Check for
Updates

What Fairness Metrics Can Really Tell You: A Case Study in the
Educational Domain

Lea Cohausz’

Jakob Kappenberger*
Heiner Stuckenschmidt
lea.cohausz@uni-mannheim.de
jakob.kappenberger@uni-mannheim.de
heiner.stuckenschmidt@uni-mannheim.de
University of Mannheim
Mannheim, Germany

ABSTRACT

Recently, discussions on fairness and algorithmic bias have gained
prominence in the learning analytics and educational data mining
communities. To quantify algorithmic bias, researchers and practi-
tioners often use popular fairness metrics, e.g., demographic parity,
without discussing their choices. This can be considered problem-
atic, as the choices should strongly depend on the underlying data
generation mechanism, the potential application, and normative be-
liefs. Likewise, whether and how one should deal with the indicated
bias depends on these aspects. This paper presents and discusses
several theoretical cases to highlight precisely this. By providing a
set of examples, we hope to facilitate a practice where researchers
discuss potential fairness concerns by default.
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1 INTRODUCTION

Ironically, when the Office of Qualifications and Examinations Reg-
ulation developed a simple algorithm to standardize students’ exam
scores in the UK following the Covid-19 pandemic, it cited fair-
ness as one of the main motivations. Nevertheless, the computed
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exam scores exhibited a clear bias against schools in disadvantaged
neighborhoods, thus exemplifying the fairness pitfalls in deploying
algorithmic decision-making in educational contexts [14]. Corre-
spondingly, due to the historical nature of the data used and the
potentially high stakes involved in education, fairness concerns
have gained salience in the educational data mining and learning
analytics communities in recent years [3]. These concerns are of-
ten expressed in debates about the merits and potential dangers of
using demographic features that cannot be altered, such as gender,
ethnicity, or religion, when predicting educational outcomes [2].

In such discussions, fairness metrics and the fairness conceptions
they codify play a crucial role.! In the overall literature on fairness
in Machine Learning (ML), a large variety of fairness metrics have
been proposed [19] and the differences between the notions of fair-
ness they attempt to encode have been discussed (e.g., Castelnovo
et al. [4] or Makhlouf et al. [18]). Many of these metrics have also
been utilized by the learning analytics community. For instance,
Stinar and Bosch [23] deploy Demographic Parity, Equalized Op-
portunity, and Equalized Odds to evaluate the impact of different
bias mitigation algorithms. Similarly, Deho et al. [10] compare miti-
gation approaches across five datasets and varying fairness metrics.
In another study, Deho et al. [9] examine how including sensitive
attributes affects performance and different fairness metrics. Sha
et al. [22] explore class balancing strategies to improve fairness in
predictive tasks.?

As Vasquez Verdugo et al. [24] already note, however, many
of the studies referencing fairness in educational contexts fail to
discuss the differences between the deployed metrics as well as
why a particular metric might be well- or ill-suited for a given
use case.? This is particularly noteworthy since, depending on
which notion of fairness is utilized, the judgment of whether a
given algorithm allows for fair results can differ starkly [4]. For
instance, if one is to offer additional lessons to poorly performing
students based on predictive analytics, it may be less problematic if
a particular group has a higher rate of false positives (i.e., students

'While they are often used interchangeably, we differentiate between the terms “fair-
ness metric” and “fairness definition”. Defining fairness as a concept represents a
complex undertaking that requires incorporating social and legal facets in a given con-
text [21]. In contrast, common fairness metrics, such as those we examine, represent
abstractions in a Machine Learning sense, which most likely only reproduce some
components of the concept of fairness as a whole.

%See Li et al. [17] for a comprehensive overview of the use of fairness metrics in the
educational domain.

