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A B S T R A C T

The automatic extraction of procedural surgical knowledge from surgery manuals, academic papers or other
high-quality textual resources, is of the utmost importance to develop knowledge-based clinical decision
support systems, to automatically execute some procedure’s step or to summarize the procedural information,
spread throughout the texts, in a structured form usable as a study resource by medical students. In this work,
we propose a first benchmark on extracting detailed surgical actions from available intervention procedure
textbooks and papers. We frame the problem as a Semantic Role Labeling task. Exploiting a manually annotated
dataset, we apply different Transformer-based information extraction methods. Starting from RoBERTa and
BioMedRoBERTa pre-trained language models, we first investigate a zero-shot scenario and compare the
obtained results with a full fine-tuning setting. We then introduce a new ad-hoc surgical language model,
named SurgicBERTa, pre-trained on a large collection of surgical materials, and we compare it with the previous
ones. In the assessment, we explore different dataset splits (one in-domain and two out-of-domain) and we
investigate also the effectiveness of the approach in a few-shot learning scenario. Performance is evaluated
on three correlated sub-tasks: predicate disambiguation, semantic argument disambiguation and predicate-
argument disambiguation. Results show that the fine-tuning of a pre-trained domain-specific language model
achieves the highest performance on all splits and on all sub-tasks. All models are publicly released.
1. Introduction

Thousands of surgeries are performed every day in hospitals around
the world. Surgery is a complex profession that requires years of study
and practice to master. Usually, the course of study of a surgeon
consists of the first part of theoretical study, in which the surgeon
acquires the fundamental theoretical notions of the profession, and a
final part of practice, in which the student, through a cycle of intern-
ships, integrates the theoretical knowledge learned with experience.
Since theoretical study occupies a predominant and substantial part of
the study cycle of an apprentice surgeon, the literature is teeming with
manuals, online resources and academic papers of the highest quality,
used by universities around the world. These texts usually contain two
different types of information [1]:

• procedural knowledge, the one possessed by an intelligent agent (in
surgery, a surgeon or a surgical robot) able to perform a task (a
surgical intervention). Typically, the description of a procedure
details a set of surgical actions linked together temporally and
causally;
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• non-procedural knowledge, the one that does not express an action
executable by an intelligent actor, but rather additional, related
knowledge, for instance about anatomy.

This large amount of high-quality procedural information, if automat-
ically processed by Natural Language Processing (NLP) techniques, is
valuable content that could be exploited in many clinical applications.
For example, robots could automatically build or extend a proper
surgical knowledge-base, reasoning with it in realistic intervention
scenarios. Humans could benefit from it for question answering ap-
plications, usable for example in an early learning phase by medical
students. However, so far the extraction of surgical knowledge di-
rectly from surgery manuals and textbooks has received little attention
from the scientific community, as current trends mostly focus on the
derivation of knowledge from kinematic and video data captured by
endoscopic sensors and cameras during interventions [2,3], or on the
manual modeling of ontologies [4]. In this paper, we tackle the yet
unexplored problem of extracting procedural knowledge from textual
surgical resources.
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A procedure is an ordered sequence of actions linked together
temporally and causally. An action may be activated when a cer-
tain pre-condition is satisfied and it reaches its end state when a
certain post-condition occurs. An action, expressed in surgery with
verbs (e.g., ‘‘dissect’’) or nominalized verbs (e.g., ‘‘dissection’’) [5], is
accompanied by a set of semantic information, such as the ‘‘agent’’,
i.e., the one who performs the action; the ‘‘patient’’, i.e., the one who
undergoes the action; the ‘‘instrument’’, which refers to the tool used
for performing the action, and the ‘‘purpose’’ describing the reason
why the action is performed. In addition, other semantic information is
temporal and spatial parameters. This work specifically tackles the au-
tomatic extraction of the actions and aforementioned related semantic
information from procedure intervention descriptions available in real-
world robotic-surgery textbooks, i.e., the concrete resources used by
apprentice surgeons to learn the interventions, contributing to advance
the state-of-the-art of the field in several ways.

First, we propose to frame the extraction of procedural actions and
related information from surgical texts as a Semantic Role Labeling
(SRL) problem [6]. SRL is the well-established NLP task of label-
ing semantic arguments of predicates in sentences to identify ‘‘Who’’
does ‘‘What’’ to ‘‘Whom’’, ‘‘How’’, ‘‘When’’ and ‘‘Where’’. By framing
the problem as a SRL task, predicates (verbs and nominalized verbs)
in a sentence denotes some procedural actions, while the semantic
arguments of the predicates indicate the actions’ related semantic
information. Since surgery is an unexplored and less-resourced domain
for SRL, which, in line with most work in NLP, has focused in the past
primarily on newswire text [7], we first investigate the ability of state-
of-the-art language models trained on general-English (RoBERTa [8]) or
biomedical (BioMedRoBERTa [9]) annotated texts to cope with this very
specific domain. Then, we investigate how to improve the extraction
quality by fine-tuning existing models on SRL-labeled, manually an-
notated, domain text, i.e., procedural sentences where surgical actions
and related semantic information are accurately identified and tagged
by users knowledgeable of the domain. Since manual annotation is
very expensive and requires domain experts, we furthermore adopt
unsupervised domain adaptation techniques — namely injecting a large
quantity of unlabeled domain text into the models to augment their
understanding of surgical language knowledge — to verify if results can
be further improved, contributing a new language model (SurgicBERTa)
specifically for the surgical domain. We compare all the considered and
contributed models in an extensive quantitative evaluation, concretely
investigating the following research questions:

• RQ1: How well are available general-English and bio-medical pre-
trained language models able to perform SRL on surgical anno-
tated texts without resorting to supervised learning (i.e., zero-shot
learning)?

• RQ2: Does fine-tuning on surgical annotated texts substantially
improve the performance with respect to the zero-shot setting
using off-the-shelf models available in the literature?

• RQ3: How many annotated data are needed to attain substantial
improvements via supervised learning for this task (i.e., few-shot
learning)?

• RQ4: Does further unsupervised learning of pre-trained language
models (as in our novel language model, named SurgicBERTa)
help to better understand surgical language?

• RQ5: Are the SRL models able to generalize over different surgical
sub-domains?

Besides exploiting the standard evaluation measures for the SRL task,
we also propose a new way for evaluating SRL systems, based on the
joint disambiguation of arguments and predicates, i.e., on the correct
disambiguation of semantic arguments with respect to the correct
meaning (i.e., sense) of the actual predicate. Finally, we publicly re-
lease1 all the trained models and evaluation materials, contributing the

1 https://gitlab.com/altairLab/surgical_srl
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research community a wealth of resources to support further research
and development activities on the topic.

To the best of our knowledge, this work is the first one deal-
ing with automatic procedural knowledge extraction from available
robotic-surgery textbooks.

