normal sam-
pling strategy achieved the worst average performance but still achieved the best results 

Table 1   Real-world evaluation results for standard DTs

Dataset I-Net Multi-distribution Standard uniform Standard normal

Titanic (n=9) 95.51 ± 0.00 71.12 ± 17.16 86.07 ± 3.30 86.29 ± 7.75
Medical Insurance (n=9) 82.71 ± 0.00 88.12 ± 6.71 89.47 ± 4.19 90.75 ± 8.83
Breast Cancer Wisconsin Origi-

nal (n=9)
97.10 ± 0.00 83.62 ± 13.09 39.42 ± 13.90 31.88 ± 0.00

Wisconsin Diagnostic Breast 
Cancer (n=10)

80.36 ± 0.00 56.43 ± 17.65 37.86 ± 15.56 33.39 ± 5.42

Heart Disease (n=13) 73.33 ± 0.00 74.67 ± 9.45 85.67 ± 5.97 80.33 ± 7.67
Cervical Cancer (n=15) 84.71 ± 0.00 65.41 ± 27.77 71.88 ± 9.64 60.82 ± 30.29
Loan House (n=16) 100.00 ± 0.00 77.05 ± 24.41 96.89 ± 7.42 59.84 ± 33.84
Credit Card Default (n=23) 75.80 ± 0.00 69.16 ± 17.58 74.76 ± 0.05 34.33 ± 20.31
Mean Fidelity 86.19 73.20 72.75 59.70
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on one dataset. Especially for the Wisconsin Diagnostic Breast Cancer and Cervical 
Cancer, the sample-based distillation was not able to generate accurate explanations 
if the training data was not accessible. For Wisconsin Diagnostic Breast Cancer, the 
fidelity of sample-based distillation was mostly even worse than a random guess, which 
highlights the importance of querying the model on reasonable data points, as already 
shown in Sect. 4.2.1.

SDTs For SDTs, the I-Net achieved the highest average performance ( 92.10% ) and was 
the best method on 6/8 datasets. Sampling from a standard uniform distribution resulted in 
the best performance for sample-based approaches with 5/8 wins, which is slightly worse 
than the I-Net. However, the mean performance was significantly worse, with an average 
fidelity of ( 82.82% ). This was mainly caused by the superior performance of the I-Net on 
the Cervical Cancer and Credit Card Default datasets, where the fidelity was more than 40 
percentage points higher. The second-best results were achieved using a multi-distribution 
sampling strategy ( 76.09% ) and sampling from a standard normal distribution was again 
significantly worse, with an average of 51.27% . Furthermore, we observed that the aver-
age fidelity of SDTs is considerably higher than the fidelity standard DTs. We can trace 
this back to the fact that SDTs have a significantly higher complexity, especially with an 
increasing number of variables, as discussed in Sect. 3.2. This can also explain why the 
performance difference between a sample-based distillation and the I-Net is smaller for 
SDTs compared to standard DTs: While using meaningful samples for querying the NN is 
very crucial when the surrogate model has low complexity, it is less crucial if the surrogate 
model is more complex, making it less reliant on focusing on the most important informa-
tion. Accordingly, it is less likely that relevant areas are neglected with an increasing com-
plexity of the surrogate model. However, for interpretability, we are usually interested in 
surrogate models with a comparatively low complexity that are understandable for humans. 
In this scenario, I-Nets substantially outperformed sample-based methods.

Summed up, the I -Net outperformed a sample-based distillation on the majority of 
datasets when training data was not accessible and was the best model in 12/16 evalu-
ated scenarios. Especially for surrogate models with low complexity, sample-based 
approaches are dependent on proper querying. Therefore, using the I -Net in such sce-
narios can achieve a higher fidelity. This can be crucial since wrong explanations can 
lead to wrong decisions, as we will evaluate more in-depth in Sect. 4.2.4.

