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Abstract

The main focus of this doctoral thesis is to consider stochastic Volterra equations (SVEs),
where the di�usion coe�cients are only Hölder continuous of order 1/2, and to prove
well-posedness results for these equations, i.e. that they possess a pathwise unique strong
solution.

We start with the well-posedness for SVEs with su�ciently regular kernels by proving
strong existence and pathwise uniqueness directly by adapting techniques from the well-
known theory for stochastic di�erential equations (SDEs).

Afterwards, we consider more general kernels including singular kernels and introduce a
general Volterra local martingale problem. Using this, we are able to prove the weak exis-
tence of solutions to SVEs with continuous coe�cients and with regular or convolutional,
possibly singular, di�usion kernels.

Next, and constituting the major part of this thesis, we consider explicitly SVEs with the
fractional kernel K(s, t) = (t−s)−α, where α ∈ [0, 1/2), in the drift and the di�usion, and
prove pathwise uniqueness for these equations under a mild condition on the relationship
of the intensity of the singularity of the kernels, i.e. on α, and the Hölder regularity of the
di�usion coe�cient. Together with the weak existence, this implies the well-posedness of
the equation by the famous Yamada�Watanabe theorem.

To round o� the work, we look at two more interesting topics. First, we introduce the class
of Mean-�eld stochastic Volterra equations which merge two generalizations of classical
SDEs, both of which have received a lot of attention recently, namely SVEs and mean-
�eld SDEs, also referred to as McKean�Vlasov SDEs. For these equations, we prove the
well-posedness and a quantitative, pointwise propagation of chaos result of Volterra-type
systems of interacting particles. We do that in two settings, �rstly, for �nite-dimensional
equations with general kernels and Lipschitz continuous coe�cients, and secondly, for
one-dimensional equations with regular or convolutional kernels and up to 1/2-Hölder
continuous di�usion coe�cients.

Last, we introduce neural stochastic Volterra equations (neural SVEs) which is a model
that is able to learn the dynamics of an SVE by a deep learning structure, inspired by the
recently emerged model of neural SDEs.
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Zusammenfassung

In dieser Thesis beschäftigen wir uns mit stochastischen Volterra Gleichungen (SVEs), bei
denen die Di�usionskoe�zienten nur Hölder stetig mit Ordnung 1/2 sind, und beweisen so-
genannte Well-posedness Resultate für diese Gleichungen, d.h. untersuchen, unter welchen
Umständen sie eine pfadweise eindeutige starke Lösung besitzen.

Wir beginnen mit der Well-posedness für SVEs, bei denen die Kerne regulär sind, und
zeigen für diese die starke Existenz und pfadweise Eindeutigkeit von Lösungen durch
Anpassen wohlbekannter Techniken für stochastische Di�erentialgleichungen (SDEs).

Anschlieÿend betrachten wir allgemeinere Kerne, die insbesondere auch Singularitäten
beinhalten dürfen, und führen ein lokales Volterra Martingalproblem ein. Mithilfe dieses
zeigen wir die schwache Existenz von Lösungen zu SVEs mit stetigen Koe�zienten und
regulären Kernen oder Faltungskernen, die singulär sein dürfen, in der Di�usion.

Danach kommen wir zum Hauptkapitel dieser Thesis, in welchem wir explizit SVEs mit
dem fraktionalen Kern K(s, t) = (t − s)−α, wobei α ∈ [0, 1/2), in Drift und Di�usion
betrachten, und zeigen pfadweise Eindeutigkeit für diese Gleichungen unter einer milden
Annahme an die Beziehung zwischen der Intensität der Singularität der Kerne, also α,
und der Hölder Regularität des Di�usionskoe�zienten. Zusammen mit der schwachen
Existenz impliziert dies die Well-posedness der Gleichung nach dem berühmten Resultat
von Yamada und Watanabe.

Um die Thesis abzurunden, betrachten wir zwei weitere interessante Themengebiete. Als
erstes führen wir die Klasse von Mean-�eld stochastischen Volterra Gleichungen ein, welche
eine Verallgemeinerung von SVEs und den sogenannten Mean-�eld SDEs darstellen. Beide
Arten von Gleichungen haben in den letzten Jahren eine groÿe Popularität erfahren. Wir
zeigen die Well-posedness sowie ein quantitatives, punktweises Propagation of Chaos Re-
sultat für Systeme vom Volterra-Typ, die die Interaktion von Partikeln modellieren. Dies
tun wir in zwei verschiedenen Situationen, zunächst für endlich-dimensionale Gleichun-
gen mit allgemeinen Kernen und Lipschitz stetigen Koe�zienten, und anschlieÿend für
ein-dimensionale Gleichungen mit regulären Kernen oder Faltungskernen und bis zu 1/2-
Hölder stetigen Di�usionskoe�zienten.

Abschlieÿend führen wir neuronale stochastische Volterra Gleichungen ein, welche die Dy-
namiken von SVEs durch neuronale Strukturen lernen können, und inspiriert sind durch
die kürzlich eingeführten neuronalen SDE Modelle.
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Chapter 1

Introduction

In this thesis, we consider stochastic Volterra equations (SVEs) and deal with the fun-
damental question of existence and uniqueness of solutions to these equations. Origi-
nally, Vito Volterra dealt with (deterministic) di�erential equations to describe population
growth models with memory in hunter-prey-models in his work [Vol90]. SVEs have been
studied in probability theory starting with the works of Berger and Mizel [BM80a, BM80b].
This class of integral equations constitutes a generalization of ordinary stochastic di�er-
ential equations and serves as a well suited mathematical model for numerous random
phenomena appearing, e.g. in biology (see e.g. [MS15, AJ21]) and mathematical �nance
(see e.g. [AJEE19b, EER19]).
We �x some end time point T ∈ (0,∞) and let (Ω,F , (Ft)t∈[0,T ],P) be a �ltered probability
space which satis�es the usual conditions. In our setting, an SVE is an integral equation
of the form

Xt = x0(t) +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (1.1)

where x0 denotes the (deterministic) initial condition, (Bt)t∈[0,T ] is a standard Brownian
motion, the so-called kernels Kµ,Kσ, the drift coe�cient µ and the di�usion coe�cient σ
are all deterministic, Borel measurable functions. Sometimes we will allow x0 ≡ X0 to be
an F0-measurable random initial condition which does not make anything more di�cult.
We will, over large parts of the work, consider one-dimensional SVEs such that all the
objects in equation (1.1) simply map to R, but we will give more formally precise de�nitions
of these objects in the respective settings in the course of this work. For the kernels
however, we already introduce the notation∆T := {(s, t) ∈ [0, T ]×[0, T ] : 0 ≤ s ≤ t ≤ T}
and de�ne Kµ,Kσ : ∆T → R to make clear that we always consider t ≥ s and that the
kernels are always real-valued. In the center of our interest will be the question of well-
posedness of the SVE, i.e. the existence of a unique strong solution to equation (1.1),
in various settings with di�ering regularity assumptions on the kernels and the di�usion
coe�cient σ.
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1.1 Motivation

The motivation to study stochastic Volterra equations with non-Lipschitz coe�cients has
two perspectives. On the one hand, it is a natural question to explore to what extent the
famous results of Yamada and Watanabe [YW71], ensuring pathwise uniqueness and the
existence of strong solutions for ordinary stochastic di�erential equations, generalizes to
stochastic Volterra equations. On the other hand, our motivation comes from real-world
applications. Stochastic Volterra equations with only 1/2-Hölder continuous coe�cients
recently got a great deal of attention in mathematical �nance as so-called rough volatility
models, see e.g. [AJEE19b, EER19], which have demonstrated to �t remarkably well his-
torical and implied volatilities of �nancial markets, see e.g. [BFG16]. Furthermore, SVEs
with non-Lipschitz continuous coe�cients arise as scaling limits of branching processes in
population genetics, see [MS15, AJ21]. Although the rough Heston SVE (1.4) and the
branching equation (1.5) are not covered by the pathwise uniqueness result of this thesis
due to the intensity of the singularities in the kernels and the weak regularity of the di�u-
sion coe�cients which are only 1/2-Hölder continuous (cf. Main Theorem 3, but the weak
existence in Main Theorem 2 does hold), these examples give a good indication of why
SVEs with singular kernels and non-Lipschitz di�usion coe�cients are interesting to look
at.

Rough volatility models

In mathematical �nance, an important topic is pricing of �nancial instruments. For this
purpose, the most popular market model is the Black�Scholes model, originally introduced
in [BS12] and awarded with the 1997 Nobel Memorial Prize in Economic Sciences. In the
Black�Scholes model, the dynamics of some risky asset (St)t∈[0,T ] are modeled by the SDE

dSt = µSt dt+ σSt dBt, t ∈ [0, T ],

where B is a standard Brownian motion, µ ∈ R describes the expected return and σ > 0
the volatility of the return of the asset or equivalently, log-volatility of the asset. Here, ex-
plicit formulas for the pricing of European put- and call- options can be derived. However,
the assumption of a deterministic, constant volatility σ > 0 is quite heavy and unrealistic
as, among other inconsistencies, for example the �Volatility smile� e�ect (see e.g. [DK94])
shows. As a consequence, so-called stochastic volatility models came up. Here, the volatil-
ity of the risky asset's return or, equivalently, the log-variance of the risky asset, is modeled
by some stochastic dynamics as well. The most famous stochastic volatility model is the
Heston model (see [Hes93]), where the risky asset is modeled by the SDE

dSt = µSt dt+
√
νtSt dB

S
t , t ∈ [0, T ],

and the log-variance process is itself modeled by the Cox�Ingersoll�Ross SDE

dνt = κ(θ − νt) dt+ ξ
√
νt dB

ν
t , t ∈ [0, T ], (1.2)

2



1. Introduction

where BS and Bν are correlated Brownian motions, θ > 0 describes the expected variance,
κ > 0 the mean-reversion rate and ξ > 0 the variance of ν.

It can be seen that while stochastic volatility models as the Heston model might be able
to accurately model volatilities for long maturities, their behavior is still not satisfactory
for shorter time horizons. To overcome that issue, it was �rst proposed by Comte and
Renault in [CR98] and then by Gatheral et al. in [GJR18] to use the properties induced
by the fractional Brownian motion (fBM) de�ned for t ∈ [0, T ] by

BH
t =

1

Γ(H + 1/2)

(∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dBs +

∫ t

0
(t− s)H−1/2 dBs

)
, (1.3)

where the parameter H ∈ (0, 1) is called Hurst parameter and controls the roughness
of the paths. The fBM is a generalization of the standard Brownian motion since they
coincide for H = 1/2. For any H ∈ (0, 1), the paths of the fBM are Hölder continuous for
any order strictly smaller than H, meaning that the paths are rougher the smaller H is.
Moreover, for H ̸= 1/2, the increments are not independent anymore: for H > 1/2, they
are positively correlated, and for H < 1/2 negatively.

Gatheral et al. show in [GJR18] that empirically observed volatilities �t remarkably well
the properties of the fBM with Hurst parameter H = 0.1, since they have rougher paths
than the standard Brownian motion. As a consequence, the class of so-called rough volatil-
ity models came up, with the most prominent representative being the rough Heston model,
see [EER19], [AJEE19b]. To imitate the properties of the fBM with H < 1/2, i.e. mak-
ing its paths rougher, one uses the kernel function Kµ(s, t) = Kσ(s, t) = (t − s)−α, for
α ∈ (0, 1/2), to modify the log-volatility in (1.2) to

Vt = V0+
1

Γ(1− α)

∫ t

0
(t−s)−ακ(θ−Vs) ds+

1

Γ(1− α)

∫ t

0
(t−s)−αξ

√
Vs dBs, t ∈ [0, T ],

(1.4)
which is a stochastic Volterra equation in the sense of (1.1) with the singular kernels
Kµ(s, t) = Kσ(s, t) = (t − s)−α and with di�usion coe�cient σ(t, x) =

√
x that is only

1/2-Hölder continuous in x.

Volterra processes in general, and the rough Heston process in speci�c, are neither semi-
martingales nor Markov processes, making on the one hand the task of pricing derivatives
in the rough Heston model challenging. However, it has been shown in [EER19] that
Fourier-based techniques can be used to price European options. On the other hand, to
gain theoretical results as e.g. well-posedness results is also challenging. Well-posedness
for the rough Heston model (1.4) is at time of writing still an open question with Main
Theorem 3 being, to the best of our knowledge, the closest yet achieved result.

Branching processes

Another motivating real-world application that reveals an SVE is the scaling limit of
branching processes described in [MS15]. Consider the chemical interaction between two
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substances where the �rst one called reactant di�uses randomly in one-dimensional space,
and reacts with the second one called catalyst proportionally to the concentration of the
catalyst at the point of contact. To describe the total behavior, one can model the reactant
as a system of n particles moving randomly according to a standard Brownian motion, and
the catalyst being distributed at time t according to some deterministic measure ρt( dx).
If a particle of the reactant enters the catalyst region, it either dies or branching occurs,
meaning that the particle splits into two particles behaving independently but with the
same spatial movement as their parent.

We can now look at the reactant as a measure valued process (X̄n
t ( dx))t∈[0,T ] de�ned by

X̄n
t (A) =

number of particles in A at time t
n

, for Borel set A.

If we send n→ ∞, it can be shown that (X̄n
t )t∈[0,T ] converges towards some measure valued

catalytic super-Brownian motion (X̄t)t∈[0,T ] that has a density X̄t( dx) =
∫
RXt(x) dx

which ful�lls the stochastic partial di�erential equation

∂Xt(x)

∂t
=

1

2
∆Xt(x) +

√
Xt(x)Ẇ

ρ(t, x),

where Ẇ ρ(t, x) is a space-time white noise with covariance structure determined by ρ (see
[Z�05]).

Suppose one now considers branching occurring only at x = 0 such that ρt( dx) = δ0( dx)
is the Dirac-delta measure and assumes, as it is described in [MS15], that some absolute
continuity condition on the local time of X spent in x = 0 holds (which in fact does not
hold, but for illustrative purposes it makes sense to assume this). Then, (Xt)t∈[0,T ] can
be written as a solution to the SPDE in mild form

Xt(x) =

∫
R
pt(x− y)X0( dy) +

∫ t

0
pt−s(x)

√
Xs(0) dBs, t ∈ [0, T ],

where pt(x) is the transition density of the Brownian motion. For x = 0, we obtain that

Xt(0) =

∫
R
pt(y)X0( dy) +

∫ t

0

1√
2π

(t− s)−1/2
√
Xs(0) dBs, t ∈ [0, T ], (1.5)

which seems like an SVE of the form of (1.1) with singular di�usion kernel and di�usion
coe�cient σ that is only 1/2-Hölder continuous. Note though that the kernel Kσ(s, t) =
(t−s)−1/2 in (1.5) is not locally square-integrable, such that the second integral is not well-
de�ned as an Itô integral. This is due to the false assumption on the local time. However,
as soon as we decrease the negative exponent by some ε > 0 the equation becomes a valid
SVE.

1.2 Mathematical background

Since SVEs can be seen as a generalization of stochastic di�erential equations (SDEs), it
is natural to look at well-posedness results for SDEs for comparison.
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1. Introduction

Well-posedness in the SDE case

If we consider Kµ = Kσ = 1, equation (1.1) becomes an ordinary stochastic di�erential
equation (SDE) written in integral form. Note that in general, we cannot write SVEs
in di�erential form due to the t-dependence inside the integrals. For SDEs, the question
of well-posedness is well investigated. The standard textbook setting in d dimensions is
when µ and σ are globally Lipschitz continuous in the space variable uniformly in the time
variable and ful�ll a linear growth condition, i.e.

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|, and

|µ(t, x)|+ |σ(t, x)| ≤ C(1 + |x|)

hold for all t ∈ [0, T ], x, y ∈ Rd and some constant C > 0. The notation | · | always stands
for the Euclidean norm on the space Rd. Then, a strong solution can be constructed by
a Picard iteration, and pathwise uniqueness can be shown using Grönwall's lemma (see
e.g. [KS91, Theorem 5.2.9], [Kle14, Theorem 26.8], [KP92, Theorem 4.5.3]). Using some
localization argument, the Lipschitz assumption on µ and σ can be relaxed to requiring
only local Lipschitz continuity (see e.g. [KP92, p.134-135]).

Considering µ, the Lipschitz condition can be slightly generalized to a so-called Osgood
condition (see e.g. [KS91, Remark 5.2.16]). However, it is not possible to reach only Hölder
continuity for µ, since already for ordinary di�erential equations uniqueness fails to hold in
general for coe�cients that are only Hölder continuous, as the counterexample equation
Xt =

∫ t
0 |Xs|α ds which has a continuum of solutions for α < 1 shows (see e.g. [KS91,

p.287]).

For σ, the equation Xt =
∫ t
0 |Xs|α dWs for α ∈ (0, 1/2) which fails to ful�ll uniqueness

even in the weak sense shows that we cannot expect well-posedness for SDEs with σ that
is only ξ-Hölder continuous for some ξ ∈ (0, 1/2). For ξ ∈ [1/2, 1] however, the famous
approach of Yamada�Watanabe (see [YW71, Theorem 1]) proves pathwise uniqueness for
one-dimensional SDEs with only ξ-Hölder continuous σ. Together with the weak existence
of a solution, the second important Yamada�Watanabe result (see e.g. [KS91, Corollary
5.3.23], [Kur14, Theorem 1.5]) implies then the existence of a strong solution and hence
well-posedness of the SDE. A weak solution consists not only of the process but also of
the underlying probability space which is the major di�erence to a strong solution, where
one requires the existence of a solution for any given probability space. Weak existence
for SDEs was �rst proven by Skorokhod in [Sko61] (see also [SV79], [KS91]) and typically
uses the formulation of a martingale problem (see e.g. [HS12, Theorem 0.1]) which we will
also introduce for SVEs.

The key technique in the Yamada�Watanabe pathwise uniqueness approach is to approx-
imate the absolute value function smoothly and then to apply Itô's formula which relies
on the semimartingale property of solutions to the SDE. This property fails in general for
solutions to the SVE which rises the question if and under which conditions we can still
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obtain analogue results.

The aim of this thesis is to determine how far the aforementioned discussed results for
SDEs can be extended to the more general case of SVEs.

SVEs with Lipschitz continuous coe�cients

The existence of unique strong solutions for stochastic Volterra equations, where both
coe�cients µ and σ are Lipschitz continuous, is well investigated. Indeed, classical exis-
tence and uniqueness results for SVEs with su�ciently regular kernels are due to [BM80a,
BM80b, Pro85].
In the pioneering work of Berger and Mizel [BM80a, BM80b], the Volterra integral equation

Xt = x0(t) +

∫ t

0
f(t, s,Xs) ds+

∫ t

0
σ(t, s,Xs) dBs, t ∈ [0, T ],

was introduced. Under Lipschitz conditions on f and σ in the space variable, uniformly in
the time variables s and t, which corresponds to bounded kernels and Lipschitz continuous
coe�cients in our setting (1.1), the authors proved strong existence and pathwise unique-
ness by adapting the classical tools from the well-known SDE theory. More precisely, a
Picard�Lindelöf iteration was used to construct a solution, and Grönwall's inequality to
obtain pathwise uniqueness.
By using similar techniques, in [Pro85], the existence and uniqueness of solutions to SVEs
of the form

Xt = Ht +

∫ t

0
f(t, s,Xs) dZs, t ∈ [0, T ], (1.6)

was proven, where (Ht)t∈[0,T ] is adapted and right-continuous, (Zt)t∈[0,T ] is a right-continuous
semi-martingale and the function f has some suitable Lipschitz continuity in the space
variable and is di�erentiable in t. Moreover, the important semimartingale property for
solutions of (1.6) under the assumption that f is partially di�erentiable with respect to
t was derived. This property will be used later in this work for the case of SVEs with
regular kernels (see Chapter 2).

These results have been generalized in various directions such as allowing for anticipating
and path-dependent coe�cients [PP90, ØZ93, AN97, Kal21] or an in�nite dimensional
setting [Zha10]. Well-posedness was also successfully proven for the case of Lipschitz
coe�cients and singular kernels that ful�ll some Besov regularity condition in [CD01],
see also [CLP95], which in particular covers the case Kµ = Kσ = Kα, where Kα is the
fractional kernel de�ned by

Kα(s, t) = (t− s)−α, (s, t) ∈ ∆T , (1.7)

for α ∈ (0, 1/2). A slight extension beyond Lipschitz continuous coe�cients, but not
covering the case where σ is only Hölder continuous, can be found in [Wan08].
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1. Introduction

SVEs with non-Lipschitz continuous coe�cients

The main challenge when dealing with SVEs, compared to ordinary stochastic di�erential
equations, is that the stochastic integral and hence the Volterra process is in general not
a semimartingale. An example which illustrates this is the fractional Brownian motion
(fBM) which is de�ned for H ∈ (0, 1) in (1.3). The fBM has in�nite quadratic variation
for H < 1/2 and zero quadratic variation for H > 1/2 which contradicts, if it were a
semimartingale, the fact that it is not of bounded variation (for details see e.g. [Rog97,
Section 2]) and thus, the fBM fails to be a semimartingale for H ̸= 1/2. As described
above, the semimartingale property is the basis of the famous Yamada�Watanabe tech-
nique in [YW71] for proving pathwise uniqueness for SDEs.

The classical approach to prove the existence of strong solutions to SDEs with less regular
di�usion coe�cients than Lipschitz continuous ones is to �rst show the existence of a weak
solution, since this, in combination with pathwise uniqueness, guarantees the existence of
a strong solution, see [YW71]. The existence of weak solutions for stochastic Volterra
equations was derived in the work of Abi Jaber, Cuchiero, Larsson and Pulido [AJCLP21]
(see also [MS15, AJLP19, AJ21]), assuming that the kernels in the stochastic Volterra
equations are of convolution type, i.e. in our settingKµ(s, t) = Kσ(s, t) = K(t−s) for some
suitable functionK. Assuming additionally that the coe�cients µ, σ lead to a�ne Volterra
processes, weak uniqueness was obtained in [MS15, AJEE19a, AJ21, CT20]. However, as
we do not impose a convolutional structure on the stochastic Volterra equation (3.1), we
cannot rely on the known results regarding the existence of weak solutions.

The task of proving pathwise uniqueness for the SVE (1.1) with singular kernels and σ that
is only Hölder continuous, is an open question. For the explicit equation with the fractional
kernel Kα de�ned in (1.7), i.e. Kµ = Kσ = Kα, and assuming the drift coe�cient µ does
not depend on the solution (Xt)t∈[0,T ], Mytnik and Salisbury [MS15] established pathwise
uniqueness for the SVE (1.1) where the di�usion coe�cient σ is time-homogeneous but
only ξ-Hölder continuous for ξ ∈ ( 1

2(1−α) , 1] by equivalently reformulating the SVE into a
stochastic partial di�erential equation, which then allows to accomplish a proof of pathwise
uniqueness in the spirit of Yamada�Watanabe relying on the methodology developed in
[MPS06, MP11]. We generalize the results and method of Mytnik and Salisbury [MS15]
to derive pathwise uniqueness for the explicit SVE (1.1) with Kµ = Kσ = Kα to the case
of general time-inhomogeneous coe�cients. As classical transforms allowing to remove
the drift of an SDE are not applicable to the SVE (1.1), the general time-inhomogeneous
coe�cients µ create severe novel challenges.

Mean-�eld SDEs

If the coe�cients of an ordinary SDE depend not only on the time variable and the solution
but also on the solution's law, the equation is called mean-�eld SDE. Mean-�eld SDEs are
thus an extension of ordinary SDEs and can be written in integral form as

Xt = X0 +

∫ t

0
µ(s,Xs,L(Xs)) ds+

∫ t

0
σ(s,Xs,L(Xs)) dBs, t ∈ [0, T ], (1.8)

7



where X0 is a random initial condition and L(X) denotes the law of a random variable X.
This class of stochastic equations was originally studied by Kac in [Kac56], [Kac59], and
then by McKean in [McK66] and Vlasov in [Vla67] for the reason that they arise from
a di�erential equation in physics called Boltzmann's equation which models systems of
single atom gas particles and their interaction. They are therefore also often referred
to as McKean�Vlasov equations. Nowadays, mean-�eld equations are an active topic of
research with various applications, see e.g. [Szn91, JW17, CD18a, CD18b, CD22a, CD22b]
for comprehensive introductions to mean-�eld SDEs and their applications.

It is well-known that under Lipschitz conditions on the coe�cients the multi-dimensional
mean-�eld equation (1.8) is well-posed, see e.g. [CD18a, Theorem 4.21]. The typical
method to approximate the solution is to set up an N -particle system, where the particles
are driven by independent Brownian motions but the law inserted into the coe�cients is
the empirical distribution of theN particles in each of theN equations. Then, it is possible
to prove a convergence result to the solution of the mean-�eld equation, see e.g. [CD18b,
Theorem 2.12], which in the literature is called propagation of chaos result.

Propagation of chaos results have been generalized in the SDE case from the Lipschitz set-
ting into various directions including non-Lipschitz settings, see [HW23], [BCC11], [KP21],
mixed jump-di�usions with simultaneous jumps, see [Gra92], [ADPF18], or a local
Lipschitz jump-di�usion setting, see [Ern22].

1.3 Main results of the thesis

The main part of this thesis is about the well-posedness of the SVE (1.1), where the
di�usion coe�cient σ is only Hölder continuous.

In Chapter 2, our �rst main contribution is to establish the well-posedness of one-dimensional
SVEs of the form (1.1) provided the di�usion coe�cient σ is only 1/2 + ξ-Hölder contin-
uous for ξ ∈ [0, 1/2] and the kernels are regular (see Assumption 2.1). Therefore, we
directly prove the existence of a strong solution by showing the convergence of an Euler
type approximation of the SVE (1.1) and do not use the concept of weak solutions. For
ordinary stochastic di�erential equations such an approach was developed by Gyöngy and
Rásonyi [GR11], using ideas coming from [YW71].

For the pathwise uniqueness, we generalize the classical approach of Yamada and Wata-
na 
be [YW71] to the more general setting of stochastic Volterra equations. We show there-
fore the semimartingale property of the solution, and moreover some additional properties
that also hold for the singular kernel case. We end up with the following main result of
Chapter 2. For the mathematically precise formulation see Theorem 2.3.

8



1. Introduction

Main Theorem 1. Suppose that the kernels are regular, µ is Lipschitz continuous
and σ is 1

2 + ξ-Hölder continuous for some ξ ∈ [0, 12 ]. Then, there exists a unique
strong solution (Xt)t∈[0,T ] to the one-dimensional stochastic Volterra equation (1.1).
Moreover, the solution is Hölder continuous, has bounded moments and has a semi-
martingale property.

In the following, we also consider singular kernels. In Chapter 3, we �rst introduce a local
martingale problem associated to general stochastic Volterra equations, see De�nition 3.4,
and show that its solvability is equivalent to the existence of a weak solution to the
associated SVE, see Lemma 3.7.
Using this newly formulated Volterra martingale problem, we then prove the weak ex-
istence of solutions to the one-dimensional SVE (1.1), where the time-inhomogeneous
coe�cients µ and σ are only required to be uniformly continuous in x, the drift kernel
Kµ only has to ful�ll an L1-condition and the di�usion kernel Kσ is allowed to be either
regular or singular of convolutional form, i.e. Kσ(s, t) = K̃(t− s) for some K̃ ∈ L2([0, T ]).
This includes in particular the fractional kernel Kα de�ned in (1.7). In this setup, we
derive the following main result of Chapter 3, which is Theorem 3.10.

Main Theorem 2. Under the above described assumptions on µ, σ, Kµ and Kσ,
there exists a weak solution to the stochastic Volterra equation (1.1).

Main Theorem 2 hence implies in particular the existence of a weak solution to the one-
dimensional fractional SVE

Xt = x0(t) +

∫ t

0
(t− s)−αµ(s,Xs) ds+

∫ t

0
(t− s)−ασ(s,Xs) dBs, t ∈ [0, T ], (1.9)

for α ∈ (0, 1/2).

For the fractional SVE (1.9), we then prove pathwise uniqueness in Chapter 4 under the
assumption that µ is Lipschitz continuous and σ is ξ-Hölder continuous for ξ > 1

2(1−α) .
This implies then using the general Yamada�Watanabe result (see [Kur14, Theorem 1.5])
the existence of a strong solution to (1.9) and hence, the well-posedness of the fractional
SVE.
We prove the pathwise uniqueness of the fractional SVE (1.9) in six steps (see Section 4.2),
by generalizing the well-known techniques of Yamada�Watanabe (cf. [YW71, Theorem 1])
and the work of Mytnik and Salisbury [MS15]. One of the main challenges is the missing
semimartingale property of a solution (Xt)t∈[0,T ] to (1.9). Therefore, we transform (1.9)
into a random �eld (see (4.7)) in Step 1, for which we can derive a semimartingale decom-
position (see (4.8)). Then, we implement an approach in the spirit of Yamada�Watanabe
in Steps 2 to 5 and conclude the pathwise uniqueness by using a Grönwall inequality for
weak singularities (see e.g. [Kru14, Lemma A.2]) in Step 6. We end up with the following
main result of Chapter 4, which is Theorem 4.3.
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Main Theorem 3. Suppose µ to be Lipschitz continuous and σ to be ξ-Hölder con-
tinuous for ξ > 1

2(1−α) . Then, pathwise uniqueness holds for the fractional stochastic

Volterra equation (1.9). Consequently, equation (1.9) is well-posed.

In addition to the SVE well-posedness results, we also cover two more topics in this thesis
which are mean-�eld SVEs and neural SVEs.

Mean-�eld SVEs

Inspired by mean-�eld SDEs of the type (1.8), we introduce in Chapter 5 the class of
mean-�eld stochastic Volterra equations (mean-�eld SVEs) that have the form

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs,L(Xs)) ds+

∫ t

0
Kσ(s, t)σ(s,Xs,L(Xs)) dBs, t ∈ [0, T ].

(1.10)

We consider two di�erent settings of the mean-�eld SVE (1.10). First, a multi-dimensional
setting under Lipschitz conditions on µ and σ where the kernels Kµ and Kσ are allowed
to be singular. Then, where we adapt the techniques of Yamada�Watanabe [YW71], a
one-dimensional setting with regular or di�erentiable convolutional kernels, where µ is
Lipschitz continuous and σ is allowed to be only 1/2 + ξ-Hölder continuous for some
ξ ∈ [0, 1/2] but independent of the law L(Xs).

In each of the settings, we prove the well-posedness of the mean-�eld SVE (1.10), see
Theorem 5.3 and Theorem 5.10, and a quantitative, pointwise propagation of chaos result
of Volterra-type systems of interacting particles, see Theorem 5.4 and Theorem 5.11.

Neural SVEs

In Chapter 6, we consider the supervised learning problem for SVEs, i.e. the challenge
to learn the dynamics of an SVE given training data consisting of sample paths and the
underlying Brownian paths. Therefore, to learn some d-dimensional SVE, we introduce
for given initial value ξ ∈ Rd and Brownian path (Bt)t∈[0,T ] the neural stochastic Volterra
equation (neural SVE) de�ned by

Z0 = Lθ(ξ),

Zt = Z0 gθ(t) +

∫ t

0
Kµ,θ(t− s)µθ(s, Zs) ds+

∫ t

0
Kσ,θ(t− s)σθ(s, Zs) dBs,

Xt = Πθ(Zt), t ∈ [0, T ],

where all the components that are sub scripted by θ are neural networks, (Zt)t∈[0,T ] is
an Rdh-valued hidden process for some latent dimension dh > d and (Xt)t∈[0,T ] aims to
approximate the true d-dimensional Volterra path. We show that neural SVEs are able to
learn the dynamics of SVEs exemplary with the disturbed pendulum equation, the general
Ornstein�Uhlenbeck equation and the Rough Heston equation.
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Chapter 2

SVEs with regular kernels

The content of this chapter is published in [PS23a].

Introduction

In this chapter, we investigate the strong existence and pathwise uniqueness of solutions
to one-dimensional stochastic Volterra equations with locally Hölder continuous di�usion
coe�cients and su�ciently regular kernels. More precisely, we consider SVEs of the form

Xt = x0(t) +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (2.1)

where x0 denotes the initial condition, (Bt)t∈[0,T ] is a Brownian motion, the kernelsKµ,Kσ

are su�ciently regular functions, the coe�cient µ is locally Lipschitz continuous, and the
di�usion coe�cient σ is only locally Hölder continuous.
While the existence of unique strong solutions for stochastic Volterra equations with
Lipschitz continuous coe�cients is well investigated, our motivation to study stochas-
tic Volterra equations with non-Lipschitz coe�cients comes from the natural question to
explore to what extent the famous results of Yamada and Watanabe [YW71], ensuring
pathwise uniqueness and the existence of strong solutions for ordinary stochastic di�eren-
tial equations, generalizes to stochastic Volterra equations.
The classical approach to prove the existence of strong solutions to ordinary stochastic
di�erential equations with less regular di�usion coe�cients is to �rst show the existence
of a weak solution, since this, in combination with pathwise uniqueness, guarantees the
existence of a strong solution, see [YW71]. In this chapter, we will not use that common
technique.
Instead, our �rst main contribution of the chapter is to directly establish the existence of
a strong solution to the SVE (2.1) provided the di�usion coe�cient σ is locally 1/2 + ξ-
Hölder continuous for ξ ∈ [0, 1/2]. To that end, we prove the convergence of an Euler
type approximation of the SVE (2.1) and do not use the concept of weak solutions. For
ordinary stochastic di�erential equations such an approach was developed by Gyöngy
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and Rásonyi [GR11], using ideas coming from [YW71]. As a number of results used to
deal with ordinary stochastic di�erential equations are not available in the context of
SVEs, the presented proof for the existence of a strong solution to the SVE (2.1) requires
various di�erent techniques such as a transformation formula for Volterra processes à la
Protter [Pro85] and a Grönwall lemma allowing weakly singular kernels.
Our second main contribution is to establish pathwise uniqueness for the SVE (2.1) pro-
vided that the di�usion coe�cient σ is locally 1/2 + ξ-Hölder continuous for ξ ∈ [0, 1/2]
or even, more generally, satis�es the classical Yamada�Watanabe condition [YW71]. To
that end, we generalize the classical approach of Yamada and Watanabe [YW71] to the
more general setting of stochastic Volterra equations. The presented proof for pathwise
uniqueness is based on similar techniques as the proof of existence and is inspired by
the work of Mytnik and Salisbury [MS15]. In [MS15], pathwise uniqueness is proven for
one-dimensional stochastic Volterra equations with smooth kernels and without drift (i.e.
µ = 0). For SVEs of convolutional type with continuous di�erentiable kernels admitting
a resolvent of the �rst kind, pathwise uniqueness was shown in [AJEE19b].
Let us remark, while we need to require su�cient regularity on the kernelsKµ,Kσ to obtain
the existence of a unique strong solution (see Theorem 2.3 and Corollary 2.6), the imposed
regularity conditions on the coe�cients are essentially the classical regularity conditions
of Yamada�Watanabe. Already in case of ordinary stochastic di�erential equations, it is
well-known that these regularity conditions cannot be relaxed in the sense that pathwise
uniqueness does not hold in general if, e.g., the di�usion coe�cient σ is only Hölder
continuous of order strictly less than 1/2.

Organization of the chapter: Section 2.1 presents the setting and main result: an
existence and uniqueness theorem for stochastic Volterra equations with Hölder continuous
di�usion coe�cients. The properties of solutions to SVEs are provided in Section 2.2. The
existence of a strong solution is proven in Section 2.3 and that pathwise uniqueness holds
in Section 2.4.

2.1 Main result and assumptions

Let (Ω,F , (Ft)t∈[0,T ],P) be a �ltered probability space, which satis�es the usual condi-
tions, (Bt)t∈[0,T ] be a standard Brownian motion and T ∈ (0,∞). We consider the one-
dimensional stochastic Volterra equation (SVE)

Xt = x0(t) +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (2.2)

where x0 : [0, T ] → R is a continuous function, the coe�cients µ, σ : [0, T ] × R → R
and the kernels Kµ,Kσ : ∆T → R are measurable functions, using the standard notation
∆T := {(s, t) ∈ [0, T ] × [0, T ] : 0 ≤ s ≤ t ≤ T}. Furthermore,

∫ t
0 Kµ(s, t)µ(s,Xs) ds is

de�ned as a Lebesque integral and
∫ t
0 Kσ(s, t)σ(s,Xs) dBs as an Itô integral.

Let K : ∆T → R be a measurable function. We say K(·, t) is absolutely continuous for
every t ∈ [0, T ] if there exists an integrable function ∂1K : ∆T → R such that K(s, t) −
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2. SVEs with regular kernels

K(0, t) =
∫ s
0 ∂1K(u, t) du for (s, t) ∈ ∆T . We say K(s, ·) is absolutely continuous for every

s ∈ [0, T ] if there exists an integrable function ∂2K : ∆T → R such that K(s, t)−K(s, 0) =∫ t
0 ∂2K(s, u) du for (s, t) ∈ ∆T . Moreover, for p ∈ [1,∞), we denote K ∈ Lp(∆T ) if∫ T
0

∫ t
0 |K(s, t)|p ds dt <∞.

For the kernels Kµ,Kσ and the initial condition x0 we make the following assumptions.

Assumption 2.1. Let γ ∈ (0, 12 ], and Kµ,Kσ : ∆T → R and x0 : [0, T ] → R be continuous
functions such that:

(i) Kµ(s, ·) is absolutely continuous for every s ∈ [0, T ] and ∂2Kµ is bounded on ∆T .

(ii) Kσ(·, t) is absolutely continuous for every t ∈ [0, T ], Kσ(s, ·) is absolutely continuous
for every s ∈ [0, T ] with ∂2Kσ ∈ L2(∆T ), and ∂2Kσ(·, t) is absolutely continuous for
every t ∈ [0, T ]. Furthermore, there is a constant C > 0 such that |Kσ(t, t)| ≥ C for
any t ∈ [0, T ], and there exist C > 0, α ∈ [0, 12) and ε > 0 such that∫ s

0
|Kσ(u, t)−Kσ(u, s)|2+ε du ≤ C|t− s|γ(2+ε) and

|∂1Kσ(s, t)|+ |∂2Kσ(s, s)|+
∫ t

s
|∂21Kσ(s, u)| du ≤ C(t− s)−α

hold for any (s, t) ∈ ∆T .