The paper is organized as follows. In Section 2, we revise some
state-of-the-art works about the NLP methods used by the bio-medical
community, applications of NLP in medicine and surgery, and tech-
niques for procedural knowledge understanding of texts in different
domains. In Section 3, we describe the SRL task, the neural-network
architecture used, the annotated data exploited for training, validation
and testing, the pre-trained language models considered, the evaluation
techniques and some computational data. In Section 4, we present and
discuss the obtained results. We conclude with Section 5, summarizing
the main contributions of this paper and addressing related research
directions for future works.

2. Background

While the field of biomedical NLP has a long history – see, among
others, [10] for an overview and the proceedings of the long-standing
ACL Workshop on Biomedical Language Processing [11] for up-to-
date contributions – to the best of our knowledge, no works have
tackled so far the problem of extracting procedural knowledge from
surgical books or academic papers. Nevertheless, the literature includes
various approaches for extracting relevant information from medical or
surgical operative notes using NLP or extracting procedural information
from other non-surgical domains. Consequently, this section overviews
relevant previous works in three different related areas: the first part
summarizes NLP methods traditionally used for bio-medical free-text
mining; the second part discusses recent relevant applications of NLP
techniques to the bio-medical and surgical domains; the third part
presents papers dealing with the extraction of procedural knowledge
from texts, considering also domains other than the bio-medical one.

NLP methods for the bio-medical domain. This paragraph summarizes
the main NLP methods used for medical free-text mining. Among
NLP techniques, those based on deep learning methods (i.e., neural
networks) have become extremely popular also in medical NLP because
of their higher performance on a plethora of tasks and no need for
handcrafted features [12]. When applied to textual content, neural
networks are typically fed with word embeddings, that is numerical
representations of textual tokens. The most used word embeddings
in the medical community in the last years were word2vec [13],
Glove [14], and fastText [15]. These word embeddings have the poten-
tial to capture semantic relationships between pairs of words and/or
syntactic information from unstructured text data. Furthermore, fast-
Text is traditionally used for its subwords mechanism able to deal with
out-of-vocabulary problems, very frequent when working with medi-
cal terminology. More recent medical language models associate each
word with every other word in a sentence thanks to the bi-directional
self-attention mechanism, outperforming previous baselines in many
biomedical tasks [9,16,17]. The models presented in Sections 3.5.1 and
3.5.2 belong to this last category.

A critical element in bio-medical NLP is to have an available dataset
to train and validate models. Published papers often used private
datasets which are rarely shared, mostly due to patient privacy con-
cerns [12], hindering the replication of the results. The most popular
datasets and databases in the bio-medical NLP are MIMIC [18], the ones
from i2b2 challenges (e.g., [19] for concept extraction) and the one
from SemEval challenges (e.g., [20] for temporal relations extraction
from clinical narratives). Unfortunately, none of them contains anno-
tations of procedural surgical descriptions for semantic information
extraction.

https://gitlab.com/altairLab/surgical_srl
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Application of NLP techniques to bio-medical domains. This paragraph
summarizes some recent and relevant applications of NLP techniques
to bio-medical and surgical domains. In [21], the authors use logis-
tic regression with unigrams and concept unique identifiers from the
unified medical language system to automatically predict the severity
of chest injury after trauma from clinical notes. [22] proposes rule-
based NLP algorithms to automatically extract surgery-specific data
elements (category of knee arthroplasty, laterality, constraint type,
whether patella resurfacing was performed or not, and implant model
numbers) from knee arthroplasty operative notes: the main objective
was to decrease the need for costly manual chart review and to im-
prove data quality using NLP techniques. In [23], they use information
extraction techniques applied to operative notes to detect the presence
of variables associated with periprosthetic joint infection, including
the growth of cultured organisms, documentation of inflammation,
presence of sinus tract, and purulence. In [24], the authors use an
extreme gradient boosting NLP machine learning algorithm [25] for
automated detection of incidental durotomies in free-text operative
notes of patients undergoing lumbar spine surgery. The clinical goal is
to automatically survey the incidental durotomy that could be poten-
tial implications for postoperative recovery, patient-reported outcomes,
length of stay, and costs. In [26] the authors address the detection of
procedural knowledge in MEDLINE abstracts. In their work, procedural
knowledge is defined as a set of unit procedures (each consisting of a
Target, Action and Method) organized for solving a specific purpose. The
proposed solution works in two steps. First, support vector machines
and conditional random fields are combined for detecting sentences
(purpose/solution) that may contain unit procedures, feeding them
with content (unigrams and bigrams), position (sentence number in
the abstract), neighbor (content features of nearby sentences) and
ontological features (usage of terms from reference vocabularies). Then,
sequence labeling with CRFs is performed to identify the components
of unit procedures. In [27] the authors propose an NLP approach to
automatically label right ventricular dysfunction size and function [28]
from echocardiographic free text reports. In particular, manually anno-
tated written reports were used to fine-tune a 12-layer BERT model
pre-trained on a large dataset. The remaining written reports are used
as test material. The extracted labels are finally used to annotate image
data, training a 4-layer 3D convolutional neural network. In [29] NLP is
used for adverse event detection from radiology reports and follow-up
telephone call notes. In particular, hip dislocation after a primary total
hip replacement [30] is used as a case study. Radiology reports are
manually labeled into three categories (current dislocation, evidence
of previous dislocation and no dislocation) while telephone notes are
organized into two categories (evidence of previous dislocation and
no dislocation). Then, the performance of different machine learning
and deep learning models is compared. In [31] is observed that tex-
tual radiology reports contain relevant information for determining
the likelihood of radiology signs of COVID-19 in the lungs. Machine
Learning NLP approaches and SNOMED-CT reference terminology [32]
are thus adopted to automatically detect COVID-19 related disorders
within radiology reports.

These studies are examples of NLP applications in the medical
domain. However, the typology of the texts used is remarkably dif-
ferent from ours: they mostly analyze medical notes, often written
in a highly structured language, or abstracts, while we analyze free-
text specialized manuals or papers. Finally, the purpose is different:
our goal is to lay the foundations for extracting a synthetic workflow
by mining descriptions of surgical procedures abundantly available in
the literature, while theirs is mostly focused on helping surgeons or
assistants to analyze available data.

Procedural knowledge extraction. More similar in terms of the over-
rching goal, but more diverse in the application domain are the
tudies that, similarly to our work, propose approaches for extracting
rocedural knowledge, however for domains other than the biomedical
3

one. In [33], the authors tackle the problem of procedural knowledge
detection in technical documentation as a classification task using
Support Vector Machine with linguistic and structural features. The
authors of [34] address instead the mining of cooking recipes and
maintenance manuals, exploiting a CNN fed with word embeddings.
Recipe for nanomaterials’ synthesis has been mined in [35], where the
authors use a Naïve Bayes classifier fed with features such as word
counts, TF–IDF (Term Frequency–Inverse Document Frequency) and N-
grams. In [36], the authors pursue the extraction of repair instructions
in user-generated text from automotive web communities using linguis-
tic and structural features fed to several machine learning methods.
In [37], a Support Vector Machine is applied for extracting procedural
information in technical support documentation, where procedures are
typically described using lists. Also the authors of [38] address the
extraction of procedural knowledge from structured instructional texts,
exploiting finite-state grammars. Recently, deep-learning based NLP
techniques have also been applied to extract business processes from
Standard Operating Procedure documents [39].