3The paper by Gardner et al. [13] is an exception to this observation as the authors
discuss traditional fairness metrics in the context of their own metric.
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are suggested by the algorithm even though they are not in need
of help) than if a given group has a higher rate of false negatives
(ie., students that require assistance but are not selected).* Both of
these notions of fairness correspond to different fairness metrics.
Moreover, apart from use case-dependent considerations, normative
values, i.e., convictions held about what “should” be, may also
influence the choice and judgment of different fairness metrics
as the understanding of fairness differs between individuals [21].
Consequently, the remainder of this paper is dedicated to discussing
and illustrating different basic metrics for group fairness® in various
learning analytics contexts to demonstrate the difficulty in assessing
whether a given prediction of an educational outcome is “fair”. In
doing so, the contributions of this paper are the following:

e We provide a series of hypothetical case studies illustrating
different kinds of (potential) algorithmic bias in the educa-
tional domain. We use these examples to demonstrate the
differences in commonly deployed fairness metrics.

e We systematically analyze these case studies regarding their
fairness evaluation, potential mitigation strategies, and the
effect such strategies might have on the fairness metrics
analyzed, as well as model performance.

e Finally, we make recommendations concerning the use of
fairness metrics in education and offer potential avenues for
future research.

2 METHODOLOGY

We provide a series of illustrative examples to clarify the differences
between varying fairness metrics for learning analytics and edu-
cational data mining tasks. To do so, we will deploy the following
group fairness metrics, where Y represents the binary prediction, Y
is the ground truth for a given example, and A is a binary sensitive
(e.g., demographic) attribute:°

e Demographic Parity (DP) codifies the notion that predic-
tions should be independent of the sensitive attribute. Thus,
it requires that the positive prediction rate is equal between
all groups across the sensitive attribute [11], i.e.:

P(Y=1A=0)=P(Y=1|A=1) (1)

e Conditional Demographic Parity (CDP) does not require
full independence but rather implies the conditional inde-
pendence of the prediction and the sensitive attribute given
a set of “legitimate” variables [16]. Thereby, it effectively
frames fairness as the parity between smaller subgroups, i.e.,
for an additional variable R:

P(Y=1A=0R=r)=P(Y=1|A=1,R=7r), Vro (2)

e Predictive Equality (PE) takes the ground truth into ac-

count and defines fairness as the equality of false positives
across the groups examined [8], i.e.:

P(Y=1A=0Y=0)=P(Y=1A=1Y=0) 3)
It is worth noting that both cases could be justifiably considered as discriminatory
biases.

SWe focus on group fairness metrics as they are much more prominent in the learning
analytics literature compared to measures of individual fairness [18].

6 All the following definitions can be and already have been extended for the non-binary
case.
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e Equalized Opportunity (EOP) represents the complemen-
tary perspective and necessitates the equality of the false
negative rates among the groups [15], i.e.:

P(Y=0A=0Y=1)=P¥ =0A=1Y=1) (4)

e Equalized Odds (EO) combines the previous two definitions[15],

ie.:

P(Y=1A=0Y=y)=P(Y=1|A=1Y =1) (5)

DP as well as CDP belong to the group of independence measures
that only consider the distribution of features and predictions. In
contrast, the separation metric EO (and its relaxed variants PE as
well as EOP) also incorporate the ground truth Y [20].

In response to detecting a bias, we can employ bias mitigation
techniques in an effort to reduce them. In the literature, a variety
of methods have been proposed that differ regarding where in the
ML pipeline they are applied, ranging from pre-processing tech-
niques (e.g., omitting the potentially problematic features) over in-
processing methods (e.g., adversarial debiasing) to post-processing
strategies where the predictions of a biased model are retroactively
altered.” Due to the simplifying assumptions necessary for this
paper (see below), the approach we frequently take aligns with the
concept of "fairness through unawareness". Here, the removal of the
sensitive feature in question is deemed sufficient to mitigate biased
decision-making [12]. The case studies we present in this paper de-
tail scenarios that learning analytics researchers and practitioners
may encounter. They are organized according to the relationship
between the sensitive attribute A and the target Y. First, we will
discuss cases involving a direct connection between these features
(3.1), then cases involving an indirect connection through the other
predictive features X (3.2), and finally, cases with both direct and
indirect relationships (3.3). Subsequently, cases with a represen-
tation bias (3.4) will be discussed. The reason for this structure is
that problematic biases involving varying connections can both
be interpreted (concerning the severity of the problem) as well as
treated differently. Furthermore, theoretic work showed that the
causal structure of data indicates whether and how features are
potentially problematic [6] and can reveal which other variables
are influenced by a problematic attribute [1]. Representation bias
offers a completely different problem where it is hard to distinguish
chance from true bias.