(iii) x0 is β-Hölder continuous for every β ∈ (0, γ).

The regularity properties of the coe�cients µ and σ are formulated in the next assumption.
We start with assuming global Lipschitz and Hölder continuity of µ and σ, respectively.
An extension to local regularity conditions is treated in Corollary 2.6 below.

Assumption 2.2. Let µ, σ : [0, T ]× R → R be measurable functions such that:

(i) µ and σ are of linear growth, i.e. there is a constant Cµ,σ > 0 such that

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|),

for all t ∈ [0, T ] and x ∈ R.

(ii) µ is Lipschitz continuous and σ is Hölder continuous of order 1
2+ξ for some ξ ∈ [0, 12 ]

in the space variable uniformly in time, i.e. there are constants Cµ, Cσ > 0 such that

|µ(t, x)− µ(t, y)| ≤ Cµ|x− y| and |σ(t, x)− σ(t, y)| ≤ Cσ|x− y|
1
2
+ξ

hold for all t ∈ [0, T ] and x, y ∈ R.
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To formulate our results, let us brie�y recall the concepts of strong solutions and pathwise
uniqueness. For this purpose, let Lp(Ω× [0, T ]) be the space of all real-valued, p-integrable
functions on Ω× [0, T ]. We call an (Ft)t∈[0,T ]-progressively measurable stochastic process
(Xt)t∈[0,T ] in Lp(Ω× [0, T ]) on the given probability space (Ω,F , (Ft)t∈[0,T ],P), a (strong)

Lp-solution of the SVE (2.2) if
∫ t
0 (|Kµ(s, t)µ(s,Xs)|+ |Kσ(s, t)σ(s,Xs)|2) ds < ∞ for all

t ∈ [0, T ] and the integral equation (2.2) hold P-almost surely. As usual, a strong L1-
solution (Xt)t∈[0,T ] of the SVE (2.2) is often just called solution of the SVE (2.2). We say
pathwise uniqueness in Lp(Ω× [0, T ]) holds for the SVE (2.2) if P(Xt = X̃t, ∀t ∈ [0, T ]) =
1 for two Lp-solutions (Xt)t∈[0,T ] and (X̃t)t∈[0,T ] of the SVE (2.2) de�ned on the same
probability space (Ω,F , (Ft)t∈[0,T ],P). Moreover, we say there exists a unique strong Lp-
solution (Xt)t∈[0,T ] to the SVE (2.2) if (Xt)t∈[0,T ] is a strong Lp-solution to the SVE (2.2)
and pathwise uniqueness in Lp(Ω × [0, T ]) holds for the SVE (2.2). We say (Xt)t∈[0,T ] is
β-Hölder continuous for β ∈ (0, 1] if there exists a modi�cation of (Xt)t∈[0,T ] with sample
paths that are P-almost surely β-Hölder continuous.

The main results of the present work are summarized in the following theorem.

Theorem 2.3. Suppose Assumptions 2.1 and 2.2, and let p > max{ 1
γ , 1 + 2

ε}, where

γ ∈ (0, 12 ] and ε > 0 are given by Assumption 2.1. Then, there exists a unique strong
Lp-solution (Xt)t∈[0,T ] to the stochastic Volterra equation (2.2). Moreover, the solution
(Xt)t∈[0,T ] is β-Hölder continuous for every β ∈ (0, γ), supt∈[0,T ] E[|Xt|q] < ∞ for every
q ∈ [1,∞) and (Xt − x0(t))t∈[0,T ] is a semimartingale.

Proof. The existence of a strong solution (Xt)t∈[0,T ] to the stochastic Volterra equa-
tion (2.2) is provided by Theorem 2.14 and its pathwise uniqueness by Theorem 2.22. The
assertions that supt∈[0,T ] E[|Xt|q] <∞ for every q ∈ [1,∞) and of the β-Hölder continuity
as well as the semimartingale property of (Xt − x0(t))t∈[0,T ] follow by Corollary 2.13.

Note that the regularity assumptions (Assumption 2.2), as required in Theorem 2.3, on the
coe�cients µ, σ are essentially optimal. Indeed, it is well-known for ordinary stochastic
di�erential equations that pathwise uniqueness does not hold in general if µ is only Hölder
continuous of order strictly less than 1 or σ is only Hölder continuous of order strictly less
than 1/2, see for instance [KS91, page 287] and [KS91, Chapter 5, Example 2.15].

Remark 2.4. Recall that Yamada and Watanabe derived pathwise uniqueness for ordinary
stochastic di�erential equations under the slightly weaker assumption of |σ(t, x)−σ(t, y)| ≤
ρ(|x − y|) for a function ρ : [0,∞) → [0,∞) with

∫ ε
0 ρ(s)

−2 ds = ∞ for every ε > 0, cf.
[YW71, Theorem 1]. While the proof of pathwise uniqueness presented in Section 2.4
is given under this Yamada�Watanabe condition, in the proof of the existence of a strong
solution via an approximation scheme the Hölder regularity of σ is explicitly used in various
estimates, see e.g. (2.14), and a modi�cation of these estimates allowing for the Yamada�
Watanabe condition appears not straightforward.

Remark 2.5. Assumption 2.1 is satis�ed, for instance, if Kµ is continuously di�eren-
tiable, Kσ is twice continuously di�erentiable with Kσ(t, t) > 0 for t ∈ [0, T ] and x0 is
β-Hölder continuous for some β ∈ (0, 1).
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2. SVEs with regular kernels

While the condition |Kσ(t, t)| ≥ C for t ∈ [0, T ] is crucial for implementing the present
method to prove Theorem 2.3, it might appear to be of technical nature. However, assuming
Kσ(t, t) = 0 for every t ∈ [0, T ] and keeping in mind the semimartingale decomposition in
Lemma 2.12, any solution of the SVE (2.2) would be a semimartingale of bounded variation
without any di�usion part and, thus, some care is needed to not lose the regularization
e�ects of a Brownian motion.

Based on a localization argument, the assumptions of global Lipschitz and Hölder conti-
nuity on the coe�cients of the SVE (2.2) can be relaxed to local regularity assumptions.
In the following, C > 0 denotes a generic constant that might change from line to line.
To emphasize the dependence of the constant C on parameters p, q or functions f, g, we
write Cp,q,f,g. Moreover, for x, y ∈ R we set x ∧ y := min{x, y}.

Corollary 2.6. Suppose Assumptions 2.1, 2.2 (i), and that µ is locally Lipschitz contin-
uous and σ is locally Hölder continuous of order 1

2 + ξ for some ξ ∈ [0, 12 ] in the space
variable uniformly in time, i.e. for every n ∈ N there are constants Cµ,n, Cσ,n > 0 such
that

|µ(t, x)− µ(t, y)| ≤ Cµ,n|x− y| and |σ(t, x)− σ(t, y)| ≤ Cσ,n|x− y|
1
2
+ξ

hold for all t ∈ [0, T ] and x, y ∈ R with |x|, |y| ≤ n. Let p > max{ 1
γ , 1 + 2

ε}, where

γ ∈ (0, 12 ] and ε > 0 are given by Assumption 2.1. Then, there exists a unique strong
Lp-solution (Xt)t∈[0,T ] to the stochastic Volterra equation (2.2). Moreover, the solution
(Xt)t∈[0,T ] is β-Hölder continuous for every β ∈ (0, γ), supt∈[0,T ] E[|Xt|q] < ∞ for every
q ∈ [1,∞) and (Xt − x0(t))t∈[0,T ] is a semimartingale.

Proof. By Assumptions 2.1 and 2.2 (i), Lemma 2.10, Corollary 2.11 and Lemma 2.12
imply the integrability, β-Hölder continuity and semimartingale property of the solution.
For the well-posedness, we adapt the proofs of Theorem 2.14 and 2.22 and the notation
therein.
For the uniqueness, consider two Lp-solutions (X1

t )t∈[0,T ] and (X2
t )t∈[0,T ], and de�ne X̃t :=

X1
t −X2

t for t ∈ [0, T ] and the hitting times τk := inf{t ∈ [0, T ] : max{|Xt|, |Yt|} ≥ k} ∧ T
for k ∈ N which are stopping times with τk → T a.s. by the same reasoning as for the
hitting times de�ned in (2.4). By bounding ϕn(X̃t1{t≤τk}) ≤ ϕn(X̃t∧τk) and applying Itô's
formula to the right-hand-side, we obtain after performing the same steps as in (2.22)-
(2.27) and sending n→ ∞, that

E[|X̃t|1{t≤τk}]

≤ C

∫ t

0
E[|X̃s|1{s≤τk}] ds+

∫ t

0
E[|Ỹs|1{s≤τk}]

(
∂2Kσ(s, s) +

∫ t

s
|∂21Kσ(s, u)|du

)
ds,

for t ∈ [0, T ]. Similarly, we get a bound on E[|Ỹt|1{t≤τk}] analogue to (2.30) and denoting

Mk(t) := sup
s∈[0,t]

(
E[|X̃s|1{s≤τk}] + E[|Ỹs|1{s≤τk}]

)
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we obtain Mk(t) = 0 for all t ∈ [0, T ], and sending k → ∞ yields the uniqueness.
For the existence, we adapt the standard localization argument from the SDE case. We
introduce for n ∈ N the localized coe�cients

µn(t, x) :=

{
µ(t, x), if |x| ≤ n,

µ(t, nx|x| ), if |x| > n,

and analogously σn, which ful�ll the regularity properties globally, such that corresponding
strong solutions exist by Theorem 2.14 that we denote by Xn. Moreover, let κn :=
inf{t ∈ [0, T ] : |Xn

t | > n} ∧ T and de�ne X(t) := Xn(t) for κn−1 < t ≤ κn(t). By the
pathwise uniqueness, it holds Xn−1

τn−1
= Xn

τn−1
for all n ∈ N such that X is continuously

well-de�ned and we must only show that it cannot explode, i.e. that κn → T a.s. By
the Garsia�Rodemich�Rumsey inequality (see [GRR71, Lemma 1.1]), Markov's inequality
and Lemma 2.7, we obtain for any α ∈ (0, γ) and p > 2 chosen such that αp > 1 that

P
(

sup
t∈[0,T ]

|Xn
t −Xn

0 | > n
)
≤ P

(
sup

t∈[0,T ]

(
Cα,pt

α− 1
p

(∫ T

0

∫ T

0

|Xs −Xu|p

|s− u|αp+1
duds

) 1
p
)
> n

)
≤ n−pE

[
Cα,p,T

(∫ T

0

∫ T

0

|Xs −Xu|p

|s− u|αp+1
duds

)]
≤ Cα,p,T,µ,σ,εn

−p,

which tends to 0 su�ciently fast such that the Borel�Cantelli lemma (see [Kle14, Theo-
rem 2.7]) implies κn → T a.s.

The rest of the chapter is largely devoted to prove Theorem 2.3. However, we will formulate
and prove the partial �ndings under weaker assumptions if possible without additional
e�ort.

2.2 Properties of a solution

In this section we establish some properties of solutions to stochastic Volterra equations.
We start by the regularity and integrability of Lp-solutions, which requires only the linear
growth condition of the coe�cients and allows for singular kernels in the SVE (2.2).

Lemma 2.7. Suppose Assumption 2.2 (i) and let Kµ,Kσ : ∆T → R be measurable func-
tions such that, for some ε > 0 and L > 0,∫ t

0
|Kµ(s, t

′)−Kµ(s, t)|1+ε ds+

∫ t′

t
|Kµ(s, t

′)|1+ε ds ≤ L|t′ − t|γ(1+ε),∫ t

0
|Kσ(s, t

′)−Kσ(s, t)|2+ε ds+

∫ t′

t
|Kσ(s, t

′)|2+ε ds ≤ L|t′ − t|γ(2+ε),

(2.3)

for all (t, t′) ∈ ∆T . Furthermore, let x0 : [0, T ] → R be β-Hölder continuous for every
β ∈ (0, γ) for some γ ∈ (0, 12 ] and let (Xt)t∈[0,T ] be a Lp-solution of the SVE (2.2) for
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2. SVEs with regular kernels

some p > max{ 1
γ , 1 +

2
ε}. Then, for any β ∈ (0, γ), there is a constant Cx0,p,L,T,µ,σ,ε > 0

such that

E[|Xt′ −Xt|p] ≤ Cx0,p,L,T,µ,σ,ε|t′ − t|βp,

holds for all t, t′ ∈ [0, T ]. Consequently, (Xt)t∈[0,T ] is β-Hölder continuous for any β ∈
(0, γ − 1

p).

Proof. Let p > 2 be given by the assumption. Since x0 is β-Hölder continuous, we observe
for t, t′ ∈ [0, T ] that

E[|Xt′ −Xt|p] ≤ Cp,x0 |t′ − t|βp + CpE[|X̃t′ − X̃t|p] with X̃t := Xt − x0(t).

For (t, t′) ∈ ∆T we note that

|X̃t′ − X̃t|p =
∣∣∣∣ ∫ t′

0
Kµ(s, t

′)µ(s,Xs) ds+

∫ t′

0
Kσ(s, t

′)σ(s,Xs) dBs

−
∫ t

0
Kµ(s, t)µ(s,Xs) ds−

∫ t

0
Kσ(s, t)σ(s,Xs) dBs

∣∣∣∣p
≤ Cp

(∣∣∣∣ ∫ t

0
µ(s,Xs)(Kµ(s, t

′)−Kµ(s, t)) ds

∣∣∣∣p + ∣∣∣∣ ∫ t′

t
µ(s,Xs)Kµ(s, t

′) ds

∣∣∣∣p
+

∣∣∣∣ ∫ t

0
σ(s,Xs)(Kσ(s, t

′)−Kσ(s, t)) dBs

∣∣∣∣p + ∣∣∣∣ ∫ t′

t
σ(s,Xs)Kσ(s, t

′) dBs

∣∣∣∣p)
=: Cp(A+B + C +D).

We shall bound the expectation of the terms A-D in the following. For A, we use Hölder's
inequality, the linear growth of µ (Assumption 2.2 (i)), (2.3) and that X ∈ L

1+ε
ε (Ω×[0, T ])

since 1+ε
ε < p to obtain

E[A] ≤ E
[∣∣∣ ∫ t

0
|µ(s,Xs)|

1+ε
ε ds

∣∣∣ pε
1+ε

](∫ t

0

∣∣Kµ(s, t
′)−Kµ(s, t)

∣∣1+ε
ds

) p
1+ε

≤ Cp,L,µ,T,ε

(∫ t

0

∣∣Kµ(s, t
′)−Kµ(s, t)

∣∣1+ε
ds

) p
1+ε

≤ Cx0,p,L,T,µ,σ,ε|t′ − t|γp.

Note that the second inequality follows either with Jensen's inequality, if pε
1+ε ≤ 1, or else

with Hölder's inequality and Fubini's theorem. Applying the analog estimates to B gives

E[B] ≤ E
[∣∣∣ ∫ t′

t
|µ(s,Xs)|

1+ε
ε ds

∣∣∣ pε
1+ε

](∫ t′

t

∣∣Kµ(s, t
′)
∣∣1+ε

ds

) p
1+ε

≤ Cx0,p,L,T,µ,σ,ε|t′ − t|γp.

For term C, relying on the Burkholder�Davis�Gundy inequality, Hölder's inequality, using
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the linear growth of σ (Assumption 2.2 (i)), X ∈ L
2+ε
ε (Ω× [0, T ]) and (2.3), we get

E[C] ≤ E
[(∫ t

0

∣∣σ(s,Xs)
(
Kσ(s, t

′)−Kσ(s, t)
)∣∣2 ds) p

2
]

≤ E
[∣∣∣ ∫ t

0
|σ(s,Xs)|

2+ε
ε ds

∣∣∣ pε
4+2ε

](∫ t

0

∣∣Kσ(s, t
′)−Kσ(s, t)

∣∣2+ε
ds

) p
2+ε

≤ Cp,L,σ,T,ε

(∫ t

0

∣∣Kσ(s, t
′)−Kσ(s, t)

∣∣2+ε
ds

) p
2+ε

≤ Cx0,p,L,T,µ,σ,ε|t′ − t|γp.

Applying (2.3) and analog estimates to term D reveals

E[D] ≤ Cx0,p,L,T,µ,σ,ε

(∫ t′

t
Kσ(s, t

′)2+ε ds

) p
2+ε

≤ Cx0,p,L,T,µ,σ,ε|t′ − t|γp.

Hence, with the above estimates we arrive at

E[|Xt′ −Xt|p] ≤ Cp,x0 |t′ − t|βp + Cx0,p,L,T,µ,σ|t′ − t|γp ≤ Cx0,p,L,T,µ,σ,ε|t′ − t|βp,

as β < γ. Hence, by Kolmogorov�Chentsov's theorem (see e.g. [Kle14, Theorem 21.6])
and sending β → γ, there exists a modi�cation of (Xt)t∈[0,T ] which is δ′-Hölder continuous
for δ′ ∈ (0, γ − 1/p).

Remark 2.8. Suppose that the kernels Kµ and Kσ ful�ll Assumption 2.1. In this case it
follows from Kolmogorov's continuity criterion and the estimates in the proof of Lemma 2.7,
that, for every progressively measurable stochastic process u ∈ Lp([0, T ]×Ω) for some p >
max{ 1

γ , 1+
2
ε}, the process (M

u
t )t∈[0,T ], de�ned byM

u
t :=

∫ t
0 Kµ(s, t)us ds+

∫ t
0 Kσ(s, t)us dBs,

has P-a.s. β-Hölder-continuous paths for every β ∈ (0, γ − 1
p).

Remark 2.9. Note that the constant Cx0,p,L,T,µ,σ,ε in Lemma 2.7 depends on µ and σ
only through the constant appearing in the linear growth condition (Assumption 2.2 (i)).

The integrability of solutions to the SVE (2.2) is the content of the next lemma.

Lemma 2.10. Suppose that the assumptions of Lemma 2.7 hold. Then,

sup
t∈[0,T ]

E[|Xt|q] ≤ Cq,L,T,µ,σ

(
1 + sup

t∈[0,T ]
|x0(t)|q

)
,

holds for any q ≥ 1, where the constant Cq,L,T,µ,σ depends only on q, L, T and the growth
constants of µ and σ.

Proof. Let us introduce the hitting times

τk := inf{t ∈ [0, T ] : |Xt| ≥ k} ∧ T, for k ∈ N. (2.4)
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2. SVEs with regular kernels

Note that τk → T a.s. as k → ∞, since the paths of the solutionX are P-a.s. continuous by
Lemma 2.7. Since the underlying �ltered probability space satis�es the usual conditions,
by the Début theorem (see [RY99, Chapter I, (4.15) Theorem]), the hitting times (τk)k∈N
are stopping times.
First, let q > 2 be big enough such that q′ := q

q−1 ≤ 1 + ε and q̃ := q
q−2 ≤ 1 + ε/2.

Using Hölder's inequality, the Burkholder�Davis�Gundy inequality, and the linear growth
condition (Assumption 2.2 (i)), we get

E[|Xt|q1{t≤τk}]

= E
[∣∣∣∣x0(t) + ∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs

∣∣∣∣q1{t≤τk}

]
= E

[∣∣∣∣x0(t)1{t≤τk} +

∫ t

0
Kµ(s, t)µ(s,Xs) ds1{t≤τk} +

∫ t

0
Kσ(s, t)σ(s,Xs) dBs 1{t≤τk}

∣∣∣∣q]
≤ CqE

[∣∣x0(t)∣∣q + ∣∣∣ ∫ t

0
Kµ(s, t)µ(s,Xs)1{s≤τk} ds

∣∣∣q + ∣∣∣ ∫ t

0
Kσ(s, t)σ(s,Xs)1{s≤τk} dBs

∣∣q]
≤ Cq

(
|x0(t)|q +

(∫ t

0
|Kµ(s, t)|q

′
ds

) q
q′
∫ t

0
E[|µ(s,Xs)|q1{s≤τk}] ds

+ E
[(∫ t

0
|Kσ(s, t)σ(s,Xs)|21{s≤τk} ds

) q
2
])

≤ Cq

(
|x0(t)|q + Cq,µ

(∫ t

0
|Kµ(s, t)|q

′
ds

) q
q′
∫ t

0
E[1 + |Xs|q1{s≤τk}] ds

+ Cq,σ

(∫ t

0
|Kσ(s, t)|2q̃ ds

) q
2q̃
∫ t

0
E[1 + |Xs|q1{s≤τk}] ds

)
(2.5)

for t ∈ [0, T ]. Due to (2.3) we arrive at

E[|Xt|q1{t≤τk}] ≤ Cq,L,T,µ,σ

(
1 + |x0(t)|q +

∫ t

0
E[|Xs|q1{s≤τk}] ds

)
and, thus, as t 7→ E[|Xt|q1{t≤τk}] is bounded by kq on [0, T ], we can apply Grönwall's
lemma (see e.g. [Kle14, Lemma 26.9]) to get

E[|Xt|q1{t≤τk}] ≤ Cq,L,T,µ,σ

(
1 + sup

t∈[0,T ]
|x0(t)|q

)
, t ∈ [0, T ].

Sending k → ∞ and taking the supremum over [0, T ] reveals the assertion. The ordered-
ness of the Lp-spaces implies the statement also for q2 ∈ [1, q).

We conclude that the regularity of a solution can be improved.

Corollary 2.11. Under the assumptions of Lemma 2.7, any Lp-solution to the SVE (2.2)
for some p > max{ 1

γ , 1 +
2
ε} is β-Hölder continuous for any β ∈ (0, γ).

19



Proof. The statement follows by applying Lemma 2.10 and Lemma 2.7 with q > 2 and
then sending q → ∞.

Assuming su�cient regularity of the kernels Kµ,Kσ, every solution to the stochastic
Volterra equation (2.2) is essentially a semimartingale as �rst observed in [Pro85, Theo-
rem 3.3].

Lemma 2.12. Let Kµ,Kσ : ∆T → R be measurable functions. Suppose Kµ(s, ·) is abso-
lutely continuous for every s ∈ [0, T ] with ∂2Kµ ∈ L1(∆T ), Kσ(s, ·) is absolutely continu-
ous for every s ∈ [0, T ] with ∂2Kσ ∈ L2(∆t), and Assumption 2.2 (i) holds. Let (Xt)t∈[0,T ]

be a solution to the SVE (2.2) such that E[|Xt|2] ≤ C for all t ∈ [0, T ] and some constant C.
Then, (Xt − x0(t))t∈[0,T ] is a semimartingale with decomposition Xt − x0(t) = Mt + At

where

Mt :=

∫ t

0
Kσ(s, s)σ(s,Xs) dBs and

At :=

∫ t

0
Kµ(s, s)µ(s,Xs) ds

+

∫ t

0

(∫ s

0
∂2Kµ(u, s)µ(u,Xu) du+

∫ s

0
∂2Kσ(u, s)σ(u,Xu) dBu

)
ds

for t ∈ [0, T ].

Proof. Setting

Yt :=

∫ t

0
σ(s,Xs) dBs and Zt :=

∫ t

0
µ(s,Xs) ds, for t ∈ [0, T ],

and using the absolute continuity of Kµ,Kσ, we get

Xt =

∫ t

0
Kµ(s, s) dZs +

∫ t

0

(∫ t

s
∂2Kµ(s, u) du

)
dZs

+

∫ t

0

(∫ t

s
∂2Kσ(s, u) du

)
dYs +

∫ t

0
Kσ(s, s) dYs.

Since

E
[ ∫

∆T

|∂2Kµ(s, u)µ(s,Xs)| ds du
]
+ E

[ ∫
∆T

(∂2Kσ(s, u)σ(s,Xs))
2 ds du

]
<∞

due to E[|Xt|2] ≤ C for all t ∈ [0, T ], ∂2Kµ ∈ L1(∆T ) and ∂2Kσ ∈ L2(∆T ), we can apply
the classical and the stochastic Fubini theorem (see e.g. [Ver12, Theorem 2.2]) to get

Xt =

∫ t

0
Kµ(s, s) dZs +

∫ t

0

(∫ u

0
∂2Kµ(s, u) dZs

)
du

+

∫ t

0

(∫ u

0
∂2Kσ(s, u) dYs

)
du+

∫ t

0
Kσ(s, s) dYs,

which completes the proof.
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2. SVEs with regular kernels

Applying the previous lemmas to the setting of Theorem 2.3 leads to the following corol-
lary.

Corollary 2.13. Suppose Assumptions 2.1 and 2.2. Let (Xt)t∈[0,T ] be a L
p-solution to the

SVE (2.2) for some p > max{ 1
γ , 1+

2
ε}. Then, (Xt)t∈[0,T ] satis�es supt∈[0,T ] E[|Xt|q] <∞

for every q ∈ [1,∞), (Xt)t∈[0,T ] is β-Hölder continuous for every β ∈ (0, γ) for γ ∈ (0, 1/2]
given in Assumption 2.1, and (Xt − x0(t))t∈[0,T ] is a semimartingale.

Proof. Note that the existence and boundedness of ∂2Kµ from Assumption 2.1 (i) imply
that ∫ s

0
|Kµ(u, t)−Kµ(u, s)|1+ε du =

∫ s

0

∣∣ ∫ t

s
∂2Kµ(u, r) dr

∣∣1+ε
du

≤ C|t− s|γ

holds for some C > 0 and any (s, t) ∈ ∆T , using ε > 0 and γ ∈ (0, 1/2] from Assump-
tion 2.1. Hence, supt∈[0,T ] E[|Xt|q] < ∞ for every q ∈ [1,∞) by Lemma 2.10. Moreover,
since Assumption 2.1 implies (2.3), Corollary 2.11 states the claimed β-Hölder continuity.
The semimartingale property follows by Lemma 2.12.

2.3 Existence of a strong solution

This section is devoted to establish the existence of a strong solution to the SVE (2.2):

Theorem 2.14. Suppose Assumptions 2.1 and 2.2, and let p > max{ 1
γ , 1 + 2

ε}. Then,
there exists a strong Lp-solution (Xt)t∈[0,T ] to the SVE (2.2).

The construction of a strong solution relies on an Euler type approximation. To set up
the approximation, we use the sequence (πm)m∈N of partitions de�ned by

πm := {tm0 , . . . , tm2m5} with tmi :=
iT

2m5 for i = 0, . . . , 2m
5

and introduce, for every m ∈ N, the function κm : [0, T ] → [0, T ] by

κm(T ) := T and κm(t) := tmi for tmi ≤ t < tmi+1, for i = 0, 1, . . . , 2m
5 − 1.

For every m ∈ N, we iteratively de�ne the process (Xm(t))t∈[0,T ] by Xm(0) := x0(0) and
for t ∈ (tmi , t

m
i+1] by

Xm(t) :=x0(t) +

∫ tmi

0
Kµ(s, t)µ(s,X

m(κm(s))) ds+

∫ t

tmi

Kµ(s, t)µ(s,X
m(tmi )) ds

+

∫ tmi

0
Kσ(s, t)σ(s,X

m(κm(s))) dBs +

∫ t

tmi

Kσ(s, t)σ(s,X
m(tmi )) dBs,
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for i = 0, . . . , 2m
5 − 1.

Note that we neither discretize the kernels Kµ,Kσ nor the time-component in the coe�-
cients µ, σ. While these additional discretizations might be desirable to derive an imple-
mentable numerical scheme, for our purpose of proving the existence of a strong solution,
it is su�cient to avoid this additional approximation.

Lemma 2.15. Suppose Assumptions 2.1 and 2.2. Xm ∈ Lq(Ω× [0, T ]) for every m ∈ N
and any q ∈ [1,∞). In particular, Xm ∈ Lp(Ω × [0, T ]) for every m ∈ N and p >
max{ 1

γ , 1 +
2
ε}.

Proof. For m ∈ N and q ∈ (2,∞) we de�ne

gm(t) := E
[
|Xm(t)|q

]
for t ∈ [0, T ].

To prove that Xm ∈ Lq(Ω× [0, T ]), it is su�cient to show that the function gm is bounded
on [0, T ] since

E
[ ∫ T

0
|Xm(t)|q dt

]
=

∫ T

0
gm(t) dt ≤ T sup

t∈[0,T ]
gm(t).

For t = 0 we have E[|Xm(0)|q] = |x0(0)|q < ∞ and, thus, gm is bounded on [0, tm1 ]. For
t ∈ (tmi , t

m
i+1] with i = 1, . . . , 2m

5 − 1, using similar estimates as in (2.5), we iteratively get
that

E[|Xm(t)|q]

≤ C

(
|x0(t)|q

+ E
[∣∣∣∣ ∫ tmi

0
Kµ(s, t)µ(s,X

m(κm(s))) ds

∣∣∣∣q]+ E
[∣∣∣∣ ∫ t

tmi

Kµ(s, t)µ(s,X
m(tmi )) ds

∣∣∣∣q]
+ E

[∣∣∣∣ ∫ tmi

0
Kσ(s, t)σ(s,X

m(κ(s))) dBs

∣∣q]+ E
[∣∣∣∣ ∫ t

tmi

Kσ(s, t)σ(s,X
m(tmi )) dBs

∣∣q])
≤ C

(
|x0(t)|q +

∫ tmi

0
E
[
|µ(s,Xm(κm(s)))|q

]
ds+

∫ t

tmi

E
[
|µ(s,Xm(tmi ))|q

]
ds

+

∫ tmi

0
E
[
|σ(s,Xm(κ(s)))|q

]
ds+

∫ t

tmi

E
[
|σ(s,Xm(tmi ))|q

]
ds

)
≤ C

(
1 +

∫ tmi

0
E[|Xm(κ(s))|q] ds+

∫ t

tmi

E[|Xm(tmi )|q] ds
)
<∞.

Therefore, supt∈[0,T ] gm(t) <∞.

It can be quickly seen that the integrability and regularity results from Section 2.2 also
hold for the process (Xm(t))t∈[0,T ].
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Proposition 2.16. Suppose Assumptions 2.1 and 2.2. Let γ ∈ (0, 1/2] be as given in
Assumption 2.1. Then, for any m ∈ N, there is a constant C > 0 such that

sup
t∈[0,T ]

E[|Xm(t)|q] ≤ C

(
1 + sup

t∈[0,T ]
|x0(t)|q

)
.

holds for any q ≥ 1. Moreover, for any β ∈ (0, γ), there is a constant C > 0 such that

E[|Xm(t′)−Xm(t)|q] ≤ C|t′ − t|βq

holds for all t′, t ∈ [0, T ]. Consequently, (Xm(t))t∈[0,T ] is β-Hölder continuous for any
β ∈ (0, γ).

Proof. The Lq-bound of (Xm(t))t∈[0,T ] follows by similar arguments as used in the proof
of Lemma 2.10.
For t ∈ (tmi , t

m
i+1] and �xed m ∈ N and q ≥ 2, we get

E[|Xm(t)|q] ≤ C

(
|x0(t)|q +

∫ tmi

0
E[|Xm(κm(s))|q] ds+

∫ t

tmi

E[|Xm(tmi )|q] ds
)
,

where we used Hölder's inequality, Burkholder�Davis�Gundy's inequality, and the linear
growth condition (Assumption 2.2 (i)). Hence, we arrive at

sup
u∈[0,t]

E[|Xm(u)|q] ≤ C

(
sup

u∈[0,T ]
|x0(u)|q +

∫ t

0
sup

u∈[0,s]
E[|Xm(u)|q] ds

)
.

Since t 7→ supu∈[0,t] E[|Xm(u)|q] is bounded by the proof of Lemma 2.15, we can apply
Grönwall's lemma (see e.g. [Kle14, Lemma 26.9]) to get

sup
t∈[0,T ]

E[|Xm(t)|q] ≤ C

(
1 + sup

t∈[0,T ]
|x0(t)|q

)
, t ∈ [0, T ],

which reveals the assertion.
The regularity statement follows by adapting the proof of Lemma 2.7. Indeed, the regu-
larity assumption on the kernels (Assumption 2.1) yields that condition (2.3) is ful�lled.
Thus, performing similar estimations as in the proof of Lemma 2.7 and using the just
established Lq-bound of Xm, we obtain

E[|Xm(t′)−Xm(t)|q] ≤ C|t′ − t|βq,

for β ∈ (0, γ). Hence, by Kolmogorov�Chentsov's theorem (see e.g. [Kle14, Theo-
rem 21.6]), there exists a modi�cation of (Xm(t))t∈[0,T ] which is δ′-Hölder continuous for
δ′ ∈ (0, β − 1/q). Sending β → γ and q → ∞ leads to the claimed Hölder regularity.
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Due to Proposition 2.16, for everym ∈ N the process (Xm(t))t∈[0,T ] has a continuous modi-
�cation. Hence, keeping the de�nition of (Xm(t))t∈[0,T ] in mind, we see that (Xm(t))t∈[0,T ]

ful�lls the integral equation

Xm(t) = x0(t)+

∫ t

0
Kµ(s, t)µ(s,X

m(κm(s))) ds+

∫ t

0
Kσ(s, t)σ(s,X

m(κm(s))) dBs, (2.6)

for t ∈ [0, T ]. Moreover, using the just derived regularity estimates of (Xm(t))t∈[0,T ], we
obtain the following bound.

Corollary 2.17. Suppose Assumptions 2.1 and 2.2. Then, for any q, δ ∈ (0,∞), there is
a constant C > 0 such that

E

[(∫ T

0
|Xm(s)−Xm(κm(s))|δ ds

)q
]
≤ C2−δqβm5

,

holds for all β ∈ (0, γ) and m ∈ N.

Proof. Let δ > 0 be �xed. First, assume q ≥ 1 is su�ciently large such that qδ > 2. For
β ∈ (0, γ) and m ∈ N, we use Hölder's inequality, Fubini's theorem and Proposition 2.16
to get

E
[(∫ T

0
|Xm(s)−Xm(κm(s))|δ ds

)q]
≤ CE

[ ∫ T

0
|Xm(s)−Xm(κm(s))|δq ds

]
= C

∫ T

0
E
[
|Xm(s)−Xm(κm(s))|δq

]
ds

≤ C

∫ T

0
|s− κm(s)|δqβ ds

≤ C2−δqβm5
. (2.7)

For 0 < q ≤ 2
δ , we choose q

′ > q is su�ciently large such that q′δ > 2. Applying Jensen's
inequality and (2.7), we obtain

E
[(∫ T

0
|Xm(s)−Xm(κm(s))|δ ds

)q]
≤ CE

[(∫ T

0
|Xm(s)−Xm(κm(s))|δ ds

)q′] q
q′

≤ C2−δqβm5
.

Lemma 2.18. Suppose Assumptions 2.1 and 2.2. Then, there is a sequence (Cm)m∈N of
constants such that

E[|Xm+1(t)−Xm(t)|] ≤ Cm

holds for every t ∈ [0, T ], and
∑∞

m=1C
1/4
m <∞.
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2. SVEs with regular kernels

Proof. Following Gyöngy�Rásonyi [GR11] and Yamada�Watanabe [YW71], we approxi-
mate the function ϕ(x) := |x| by smooth functions ϕδε(x) for δ > 1 and ε > 0. To that
end, note that ∫ ε

ε
δ

1

x
dx = ln(δ),

and, thus, there is a continuous, non-negative function ψδε : R+ → R+, that is zero outside
the interval [ εδ , ε],

∫∞
0 ψδε(x) dx = 1 and satis�es

ψδε(x) ≤
2

x ln(δ)
.

We de�ne

ϕδε(x) :=

∫ |x|

0

∫ y

0
ψδε(z) dz dy for x ∈ R,

such that the inequalities

|x| ≤ ϕδε(x) + ε, 0 ≤ |ϕ′δε(x)| ≤ 1 and ϕ′′δε(x) = ψδε(|x|) ≤
2

|x| ln(δ)
1[ ε

δ
,ε](|x|) (2.8)

hold for all x ∈ R, where 1[ ε
δ
,ε] denotes the indicator function of the interval [ εδ , ε].

To apply Itô's formula to ϕδε(X̃m
t ), where

X̃m
t := Xm+1(t)−Xm(t), t ∈ [0, T ],

we need to �nd the semimartingale decomposition of (X̃m
t )t∈[0,T ]. For this purpose, we

introduce the local martingale

Ỹ m
t := Y m+1

t − Y m
t with Y m

t :=

∫ t

0
σ(s,Xm(κm(s))) dBs

and the process of �nite variation

Z̃m
t :=

∫ t

0
µ(s,Xm+1(κm+1(s))) ds−

∫ t

0
µ(s,Xm(κm(s))) ds, for t ∈ [0, T ].

Since ∂2Kµ ∈ L1(∆T ), ∂2Kσ ∈ L2(∆T ) (see Assumption 2.1) and the integrability prop-
erty of (Xm(t))∈[0,T ] as presented in Proposition 2.16, we obtain, as in the proof of
Lemma 2.12, the following semimartingale decomposition

X̃m
t =

∫ t

0
Kµ(s, t) dZ̃

m
s +

∫ t

0
Kσ(s, t) dỸ

m
s

=

∫ t

0
Kµ(s, s) dZ̃

m
s +

∫ t

0

(∫ s

0
∂2Kµ(u, s) dZ̃

m
u

)
ds

+

∫ t

0
H̃m

s ds+

∫ t

0
Kσ(s, s) dỸ

m
s ,
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where H̃m
t := Hm+1

t − Hm
t with Hm

t :=
∫ t
0 ∂2Kσ(s, t) dY

m
s . Note that the quadratic

variation of (X̃m
t )t∈[0,T ] is given by

⟨X̃m⟩t =
〈∫ ·

0
Kσ(s, s)

(
σ(s,Xm+1

(
κm+1(s))

)
− σ

(
s,Xm(κm(s))

))
dBs

〉
t

=

∫ t

0
Kσ(s, s)

2
(
σ
(
s,Xm+1(κm+1(s))

)
− σ

(
s,Xm(κm(s))

))2
ds, t ∈ [0, T ].