While all these works address the extraction of procedural knowl-
edge from written text and are thus similar to our foreseen application,
they deal with typologies of textual content substantially different from
the description of a surgical procedure. Troubleshooting and product
documentation, cooking recipes, maintenance manuals, and repair in-
structions differ a lot from descriptions of surgical procedures. They
are different both from the terminological point of view as well as the
structural one, since these kinds of texts are structurally organized,
frequently using numbered/bulleted lists, while no established stan-
dard way to describe a surgical procedure exists. In addition, surgical
interventions are mainly presented in a prose-like style. Indeed, the
scenario where structural features cannot be exploited is considered
more challenging to tackle also in some of the presented works (c.f.,
e.g., [37]).

3. Method

In this section, we describe the SRL task and the neural network
architecture adopted, together with the annotated resources used for
supervised training. We then describe different pre-trained language
models and the fine-tuning process on the downstream task of SRL.
Finally, we describe the evaluation method for the proposed models.
Fig. 1 summarizes the proposed approach.

3.1. Semantic role labeling

SRL is the task of labeling semantic arguments of predicates in
sentences to identify ‘‘Who’’ does ‘‘What’’ to ‘‘Whom’’, ‘‘How’’, ‘‘When’’
and ‘‘Where’’. Such representations are also applied for information
extraction in various biomedical domains [40–42].

There are two commonly used lexical resources that make use of dif-
ferent typologies of semantic roles: PropBank [43] and FrameNet [44].
In this paper we use the first approach, since the literature already of-
fers a version of PropBank specialized for the robotic-surgical domain,
named RSPF (Robotic-Surgery Propositional Framebank) [5].

The typical SRL task is composed of two sub-tasks:

• Predicate identification and disambiguation: to identify each
predicate in a sentence, assigning it the appropriate meaning
(i.e., sense in PropBank/RSPF) in the given context, among the
available ones for that predicate lemma codified in the target
lexical resource;

• Argument identification and classification: to detect the argument
spans or argument syntactic heads of a predicate, and to assign
them the appropriate semantic role labels according to the target

lexical resource.
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Fig. 1. Overview of our approach for procedural surgical knowledge extraction. The pipeline is composed of three stages (top to bottom): (i) the collection of surgical texts from
the web and a simple pre-processing (gray box). These data are used to adapt RoBERTa pre-trained language model to the surgical domain. (ii) Using the data from the gray box,
we adapt RoBERTa pre-trained language model to the surgical domain through unsupervised training (masked language modeling). We thus obtain a new pre-trained language
model specific to the surgical domain, named SurgicBERTa (right part of the blue box); (iii) We then fine-tune SurgicBERTa in a supervised way on the downstream SRL task using
general-English and surgical annotated datasets (red box); SurgicBERTa thus learns the surgical SRL task. (iv) With the performance evaluation step (green box), we evaluate the
obtained model on a further test dataset consisting of SRL-style annotated surgical sentences. We evaluate the model on three different dimensions: the ability to disambiguate the
sense of the predicate of the sentence, the ability to disambiguate semantic arguments and finally the ability to jointly disambiguate predicate and semantic arguments.
A common example in general English is the sentence ‘‘Mary sold
the book to John’’. In the predicate identification and disambiguation
phase, SRL identifies that ‘‘sold’’ is the predicate and in this sentence
it has, among the six alternative senses for ‘‘sell’’ codified in PropBank,
the meaning sell.01 - commerce: seller, giving in exchange for money. In
the argument identification and classification phase, the SRL instead
produces the following output:

‘‘[Arg0: Mary] [sell.01: sold] [Arg1: the book] [Arg2: to John]’’.

where, for the sense sell.01 in PropBank, Arg0 identifies the seller, Arg1
the thing sold, and Arg2 the buyer.

As another example, consider the following sentence from the sur-
gical domain, focusing on the verb ‘‘grasp’’ : ‘‘Using the cadiere grasper
4

(robot arm #3), grasp the soft tissues along the lesser curvature of the
stomach to straighten out the lga perpendicular to the celiac axis’’. In the
predicate identification and disambiguation phase, ‘‘grasp’’ is recog-
nized as a predicate, assigning it the meaning of grasp.02: ‘‘to clasp or
embrace especially with the fingers or arms’’, rather than grasp.01: ‘‘to take
hold of, comprehend’’, in RSPF. Then, in the argument identification and
classification phase, SRL produces the following output:

‘‘[Arg2: Using the cadiere grasper (robot arm #3)], [grasp.02
grasp] [Arg1: the soft tissues] [Arg3: along the lesser curvature of
the stomach to straighten out the lga perpendicular to the celiac
axis]’’.
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where, for the sense grasp.02 in RSPF, Arg2 represents the ‘‘instrument
used for grasping’’, Arg1 is the ‘‘thing grasped’’, and Arg3 identifies an
‘‘important spatial indication for correct grasping’’.

3.2. Annotated textual resources

Modern SRL methods rely on neural architectures and require an-
notated data to learn the language in a supervised way. For training,
validating and testing the methods investigated in our work, we re-
lied on two different manually annotated textual datasets for SRL:
the CoNLL-2012 dataset [45], a large-scale (∼ 318k annotated SRL
predicates), multi-genre general-English corpus, and a smaller dataset,
specific of the robotic-surgery domain. We used the first to make the
architecture learn the standard SRL task, and the second to specialize
the model so that it better understands the surgical language and
how to perform the SRL task in the given domain. The annotated
robotic-surgery textual dataset is an extended version of the SPKS
dataset [1] whose sentences have been manually annotated in a SRL
PropBank style, using as framebank RSPF, which is an extension of
the standard PropBank’s frameset with frames describing actions and
semantic roles used in the robotic-assisted surgical domain. The dataset
contains sentences describing robotic-surgery procedures, thus includ-
ing all traditional surgical actions plus others that are specific to robot
operations. In RSPF, 24 new predicates, 22 new senses (or frames),
and 63 missing arguments have been added to the standard PropBank’s
frameset and used to annotate SPKS sentences.2 In total, we relied on
1559 SRL annotated sentences describing 28 surgical procedures of four
different robotic-surgery domains:

• Urology - 51.51% of the sentences;
• Gastrointestinal procedures - 24.82% of the sentences;
• Thoracic procedures - 13.02% of the sentences;
• Gynecology - 10.65% of the sentences

The dataset is composed of 3601 predicates and 8601 annotated seman-
tic arguments. In more detail, we have 460 Arg-0, 3462 Arg-1, 1079
Arg-2, 446 Arg-3, 276 Arg-4, 45 Arg-5, 9 Arg-6, 2759 ArgM of different
types and 65 R-Arg related to different core arguments or arguments
representing coreference.