Table 2   Real-world evaluation results for SDTs

Dataset I-Net Multi-distribution Standard uniform Standard normal

Titanic (n=9) 95.51 ± 0.00 88.31 ± 3.80 92.47 ± 1.24 92.81 ± 0.75
Medical Insurance (n=9) 77.44 ± 0.00 79.25 ± 20.79 91.20 ± 7.59 78.50 ± 0.60
Breast Cancer Wisconsin Origi-

nal (n=9)
100.00 ± 0.00 96.67 ± 4.49 100.00 ± 0.00 31.88 ± 0.00

Wisconsin Diagnostic Breast 
Cancer (n=10)

94.64 ± 0.00 84.82 ± 16.98 97.50 ± 2.55 28.57 ± 0.00

Heart Disease (n=13) 100.00 ± 0.00 90.67 ± 12.45 99.33 ± 1.33 60.00 ± 0.00
Cervical Cancer (n=15) 85.88 ± 0.00 58.35 ± 21.36 43.29 ± 11.54 25.76 ± 2.38
Loan House (n=16) 100.00 ± 0.00 50.82 ± 39.36 100.00 ± 0.00 17.21 ± 12.30
Credit Card Default (n=23) 83.30 ± 0.00 59.86 ± 21.99 38.77 ± 6.06 75.40 ± 1.32
Mean Fidelity 92.10 76.09 82.82 51.27
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4.2.3 � Ablation study

In Sect. 3.1 we introduced an improved data generation method which is more robust in a 
real-world scenario, since it considers multiple different distributions. In the following, we 
will compare our new data generation method with the data generation method introduced 
by Marton et al. (2022), which generates data based on the function family of the surro-
gate model and considers only a single distribution. As shown in Table 3, our improved 
data generation was the best method on 7/8 datasets for standard DTs and 7/8 datasets for 
SDTs. Comparing the average performance over all datasets, we also observed a significant 
increase in the accuracy using the new data generation method of ≈ 36 percentage points 
for standard DTs. For SDTs, the difference in the mean fidelity was significantly smaller, 
with only ≈ 6 percentage points. One explanation could be the higher complexity of the 
surrogate model for STDs, as already discussed in Sect. 4.2.2.

4.2.4 � Case study: explaining neural networks for credit card default prediction

In this section, we will take a closer look at the explanations generated by sample-based 
approaches and the I-Net by returning to Example 1 which we introduced in Sect. 1. The 
purpose of this experiment is to show in a real-world setting that without access to the 
training data, the surrogate model generated by sample-based approaches can lead to incor-
rect assumptions on the function learned by the NN. We want to emphasize that without 
access to the training data, it is not possible to identify whether a specific surrogate model 
contains a misconception or not, since we are not able to calculate a representative fidelity.

The Credit Card Default  (Dua & Graff, 2017) dataset is concerned with credit card 
default prediction based on 23 features including demographic data along with the credit 
and payment history of clients in Taiwan (Yeh & Lien, 2009). Figure 8 shows the DT sur-
rogate models generated by the I-Net and a sample-based distillation. As shown in Fig. 8a, 
the I-Net archived a fidelity of 75.8% and only considers a single split to decide whether 
there will be a payment or not. The split is based on whether the payment for the previous 
month was delayed for less than three months (left path) or not (right path). We can con-
sider this as a very reasonable split, under the assumption that a client with a past default 
history has a higher probability of recurring defaults in the future. We can substantiate this 

Table 3   Ablation study: data generation comparison

Dataset Standard DT SDT

new old new old

Titanic (n=9) 95.51 39.33 95.51 86.52
Medical Insurance (n=9) 82.71 72.93 77.44 92.48
Breast Cancer Wisconsin Original (n=9) 97.10 31.88 100.00 98.55
Wisconsin Diagnostic Breast Cancer (n=10) 80.36 28.57 94.64 83.93
Heart Disease (n=13) 73.33 60.00 100.00 80.00
Cervical Cancer (n=15) 84.71 84.71 85.88 84.71
Loan House (n=16) 100.00 13.11 100.00 100.00
Credit Card Default (n=23) 75.80 74.73 83.30 64.97
Mean Fidelity 86.19 50.66 92.10 86.40
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by taking the actual class distributions into account: The overall probability for No Default 
is ≈ 78% , while it is only ≈ 29% for the right path of the tree. This aligns with our hypoth-
esis, as the Default risk increases when taking the right path. By considering leaf node 
probabilities, we can enhance our understanding of the decision process. If the payment 5 
months ago was also not delayed more than 4 months, the probability that there will be No 
Default is even higher, as shown in the left branch of the tree. If there was a delay of more 
than 4 months, the probability that there will be a Default is approximately 20% higher. 
We can again verify this based on the real data: The proportion of No Default in the data 
is 79% when taking the left branch, while it is 54% when taking the right branch. These 
numbers are also very close to the corresponding leaf probabilities ( 81% and 76% versus 
62% respectively).