Hence, using (2.8) and applying Itô's formula for �xed ε > 0 and δ > 1 yields

|X̃m
t | ≤ ε+ ϕδε(X̃

m
t )

= ε+

∫ t

0
ϕ′δε(X̃

m
s ) dX̃m

s +
1

2

∫ t

0
ϕ′′δε(X̃

m
s ) d⟨X̃m⟩s

= ε+

∫ t

0
ϕ′δε(X̃

m
s )Kµ(s, s) dZ̃

m
s +

∫ t

0
ϕ′δε(X̃

m
s )

(∫ s

0
∂2Kµ(u, s) dZ̃

m
u

)
ds

+

∫ t

0
ϕ′δε(X̃

m
s )H̃m

s ds+

∫ t

0
ϕ′δε(X̃

m
s )Kσ(s, s) dỸ

m
s

+
1

2

∫ t

0
ϕ′′δε(X̃

m
s )Kσ(s, s)

2
(
σ
(
s,Xm+1(κm+1(s))

)
− σ

(
s,Xm(κm(s))

))2
ds

=: ε+ Iδε1,t + Iδε2,t + Iδε3,t + Iδε4,t + Iδε5,t, (2.9)

for t ∈ [0, T ].
In order to bound E[|X̃m

t |], we shall estimate the �ve terms appearing in (2.9) separately.
We set

Um
t := |Xm(t)−Xm(κm(t))|, t ∈ [0, T ].

For Iδε1,t, we use the boundedness of Kµ (Assumption 2.1), the Lipschitz continuity of µ
(Assumption 2.2 (ii)) and the bound ∥ϕ′δε∥∞ ≤ 1 to estimate

E[Iδε1,t] = E
[ ∫ t

0
ϕ′δε(X̃

m
s )Kµ(s, s)

(
µ
(
s,Xm+1(κm+1(s))

)
− µ

(
s,Xm(κm(s))

))
ds

]
≤ CE

[ ∫ t

0

(
|X̃m

s |+ Um
s + Um+1

s

)
ds

]
.

Since, by Corollary 2.17,

E
[ ∫ t

0
(Um

s + Um+1
s ) ds

]
≤ C2−βm5

for any β ∈ (0, γ), we get

E[Iδε1,t] ≤ C

(
2−βm5

+

∫ t

0
E
[
|X̃m

s |
]
ds

)
. (2.10)
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2. SVEs with regular kernels

For Iδε2,t, using the boundedness of ∂2Kµ(u, s) on ∆T (Assumption 2.1), the Lipschitz
continuity of µ (Assumption 2.2 (ii)) and the bound ∥ϕ′δε∥∞ ≤ 1, we obtain

E[Iδε2,t]

= E
[ ∫ t

0
ϕ′δε(X̃

m
s )

(∫ s

0
∂2Kµ(u, s)

(
µ
(
u,Xm+1(κm+1(u))

)
− µ

(
u,Xm(κm(u))

))
du

)
ds

]
≤ CE

[ ∫ t

0

(
|X̃m

s |+ Um
s + Um+1

s

)
ds

]
.

Hence, as for Iδε1,t, we arrive at

E[Iδε2,t] ≤ C

(
2−βm5

+

∫ t

0
E
[
|X̃m

s |
]
ds

)
. (2.11)

For Iδε3,t, we have

E[Iδε3,t] = E
[ ∫ t

0
ϕ′δε(X̃

m
s )H̃m

s ds

]
.

Noting that an application of the integration by parts formula for semimartingales (cf.
[RW00, Theorem (VI).38.3]) gives

H̃m
s =

∫ s

0
∂2Kσ(u, s) dỸ

m
u = ∂2Kσ(s, s)Ỹ

m
s −

∫ s

0
Ỹ m
u ∂21Kσ(u, s) du,

we use ∥ϕ′δε∥∞ ≤ 1 and the classical Fubini theorem to get

E[Iδε3,t] ≤
∫ t

0
E[|H̃m

s |] ds

≤
∫ t

0
|∂2Kσ(s, s)|E[|Ỹ m

s |] ds+
∫ t

0

∫ s

0
|∂21Kσ(u, s)|E[|Ỹ m

u |] duds

≤
∫ t

0
E[|Ỹ m

s |]
(
|∂2Kσ(s, s)|+

∫ t

s
|∂21Kσ(s, u)| du

)
ds. (2.12)

For Iδε4,t, we get

E[Iδε4,t]

= E
[∫ t

0
ϕ′δε(X̃

m
s )Kσ(s, s)

(
σ
(
s,Xm+1(κm+1(s))

)
− σ

(
s,Xm(κm(s))

))
dBs

]
= 0, (2.13)

since Iδε4,t is a martingale by [Pro92, p.73, Corollary 3], since E[⟨Iδε4,t⟩t] <∞ for all t ∈ [0, T ]
due to the boundedness of Kσ (Assumption 2.1), the growth bound on σ and Proposi-
tion 2.16.
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For Iδε5,t, using the boundedness of Kσ (Assumption 2.1), the Hölder continuity of σ (As-
sumption 2.2 (ii)) and the inequality (2.8), we get that

E[Iδε5,t] = E
[
1

2

∫ t

0
ϕ′′δε(X̃

m
s )Kσ(s, s)

2
(
σ
(
s,Xm+1(κm+1(s))

)
− σ

(
s,Xm(κm(s))

))2
ds

]
≤ CE

[ ∫ t

0
ϕ′′δε(X̃

m
s )

(
|X̃m(s)|+ Um

s + Um+1
s

)1+2ξ
ds

]
≤ CE

[ ∫ t

0
1[ ε

δ
,ε](|X̃m(s)|)

(
|X̃m(s)|+ Um

s + Um+1
s

)1+2ξ

|X̃m(s)| ln(δ)
ds

]
≤ C

(
ε2ξ

ln(δ)
+

δ

ε ln(δ)
E
[ ∫ t

0

(
Um
s + Um+1

s

)1+2ξ
ds

])
. (2.14)

Moreover, by Corollary 2.17, we derive that

E
[ ∫ t

0

(
Um
s + Um+1

s

)1+2ξ
ds

]
≤ C2−(1+2ξ)βm5

for any β ∈ (0, γ) and, hence, we conclude

E[Iδε5,t] ≤ C

(
ε2ξ

ln(δ)
+

δ

ε ln(δ)
2−(1+2ξ)βm5

)
. (2.15)

Combining (2.9) with the �ve estimates (2.10), (2.11), (2.12), (2.13) and (2.15), we end
up with

E[|X̃m
t |] ≤ C

(
2−βm5

+
ε2ξ

ln(δ)
+

δ

ε ln(δ)
2−(1+2ξ)βm5

+

∫ t

0
E[|X̃m

s |] ds

+

∫ t

0
E[|Ỹ m

s |]
(
|∂2Kσ(s, s)|+

∫ t

s
|∂21Kσ(s, u)| du

)
ds

)
.

Therefore, choosing δ := 2ρm
5
for ρ ∈ (0, ((1 + 2ξ)β)/2] and ε := 2−

(1+2ξ)β
2

m5
, we get

E[|X̃m
t |] ≤ C

(
Cm +

∫ t

0
E[|X̃m

s |] ds

+

∫ t

0
E[|Ỹ m

s |]
(
|∂2Kσ(s, s)|+

∫ t

s
|∂21Kσ(s, u)| du

)
ds

)
, (2.16)

with
Cm := 2−βm5

+m−52−(1+2ξ)βξm5
+m−52−(

(1+2ξ)β
2

−ρ)m5
. (2.17)

To apply a Grönwall lemma, we set

Mm(t) := sup
s∈[0,t]

(
E[|X̃m

s |] + E[|Ỹ m
s |]

)
, t ∈ [0, T ],
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2. SVEs with regular kernels

and derive in the following an inequality of the form Mm(t) ≤ Cm +
∫ t
0 f(t− s)Mm(s) ds

for a suitable function f .
To get a bound for E[|Ỹ m

t |], we �rst apply the integration by part formula to obtain

X̃m
t =

∫ t

0
Kµ(s, t)

(
µ
(
s,Xm+1(κm+1(s))

)
− µ

(
s,Xm

s (κm(s))
))

ds+

∫ t

0
Kσ(s, t) dỸ

m
s

=

∫ t

0
Kµ(s, t)

(
µ
(
s,Xm+1(κm+1(s))

)
− µ

(
s,Xm

s (κm(s))
))

ds

+Kσ(t, t)Ỹ
m
t −

∫ t

0
∂1Kσ(s, t)Ỹ

m
s ds,

where we used thatKσ(·, t) is absolutely continuous for every t ∈ [0, T ]. SinceKσ(t, t) > C
for some constant C > 0, Kµ is bounded (both by Assumption 2.1) and µ is Lipschitz
continuous (Assumption 2.2), we get

E[|Ỹ m
t |] ≤CE

[
|X̃m

t |+
∫ t

0
|Kµ(s, t)|

∣∣∣µ(s,Xm+1(κm+1(s))
)
− µ

(
s,Xm

s (κm(s))
)∣∣∣ ds

+

∫ t

0
|∂1Kσ(s, t)||Ỹ m

s |ds
]

≤C
(
E[|X̃m

t |] +
∫ t

0
E
[
|X̃m

s

∣∣] ds+ E
[ ∫ t

0
(Um

s + Um+1
s ) ds

]
+

∫ t

0
|∂1Kσ(s, t)|E[|Ỹ m

s |] ds
)

≤C
(
2−βm5

+ E[|X̃m
t |] +

∫ t

0
E
[
|X̃m

s

∣∣] ds+ ∫ t

0
|∂1Kσ(s, t)|E[|Ỹ m

s |] ds
)
,

where we used Corollary 2.17 for the last estimate. Hence, by (2.16) we obtain

E[|Ỹ m
t |] ≤ C

(
Cm +

∫ t

0
E[|X̃m

s |] ds

+

∫ t

0
E[|Ỹ m

s |]
(
|∂1Kσ(s, t)|+ |∂2Kσ(s, s)|+

∫ t

s
|∂21Kσ(s, u)|du

)
ds

)
. (2.18)

By the bound on the partial derivatives of Kσ made in Assumption 2.1, (2.16) and (2.18)
can be further estimated to

E[|X̃m
t |] ≤ C

(
Cm +

∫ t

0
E[|X̃m

s |] ds+
∫ t

0
(t− s)−α E[|Ỹ m

s |] ds
)
,

E[|Ỹ m
t |] ≤ C

(
Cm +

∫ t

0
E[|X̃m

s |] ds+
∫ t

0
(t− s)−α E[|Ỹ m

s |] ds
)
,
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for α ∈ [0, 12) as given in Assumption 2.1. Hence, we arrive at

Mm(t) ≤ sup
s∈[0,t]

E[|X̃m
t |] + sup

s∈[0,t]
E[|Ỹ m

t |]

≤ C

(
Cm +

∫ t

0

(
1 + (t− s)−α

)
Mm(s) ds

)
.

Note that Proposition 2.16 secures the integrability of Mm. An application of the Grön-
wall's lemma for weak singularities (see e.g. [Kru14, Lemma A.2]) reveals that Mm(t) ≤
CCm. The claimed summability of the sequence (Cm)m∈N follows immediately by (2.17).

Remark 2.19. The approximation ϕδε of the absolute value, as used in the proof of The-
orem 2.14, was introduced by Gyöngy and Rásonyi [GR11]. It is a modi�cation of the
approximation originally used by Yamada and Watanabe [YW71] and appears to be more
involved. While the original approximation of Yamada and Watanabe is su�cient to prove
pathwise uniqueness, as we will also see in Section 2.4, to prove the existence of a solution
the approximation ϕδε seems necessary. Indeed, one needs ε→ 0 to ensure that ϕδε → | · |
but the second parameter δ is essential to obtain the convergence of the Euler type approx-
imation (Xm)m∈N in the case ξ = 0 (i.e. σ is 1/2-Hölder continuous), as one can see
from (2.16) and (2.17),

With these preparation at hand we are ready to prove Theorem 2.14.

Proof of Theorem 2.14. Step 1: The sequence (Xm)m∈N is a Cauchy sequence in Lp(Ω×
[0, T ]) for p given in the statement of Theorem 2.14.
By Fubini's theorem and Lemma 2.18, there exists a sequence (Cm)m∈N such that

E
[ ∫ T

0

∣∣Xm+1(s)−Xm(s)
∣∣ ds] ≤ C sup

s∈[0,T ]
E
[
|Xm+1(s)−Xm(s)|

]
≤ Cm

for m ∈ N. Hence, using Hölder's inequality and the moment bound for (Xm(t))t∈[0,T ]

from Proposition 2.16, we get

E
[ ∫ T

0
|Xm+1(t)−Xm(t)|p dt

]
≤ E

[ ∫ T

0
|Xm+1(t)−Xm(t)|2p−1 dt

] 1
2

E
[ ∫ T

0
|Xm+1(t)−Xm(t)|dt

] 1
2

≤ 2p−1

(
1 + sup

t∈[0,T ]
|x0(t)|2p−1

) 1
2

C
1
2
m.

Due to the summability property of (Cm)m∈N, the sequence (Xm)m∈N is a Cauchy sequence
in Lp(Ω× [0, T ]). Hence, there exists a process X = (Xt)t∈[0,T ] ∈ Lp(Ω× [0, T ]), such that

lim
m→∞

E
[∫ T

0
|Xm(s)−Xs|p ds

]
= 0. (2.19)
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2. SVEs with regular kernels

Step 2: (Xt)t∈[0,T ] yields a strong solution to the SVE (2.2)
By construction, the processes (Xm(t))t∈[0,T ] are (Ft)t∈[0,T ]-progressively measurable on
the given probability space (Ω,F , (Ft)t∈[0,T ],P). Since (2.19) also shows the Lp([0, t]×Ω)-
convergence of (Xm

s )s∈[0,t] to (Xs)s∈[0,t] for every t ∈ [0, T ], the completeness of the Lp

spaces (see e.g. [Kle14, Theorem 7.3]) yields B([0, t])⊗Ft-measurability of (s, ω) 7→ Xs(ω),
(s, ω) ∈ [0, t] × Ω for every t ∈ [0, T ]. Hence, the process (Xt)t∈[0,T ] is also (Ft)t∈[0,T ]-
progressively measurable on (Ω,F , (Ft)t∈[0,T ],P). Moreover, by the growth conditions on
µ and σ (see Assumption 2.2 (i)) and the integrability properties of Kµ and Kσ, we get
that ∫ t

0
(|Kµ(s, t)µ(s,Xs)|+ |Kσ(s, t)σ(s,Xs)|2) ds <∞ for all t ∈ [0, T ].

It remains to show that the process (Xt)t∈[0,T ] ful�lls the SVE (2.2). To that end, we show
that the two integrals in (2.6) preserve the Lp(Ω× [0, T ])-convergence. For the Riemann�
Stieltjes integral, we use the boundedness of Kµ, the Lipschitz continuity of µ, Hölder's
inequality and Fubini's theorem to obtain

E
[∫ T

0

∣∣∣ ∫ t

0
Kµ(s, t) (µ(s,X

m(κm(s)))− µ(s,Xs)) ds
∣∣∣p dt]

≤ C

∫ T

0

∫ T

0
E [|Xm(κm(s))−Xs|p] dsdt

≤ C

(
E
[ ∫ T

0
|Xm(κm(s))−Xm(s)|p ds

]
+ E

[ ∫ T

0
|Xm(s)−Xs|p ds

])
→ 0,

as m→ ∞ by Corollary 2.17 and (2.19). For the stochastic integral, we use Fubini's the-
orem, Burkholder�Davis�Gundy's inequality, Hölder's inequality, the boundedness of Kσ,
and the Hölder regularity of σ to get that

E
[∫ T

0

∣∣∣∣∫ t

0
Kσ(s, t) (σ(s,X

m(κm(s)))− σ(s,Xs)) dBs

∣∣∣∣p dt

]
=

∫ T

0
E
[∣∣ ∫ t

0
Kσ(s, t) (σ(s,X

m(κm(s)))− σ(s,Xs)) dBs

∣∣p]dt
≤

∫ T

0
E
[ ∫ t

0
Kσ(s, t)

2 (σ(s,Xm(κm(s)))− σ(s,Xs))
2 ds

] p
2

dt

≤ C

(∫ T

0

∫ T

0
E[|Xm(κm(s))−Xs|

p
2
+pξ] ds dt

)
≤ C

(
E
[ ∫ T

0
|Xm(κm(s))−Xm(s)|

p
2
+pξ ds

]
+ E

[ ∫ T

0
|Xm(s)−Xs|

p
2
+pξ ds

])
.

Thus, by Corollary 2.17 and the convergence Xm → X in L
p
2
+pξ(Ω× [0, T ]) as m→ ∞, for

ξ ∈ [0, 12 ], which is implied by the one in Lp(Ω× [0, T ]), we see that the stochastic integral
does preserve the Lp(Ω × [0, T ])-convergence. Thus, we have proven that the limiting
process (Xt)t∈[0,T ] ful�lls the SVE (2.2) for almost all (t, ω) ∈ [0, T ]×Ω. By Remark 2.8,
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(Xt)t∈[0,T ] has an P-a.s. continuous version, which ful�lls the SVE (2.2) for all t ∈ [0, T ]
for almost all ω ∈ Ω, and hence, is a strong solution of (2.2).

2.4 Pathwise uniqueness

In this section we establish the pathwise uniqueness for the stochastic Volterra equa-
tion (2.2) under Assumptions 2.1, 2.2 (i), and under slightly weaker regularity assump-
tions on µ and σ than Assumption 2.2 (ii), namely an Osgood-type condition on µ and
the Yamada�Watanabe condition on σ, as formulated in the next assumption.

Assumption 2.20. Let µ, σ : [0, T ]× R → R be measurable functions such that:

(i) there is some continuous, non-decreasing and concave function κ : [0,∞) → [0,∞)
with κ(0) = 0 and κ(x) > 0 for x > 0, such that, with the notation κ̃(x) := κ(x)+|x|,∫ ε

0

dx(
κ̃( q

√
x)
)q = ∞,

holds for all ε > 0 and q ∈ ( 1
1−α ,

1
1−α + ε̃) for some ε̃ > 0, where α ∈ [0, 12) is given

by Assumption 2.1 (ii), and

|µ(t, x)− µ(t, y)| ≤ κ(|x− y|),

for all t ∈ [0, T ], x, y ∈ R,

(ii) there is some continuous strictly increasing function ρ : [0,∞) → [0,∞) with ρ(0) = 0
and ρ(x) > 0 for x > 0, such that ∫ ε

0

dx

ρ(x)2
= ∞,

holds for all ε > 0, and

|σ(t, x)− σ(t, y)| ≤ ρ(|x− y|),

for all t ∈ [0, T ], x, y ∈ R.

Remark 2.21. Choosing κ(x) = Cµ|x| and ρ(x) = Cσ|x|
1
2
+ξ shows that Assumption 2.2 (ii)

implies Assumption 2.20. We note that if µ is assumed to be Lipschitz continuous and σ to
ful�ll the Yamada�Watanabe condition, it is su�cient to use a fractional Grönwall lemma
like the one in [Kru14, Lemma A.2] instead of the fractional Bihari inequality in (2.31).
Moreover, if one considers Kσ = 1, the Osgood-type condition in Assumption 2.20 (i) can
be replaced by the classical Osgood condition for SDEs (see e.g. [KS91, Chapter 5, Re-
mark 2.16]) since one can then use the classical instead of the fractional Bihari inequality
and the application of integration by parts to the stochastic integral is not required.
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2. SVEs with regular kernels

The main result of this section reads as follows.

Theorem 2.22. Suppose Assumptions 2.1, 2.2 (i) and 2.20. Then, pathwise uniqueness
holds for the stochastic Volterra equation (2.2).

Proof. Since the proof relies partly on similar techniques as the proof of Lemma 2.18, we
try to give a condense presentation and refer to the analogue calculation in Section 2.3.
Let (X1

t )t∈[0,T ] and (X2
t )t∈[0,T ] be solutions to the SVE (2.2). Analogously to Section 2.3,

we de�ne Y i
t :=

∫ t
0 σ(s,X

i
s) dBs and H i

t :=
∫ t
0 ∂2Kσ(s, t) dY

i
s , for i = 1, 2, as well as

Ỹt := Y 1
t − Y 2

t , X̃t := X1
t −X2

t , H̃t := H1
t −H2

t , and Z̃t :=
∫ t
0

(
µ(s,X1

s ) − µ(s,X2
s )
)
ds,

for t ∈ [0, T ]. By Lemma 2.12, we obtain the semimartingale decomposition

X̃t =

∫ t

0
Kµ(s, s)(µ(s,X

1
s )− µ(s,X2

s )) ds+

∫ t

0

∫ s

0
∂2Kµ(u, s) dZ̃u ds

+

∫ t

0
H̃s ds+

∫ t

0
Kσ(s, s) dỸs, t ∈ [0, T ]. (2.20)

To construct an approximation of the absolute value by smooth functions allowing us to
apply Itô's formula, we use the classical approximation of Yamada�Watanabe [YW71]
for simplicity, cf. Remark 2.19. Based on the strictly increasing function ρ from As-
sumption 2.20 (ii), we de�ne a sequence (ϕn)n∈N of functions mapping from R to R that
approximates the absolute value in the following way: Let (an)n∈N be a strictly decreasing
sequence with a0 = 1 such that an → 0 as n→ ∞ and∫ an−1

an

1

ρ(x)2
dx = n.

Furthermore, we de�ne a sequence of molli�ers: let (ψn)n∈N ∈ C∞
0 (R) be smooth functions

with compact support such that supp(ψn) ⊂ (an, an−1), and with the properties

0 ≤ ψn(x) ≤
2

nρ(x)2
, ∀x ∈ R, and

∫ an−1

an

ψn(x) dx = 1. (2.21)

We set

ϕn(x) :=

∫ |x|

0

(∫ y

0
ψn(z) dz

)
dy, x ∈ R.

By (2.21) and the compact support of ψn, it follows that ϕn(·) → |· | uniformly as n→ ∞.
Since every ψn and, thus, every ϕn is zero in a neighborhood around zero, the functions ϕn
are smooth with

∥ϕ′n∥∞ ≤ 1, ϕ′n(x) = sgn(x)
∫ |x|

0
ψn(y) dy, and ϕ′′n(x) = ψn(|x|) for x ∈ R.

Since the quadratic variation of the semimartingale (X̃t)t∈[0,T ] is given by

⟨X̃⟩t =
∫ t

0
Kσ(s, s)

2
(
σ(s,X1

s )− σ(s,X2
s )
)2

ds, t ∈ [0, T ],

33



we get, by applying Itô's formula and using the semimartingale decomposition (2.20), that

ϕn(X̃t) =

∫ t

0
ϕ′n(X̃s) dX̃s +

1

2

∫ t

0
ϕ′′n(X̃s) d⟨X̃⟩s

=

∫ t

0
ϕ′n(X̃s)Kµ(s, s)(µ(s,X

1
s )− µ(s,X2

s )) ds+

∫ t

0
ϕ′n(X̃s)

(∫ s

0
∂2Kµ(u, s) dZ̃u

)
ds

+

∫ t

0
ϕ′n(X̃s)H̃s ds+

∫ t

0
ϕ′n(X̃s)Kσ(s, s) dỸs

+
1

2

∫ t

0
ϕ′′n(X̃s)Kσ(s, s)

2
(
σ(s,X1

s )− σ(s,X2
s )
)2

ds

=:In1,t + In2,t + In3,t + In4,t + In5,t (2.22)

for t ∈ [0, T ].
For In1,t, we use Assumption 2.20 (i), the boundedness of Kµ (Assumption 2.1), the bound
∥ϕ′n∥∞ ≤ 1 and Jensen's inequality to estimate

E[In1,t] ≤ C

∫ t

0
E[κ(|X̃s|)] ds ≤ C

∫ t

0
κ(E[|X̃s|]) ds. (2.23)

For In2,t, we additionally use the boundedness of ∂2Kµ(u, s) on ∆T to obtain

E[In2,t] ≤ C

∫ t

0
κ(E[|X̃s|]) ds. (2.24)

For In3,t, similarly to (2.12), we use the integration by parts formula to estimate

E[In3,t] ≤
∫ t

0
E[|H̃s|] ds

≤
∫ t

0
|∂2Kσ(s, s)|E[|Ỹs|] ds+

∫ t

0

∫ s

0
|∂21Kσ(u, s)|E[|Ỹu|] du ds

≤
∫ t

0
E[|Ỹs|]

(
∂2Kσ(s, s) +

∫ t

s
|∂21Kσ(s, u)|du

)
ds. (2.25)

For In4,t, since I
n
4,t is a martingale by [Pro92, p.73, Corollary 3] due to the boundedness of

Kσ, the growth bound on σ and Lemma 2.10, we get

E[In4,t] = E
[∫ t

0
ϕ′n(X̃s)Kσ(s, s)(σ(s,X

1
s )− σ(s,X2

s )) dBs

]
= 0, (2.26)

For In5,t, we get by using the boundedness of Kσ (Assumption 2.1), the regularity of σ
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2. SVEs with regular kernels

from Assumption 2.20 (ii), and the inequality (2.21) that

E[In5,t] ≤ CE
[ ∫ t

0
ϕ′′n(X̃s)ρ(|X̃s|)2 ds

]
≤ CE

[ ∫ t

0

2

nρ(|X̃s|)2
ρ(|X̃s|)2 ds

]
≤ C

n
, (2.27)

for some C > 0.
Finally, sending n → ∞ and combining the �ve previous estimates (2.23), (2.24), (2.25),
(2.26) and (2.27) with (2.22) implies

E[|X̃t|] ≤ C

∫ t

0
κ(E[|X̃s|]) ds+

∫ t

0
E[|Ỹs|]

(
∂2Kσ(s, s) +

∫ t

s
|∂21Kσ(s, u)| du

)
ds. (2.28)

To apply a Grönwall lemma, we set

M(t) := sup
s∈[0,t]

(
E[|X̃s|] + E[|Ỹs|]

)
, t ∈ [0, T ],

and derive in the following an inequality of the form M(t) ≤
∫ t
0 f(t − s)κ̃(M(s)) ds for

suitable functions f and κ̃. To �nd a bound for E[|Ỹt|], we apply the integration by part
formula to obtain

X̃t =

∫ t

0
Kµ(s, t)(µ(s,X

1
s )− µ(s,X2

s )) ds+

∫ t

0
Kσ(s, t) dỸs

=

∫ t

0
Kµ(s, t)(µ(s,X

1
s )− µ(s,X2

s )) ds+Kσ(t, t)Ỹt −
∫ t

0
∂1Kσ(s, t)Ỹs ds (2.29)

keeping in mind that that Kσ(·, t) is absolutely continuous for every t ∈ [0, T ]. Due to
|Kσ(t, t)| > C for some constant C > 0, we can rearrange (2.29) and use (2.28) to get

E
[
|Ỹt|

]
≤C

(∫ t

0
E
[
|µ(s,X1

s )− µ(s,X2
s )|

]
ds

+ E
[
|X̃t|

]
+

∫ t

0
|∂1Kσ(s, t)|E

[
|Ỹs|

]
ds

)
≤C

(∫ t

0

(
E
[
|X̃s|

]
+ κ(E

[
|X̃s|

]
)
)
ds

+

∫ t

0
E
[
|Ỹs|

](
|∂1Kσ(s, t)|+ |∂2Kσ(s, s)|+

∫ t

s
|∂21Kσ(s, u)| du

)
ds

)
. (2.30)
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Using Assumption 2.1 to bound the partial derivative terms in (2.28) and (2.30), we end
up with

M(t) ≤ sup
s∈[0,t]

E[|X̃t|] + sup
s∈[0,t]

E[|Ỹt|]

≤ C

(∫ t

0

(
sup

u∈[0,s]
E[|X̃u|] + κ

(
sup

u∈[0,s]
E[|X̃u|]

))
ds+

∫ t

0
(t− s)−α sup

u∈[0,s]
E[|Ỹu|] ds

)
≤ C

∫ t

0
(t− s)−ακ̃(M(s)) ds, (2.31)

where κ̃(x) := κ(x) + |x|. An application of the fractional Bihari inequality, [OHNO21,
Theorem 2.3], with sending q → 1

1−α like in [OHNO21, proof of Theorem 3.1, Step 1]
with the condition on κ̃ in Assumption 2.20 (i) that M(t) = 0 holds. Hence, X̃t = 0
almost surely, and, thus, by the continuity of the solutions, the processes (X1

t )t∈[0,T ] and
(X2

t )t∈[0,T ] are indistinguishable.
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Chapter 3

Weak existence of solutions

The content of this chapter is published in [PS23c].

Introduction

We investigate the existence of weak solutions to stochastic Volterra equation (SVEs)

Xt = x0(t) +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (3.1)

where x0 is a continuous function, B is a Brownian motion, and the kernels Kµ,Kσ

are measurable functions. The time-inhomogeneous coe�cients µ, σ are only supposed
to be continuous in space uniformly in time. In case of ordinary stochastic di�erential
equations (SDEs), i.e. Kσ = Kµ = 1, the existence of weak solutions was �rst proven
by Skorokhod [Sko61] and can, nowadays, be found in di�erent generality in standard
textbooks like [SV79, KS91].
A comprehensive study of weak solutions to stochastic Volterra equations which addi-
tionally allow for jumps was recently initiated by Abi Jaber, Cuchiero, Larsson and
Pulido [AJCLP21], see also [MS15]. The extension of the theory of weak solutions from or-
dinary stochastic di�erential equations to SVEs constitutes a natural generalization of the
classical theory and is motivated by successful applications of SVEs with non-Lipschitz
coe�cients as volatility models in mathematical �nance, see e.g. [EER19, AJEE19b].
Assuming that the kernels in the SVE (3.1) are of convolution type, i.e. Kµ(s, t) =
Kσ(s, t) = K(t − s) for some function K : R → R, and that the coe�cients µ, σ are con-
tinuous jointly in space-time, the existence of weak solutions was derived in [AJCLP21],
see also [MS15, AJLP19, AJ21]. To that end, Abi Jaber et al. [AJCLP21] introduces a
local martingale problem associated to SVEs of convolutional type.
In this chapter, we establish a local martingale problem associated to general stochastic
Volterra equations, see De�nition 3.4, and show that its solvability is equivalent to the
existence of a weak solution to the associated SVE, see Lemma 3.7. Using this newly for-
mulated Volterra local martingale problem, we obtain the existence of weak solutions to
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stochastic Volterra equations with time-inhomogeneous coe�cients, that are not necessar-
ily continuous in t, and allowing for general kernels in the drift and convolutional kernels
as well as bounded general kernels in the di�usion term, see Theorem 3.10. The presented
approach can be considered, roughly speaking, as a generalization of Skorokhod's original
construction to the more general case of SVEs, and is developed in a one-dimensional set-
ting to keep the presentation fairly short without cumbersome notation. However, as for
ordinary SDEs and for SVEs of convolutional type, all concepts and results are expected
to extend to a multi-dimensional setting in a straightforward manner.

Organization of the chapter: In Section 3.1 we introduce a local martingale problem
associated to SVEs. The existence of weak solutions to SVEs is provided in Section 3.2.

3.1 Weak solutions and the Volterra local martingale prob-

lem

Let (Ω,F , (Ft)t∈[0,T ],P) be a �ltered probability space, which satis�es the usual conditions.
For T ∈ (0,∞) we consider the one-dimensional stochastic Volterra equation

Xt = x0(t) +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (3.2)

where x0 : [0, T ] → R is a continuous function, (Bt)t∈[0,T ] is a Brownian motion, and
the coe�cients µ, σ : [0, T ] × R → R and the kernels Kµ,Kσ : ∆T → R are measurable
functions, using the notation ∆T := {(s, t) ∈ [0, T ]× [0, T ] : 0 ≤ s ≤ t ≤ T}. The integral∫ t
0 Kµ(s, t)µ(s,Xs) ds is de�ned as a Lebesque integral and

∫ t
0 Kσ(s, t)σ(s,Xs) dBs as an

Itô integral. Moreover, for p ∈ [1,∞) we write Lp(Ω× [0, T ]) and Lp([0, T ]) for the space
of p-integrable functions on Ω× [0, T ] and on [0, T ], respectively.

Analogous to the notion of weak solutions to ordinary stochastic di�erential equations (see
e.g. [KS91, Chapter 5.3, De�nition 3.1], we make the following de�nition.

De�nition 3.1. A weak solution to (3.2) is a triple (X,B), (Ω,F ,P), (Ft)t∈[0,T ] such
that

(i) (Ω,F ,P) is a probability space, (Ft)t∈[0,T ] is a �ltration of sub-σ-algebras of F sat-
isfying the usual conditions,

(ii) X = (Xt)t∈[0,T ] ∈ L1(Ω × [0, T ]) is an (Ft)-progressively measurable process, B =
(Bt)t∈[0,T ] is a Brownian motion w.r.t. (Ft)t∈[0,T ],

(iii)
∫ t
0

(
|Kµ(s, t)µ(s,Xs)|+ |Kσ(s, t)σ(s,Xs)|2

)
ds <∞ P-a.s. for any t ∈ [0, T ], and

(iv) (3.2) holds for (X,B) on (Ω,F ,P), P-a.s.
Under suitable assumptions on the coe�cients and kernels, the existence of weak solutions
to the stochastic Volterra equation (3.2) can be equivalently formulated in terms of solu-
tions to an associated local martingale problem, see De�nition 3.4 below. To that end, we
make the following assumption.
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3. Weak existence of solutions

Assumption 3.2. Let Kµ,Kσ : ∆T → R be measurable functions with Kµ(·, t) ∈ L1([0, T ])
and Kσ(·, t) ∈ L2([0, T ]) for every t ∈ [0, T ], and let µ, σ : [0, T ] × R → R be measurable
functions ful�lling the linear growth condition

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|), t ∈ [0, T ], x ∈ R,

for some constant Cµ,σ > 0.

Let C2(R) be the space of twice continuously di�erentiable functions f : R → R and
C2
0 (R) be the space of all f ∈ C2(R) with compact support. For two stochastic processes

X = (Xt)t∈[0,T ] and Z = (Zt)t∈[0,T ] such that X ∈ L1(Ω × [0, T ]) is (Ft)-progressively
measurable and Z is (Ft)-adapted and continuous, we introduce the process (Mf

t )t∈[0,T ]

by

Mf
t := f(Zt)−

∫ t

0
Af (s,Xs, Zs) ds, t ∈ [0, T ], (3.3)

for f ∈ C2(R), where

Af : [0, T ]× R× R → R with Af (t, x, z) := µ(t, x)f ′(z) +
1

2
σ(t, x)2f ′′(z). (3.4)

As we shall see in the next proposition, assuming that (Mf
t )t∈[0,T ] is a local martingale

for all f ∈ C2
0 (R) implies that the stochastic process Z is a semimartingale.

Proposition 3.3. Suppose Assumption 3.2. Let (Xt)t∈[0,T ] be an (Ft)-progressively mea-
surable process in L1(Ω × [0, T ]) and (Zt)t∈[0,T ] be an (Ft)-adapted and continuous pro-
cess on a �ltered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions. If

(Mf
t )t∈[0,T ] is a local martingale for every f ∈ C2

0 (R), then we have:

(i) (Zt)t∈[0,T ] is a semimartingale with characteristics
( ∫ ·

0 µ(s,Xs) ds,
∫ ·
0 σ(s,Xs)

2 ds, 0
)
.

(ii) There exists a �ltered probability space (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃) satisfying the usual con-

ditions such that (Zt)t∈[0,T ] is a semimartingale on (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃) and

Zt =

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs, t ∈ [0, T ],

holds P̃-a.s., for some Brownian motion (Bt)t∈[0,T ] on (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃).

Proof. (i) By [JS03, Theorem II.2.42], in order to prove the assertion, it is su�cient to
show that (Mf

t )t∈[0,T ], de�ned in (3.3), is a local martingale for every bounded function
f ∈ C2(R).
Let f ∈ C2(R) be bounded and de�ne the hitting times

τn := inf
t∈[0,T ]

{max(|Xt|, |Zt|) ≥ n}, n ∈ N.
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Note that τn → T a.s. as n→ ∞ since X ∈ L1(Ω× [0, T ]) and Z is continuous. Since the
underlying �ltered probability space satis�es the usual conditions, by the Début theorem
(see [RY99, Chapter I, (4.15) Theorem]), the hitting times (τn)n∈N are stopping times. It
remains to show that (τn)n∈N is a localizing sequence for (Mf

t )t∈[0,T ]. To that end, we
approximate f by the functions (fn)n∈N ⊂ C2

0 (R) given by fn := ϕnf for some ϕn ∈ C2
0 (R)

taking values in [0, 1] and being identical to 1 on [−n, n]. Hence, (Mfn
t )t∈[0,T ] is a local

martingale for every n ∈ N and, thus, the stopped process (Mfn
t∧τn)t∈[0,T ], given by

Mfn
t∧τn = (fn)(Zt∧τn)−

∫ t∧τn

0
Afn(s,Xs, Zs) ds, t ∈ [0, T ],

is a martingale as
|Mfn

t∧τn | ≤ sup
x∈R

|f(x)|+ Cσ,µ,nn
2 <∞,

for some constant Cσ,µ,n > 0, using the de�nition of τn and the linear growth condition
on µ and σ. Since Mfn

t∧τn = Mf
t∧τn for t ∈ [0, T ], (Mf

t∧τn)t∈[0,T ] is a martingale for every
n ∈ N and, hence, (τn)n∈N a localizing sequence for (Mf

t )t∈[0,T ].
(ii) Since the process (Zt)t∈[0,T ] is a semimartingale with absolutely continuous character-
istics

( ∫ ·
0 µ(s,Xs) ds,

∫ ·
0 σ

2(s,Xs) ds, 0
)
, the assertion follow by [JP12, Theorem 2.1.2].

Keeping these preliminary considerations and the classical martingale problem (see e.g.
[KS14, De�nition 7.1.1]) in mind, we formulate a local martingale problem associated to
the stochastic Volterra equation (3.2).