Both datasets (CoNLL-2012 and the annotated SPKS) adhere to the
PropBank way of annotating predicates and semantic arguments. In
more detail, because of the difficulty of defining a universal set of
semantic or thematic roles covering all types of predicates, PropBank
(and thus RSPF) defines semantic roles on a verb-by-verb basis, spec-
ifying them for the different senses (i.e., frames) of a verb. Semantic
arguments are numbered consecutively, starting from zero (i.e., Arg-0
Arg-1, Arg-2, Arg-3, Arg-4, Arg-5 and Arg-6). These semantic arguments
are also called ‘‘core’’ because they are essential to describe the usage
of the corresponding frame. In addition to the semantic roles describing
the specific frame, verbs can take any of a set of general, adjunct-
like arguments (ArgMs), distinguished by a given function (also called
‘‘modifier’’). Examples of subtypes of the ArgM modifier tag are LOC
(i.e., location), NEG (i.e., negation marker), PRP (i.e., purpose) and
TMP (i.e., time). The complete list of ArgM modifiers is in [43].

As an example, we consider here the frame dissect.02 that in RSPF
has 6 core-roles:

• Arg-0: mad scientist, agent
• Arg-1: entity dissected
• Arg-2: instrument
• Arg-3: manner or technique
• Arg-4: spatial indications useful for the dissection
• Arg-5: until to dissect

Using this frame and the above roles, the sentence

2 plus some other sentences taken from additional surgical procedures.
5

‘‘The lymphatic tissue is dissected off with meticulous hemostatic
and lymphatic control, using bipolar electrocautery and hem-o-lok®
clips, to improve visualization’’.

is annotated as:

‘‘[Arg-1: The lymphatic tissue] is [dissect.02 dissected] off [Arg-3:
with meticulous hemostatic and lymphatic control], [Arg-2: us-
ing bipolar electrocautery and hem-o-lok® clips], [ArgM-PRP: to
improve visualization.]’’

3.3. The SRL neural architecture adopted

SRL is traditionally performed with data-driven methods [46]. Tra-
ditional approaches were based on classifiers trained on manually-
engineered textual features: e.g., [6] proposes a statistical classifier
trained using various morpho-syntactic features (e.g., governing pred-
icate, phrase type). Recent works on SRL leverage deep neural net-
works, shifting from feature-engineering to architecture-engineering,
with several notable approaches suggesting to perform SRL in an end-
to-end fashion, relying only on raw low-level input signals (charac-
ters/tokens) fed to advanced techniques, such as multi-layer recur-
rent networks [47]. More recently, approaches leveraging self-attention
techniques [48] and Transformer-based architectures with pre-trained
language models [49] have been proposed. In this work, we follow
this trend and adopt a neural approach, thus addressing the SRL task
in an end-to-end fashion while testing different pre-trained language
models. The pre-trained language models considered in this paper are
the state-of-the-art RoBERTa [8] and BioMedRoBERTa [9], described
in Section 3.5.1, and the one we contribute and release, SurgicBERTa,
described in Section 3.5.2. That is, all SRL models compared in this
paper share the same architecture, and differ only in the pre-trained
language models used and the data on which they are pre-trained.

In more detail, the SRL models used in this paper are instantiated
on top of the RoBERTa encoder (the same also used by BioMedRoBERTa
and SurgicBERTa), which has been shown in much current work to
achieve state-of-the-art language understanding capabilities. At its core,
the system is a standard BIO tagger whose objective is to assign a
label of the form B-X (beginning of argument with role X), I-X
(continuing of argument with role X) or O (not an argument) to the
tokens of the sentence, with respect to the considered predicate. Fig. 2
illustrates the neural architecture we use. First, we encode the input
text using contextualized word embeddings for each token using the
pre-trained language model; we then use linear transformations of the
word embeddings to obtain a concatenated input for a two-layer ReLU,
which is next input to a linear layer followed by softmax activation
to produce a probability distribution over labels for each word (to
avoid overfitting, a standard dropout layer [50] with probability 0.5
is used). To capture the sequential dependencies between labels, we
use a standard CRF layer [51] to produce at testing the most probable
label sequence using standard Viterbi decoding.

For training and validation, we rely on the datasets described in the
previous section. The CoNLL-2012 dataset is used to train and validate
the ‘‘zero-shot’’ models, while the robotic-surgery annotated dataset
is used in combination with CoNLL-2012 for the ‘‘few-shot’’ and ‘‘full
fine-tuning’’ models that will be described in Section 3.6. Evaluation
is carried out on different test splits of the robotic-surgery annotated
dataset, detailed next in Section 3.4. We remark that sentences of the
test sets were never seen during the training and validation phases.

In all experiments, we inform the model about the tokens that are
playing the role of predicate. Differently from [49], we do not use
the gold frame sense since our purpose is also to evaluate the model’s
ability to correctly disambiguate the predicate meaning. The predicate
disambiguation adopts a similar architecture.
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Fig. 2. The neural architecture used for SRL. Sentences are tokenized and each token is input to a pre-trained language model to produce a contextualized representation, which
is then fed into ReLU layers and a linear layer. Next, a softmax layer produces a probability distribution over the labels. A CRF layer finally captures dependencies between labels
by decoding the resulting representations into the most probable label sequence.
3.4. Splits of the robotic-surgery annotated dataset

Due to the high computational costs needed for training/validating/
testing the SRL models, we adopted the classical evaluation proto-
col of manually splitting the dataset into three components (train,
validation, and test) instead of following a more computationally de-
manding cross-validation protocol. More in detail, we split the robotic-
surgery annotated dataset presented in Section 3.2 into three different
combinations:

• BAL: the split train-test-validation is balanced between differ-
ent surgical domains. The procedures are split into train-test-
validation preserving the number of sentences per each domain
(thoracic, gynecological, urological, gastrointestinal). Then, 80%
6

of sentences are used to train (10% of them are removed and
used to validate the dataset) and 20% as a test dataset. A similar
approach is also used by [43].

• GYN: train and validation datasets contain all the sentences of
thoracic, gastrointestinal and urological descriptions. The test
dataset contains only sentences of the gynecological domain. No
sentences describing gynecological surgeries were seen during the
training and validation steps.