In contrast, when taking a closer look at the DT generated by a sample-based distillation 
(Fig. 8b), we can observe that the entire right branch of the tree has No Default as predic-
tion. This prediction is made solely based on the first split, where the right branch is taken 
if the payment amount 6 months ago was larger than 373, 000. This translates to the rule 
that we should always predict that there will be No Default in the payment if there was a 
large payment amount in the past. However, it seems counter-intuitive to make this deci-
sion without taking for instance the credit history of the client and previous defaults into 
account. Upon investigating the real data, we can verify that this split is not reasonable: 
Only 6

30,000
 samples fall into the right branch of the tree where all 6 samples are from the 

majority class (non-default). Furthermore, all samples falling into the right subtree reach a 
single leaf, making the remaining splits dispensable. It becomes evident that this is in 
extreme contrast to the class distributions in the leaves that represent the random data used 
for querying. This discrepancy underlines once more the crucial role of data from the same 
distribution as the training data to query the model appropriately. We can further observe 
that almost all samples of the real data 

(
29,928

30,000

)
 land in the leaf at the very left of the tree 

and therefore are assigned to the minority class (Default). Summed up, the tree predicts No 
Default for a total of only 7 samples of the training data. This is confirmed by the surrogate 
model’s poor fidelity of 25.3% on the real data, which is worse than a random guess. In 
contrast, the fidelity on the sampled data used for querying the model was very high 
( 82.7% ) which can lead to misconceptions, since the model appears to have a high fidelity 
that does not hold on the real data. Without access to the training data, it is not possible to 
identify these misconceptions. Taking only the high fidelity on the sampled data into 
account, we might assume that the surrogate actually captures the model well, and there-
fore we could make wrong assumptions about its behavior.

Fig. 8   Explanation comparison for standard DTs. The surrogate model on the right is learned by a sample-
based distillation with a multi-distribution sampling strategy. The DT on the left is predicted by the I-Net. 
The I-Net makes reasonable splits and achieves a significantly higher fidelity on the real data
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5 � Related work

Various methods to interpret black-box models have been proposed in the past decades. 
Overviews from different perspectives are given by Doshi-Velez and Kim (2017); Lipton 
(2018) and Molnar (2020). In this paper, we focus on methods that translate NNs into DTs.

Model distillation is a common technique to transfer knowledge from a complex model 
into a surrogate model (Buciluǎ et al., 2006; Hinton et al., 2015). It can be used to obtain 
more compact model representations for efficiency reasons (Buciluǎ et  al., 2006; Hinton 
et  al., 2015; Furlanello et  al., 2018) or to interpret the model as a human-understanda-
ble function (Frosst & Hinton, 2017; Tan et  al., 2018). With the focus on interpretabil-
ity, model distillation is performed to either understand the function encoded by trained 
networks and how predictions are made (Craven & Shavlik, 1995; Boz & Hillman, 2000; 
Zhang et al., 2019) or to improve the performance of an interpretable algorithm to use it 
instead of the NN at test time (Krishnan & Sivakumar, 1999; Frosst & Hinton, 2017; Liu 
et al., 2018). Although those purposes differ, the methods can be interchangeably used for 
both.

Various sample-based methods using DTs as surrogate models were presented in the 
past quarter-century (Craven & Shavlik, 1995; Krishnan & Sivakumar, 1999; Boz & Hill-
man, 2000; Johansson & Niklasson, 2009; Frosst & Hinton, 2017; Liu et al., 2018; Zhang 
et al., 2019; Nguyen et al., 2020). They transform a trained NN into a surrogate function 
with a tree-like structure, which is usually achieved by maximizing the fidelity to the NN 
on a sample basis. The main differences among existing approaches are the type of the 
resulting DTs, the method to train the surrogate model, and the purpose of the surrogate 
model. The proposed trees make either univariate (Krishnan & Sivakumar, 1999; Boz & 
Hillman, 2000; Liu et al., 2018) or multivariate (Craven & Shavlik, 1995; Nguyen et al., 
2020; Frosst & Hinton, 2017) decisions at each split. Trees that consider multiple vari-
ables can achieve higher fidelity and accuracy than univariate DTs. However, especially for 
tabular data, they are less interpretable. For training the surrogate model, differences exist 
regarding the data used, the decision how a split is determined, and the optimization tech-
nique used. Regarding the training of trees, most approaches rely on standard DT induc-
tion methods. Krishnan and Sivakumar (1999) use ID3 (Quinlan, 1986) and C4.5 (Quinlan, 
2014), Craven and Shavlik (1995) use ID2-of-3 (Murphy, 1991) and Nguyen et al. (2020) 
use CART (Breiman et al., 1984). While these approaches greedily optimize the fidelity, 
Frosst and Hinton (2017) use gradient descent to distill the trees. The data to maximize the 
fidelity is either the original training data (Frosst & Hinton, 2017; Liu et al., 2018) or data 
from a distribution that was modeled based on the training data (Craven & Shavlik, 1995; 
Krishnan & Sivakumar, 1999; Boz & Hillman, 2000; Johansson & Niklasson, 2009).