De�nition 3.4. A solution to the Volterra local martingale problem given (x0, µ, σ,Kµ,Kσ)
is a triple (X,Z), (Ω,F ,P), (Ft)t∈[0,T ] such that

(i) (Ω,F ,P) is a probability space, (Ft)t∈[0,T ] is a �ltration of sub-σ-algebras of F sat-
isfying the usual conditions,

(ii) X = (Xt)t∈[0,T ] ∈ L1(Ω× [0, T ]) is an (Ft)-progressively measurable process,

(iii) (Zt)t∈[0,T ] is a continuous semimartingale with Z0 = 0 and decomposition Z =
A +M for some process (At)t∈[0,T ] of bounded variation and some local martingale
(Mt)t∈[0,T ],

(iv) the process (Mf
t )t∈[0,T ], given by

Mf
t := f(Zt)−

∫ t

0
Af (s,Xs, Zs) ds, t ∈ [0, T ], (3.5)

is a local martingale for every f ∈ C2
0 (R), where Af is de�ned as in (3.4), and

(v) the following equality holds:

Xt = x0(t) +

∫ t

0
Kµ(s, t) dAs +

∫ t

0
Kσ(s, t) dMs, t ∈ [0, T ], P-a.s. (3.6)
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3. Weak existence of solutions

Remark 3.5. The �rst Volterra local martingale problem was formulated in [AJCLP21]
for stochastic Volterra equations of convolution type, that is, the kernels Kµ,Kσ are sup-
posed to be of the form K(t−s) for a deterministic function K : [0, T ] → R, see [AJCLP21,
De�nition 3.1]. However, [AJCLP21, De�nition 3.1] fundamentally relies on the convolu-
tional structure to ensure that a weak solution to the SVE leads to a solution of the Volterra
local martingale problem. The latter conclusion is based on a substitution and stochastic
Fubini argument, which is not applicable for general kernels. Compared to [AJCLP21,
De�nition 3.1], the essential di�erence is that we reformulated [AJCLP21, (3.3)] to the
condition (3.6). While both conditions are equivalent for kernels of convolutional type, the
advantage of (3.6) is that it allows for general kernels.
Moreover, notice that the Volterra local martingale problem as presented in De�nition 3.4
reduces to the local martingale problem for ordinary stochastic di�erential equations in the
case Kµ = Kσ = 1. Indeed, in this case conditions (i) and (iv) imply conditions (iii) and
(v) on a possibly extended probability space, see Proposition 3.3.

Remark 3.6. Condition (iii) of De�nition 3.4 can be relaxed to the condition �(Zt)t∈[0,T ]

is an (Ft)-adapted and continuous process� since this together with (iv) of De�nition 3.4
already implies the semimartingale property of (Zt)t∈[0,T ], see Proposition 3.3. However, we
decided to directly postulate the semimartingale property of (Zt)t∈[0,T ] in the formulation of
the Volterra local martingale problem to ensure that condition (v) is obviously well-de�ned.

As for ordinary stochastic di�erential equations, the existence of weak solutions to SVEs
is equivalent to the solvability of the associated Volterra local martingale problem.

Lemma 3.7. Suppose Assumption 3.2. There exists a weak solution to the SVE (3.2) if
and only if there exists a solution to the Volterra local martingale problem given (x0, µ, σ,Kµ,Kσ).

Proof. Let (X,B) be a (weak) solution to (3.2) on a probability space (Ω,F ,P). Setting

Zt := At +Mt :=

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs, t ∈ [0, T ],

Itô's formula applied to f(Zt) for f ∈ C2
0 (R) yields that

Mf
t = f(Zt)−

∫ t

0
f ′(Zs)µ(s,Xs) ds−

1

2

∫ t

0
f ′′(Zs)σ(s,Xs)

2 ds

= f(Z0) +

∫ t

0
f ′(Zs)σ(s,Xs) dBs,

which is a local martingale and, by its de�nition, Z is a semimartingale satisfying (3.6).
Conversely, if there exists a solution to the Volterra local martingale problem, we obtain
a weak solution to the SVE (3.2) by using (3.6) and Proposition 3.3, which yields that
At =

∫ t
0 µ(s,Xs) ds and Mt =

∫ t
0 σ(s,Xs) dBs for some Brownian motion (Bt)t∈[0,T ].
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3.2 Existence of weak solutions

In this section we establish the existence of a weak solution to the SVE (3.2) and, equiv-
alently, of a solution to the associated Volterra local martingale problem, under suitable
assumptions on the initial condition, coe�cients and kernels, which we state in the fol-
lowing.

Assumption 3.8. There is some p ∈ (4,∞) and some γ ∈ (2p ,
1
2) such that:

(i) There is a constant Cp > 0 such that, for all (t, t′) ∈ ∆T ,∫ t

0
|Kµ(s, t

′)−Kµ(s, t)|
p

p−1 ds+

∫ t′

t
|Kµ(s, t

′)|
p

p−1 ds ≤ Cp|t′ − t|
γp
p−1 ,∫ t

0
|Kσ(s, t

′)−Kσ(s, t)|
2p
p−2 ds+

∫ t′

t
|Kσ(s, t

′)|
2p
p−2 ds ≤ Cp|t′ − t|

2γp
p−2 .

(3.7)

(ii) The coe�cients µ, σ : [0, T ] × R → R are measurable functions such that for every
compact set K ⊂ R and every ε > 0 there exists a δ > 0 such that

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ ε, t ∈ [0, T ], x, y ∈ K with |x− y| ≤ δ,

and µ, σ ful�ll the linear growth condition

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|), t ∈ [0, T ], x ∈ R, (3.8)

for a constant Cµ,σ > 0

(iii) The initial condition x0 : [0, T ] → R is β-Hölder continuous for every β ∈ (0, γ−1/p).

Note that Assumption 3.8 directly implies (2.3) with the choice ε = 2p
p−2 − 2, and vice

versa (2.3) implies Assumption 3.8 (i) with p = 4/ε + 2 (and if necessary rescaling the
exponent using Hölder's inequality if ε ≥ 2 to secure p > 4).
To formulate our second assumption, for a measurable function K : ∆T → R, we say
K(·, t) is absolutely continuous for every t ∈ [0, T ] if there exists an integrable function
∂1K : ∆T → R such that K(s, t)−K(0, t) =

∫ s
0 ∂1K(u, t) du for (s, t) ∈ ∆T .

Assumption 3.9. The kernel Kµ is measurable and bounded in L1([0, T ]) uniformly in
the second variable, i.e.

sup
t∈[0,T ]

∫ t

0
|Kµ(s, t)|ds ≤ C

for some constant C > 0. The kernel Kσ is measurable and satis�es at least one of the
following conditions:
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3. Weak existence of solutions

(i) Kσ is a bounded function and Kσ(·, t) is absolutely continuous for every t ∈ [0, T ]
such that ∂1Kσ ful�lls

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0
|∂1Kσ(s, t)|p ds

∣∣∣∣ 1p ≤ C

for some p > 1 and some constant C > 0.

(ii) Kσ(s, t) = K̃(t− s) for all (s, t) ∈ ∆T for a function K̃ ∈ L2([0, T ]).

Note, that Assumption 3.9 is satis�ed by every convolutional kernel Kµ(s, t) = K̃(t − s)
for all (s, t) ∈ ∆T for a function K̃ ∈ L1([0, T ]), and in case of Assumption 3.9 (i), the
bound on the second summand in (3.7) is trivially ful�lled. With these assumptions at
hand we are ready to state our main result.

Theorem 3.10. Suppose Assumptions 3.8 and 3.9. Then, there exists a weak solution
(in the sense of De�nition 3.1) with (Xt)t∈[0,T ] ∈ C([0, T ]) to the stochastic Volterra
equation (3.2).

Before proving the aforementioned existence result, let us brie�y discuss some properties
of weak solutions to the SVE (3.2) and some exemplary kernels.

Remark 3.11. Suppose Assumption 3.8. Due to Lemma 2.10 and Corollary 2.11, any
weak solution with (Xt)t∈[0,T ] ∈ C([0, T ]) to the SVE (3.2) satis�es supt∈[0,T ] E[|Xt|q] <∞
for any q ∈ [1,∞) and possesses a β-Hölder continuous modi�cation for any β ∈ (0, γ −
1/p).

Remark 3.12. Assumptions 3.8 (i) and 3.9 are satis�ed, e.g., by the following type of
di�usion kernels:

(i) Kσ(s, t) := (t− s)−α for α ∈ (0, 12) for any p ∈ ( 6
1−2α ,∞) with γ = 1

2 − α− 1
p ,

(ii) Kσ(s, t) := K̃(t− s) for a Lipschitz continuous function K̃ : [0, T ] → R,

(iii) regular kernels ful�lling Assumption 2.1, and

(iv) weakly di�erentiable kernels such that ∂1Kσ(s, t) ≤ C(t− s)−α for α ∈ (0, 12).

The following calculation shows that Assumption 3.8 (i) holds for (i), the rest is easy to
see. ∫ t

0

∣∣(t′ − s)−α − (t− s)−α
∣∣ 2p
p−2 ds ≲

∫ t

0

(
(t− s)

− 2pα
p−2 − (t′ − s)

− 2pα
p−2

)
ds

≲ −
[
(t− s)

1− 2pα
p−2

]t
0
+
[
(t′ − s)

1− 2pα
p−2

]t
0

≲ t
1− 2pα

p−2 + (t′ − t)
1− 2pα

p−2 − t
′1− 2pα

p−2

≲ |t′ − t|1−
2pα
p−2 ,
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and with γ = 1
2 − α− p,

2γp

p− 2
=
p− 2αp− 2

p− 2
= 1− 2αp

p− 2
.

The other terms in (3.7) follow analogue.

The remainder of the chapter is devoted to implement the proof of Theorem 3.10 based on
several auxiliary lemmas. Note that Lemma 3.16 implies Theorem 3.10 due to Lemma 3.7.
Note further that the continuity of (Xt)t∈[0,T ] in Theorem 3.10 follows by the convergence
X̂k → X in C([0, T ]) in Lemma 3.15.

Assuming the coe�cients µ, σ satisfy Assumption 3.8, the next lemma provides a way to
approximate µ, σ locally uniformly by Lipschitz continuous coe�cients.

Lemma 3.13. Let f : [0, T ]×R → R be a measurable function such that for every compact
set K ⊂ R and every ε > 0 there exists δ > 0 such that

|f(t, x)− f(t, y)| ≤ ε, t ∈ [0, T ], x, y ∈ K with |x− y| ≤ δ,

and such that f ful�lls the linear growth condition

|f(t, x)| ≤ Cf (1 + |x|), t ∈ [0, T ], x ∈ R, (3.9)

for some constant Cf > 0. Then, there is a sequence (fn)n∈N of measurable functions
fn : [0, T ]× R → R, which satis�es:

(i) linear growth: for Cf > 0 as in (3.9), we have

|fn(t, x)| ≤ 2Cf (1 + |x|), t ∈ [0, T ], x ∈ R;

(ii) Lipschitz continuity: for each n ∈ N there is a Cn > 0 such that

|fn(t, x)− fn(t, y)| ≤ Cn|x− y|, t ∈ [0, T ], x, y ∈ R;

(iii) locally uniform convergence: for all r ∈ (0,∞) we have

sup
t∈[0,T ],x∈[−r,r]

|f(t, x)− fn(t, x)| → 0, as n→ ∞.

Proof. We explicitly choose the sequence (fn)n∈N by

fn(t, x) := ϕn(x)

∫
R
f(t, x− y)δn(y) dy, n ∈ N,

for some ϕn ∈ C2
0 (R) with support in [−(n + 1), n + 1], taking values in [0, 1] and being

identical to 1 on [−n, n], where δn(y) := 1
cn
(1−y2)n1[−1,1](y) with cn :=

∫
[−1,1](1−y

2)n dy.
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3. Weak existence of solutions

(i) For t ∈ [0, T ] and x ∈ R, using the linear growth condition on f , we get

|fn(t, x)| ≤ Cf

∫
[−1,1]

(1 + |x− y|)δn(y) dy ≤ Cf

∫
[−1,1]

(2 + |x|)δn(y) dy ≤ 2Cf (1 + |x|).

(ii) Let t ∈ [0, T ], x, y ∈ R and n ∈ N. Using the compact support of fn and the fact, that
every δn is Lipschitz continuous as a smooth function with compact support, we get∣∣fn(t, x)− fn(t, y)

∣∣ ≤ Cfcn|x− y|
∫ n+2

−(n+2)
(1 + |z|) dz ≤ Cn|x− y|

for some constant Cn.
(iii) Due to the continuity property of f , we can �nd for every r > 0 and for every ε > 0
some δ > 0 such that for all x, y ∈ [−r, r] with |x − y| ≤ δ and all t ∈ [0, T ] holds
|f(t, x)− f(t, y)| ≤ ε. Assuming n ∈ N to be large enough that ϕn ≡ 1 on [−r, r], we get
for any x ∈ [−r, r],

|f(t, x)− fn(t, x)|

=

∫
[−δ,δ]

δn(y)
∣∣f(t, x)− f(t, x− y)

∣∣ dy + ∫
[−1,1]\[−δ,δ]

δn(y)
∣∣f(t, x)− f(t, x− y)

∣∣ dy.
Let now N(ε, r) > 0 be big enough, such that

∫
[−1,1]\[−δ,δ] δn(y) dy < ε and ϕn ≡ 1 on

[−r, r] for all n ≥ N(ε, r). Then, setting r̃ := r + 1 for all n ≥ N(ε, r)

|f(t, x)− fn(t, x)| ≤
∫
[−δ,δ]

δn(y)εdy + 2ε sup
s∈[0,T ],
x̃∈[−r̃,r̃]

|f(s, x̃)| ≤ ε

(
1 + 2 sup

s∈[0,T ],
x̃∈[−r̃,r̃]

|f(s, x̃)|
)
,

which tends to zero as ε→ 0.

A suitable approximation, like the one provided in Lemma 3.13, ensures the convergence
of associated Riemann�Stieltjes integrals. We denote by C([0, T ];R) the space of all con-
tinuous functions g : [0, T ] → R, which is equipped with the supremum norm ∥ · ∥∞.

Lemma 3.14. Let f : [0, T ]×R → R be a function such that for every compact set K ⊂ R
and every ε > 0 there exists δ > 0 such that

|f(t, x)− f(t, y)| ≤ ε, t ∈ [0, T ], x, y ∈ K with |x− y| ≤ δ, (3.10)

and (fk)k∈N be a sequence of functions such that fk : [0, T ] × R → R and |f(t, x)| +
|fk(t, x)| ≤ C(1 + |x|2), t ∈ [0, T ], x ∈ R, for all k ∈ N and for some C > 0, and fk → f
locally uniformly. Let K : ∆T → R be measurable and bounded in L1([0, T ]) uniformly in
the second variable, i.e. supt∈[0,T ]

∫ t
0 |K(s, t)| ds ≤ M for some M > 0. If (Xk)k∈N is a

sequence of continuous stochastic processes such that Xk → X in C([0, T ];R) as k → ∞
P-a.s, then(∫ ·

0
K(s, ·)fk(s,Xk

s ) ds
)
t∈[0,T ]

P→
(∫ ·

0
K(s, ·)f(s,Xs) ds

)
t∈[0,T ]

w.r.t. ∥ · ∥∞, k → ∞,

where
P→ denotes convergence in probability.
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Proof. First, note that due to the continuity condition (3.10), for every n ∈ N there exists
some continuous non-decreasing function gn : [0,∞) → [0,∞) with gn(0) = 0, such that
for all x, y ∈ [−n, n],

|f(t, x)− f(t, y)| ≤ gn(|x− y|), t ∈ [0, T ].

Let ε > 0 and δ > 0 be �xed but arbitrary. Choose N ∈ N and K ∈ N big enough such
that

P
(
∥X∥∞ ≥ n/2

)
≤ δ/4 and P

(
∥Xk −X∥∞ ≥ n/2

)
≤ δ/4,

for all n ≥ N and k ≥ K. Then,

P
(
∥X∥∞ ∨ ∥Xk∥∞ ≥ n

)
≤ P

(
{∥X∥∞ ≥ n} ∪ {∥Xk −X∥∞ + ∥X∥∞ ≥ n}

)
≤ P

(
∥X∥∞ ≥ n/2

)
+ P

(
∥Xk −X∥∞ ≥ n/2

)
≤ δ/4 + δ/4 = δ/2.

For every n, k ∈ N, on {∥X∥∞ ∨ ∥Xk∥∞ ≤ n} we can bound for t ∈ [0, T ],

Ak
t −At :=

∫ t

0
K(s, t)fk(s,X

k
s ) ds−

∫ t

0
K(s, t)f(s,Xs) ds

≤
∫ t

0
|K(s, t)|

∣∣fk(s,Xk
s )− f(s,Xk

s )
∣∣ ds+ ∫ t

0
|K(s, t)|

∣∣f(s,Xk
s )− f(s,Xs)

∣∣ds
≤M

(
sup

t∈[0,T ], x∈[−n,n]
|fk(t, x)− f(t, x)|+ gn

(
∥Xk −X∥∞

))
, (3.11)

with supt∈[0,T ]

∫ t
0 |K(s, t)| ds ≤ M . For every n ∈ N we choose Kn

εδ ∈ N su�ciently large
such that

P
(

sup
t∈[0,T ], x∈[−n,n]

|fk(t, x)− f(t, x)|+ gn(∥Xk −X∥∞) ≥ ε/M

)
≤ δ/2, k ≥ Kn

εδ.

Setting Kεδ := max{KN
εδ ,K}, we get

P
(
∥Ak −A∥∞ ≥ ε

)
≤ P

(
{∥Ak −A∥∞ ≥ ε} ∩ {∥X∥∞ ∨ ∥Xk∥∞ < N}

)
+ P

(
∥X∥∞ ∨ ∥Xk∥∞ ≥ N

)
≤ P

(
sup

t∈[0,T ], x∈[−N,N ]
|fk(t, x)− f(t, x)|+ gN (∥Xk −X∥∞) ≥ ε/M

)
+ δ/2 ≤ δ,

for all k ≥ Kεδ, which shows the desired convergence.

Given coe�cients µ, σ satisfying Assumption 3.8, we �x, relying on Lemma 3.13, two
sequences (µn)n∈N and (σn)n∈N with

µn : [0, T ]× R → R and σn : [0, T ]× R → R,
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3. Weak existence of solutions

that ful�ll properties (i)-(iii) of Lemma 3.13. For every n ∈ N, we de�ne (Xn
t )t∈[0,T ] as

the unique (strong) solution (see page 14 for the de�nition of unique strong solutions to
SVEs) to the stochastic Volterra equation

Xn
t = x0(t) +

∫ t

0
Kµ(s, t)µn(s,X

n
s ) ds+

∫ t

0
Kσ(s, t)σn(s,X

n
s ) dBs, t ∈ [0, T ], (3.12)

given a Brownian motion (Bt)t∈[0,T ] on some probability space (Ω,F ,P). Note that
(Xn

t )t∈[0,T ] exists by [Wan08, Theorem 1.1] due to the Lipschitz continuity of µn and
σn. Furthermore, we introduce the sequences (An)n∈N and (Mn)n∈N by

An
t :=

∫ t

0
µn(s,X

n
s ) ds and Mn

t :=

∫ t

0
σn(s,X

n
s ) dBs, t ∈ [0, T ]. (3.13)

In the following, we denote X D∼ Y for equality in law of stochastic processes X and Y .

Lemma 3.15. Suppose Assumption 3.8 and let (Xn)n∈N, (A
n)n∈N and (Mn)n∈N be given

by (3.12) and (3.13). Then, there exist continuous stochastic processes (X̂k)k∈N, (Â
k)k∈N,

(M̂k)k∈N, X, A, M and a Brownian motion (B̃t)t∈[0,T ] on a common probability space

(Ω̃, F̃ , P̃) such that (X̂k, Âk, M̂k) → (X,A,M) in C([0, T ];R3) as k → ∞ P̃-a.s., (X̂k, Âk, M̂k)
D∼

(Xnk , Ank ,Mnk) and M is a local martingale with the representation

Mt =

∫ t

0
σ(s,Xs) dB̃s, t ∈ [0, T ],

where (Xnk , Ank ,Mnk)k∈N denotes some subsequence of (Xn, An,Mn)n∈N.

Proof. First we want to apply Kolmogorov's tightness criterion (see [KS91, Problem 2.4.11])
to the probability measures (P(Xn,An,Mn,B))n∈N associated to the four-dimensional stochas-
tic processes (Xn, An,Mn, B)n∈N. By Lemma 3.13 (i) we know, that the coe�cients µn
and σn ful�ll the linear growth condition (3.8) with uniformly bounded constants, i.e.
Cµn,σn ≤ 2Cµ,σ for all n ∈ N. Hence, using p ∈ (4,∞) from Assumption 3.8, we deduce,
by Lemma 2.10, that

sup
n∈N

sup
s∈[0,T ]

E[|Xn
s |p] ≤ C

(
1 + sup

s∈[0,T ]
|x0(s)|

)p

<∞,

and, by Lemma 2.7 and Remark 2.9, that

E[|Xn
t′ − x0(t

′)−Xn
t − x0(t)|p] ≤ C|t′ − t|βp, n ∈ N,

for every β ∈ (0, γ − 1/p), where the constant C > 0 depends only on p, T , Kµ, Kσ and
Cµ,σ. Moreover, it is straightforward to show that

E[|An
t′ −An

t |p] ≤ C|t′ − t|
p
2 and E[|Mn

t′ −Mn
t |p] ≤ C|t′ − t|

p
2
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for all 0 ≤ t ≤ t′ ≤ T and some constant C > 0, by Hölder's inequality and Burkholder�
Davis�Gundy's inequality, respectively. Choosing β su�ciently close to γ − 1/p so that
βp > 1, which is possible due to Assumption 3.8, and noting that the initial distributions
(Xn

0 , A
n
0 ,M

n
0 , B0)n∈N are independent of n, we can apply Kolmogorov's tightness crite-

rion to obtain the tightness of the sequence (P(Xn,An,Mn,B))n∈N. Hence, by Prohorov's
theorem ([KS91, Theorem 2.4.7]) we get relative compactness ([KS91, De�nition 2.4.6])
of the sequence of measures (P(Xn,An,Mn,B))n∈N in M1(C([0, T ];R4)), which denotes the
space of all probability measures on C([0, T ];R4). Consequently, there exists a converging
subsequence (P(Xnk ,Ank ,Mnk ,B))k∈N such that

P(Xnk ,Ank ,Mnk ,B) → P(X,A,M,B) weakly as k → ∞,

for some measure P(X,A,M,B) in M1(C([0, T ];R4)).
The Skorokhod representation theorem (see e.g. [Dud02, Theorem 11.7.2]) yields the
existence of some probability space (Ω̂, F̂ , P̂) with continuous stochastic processes (X̂k)k∈N,
(Âk)k∈N, (M̂k)k∈N, (B̂k)k∈N and X, A, M , B̂ on it such that

(Xnk , Ank ,Mnk , B)
D∼ (X̂k, Âk, M̂k, B̂k), k ∈ N,

and

(X̂k, Âk, M̂k, B̂k) → (X,A,M, B̂) in C([0, T ];R4) as k → ∞, P̂-a.s.

From a general version of the Yamada�Watanabe result, see [Kur14, Theorem 1.5], we can
deduce that M̂k

t =
∫ t
0 σnk

(s, X̂k
s ) dB̂

k
s , for t ∈ [0, T ] and for all k ∈ N, and the stochastic

processes (Bk)k∈N are Brownian motions as B̂k D∼ B. Thus, M̂k is a local P̂-martingale
with quadratic variation ⟨M̂k⟩t =

∫ t
0 σnk

(s, X̂k
s )

2 ds.
Due to the P̂-a.s. convergence of (M̂k)k∈N to M , [JS03, Proposition IX.1.17] implies that
M is also a local P̂-martingale, and the convergence of

∫ t
0 σnk

(s,Xnk
s )2 ds in probability, see

Lemma 3.14, together with [JS03, Corollary VI.6.29] implies that the quadratic variation of
M is ⟨M⟩t =

∫ t
0 σ(s,Xs)

2 ds. Therefore, the representation theorem for local martingales
with absolutely continuous quadratic variations (see e.g. [KS91, Theorem 3.4.2]) yields
the existence of some probability space (Ω̃, F̃ , P̃), which is an extension of (Ω̂, F̂ , P̂ ), and
a Brownian motion (B̃t)t∈[0,T ] on it, such that Mt =

∫ t
0 σ(s,Xs) dB̃s for t ∈ [0, T ].

Using the stochastic processes X, A andM from Lemma 3.15, we can construct a solution
to the Volterra local martingale problem in the sense of De�nition 3.4.

Lemma 3.16. Suppose Assumptions 3.8 and 3.9. There exists a solution to the Volterra
local martingale problem given (x0, µ, σ,Kµ,Kσ).

Proof. Recall, the stochastic processes (Xn)n∈N, (An)n∈N and (Mn)n∈N on (Ω,F ,P) are
given in (3.13) and (X̂k)k∈N, (Âk)k∈N, (M̂k)k∈N, X, A and M on (Ω̃, F̃ , P̃) are given by
Lemma 3.15. We introduce the stochastic processes (Zn)n∈N, (Ẑk)k∈N and Z by

Zn
t := An

t +Mn
t , Ẑk

t := Âk
t + M̂k

t and Zt := At +Mt, t ∈ [0, T ].
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3. Weak existence of solutions

We shall show that the triple (X,Z), (Ω̃, F̃ , P̃), (FX
t )t∈[0,T ], where (FX

t )t∈[0,T ] denotes the
augmented natural �ltration of X (cf. [KS91, De�nition 2.7.2]), solves the Volterra local
martingale problem given (x0, µ, σ,Kµ,Kσ). Since the properties (i)-(iii) of De�nition 3.4
are fairly easy to check, we verify here that

(iv) the process (Mf
t )t∈[0,T ] de�ned by (3.5) is a local P̃-martingale for every f ∈ C2

0 (R),

(v) the equality (3.6) holds P̃-a.s.

(iv) For k ∈ N and f ∈ C2
0 (R), the stochastic process (M

f,k
t )t∈[0,T ] is de�ned by

Mf,k
t := f(Ẑk

t )−
∫ t

0
Af,k(s, X̂k

s , Ẑ
k
s ) ds, t ∈ [0, T ],

where Af,k(t, x, z) := µnk
(t, x)f ′(z)+ 1

2σnk
(t, x)2f ′′(z). Due to (X̂k, Ẑk)

D∼ (Xnk , Znk) and
since (Xnk , Znk) solves the Volterra local martingale problem given (x0, µnk

, σnk
,Kµ,Kσ)

on (Ω,F ,P) by construction and Lemma 3.7, it follows that (Mf,k
t )t∈[0,T ] is a local martin-

gale on (Ω̃, F̃ , P̃) for every k ∈ N. Moreover, Lemma 3.14 implies thatMf,k → Mf weakly
as k → ∞ and, thus, by [JS03, Proposition IX.1.17], the limiting process (Mf

t )t∈[0,T ] is a
local martingale on (Ω̃, F̃ , P̃).

(v) Since (X̂k, M̂k)
D∼ (Xnk ,Mnk) for every k ∈ N and pathwise uniqueness holds for

SVEs with Lipschitz continuous coe�cients (see e.g. [Wan08, Theorem 1.1]), the general
version of the Yamada�Watanabe result ([Kur14, Theorem 1.5]) yields that X̂k can be
represented as the stochastic output of the Volterra equation (3.2) from the stochastic
input M̂k in the same way as Xnk from Mnk , hence, we get that

X̂k
t = x0(t) +

∫ t

0
Kµ(s, t)µnk

(s, X̂k
s ) ds+

∫ t

0
Kσ(s, t) dM̂

k
s , t ∈ [0, T ], P̃-a.s., (3.14)

holds. To continue the proof of (v), we need to distinguish between (a) bounded kernels
and (b) kernels of convolutional type.
(a) We start with the bounded kernels as in Assumption 3.9 (i). Due to the absolute
continuity of Kσ in the �rst variable, we can apply the integration by part formula for
semimartingales (see [RW00, Theorem (VI).38.3]) to rewrite (3.14) to

X̂k
t = x0(t) +

∫ t

0
Kµ(s, t)µnk

(s, X̂k
s ) ds+Kσ(t, t)M̂

k
t +

∫ t

0
M̂k

s ∂1Kσ(s, t) ds. (3.15)

Since (X̂k, M̂k) → (X,M) in C([0, T ];R2) as k → ∞, P̃-a.s., and Kσ is bounded, we
obtain by Lemma 3.14 that X̂k → X andKσM̂

k → KσM in C([0, T ];R) as k → ∞, P̃-a.s.,
and

∫ ·
0Kµ(s, ·)µnk

(s, X̂k
s ) ds →

∫ t
0 Kµ(s, ·) dAs in C([0, T ];R) in probability as k → ∞.

Furthermore, applying Hölder's inequality with p > 4 (see Assumption 3.9) and denoting
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q = p/(p− 1), we get by the integrability of ∂1Kσ that∥∥∥∥∫ ·

0
(M̂k

s −Ms)∂1Kσ(s, ·) ds
∥∥∥∥
∞

≤
(∫ T

0
|M̂k

s −Ms|q ds
) 1

q
∥∥∥∥∫ ·

0
|∂1Kσ(s, ·)|p ds

∥∥∥∥ 1
p

∞

≤ C∥M̂k −M∥∞.

Hence, the P̃-a.s. convergence (M̂k)k∈N toM implies
∫ ·
0 M̂

k
sKσ(s, ·) ds→

∫ ·
0MsKσ(s, ·) ds

as k → ∞ P̃-a.s., and we can take the limit in probability in (3.15) or the P̃-a.s. limit for
some subsequence, to obtain that (3.6) holds P̃-a.s.
(b) For convolution kernels as in Assumption 3.9 (ii), we integrate both sides of (3.14)
and use the stochastic Fubini theorem (see e.g. [Ver12, Theorem 2.2]) twice to obtain∫ t

0
X̂k

s ds =

∫ t

0
x0(s) ds+

∫ t

0

∫ s

0
Kµ(s, u) dÂ

k
u ds+

∫ t

0

∫ s

0
Kσ(s− u) dM̂k

u ds

=

∫ t

0
x0(s) ds+

∫ t

0

∫ s

0
Kµ(s, u) dÂ

k
u ds+

∫ t

0

∫ t

u
Kσ(s− u) ds dM̂k

u

=

∫ t

0
x0(s) ds+

∫ t

0

∫ s

0
Kµ(s, u) dÂ

k
u ds+

∫ t

0

∫ t−u

0
Kσ(s) dsdM̂

k
u

=

∫ t

0
x0(s) ds+

∫ t

0

∫ s

0
Kµ(s, u) dÂ

k
u ds+

∫ t

0
Kσ(s)

∫ t−s

0
dM̂k

u ds

=

∫ t

0
x0(s) ds+

∫ t

0

∫ s

0
Kµ(s, u) dÂ

k
u ds+

∫ t

0
Kσ(t− s)M̂k

s ds. (3.16)

Since∥∥∥∥∫ ·

0
Kσ(· − s)(M̂k

s −Ms) ds

∥∥∥∥
∞

≤ ∥M̂k −M∥∞
∫ T

0
|Kσ(T − s)|ds ≤ C∥M̂k −M∥∞

and M̂k → M as k → ∞, P̃-a.s, we obtain
∫ ·
0Kσ(t − s)M̂k

s ds →
∫ ·
0Kσ(t − s)Ms ds as

k → ∞, P̃-a.s. The convergence of
∫ t
0

∫ s
0 Kµ(s, u) dÂ

k
u ds follows as in (a). Thus, taking

the P̃-a.s. limit of both sides of (3.16) and then taking the derivative yields that (3.6)
holds for (X,Z), P̃-a.s.
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Chapter 4

Pathwise uniqueness for the

fractional SVE

The content of this chapter is published in [PS22].

Introduction

In this chapter, we study the one-dimensional fractional stochastic Volterra equation
(SVE) which has the form

Xt = x0(t) +

∫ t

0
(t− s)−αµ(s,Xs) ds+

∫ t

0
(t− s)−ασ(s,Xs) dBs, t ∈ [0, T ], (4.1)

where α ∈ [0, 12), x0 : [0, T ] → R is a continuous function, µ, σ : [0, T ] × R → R are mea-
surable functions and (Bt)t∈[0,T ] is a standard Brownian motion. Although the stochastic
integral in (4.1) is de�ned as a classical stochastic Itô integral, a potential solution of
this SVE is, in general, neither a semimartingale nor a Markov process. Assuming that
µ is Lipschitz continuous and σ is ξ-Hölder continuous for ξ ∈ ( 1

2(1−α) , 1], we show that
pathwise uniqueness for the SVE (4.1) holds and, consequently, that there exists a unique
strong solution.
As long as the kernels of a one-dimensional SVE are su�ciently regular, i.e. excluding
the singular kernel (t− s)−α in (4.1), the existence of unique strong solutions can be still
obtained when the di�usion coe�cients are only 1/2-Hölder continuous, see Chapter 2
or [AJEE19b]. The latter results are crucially based on the observation that solutions
to SVEs with su�ciently regular kernels are semimartingales, allowing to rather directly
implement approaches in the spirit of Yamada�Watanabe [YW71].
A major challenge to prove pathwise uniqueness for the SVE (4.1) with its singular frac-
tional kernel Kα(s, t) = (t − s)−α is the missing natural semimartingale representation
of its potential solution. Assuming the drift coe�cient µ does not depend on the solu-
tion (Xt)t∈[0,T ] and the di�usion coe�cient σ is ξ-Hölder continuous for ξ ∈ ( 1

2(1−α) , 1],
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Mytnik and Salisbury [MS15] established pathwise uniqueness for the SVE (4.1) by equiv-
alently reformulating the SVE into a stochastic partial di�erential equation, which then
allows to accomplish a proof of pathwise uniqueness in the spirit of Yamada�Watanabe
relying on the methodology developed in [MPS06, MP11]. In this chapter, we generalize
the results and method of Mytnik and Salisbury [MS15] to derive pathwise uniqueness
for the stochastic Volterra equation (4.1) with general time-inhomogeneous coe�cients.
As classical transforms allowing to remove the drift of an SDE are not applicable to the
SVE (4.1), the general time-inhomogeneous coe�cients µ creates severe novel challenges.
For the sake of readability, all proofs are presented in a self-contained manner although
some intermediate steps can already be found in the work [MS15] of Mytnik and Salisbury.
The existence of a unique strong solution to the stochastic Volterra equation (4.1) follows
by a general version of Yamada�Watanabe theorem (see [YW71, Kur14]) stating that the
combination of pathwise uniqueness and the existence of weak solutions to the SVE (4.1)
(as obtained in Chapter 3) guarantees the existence of a strong solution. Let us remark
that strong existence and pathwise uniqueness play a crucial role in the context of large
deviation and as key ingredients to fully justify some numerical schemes, see e.g. [DE97,
Mao94].

Organization of the chapter: Section 4.1 presents the main results on the pathwise
uniqueness and strong existence of solutions to stochastic Volterra equations. Section 4.2
contains the main steps in the proof of pathwise uniqueness, while the remaining Sec-
tions 4.3-4.6 provide the necessary auxiliary results to implement these main steps.

4.1 Main results

Let (Ω,F , (Ft)t∈[0,T ],P) be a �ltered probability space, which satis�es the usual condi-
tions, (Bt)t∈[0,T ] be a standard Brownian motion and T ∈ (0,∞). We consider the one-
dimensional stochastic Volterra equation (SVE)

Xt = x0(t) +

∫ t

0
(t− s)−αµ(s,Xs) ds+

∫ t

0
(t− s)−ασ(s,Xs) dBs, t ∈ [0, T ], (4.2)

where α ∈ [0, 12), x0 : [0, T ] → R is a continuous function and µ, σ : [0, T ] × R → R are
deterministic, measurable functions. Furthermore,

∫ t
0 (t − s)−αµ(s,Xs) ds is de�ned as a

Riemann�Stieltjes integral and
∫ t
0 (t− s)−ασ(s,Xs) dBs as an Itô integral.

The regularity of the coe�cients µ and σ and of the initial condition x0 is determined in
the following assumption.

Assumption 4.1. Let α ∈ [0, 12), let x0 be absolutely continuous and let µ, σ : [0, T ]×R →
R be measurable functions such that

(i) µ and σ are of linear growth, i.e. there is a constant Cµ,σ > 0 such that

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|),

for all t ∈ [0, T ] and x ∈ R.
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4. Pathwise uniqueness for the fractional SVE

(ii) µ is Lipschitz continuous and σ is Hölder continuous in the space variable uniformly
in time of order ξ for some ξ ∈ [12 , 1] such that

ξ >
1

2(1− α)
,

where in the case of α = 0 even equality is allowed. Hence, there are constants
Cµ, Cσ > 0 such that

|µ(t, x)− µ(t, y)| ≤ Cµ|x− y| and |σ(t, x)− σ(t, y)| ≤ Cσ|x− y|ξ

hold for all t ∈ [0, T ] and x, y ∈ R.

(iii) For every K > 0, there is some constant CK > 0 such that, for every t ∈ [0, T ] and
every x, y ∈ [−K,K], ∣∣∣∣µ(t, x)− µ(t, y)

σ(t, x)− σ(t, y)

∣∣∣∣ ≤ CK ,

where we use the convention 0/0 := 1.

Assumption 4.1 is a standing assumption throughout the entire chapter. Although not
always explicitly stated all results are proven supposing Assumption 4.1.

Remark 4.2. Given Assumption 4.1 (ii), Assumption 4.1 (iii) is a fairly mild restriction.
Consider, for example, some Lipschitz continuous function µ and σ of the form σ(t, x) =
sgn(x)|x|ξ for ξ ∈ [1/2, 1]. Note that, in interesting cases like the rough Heston model in
mathematical �nance, solutions to (4.2) are non-negative (see [AJEE19a, Theorem A.2]),
so that the sgn in the de�nition of σ does not in�uence the dynamics of the associated
SVE. Then, for |x|, |y| ≤ K, using the inequality

∣∣ sgn(x)|x|ξ − sgn(y)|y|ξ
∣∣ ≥ K−1|x− y|,

we get∣∣∣∣µ(t, x)− µ(t, y)

σ(t, x)− σ(t, y)

∣∣∣∣ ≤ Cµ
|x− y|∣∣ sgn(x)|x|ξ − sgn(y)|y|ξ

∣∣ ≤ Cµ
|x− y|

K−1|x− y|
= CµK <∞.