• THO: train and validation datasets contain all the sentences of gy-
necological, gastrointestinal and urological descriptions. The test
dataset contains only sentences of the thoracic domain. No sen-
tences describing thoracic surgeries were seen during the training

and validation steps.
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Table 1
Statistics of the different splits. The numbers outside the parenthesis represent the percentage of the corresponding semantic argument in the
respective train + validation or test datasets: the sum by columns of the numbers outside the parenthesis is therefore 100. The numbers in
parenthesis represent the split of the corresponding argument in the train + validation and test dataset. For each argument, the sum of the
number in parenthesis of train + validation and test datasets is therefore 100. The same is for predicates (Preds in table).
Split BAL THO GYN

Pred. or arg. Train+Val (%) Test (%) Train+Val (%) Test (%) Train+Val (%) Test (%)

Preds (80.20) (19.80) (87.46) (12.54) (89.28) (10.71)

Arg-0 5.50 (81.90) 4.96 (18.10) 5.15 (81.74) 7.64 (18.26) 5.40 (87.26) 6.01 (12.74)
Arg-1 40.48 (80.21) 40.71 (19.79) 41.84 (87.22) 40.66 (12.78) 42.03 (89.31) 38.34 (10.69)
Arg-2 13.18 (83.56) 10.56 (16.44) 12.96 (87.52) 12.26 (12.48) 13.05 (89.87) 11.21 (10.13)
Arg-3 4.94 (75.95) 6.37 (24.05) 5.50 (87.26) 5.34 (12.74) 5.69 (91.93) 3.80 ( 8.07)
Arg-4 2.81 (69.29) 5.07 (30.71) 3.67 (90.43) 2.58 ( 9.57) 3.72 (93.40) 2.00 ( 6.60)
Arg-5 0.54 (82.22) 0.47 (17.78) 0.55 (89.13) 0.44 (10.87) 0.49 (80.43) 0.90 (19.57)
Arg-6 0.07 (55.56) 0.24 (44.44) 0.13 ( 0.90) 0.09 ( 0.10) 0.11 ( 0.89) 0.10 ( 0.11)

ArgM 32.48 (80.71) 31.62 (19.29) 30.20 (86.60) 30.99 (13.40) 29.51 (85.66) 37.64 (14.34)
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The BAL split wants to investigate the ability of the method described in
3.3 to learn a general surgical domain procedural language from a lim-
ited set of annotated sentences. The GYN and THO splits3 aim instead
to verify if the annotations are general across different surgical sub-
domains, i.e., if the models trained on them perform in a comparable
way with the one trained with the BAL split. Table 1 summarizes some
statistics about the splits.

3.5. Language models

3.5.1. State-of-the-art pre-trained models: RoBERTa and BioMedRoBERTa
We started our investigation with two different state-of-the-art pre-

trained language models: one trained on general-English texts (Ro-
BERTa) and one trained on biomedical texts (BioMedRoBERTa). Ro-
BERTa was trained on over 160 GB of uncompressed text, with sources
ranging from English language encyclopedic and news articles, to lit-
erary works and web content. Representations learned by such models
generally achieve strong performance across many tasks with datasets
of varying sizes drawn from a variety of sources. BioMedRoBERTa is
obtained from RoBERTa via continuously pre-training on 2.68M full-
text biomedical papers from S2ORC [52]. This amounts to 7.55B tokens
and 47 GB of data. With this configuration we want to implicitly verify
if the biomedical domain is similar to the surgical one, and if we can
obtain performance improvements by simply adopting a more accurate
pre-trained language model than the general-domain RoBERTa. Both
pre-trained language models use the same transformer-based architec-
ture [53]. Both are trained with a masked language modeling objective
(i.e., cross-entropy loss on predicting randomly masked tokens). The
word representations learned in the pre-trained models are usually
reused in supervised training for a downstream task, with optional
updates (fine-tuning) of the representations and network from the first
stage. In our case, the downstream task is SRL.

3.5.2. A novel surgical language model: SurgicBERTa
In addition to these state-of-the-art pre-trained language models, we

trained a novel model specifically for the surgical domain. Similarly
to the approach followed for building BioMedRoBERTa from RoBERTa,
we continuously trained RoBERTa for the masked language modeling
(MLM) unsupervised task, on a large amount of surgical domain text.
Under MLM, some words in a given sentence are masked and the model
is expected to predict those masked words based on other words in
the sentence. Such a training scheme makes this model bidirectional
in nature because the representation of the masked word is learnt

3 Although any of the sub-domains in the SPKS dataset could have been
hosen as a test set while training on the others, given the relatively small
ize of the robotic-surgery annotated dataset, we opted for testing on these
wo domains as they are the smaller ones and thus maximize the size of the
vailable material (from the other domains) used for training (c.f. Section 3.2).
7

based on the words that occur on its left as well as right. MLM can
be considered similar to autoencoding modeling which works based
on constructing outcomes from unarranged or corrupted input. As the
name suggests, masking works with these modeling procedures which
means some words from a sequence of input or sentences are masked
and the designed model has to predict the masked words to complete
the sentence. For instance, given the masked sentence:

The surgeon uses a [MASK] to cut the tissue.

the models should output

The surgeon uses a [scissor] to cut the tissue.

Following successful work on domain-adaptive pre-training via lan-
guage modeling [54–56], we investigate the effect of running standard
MLM on domain-specific texts. We selected 300 K sentences from
surgery books (7 million words) and continuously trained RoBERTa on
them for MLM, obtaining SurgicBERTa, a pre-trained language model
pecific to the surgical language. The training sentences were selected
rom various books covering several heterogeneous surgical (not only
obotic-surgical) sub-domains, from abdominal surgery to orthopedics
o eye surgery. In line with previous work on building/adapting large
anguage models, e.g., [9], we do not constrain the selection of the
raining sentences to obey any balancing of these surgical sub-domains,
ut simply collect as much freely accessible content as possible relevant
or the surgical domain at large, since our goal is to build a model to
e used ubiquitously in tasks where surgical textual content is involved
i.e., beyond the scope of the specific SRL task addressed in this paper).

very minimal pre-processing of the sentences is performed by simply
emoving URLs and bibliographic references.

.6. Fine-tuning of language models on the SRL downstream task

Using the neural architecture of Section 3.3, the language models of
ections 3.5.1 and 3.5.2, the RSPF resource, the general-English CoNLL-
012 and the surgical datasets described in Section 3.2, we trained
8 different models, six for each split. In particular, for each one, we
ine-tuned RoBERTa, BioMedRoBERTa and SurgicBERTa on two different
cenarios:

• Zero-Shot: we fine-tuned the language models only on CoNLL-
2012 annotated data (train and validation sets), i.e. on non-
surgical data. We then evaluated obtained models on the surgical
test set for the various splits;

• Full Fine-Tuning: starting from the fine-tuned models of the
Zero-Shot scenario, we continued to fine-tune them on the train
and validation sets for the different splits of the robotic-surgery
annotated dataset. We then evaluated the resulting models on the
corresponding surgical test set according to the split, the same
used in the Zero-Shot scenario.
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Transformer-based language models are known for their capability
to achieve high scores also when fine-tuned with a limited amount
of task-specific training material (Few-Shot learning [57]). This ca-
pability is particularly useful in situations of scarcity of annotated
data, due to few resources or costly content annotation, such as the
robotic-surgical one. We thus decided to run some experiments to assess
whether this holds also for the surgical SRL task. We created various
subsets of the train and validation splits for the BAL scenario of the
robotic-surgical annotated dataset, having a number of sentences that
are respectively of 0%, 1%, 5%, 10%, 25%, 50% and 100% of the
original training and validation sets. We then trained the SurgicBERTa
model on these different subsets, validating them on the same reference
test set.