The cases were created so that different and realistic scenarios
in education are covered, leading to distinct interpretations of the
fairness metrics and various strategies to handle biases. Each case
is discussed in the same way: After introducing the scenario, we
detail which metrics will indicate the existence of bias in this case.
Subsequently, we will discuss whether this indication conforms
to our understanding of whether a problematic bias exists in the
scenario depending on the application or normative beliefs. If a
problematic bias exists, we will discuss strategies to mitigate the
bias and their effects on the fairness metrics, the model perfor-
mance, and the predictions of individual instances. Although our
discussion is theoretical, we tested whether the metrics conform to
our considerations using sampled toy data.?

7See Chen et al. [5] for a more comprehensive overview.
8The code to reproduce and experiment with this can be found here: https://anonymous.
4open.science/r/CaseStudyFairnessMetrics-F222.
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What Fairness Metrics Can Really Tell You

For all cases, we assume that the ML models are suitable and
achieve a good performance. All models can potentially correctly
identify and learn all correlations. Moreover, we assume that the
variance of the dependent feature Y can be fully explained by the
predictive features X and A.° Furthermore, we are, for once, the
omniscient narrator with knowledge about any causal connections
and discrimination existing in our data and world. Despite its im-
plausibility, this perspective enables a nuanced discussion of diverse
cases, emphasizing the inherent complexity even with comprehen-
sive knowledge and impeccable models.

3 CASE STUDIES
3.1 Direct Connection

Cases: A university trains a model to admit applicants into their
programs based on previous admittance data. In Case 1a (Cla), the
university’s admission office adopted a policy of admitting female
applicants into their technical program if a male and a female appli-
cant are otherwise identical.!® In other words, the resulting models
will be biased in favor of women. In Case 1b (C1b), the university’s
admission office has previously discriminated against women. Thus,
the resulting model will be biased in favor of men. Case 2 (C2) differs
slightly from the previous two in that the university deploys an
algorithm to shortlist candidates for a scholarship, i.e., the system
predicts whether a candidate will receive the scholarship. Addi-
tionally, the administration office has decided that, unlike in the
past, where a majority of scholarship holders were male, the new
shortlist should have a balanced gender distribution. Figure 1 serves
to illustrate the causal relationship between A and Y in the cases
mentioned in this section. Note that Y is directly dependent on A
in this case.!!

Metrics: For both Cla and C1b, DP indicates discrimination - i.e.,
male and female applicants do not have the same probability of
¥ =1 PE, EOP, and EO do not - i.e., the model will be equally
correct for males and females as the target itself is biased. C2 im-
plies DP due to the policy of balancing the candidate list by gender.
While PE will likely also indicate some bias, EOP and, to a lesser
extent, EO will definitely, as men are more likely to receive false
negatives, which may represent more relevant fairness metrics in
this instance since the example concerns distributing a resource
(the scholarship).

Problem Assessment: Although the metrics are identical in Cla and
C1b, indicating a fairness problem in one but not the other metrics,
most people’s intuitive assessment would likely be that the model in
Cla is not problematic as long as female applicants are not favored
even if they are less well suited, whereas C1b is problematic. Hence,
for C1b, the bias has to be reduced. For C2, the fairness evaluation
depends on how one judges the historical gender disparity in schol-
arship receivers (i.e., is it due to other, more structural biases or
“merited”?).

Bias Mitigation Strategy: Given the direct connection between the

Note that although we usually look at one feature for X, this holds just as well for
cases where X consists of multiple features.

1The decision to code gender as binary in these examples was made purely for
simplifying purposes.

1For this reason, we do not apply CDP here.
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sensitive feature gender and the target, simply removing this fea-
ture as well as features potentially leaking information, so-called
proxy-variables [2], such as, e.g., an applicant’s school (“ABC School
for Girls”), should be enough to mitigate the bias for the first two
cases. If one draws the normative conclusion that the bias detected
by the separation metrics for C2 is problematic, one will have to
alter the parity policy in place.!?