Based on Assumption 4.1, we obtain a unique strong solution of the stochastic Volterra
equation (4.2). Therefore, let us brie�y recall the concepts of strong solutions and pathwise
uniqueness. Let for p ≥ 1, Lp(Ω× [0, T ]) be the space of all real-valued, p-integrable func-
tions on Ω × [0, T ]. An (Ft)t∈[0,T ]-progressively measurable stochastic process (Xt)t∈[0,T ]

in Lp(Ω × [0, T ]), on the given probability space (Ω,F , (Ft)t∈[0,T ],P), is called (strong)

Lp-solution to the SVE (4.2) if
∫ t
0 (|(t − s)−αµ(s,Xs)| + |(t − s)−ασ(s,Xs)|2) ds < ∞ for

all t ∈ [0, T ] and the integral equation (4.2) holds a.s. We call a strong L1-solution often
just solution to the SVE (4.2). We say pathwise uniqueness in Lp(Ω× [0, T ]) holds for the
SVE (4.2) if P(Xt = X̃t, ∀t ∈ [0, T ]) = 1 for two Lp-solutions (Xt)t∈[0,T ] and (X̃t)t∈[0,T ] to
the SVE (4.2) de�ned on the same probability space (Ω,F , (Ft)t∈[0,T ],P). Moreover, we
say there exists a unique strong Lp-solution (Xt)t∈[0,T ] to the SVE (4.2) if (Xt)t∈[0,T ] is a
strong Lp-solution to the SVE (4.2) and pathwise uniqueness in Lp holds for the SVE (4.2).
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We say (Xt)t∈[0,T ] is β-Hölder continuous for β ∈ (0, 1] if there exists a modi�cation of
(Xt)t∈[0,T ] with sample paths that are almost all β-Hölder continuous.

Note that the kernels Kµ(s, t) = Kσ(s, t) = (t− s)−α with α ∈ (0, 1/2) ful�ll the assump-
tions of Lemma 2.7 and Lemma 2.10 for every

ε ∈
(
0,

1

α
− 2

)
(4.3)

with
γ =

1

2 + ε
− α. (4.4)

This means that, to use the results of Lemma 2.7 and Lemma 2.10, we need to consider
Lp-solutions with

p > max{1
γ
, 1 +

2

ε
} = max{ 2 + ε

1− 2α− εα
, 1 +

2

ε
}. (4.5)

The maximum in (4.5) is attained for ε⋆ = 1−2α
1+α . Hence, inserting ε⋆ into (4.5), we consider

in the following Lp-solutions and Lp-pathwise uniqueness for some

p > 3 +
6α

1− 2α
. (4.6)

The following theorem states that pathwise uniqueness for the stochastic Volterra equa-
tion (4.2) holds, which is the main result of the present work.

Theorem 4.3. Suppose Assumption 4.1 and let p be given by (4.6). Then, Lp-pathwise
uniqueness holds for the stochastic Volterra equation (4.2).

The proof of Theorem 4.3 will be summarized in Section 4.2 and the subsequent Sec-
tions 4.3-4.6 provide the necessary auxiliary results. Relying on the pathwise uniqueness
and the classical Yamada�Watanabe theorem, we get the existence of a unique strong
solution.

Corollary 4.4. Suppose Assumption 4.1 and let p be given by (4.6). Then, there exists a
unique strong Lp-solution to the stochastic Volterra equation (4.2).

Proof. The Lp-pathwise uniqueness is provided by Theorem 4.3. The existence of a strong
Lp-solution follows by the existence of a weak Lp-solution to the stochastic Volterra equa-
tion (4.2), which is provided by Theorem 3.10, which is applicable since the kernel (t−s)−α,
α ∈ [0, 12), ful�lls Assumption 3.8, cf. Remark 3.12. Thanks to Yamada�Watanabe's the-
orem (see [YW71, Corollary 1], or [Kur14, Theorem 1.5] for a generalized version), the
existence of a weak Lp-solution and pathwise Lp-uniqueness imply the existence of a unique
strong Lp-solution.

Furthermore, we obtain the following regularity properties of solutions to the SVE (4.2).
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4. Pathwise uniqueness for the fractional SVE

Lemma 4.5. Suppose Assumption 4.1, and let (Xt)t∈[0,T ] be a strong Lp-solution to the
stochastic Volterra equation (4.2) with p given by (4.6). Then, supt∈[0,T ] E[|Xt|q] < ∞
for any q ≥ 1 and the sample paths of (Xt)t∈[0,T ] are β-Hölder continuous for any β ∈
(0, 12 − α).

Proof. The statements follow by Lemma 2.7 and Lemma 2.10 since the kernel (t − s)−α

ful�lls Assumption 3.8.

For k ∈ N∪{∞}, we write Ck(R), Ck(R+) and Ck([0, T ]×R) for the spaces of continuous
functions mapping from R, R+ resp. [0, T ]×R to R, that are k-times continuously di�er-
entiable. We use an index 0 to indicate compact support, e.g. C∞

0 (R) denotes the space
of smooth functions with compact support on R. The space of square integrable functions
f : R → R is denoted by L2(R) and equipped with the usual scalar product ⟨·, ·⟩. More-
over, a ball in R around x with radius R > 0 is de�ned by B(x,R) := {y ∈ R : |y−x| ≤ R}
and we use the notation Aη ≲ Bη for a generic parameter η, meaning that Aη ≤ CBη for
some constant C > 0 independent of η.

4.2 Proof of pathwise uniqueness

We prove Theorem 4.3 by generalizing the well-known techniques of Yamada�Watanabe
(cf. [YW71, Theorem 1]) and the work of Mytnik and Salisbury [MS15]. One of the
main challenges is the missing semimartingale property of a solution (Xt)t∈[0,T ] to the
SVE (4.2). Therefore, we transform (4.2) into a random �eld in Step 1, for which we can
derive a semimartingale decomposition in (4.8). Then, we implement an approach in the
spirit of Yamada�Watanabe in Step 2-5 and conclude the pathwise uniqueness by using a
Grönwall inequality for weak singularities in Step 6.

Proof of Theorem 4.3. Suppose there are two strong Lp-solutions (X1
t )t∈[0,T ] and (X2

t )t∈[0,T ]

to the stochastic Volterra equation (4.2).
Step 1: To induce a semimartingale structure, we introduce the random �elds

Xi(t, x) := x0(t) +

∫ t

0
pθt−s(x)µ(s,X

i
s) ds+

∫ t

0
pθt−s(x)σ(s,X

i
s) dBs, (4.7)

for t ∈ [0, T ], x ∈ R and i = 1, 2, where the densities pθt : R → R and θ := 1/2 − α are
de�ned in (4.11). By Proposition 4.17, we get that Xi ∈ C([0, T ]× R) and∫

R
Xi(t, x)Φt(x) dx =

∫
R

(
x0Φ0(x) +

∫ t

0
Φs(x)

∂

∂s
x0(s) ds

)
dx

+

∫ t

0

∫
R
Xi(s, x)

(
∆θΦs(x) +

∂

∂s
Φs(x)

)
dx ds

+

∫ t

0
µ(s,Xi(s, 0))Φs(0) ds+

∫ t

0
σ(s,Xi(s, 0))Φs(0) dBs,

(4.8)
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for t ∈ [0, T ] and every Φ ∈ C2
0 ([0, T ] × R), where the di�erential operator ∆θ is de-

�ned in (4.16). Notice, due to (4.8), the stochastic process t 7→
∫
RX

i(t, x)Φt(x) dx is a
semimartingale and Xi(t, 0) = Xi

t for t ∈ [0, T ].

Step 2: We de�ne suitable sequences (Φm
x ) ⊂ C2

0 (R), for x ∈ R, and (ϕn) ⊂ C∞(R) of test
functions, see (4.36) and (4.31) for the precise de�nitions, such that

Φm
x → δx as m→ ∞, for every x ∈ R, and ϕn → | · | as n→ ∞.

Applying Proposition 4.18 (which is based on Itô's formula and (4.8)) and setting X̃(t) :=
X̃(t, ·) := X1(t, ·)−X2(t, ·) for t ∈ [0, T ], we get

ϕn(⟨X̃(t),Φm
x ⟩) =

∫ t

0
ϕ′n(⟨X̃(s),Φm

x ⟩)⟨X̃(s),∆θΦ
m
x ⟩ ds

+

∫ t

0
ϕ′n(⟨X̃(s),Φm

x ⟩)Φm
x (0)

(
µ(s,X1(s, 0))− µ(s,X2(s, 0))

)
ds

+

∫ t

0
ϕ′n(⟨X̃(s),Φm

x ⟩)Φm
x (0)

(
σ(s,X1(s, 0))− σ(s,X2(s, 0))

)
dBs

+
1

2

∫ t

0
ψn(|⟨X̃(s),Φm

x ⟩|)Φm
x (0)2

(
σ(s,X1(s, 0))− σ(s,X2(s, 0))

)2
ds,

where ⟨·, ·⟩ denotes the scalar product on L2(R).
Step 3: To implement an approach in the spirit of Yamada�Watanabe, we need to intro-
duce another suitable test function Ψ ∈ C([0, T ]×R) (satisfying Assumption 4.19 below).
Denoting by Ψ̇ := ∂

∂sΨ the time derivative of Ψ, Proposition 4.20 leads to

⟨ϕn(⟨X̃(t),Φm
· ⟩),Ψt⟩

=

∫ t

0
⟨ϕ′n(⟨X̃(s),Φm

· ⟩)⟨X̃(s),∆θΦ
m
· ⟩,Ψs⟩ds

+

∫ t

0
⟨ϕ′n(⟨X̃(s),Φm

· ⟩)Φm
· (0),Ψs⟩

(
µ(s,X1(s, 0))− µ(s,X2(s, 0))

)
ds

+

∫ t

0
⟨ϕ′n(⟨X̃(s),Φm

· ⟩)Φm
· (0),Ψs⟩

(
σ(s,X1(s, 0))− σ(s,X2(s, 0))

)
dBs

+
1

2

∫ t

0
⟨ψn(|⟨X̃(s),Φm

· ⟩|)Φm
· (0)2,Ψs⟩

(
σ(s,X1(s, 0))− σ(s,X2(s, 0))

)
ds

+

∫ t

0
⟨ϕn(⟨X̃(s),Φm

· ⟩), Ψ̇s⟩ds.

Step 4: Using the stopping time Tξ,K de�ned in (4.83), taking expectations and sending
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4. Pathwise uniqueness for the fractional SVE

n,m→ ∞, Proposition 4.31 states that

E
[〈
|⟨X̃(t ∧ Tξ,K)|,Ψt∧Tξ,K

〉
]

≲ E
[ ∫ t∧Tξ,K

0

∫
R
|X̃(s, x)|∆θΨs(x) dx ds

]
+

∫ t∧Tξ,K

0
Ψs(0)E[|X̃(s, 0)|] ds+ E

[ ∫ t∧Tξ,K

0

∫
R
|X̃(s, x)|Ψ̇s(x) dx ds

]
.

Step 5: Since Tξ,K → T as K → ∞ a.s. by Corollary 4.28, applying Fatou's lemma yields∫
R
E[|X̃(t, x)|]Ψt(x) dx ≲

∫ t

0

∫
R
E[|X̃(s, x)|]|∆θΨs(x) + Ψ̇s(x)|dx ds

+

∫ t

0
Ψs(0)E[|X̃(s, 0)|] ds. (4.9)

Finally, we choose appropriate test functions (ΨN,M )N,M∈N (satisfying Assumption 4.19)
to approximate the Dirac distribution around 0 with ΨN,M (t, ·). Thus, choosing Ψt(x) =
ΨN,M (t, x) in (4.9) and sending N,M → ∞ yields, by Proposition 4.34, that

E[|X̃(t, 0)|] ≲
∫ t

0
(t− s)−αE[|X̃(s, 0)|] ds, t ∈ [0, T ].

Step 6: Due to α ∈ (0, 12), Grönwall's inequality for weak singularities (see e.g. [Kru14,
Lemma A.2]) reveals

E[|X̃(t, 0)|] = 0, t ∈ [0, T ],

and therefore X1
t = X2

t = 0 a.s. By the continuity of X1 and X2 (see Lemma 4.5), we
conclude the claimed pathwise uniqueness.

4.3 Step 1: Transformation into an SPDE

Recall, in general, a solution (Xt)t∈[0,T ] of the SVE (4.2) will not be a semimartingale due
to the t-dependence of the kernel. In this section we will transform the SVE (4.2) into
a stochastic partial di�erential equation (SPDE) in distributional form, see (4.8), which
allows us to recover a semimartingale structure and, thus, to implement an approach in
the spirit of Yamada�Watanabe.

To that end, we consider the evolution equation

∂u

∂t
(t, x) = ∆θu(t, x), t ∈ [0, T ], x ∈ R,

u(0, x) = δ0(x),
(4.10)

where the di�erential operator ∆θ is de�ned by

∆θ :=
2

(2 + θ)2
∂

∂x
|x|−θ ∂

∂x
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for some constant θ > 0. It can be seen that the following densities solve (4.10):

pθt (x) := cθt
− 1

2+θ e−
|x|2+θ

2t , t ∈ [0, T ], x ∈ R. (4.11)

Since
∫∞
0 pθt (x) dx is independent of t ∈ (0, T ], one can verify that if we choose the constant

cθ := (2 + θ)2−
1

2+θΓ

(
1

2 + θ

)−1

, (4.12)

where Γ denotes the Gamma function, then pθt de�nes a probability density on R+. The
reason, why we consider (4.10), is that by the choice of θ > 0 such that

α =
1

2 + θ
,

we get that for x = 0 the solution pθt−s(0) represents the kernel in the SVE (4.2) up to a
constant. Therefore, we obtain the following lemma.

Lemma 4.6. Every strong Lp-solution (Xt)t∈[0,T ] of the SVE (4.2) de�nes an a.s. con-
tinuous strong solution (X(t, x))t∈[0,T ],x∈R of

X(t, x) = x0(t) +

∫ t

0
pθt−s(x)µ(s,X(s, 0)) ds (4.13)

+

∫ t

0
pθt−s(x)σ(s,X(s, 0)) dBs, t ∈ [0, T ], x ∈ R,

i.e., on the probability space (Ω,F , (Ft)t∈[0,T ],P), there is a random �eld (X(t, x))t∈[0,T ],x∈R
such that X ∈ C([0, T ]×R) a.s., (X(t, x))t∈[0,T ] is (Ft)-progressively measurable for x ∈ R,∫ t

0

(
|pθt−s(x)µ(s,X(s, 0))|+ |pθt−s(x)σ(s,X(s, 0))|2

)
ds <∞

and (4.13) holds a.s. Conversely, every strong solution of (4.13) de�nes a strong solution
of the stochastic Volterra equation (4.2).

Proof. First, we assume that there is a solution Y of the SVE

Yt = x0(t) +

∫ t

0
pθt−s(0)µ(s, Ys) ds+

∫ t

0
pθt−s(0)σ(s, Ys) dBs.

We de�ne, for t ∈ [0, T ], x ∈ R,

X(t, x) := x0(t) +

∫ t

0
pθt−s(x)µ(s, Ys) ds+

∫ t

0
pθt−s(x)σ(s, Ys) dBs.

Then, by obtaining X(t, 0) = Yt, X solves

X(t, x) = x0(t) +

∫ t

0
pθt−s(x)µ(s,X(s, 0)) ds+

∫ t

0
pθt−s(x)σ(s,X(s, 0)) dBs.
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4. Pathwise uniqueness for the fractional SVE

By the adaptedness of the Itô integral and the Riemann�Stieltjes integral, (X(t, x))t∈[0,T ]

is (Ft)-progressively measurable for every x ∈ R. By the continuity of pθt (x), X(t, x) is
continuous in x-direction. By the continuity of the initial condition x0 and the integrals,
it is also continuous in t-direction.
Conversely, if X = (X(t, x))t∈[0,T ],x∈R solves (4.13), Yt := X(t, 0) is a solution of (4.2).

Due to the transformation of the SVE (4.2) into the SPDE (4.13), we shall study continuous
solutions X ∈ C([0, T ] × R) of the SPDE (4.13) instead of solutions to the SVE (4.2)
directly. The next goal is to derive a regularity result for solutions of the SPDE (4.13).
For this purpose, we �rst investigate the densities pθt . We introduce some auxiliary lemmas,
which are helpful for a better understanding of the densities pθt , and skip the dependence
on θ by writing

pt(x) := ct−αe−
|x|

1
α

2t for a �xed α ∈ (0, 1/2).

Lemma 4.7. For any x, y ∈ R, t ∈ [0, T ] and β ∈ [0, 1], one has

|pt(x)− pt(y)| ≲ t−α

(
|x− y|
t

)β

max(|x|, |y|)(
1
α
−1)β.

Proof. First, let us �x t ∈ [0, T ] and consider the function x 7→ e−
|x|1/α

2t . By applying the
mean value theorem and assuming w.l.o.g. |y| < |x|, we obtain, for some z ∈ [|y|, |x|],

e−
|x|

1
α

2t − e−
|y|

1
α

2t

|x| − |y|
= −z

1
α
−1

2tα
e−

z1/α

2t ,

which reveals that ∣∣∣∣e− |x|
1
α

2t − e−
|y|

1
α

2t

∣∣∣∣ ≤ |x− y|
2tα

|x|
1
α
−1. (4.14)

Using inequality (4.14) and β ∈ [0, 1], we bound

|pt(x)− pt(y)| ≲ t−α

∣∣∣∣e− |x|
1
α

2t − e−
|y|

1
α

2t

∣∣∣∣β ≲ t−α

(
|x− y|
t

)β

max(|x|, |y|)(
1
α
−1)β.

Corollary 4.8. For any x, y ∈ [−1, 1], t ∈ [0, T ] and β ∈ (0, 1− α), one has∫ t

0
|ps(x)− ps(y)|ds ≲ |x− y|β.

Proof. By Lemma 4.7, we see that∫ t

0
|ps(x)− ps(y)|ds ≲

∫ t

0
s−α

(
|x− y|
s

)β

max(|x|, |y|)(
1
α
−1)β ds

≲ |x− y|β
∫ t

0
s−α−β ds ≲ |x− y|β.
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Lemma 4.9. For any 0 < t < t′ ≤ T and x ∈ R, one has∫ t

0
(pt′−s(x)− pt−s(x))

2 ds ≲ |t′ − t|1−2α.

Proof. We assume w.l.o.g. that t′ − t ≤ t and use the linearity of the integral together
with |e−x| ≤ 1 for non-negative x to get∫ t

0
|pt′−s(x)− pt−s(x)|2 ds ≲

∫ t

t−|t′−t|
|(t′ − s)−α − (t− s)−α|2 ds

+

∫ t−|t′−t|

0
|pt′−s(x)− pt−s(x)|2 ds

≲
∫ t

t−|t′−t|
(t− s)−2α ds

+

∫ t−|t′−t|

0
|(t− s)−α − (t′ − s)−α|2e−

|x|
1
α

2(t−s) ds

+

∫ t−|t′−t|

0
(t′ − s)−2α

∣∣∣∣e− |x|
1
α

2(t−s) − e
− |x|

1
α

2(t′−s)

∣∣∣∣ds
=: I1 + I2 + I3.

For I1, we directly compute

I1 =

[
−(t− s)1−2α

1− 2α

]t
t−|t′−t|

≲ |t′ − t|1−2α.

For I2, we use |a− b|2 ≤ a2 − b2 for a > b to bound

I2 ≤
∫ t−|t′−t|

0
(t− s)−2α ds−

∫ t−|t′−t|

0
(t′ − s)−2α ds

=

[
−(t− s)1−2α

1− 2α

]t−|t′−t|

0

−
[
−(t′ − s)1−2α

1− 2α

]t−|t′−t|

0

≲ |t′ − t|1−2α.

For I3, we use the mean value theorem for the function t 7→ e
− |x|

1
α

2(t−s) , similarly as we did
in (4.14), to get the inequality∣∣∣∣e− |x|

1
α

2(t−s) − e
− |x|

1
α

2(t′−s)

∣∣∣∣ ≤ (t′ − t)
|x|

1
α

2(t− s)2
e
− |x|

1
α

2(t′−s) .

Using this and the inequality e−x ≤ x−1 for all x ≥ 0, such as t′−t
t−s ≤ 1 and t′−s

t−s ≤ 2(t−s)
t−s =
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4. Pathwise uniqueness for the fractional SVE

2 due to s ≤ t− |t′ − t|, we get

I3 ≤ (t′ − t)

∫ t−|t′−t|

0
(t− s)−2α

(
|x|

1
α

2(t− s)2
e
− |x|

1
α

2(t′−s)

)
ds

≲
∫ t−|t′−t|

0
(t− s)−2α (t

′ − t)(t′ − s)

(t− s)2
ds

≲
∫ t−|t′−t|

0
(t− s)−2α ds ≲ |t′ − t|1−2α,

which yields the statement.

Lemma 4.10. For any x, y ∈ [−1, 1], t ∈ [0, T ] and β ∈ (0, 12 − α), one has∫ t

0
(pt−s(x)− pt−s(y))

2 ds ≲ max
(
|x|, |y|

)( 1
α
−1)2β|x− y|1−2α.

Proof. W.l.o.g. we may assume t ≥ |x− y| and split the integral into∫ t

0
(pt−s(x)− pt−s(y))

2 ds ≤
∫ t−|x−y|

0
(pt−s(x)− pt−s(y))

2 ds

+

∫ t

t−|x−y|
(pt−s(x)− pt−s(y))

2 ds

=: I1 + I2.

For I1, we apply Lemma 4.7 with β = 1 to get

I1 ≲ max(|x|, |y|)(
1
α
−1)2

∫ t−|x−y|

0
|x− y|2(t− s)−2α−2 ds

= max(|x|, |y|)(
1
α
−1)2|x− y|2

[
−(t− s)1−2α−2

1− 2α− 2

]t−|x−y|

0

≲ max(|x|, |y|)(
1
α
−1)2|x− y|2

(
t−2α−1 + |x− y|−2α−1

)
≲ max(|x|, |y|)(

1
α
−1)2β|x− y|1−2α

with t ≥ |x− y|.
For I2, Lemma 4.7 again, but with β ∈ (0, 1/2− α) such that 2α+ 2β < 1, yields

I2 ≲ max(|x|, |y|)(
1
α
−1)2β|x− y|2β

∫ t

t−|x−y|
(t− s)−2α−2β ds

≲ max(|x|, |y|)(
1
α
−1)2β|x− y|2β

[
−(t− s)1−2α−2β

1− 2α− 2β

]t
t−|x−y|

≲ max(|x|, |y|)(
1
α
−1)2β|x− y|2β|x− y|1−2α−2β

≲ max(|x|, |y|)(
1
α
−1)2β|x− y|1−2α.
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With these auxiliary results at hand, we are ready to prove the following regularity result
for solutions of the SPDE (4.13).

Proposition 4.11. Suppose Assumption 4.1 and let X ∈ C([0, T ]×R) be a strong solution
of the SPDE (4.13).

(i) For any p ∈ (0,∞), one has

sup
t∈[0,T ]

sup
x∈R

E[|X(t, x)|p] <∞.

(ii) We de�ne the random �eld (Z(t, x))t∈[0,T ],x∈R by

Z(t, x) := X(t, x)− x0(t)

=

∫ t

0
pθt−s(x)µ(s,X(s, 0)) ds+

∫ t

0
pθt−s(x)σ(s,Xs(s, 0)) dBs.

For any 0 ≤ t, t′ ≤ T , |x|, |y| ≤ 1 and p ∈ [2,∞), we get

E
[
|Z(t, x)− Z(t′, y)|p

]
≲ |t′ − t|(

1
2
−α)p + |x− y|(

1
2
−α)p.

Proof. (i) Let us assume that p ≥ 2. For p ∈ (0, 2), the statement then follows by the
orderedness of the Lp-spaces. From Lemma 4.6 we know that Yt := X(t, 0) is a solution of
the SVE (4.2) and from Lemma 4.5 we know that its moment are �nite. Thus, applying
Hölder's and the Burkholder�Davis�Gundy inequality, the linear growth condition on µ
and σ from Assumption 4.1, such as Lemma 4.5, we get

E[|X(t, x)|p] ≲ 1 + E
[∣∣∣∣ ∫ t

0
pθt−s(x)µ(s, Ys) ds

∣∣∣∣p]+ E
[∣∣∣∣ ∫ t

0
pθt−s(x)σ(s, Ys) dBs

∣∣∣∣p]
≲ 1 +

(∫ t

0

(
pθt−s(x)

)2
ds

) p
2

+

(∫ t

0

(
pθt−s(x)

)2
ds

) p
2

≲ 1 +

(∫ t

0
c2θ(t− s)−2αe

−2
|x|2+θ

2(t−s) ds

) p
2

≲ 1 +

(∫ t

0
(t− s)−2α ds

) p
2

<∞.

(ii) With

Z(t, x) =

∫ t

0
pθt−s(x)µ(s,X(s, 0)) ds+

∫ t

0
pθt−s(x)σ(s,Xs(s, 0)) dBs
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4. Pathwise uniqueness for the fractional SVE

and by splitting the integrals, we get

|Z(t′, x)− Z(t, y)|

=

∫ t

0

(
pθt′−s(x)− pθt−s(x)

)
µ(s,X(s, 0)) ds+

∫ t

0

(
pθt−s(x)− pθt−s(y)

)
µ(s,X(s, 0)) ds

+

∫ t′

t
pθt′−s(x)µ(s,X(s, 0)) ds

+

∫ t

0

(
pθt′−s(x)− pθt−s(x)

)
σ(s,X(s, 0)) dBs +

∫ t

0

(
pθt−s(x)− pθt−s(y)

)
σ(s,X(s, 0)) dBs

+

∫ t′

t
pθt′−s(x)σ(s,X(s, 0)) dBs

=: D1 +D2 +D3 + S1 + S2 + S3.

We use Lemma 4.9, Lemma 4.10, Hölder's and the Burkholder�Davis�Gundy inequality,
Fubini's theorem as well as (i) to get the following estimates:

E[|D1|p] ≤
(∫ t

0

(
pθt′−s(x)− pθt−s(x)

)2
ds

) p
2

≲ |t′ − t|p(
1
2
−α),

E[|S1|p] ≤
(∫ t

0

(
pθt′−s(x)− pθt−s(x)

)2
ds

) p
2

≲ |t′ − t|p(
1
2
−α),

E[|D2|p] ≤
(∫ t

0

(
pθt−s(x)− pθt−s(y)

)2
ds

) p
2

≲ |x− y|p(
1
2
−α),

E[|S2|p] ≲ |x− y|p(
1
2
−α),

E[|D3|p] ≤
(∫ t′

t
pθt′−s(x)

2 ds

) p
2

≲

(∫ t′

t
(t′ − s)−2α ds

) p
2

≲ |t′ − t|p(
1
2
−α),

E[|S3|p] ≲ |t′ − t|p(
1
2
−α).

Hence, we obtain the desired statement.

4.3.1 Transformation to an SPDE in distributional form

The next aim is to transform the SPDE (4.13) into an SPDE in distributional form. To that
end, we want to derive explicit formulas for the fundamental solution pθ : [0, T ]×R×R → R
of (4.10), in the sense that for any g : R → R,

( ∫
R p

θ
t (x, y)g(y) dy

)
t∈[0,T ],x∈R is a solution

of (4.10) with initial condition g instead of δ0.
The semigroup (St)t∈[0,T ] generated by ∆θ is de�ned by St : C∞

0 (R) → C∞
0 (R) via

Stϕ(x) :=

∫
R
pθt (x, y)ϕ(y) dy, ϕ ∈ C∞

0 (R). (4.15)
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First, we only consider x ∈ R+ and, hence, search for the fundamental solutions of

∂u

∂t
(t, x) = ∆θu(t, x), u(0, x) = δ0(x), t ∈ [0, T ], x ∈ R+, (4.16)

where ∆θ := 2
(2+θ2)

∂
∂x |x|

−θ ∂
∂x . We will later, more precisely in Proposition 4.14 below,

allow for [0, T ]× R as the domain of (4.16).

As preparations we need:

� A squared Bessel process Zt ≥ 0 of dimension n ∈ R is given by the stochastic
di�erential equation

dZt = 2
√
Zt dBt + n dt, t ∈ [0, T ].

� The generator of a squared Bessel process of dimension n is given by

(Lf)(x) = n
∂

∂x
f(x) + 2x

∂2

∂x2
f(x), x ∈ R+, (4.17)

for f ∈ C∞
0 (R+), see [RY99, page 443].

� The semigroup (St)t∈[0,T ], de�ned in (4.15), ful�lls

∂

∂t
(Stf) = ∆θ(Stf) (4.18)

for f ∈ C∞
0 (R+), since pθ is the fundamental solution of (4.16).

� Denote by (ξt)t∈[0,T ] the Markov process that is generated by the semigroup St, that
is, it has the transition densities (pθt )t∈[0,T ]. We de�ne the semigroup (Tt)t∈[0,T ] by

(Ttg)(x) := (St(g ◦ f̃))(x) = Ex[g(f̃(ξt))]

for the �xed function f̃(x) := |x|2+θ and for g ∈ C∞
0 (R+).

Lemma 4.12. The process (|ξt|2+θ)t∈[0,T ] is a squared Bessel process of dimension 2
2+θ <

1.

Proof. We show that the generator of f̃(ξt) is the same as the one of the squared Bessel
process in (4.17) with dimension 2

2+θ . Therefore, we use the semigroup Tt and denote by
G its generator. For appropriate functions g we get, by the de�nition of the generator and
by (4.18),

(Gg)(x) =
∂

∂t
(Ttg)|t→0(x) =

∂

∂t
(St(g ◦ f̃))|t→0(x) = ∆θS0(g ◦ f̃)(x)

= ∆θ(g ◦ f̃)(x).
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4. Pathwise uniqueness for the fractional SVE

Note that the set {t ∈ [0, T ] : ξt = 0} has Lebesque measure zero. Therefore, we can
explicitly calculate, for x ̸= 0,

(Gg)(x) =
2

(2 + θ)2
∂

∂x

(
|x|−θ ∂

∂x
(g(|x|2+θ))

)
=

2

(2 + θ)2
∂

∂x
(|x|−θg′(|x|2+θ)(2 + θ)|x|1+θ sgn(x))

=
2

(2 + θ)

∂

∂x
(xg′(|x|2+θ))

=
2

(2 + θ)
(g′(|x|2+θ) + xg′′(|x|2+θ)(2 + θ)|x|1+θ sgn(x))

=
2

(2 + θ)

∂g

∂x
(|x|2+θ) + 2|x|2+θ ∂g

2

∂x2
(|x|2+θ)

= (Lg)(u),

where L is the generator of a squared Bessel process of dimension 2
2+θ and u := |x|2+θ.

Next, we want to �nd explicit formulas for the transition densities of (ξt)t∈[0,T ]. Note that
the transition densities for the squared Bessel process of dimension n are for t > 0 and
y > 0 given by (see e.g. [RY99, Corollary XI.1.4])

qnt (x, y) =
1

2t

(
y

x

) ν
2

e−
x+y
2t Iν

(√
xy

t

)
for x > 0 and (4.19)

qnt (0, y) = 2−νt−(ν+1)Γ(ν + 1)−1y2ν+1e−
y2

2t , (4.20)

where ν := n
2 − 1 denotes the index of the Bessel process and Iν is the modi�ed Bessel

function that is given by

Iν(x) :=
∞∑
k=0

(x/2)2k+ν

k!Γ(ν + k + 1)
(4.21)

for ν ≥ −1 and x > 0.

Lemma 4.13. The transition densities of the Markov process (|ξt|)t∈[0,T ] are, for t > 0,
given by

pθt (x, y) =
(2 + θ)

2t
|xy|

(1+θ)
2 e−

|x|2+θ+|y|2+θ

2t Iν

(
|xy|1+

θ
2

t

)
for x, y > 0, (4.22)

and for x = 0, y > 0 with pθt (0, y) = pθt (y) de�ned in (4.11).

Proof. Denote for �xed θ > 0 by qt the density function of the Bessel process |ξt|2+θ with
dimension 2

2+θ , that is given by (4.19) with ν = 1
2+θ − 1.

Now, by noting that, for all x, t, s > 0 and Borel sets A ⊂ B(R+),

E
[
1A(|ξt+s|2+θ)|ξt+s|2+θ

∣∣∣ |ξt|2+θ = x
]
= E

[
1A(|ξt+s|2+θ)|ξt+s|2+θ

∣∣∣ |ξt| = x
1

2+θ

]
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holds, we get with the notation B := {b ∈ R+ : b2+θ ∈ A} the relation∫
A
qt(x, y)y dy =

∫
B
pθt

(
x

1
2+θ , y

)
y2+θ dy

=
1

2 + θ

∫
A
pθt

(
x

1
2+θ , z

1
2+θ

)
z z

1
2+θ

−1 dz

=
1

2 + θ

∫
A
pθt

(
x

1
2+θ , y

1
2+θ

)
y

1
2+θ

−1y dy, (4.23)

where we substituted z := y2+θ and thus dy = 1
2+θz

1
2+θ

−1 dz. Since (4.23) must hold for
all Borel sets A, we can compare both sides of the equation to see with the notation

x̂ := x
1

2+θ and ŷ := y
1

2+θ

that, with ν = 1
2+θ − 1 = −(1+θ

2+θ ),

pθt (x̂, ŷ) = (2 + θ)qt

(
x̂2+θ, ŷ2+θ

)
y1−

1
2+θ

=
(2 + θ)

2t

∣∣∣∣ ŷx̂
∣∣∣∣
(2+θ)ν

2

e−
|x̂|2+θ+|ŷ|2+θ

2t Iν

(
|x̂ŷ|1+

θ
2

t

)
|ŷ|1+θ

=
(2 + θ)

2t

∣∣∣∣ ŷx̂
∣∣∣∣−

(1+θ)
2

e−
|x̂|2+θ+|ŷ|2+θ

2t Iν

(
|x̂ŷ|1+

θ
2

t

)
|ŷ|1+θ

=
(2 + θ)

2t
|x̂ŷ|

(1+θ)
2 e−

|x̂|2+θ+|ŷ|2+θ

2t Iν

(
|x̂ŷ|1+

θ
2

t

)
.

By a very similar calculation, (4.20) can be used to derive (4.11) in the case of x = 0:∫
B
qθt (0, y)y dy =

∫
A
qθt (0, z

1+θ/2)zθ/2(1 + θ/2)z1+θ/2 dz

= (1 + θ/2)2
1+θ
2+θΓ(ν + 1)−1

∫
A
t−(ν+1)z−θ/2e−

|z|2+θ

2t zθ/2z1+θ/2 dz

= (2 + θ)2−
1

2+θΓ

(
1

2 + θ

)−1 ∫
A
t−

1
2+θ e−

|z|2+θ

2t z1+θ/2 dz

=

∫
A
pθt (0, z)z

1+θ/2 dz

with pθt (0, z) = pθt (z) as in (4.11) and choosing cθ as in (4.12).

We can de�ne the fundamental solution pθ also for negative x, y to extend the domain of
∆θu = ∂

∂tu to the domain [0, T ]× R.

Proposition 4.14. Consider (4.10) on the domain [0, T ]×R. Then, if we de�ne pθt (x, y)
as in (4.22) also for x, y < 0, then pθ is still a fundamental solution.
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4. Pathwise uniqueness for the fractional SVE

Proof. Assume pθt (x, y) to be de�ned as in (4.22) also for negative x, y. Due to the absolute
values in pθt , it is clear that

∂

∂t
pθt (x, y) =

∂

∂t
pθt (−x, y) =

∂

∂t
pθt (−x,−y) =

∂

∂t
pθt (x,−y).

Similarly, due to the 2nd derivative, we get in the space dimension

∂

∂x
|x|−θ ∂

∂x
g(|x|) = ∂

∂x
|x|−θ sgn(x)g′(|x|) = −θ|x|−θ−1g′(|x|) + |x|−θg′′(|x|)

for all su�ciently smooth functions g and thus, where ∆θ acts w.r.t. x,

∆θ

∫
R
pθt (−x, y)g(y) dy =

∫
R
∆θp

θ
t (x, y)g(y) dy

=
∂

∂t

∫
R
pθt (x, y)g(y) dy =

∂

∂t

∫
R
pθt (−x, y)g(y) dy,

and analogue for the second variable. Hence, pθ(x, y) also de�nes a fundamental solution
of (4.10) if we allow negative x.

Let us introduce a partial integration formula for the operator ∆θ.

Lemma 4.15. For ∆θ =
2

(2+θ)2
∂
∂x |x|

−θ ∂
∂x , the partial integration formula∫

R
pt(x, y)∆θϕ(x) dx =

∫
R

(
∆θpt(x, y)

)
ϕ(x) dx, t ∈ [0, T ], y ∈ R,

holds for any ϕ ∈ C2
0 (R).

Proof. Denoting ϕ2,t(x) := |x|−θ ∂
∂xϕ(x), then ϕ2,t has also compact support and we get,

by the classical partial integration formula,∫
R
pt(x, y)

∂

∂x
|x|−θ ∂

∂x
ϕ(x) dx =

∫
R
pt(x, y)

∂

∂x
ϕ2,t(x) dx

= −
∫
R

∂

∂x
pt(x, y)ϕ2,t(x) dx = −

∫
R

(
∂

∂x
pt(x, y)

)
|x|−θ ∂

∂x
ϕ(x) dx.

Then, again by partial integration, we get, as claimed,∫
R
pt(x, y)

∂

∂x
|x|−θ ∂

∂x
ϕ(x) dx =

∫
R

∂

∂x

((
∂

∂x
pt(x, y)

)
|x|−θ

)
ϕ(x) dx.

With these auxiliary results at hand, we are in a position to do the transformation into
an SPDE in distributional form. We consider test functions Φ ∈ C2

0 ([0, T ]× R), to which
we can apply the operator ∆θ such that

∆θΦt(x) =
∂

∂x
|x|−θ ∂

∂x
Φt(x)

is well-de�ned for all t ∈ [0, T ] and x ∈ R \ {0}.
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Lemma 4.16. Every strong solution (X(t, x))t∈[0,T ],x∈R of (4.13) is a strong solution to
the following SPDE in distributional form∫

R
X(t, x)Φt(x) dx

=

∫
R

(
x0Φ0(x) +

∫ t

0
Φs(x)

∂

∂s
x0(s) ds

)
dx

+

∫ t

0

∫
R
X(s, x)

(
∆θΦs(x) +

∂

∂s
Φs(x)

)
dx ds

+

∫ t

0
µ(s,X(s, 0))Φs(0) ds+

∫ t

0
σ(s,X(s, 0))Φs(0) dBs, t ∈ [0, T ],

(4.24)

for every test function Φ ∈ C2
0 ([0, T ]× R).