Following the guidelines provided by the authors of [49], we per-
formed the fine-tuning of the models on the downstream SRL task in
two stages, with the following suggested configurations:

• stage 1: fine-tuning using cross-entropy loss for 30 epochs with
learning rate 3 × 10−5;

• stage 2: further fine-tuning using the combined loss for additional
5 epochs with a lower learning rate (1 × 10−5.)

etails on the loss functions used can be found in [49].

.7. Evaluation

Performance is evaluated according to three different dimensions:

• argument identification and disambiguation: the capability of assign-
ing the correct semantic role label to the predicate arguments
mentioned in the text, after identifying it. This is the tradi-
tional dimension used for bench-marking SRL tools [7,46,49],
adopted also in the CoNLL-2012 Shared Task evaluation (and
corresponding script);

• predicate disambiguation: the capability of assigning the correct
RSPF frame (i.e., meaning) to the predicate in the text. In our
domain setting, this evaluation is particularly useful to assess if
the models are capable to discriminate the domain-specific usage
of some verbs with respect to their general-English usage;

• predicate-argument disambiguation: the capability of assigning the
correct semantic role label to the predicate arguments as well
as to assign the correct sense (i.e., frame) to the corresponding
predicate.

he first two dimensions correspond to the two sub-tasks described
n Section 3.1, while the third one aims at combining the correctness
n both dimensions. To the best of our knowledge, the assessment
f this combined predicate-argument disambiguation performance was
ot addressed in previous works and evaluation campaigns, although
e deem it particularly relevant for assessing SRL performance, espe-

ially for Propbank-style annotations: indeed, as arguments are defined
n RSPF (and PropBank) according to predicate senses (i.e., different
enses of the same predicate have different semantic roles), if a tool cor-
ectly predicts the role label (e.g., Arg-1) for the argument but fails to
isambiguate the sense of the corresponding predicate (e.g., proposing
issect.02 instead of correct dissect.01), it basically fails in predicting
he actual semantic arguments for that predicate, as it predicted a
emantic role but for a different predicate sense. Note that these cases
re not handled by the standard CoNLL-2012 argument disambiguation,
or which the role assigned to an argument is correct independently of
he disambiguated sense of the corresponding predicate.

In practice, the evaluation compares the annotations made on the
entence with the gold ones. Namely, for each token of the sentence,
he predicted annotation is compared with the gold one. For the first
imension, only the labels of the arguments are considered, while in the
econd dimension only the labels of predicates are used. Finally, for
he third dimension, the comparison is performed on enriched labels
8

derived from the raw ones as follows: the argument label on each
token (both gold and predicted) is concatenated with the label of the
corresponding predicate sense so that the same annotation contains
both information on the role of the argument and the predicate sense
to which that role refers to. Then, for each dimension, performance is
computed with standard metrics for classification tasks, i.e., precision,
recall, and F1-score.

In more detail, for each classification class 𝑖 (role or predicate sense
label), we compute the following class metrics:

• class 𝑖 true positives (𝑇𝑃 𝑖): the number of arguments or predicate
senses correctly predicted in class 𝑖;

• class 𝑖 false positives (𝐹𝑃 𝑖): the number of arguments or predicate
senses predicted in class 𝑖 that are in other classes according to
the gold standard;

• class 𝑖 false negatives (𝐹𝑁 𝑖): the number of arguments or predi-
cate senses that are in class 𝑖 according to the gold standard, but
are predicted in the other classes.

tarting from previous values, we then compute the following metrics:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (P) = 𝑇𝑃 𝑖

𝑇𝑃 𝑖+𝐹𝑃 𝑖

• 𝑅𝑒𝑐𝑎𝑙𝑙 (R) = 𝑇𝑃 𝑖

𝑇𝑃 𝑖+𝐹𝑁 𝑖

• 𝐹1 = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 = 2∗𝑇𝑃 𝑖

2∗𝑇𝑃 𝑖+𝐹𝑃 𝑖+𝐹𝑁 𝑖

We further compute the Accuracy metric (Acc), i.e., the ratio be-
ween the correctly predicted classes, divided over the test set size. For
ach dimension, the higher the score of the metric, the better the model
erforms.

.8. Computational aspects

All models are computed using one NVIDIA RTX A6000 GPU, with
8 GB of GPU memory, with the (one-time) MLM training required for
uilding SurgicBERTa taking approximately 8 h.

Since the compared models share the same SRL neural architecture
nd vary in the language model used, we observed no significant differ-
nce in the time required for fine-tuning them on the annotated dataset:
ndeed, each model has required approximately 20 h for this step.
lthough the training time is substantial, once the models have been

rained, getting the annotations automatically on the test sentences
s extremely fast, taking approximately 15 seconds on the largest test
plit, consisting of approximately 400 sentences (i.e., roughly 0.04 s
er sentence). That is, exploiting the models that we publicly release,
xtracting surgical actions and related semantic information from a
entence is almost instantaneous.

. Results

In this section, we report and discuss the results obtained using the
ethods described in Section 3. Each score reported in the section is

he average over three distinct runs of the considered method.

.1. Argument disambiguation

We first evaluate the obtained models on the traditional argument
isambiguation task. The results are reported in Table 2.

The results show that having annotated domain data available is
ssential to improve the arguments’ disambiguation performance. In
act, fine-tuning the language models with some domain data allows
o significantly increase considered metrics on all splits. By focusing
n the F1 metric of the BAL split, moving from a zero-shot scenario
o a full fine-tuning one, we improve the performance of 0.061 for
oBERTa, of 0.065 for BioMedRoBERTa and of 0.063 for SurgicBERTa.
imilar considerations hold for precision (RoBERTa +0.057; BioMedRo-
ERTa +0.061 and SurgicBERTa +0.054) and recall (RoBERTa +0.064;

BioMedRoBERTa +0.065 and SurgicBERTa +0.072). These results confirm
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Table 2
Performance (overall) on the arguments-disambiguation task for BAL, THO and GYN splits. FFT means Full Fine-Tuning scenario, while ZS stands
for Zero-Shot scenario. The best scores are highlighted in bold.