Effect on Metrics: For C1b, DP will probably no longer indicate a
bias but all other metrics (PE, EOP, and EO) will as some women
will falsely receive positive predictions and some actually accepted
men will not.

Effect on Model Performance and Predictions: The model will be less
accurate now for C1b. The more biased the data is, the stronger the
decrease in model performance. Accordingly, the predictions for
some applicants will change.

3.2 Indirect Connection

Cases: A university trains a model to predict the grades of students’
first academic year for all of their programs and uses historical data
to do so. We present two cases that differ regarding the relationship
between the features and how we perceive this relationship. In
Case 3 (C3), there is an indirect connection between gender and
grades through study program: Female students tend to pick study
programs that award better grades on average. In Case 4 (C4), there
is an indirect connection between socio-economic status (SES) and
grades through having to work: Students with a lower SES tend
to work a lot, working a lot leads to less study time, and this leads
to poorer grades. The training data contains all of the mentioned
features (working, study time).'® Figure 2 shows the causal graph
for the described cases. Note that A and Y are conditionally indepen-
dent given X. This means that as long as we know X, additionally
knowing A does not add new information as this is already encoded
in X. It does not mean, however, that ML models do not exploit this
correlation [7].

Metrics: DP will indicate a bias for all of the above-described cases
because women have a higher chance of receiving a good grade
(C3), and students with a low SES have a lower chance of receiving
a good grade (C4). To compute CDP, we could condition on study
program for C3 and working and study time for C4. Then, CDP
would not indicate a problem for either case. The other fairness
metrics (PE, EOP, and EO) will not, or to a smaller degree than
for DP, indicate a bias, however, as the true and false negatives
of the different groups are likely similar. They might show one in
cases where the correlation between the sensitive attribute and the
target is utilized, as women might disproportionally be incorrectly
predicted to do well, and low SES students might disproportionally
be incorrectly predicted to do poorly.

Problem Assessment: Here, the cases differ. For C3, many would
probably not see a huge problem. While we would not want a
model that predicts that women get better grades due to them being
women, we probably have no problem with a model that correctly
identifies that students of a certain study program get better grades.

121f one removes this policy, C2 resembles C1b.

3Note that if we only had SES as a feature, this case would — due to the omission
of additional features — be the same as C1b, i.e., it would become a de facto direct
connection.
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Figure 1: Causal Graph for Case 1a (C1a), Case 1b (C1b) and Case 2 (C2).
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Study Program /
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Figure 2: Causal Graph for Case 3 (C3) and Case 4 (C4).

If we ensure that the correlation between study program and grades
is utilized by removing gender from the training data, then we can
probably call C3 fair. Similarly, for the other cases, we obviously
do not want models to predict poor grades because someone has a
low SES. This might happen for C4. Here, similar to C3, the model
can either utilize the correlation between SES and the target or
working/study time and the target. Apart from not wanting to have
a direct effect of SES on the target (which we can again deal with by
removing the sensitive feature), we might also argue that even the
indirect effect of SES through working/study time is not something
that we want. Working is forced upon the students with a low SES,
which appears different from the relationship between gender and
study program. Hence, depending on our normative choice and the
application scenario, we may validly argue that using study time
as a predictor of success is fair or that it is not, prompting us to
remove the effect of SES influencing study time. For now, we will
assume that we want to remove this effect as well.

Bias Mitigation Strategy: Like before, we can remove the sensitive
attributes. This solves the problems we had with C3 but not with
C4. We can consider working as a sensitive feature in C4, but this
still does not solve the problem, as studying time is still impacted
by SES. As a remedy, we could use bias mitigation techniques such
as adversarial networks or thresholding.!4

Effect on Metrics: When we only remove the sensitive attributes,
DP might decrease for C3 and C4 if the correlation utilized before
was the one between these features and the target — but it will still
indicate a bias. If the models did not utilize this relationship, DP will
remain the same. For both cases, the other metrics will either not
or only slightly change depending on the correlation used before.
Once we use bias mitigation techniques in C4, we can expect DP to
decrease and the other metrics to increase.