Proof. Let X be a solution to (4.13) and Φ be as in the statement. We �rst observe that

∫ t

0
⟨X(s, ·),∆θΦs⟩ ds

=

∫ t

0

∫
R
x0(s)∆θΦs(x) dx ds+

∫ t

0

∫
R

∫ s

0
pθs−u(x)σ(u,X(u, 0)) dBu∆θΦs(x) dx ds

+

∫ t

0

∫
R

∫ s

0
pθs−u(x)µ(u,X(u, 0)) du∆θΦs(x) dx ds

=: I1 + I2 + I3. (4.25)

Use the fact that pθs(x, ·) is a probability density to write x0(s) =
∫
R p

θ
s(x, y)x0(s) dy and

use Fubini's theorem, the partial integration formula from Lemma 4.15 and the fact that
pθt is a fundamental solution, to get

I1 =

∫ t

0

∫
R

∫
R
pθs(x, y)x0(s) dy∆θΦs(x) dx ds

=

∫ t

0
x0(s)

∫
R

∫
R
pθs(x, y)∆θΦs(x) dx dy ds

=

∫
R

∫
R

∫ t

0
x0(s)

(
∆θp

θ
s(x, y)

)
Φs(x) ds dy dx

=

∫
R

∫
R

∫ t

0

(
∂

∂s
pθs(x, y)

)
x0(s)Φs(x) dsdy dx.

We denote the summands on the right-hand side of (4.13) as Xi(t, x) for i = 2, 3, that is,
X(t, x) = x0 + X2(t, x) + X3(t, x). Due to the s-dependence in x0(s) and Φs, we apply
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4. Pathwise uniqueness for the fractional SVE

the product rule to get

I1 =

∫
R

∫
R

∫ t

0

∂

∂s

(
(x0(s)p

θ
s(x, y)Φs(x)

)
ds dy dx

−
∫
R

∫
R

∫ t

0
pθs(x, y)

∂

∂s

(
x0(s)Φs(x)

)
ds dy dx

= ⟨x0(t),Φt⟩ − ⟨x0(0),Φ0⟩

−
∫ t

0

∫
R
x0(s)

∂

∂s
Φs(x) dx ds−

∫ t

0

∫
R
Φs(x)

∂

∂s
x0(s) dx ds. (4.26)

Similarly, using the stochastic Fubini theorem, we get

I2 =

∫ t

0

∫
R

∫ s

0
pθs−u(x)σ(u,X(u, 0)) dBu∆θΦs(x) dx ds

=

∫ t

0

∫
R

∫ t

u

(
∂

∂s
pθs−u(x)

)
Φs(x) ds dxσ(u,X(u, 0)) dBu

=

∫ t

0

∫
R

∫ t

u

∂

∂s

(
pθs−u(x)Φs(x)

)
ds dxσ(u,X(u, 0)) dBu

−
∫ t

0

∫
R

∫ t

u
pθs−u(x)

(
∂

∂s
Φs(x)

)
ds dxσ(u,X(u, 0)) dBu

= ⟨X2(t, ·),Φt⟩ −
∫ t

0

∫
R
pθ0(x, 0)Φu(x) dxσ(u,X(u, 0)) dBu

−
∫ t

0

∫
R

∫ s

0
pθs−u(x)σ(u,X(u, 0)) dBu

(
∂

∂s
Φs(x)

)
dx ds

= ⟨X2(t, ·),Φt⟩ −
∫ t

0
Φu(0)σ(u,X(u, 0)) dBu

−
∫ t

0

∫
R
X2(s, x)

(
∂

∂s
Φs(x)

)
dx ds (4.27)

and

I3 =

∫ t

0

∫
R

∫ s

0
pθs−u(x)µ(u,X(u, 0)) du∆θΦs(x) dx ds

=

∫ t

0

∫
R

∫ t

u

∂

∂s

(
pθs−u(x)Φs(x)

)
dsdxµ(u,X(u, 0)) du

−
∫ t

0

∫
R

∫ t

u
pθs−u(x)

(
∂

∂s
Φs(x)

)
ds dxµ(u,X(u, 0)) du

= ⟨X3(t, ·),Φt⟩ −
∫ t

0
Φu(0)µ(u,X(u, 0)) du

−
∫ t

0

∫
R
X3(s, x)

(
∂

∂s
Φs(x)

)
dx ds. (4.28)
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Plugging (4.26), (4.27) and (4.28) into (4.25) and rearranging the terms yields

⟨X(t, ·),Φt⟩ =
∫
R

(
x0(0)Φ0(x) +

∫ t

0
Φs(x)

∂

∂s
x0(s) ds

)
dx

+

∫ t

0

∫
R
X(s, x)

(
∆θΦs(x) +

∂

∂s
Φs(x)

)
dx ds

+

∫ t

0
µ(s,X(s, 0))Φs(0) ds+

∫ t

0
σ(s,X(s, 0))Φs(0) dBs,

for t ∈ [0, T ], which shows that (4.24) holds.

We summarize the �ndings of Step 1 in the following proposition.

Proposition 4.17. Every strong Lp-solution (Xt)t∈[0,T ] to the stochastic Volterra equa-
tion (4.2) with p given by (4.6) generates a strong solution (Xt)t∈[0,T ],x∈R, as de�ned
in (4.7), to the distributional SPDE (4.24) with X ∈ C([0, T ] × R) a.s. Furthermore,
supt∈[0,T ],x∈R E[|X(t, x)|q] < ∞ for all q ∈ (0,∞) and, for Z(t, x) := X(t, x) − x0(t) and
q ∈ [2,∞),

E[|Z(t, x)− Z(t′, x′)|q] ≲ |t′ − t|(
1
2
−α)q + |x− x′|(

1
2
−α)q,

for all t, t′ ∈ [0, T ] and x, x′ ∈ [−1, 1].

Proof. The implication of the solution to (4.24) by the one to (4.2) is given by Lemma 4.6
and Lemma 4.16, the continuity by Lemma 4.6 and the remaining properties by Proposi-
tion 4.11.

4.4 Step 2 and 3: Implementing Yamada�Watanabe's ap-

proach

The next steps are to use the classical approximation of the absolute value function in-
troduced by Yamada�Watanabe [YW71], allowing us to apply Itô's formula. Recall that,
by Assumption 4.1 (ii), σ is ξ-Hölder continuous for some ξ ∈ [12 , 1]. Hence, there exists a
strictly increasing function ρ : [0,∞) → [0,∞) such that ρ(0) = 0,

|σ(t, x)− σ(t, y)| ≤ Cσ|x− y|ξ ≤ ρ(|x− y|) for t ∈ [0, T ] and x, y ∈ R

and ∫ ε

0

1

ρ(x)2
dx = ∞ for all ε > 0.

Based on ρ, we de�ne a sequence (ϕn)n∈N of functions mapping from R to R that ap-
proximates the absolute value in the following way: Let (an)n∈N be a strictly decreasing
sequence with a0 = 1 such that an → 0 as n→ ∞ and∫ an−1

an

1

ρ(x)2
dx = n. (4.29)
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4. Pathwise uniqueness for the fractional SVE

Furthermore, we de�ne a sequence of molli�ers: let (ψn)n∈N ∈ C∞
0 (R) be smooth functions

with compact support such that supp(ψn) ⊂ (an, an−1),

0 ≤ ψn(x) ≤
2

nρ(x)2
≤ 2

nx
, x ∈ R, and

∫ an−1

an

ψn(x) dx = 1. (4.30)

We set

ϕn(x) :=

∫ |x|

0

(∫ y

0
ψn(z) dz

)
dy, x ∈ R. (4.31)

By (4.30) and the compact support of ψn, it follows that ϕn(·) → |· | uniformly as n→ ∞.
Since every ψn and, thus, every ϕn is zero in a neighborhood around zero, the functions ϕn
are smooth with

∥ϕ′n∥∞ ≤ 1, ϕ′n(x) = sgn(x)
∫ |x|

0
ψn(y) dy and ϕ′′n(x) = ψn(|x|), for x ∈ R.

Let X1 and X2 be two strong solutions to the SPDE (4.24) for a given Brownian motion
(Bt)t∈[0,T ] such that X1, X2 ∈ C([0, T ]× R) a.s. We de�ne X̃ := X1 −X2 and consider,
for some Φm

x ∈ C2
0 (R) for �xed x ∈ R and m ∈ R+ (we will later de�ne m depending on n

and Φm
x is independent of t):

⟨X̃t,Φ
m
x ⟩ =

∫
R
X̃(t, y)Φm

x (y) dy,

where ⟨·, ·⟩ denotes the scalar product on L2(R).

Proposition 4.18. For a �xed x ∈ R and m ∈ R+, let Φ
m
x ∈ C2

0 (R) be such that ∆θΦ
m
x

is well-de�ned. Then, for t ∈ [0, T ], one has

ϕn(⟨X̃t,Φ
m
x ⟩) =

∫ t

0
ϕ′n(⟨X̃s,Φ

m
x ⟩)⟨X̃s,∆θΦ

m
x ⟩ ds

+

∫ t

0
ϕ′n(⟨X̃s,Φ

m
x ⟩)Φm

x (0)(µ(s,X1(s, 0))− µ(s,X2(s, 0))) ds

+

∫ t

0
ϕ′n(⟨X̃s,Φ

m
x ⟩)Φm

x (0)(σ(s,X1(s, 0))− σ(s,X2(s, 0))) dBs

+
1

2

∫ t

0
ψn(|⟨X̃s,Φ

m
x ⟩|)Φm

x (0)2(σ(s,X1(s, 0))− σ(s,X2(s, 0)))2 ds.

(4.32)

Proof. By (4.24), (⟨X̃t,Φ
m
x ⟩)t∈[0,T ] is a semimartingale. Therefore, we are able to apply

Itô's formula to ϕn, which yields the result.

Note that (4.32) de�nes a function in x. We want to integrate this against another non-
negative test function with the following properties.
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Assumption 4.19. Let Ψ ∈ C2([0, T ]× R) be twice continuously di�erentiable such that

(i) Ψt(0) > 0 for all t ∈ [0, T ],

(ii) Γ(t) := {x ∈ R : ∃s ≤ t s.t. |Ψs(x)| > 0} ⊂ B(0, J(t)) for some 0 < J(t) <∞,

(iii)

sup
s≤t

∣∣∣∣ ∫
R
|x|−θ

(
∂Ψs(x)

∂x

)2

dx

∣∣∣∣ <∞, t ∈ [0, T ].

We will later choose an explicit function Ψ and show that it ful�lls Assumption 4.19. Then,
we get the following equality, where the extra term Im,n

5 arises due to the t-dependence
of Ψ.

Proposition 4.20. For Ψ ful�lling Assumption 4.19, we have

⟨ϕn(⟨X̃t,Φ
m
· ⟩),Ψt⟩

=

∫ t

0
⟨ϕ′n(⟨X̃s,Φ

m
· ⟩)⟨X̃s,∆θΦ

m
· ⟩,Ψs⟩ds

+

∫ t

0
⟨ϕ′n(⟨X̃s,Φ

m
· ⟩)Φm

· (0),Ψs⟩(µ(s,X1(s, 0))− µ(s,X2(s, 0))) ds

+

∫ t

0
⟨ϕ′n(⟨X̃s,Φ

m
· ⟩)Φm

· (0),Ψs⟩(σ(s,X1(s, 0))− σ(s,X2(s, 0))) dBs

+
1

2

∫ t

0
⟨ψn(|⟨X̃s,Φ

m
· ⟩|)Φm

· (0)2,Ψs⟩(σ(s,X1(s, 0))− σ(s,X2(s, 0)))2 ds

+

∫ t

0
⟨ϕn(⟨X̃s,Φ

m
· ⟩), Ψ̇s⟩ ds

=: Im,n
1 (t) + Im,n

2 (t) + Im,n
3 (t) + Im,n

4 (t) + Im,n
5 (t), (4.33)

for t ∈ [0, T ], where Ψ̇s(x) :=
∂
∂sΨs(x).

Proof. We discretize Ψt(x) in its time variable, then let the grid size go to zero and show
that the resulting term converges to (4.33). Therefore, let ti = i2−k, i = 0, 1, . . . , ⌊t2k⌋+
1 =: Kk

t , where ⌊·⌋ denotes rounding down to the next integer, such that t⌊t2k⌋ ≤ t < tKk
t
,

and denote

Ψk
t (x) := 2k

∫ ti

ti−1

Ψs(x) ds, t ∈ [ti−1, ti), x ∈ R. (4.34)

Then, we can build the telescope sum

⟨ϕn(⟨X̃t,Φ
m
· ⟩),Ψt⟩ =

Kk
t∑

i=1

⟨ϕn(⟨X̃ti ,Φ
m
· ⟩),Ψk

ti⟩ − ⟨ϕn(⟨X̃ti−1 ,Φ
m
· ⟩),Ψk

ti−1
⟩

− ⟨ϕn(⟨X̃t
Kk

t

,Φm
· ⟩),Ψk

t
Kk

t

⟩+ ⟨ϕn(⟨X̃t,Φ
m
· ⟩),Ψt⟩. (4.35)
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4. Pathwise uniqueness for the fractional SVE

By the continuity of X̃, Ψ and ϕn, the sum of the last two terms approaches zero as
tKk

t
→ t and thus as k → ∞.

For the terms in the summation, we use the continuity of X̃ and the notation f(ti−) :=
lim

s<ti,s→ti
f(s), to get the equality

⟨ϕn(⟨X̃ti ,Φ
m
· ⟩),Ψk

ti⟩ = ⟨ϕn(⟨X̃ti−,Φ
m
· ⟩),Ψk

ti−⟩+ ⟨ϕn(⟨X̃ti ,Φ
m
· ⟩),Ψk

ti −Ψk
ti−1

⟩.

By plugging this into (4.35), we get

⟨ϕn(⟨X̃t,Φ
m
· ⟩),Ψt⟩ =

Kk
t∑

i=1

⟨ϕn(⟨X̃ti−,Φ
m
· ⟩),Ψk

ti−⟩ − ⟨ϕn(⟨X̃ti−1 ,Φ
m
· ⟩),Ψk

ti−1
⟩

+

Kk
t∑

i=1

⟨ϕn(⟨X̃ti ,Φ
m
· ⟩),Ψk

ti −Ψk
ti−1

⟩ =: Ak
t + Ck

t .

For Ak
t , we get, by applying Itô's formula, that

Ak
t =

Kt∑
i=1

⟨ϕn(⟨X̃ti ,Φ
m
· ⟩),Ψk

ti−1
⟩ − ⟨ϕn(⟨X̃ti−1 ,Φ

m
· ⟩),Ψk

ti−1
⟩

→ Im,n
1 (t) + Im,n

2 (t) + Im,n
3 (t) + Im,n

4 (t) as k → ∞,

by the continuity of Ψ.
Thus, it remains to show that Ck

t converges to Im,n
5 (t). To that end, we use the construc-

tion (4.34) and Fubini's theorem to conclude that

Ck
t =

Kk
t∑

i=1

〈
ϕn(⟨X̃ti ,Φ

m
· ⟩), 2k

∫ ti

ti−1

(Ψs −Ψs−2−k) ds

〉

=

Kk
t∑

i=1

〈
ϕn(⟨X̃ti ,Φ

m
· ⟩), 2k

∫ ti

ti−1

∫ s

s−2−k

Ψ̇r dr ds

〉

= 2k
Kk

t∑
i=1

∫ ti

ti−1

∫ s

s−2−k

⟨ϕn(⟨X̃ti ,Φ
m
· ⟩), Ψ̇r⟩dr ds

= 2k
Kk

t∑
i=1

∫ ti

ti−1

∫ s

s−2−k

⟨ϕn(⟨X̃ti ,Φ
m
· ⟩), Ψ̇r⟩ − ⟨ϕn(⟨X̃r,Φ

m
· ⟩), Ψ̇r⟩dr ds

+ 2k
Kk

t∑
i=1

∫ ti

ti−1

∫ s

s−2−k

⟨ϕn(⟨X̃r,Φ
m
· ⟩), Ψ̇r⟩dr ds.

The �rst summand can be bounded by∫ t

0
sup

u≤t,|u−r|≤2−k

∣∣⟨ϕn(⟨X̃u,Φ
m
· ⟩), Ψ̇r⟩ − ⟨ϕn(⟨X̃r,Φ

m
· ⟩), Ψ̇r⟩

∣∣ dr,

73



which converges to zero a.s. as k → ∞ by the continuity and boundedness of X̃. Further-
more, we get, by

2k
∫ s

s−2−k

⟨ϕn(⟨X̃r,Φ
m
· ⟩), Ψ̇r⟩dr → ⟨ϕn(⟨X̃s,Φ

m
· ⟩), Ψ̇s⟩ as k → ∞

and the dominated convergence theorem, that

Ck
t →

∫ t

0
⟨ϕn(⟨X̃s,Φ

m
· ⟩), Ψ̇s⟩ds as k → ∞,

which proves the proposition.

We will bound the expectation of the terms Im,n
1 to Im,n

5 as m,n→ ∞ in Section 4.5.

4.5 Step 4: Passing to the limit

Before we can pass to the limit in (4.33), we need to choose a sequence (Φm,n
x )n∈N of

smooth functions Φm,n
x ∈ C∞

0 (R) for some x ∈ R and for m ∈ R+, which approximates
the Dirac distribution δx explicitly. We will choose some m = m(n) dependent on the
index n of the Yamada�Watanabe approximation and, for notational simplicity, will skip
the m-dependence and shortly write (Φn

x)n∈N.

4.5.1 Explicit choice of the test function

We want to approximate with Φn
x a Dirac distribution centered around x ∈ R. There-

fore, we choose it to coincide with the sum of two Gaussian kernels with mean x and y,
respectively, and standard deviation m−1, when x and y are close. The reason for this
construction is that we want to keep the mass of Φ in B(0, 1

m(n) ) constant as n→ ∞. For
this purpose, we de�ne

Φ̃m
x (y) :=

1√
2πm−2

e−
(y−x)2

2m−2

and, to construct the compact support, let ψ̃m,n
x be smooth functions for n ∈ N and �xed

x ∈ R with

ψ̃m,n
x (y) :=

{
1, if y ∈ B(x, 1

m)
0, if y ∈ R \B(x, 1

m + bn)

and 0 ≤ ψ̃m,n
x (y) ≤ 1 for y elsewhere such that ψ̃m,n

x is smooth. Here, let (bn)n∈N be a
sequence such that bn > 0 and

µn

(
B

(
x,

1

m
+ bn

)
\B

(
x,

1

m

))
=
an
2
,

where µn(A) :=
∫
A Φ̃m

x (y) dy denotes the measure in terms of the above normal distribu-

tion and an := e−
n(n+1)

2 comes from the Yamada�Watanabe sequence. It is always possible
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4. Pathwise uniqueness for the fractional SVE

to �nd such a bn > 0 since the mass of Φ̃m
x in B(x, 1

m) is ≈ 0.6827, which is independent
of n, and an

2 < 0.3 for all n ∈ N.
Then, we de�ne

Φn
x(y) := c

(
ψ̃m,n
x (y)Φ̃m

x (y) + Φ̃m
y (x)ψ̃m,n

y (x)
)
, (4.36)

with c := 1/(2mσ), wheremσ ≈ 0.6827 denotes the mass of a normal distribution N (µ, σ2)
inside the interval [µ − σ, µ + σ]. With that choice of c, Φn

x approximates the Dirac
distribution δx around x as n → ∞. Note that Φn

x(y) is identical in terms of x and y.
Furthermore, Φn

x owes the following properties that we will need later. To that end, let us
introduce the following stopping time for K > 0:

TK := inf
t∈[0,T ]

{
sup

x∈[− 1
2
, 1
2
]

(|X1(t, x)|+ |X2(t, x)|) > K

}
, (4.37)

where we use the convention inf ∅ := ∞. Note that, by the continuity of X1 and X2,
TK → ∞ a.s. as K → ∞.

Proposition 4.21. For �xed x ∈ R, Φn
x, as de�ned in (4.36), ful�lls:

(i) ∆θ,xΦ
n
x(y) = ∆θ,yΦ

n
x(y) for all x, y ∈ R, where ∆θ,x denotes ∆θ acting on x;

(ii)
∫
RΦn

x(0)
2 dx ≲ m(n) for all n ∈ N;

(iii)
∫
RΦn

x(0) dx ≤ 2 for all n ∈ N;

(iv) for all (s, x) ∈ [0, T ]× R,

⟨X̃s,Φ
n
x⟩ → X̃(s, x) and ϕ′n(⟨X̃s,Φ

n
x⟩)⟨X̃s,Φ

n
x⟩ → |X̃(s, x)|, as n→ ∞;

(v) given s ∈ [0, TK ], there exists a constant CK > 0 that is independent from n, such
that, if ∣∣∣∣ ∫

R
X̃(s, y)Φn

x(y) dy

∣∣∣∣ ≤ an−1 (4.38)

holds, then there is some x̂ ∈ B(x, 1
m) such that |X̃(s, x̂)| ≤ CKan−1.

Proof. (i) This statement is clear since Φn
x is identical in x and y.

(ii) We denote c := 1√
2π

to get∫
R
Φn
x(0)

2 dx ≤
∫
R

(
cme−

|x|2

2m−2

)2

dx ≤ cm

∫
R
cme−

|x|2

2m−2 dx = cm.

(iii)
∫
RΦn

x(0) dx ≤ 2
∫
R Φ̃m

x (0) dx = 2.
(iv) From the construction of Φn

x we get that∫
R
X̃(s, y)Φn

x(y) dy →
∫
R
X̃(s, y)δx(y) dy = X̃(s, x) as n→ ∞.
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Furthermore, we know that ϕ′n(x)x → |x| as n → ∞ uniformly in x ∈ R and thus the
second statement follows.
(v) Let us write∫

R
X̃(s, y)Φn

x(y) dy =

∫
B(x, 1

m
)
X̃(s, y)Φn

x(y) dy +

∫
R\B(x, 1

m
)
X̃(s, y)Φn

x(y) dy. (4.39)

By the construction of ψ̃m,n
x we know that Φn

x vanishes outside the ball B(x, 1
m + bn), and,

by the choice of bn, we know that the mass of Φn
x in B(x, 1

m + bn) \ B(x, 1
m) is an−1/2.

Since we have that s ≤ TK , we can bound∣∣∣∣ ∫
R\B(x, 1

m
)
X̃(s, y)Φn

x(y) dy

∣∣∣∣ ≤ 2K

∫
R\B(x, 1

m
)
Φn
x(y) dy ≤ Kan−1.

Thus, by assumption and (4.39), we have that∣∣∣∣ ∫
B(x, 1

m
)
X̃(s, y)Φn

x(y) dy

∣∣∣∣ ≤ (K + 1)an−1,

and, since Φn
x is the sum of two Gaussian densities with standard deviation 1

m , we know
that its mass inside the ball is ≈ 2 · 0.6827 and can conclude, using the continuity of X̃,
that

(K + 1)an−1 ≥
∫
B(x, 1

m
)
Φn
x(y) dy inf

y∈B(x, 1
m
)
|X̃(s, y)| ≥ 1.3 inf

y∈B(x, 1
m
)
|X̃(s, y)|,

and thus, the statement holds with CK = (K + 1)/1.3.

4.5.2 Bounding the Yamada�Watanabe terms

We start with the summands Im,n
1 , Im,n

2 , Im,n
3 and Im,n

5 in (4.33) and will analyze Im,n
4

later. To that end, we need the following elementary estimate.

Lemma 4.22. If f ∈ C2
0 (R) is non-negative and not identically zero, then

sup
x∈R : f(x)>0

{(f ′(x))2f(x)−1} ≤ 2∥f ′′(x)∥∞.

Proof. Choose some x ∈ R with f(x) > 0 and assume w.l.o.g. that f ′(x) > 0. Let

x1 := sup{x′ < x : f ′(x′) = 0},

which exists due to the compact support of f . By the extended mean value theorem (see
[Apo67, Theorem 4.6]), applied to f and (f ′)2, there exists an x2 ∈ (x1, x) such that

(f ′(x)2 − f ′(x1)
2)f ′(x2) = (f(x)− f(x1))

∂(f ′)2

∂x
(x2).
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4. Pathwise uniqueness for the fractional SVE

By the choice of x1, we know that f ′(x2) > 0, and thus with f ′(x1) = 0,

f ′(x)2 = (f(x)− f(x1))2f
′′(x2).

Since f is strictly increasing on (x1, x) and non-negative, we conclude

f ′(x)2

f(x)
≤ f ′(x)2

f(x)− f(x1)
= 2f ′′(x2) ≤ 2∥f ′′∥∞.

We want to take expectations on both sides of (4.33) and then send m,n→ ∞.

Lemma 4.23. For any stopping time T and �xed t ∈ [0, T ] we have:

(i) lim
m,n→∞

E[Im,n
1 (t ∧ T )] ≤ E

[ ∫ t∧T
0

∫
R |X̃(s, x)|∆θΨs(x) dx ds

]
;

(ii) limm,n→∞ E[Im,n
2 (t ∧ T )] ≲

∫ t∧T
0 Ψs(0)E[|X̃(s, 0)|] ds;

(iii) E[Im,n
3 (t ∧ T )] = 0 for all m,n ∈ N;

(iv) lim
m,n→∞

E[Im,n
5 (t ∧ T )] = E

[ ∫ t∧T
0

∫
R |X̃(s, x)|Ψ̇s(x) dx ds

]
.

Proof. (i) We need to rewrite Im,n
1 . We use the property of Φn

x from Proposition 4.21 (i)
and the product rule to get

Im,n
1 (t) =

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)

∫
R
X̃(s, y)∆y,θΦ

n
x(y) dyΨs(x) dx ds

=

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)∆x,θ(⟨X̃s,Φ

n
x⟩)Ψs(x) dx ds

= 2α2

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)

( ∂

∂x
|x|−θ ∂

∂x
⟨X̃s,Φ

n
x⟩
)
Ψs(x) dx ds

+ 2α2

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)|x|−θ

( ∂2

∂x2
⟨X̃s,Φ

n
x⟩
)
Ψs(x) dx ds.

Now, we use integration by parts for both summands and the compact support of Ψs for
every s ∈ [0, T ] to get

Im,n
1 (t) = −2α2

∫ t

0

∫
R
ψn(⟨X̃s,Φ

n
x⟩)|x|−θ

(
∂

∂x
⟨X̃sΦ

n
x⟩
)2

Ψs(x) dx ds

− 2α2

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)|x|−θ ∂

∂x
⟨X̃sΦ

n
x⟩
∂

∂x
Ψs(x) dx ds. (4.40)
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By a very similar partial integration we see that∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)⟨X̃s,Φ

n
x⟩∆θΨs(x) dx ds

= −2α2

∫ t

0

∫
R
ψn(⟨X̃s,Φ

n
x⟩)

∂

∂x
⟨X̃s,Φ

n
x⟩⟨X̃s,Φ

n
x⟩|x|−θ ∂

∂x
Ψs(x) dx ds

− 2α2

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)

∂

∂x
⟨X̃s,Φ

n
x⟩|x|−θ ∂

∂x
Ψs(x) dx ds. (4.41)

By identifying that the second term in (4.40) coincides with the second term in (4.41), we
can plug in the latter one into the �rst one to get

Im,n
1 (t) = −2α2

∫ t

0

∫
R
ψn(⟨X̃s,Φ

n
x⟩)|x|−θ

(
∂

∂x
⟨X̃sΦ

n
x⟩
)2

Ψs(x) dx ds

+ 2α2

∫ t

0

∫
R
ψn(⟨X̃s,Φ

n
x⟩)

∂

∂x
⟨X̃s,Φ

n
x⟩⟨X̃s,Φ

n
x⟩|x|−θ ∂

∂x
Ψs(x) dx ds

+

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)⟨X̃s,Φ

n
x⟩∆θΨs(x) dx ds

=

∫ t

0

(
Im,n
1,1 (s) + Im,n

1,2 (s) + Im,n
1,3 (s)

)
ds. (4.42)

In order to deal with the various parts of Im,n
1 , we start with treating Im,n

1,1 and Im,n
1,2 . Since

we want to show that these parts are less than or equal to 0, we de�ne for �xed s ∈ [0, t]:

As :=

{
x ∈ R :

(
∂

∂x
⟨X̃s,Φ

n
x⟩
)2

Ψs(x) ≤ ⟨X̃s,Φ
n
x⟩
∂

∂x
⟨X̃s,Φ

n
x⟩
∂

∂x
Ψs(x)

}
∩ {x ∈ R : Ψs(x) > 0}

= A+,s ∪A−,s ∪A0,s,

with

A+,s := As ∩
{
∂

∂x
⟨X̃s,Φ

n
x⟩ > 0

}
, A−,s := As ∩

{
∂

∂x
⟨X̃s,Φ

n
x⟩ < 0

}
and

A0,s := As ∩
{
∂

∂x
⟨X̃s,Φ

n
x⟩ = 0

}
.

By Assumption 4.19 (i) and (iii), we can �nd an ε > 0 such that

B(0, ε) ⊂ Γ(t) and inf
s≤t,x∈B(0,ε)

Ψs(x) > 0. (4.43)

On A+,s we have, by the de�nition of As, that

0 <

(
∂

∂x
⟨X̃s,Φ

n
x⟩
)
Ψs(x) ≤ ⟨X̃s,Φ

n
x⟩
∂

∂x
Ψs(x),

78



4. Pathwise uniqueness for the fractional SVE

and, therefore, we can bound the A+,s-part of Im,n
1,2 for any t ∈ [0, T ] by∫ t

0

∫
A+,s

ψn(⟨X̃s,Φ
n
x⟩)

∂

∂x
⟨X̃s,Φ

n
x⟩⟨X̃s,Φ

n
x⟩|x|−θ ∂

∂x
Ψs(x) dx ds

≤
∫ t

0

∫
A+,s

ψn(⟨X̃s,Φ
n
x⟩)|x|−θ⟨X̃s,Φ

n
x⟩2

( ∂
∂xΨs(x))

2

Ψs(x)
dx ds

≤
∫ t

0

∫
A+,s

2

n
1{an−1≤|⟨X̃s,Φn

x⟩|≤an}|x|
−θ⟨X̃s,Φ

n
x⟩

( ∂
∂xΨs(x))

2

Ψs(x)
dx ds

≤ 2an
n

∫ t

0

∫
R
1{Ψs(x)>0}|x|−θ (

∂
∂xΨs(x))

2

Ψs(x)
dx ds.

Next, we split the integral by using ε from (4.43) to be able to apply Assumption 4.19
and Lemma 4.22 and get∫ t

0

∫
A+,s

ψn(⟨X̃s,Φ
n
x⟩)

∂

∂x
⟨X̃s,Φ

n
x⟩⟨X̃s,Φ

n
x⟩|x|−θ ∂

∂x
Ψs(x) dx ds

≤ 2an
n

∫ t

0

(∫
B(0,ε)

|x|−θ (
∂
∂xΨs(x))

2

Ψs(x)
dx+ 2∥D2Ψs∥∞

∫
Γ(t)\B(0,ε)

|x|−θ dx

)
ds

=:
2an
n
C(Ψ, t).

Note that ε > 0 is �xed and thus the ε-dependence of C(Ψ, t) does not matter.
On the set A−,s,

0 >

(
∂

∂x
⟨X̃s,Φ

n
x⟩
)
Ψs(x) ≥ ⟨X̃s,Φ

n
x⟩
∂

∂x
Ψs(x), (4.44)

holds and, since both terms in (4.44) are negative, we can use the same calculation as
above to get∫ t

0

∫
A+,s

ψn(⟨X̃s,Φ
n
x⟩)

∂

∂x
⟨X̃s,Φ

n
x⟩⟨X̃s,Φ

n
x⟩|x|−θ ∂

∂x
Ψs(x) dx ds ≤

2an
n
C(Ψ, t).

Finally, on the set A0,s,∫ t

0

∫
A+,s

ψn(⟨X̃s,Φ
n
x⟩)

∂

∂x
⟨X̃s,Φ

n
x⟩⟨X̃s,Φ

n
x⟩|x|−θ ∂

∂x
Ψs(x) dx ds = 0

and thus

E[Im,n
1,1 (t ∧ T ) + Im,n

1,2 (t ∧ T )] ≤ 4α2C(Ψ, t)
an
n

→ 0 as n→ ∞.

The remaining term in (4.42), we have to deal with, is

Im,n
1,3 =

∫ t

0

∫
R
ϕ′n(⟨X̃s,Φ

n
x⟩)⟨X̃s,Φ

n
x⟩∆θΨs(x) dx ds.
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Therefore, we apply Proposition 4.21 (iv) to get the pointwise convergence

ϕ′n(⟨X̃s,Φ
n
x⟩)⟨X̃s,Φ

n
x⟩ → X̃(s, x) as m,n→ ∞.

To complete our proof, we only need to show uniform integrability of |ϕ′n(⟨X̃s,Φ
n
x⟩)⟨X̃s,Φ

n
x⟩|

in terms ofm,n ∈ N on ([0, T ]×B(0, J(t))×Ω), since Ψ vanishes outside B(0, J(t)). First,
by the inequality |ϕ′n| ≤ 1, we can bound

|ϕ′n(⟨X̃s,Φ
n
x⟩)⟨X̃s,Φ

n
x⟩| ≤ ⟨|X̃s|,Φn

x⟩.

Inserting the function Φn from (4.36), taking the mean and using Proposition 4.11 (i), we
can bound

E[|⟨|X̃s|,Φn
x⟩|] ≤ E

[ ∫
R
|X̃(s, y)|2Φ̃m

x (y) dy

]
≤ 2 sup

y∈R
E[|X̃(s, y)|]

∫
R
Φ̃m(n)

x (y) dy <∞,

(4.45)

thus the claimed integrability holds and we get

lim
m,n→∞

E[Im,n
1,3 (t ∧ T )] ≤ E

[ ∫ t∧T

0

∫
R
|X̃(s, x)|∆θΨs(x) dx ds

]
and, altogether, we have shown the statement.
(ii) Again the inequality |ϕ′n| ≤ 1 and the Lipschitz continuity of µ yield

E[Im,n
2 (t ∧ T )] ≲

∫ t∧T

0

(∫
R
Φn
x(0)Ψs(x) dx

)
E[|X̃(s, 0)|] ds.

Sending m,n→ ∞ gives the statement as Φn
x(0) → δ0(x).

(iii) We set gm,n(s) := ⟨ϕ′n(⟨X̃s,Φ
n
· ⟩)Φn

· (0),Ψs⟩. Then, by |ϕ′n| ≤ 1, one has

|gm,n(s)| =
∣∣∣∣ ∫

R
ϕ′n(⟨X̃s,Φ

n
x⟩)Φn

x(0)Ψs(x) dx

∣∣∣∣ ≤ ∥Ψ∥∞
∫
R
2Φ̃m

0 (x) dx = 2∥Ψ∥∞

by the construction of Φn in (4.36). Thus, Im,n
3 (t ∧ T ) is a continuous local martingale

with quadratic variation

⟨Im,n
3 ⟩t∧T ≤ 4∥Ψ∥2∞

∫ t∧T

0
(σ(s,X1(s, 0))− σ(s,X2(s, 0)))2 ds

≲
∫ t∧T

0
(|X1(s, 0)|+ |X2(s, 0)|+ 2)2 ds

by the growth condition on σ and, consequently, by Proposition 4.11,

E[⟨Im,n
3 ⟩t∧T ] <∞,

such that Im,n
3 (t ∧ T ) is a square integrable martingale with mean 0.
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4. Pathwise uniqueness for the fractional SVE

(iv) We want to calculate the limit as n,m→ ∞ of the term

E[Im,n
5 (t ∧ T )] = E

[ ∫ t∧T

0
⟨ϕn(⟨X̃s,Φ

n
· ⟩), Ψ̇s⟩ ds

]
.

Therefore, the same argumentation as in (i) with the uniform integrability in (4.45) and
the boundedness of |Ψ̇s| as a continuous function with compact support yield

lim
m,n→∞

E[Im,n
5 (t ∧ T )] = E

[ ∫ t∧T

0

∫
R
|X̃(s, x)|Ψ̇s(x) dx ds

]
.

4.5.3 Key argument: Bounding the quadratic variation term

What is left to bound in line (4.33), is the expectation of the quadratic variation term
Im,n
4 . The main ingredient to be able to do this, will be the following Theorem 4.24.
Let us �rst introduce some de�nitions that we need to formulate the Theorem 4.24. Recall
the de�nition of TK in (4.37). Moreover, we de�ne a semimetric on [0, T ]× R by

d((t, x), (t′, x′)) := |t− t′|α + |x− x′|, t, t′ ∈ [0, T ], x, x′ ∈ R,

and, for K > 0, N ∈ N and ζ ∈ (0, 1), the set

ZK,N,ζ :=

(t, x) ∈ [0, T ]× [−1/2, 1/2] :

t ≤ TK , |x| ≤ 2−Nα−1,

|t− t̂| ≤ 2−N |x− x̂| ≤ 2−Nα,

for some (t̂, x̂) ∈ [0, TK ]× [−1/2, 1/2]

satisfying |X̃(t̂, x̂)| ≤ 2−Nζ

 .

(4.46)

The following theorem improves the regularity of X̃(t, x) when |x| is small. For two
measures Q1 and Q2 on some measurable space (Ω̃, F̃ ), we call Q1 absolutely continuous
with respect to Q2, denoted by Q1 ≪ Q2, if N1 ⊇ N2, where Ni ∈ F̃ denotes the zero
sets of Qi in (Ω̃, F̃ ).