Split BAL THO GYN

model P R F1 P R F1 P R F1

RoBERTaZS 0.714 0.688 0.701 0.692 0.677 0.685 0.775 0.767 0.771
BioMedRoBERTaZS 0.718 0.696 0.707 0.708 0.684 0.696 0.788 0.777 0.782
SurgicBERTaZS 0.724 0.696 0.710 0.726 0.700 0.713 0.827 0.781 0.775

RoBERTaFFT 0.771 0.752 0.762 0.753 0.744 0.748 0.799 0.781 0.790
BioMedRoBERTaFFT 0.779 0.764 0.772 0.756 0.738 0.747 0.798 0.794 0.796
SurgicBERTaFFT 0.778 0.768 0.773 0.759 0.749 0.753 0.813 0.796 0.804
i
c
s

that using domain annotated data helps the models to both improve
the proportion of positive identifications that was actually correct and
the proportion of actual positives that was identified correctly. This is
in line with what was expected: being RSPF an extension of PropBank
for the surgical domain, the CoNLL-2012 dataset, the only SRL training
material used for the zero-shot models, does not contain annotated
examples for some of the labels of RSPF (the ones in RSPF but not
in PropBank), and thus it will not be able to predict them on the test
set, where some of these labels are likely to occur. Furthermore, the
domain annotated data is fundamental to accurately understand the
surgical procedural language which often has different needs than those
of general-English [5].

Similar considerations apply also for the performance on the THO
split: the full fine-tuning improves precision (RoBERTa +0.061; BioMed-
RoBERTa +0.048 and SurgicBERTa +0.033), recall (RoBERTa +0.067;
BioMedRoBERTa +0.054 and SurgicBERTa +0.049) and F1-score (Ro-
BERTa +0.063; BioMedRoBERTa +0.051 and SurgicBERTa +0.040) for
all considered models. The improvement between zero-shot and full-
fine tuning is comparable to the one observed for the BAL split. Full
fine-tuning typically improves the performance over zero-shot learn-
ing also on the GYN split, although the improvement is somehow
restrained with respect to the other two splits: precision (RoBERTa
+0.024; BioMedRoBERTa +0.010 and SurgicBERTa −0.014), recall (Ro-
ERTa +0.014; BioMedRoBERTa +0.017 and SurgicBERTa +0.016) and
1-score (RoBERTa +0.019; BioMedRoBERTa +0.014 and SurgicBERTa
0.029). This minor improvement may be due to the presence of fewer
entences in the GYN split that require annotation using the RSPF
pecializations (i.e., those labels in RSPF but not in PropBank): this is
omehow confirmed by the significantly higher values obtained with
ero-shot on GYN than on the other two splits. We can thus answer
Q1 and RQ2: injecting domain sentences in the training step helps

o substantially improve performance in all compared scenarios (RQ2),
lso when leveraging general-English and biomedical models (RQ1),
hose zero-shot scores are clearly lower than the full fine-tuned ones.
lso RQ5 has a positive answer since the improvement from zero-shot

o full fine-tuning is comparable between the different splits, showing
hat the models perform reasonably well also when tested on surgical
ub-domains not seen during the training.

Note that SurgicBERTa achieves the best results in both the zero-
hot and full fine-tuning scenarios for almost all metrics of all splits.4
his confirms that using unsupervised domain adaptation techniques
uch as MLM can improve performance even in the presence of few
r no annotated data. It is interesting to note that SurgicBERTa also
mproves performance compared to BioMedRoBERTa which has been
pecialized on biomedical domain texts. This means that the procedural
obotic-surgical domain, which is a specialized subset of the biomedical
ne, uses a ‘‘distinct’’ language that deserves appropriate, specialized
raining resources to be adequately covered by language models. We
an thus positively answer RQ4.

4 The only exception is in the zero-shot scenario for the F1 metric of the
YN split, where BioMedRoBERTa attains a slightly better score.
9
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Table 3 goes deeper in the analysis and compares the fine-grained
performance, argument-by-argument, by the baseline model (i.e., Ro-
BERTa in the zero-shot scenario - RoBERTaZS) with those obtained by
the best model for the BAL split (i.e., SurgicBERTa in a full fine-tuning
scenario - SurgicBERTaFFT ). The detailed results show that full-fine
tuning for the BAL split, improves the disambiguation of almost all
core and modifier arguments. The most substantial improvements are
among the core numbered arguments i.e., Arg-N with 𝑁 ∈ 0..6. Quite
often, especially for 𝑁 ≥ 3, these are the ones not present in the
standard PropBank but introduced in RSPF, and therefore are very
specialized arguments of the surgical domain never seen in CoNLL-2012
data. This, again, answers RQ1, since although the zero-shot scenario
with RoBERTa obtains acceptable results, using more specific language
models and annotated data allows for improved performance.

4.2. Predicate and predicate-argument disambiguation

Table 4 shows the results of the other two dimensions considered
in our analysis, i.e., predicate disambiguation and predicate-argument
disambiguation. For predicate disambiguation, as the used SRL tool was
configured to work with gold predicate mentions (i.e., having an oracle
that predicts whether a token denotes a predicate or not),5 for predicate
disambiguation we only report the accuracy score, as in this setting, by
definition, P=R=F1=Acc.

Similar considerations as the one reported for argument disam-
biguation hold also for these two assessments: using domain annota-
tions allows to improve the performance of the models. The improve-
ments are comparable and very noticeable for the BAL and THO splits,
while they are less substantial in the GYN split. Also for the predicate
disambiguation and for the predicate-argument disambiguation tasks,
using a domain language model (i.e., SurgicBERTa) often improves
performance. The most substantial improvements are achieved within
the full-fine tuning scenario. Again, this confirms the trends of the data
observed on argument disambiguation, thus confirming the answers for
RQ1, RQ2, RQ4, and RQ5.

Furthermore, note that the scores for argument disambiguation in
Table 2 are substantially lower than the ones for predicate-argument
disambiguation reported in Table 4. For example, SurgicBERTaFFT ob-
tains an F1 of 0.773 for argument disambiguation in BAL split, and
only a 0.732 (i.e., −0.041) in predicate-arguments disambiguation.
The difference in the scores between argument disambiguation and
predicate-arguments disambiguation is even larger in the Zero-Shot
scenario e.g., 0.701 vs 0.534 for RoBERTaZS. That is, in many cases,
while the argument label proposed by the models may be correct per
se (i.e., ignoring the predicate to which the argument refers), it actually
denotes the argument label for a wrong predicate sense, and therefore a

5 Note that this is by no means a limitation of the comparison conducted
n our work as: (i) predicates can be easily spotted via part-pf-speech tagging,
onsidering only the tokens labeled as Verb, or Proper Nouns having specific
uffixes (e.g., -ize, -ation); and (ii), this applies for all the models considered
n the assessment.
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Table 3
A fine-grained comparison between a baseline model and the best model for the argument disambiguation task. Best F1 scores
are highlighted in bold.