Effect on Model Performance and Predictions: Some predictions may
change in both cases depending on which correlation (A — Y or
X — Y) was used. Using bias mitigation techniques in C4 might
also lead to a decrease in model performance to some extent and

M However, we have to be careful with these. Using a decorrelation technique, decor-
relating the other predictive features from SES, might not be something that we want
as we might want to remove the effect of SES on study time through working instead
of the effect of SES on study time.
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to changing predictions. C3 will not experience a reduction in
performance metrics.

3.3 Indirect and Direct Connection

Cases: A university trains a model to predict students’ grades in
a particular course of a study program in the second year. They
use previous performance data (i.e., the grades previously achieved
in other courses) and demographic data to do so. Note that the
underlying causal relationships, as portrayed in Figure 3, include
the unobserved variable Motivation, which is actually the common
cause of previous grades and the target grade. In Machine Learning
contexts, it is common to have latent variables and to use other
variables, such as previous grades, to approximate them. Coming
back to the scenario, some university professors are biased against
students of color, resulting in them having poorer grades on average.
In Case 5a (C5a), the professor teaching the course that is to be
predicted is not discriminating against people of color, making
the target (both historically and currently) unbiased. The resulting
model can use an interaction of ethnicity and previous grades,
which can “correct” the discrimination (approximating the latent
variable motivation) and lead to a generally unbiased model. This
requires a method allowing interaction effects!®, however. In Case
5b (C5b), the course grades to be predicted are biased as well, with
students of color receiving poorer grades on average.

Metrics: For C5a, DP will not indicate a bias as students of either
group will have the same probability of receiving a good grade.!®
However, when we condition on previous grades, CDP will indicate
a bias. This is due to the imbalance in the previous grades: If we,
e.g., compare students with poor previous grades, students of color
will disproportionally be predicted to have good grades. For C5b,
DP will indicate a bias, as the groups have a different probability
of receiving a good grade. If we condition on previous grades here,
CDP will not indicate a bias or to a lesser extent (depending on
whether the amount of discrimination is at the same level). For C5a
and C5b, PE, EOP, and EO do not indicate a bias as the models are

15Crudely speaking, an interaction effect occurs if two (or more) features have a
combined effect. This effect should be naturally learned in Neural Networks but must
be enforced in linear/logistic regression by, e.g., multiplying the features.

16This assumes that there is no other effect of the discrimination, such as, e.g., alack
of motivation as a response to the discrimination.
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Case 5b

Grade in
Target Course

)

Motivation
(latent)

Figure 3: Causal Graph for Case 5a (C5a) and Case 5b (C5b).

roughly equally correct for all groups.!”

Problem Assessment: Although the previous discrimination is clearly
problematic, the model using interaction effects in C5a is not flagged
by the fairness metrics, which might appear to be surprising consid-
ering the highly biased training data. The reason for this, as already
mentioned, is that the resulting model can use an interaction of eth-
nicity and previous grades, which can “correct” the discrimination
(and estimate the latent variable Motivation), leading to a generally
unbiased model. C5b is definitely problematic.

Bias Mitigation Strategy: As C5a is not problematic, we do not need
to change anything. However, we want to highlight that removing
the sensitive feature in this scenario produces a biased model, as
previous performance cannot be adjusted. This results in a model
more often erroneously predicting students of color to do poorly
and other students to do well, and affects all fairness metrics. This
might appear counterintuitive at first. A slightly different scenario
would evolve if the students of color noticed the discrimination oc-
curring, which demotivates them from studying, leading to poorer
grades and an additional correlation between ethnicity and the tar-
get. In this case, we would need to remove the sensitive attribute so
that it cannot have an effect on its own but prepare the data so that
ethnicity and previous performance are combined. This ensures
that an interaction effect correcting for the bias is learned. Note that
this is not a strategy typically considered for improving fairness and
that we typically do not know enough about the relationships to
even do this. For C5b, we can remove the sensitive attribute and use
a bias mitigation strategy such as decorrelation. This will help, but,
of course, the general problem of having a professor discriminating
against students in this course will not be solved (and cannot be
solved by any technological strategy).