Theorem 4.24. Suppose Assumption 4.1 and let X̃ := X1 −X2, where Xi is a solution
of the SPDE (4.13) with Xi ∈ C([0, T ]× R) a.s. for i = 1, 2. Let ζ ∈ (0, 1) satisfy:

∃Nζ = Nζ(K,ω) ∈ N a.s. such that, for any N ≥ Nζ and any (t, x) ∈ ZK,N,ζ :

|t′ − t| ≤ 2−N , t′ ≤ TK
|y − x| ≤ 2−Nα

}
⇒ |X̃(t, x)− X̃(t′, y)| ≤ 2−Nζ . (4.47)

Let 1
2 − α < ζ1 < (ζξ + 1

2 − α) ∧ 1. Then, there is an Nζ1(K,ω, ζ) ∈ N a.s. such that, for
any N ≥ Nζ1 and any (t, x) ∈ ZK,N,ζ1:

|t′ − t| ≤ 2−N , t′ ≤ TK
|y − x| ≤ 2−Nα

}
⇒ |X̃(t, x)− X̃(t′, y)| ≤ 2−Nζ1 . (4.48)
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Moreover, there is some measure QX,K on (Ω,F ) such that QX,K ≪ P on (Ω,F ) and
P ≪ QX,K on (Ω,FK), where FK := {A ∩ {TK ≥ T} : A ∈ F} ⊆ F is the σ-algebra
restricted to {TK ≥ T}, and there are constants R > 1 and δ, C, c2 > 0 depending on ζ
and ζ1 (not on K) and N(K) ∈ N such that

QX,K(Nζ1 ≥ N) ≤ C

(
QX,K

(
Nζ ≥

N

R

)
+Ke−c22Nδ

)
(4.49)

for N ≥ N(K).

Proof of Theorem 4.24. From the assumptions of Theorem 4.24 and Assumption 4.1, we
are given the variables α ∈ [0, 12), ζ ∈ (0, 1), ξ ∈ ( 1

2(1−α) , 1] and ζ1 < (ζξ + 1
2 − α) ∧ 1.

Moreover, �x arbitrary (t, x), (t′, y) ∈ [0, TK ]× [−1
2 ,

1
2 ] such that w.l.o.g. t ≤ t′ and given

some N ≥ Nζ ,

|t− t′| ≤ ε := 2−N , |x| ≤ 2−Nα and |x− y| ≤ 2−Nα. (4.50)

We de�ne small numbers δ, δ′, δ1, δ2 > 0 in the following way. We choose δ ∈ (0, 12 − α)
such that

ζ1 <

((
ζξ +

1

2
− α

)
∧ 1

)
− αδ < 1.

Fixing δ′ ∈ (0, δ), we choose δ1 ∈ (0, δ′) su�ciently small that

ζ1 <

((
ζξ +

1

2
− α

)
∧ 1

)
− αδ + αδ1 < 1. (4.51)

Furthermore, we de�ne δ2 > 0 su�ciently small such that

δ′ − δ2 > δ1, (4.52)

and we set

p :=

((
ζξ +

1

2
− α

)
∧ 1

)
− α

(
1

2
− α

)
+ αδ1 (4.53)

and

p̂ := p+ α(δ′ − δ2 − δ1) =

((
ζξ +

1

2
− α

)
∧ 1

)
− α

(
1

2
− α

)
+ α(δ′ − δ2). (4.54)

By (4.52), we see that p̂ > p.
Moreover, we introduce

Dx,y,t,t′(s) := |pt−s(x)− pt′−s(y)|2|X̃(s, 0)|2ξ and Dx,t′(s) := pt′−s(x)
2|X̃(s, 0)|2ξ.

(4.55)
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4. Pathwise uniqueness for the fractional SVE

Our goal is to bound the following expression, where we will explicitly determine the
measure Q as in the statement of the theorem and the random variable N1 := N1(ω) (in
(4.73)), later:

Q
(
|X̃(t, x)− X̃(t, y)| ≥ |x− y|

1
2
−α−δεp, (t, x) ∈ ZK,N,ζ , N ≥ N1

)
+Q

(
|X̃(t′, x)− X̃(t, x)| ≥ |t′ − t|α(

1
2
−α−δ)εp, (t, x) ∈ ZK,N,ζ , N ≥ N1

)
≤ Q

(
|X̃(t, x)− X̃(t, y)| ≥ |x− y|

1
2
−α−δεp, (t, x) ∈ ZK,N,ζ , N ≥ N1,∫ t

0
Dx,y,t,t(s) ds ≤ |x− y|1−2α−2δ′ε2p

)
+Q

(
|X̃(t′, x)− X̃(t, x)| ≥ |t′ − t|α(

1
2
−α−δ)εp, (t, x) ∈ ZK,N,ζ , N ≥ N1,∫ t′

t
Dx,t′(s) ds+

∫ t

0
Dx,x,t,t′(s) ds ≤ (t′ − t)2α(

1
2
−α−δ′)ε2p

)
+Q

(∫ t

0
Dx,y,t,t(s) ds > |x− y|1−2α−2δ′ε2p, (t, x) ∈ ZK,N,ζ , N ≥ N1

)
+Q

(∫ t′

t
Dx,t′(s) ds+

∫ t

0
Dx,x,t,t′(s) ds > (t′ − t)2α(

1
2
−α−δ′)ε2p,

(t, x) ∈ ZK,N,ζ , N ≥ N1

)
=: Q1 +Q2 +Q3 +Q4. (4.56)

We will proceed in three steps to prove the theorem:

Step (i): explicitly choosing a measure QX,K as in the statement of the theorem, such that

Q1 and Q2 in (4.56) ful�ll Q1 +Q2 ≤ ce−c′|t′−t|−2αδ′′
for some c, c′ > 0,

Step (ii): showing that Q3 = Q4 = 0 holds w.r.t. P (and hence also w.r.t. QX,K , since
QX,K ≪ P), if we choose the random variable N1 := cNζ for some large enough
deterministic constant c > 0,

Step (iii): completing the proof, using Step (i) and Step (ii).

Step (i): Consider �rst the term Q1. Note that on the measurable space (Ω,FK), where
the restricted σ-algebra FK on {TK ≥ T} is de�ned in the statement of the theorem,
Assumption 4.1 (iii) yields the existence of some constant CK > 0 such that∣∣∣∣µ(s,X1(s, 0))− µ(s,X2(s, 0))

σ(s,X1(s, 0))− σ(s,X2(s, 0))

∣∣∣∣ ≤ CK <∞,
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for all s ∈ [0, T ] P-a.s. on (Ω,FK) and, thus, we can apply Girsanov's theorem (see [KS91,
Theorem 3.5.1]) with the adapted process (Lt)t∈[0,T ] de�ned by

Lt := −
∫ t

0

µ(s,X1(s, 0))− µ(s,X2(s, 0))

σ(s,X1(s, 0))− σ(s,X2(s, 0))
dBs,

whose stochastic exponential process E (Lt) is a martingale due to Novikov's condition (see
[KS91, Proposition 3.5.12]). We de�ne QX,K via the Radon�Nikodym derivative E (LT ) of
the measure QX,K with respect to P, under which the process (B̃X,K

t )t∈[0,T ] is a Brownian

motion, where B̃X,K
t = Bt − ⟨B,L⟩t = Bt +At with At :=

∫ t
0

µ(s,X1(s,0))−µ(s,X2(s,0))
σ(s,X1(s,0))−σ(s,X2(s,0))

ds on
[0, TK ].
To avoid measurability problems we re-de�ne QX,K as a measure on (Ω,F ) by setting

QX,K(A) := QX,K(A ∩ {TK ≥ T})

for A ∈ F . Girsanov's theorem implies that QX,K ≪ P on (Ω,F ) and P ≪ QX,K on
(Ω,FK). With this notation, we see that

X̃(t, x)− X̃(t, y)

=

∫ t

0
pθt−s(x)

(
σ(s,X1(s, 0))− σ(s,X2(s, 0))

)
d(Bs +As)

−
∫ t

0
pθt−s(y)

(
σ(s,X1(s, 0))− σ(s,X2(s, 0))

)
d(Bs +As)

=

∫ t

0

(
pθt−s(x)− pθt−s(y)

)(
σ(s,X1(s, 0))− σ(s,X2(s, 0))

)
dB̃X,K

s .

For �xed t ∈ [0, T ] and x, y ∈ [−1
2 ,

1
2 ], the process

Sx,y

t̃
=

∫ t̃

0
(pθt−s(x)− pθt−s(y))(σ(s,X

1(s, 0))− σ(s,X2(s, 0))) dB̃X,K
s , t̃ ∈ [0, t],

is a local QX,K-martingale with quadratic variation

⟨Sx,y⟩t̃ =
∫ t̃

0
(pθt−s(x)− pθt−s(y))

2(σ(s,X1(s, 0))− σ(s,X2(s, 0)))2 ds

≤ C2
σ

∫ t̃

0
(pθt−s(x)− pθt−s(y))

2|X̃(s, 0)|2ξ ds

= C2
σ

∫ t̃

0
Dx,y,t,t(s) ds.

Thus, working under QX,K in (4.56), we can bound the term Q1 as follows:

Q1 ≤ QX,K

(
|Sx,y

t | ≥ |x− y|
1
2
−α−δεp,

∫ t

0
Dx,y,t,t(s) ds ≤ |x− y|1−2α−2δ′ε2p

)
≤ QX,K

(
|Sx,y

t | ≥ |x− y|
1
2
−α−δεp, ⟨Sx,y⟩t ≤ C2

σ|x− y|1−2α−2δ′ε2p
)
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4. Pathwise uniqueness for the fractional SVE

by the de�nition of Dx,y,t,t.
Next, we apply the Dambis�Dubins�Schwarz theorem, which states that the local QX,K-
martingale Sx,y

t̃
can be embedded into a QX,K-Brownian motion (W̃t̃)t̃∈[0,t] such that

Sx,y

t̃
= W̃⟨Sx,y⟩t̃ holds for all t̃ ∈ [0, t]. Thus, with z := C2

σ|x− y|1−2α−2δ′ε2p we obtain

Q1 ≤ QX,K

(
|W̃⟨Sx,y⟩t | ≥ |x− y|

1
2
−α−δεp, ⟨Sx,y⟩t ≤ z

)
≤ QX,K

(
sup

0≤s≤z
|W̃s| ≥ |x− y|

1
2
−α−δεp

)
,

since from the �rst event follows always the second one. Thus, with the notation W̃ ∗(t) :=
sup
0≤s≤t

|W̃s|, the scaling property of Brownian motion and the re�ection principle, we get

Q1 ≤ QX,K
(
W̃ ∗(C2

σ|x− y|1−2α−2δ′ε2p) ≥ |x− y|
1
2
−α−δεp

)
= QX,K

(
W̃ ∗(1)Cσ|x− y|

1
2
−α−δ′εp ≥ |x− y|

1
2
−α−δεp

)
= 2QX,K

(
W̃ (1) ≥ C−1

σ |x− y|−δ′′
)

with δ′′ := δ− δ′ > 0 and, applying the concentration inequality QX,K(N > a) ≤ e−
a2

2 for
standard normal distributed N , we get

Q1 ≤ 2e
− 1

2C2
σ
|x−y|−2δ′′

=: ce−c′|x−y|−2δ′′
, (4.57)

for some constants c, c′ > 0. With a very similar argumentation, we can use the probability
measure QX,K and proceed as above to derive the bound

Q2 ≤ ce−c′|t′−t|−2αδ′′
,

where c and c′ are the same constants as in (4.57).

Step (ii): We want to show that the terms Q3 and Q4 in (4.56) vanish P-a.s., if we choose
N1 large enough. Therefore, we consider (t, x) ∈ ZK,N,ζ and (t′, y) as in (4.50) and begin
by showing the following bound on |X̃(s, 0)| for s ≤ t′:

|X̃(s, 0)| ≤
{

3εζ if s ∈ [t− ε, t′],
(4 +K)2ζNζ (t− s)ζ if s ∈ [0, t− ε].

(4.58)

To see (4.58), we choose for (t, x) ∈ ZK,N,ζ some (t̂, x̂) as in the de�nition of ZK,N,ζ in
(4.46) such that

|t− t̂| ≤ ε = 2−N , |x− x̂| ≤ εα and |X̃(t̂, x̂)| ≤ 2−Nζ = εζ .

Then, for s ∈ [t− ε, t′], we see that |t− s| ≤ ε by (4.50). Thus, by (4.47), we obtain that

|X̃(s, 0)| ≤ |X̃(t̂, x̂)|+ |X̃(t̂, x̂)− X̃(t, x)|+ |X̃(t, x)− X̃(s, 0)|
≤ 3 · 2−Nζ = 3εζ .
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For s ∈ [t − 2−Nζ , t − ε], we can choose some Ñ ≥ Nζ such that 2−(Ñ+1) ≤ t − s ≤ 2−Ñ

due to t− ε ≥ s, i.e. t− s ≥ 2−N . Thus, we get

|X̃(s, 0)| ≤ |X̃(t̂, x̂)|+ |X̃(t̂, x̂)− X̃(t, x)|+ |X̃(t, x)− X̃(s, 0)|

≤ 2−Nζ + 2−Nζ + 2−Ñζ ≤ 2 · (t− s)ζ + 2ζ2−(Ñ+1)ζ

≤ 4(t− s)ζ .

Last, for s ∈ [0, t− 2−Nζ ] with s ≤ TK , i.e. X̃ is bounded by K > 0, and t− s ≥ 2−Nζ , we
can bound

|X̃(s, 0)| ≤ K ≤ K(t− s)−ζ(t− s)ζ ≤ K2Nζζ(t− s)ζ ,

which shows the bound (4.58).
For Q3, using (4.58) and the de�nition of Dx,y,t,t′ in (4.55), we can bound the term
inside Q3 by∫ t

0
Dx,y,t,t(s) ds ≤ 32ξ

∫ t

t−ε
(pt−s(x)− pt−s(y))

2ε2ζξ ds

+ (4 +K)2ξ22ξζNζ

∫ t−ε

0
(pt−s(x)− pt−s(y))

2(t− s)2ζξ ds

=: D1(t) +D2(t). (4.59)

Now, by Lemma 4.10 with β = 1
2 − α− δ′ and max(|x|, |y|) ≤ 2εα, we can bound

D1(t) ≲ ε2ζξ|x− y|1−2αmax(|x|, |y|)(
1
α
−1)2β

≲ ε2ζξ+2δ′ |x− y|1−2α−2δ′ε(1−α)2β

= ε2(
1
2
−α( 3

2
−α)+αδ′+ξζ)|x− y|1−2α−2δ′

≤ ε2p̂|x− y|1−2α−2δ′ (4.60)

by the de�nition of p̂ in (4.54). For D2(t), we use Lemma 4.7 with β = 1 to bound

D2(t) ≲ 22ξζNζ

∫ t−ε

0
|x− y|2(t− s)2ζξ−2α−2ε2(1−α) ds

= 22ξζNζ |x− y|1−2α−2δ′ |x− y|1+2α+2δ′ε2(1−α)

[
(t− s)−2α−1+2ξζ

−2α− 1 + 2ξζ

]t−ε

0

≲ 22ξζNζ |x− y|1−2α−2δ′εα(1+2α+2δ′)ε2(1−α)ε((−2α−1+2ξζ)∧0)−2αδ2

= 22ξζNζ |x− y|1−2α−2δ′ε2p̂. (4.61)

Hence, by inserting (4.60) and (4.61) into (4.59), we obtain∫ t

0
Dx,y,t,t(s) ds ≲ 22ξζNζ |x− y|1−2α−2δ′ε2p̂. (4.62)
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4. Pathwise uniqueness for the fractional SVE

For Q4, we can use (4.58) to bound the �rst summand in the de�nition of Q4 by∫ t′

t
Dx,t′(s) ds =

∫ t′

t
pt′−s(x)

2|X̃(s, 0)|2ξ ds

≲
∫ t′

t
(t′ − s)−2αε2ζξ ds

≲ ε2ζξ|t′ − t|1−2α

≲ ε2ξζε2(
1
2
−α−α( 1

2
−α)+αδ′)|t′ − t|2α(

1
2
−α−δ′)

≲ ε2p̂|t′ − t|2α(
1
2
−α−δ′), (4.63)

where we used that |t − t′| ≤ ε and p̂ < 1
2 − α − α(12 − α) + αδ′. We split the second

summand similar as before:∫ t

0
Dx,x,t,t′(s) ds =

∫ t

t−ε
Dx,x,t,t′(s) ds+

∫ t−ε

0
Dx,x,t,t′(s) ds =: D3(t) +D4(t). (4.64)

By Lemma 4.9, we estimate

D3(t) =

∫ t

t−ε
|pt−s(x)− pt′−s(x)|2|X̃(s, 0)|2ξ ds

≲ ε2ξζ |t′ − t|1−2α

≲ ε2p̂|t′ − t|2α(
1
2
−α−δ′), (4.65)

where the last estimate follows as in (4.63).
For D4(t), using the inequality (a+ b)2 ≤ 2(a2 + b2), we obtain

D4(t) =

∫ t−ε

0
|pt−s(x)− pt′−s(x)|2|X̃(s, 0)|2ξ ds

≤ 2(4 +K)2ξ22ξζNζ

∫ t−ε

0

∣∣∣∣((t− s)−α − (t′ − s)−α)e−
|x|1/α
t−s

∣∣∣∣2(t− s)2ξζ ds

+ 2(4 +K)2ξ22ξζNζ

∫ t−ε

0

∣∣∣∣(t′ − s)−α

(
e−

|x|1/α
t−s − e

− |x|1/α
t′−s

)∣∣∣∣2(t− s)2ξζ ds

=: D4,1 +D4,2. (4.66)

For D4,1, we use the inequality

((t− s)−α − (t′ − s)−α)e−
|x|1/α
t−s ≤ (t− s)−α−1(t′ − t). (4.67)

To see this, note that

e−
|x|1/α
t−s ≤

(
t− s

t′ − s

)α

e−
|x|1/α
t−s +

t′ − t

t− s
,
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which holds since (
t− s

t′ − s

)α

+
t′ − t

t− s
≥ t− s

t′ − s
+
t′ − t

t− s

=
t− s

t′ − s
+
t′ − s

t− s
− 1 ≥ 1 (4.68)

as x 7→ 1
x + x ≥ 2 on [0, 1]. Thus, using (4.67), we get

D4,1 ≲ 22ξζNζ

∫ t−ε

0
(t− s)−2α−2(t′ − t)2(t− s)2ξζ ds

≲ 22ξζNζ (t′ − t)2ε((−2α−1+ξζ)∧0)−2αδ2

≲ 22ξζNζ (t′ − t)2α(
1
2
−α−δ′)ε2−2α( 1

2
−α−δ′)ε((−2α−1+ξζ)∧0)−2αδ2

= 22ξζNζ (t′ − t)α(1−2α−2δ′)ε2((−α+ 1
2
+ξζ)∧1)−αδ2−α( 1

2
−α−δ′)

= 22ξζNζ (t′ − t)α(1−2α−2δ′)ε2p̂. (4.69)

For D4,2, we use the inequality |e−a−e−b| ≤ |a−b| and then the bound 1
t−s−

1
t′−s ≤ t′−t

(t−s)2
,

which holds as in (4.68), to get

D4,2 ≲ 22ξζNζ

∫ t−ε

0
(t′ − s)−2α

∣∣∣∣ |x|1/αt− s
− |x|1/α

t′ − s

∣∣∣∣2(t− s)2ξζ ds

≲ 22ξζNζ |x|2/α
∫ t−ε

0
(t′ − s)−2α(t− s)−4(t′ − t)2(t− s)2ξζ ds

≲ 22ξζNζ |x|2/αε−3−2α+2ξζ(t′ − t)2

≲ 22ξζNζ |x|2/αε−3−2α+2ξζ(t′ − t)2α(
1
2
−α−δ′)ε2−2α( 1

2
−α−δ′)

= 22ξζNζ |x|2/αε2(
1
2
−α+ξζ−α( 1

2
−α)+αδ′)(t′ − t)α(1−2α−2δ′)

= 22ξζNζ |x|2/αε2p̂(t′ − t)α(1−2α−2δ′). (4.70)

Hence, (4.63) and plugging (4.65), (4.66), (4.69) and (4.70) into (4.64), we obtain∫ t′

t
Dx,t′(s) ds+

∫ t

0
Dx,x,t,t′(s) ds ≲ 22ξζNζ |t′ − t|α(1−2α−2δ′)ε2p̂. (4.71)

Combining (4.62) and (4.71), we can denote C > 0 to be the maximum of the two generic
constants occuring in the estimates, to conclude, that if we can secure that

C22ξζNζε2p̂ < ε2p, (4.72)

then the conditions inside of Q3 and Q4 are never ful�lled and, thus, we get that Q3 =
Q4 = 0. By ε = 2−N , (4.72) is equivalent to

C < 22N(p̂−p)−2Nζξζ ,
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4. Pathwise uniqueness for the fractional SVE

and, since p̂− p > 0, ful�lled for all

N >
2ξζNζ + log2(C)

2(p̂− p)
.

Therefore, we can �nd a deterministic constant cK,ζ,δ,δ1,δ′,δ2 such that, for all

N ≥ N1(ω) := cK,ζ,δ,δ1,δ′,δ2Nζ(ω), (4.73)

Q3 = Q4 = 0 holds.

Step (iii): We discretize X̃(t, y) for t ∈ [0, TK ] and y ∈ [−1
2 ,

1
2 ] as follows:

Mn,N,K := max
{∣∣∣X̃(j2−n, (z + 1)2−αn)− X̃(j2−n, z2−αn)

∣∣∣
+

∣∣∣X̃((j + 1)2−n, z2−αn)− X̃(j2−n, z2−αn)
∣∣∣ :

|z| ≤ 2αn−1, (j + 1)2−n ≤ TK , j ∈ Z+, z ∈ Z,

(j2−n, z2−αn) ∈ ZK,N,ζ

}
.

Moreover, we de�ne the event

AN :=
{
ω ∈ Ω : for some n ≥ N, Mn,N,K ≥ 2−nα( 1

2
−α−δ)2−Np, N ≥ N1

}
.

Then, we get, by using (4.56), Step (i) and Step (ii), that for all N ≥ N1 as in (4.73):

QX,K

( ⋃
N ′≥N

AN ′

)
≤

∞∑
N ′=N

∞∑
n=N ′

QX,K(Mn,N ′,K ≥ 2 · 2−nα( 1
2
−α−δ)2−Np)

≲
∞∑

N ′=N

∞∑
n=N ′

2(α+1)ne−c′2nδ′′α
,

since the total number of partition elements in eachMn,N,K is at most 2 · 2αn−1 · K ·2n ≲
K2(α+1)n (if TK = T ). Furthermore, we used that |t− t̂| ≤ 2−n and |x− x̂| ≤ 2−nα, which
follows by the construction of Mn,N,K .
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We use the convexity 2x+y ≥ 2x + 2y for x, y ≥ 0 to estimate

QX,K

( ⋃
N ′≥N

AN ′

)
≲

∞∑
N ′=N

∞∑
n=0

2(α+1)(n+N ′)e−c′2(n+N′)δ′′α

≤
∞∑

N ′=N

2(α+1)N ′
∞∑
n=0

2(α+1)ne−c′(2nδ′′α+2N
′δ′′α)

=

∞∑
N ′=N

2(α+1)N ′
e−c′2N

′δ′′α
∞∑
n=0

2(α+1)ne−c′2nδ′′α

= 2(α+1)Ne−c′2Nδ′′α
∞∑

N ′=0

2(α+1)N ′
e−c′2N

′δ′′α
∞∑
n=0

2(α+1)ne−c′2nδ′′α

≲ e(α+1)Ne−c′2Nδ′′α

≲ e−c22Nδ′′α
,

for some constant c2 > 0, where we used convergence and thus �niteness of the two series
in the fourth line by applying the ratio test

lim
n→∞

∣∣∣2α+1e−c′(2(n+1)δ′′α−2nδ′′α)
∣∣∣ = 0.

Therefore, we get for

N2(ω) := min{N ∈ N : ω ∈ Ac
N ′ ∀N ′ ≥ N},

where the superscript c denotes the complement of a set, that

QX,K(N2 > N) = QX,K

( ⋃
N ′≥N

AN ′

)
≲ e−c22Nδ′′α

, (4.74)

and thus N2 <∞ QX,K-a.s.
We �x some m ∈ N with m > 3/α and choose N(ω) ≥ (N2(ω) +m) ∧ (N1 +m), which is
�nite a.s., such that holds:

∀n ≥ N :Mn,N,K < 2−nα( 1
2
−α−δ)2−Np a.s. (4.75)

and Q3 = Q4 = 0.
Furthermore, we choose (t, x) ∈ ZK,N,ζ and (t′, y) such that

d((t′, y), (t, x)) := |t′ − t|α + |y − x| ≤ 2−Nα,

and we choose points near (t, x) as follows: for n ≥ N , we denote by tn ∈ 2−nZ+ and
xn ∈ 2−αnZ for the unique points such that

tn ≤ t < tn + 2−n,

xn ≤ x < xn + 2−αn for x ≥ 0 or xn − 2−αn < x ≤ xn for x < 0.
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4. Pathwise uniqueness for the fractional SVE

We de�ne t′n, yn analogously. Let (t̂, x̂) be the points from the de�nition of ZK,N,ζ with
|X̃(t̂, x̂)| ≤ 2−Nζ . Then, for n ≥ N , we observe that

d((t′n, yn), (t̂, x̂)) ≤ d((t′n, yn), (t
′, y)) + d((t′, y), (t, x)) + d((t, x), (t̂, x̂))

≤ |t′n − t|α + |y − yn|+ 2−Nα + 2 · 2−Nα

≤ 6 · 2−Nα < 23−Nα = 2−α(N− 3
α
)

< 2−α(N−m), (4.76)

which implies (t′n, yn) ∈ ZK,N−m,ζ . We use that to �nally formulate our bound. We also
use the continuity of X̃ and our construction of the tn, xn to get that

lim
n→∞

X̃(tn, xn) = X̃(t, x) a.s.

and the same for t′n, yn. Thus, by the triangle inequality:

|X̃(t, x)− X̃(t′, y)| =
∣∣∣∣ ∞∑
n=N

(
(X̃(tn+1, xn+1)− X̃(tn, xn)) + (X̃(t′n, yn)− X̃(t′n+1, yn+1))

)
+ X̃(tN , xN )− X̃(t′N , yN )

∣∣∣∣
≤

∞∑
n=N

|X̃(tn+1, xn+1)− X̃(tn, xn)|+ |X̃(t′n, yn)− X̃(t′n+1, yn+1)|

+ |X̃(tN , xN )− X̃(t′N , yN )|.

Since we choose tn, xn and t′n, yn to be of the form of the discrete points in Mn,N,K and,
since we have (4.76), we can continue to estimate

|X̃(t, x)− X̃(t′, y)| ≤
∞∑

n=N

2Mn+1,N−m,K + |X̃(tN , xN )− X̃(t′N , yN )|.

Because of |t− t′| ≤ 2−N and our construction of tN , t′N , they must be equal or adjacent
in 2−NZ+ and analogue for xN , yN . Thus, we get

|X̃(t, x)− X̃(t′, y)| ≤
∞∑

n=N

2Mn+1,N−m,K +MN,N−m,K

≤ 2

∞∑
n=N

Mn,N−m,K

≲
∞∑

n=N

2−nα( 1
2
−α−δ)2−(N−m)p

= 2−(N−m)p
∞∑
n=0

2−(n+N)α( 1
2
−α−δ)
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≲ 2mp2−N(α( 1
2
−α−δ)+p)

< 2−Nζ1 ,

where the last line follows with α(12 − α − δ) + p > ζ1, which holds by (4.51) and (4.53),
and for all

N ≥ N3 (4.77)

for some N3 that is large enough such that 2mp is dominated and thus depends determin-
istically on p. Therefore, we have proven Theorem 4.24 with

Nζ1(ω) := max{N2(ω) +m,Nζ(ω) +m, cK,ζ,δ,δ1,δ′,δ2Nζ(ω) +m,N3}

by Nζ1 chosen in that way due to (4.75), Step (ii), (4.73) and (4.77). If we denote R′ :=
1 ∨ cK,ζ,δ,δ1,δ′,δ2 and consider some N ≥ 2m ∨N3, (4.74) implies

QX,K(Nζ1 ≥ N) ≤ QX,K(N2 ≥ N −m) + 2QX,K

(
Nζ ≥

N −m

R′

)
≤ CKe−c22(N−m)δ′′α

+ 2QX,K(Nζ ≥ N/R)

for R = 2R′ and C > 0 not depending on K, which shows the probability bound in (4.49)
by re-de�ning δ := δ′′α > 0 and thus completes the proof.

In the following we sometimes only write a.s. when we mean P-a.s. Since QX,K ≪ P, this
implies QX,K-a.s.

Corollary 4.25. With the hypotheses of Theorem 4.24 and 1
2 − α < ζ <

1
2
−α

1−ξ ∧ 1, there
is an a.s. �nite positive random variable Cζ,K(ω) such that, for any ε ∈ (0, 1], t ∈ [0, TK ]
and |x| < εα, if |X̃(t, x̂)| ≤ εζ for some |x̂− x| ≤ εα, then

|X̃(t, y)| ≤ Cζ,Kε
ζ , (4.78)

whenever |x− y| ≤ εα.
Moreover, there are constants δ, C1, c2, R̃ > 0, depending on ζ (but not on K), and r0(K) >
0 such that

QX,K(Cζ,K ≥ r) ≤ C1

[
QX,K

(
Nα

2
( 1
2
−α) ≥

1

R̃
log2

(
r − 6

K + 1

))
+Ke−c2

(
r−6
K+1

)δ]
(4.79)

for all r ≥ r0(K) > 6+(K+1), where QX,K is the probability measure from Theorem 4.24.

Proof. We will derive the statement by an appropriate induction. We start by choosing

ζ0 :=
α

2

(
1

2
− α

)
,

to be able to use the regularity result from Proposition 4.11. Indeed, by 4.11 (ii) we get
the inequality (4.47) with ζ0 by Kolmogorov's continuity theorem.
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4. Pathwise uniqueness for the fractional SVE

Now, we de�ne

ζn+1 :=

[(
ζnξ +

1

2
− α

)
∧ 1

](
1− 1

n+ d

)
for some d ∈ R. We chose that d given ζ0 big enough such that ζ1 > 1

2 − α. Moreover,

it is clearly ζn+1 > ζn. Thus, we get inductively that ζn ↑
1
2
−α

1−ξ ∧ 1 and, for every �xed

ζ ∈
(
1
2 − α,

1
2
−α

1−ξ ∧ 1
)
as in the statement, we can �nd n0 ∈ N such that ζn0 ≥ ζ > ζn0−1.

By applying Theorem 4.24 n0-times, we get (4.47) for ζn0−1 and, hence, (4.48) for ζn0 .
We derive the estimation (4.78) for all 0 < ε ≤ 1. Therefore, we consider �rst ε ≤ 2−Nζn0 ,
where we got Nζn0

from the application of Theorem 4.24 to ζn0−1. Further, we choose
N ∈ N such that 2−N−1 < ε ≤ 2−N and, thus, N ≥ Nζn0

. Also, we choose t ≤ TK and
|x| ≤ εα ≤ 2−Nα such that, by assumption of Theorem 4.24, for some |x̂−x| ≤ εα ≤ 2−Nα,

|X̃(t, x̂)| ≤ εζ ≤ 2−Nζ ≤ 2−Nζn0−1 .

Hence, (t, x) ∈ ZK,N,ζn0−1 . For any y such that |y − x| ≤ εα, we get, by (4.48),

|X̃(t, y)| ≤ |X̃(t, x̂)|+ |X̃(t, x̂)− X̃(t, x)|+ |X̃(t, x)− X̃(t, y)|
≤ 2−Nζ + 2−Nζn0 + 2−Nζn0 ≤ 3 · 2−Nζ ≤ 6εζ .

Now, we consider ε ∈ (2−Nζn0 , 1]. Then, for (t, x) and (t, y) as in the assumption, we get

|X̃(t, y)| ≤ |X̃(t, x)|+ |X̃(t, y)− X̃(t, x)|

≤ K + 2−Nζ ≤ (K + 1)2Nζn0
ζεζ

by ε2Nζn0 > 1 and, therefore, we have shown (4.78) with Cζ,K = (K + 1)2Nζn0
ζ + 6.

It remains to show the estimate (4.79). Therefore, we use (4.49) to conclude that

QX,K

(
Cζ,K ≥ r

)
= QX,K

(
2Nζn0

ζ ≥ r − 6

K + 1

)
= QX,K

(
Nζn0

≥ 1

ζ
log2

(
r − 6

K + 1

))
≤ C

(
QX,K

(
Nζn0−1 ≥ 1

Rζ
log2

(
r − 6

K + 1

))
+Kexp

(
− c22

δ
ζ
log2

(
r−6
K+1

)))
.

Applying (4.49) n0-times, we end up with

QX,Kv(Cζ,K ≥ r)

≤ Cn0QX,K

(
Nα

2
( 1
2
−α) ≥

1

ζRn0
log2

(
r − 6

K + 1

))
+

n0∑
i=0

CiKe−c22
R−i−1 δ

ζ
log2

(
r−6
K+1

)

≤ Cn0n0

(
QX,K

(
Nα

2
( 1
2
−α) ≥

1

R̃
log2

(
r − 6

K + 1

))
+Ke−c2

(
r−6
K+1

) δ
ζRn0

)
=: C1

(
QX,K

(
Nα

2
( 1
2
−α) ≥

1

R̃
log2

(
r − 6

K + 1

))
+Ke−c2

(
r−6
K+1

)δ̃)
,

where C1, δ̃, R̃ > 0 depend on ζ but not on K.
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We will handle the event on the right-hand side of (4.79) under the measure P again.

Proposition 4.26. In the setup and notation of Corollary 4.25, one has

P
(
Nα

2
( 1
2
−α) ≥

1

R̃
log2

(
r − 6

K + 1

))
≲

(
r − 6

K + 1

)−ε

,

for some ε > 0.

Proof. We show that, for every M ∈ R+,

P
(
Nα

2
( 1
2
−α) ≥M

)
≲ 2−Mε

for some ε > 0, which then yields the statement.
Indeed, from Proposition 4.11 (ii), we have that

E[|X̃(t, x)− X̃(t′, x′)|p] ≲ |t− t′|(
1
2
−α)p + |x− x′|(

1
2
−α)p,

for all p ≥ 2, t, t′ ∈ [0, T ] and |x|, |x′| ≤ 1. By choosing (t, x) ∈ ZK,N,ζ , (t′, x′) from the
de�nition of ZK,N,ζ and p > 2 such that αp(12 − α) = 1 + β for some β > 0, it holds that

E[|X̃(t, x)− X̃(t′, x′)|p] ≲ 2−N(1+β) + 2−N(1+β) ≲ 2−N(1+β).

We discretize [0, T ]×[−1, 1] on the dyadic rational numbers. For simplicity, we assume T =
1. First, for some n ∈ N, we keep some space variable x ∈ {k2−n, k ∈ −2n, . . . , 0, 1, . . . , 2n}
�xed and apply Markov's inequality to get

P
(
|X̃(k2−n, x)− X̃((k − 1)2−n, x)| ≥ 2−ζn

)
≲ 2ζnp2−n(1+β) = 2−n(1+β−ζp)

for any k ∈ 1, . . . , 2n. Next, we de�ne the following events:

An = An(ζ) :=

{
max

k∈{−2n+1,...,2n}
|X̃(k2−n, x)− X̃((k − 1)2−n, x)| ≥ 2−ζn−1

}
,

Bn :=
∞⋃

m=n

Am, N := lim sup
n→∞

An =
∞⋂
n=1

Bn.

Then, for every n ∈ N,

P(An) ≤
2n∑

k=−2n+1

P
(
|X̃(k2−n, x)− X̃((k − 1)2−n, x)| ≥ 2−ζn−1

)
≲ 2n+22−n(1+β−ζp)+p = 22+p2−n(β−ζp). (4.80)

We choose, for ζ = α
2 (

1
2 − α),

p > max

{
1 + β

α(12 − α)
,

1
α
2 − ζ − α2

}
.
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4. Pathwise uniqueness for the fractional SVE

Note that α
2 − ζ − α2 = α

2 − α
2 (

1
2 − α)− α2 = α

4 − α2

2 > 0 as α < 1
2 . Then, we have that

0 < p

(
α

2
− ζ − α2

)
− 1 = αp

(
1

2
− α

)
− 1− ζp = β − ζp (4.81)

and from (4.80) it follows by the geometric series that

P(Bn) ≤
∞∑

m=n

P(Am) ≲ 22+p 2
−n(β−ζp)

1− 2ζp−β
→ 0 as n→ ∞,

where 2ζp−β < 1 because of (4.81).
Analogously, we �x some time variable t and get an analogue version of inequality (4.80).
Now, we �x an event ω ∈ Ω and some

N ≥ Nα
2
( 1
2
−α)(ω),

where Nα
2
( 1
2
−α)(ω) is such that

ω /∈
∞⋃

n=Nα
2 ( 12−α)

An,

and this should also hold for the union of the analogue sets for �xed t, denote those by
A

(2)
n .

Let t, t′, x, x′ ∈ DN with |t− t′| ≤ 2−N and |x− x′| ≤ 2−αN . Then, we have

|X̃(t, x, ω)− X̃(t′, x′, ω)| ≤ |X̃(t, x, ω)− X̃(t′, x, ω)|+ |X̃(t′, x, ω)− X̃(t′, x′, ω)|
≤ 2 · 2−ζN−1 = 2−ζN .

Then, we get from (4.80) that

P(Nζ ≥M) ≤
∞∑

m=M

P(Am) +

∞∑
m=M

P(A(2)
m ) ≲

∞∑
m=M

2−m(β−ζp) =
2−M(β−ζp)

1− 2ζp−β
≲ 2−Mε

with ε := β − ζp, by the geometric series with β − ζp > 0.
By the density of the dyadic rational numbers in the reals and the continuity of X̃, the
regularity extends to the whole [0, T ]× [−1, 1] and, thus, the statement holds.

We want to �x ζ ∈ (0, 1), that ful�lls the requirements of the previous corollary.

Lemma 4.27. With �xed α ∈ (0, 12) and ξ ∈ (12 , 1) satisfying

1 > ξ >
1

2(1− α)
>

1

2
,
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we can choose ζ ∈ (0, 1) such that

α

2ξ − 1
< ζ <

( 1
2 − α

1− ξ
∧ 1

)
. (4.82)

Especially, we get

η :=
ζ

α
>

1

2ξ − 1
.

Proof. First, we consider
1
2
−α

1−ξ < 1. In this case, we have that

1
2 − α

1− ξ
− α

2ξ − 1
=

(12 − α)(2ξ − 1)− α(1− ξ)

(1− ξ)(2ξ − 1)

=
ξ − 1

2 − 2αξ + α− α+ αξ

(1− ξ)(2ξ − 1)
=

ξ(1− α)− 1
2

(1− ξ)(2ξ − 1)
> 0,

by the assumption on ξ.