Model RoBERTaZS SurgicBERTaFFT
Argument P R F1 P R F1

Arg-0 0.696 0.655 0.675 0.879 0.691 0.773
Arg-1 0.903 0.890 0.896 0.911 0.926 0.919
Arg-2 0.647 0.553 0.596 0.671 0.603 0.635
Arg-3 0.000 0.000 0.000 0.554 0.380 0.451
Arg-4 0.000 0.000 0.000 0.614 0.628 0.621
Arg-5 0.000 0.000 0.000 0.000 0.000 0.000
Arg-6 0.000 0.000 0.000 1.000 0.250 0.400

ArgM-ADJ 0.000 0.000 0.000 0.000 0.000 0.000
ArgM-ADV 0.564 0.585 0.574 0.553 0.491 0.520
ArgM-CAU 0.500 1.000 0.667 0.500 1.000 0.667
ArgM-DIR 0.154 0.240 0.188 0.292 0.280 0.286
ArgM-DIS 0.500 0.286 0.364 0.429 0.429 0.429
ArgM-EXT 0.500 1.000 0.667 0.500 1.000 0.667
ArgM-GOL 0.000 0.000 0.000 0.000 0.000 0.000
ArgM-LOC 0.381 0.500 0.432 0.436 0.578 0.514
ArgM-MNR 0.267 0.722 0.390 0.544 0.681 0.605
ArgM-MOD 0.988 0.976 0.982 0.988 1.000 0.994
ArgM-NEG 1.000 1.000 1.000 1.000 1.000 1.000
ArgM-PNC 0.000 0.000 0.000 0.000 0.000 0.000
ArgM-PRD 0.000 0.000 0.000 0.000 0.000 0.000
ArgM-PRP 0.754 0.754 0.754 0.708 0.807 0.754
ArgM-TMP 0.827 0.865 0.845 0.865 0.865 0.865
R-Arg0 1.000 1.000 1.000 1.000 1.000 1.000
R-Arg1 0.857 1.000 0.923 0.857 1.000 0.923
R-Arg2 1.000 1.000 1.000 0.000 0.000 0.741
R-ArgM-LOC 1.000 1.000 1.000 0.500 1.000 0.667
Table 4
Performance (overall) on the predicate disambiguation and predicate-argument disambiguation tasks for BAL, THO and GYN splits. The best
scores are highlighted in bold.

SPLIT BAL THO GYN

TASK Predicate Predicate-Arguments Predicate Predicate-Arguments Predicate Predicate-Arguments
MODEL Acc P R F1 Acc P R F1 Acc P R F1

RoBERTaZS 0.731 0.544 0.525 0.534 0.769 0.555 0.543 0.549 0.835 0.649 0.642 0.645
BioMedRoBERTaZS 0.748 0.560 0.543 0.551 0.777 0.573 0.555 0.564 0.810 0.641 0.632 0.636
SurgicBERTaZS 0.735 0.565 0.544 0.555 0.732 0.559 0.540 0.549 0.827 0.646 0.643 0.645

RoBERTaFFT 0.907 0.706 0.689 0.697 0.910 0.680 0.672 0.676 0.930 0.745 0.729 0.737
BioMedRoBERTaFFT 0.897 0.707 0.694 0.700 0.887 0.669 0.653 0.661 0.935 0.752 0.748 0.750
SurgicBERTaFFT 0.925 0.737 0.727 0.732 0.910 0.690 0.680 0.685 0.938 0.756 0.741 0.749
wrong argument label in the end, since argument labels are predicate-
sense specific in resources such as PropBank. This further confirms
the relevance of considering the proposed joint predicate-argument
disambiguation performance in SRL evaluations, in addition to the
standard (and independent) argument disambiguation and predicate
disambiguation.

4.3. Few-shot learning

Finally, Fig. 3 shows the few-shot learning curve of the SurgicBERTa
model, obtained by varying the number of training (and validation)
sentences. This assessment allows us to address RQ3.

The curve shows that if the number of added domain annotations
is too small, a detrimental effect is obtained for all the analyzed
metrics (P, R, and F1). However, with at least 15% of the training
material (approximately 190 sentences), the performance constantly
grows as annotations are added. Indeed, the curve shows a positive
trend also when using all the available domain annotated material
(i.e., full fine-tuning), thus suggesting that further improvements are
likely by injecting additional annotated examples. However, we remark
that annotating data for the SRL task in the surgical domain is quite
demanding, requiring both linguistic and surgical skills, and its cost is
not negligible. This analysis answers RQ3.
10
Fig. 3. Few-Shot performance of SurgicBERTa model by varying the number of training
(and validation) domain sentences.

5. Conclusions

In this paper, we tackled the problem of automatically extracting
procedural surgical knowledge from available surgical text materials,
such as textbooks and academic papers. Given a text, the goal is
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to extract structured information on the surgical actions described,
the agents performing them, the anatomical parts involved, the tools
used, and so on. We proposed to frame the problem as a SRL task
and to apply a state-of-the-art approach based on Transformer-based
language models. In detail, we experimented with different models:
RoBERTa (general-English), BioMedRoBERTa (biomedical domain), and
he newly contributed SurgicBERTa, a pre-trained language model that
e specifically developed exploiting a large collection of textual con-

ent from the surgical domain. We assessed the performance of the
odels in different, classical scenarios: the zero-shot scenario, where
o domain-specific SRL training data is used, and the full fine-tuning
cenario, where the models are additionally trained with SRL annotated
entences according to the predicate and roles defined in RSPF, a
ecently proposed PropBank-style resource covering the typical actions
and related information) of the surgical domain.

Results show that: (i) existing state-of-the-art tools, trained on
eneral-English data, have low performance in extracting structured
rocedural content in robotic-surgery procedural texts; (ii) exploiting
anguage models unsupervisely trained on domain-related (BioMed-
oBERTa) or domain-specific data (SurgicBERTa) helps to improve

he SRL performance even in the zero-shot scenario; (iii) supervised
raining with domain-specific SRL data substantially improves the
erformance of all models on all the SRL evaluation dimensions in-
estigated, i.e., predicate disambiguation, argument disambiguation,
nd predicate-argument disambiguation. This seems to suggest that for
dapting these general SRL methods to unexplored, specific domains
ike the surgical one, some domain-specific SRL manual annotation
ffort should likely be considered to extract high quality structured pro-
edural information, i.e., predicates and related arguments, even if such
anual annotation activity is inevitably costly, especially in highly

pecialized domains, like the surgical one, as both domain-specific and
inguistics skills are needed to carry out the labeling.

To the best of our knowledge, this is the first work experimenting
ith information extraction algorithms to tackle the extraction of struc-

ured procedural knowledge in the surgical domain. As a future work
e will expand the annotated dataset with annotations from additional

urgical sub-domains than the ones considered so far. The specialized
odels will be used to develop methods to summarize and simplify

urgical texts, and to inform autonomous robotic systems or robot-
ssisted surgery with information extracted from textbooks. We will
lso investigate and experiment with techniques to reduce the manual
nnotation costs for SRL, such as active learning. Finally, our ultimate,
hallenging goal is to tackle the extraction of the full workflow of a
urgical intervention, that is, organizing the surgical actions extracted
rom the text of the procedure according to the causal/temporal rela-
ions expressed in it, so that an autonomous agent can directly replicate
hem exactly as they are intended to be performed in a successful
urgical intervention.
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t https://gitlab.com/altairLab/surgical_srl
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