Effect on Metrics: For C5b, DP and CDP will most likely no longer
or to a lesser extent indicate a bias, but all other metrics now will.
Effect on Model Performance and Predictions: For C5b, the perfor-
mance will drastically decrease as we now regularly predict students
of color to do well, which did not. Logically, there will be instances
receiving different predictions as well.

3.4 Representation Bias

Cases: Our final cases are again concerned with a model trained to
predict whether applicants should be admitted based on historical

7The result for C5a would be different if the model does not allow interaction effects,
in which case there could be an indication for a bias as the model would likely just
learn a positive effect on grades for students of color to “compensate” for the historical
bias in the data set which could lead to them being more often falsely classified since
the target is unbiased.
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records. One feature available to the model is the nationality of
the applicant.'® Certain nationalities (e.g., “Jupiter* and “Mars”)
are very rare, and all applicants from “Jupiter® are admitted and
all from “Mars” rejected. In Case 6a (Céa), this happened due to
chance; the applicants of “Jupiter” happened to be better. In Case
6b (C6b), applicants from “Jupiter® are preferred for some reason
by the admittance office.

Metrics: It is very likely that all metrics will detect a bias for both
cases. We have the largest bias possible for DP as all applicants
from “Jupiter” are admitted and all from “Mars” rejected. It is also
likely for both cases that the models will perform perfectly on these
data instances, while some instances of other nationalities will most
likely be falsely classified, which will lead to a slight bias indication
via PE, EOP and EO.

Problem Assessment: It is generally problematic if the models learn
to predict based on the sensitive feature. This has to happen for C6b
as there is no other reason that the applicants are preferred.'® For
Cé6a, the model could also not use the sensitive attribute at all and,
instead, predict admittance based on truly relevant factors (as appli-
cants from “Jupiter happen to be the better applicants by chance)
- but this is not likely as the relationship between nationality and
admittance is easier to learn.

Bias Mitigation Strategy: We can remove the sensitive feature, which
fixes the problem that we do not want to predict based on the sen-
sitive feature.

Effect on Metrics: Simply due to the very small sample size, DP
might still indicate a problem for Céb. For Céa, DP will still indi-
cate a fairness concern because, by chance, all applicants from one
country have the same prediction. The other fairness metrics will
most likely detect some unfairness in C6b due to the predictions
no longer fitting the ground truth.

Effect on Model Performance and Predictions: The model performance
will decrease, and some individual predictions will change for Céb.
For Céa, this could only happen due to misclassification occurring
now; otherwise, everything stays the same.

3.5 Main Findings

Our case studies lead to a variety of interesting observations sum-
marized in Table 1 in the Appendix. First of all, and as already
mentioned, different metrics are sensible in different scenarios. If a
meaningful and legitimate correlation exists between a sensitive

18As we focus on this feature, we do not apply CDP in this section.
191n principle, this case is equivalent to C1b. However, the small sample size in C6b
renders the decision of whether a problematic bias exists difficult.
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feature and another predictive feature, DP is not a helpful metric;
otherwise, it is. CDP is only sensible in cases where we know what
to condition on and consider the conditioning feature unproblem-
atic. The separation metrics should only be used if the target itself
is unbiased. Moreover, the choice for a specific metric is often nor-
mative. If the target is biased, then the metrics will start to display
a bias once we try to deal with the bias detected by demographic
parity. This shows that in most cases, the metrics are incompatible
and, more importantly, that they should not be understood as an
absolute measure of fairness but rather as an indicator of a specific
notion of fairness in a specific case [20]. Second, some cases present
themselves in a similar fashion but are, in fact, very different (e.g.,
Cla and C1b); others appear rather different but are similar. This
has to be considered when performing fairness evaluations. Third,
our assessment of whether a fairness concern exists or not strongly
depends on the application we have in mind and our normative con-
victions. We can also observe that while fairness concerns evolving
due to direct connections are somewhat more clearly problematic,
concerns evolving from indirect connections are much more norma-
tive and application-dependent. Fourth, some patterns emerge as to
how we can solve fairness concerns. If there is a direct connection,
fairness concerns can be solved by simply removing sensitive and
proxy features. The same mostly holds for issues stemming from
representation biases. If there are indirect effects, which is likely,
we might also need to employ bias mitigation techniques. If both
are at work, we may have to find very specialized approaches.