In all cases, the predictions on data are the only source for understanding the model 
behavior, and thus meaningful samples are crucial for the performance. Without informa-
tion on the distribution of the training data, e.g., in the form of data points, the perfor-
mance of sample-based methods decreases significantly. Recent approaches deal with this 
problem using metadata, such as layer activations, to create good samples based on net-
work information (Lopes et al., 2017; Bhardwaj et al., 2019; Nayak et al., 2019). However, 
they often still need access to the training data in some part of the distillation process. 
Lopes et al. (2017) use a fraction of the original training data to compute activations sum-
maries to later compress the network without accessing the data. Similarly, Bhardwaj et al. 
(2019) require samples of the original training data to generate activation vectors, which 
are necessary for the distillation. However, they report requiring significantly fewer data 
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points than Lopes et al. (2017). In contrast, Nayak et al. (2019) does not require access to 
training data, but only accesses the model internals. The model internals are used to gen-
erate a class similarity matrix based on the parameters of the softmax output layer of the 
NN. Based on the class similarity matrix, Nayak et al. (2019) generate meaningful samples 
called Data Impressions via Dirichlet sampling based on the output classes. However, the 
approach requires a softmax output for the NN and is tailored towards multi-class clas-
sification problems, since it utilizes the knowledge contained in the class similarity matrix 
for sampling. Accordingly, an application on a binary classification task is not adequate, 
since a class similarity matrix for two classes can contain only little information, which 
makes sampling difficult. Summed up, the main issue is that the majority of state-of-the-
art sample-free approaches still need access to at least a subset of the training data. Only 
Nayak et al. (2019) is applicable without training data is, but the application is restricted, 
e.g., to multi-class tasks.

6 � Conclusion and future work

In this paper, we proposed a new instance of I-Nets for tree-based surrogate models and 
an improved data generation method, making I-Net applicable in a real-world scenario. 
While traditional approaches generate explanations sample-based and rely on proper que-
rying, I-Nets utilize the model internals, which implicitly contain all relevant information 
about the network function. Therefore, I-Nets can generate reasonable explanations in sce-
narios where the training data is not accessible. Using our new data generation method, the 
I-Net generalizes to NNs trained on different data distributions. Thereby, the I-Net identi-
fies which aspects learned by the NN are most important based on the distribution of the 
training data and therefore should be contained in the explanation. The I-Net can use this 
knowledge to generate meaningful explanations for new, unseen networks, even without 
access to the training data.

In our experiments, we showed that sample-based approaches strongly rely on proper 
querying and are often not able to generate reasonable explanations without access to the 
training data. In this scenario, the explanations of sample-based approaches frequently 
comprise misconceptions, since they focus on the global behavior and do not focus on the 
regions that are important for a reasonable explanation, as we demonstrated within our case 
study. Furthermore, we empirically showed that I-Nets consistently outperform sample-
based methods on real-world datasets when the training data is not available. Thus, using I
-Nets, high-fidelity explanations can be generated when confidential training data can’t be 
exposed.

Currently, the I-Net comprises a feed-forward NN and the model internals used as an 
input are flattened to a one-dimensional array. In further work, we aim for a more sophisti-
cated I-Net architecture and a better-suited representation for the model input to improve 
the performance even further. Furthermore, the I-Net is tailored towards generating fully 
grown DTs based on its structure. In further work this could be addressed by adjusting the 
output layer which allows using greater depths for the explanation without a significant 
increase in complexity.
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