When we consider the discussion of the cases, it seems like al-
most any kind of fairness concern can be solved (except for C5b).
However, the cases are artificial in the sense that we know every-
thing about the true data generation mechanism, and we have good
models. Without these assumptions, we cannot know what metrics
to look out for and what strategies to employ. Even removing demo-
graphic features - usually a very sensible strategy — can, at times,
be the wrong decision (C5a). All in all, our observations clearly
show no “one size fits all” strategy exists. We need to consider the
data and potential fairness concerns carefully.

4 RECOMMENDATIONS AND FUTURE WORK

A starting point for this might be Vasquez Verdugo et al’s work
providing a framework to critically asses the specific case and decide
on relevant fairness metrics [24].

Additionally, we believe that future research in the educational
domain with potential for fairness concerns should facilitate discus-
sion in this vein. Those that present new methods should highlight
for which applications and data this might be problematic and what
metrics might be indicative of it. Those publishing datasets should
be specific regarding data selection, generation, and potential bi-
ases. Those who apply data to methods should try to analyze their
results accordingly. We furthermore want to stress that there po-
tentially exists a fallacy when trying to quantify unfairness: It may
give a false sense of objectivity where, in reality, much is norma-
tive. This does not mean that the metrics should not be used but
that they should be used consciously and that researchers should
transparently explain their decisions. Both for researchers and prac-
titioners, in many cases, it may be prudent not to deploy algorithmic
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decision-making in a given context and rather proactively attempt
to alleviate the bias by, e.g., altering policies promoting said bias.

Finally, we would like to stress that future research should at-
tempt to develop methods that reveal and quantify connections
between demographic and other predictive features. We think that
data-driven methods to uncover causal mechanisms should be em-
ployed and investigated in the area of fairness.

5 CONCLUSION

Even under the most unrealistic assumptions, thinking about fair-
ness metrics and what they reveal is complex. In reality, it is even
more complicated. This does not mean that we should not use the
metrics or — worse yet — give up on fairness. We believe that our pa-
per highlights the need to critically assess whether data, a method,
or an application has potential fairness concerns, what metrics can
detect them, and how we can deal with them. If we normalize the
inclusion of such remarks in research, we facilitate discussions
about it. Eventually, thinking about these issues will, at least, no
longer feel quite as complicated, and this will help us produce fairer
models for all involved in education. We see our paper as a first step
towards this and hope it offers a starting point for practitioners
and researchers alike to think critically about potential fairness
concerns and how to handle them.
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Table 1: A summary of the cases regarding which metrics detect a bias, whether it is considered problematic, how to treat it,
what metrics detect a bias after the treatment, the effect of the treatment on performance and individual predictions, and
whether the model is still problematic.

Case Detects Bias Problem Treatment Detects Bias II Performance Ind. Prediction | Problem II
Cla DP no - - - - -
C1b DP yes remove sensitive feature PE, EOP, EO decreases some changes no
C2 PE/EOP/EO potentially - - - - -
c3 r. (yes) itive feat P, h b
maybe PE/EOP/EO yes remove sensitive feature maybe PE/EOP/EO no change maybe no
DP, remove sensitive feature,
C4 maybe PE/EOP/EO yes bias mitigation technique PE, EOP, EO decreases some changes no
C5a CDP no - - - - -
remove sensitive feature, PE, EOP, EO, strongly
Csb pr yes bias mitigation technique maybe DP decreases many changes yes
. no change/
Céa all (yes) remove sensitive feature all slight decrease no/few changes no
C6b all yes remove sensitive feature PE, EOP, EO, decreases some changes no
maybe DP
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