On the other hand, if
1
2
−α

1−ξ ≥ 1, then α ≤ ξ − 1
2 , i.e.

α
2ξ−1 ≤ 1

2 , and we can �x ζ such
that (4.82) holds.

Let us �nally introduce the following stopping time, that plays a central role for the follow-
ing Lemma 4.29, and is the reason, why we needed Corollary 4.25 and Proposition 4.26:

Tζ,K := inf
t≥0


t ≤ TK and there exist ε ∈ (0, 1], x̂, x, y ∈ R with
|x| ≤ εα, |X̃(t, x̂)| ≤ εζ , |x− x̂| ≤ εα, |x− y| ≤ εα

such that |X̃(t, y)| > c0(K)εζ

 ∧ TK ∧ T, (4.83)

where c0(K) := r0(K) ∨K2 > 0 with r0(k) from Corollary 4.25.

Corollary 4.28. The stopping time Tζ,K ful�lls Tζ,K → T as K → ∞ a.s.

Proof. We �x arbitrary K, K̃ > 0 such that K̃ ≤ K. We can bound for any t ∈ [0, T ),

P
(
Tζ,K ≤ t

)
≤ P

(
{Tζ,K ≤ t} ∩ {TK̃ ≥ T}

)
+ P

(
TK̃ < T

)
=: PK,K̃

1 + P K̃
2 . (4.84)

We show that limK→∞ PK,K̃
1 = 0. For this purpose, we consider the probability mea-

sure QX,K̃ from Corollary 4.25. By the de�nition of Tζ,K and Corollary 4.25, we obtain
that

QX,K̃
(
{Tζ,K ≤ t} ∩ {TK̃ ≥ T}

)
≤ QX,K̃

(
TK ≤ t

)
+QX,K̃

(
Cζ,K > c0(K)

)
≤ QX,K̃

(
TK ≤ t

)
+ C1

[
QX,K̃

(
Nα

2
( 1
2
−α) ≥

1

R̃
log2

(K2 − 6

K̃ + 1

))
+ K̃e

−c2
(

K2−6
K̃+1

)
δ
]
.

(4.85)
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4. Pathwise uniqueness for the fractional SVE

By Proposition 4.26 we know that the respective of the second probability on the right-
hand side of (4.85) with P instead of QX,K̃ tends to zero as K → ∞. Since QX,K̃ ≪ P
holds on (Ω,F ), limK→∞ P(AK) = 0 implies limK→∞QX,K̃(AK) = 0 for any sequence
(AK)K∈N of events in Ω (see e.g. [Rud87, Theorem 6.11]) and, since TK → ∞ as K → ∞
a.s., by the continuity of the solutions X1 and X2, we conclude that the whole right-hand
side of (4.85) tends to zero as K → ∞. Hence, since P ≪ QX,K̃ on (Ω,F K̃) and the

event inside PK,K̃
1 is trivially in F K̃ , this implies also tending to zero for the respective

P-probability and we obtain lim
K→∞

PK,K̃
1 = 0.

Therefore, using the continuity of X1 and X2 again, we can for every ε > 0 �nd some
K̃ > 0 such that (4.84) yields

lim
K→∞

P
(
Tζ,K ≤ t

)
≤ P

(
TK̃ < T

)
< ε

and we obtain lim
K→∞

P
(
Tζ,K ≤ t

)
= 0, which yields the statement.

Recall that we have a �xed constant η > 1
2ξ−1 , determined by Lemma 4.27. We use this

to �x the sequence (m(n))n∈N by de�ning

m(n) := a
− 1

η

n−1 > 1,

where an is the Yamada�Watanabe sequence, de�ned in (4.29). With this, we get the
following crucial lemma, that regularizes X̃ based on regularity of the approximation
|⟨X̃,Φn⟩|.

Lemma 4.29. For all x ∈ B(0, 1
m) and s ∈ [0, Tζ,K ], if |⟨X̃s,Φ

n
x⟩| ≤ an−1, then

sup
y∈B(x, 1

m
)

|X̃(s, y)| ≤ C̃Kan−1,

for some C̃K > 0 only dependent on K.

Proof. By the assumption |⟨X̃s,Φ
n
x⟩| ≤ an−1, we can apply Proposition 4.21 (v) to get

that there exists x̂ ∈ B(x, 1
m) with |X̃(s, x̂)| ≤ CKan−1.

For �xed n ≥ 1, we de�ne εn > 0 such that

εαn =
1

m(n)
C

1
η

K

holds and, thus, by the choice η = ζ
α ,

CKan−1 = CK

(
1

m

)η

=

(
C

1
η

K

m

)η

= εζn.

We use this and the de�nition of Tζ,K in (4.83) to get the desired result with C̃K =
CKc0(K).
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Finally, we can handle the term Im,n
4 from (4.33).

Lemma 4.30. With Im,n
4 from (4.33) and Tζ,K de�ned in (4.83), one has

lim
n→∞

E[|Im,n
4 (t ∧ Tζ,K)|] = 0.

Proof. We use the Hölder continuity of σ as well as the bounded support of ψn, the inequal-
ity ψn(x) ≤ 2

nx1{an≤x≤an−1}, the boundedness of Ψ, Lemma 4.29 and Proposition 4.21 (ii)
to get

|Im,n
4 (t ∧ Tζ,K)| ≲

∣∣∣∣ ∫ t∧Tζ,K

0

∫
R
ψn(|⟨X̃s,Φ

n
x⟩|)Φn

x(0)
2Ψs(x) dx|X̃(s, 0)|2ξ ds

∣∣∣∣
≲

∫ t∧Tζ,K

0

∫
R
1{an≤|⟨X̃s,Φn

x⟩|≤an−1}
2

nan
Φn
x(0)

2Ψs(x) dx|X̃(s, 0)|2ξ ds

≤ ∥Ψ∥∞
nan

∫ t∧Tζ,K

0

∫
R
Φn
x(0)

2 dx(C̃Kan−1)
2ξ ds

≲
a2ξn−1

nan

∫ t∧Tζ,K

0

∫
R
Φn
x(0)

2 dx ds

≲
a2ξn−1

nan
m(n) ≲

a2ξn−1

nan
a
− 1

η

n−1 =
1

n

a
2ξ− 1

η

n−1

an
. (4.86)

We know that an−1

an
= en, a0 = 1 and, thus, get inductively that an = e−

n(n+1)
2 . Therefore,

(4.86) tends to zero as n→ ∞ if

n(n+ 1)− (2ξ − η−1)(n− 1)n < 0

for n large, which holds if and only if 1− (2ξ − η−1) < 0, i.e., ξ > 1
2 +

1
2η , which holds by

Lemma 4.27.

We summarize the essential �ndings for the proof of Theorem 4.3 in the next proposition.

Proposition 4.31. With Ψ that ful�lls Assumption 4.19 and Tζ,K de�ned in (4.83) for
K > 0, one has, for t ∈ [0, T ], that∫

R
E[|X̃(t ∧ Tζ,K , x)|]Ψt∧Tζ,K

(x) dx ≲
∫ t∧Tζ,K

0

∫
R
E[|X̃(s, x)|]|∆θΨs(x) + Ψ̇s(x)|dx ds

+

∫ t∧Tζ,K

0
Ψs(0)E[|X̃(s, 0)|] ds. (4.87)

Proof. By Proposition 4.20, Lemma 4.23, Lemma 4.30 and sending n→ ∞ after applying
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4. Pathwise uniqueness for the fractional SVE

Fatou's lemma to exchange limiting and the integral, we get∫
R
E[|X̃(t ∧ Tζ,K , x)|]Ψt∧TK,ζ

(x) dx (4.88)

=

∫
R
lim inf
n→∞

E[ϕn(⟨X̃t∧Tζ,K
,Φn

x⟩)]Ψt∧TK,ζ
(x) dx

≤ lim inf
n→∞

∫
R
E[ϕn(⟨X̃t∧Tζ,K

,Φn
x⟩)]Ψt∧TK,ζ

(x) dx

≲ E
[ ∫ t∧Tζ,K

0

∫
R
|X̃(s, x)|

(
∆θΨs(x) + Ψ̇s(x)

)
dx ds

]
+ E

[ ∫ t∧Tζ,K

0
Ψs(0)|X̃(s, 0)| ds

]
.

Applying Fubini's theorem then yields (4.87).

4.6 Step 5: Removing the auxiliary localizations

We want to construct appropriate test functions Ψ ∈ C∞
0 ([0, t],R) for some �xed t ∈ [0, T ].

They will be of the form

ΨN,M (s, x) := (St−sϕM (x))gN (x) (4.89)

for N,M ∈ N, where (Su)u∈[0,T ] denotes the semigroup generated by ∆θ and we specify
the sequences of functions ϕM , gN ∈ C∞

0 (R) in the following.
With the sequence (ϕM )M∈N we want to approximate the Dirac distribution around 0. To
that end, we de�ne

ϕM (x) :=Me−M2x2
1{|x|≤ 1

M
} + sM (x), M ≥ 2,

where the function sM (x) extends smoothly to zero outside the ball B(1, 1
M−1) such that

limM→∞ ϕM (x) = δ0(x) pointwise.
Moreover, let (gN )N∈N be a sequence of functions in C∞

0 (R) such that gN : R → [0, 1],

B(0, N) ⊂ {x ∈ R : gN (x) = 1}, B(0, N + 1)C ⊂ {x ∈ R : gN (x) = 0},

and
sup
N∈N

[
∥|x|−θg′N (x)∥∞ + ∥∆θgN (x)∥∞

]
=: Cg <∞. (4.90)

We simplify the term on the right-hand side of (4.88) in the next corollary.

Corollary 4.32. With ΨN,M constructed in (4.89), one has that

∆θΨN,M (s, x) + Ψ̇N,M (s, x)

= 4α2|x|−θ
( ∂

∂x
St−sϕM (x)

)( ∂

∂x
gN (x)

)
+ St−sϕM (x)∆θgN (x). (4.91)
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Proof. Recall, that, by the de�nition of the semigroup (St)t∈[0,T ] in (4.15) and using the
fundamental solution of (4.10), we get

∆θStϕ(x) =
∂

∂t
Stϕ(x), t ∈ [0, T ],

for all ϕ ∈ C∞
0 (R). Therefore, the second term on the left-hand side of (4.91) equals

Ψ̇N,M (s, x) = gN (x)
∂

∂s

(
St−sϕM (x)

)
= −gN (x)∆θ

(
St−sϕM (x)

)
= −2α2gN (x)

∂

∂x

(
|x|−θ ∂

∂x

(
St−sϕM (x)

))
= −2α2gN (x)

( ∂

∂x
|x|−θ

)( ∂

∂x
St−sϕM (x)

)
− 2α2gN (x)|x|−θ

( ∂2

∂x2
St−sϕM (x)

)
.

(4.92)

For the �rst term on the left-hand side of (4.91), we calculate

∆θΨN,M (s, x)

= 2α2 ∂

∂x

(
|x|−θ ∂

∂x
ΨN,M (s, x)

)
= 2α2|x|−θ ∂

2

∂x2

(
St−sϕM (x)gN (x)

)
+ 2α2

( ∂

∂x
|x|−θ

)( ∂

∂x
St−sϕM (x)gN (x)

)
= 4α2|x|−θ

( ∂

∂x
St−sϕM (x)

)( ∂

∂x
gN (x)

)
+ 2α2|x|−θgN (x)

( ∂2

∂x2
St−sϕM (x)

)
+ 2α2|x|−θ

(
St−sϕM (x)

)( ∂2

∂x2
gN (x)

)
+ 2α2

( ∂

∂x
|x|−θ

)( ∂

∂x
St−sϕM (x)

)
gN (x)

+ 2α2
( ∂

∂x
|x|−θ

)(
St−sϕM (x)

)( ∂

∂x
gN (x)

)
. (4.93)

Hence, adding up (4.92) and (4.93), we obtain

∆θΨN,M (s, x) + Ψ̇N,M (s, x)

= 4α2|x|−θ
( ∂

∂x
St−sϕM (x)

)( ∂

∂x
gN (x)

)
+ 2α2|x|−θ

(
St−sϕM (x)

)( ∂2

∂x2
gN (x)

)
+ 2α2

( ∂

∂x
|x|−θ

)(
St−sϕM (x)

)( ∂

∂x
gN (x)

)
= 4α2|x|−θ

( ∂

∂x
St−sϕM (x)

)( ∂

∂x
gN (x)

)
+ St−sϕM (x)∆θgN (x).

With these observations, we want to show that the semigroup (St)t∈[0,T ] can be exponen-
tially bounded in the following way.
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4. Pathwise uniqueness for the fractional SVE

Lemma 4.33. For any ϕ ∈ C∞
0 (R), t ∈ [0, T ] and for any λ > 0, there is a constant

Cλ,ϕ,t > 0 such that

∣∣∣∣Stϕ(x) + ∂

∂x
(Stϕ(x))

∣∣∣∣1{N+1>|x|>N} ≤ Cλ,ϕ,te
−λ|x|

1{N+1>|x|>N}

for any N ≥ 1 and x ∈ R.

Proof. For t = 0, the statement is trivial due to S0ϕ(x)+ ∂
∂x(S0ϕ(x)) = ϕ(x)+ϕ′(x), which

is bounded with compact support. Thus, we �x t > 0 and consider the �rst summand
without the derivative. We use the inequality

Iν(b) <

(
b

a

)ν

eb−a

(
a+ ν + 1

2

b+ ν + 1
2

)ν+ 1
2

Iν(a), 0 < a < b, ν > −1, (4.94)

from [IS91, Theorem 2.1 (ii)], with a = |y|1+
θ
2

t and b = |xy|1+
θ
2

t such that b > a due to
|x| > N ≥ 1. By the explicit form of pθt (x, y) from Lemma 4.13, due to the compact
support of ϕ, which we denote by Sϕ, and using (4.94), we get

Stϕ(x) =

∫
R

(2 + θ)

2t
|xy|

(1+θ)
2 e−

|x|2+θ+|y|2+θ

2t Iν

(
|xy|1+

θ
2

t

)
ϕ(y) dy

≤ Cϕ

∫
Sϕ

(2 + θ)

2t
|xy|

(1+θ)
2 e−

|x|2+θ+|y|2+θ

2t |x|ν(1+
θ
2
)e

|xy|1+
θ
2

t
− |y|1+

θ
2

t Iν

(
|y|1+

θ
2

t

)
dy

≤ Cϕ

(∫
R

(2 + θ)

2t
|y|

(1+θ)
2 e−

12+θ+|y|2+θ

2t Iν

(
|y|1+

θ
2

t

)
dy

)
|x|(ν+1)(1+ θ

2
)e−

|x−1|2+θ

2t

× ecϕ(|x|
1+ θ

2−1)

= Cϕ

(∫
R
pθt (1, y) dy

)
|x|(ν+1)(1+ θ

2
)e−

|x−1|2+θ

2t
+cϕ(|x|1+

θ
2−1)+λ|x|e−λ|x|

≤ Cλ,ϕ,te
−λ|x|, (4.95)

since the function x 7→ |x|(ν+1)(1+ θ
2
)e−

|x−1|2+θ

2t
+cϕ(|x|1+

θ
2−1)+λ|x| attains a maximum on R

for all cϕ > 0.

For the second summand, we substitute z = |xy|1+
θ
2

t such that 1
∂x =

1+ θ
2

t y|xy|
θ
2

1
∂z , apply
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the product rule and ∂
∂z Iν(z) =

ν
z Iν(z)+Iν+1(z) (see [MOS66, page 67]) to get, for |x| > 1,

∂

∂x
(Stϕ(x)) =

∂

∂x

∫
R

(2 + θ)

2t
|xy|

(1+θ)
2 e−

|x|2+θ+|y|2+θ

2t Iν

(
|xy|1+

θ
2

t

)
ϕ(y) dy

=
(2 + θ)

2t

∫
R

∂

∂z

(
|xy|

(1+θ)
2

1 + θ
2

t
y|xy|

θ
2 e−

|x|2+θ+|y|2+θ

2t Iν(z)

)
ϕ(y) dy

=
(2 + θ)

2t

∫
R

(
∂

∂z

(
|xy|

(1+θ)
2

1 + θ
2

t
y|xy|

θ
2 e−

|x|2+θ+|y|2+θ

2t

)
Iν(z)

+ |xy|
(1+θ)

2
1 + θ

2

t
y|xy|

θ
2 e−

|x|2+θ+|y|2+θ

2t
∂

∂z
(Iν(z))

)
ϕ(y) dy

=
(2 + θ)

2t

∫
R

(
1 + θ

2
y|xy|

(θ−1)
2 e−

|x|2+θ+|y|2+θ

2t

− 2 + θ

2t
|x|1+θ|xy|

1+θ
2 e−

|x|2+θ+|y|2+θ

2t

)
Iν

(
|xy|1+

θ
2

t

)
ϕ(y) dy

+
(2 + θ)

2t

∫
R

(
|xy|

(1+θ)
2

1 + θ
2

t
y|xy|

θ
2 e−

|x|2+θ+|y|2+θ

2t(
ν

t

|xy|1+
θ
2

Iν

(
|xy|1+

θ
2

t

)
+ Iν+1

(
|xy|1+

θ
2

t

)))
ϕ(y) dy

≤ Ct,ϕ

∫
Sϕ

(
|xy|

(1+θ)
2 e−

|x|2+θ+|y|2+θ

2t

+ |x|1+θ|xy|
(1+θ)

2 e−
|x|2+θ+|y|2+θ

2t

)
Iν

(
|xy|1+

θ
2

t

)
dy

+

∫
Sϕ

(
|xy|

(1+θ)
2 e−

|x|2+θ+|y|2+θ

2t

(
Iν

(
|xy|1+

θ
2

t

)
+ Iν+1

(
|xy|1+

θ
2

t

)))
dy

≤ Ct,ϕ

∫
Sϕ

|x|1+θ|xy|
(1+θ)

2 e−
|x|2+θ+|y|2+θ

2t

(
Iν

(
|xy|1+

θ
2

t

)
+ Iν+1

(
|xy|1+

θ
2

t

)))
dy,

(4.96)

where Sϕ := {y ∈ R : ϕ(y) ̸= 0}. The integrands in (4.96) vanish for y = 0 by the de�nition
of Iν in (4.21) with ν = 1

2+θ − 1 < 1+θ
2 . If we thus show that, for any ν > −1, there is a

constant Cν > 0 such that

Iν(z) + Iν+1(z) ≤ Cν

(
zν+1 + zν+2

)
ez (4.97)

holds for all z > 0, then the statement will follow, since, similar as in (4.95), all the

x-polynomials in (4.96) and the Bessel function terms are dominated by the term e−
|x|2+θ

2t

and the y terms can be bounded using the compact support of ϕ.
To get (4.97), we use the equality (see [LS72, (5.7.9), page 110])

Iν(z) = 2(ν + 1)Iν+1(z) + Iν+2(z), (4.98)
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and, since ν + 1, ν + 2 > −1
2 , we can then apply the following inequality from [Luk72,

(6.25), page 63], for x > 0:

Iν(x) <
ex + e−x

2Γ(ν + 1)

(
x

2

)ν

<
ex

Γ(ν + 1)

(
x

2

)ν

. (4.99)

(4.98) and (4.99) yield, as Γ(x) > 0 for x > 0, that

Iν(z) + Iν+1(z) = 2

(
ν +

3

2

)
Iν+1(z) + Iν+2(z)

< 2

(
ν +

3

2

)
ez

Γ(ν + 2)

(
z

2

)ν+1

+
ez

Γ(ν + 3)

(
z

2

)ν+2

≤ Cν

(
zν+1 + zν+2

)
ez,

which proves (4.97).

Proposition 4.34. It holds that

E[|X̃(t, 0)|] ≲
∫ t

0
(t− s)−αE[|X̃(s, 0)|] ds, t ∈ [0, T ].

Proof. First, to apply Proposition 4.31, we need to show that ΨN,M de�ned in (4.89)
ful�lls Assumption 4.19. ΨN,M ∈ C2([0, T ] × R) and the conditions ΨN,M (s, 0) > 0 and
Γ(t) ∈ B(0, J(t)) for some J(t) > 0 follow by construction. Moreover, Lemma 4.33 directly
yields that the last property holds:

sup
s≤t

∣∣∣∣ ∫
R
|x|−θ

(
∂

∂x
ΨN,M (s, x)

)2

dx

∣∣∣∣ ≤ C

∫
R
|x|−θe−2λ|x| dx,

which is clearly �nite as θ < 1. Hence, Assumption 4.19 holds.
Thus, Proposition 4.31 holds and plugging (4.89) into (4.87), sending K → ∞ such that
Tζ,K → T by Corollary 4.28 and using Corollary 4.32, (4.90) and Lemma 4.33, we get∫

R
E[|X̃(t, x)|]ϕM (x)gN (x) dx

≲
∫ t

0

∫
R
E[|X̃(s, x)|]

∣∣∣∣4α2|x|−θ
( ∂

∂x
St−sϕM (x)

)( ∂

∂x
gN (x)

)
+ St−sϕM (x)∆θgN (x)

∣∣∣∣dx ds
+

∫ t

0
ΨN,M (s, 0)E[|X̃(s, 0)|] ds

≲
∫ t

0

∫
R
E[|X̃(s, x)|]

( ∂

∂x
St−sϕM (x)

)
+ St−sϕM (x)|1{N+1>|x|>N} dx ds

+

∫ t

0
ΨN,M (s, 0)E[|X̃(s, 0)|] ds

≲
∫ t

0

∫
R
E[|X̃(s, x)|]e−λ|x|

1{N+1>|x|>N} dx ds+

∫ t

0
ΨN,M (s, 0)E[|X̃(s, 0)|] ds. (4.100)
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We want to send N,M → ∞. By Proposition 4.11 (i) we get that∫ t

0

∫
R
E[|X̃(s, x)|]e−λ|x|

1{N+1>|x|>N} dx ds ≲ t

∫ N+1

N
e−λx dx→ 0 as N → ∞.

Moreover, we get∫ t

0
ΨN,M (s, 0)E[|X̃(s, 0)|] ds =

∫ t

0
(St−sϕM (0))gN (x)E[|X̃(s, 0)|] ds

=

∫ t

0

(∫
R
pθt−s(y, 0)ϕM (y) dy

)
E[|X̃(s, 0)|] ds

M→∞→
∫ t

0
pθt−s(0)E[|X̃(s, 0)|] ds as M → ∞,

which gives ∫ t

0
ΨN,M (s, 0)E[|X̃(s, 0)|] ds = cθ

∫ t

0
(t− s)−αE[|X̃(s, 0)|] ds.

Hence, sending N,M → ∞ in (4.100) yields

E[|X̃(t, 0)| ≲
∫ t

0
(t− s)−αE[|X̃(s, 0)|] ds.
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Chapter 5

Mean-�eld SVEs

The content of this chapter is published in [PS23b].

Introduction

Mean-�eld stochastic di�erential equations (mean-�eld SDEs), also known as McKean�
Vlasov stochastic di�erential equations, provide mathematical descriptions of random sys-
tems of interacting particles, whose time evolutions depend, in some manner, on the
probability distribution of the entire systems. A crucial reason for the frequent use of
mean-�eld SDEs in applied mathematics is the fact that they allow for modelling the
phenomena of �propagation of chaos� of large interacting particle systems. Recall, on
a microscopic scale the trajectory of each individual particle can often be appropriately
modelled by a stochastic process. However, when the number of particles becomes very
large, the microscopic scale usually contains too much information, making the interaction
of individual particles intractable. Fortunately, sending the number of particles to in�nity,
propagation of chaos states that the behavior of an individual particle depends only on the
probability distribution of the entire system, i.e., on the macroscopic scale the interaction
of individual particles becomes negligible.
Mean-�eld SDEs as well as propagation of chaos originated in statistical physics and were
�rst studied by Kac [Kac56], McKean [McK66] and Vlasov [Vla68]. By now, these concepts
have found a wide range of applications in a variety of �elds such as physics, �nance
and data science. We refer, e.g., to [Szn91, JW17, CD18a, CD18b, CD22a, CD22b] for
comprehensive introductions to mean-�eld SDEs and their numerous applications. Except
a very small number of publications, like the rough path based approaches to mean-�eld
SDEs [BCD20, CDFM20, BCD21], the vast majority of literature on mean-�eld SDEs and
propagation of chaos is restricted to Markovian systems of interacting particles, i.e. the
behavior of each particle has to be independent of all past states of the systems. On the
contrary, it is well observed that many real-world dynamical systems do have memory
e�ects and, thus, do indeed depend on past states of the underlying systems. Well-known
examples of such systems are the growth of populations, the spread of epidemics and
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turbulence �ows.
Classical mathematical models for random dynamical systems with memory e�ects are
given by stochastic Volterra equations (SVEs), as introduced in the seminal works of
Berger and Mizel [BM80a, BM80b], see also e.g. [Pro85, PP90]. While SVEs allow for
generating non-Markovian stochastic processes, the solutions of SVEs, in contrast to mean-
�eld SDEs, do not depend directly on the probability distributions of the generated random
systems.
In this chapter we aim to unify the theory of mean-�eld stochastic di�erential equations
and stochastic Volterra equations, which enables to combine the desirable modelling ad-
vantages of both classes of equations. More precisely, we introduce mean-�eld stochastic
Volterra equations (mean-�eld SVEs)

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs,L(Xs)) ds+

∫ t

0
Kσ(s, t)σ(s,Xs,L(Xs)) dBs, t ∈ [0, T ],

(5.1)
where X0 is a random variable, B is a Brownian motion, and the coe�cients µ, σ as well as
the kernels Kµ,Kσ are measurable functions. Here, L(Xs) denotes the law of the random
variable Xs. In words, mean-�eld SVEs are a class of stochastic integral equations that
describe the dynamics of random systems with both nonlinear interactions and memory
e�ects. They constitute a generalization of mean-�eld SDEs and of classical SVEs. Notice
that a solution to the mean-�eld SVE (5.1) is, in general, neither a Markov process nor a
semimartingale.
Our �rst contribution is to establish the (strong) well-posedness of the mean-�eld SVE (5.1),
meaning that there exists a unique strong solution to (5.1), under two sets of assumptions.
On the one hand, we show the existence of a unique solution to the mean-�eld SVE (5.1)
in a multi-dimensional setting with standard assumptions on the kernels and coe�cients,
i.e. we assume some integrability on the kernels as well as Lipschitz continuity and a linear
growth condition on the coe�cients, cf. e.g. [Wan08, Car16]. The proof is based on a
classical �xed point argument in combination with techniques from the theories of mean-
�eld SDEs and SVEs. On the other hand, we show the existence of a unique solution
to the mean-�eld SVE (5.1) in a one-dimensional setting, assuming su�ciently smooth
kernels and Hölder continuous di�usion coe�cients which are independent of the law of
the solution. To that end, we rely on a Yamada�Watanabe approach [YW71], as recently
generalized in [AJLP19] or Chapter 2 to SVEs with su�ciently smooth kernels. As com-
parison, for well-posedness results in case of mean-�eld SDEs we refer to [BMM20, KP21]
such as [HW23] in the Hölder continuous di�usion coe�cient case, and in case of SVEs
to [Wan08, AJLP19], or Chapter 2. Furthermore, let us remark that a speci�c type of
mean-�eld SVEs was studied in [SWY13].
Our second contribution is to establish quantitative, pointwise propagation of chaos results
of Volterra-type systems of interacting particles. In words, sending the number of Volterra-
type interacting particles to in�nity, we obtain a macroscopic description of the systems
based on a mean-�eld stochastic Volterra equation. The developed approach is based on
a synchronous coupling method, as it was initiated by McKean [McK67] and extended
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by Sznitman [Szn91]. In the case of mean-�eld SDEs, synchronous coupling methods are
widely used for systems that are described by systems of McKean�Vlasov di�usions, and
often lead to pathwise propagation of chaos, see e.g. [CD22a, Theorem 3.20] or [Car16,
Theorem 1.10]. In the present case of mean-�eld SVEs, implementing a synchronous
coupling method becomes more challenging as the underlying McKean�Vlasov processes
are of Volterra type and, thus, in general, lack the semimartingale and Markov property.
As for the presented well-posedness theory of mean-�eld SVEs, we distinguish between the
aforementioned multi- and one-dimensional setting. The pointwise natures of the presented
propagation of chaos results for mean-�eld SVEs is caused by the non-availability of a
Burkholder�Davis�Gundy inequality in the multi-dimensional setting and by the Hölder
continuity of the di�usion coe�cients in the one-dimensional setting. The latter setting
requires to combine the synchronous coupling method with a Yamada�Watanabe approach
like in the SDE case in [HW23].

Organization of the chapter: In Section 5.1 we present the main results regarding
the well-posedness and propagation of chaos for mean-�eld stochastic Volterra equations.
Section 5.2 provides some necessary well-posedness results for ordinary stochastic Volterra
equations. The proofs of the main results are contained in Section 5.3, 5.4 and 5.5.

5.1 Main results: well-posedness and propagation of chaos

Let T ∈ (0,∞), d,m ∈ N, and let (Ω,F , (Ft)t∈[0,T ],P) be a �ltered probability space, which
satis�es the usual conditions. Suppose B = (Bt)t∈[0,T ] is an m-dimensional Brownian
motion with respect to (Ft)t∈[0,T ]. The law of a random variable X is denoted by L(X)

and, for p ≥ 1, the space of probability measures on Rd with �nite p-th moments by
Pp(Rd). For ρ, ρ̃ ∈ Pp(Rd), we write Wp(ρ, ρ̃) for the p-Wasserstein distance between ρ
and ρ̃, see [CD18a, Chapter 5] for its de�nition. The space Rd is always equipped with the
Euclidean norm | · |. Moreover, we set ∆T := {(s, t) ∈ [0, T ]× [0, T ] : 0 ≤ s ≤ t ≤ T} and
use the notation Aη ≲ Bη for a generic parameter η, meaning that Aη ≤ CBη for some
constant C > 0 independent of η.

We consider the d-dimensional mean-�eld stochastic Volterra equation

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs,L(Xs)) ds+

∫ t

0
Kσ(s, t)σ(s,Xs,L(Xs)) dBs, t ∈ [0, T ],

(5.2)
where X0 is a d-dimensional, F0-measurable random variable, which is independent of B,
the coe�cients µ : [0, T ]×Rd×Pp(Rd) → Rd, σ : [0, T ]×Rd×Pp(Rd) → Rd×m and the ker-
nelsKµ,Kσ : ∆T → R are measurable functions. The integral

∫ t
0 Kσ(s, t)σ(s,Xs,L(Xs)) dBs

is de�ned as a stochastic Itô integral.

Let us brie�y recall the concepts of well-posedness, strong solutions and pathwise unique-
ness. We use, for topological spaces X ,Y and p ≥ 1, the notation Lp(X ;Y) for the space
of all Y-valued, measurable, p-integrable functions on X and C(X ;Y) for the space of all
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Y-valued, continuous functions on X . An (Ft)t∈[0,T ]-progressively measurable stochastic
process (Xt)t∈[0,T ] in Lp(Ω×[0, T ];Rd), on the given probability space (Ω,F , (Ft)t∈[0,T ],P),
is called (strong) Lp-solution of the mean-�eld SVE (5.2) if∫ t

0
(|Kµ(s, t)µ(s,Xs,L(Xs))|+ |Kσ(s, t)σ(s,Xs,L(Xs))|2) ds <∞ for all t ∈ [0, T ],

and the integral equation (5.2) holds P-almost surely. We say pathwise uniqueness in
Lp holds for the mean-�eld SVE (5.2) if P(Xt = X̃t, ∀t ∈ [0, T ]) = 1 for any two
Lp-solutions (Xt)t∈[0,T ] and (X̃t)t∈[0,T ] of (5.2) de�ned on the same probability space
(Ω,F , (Ft)t∈[0,T ],P). We say that the mean-�eld SVE (5.2) is well-posed in Lp (or that
there exists a unique Lp-solution) for p ≥ 1 if there exists a strong Lp-solution to (5.2)
and pathwise uniqueness in Lp holds.

In the following we distinguish between a multi-dimensional and a one-dimensional setting
since these settings allow to establish well-posedness of the mean-�eld SVE (5.2) with
di�erent regularity assumptions on the kernels and coe�cients. The main existence and
uniqueness results regarding mean-�eld SVEs as well as propagation of chaos are stated in
Subsection 5.1.1 and 5.1.2. In the multi-dimensional setting (Subsection 5.1.1) we make
standard Lipschitz assumptions on the coe�cients µ, σ, whereas in the one-dimensional
setting (Subsection 5.1.2) we assume that µ is Lipschitz continuous but allow σ to be only
Hölder continuous. We prove the corresponding results in Section 5.3, 5.4 and 5.5.

5.1.1 Mean-�eld SVEs with Lipschitz continuous coe�cients

In this subsection we consider the multi-dimensional stochastic Volterra equation (5.2)
with dimensions d,m ∈ N and coe�cients µ, σ that are Lipschitz continuous in the space
and distributional component, uniformly in the time component, allowing for potentially
singular kernels. We start by stating the assumptions on the kernels.

Assumption 5.1. Assume there are constants γ ∈ (0, 12 ], ε > 0 and L > 0, such that
Kµ,Kσ : ∆T → R are measurable functions ful�lling∫ t

0
|Kµ(s, t

′)−Kµ(s, t)|1+ε ds+

∫ t′

t
|Kµ(s, t

′)|1+ε ds ≤ L|t′ − t|γ(1+ε),∫ t

0
|Kσ(s, t

′)−Kσ(s, t)|2+ε ds+

∫ t′

t
|Kσ(s, t

′)|2+ε ds ≤ L|t′ − t|γ(2+ε),

for all (t, t′) ∈ ∆T .

Note that Assumption 5.1 allows for singular kernels, like the fractional convolutional
kernel K(s, t) = (t − s)−α for α ∈ (0, 1/2) and the examples provided in [AJCLP21,
Example 1.3]. Moreover, let for ε > 0 given by Assumption 5.1, the �xed parameter δ > 2
be de�ned by

δ :=
4 + 2ε

ε
, (5.3)
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such that
2

2 + ε
+

2

δ
= 1. (5.4)

In the following we use the δ-Wasserstein distance on the space Pδ(Rd) of probability
measures on Rd with �nite δ-th moments. Relying on the δ-Wasserstein distance, we
specify the assumptions on the regularity of the coe�cients µ and σ, which are a classical
linear growth condition and a Lipschitz assumption.

Assumption 5.2. Let µ : [0, T ]×Rd×Pδ(Rd) → Rd and σ : [0, T ]×Rd×Pδ(Rd) → Rd×m

be measurable functions such that:

(i) for any bounded set K ⊂ Pδ(Rd), there is a constant CK > 0, such that the linear
growth condition

|µ(t, x, ρ)|+ |σ(t, x, ρ)| ≤ CK(1 + |x|)

holds for all ρ ∈ K, t ∈ [0, T ] and x ∈ Rd;

(ii) µ and σ are Lipschitz continuous in x and in ρ w.r.t. the δ-Wasserstein distance,
uniformly in t, i.e. there is a constant Cµ,σ > 0 such that

|µ(t, x, ρ)− µ(t, x̃, ρ̃)|+ |σ(t, x, ρ)− σ(t, x̃, ρ̃)| ≤ Cµ,σ

(
|x− x̃|+Wδ(ρ, ρ̃)

)
,

holds for all t ∈ [0, T ], x, x̃ ∈ Rd, and ρ, ρ̃ ∈ Pδ(Rd).

Our �rst result is the well-posedness of the mean-�eld stochastic Volterra equation (5.2).

Theorem 5.3. Suppose that the initial value X0 is in L
p(Ω;Rd), the kernels Kµ,Kσ ful�ll

Assumption 5.1, the coe�cients µ, σ ful�ll Assumption 5.2, and p > max{ 1
γ , 1+

2
ε}, where

γ ∈ (0, 12 ] and ε > 0 are given by Assumption 5.1. Then, the mean-�eld stochastic Volterra
equation (5.2) is well-posed in Lp. Moreover, for any q ≥ 1, if X0 ∈ Lq(Ω;Rd), the unique
Lp-solution X of (5.2) satis�es

sup
t∈[0,T ]

E[|Xt|q] <∞. (5.5)

Our second result is propagation of chaos for mean-�eld stochastic Volterra equations, i.e.
we show that the unique Lp-solution to the mean-�eld stochastic Volterra equation (5.2)
is the limit N → ∞ of the solutions to the following symmetric system of N mean-�eld
stochastic Volterra equations

XN,i
t = Xi

0 +

∫ t

0
Kµ(s, t)µ(s,X

N,i
s , ρ̄Ns ) ds+

∫ t

0
Kσ(s, t)σ(s,X

N,i
s , ρ̄Ns ) dBi

s, t ∈ [0, T ],

(5.6)

for i ∈ {1, . . . , N}, where ρ̄Nt := 1
N

N∑
i=1

δ
XN,i

t
is the empirical distribution of (XN,i

t )i=1,...,N ,

(Xi
0)i∈N ⊂ Lq(Ω;Rd) is a sequence of F0-measurable, independent and identically dis-

tributed random variables for some q > 4, and (Bi)i∈N is a sequence of independent
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m-dimensional Brownian motions, which are all de�ned on the given probability space
(Ω,F , (Ft)t∈[0,T ],P). Strong Lp-solutions, pathwise uniqueness in Lp and well-posedness
in Lp for the system (5.6) of mean-�eld SVEs is de�ned analogously to (5.2) and δx denotes
the Dirac measure at x for x ∈ Rd. Moreover, for i ∈ N, let Xi be the solution of the
mean-�eld SVE (5.2) with the initial condition Xi

0 and driving Brownian motion Bi. In
the present multi-dimensional setting, we obtain the following convergence result.

Theorem 5.4 (Volterra propagation of chaos). Suppose Assumption 5.1 and 5.2, and
that the sequence of initial conditions (Xi

0)i∈N ⊂ Lq(Ω;Rd) for some q > max{p, 2δ} and
p > max{ 1

γ , 1 + 2
ε}, where δ is de�ned in (5.3). Then, the system (5.6) of mean-�eld

SVEs is well-posed in Lp for every N ≥ 1, where the unique Lp-solution is denoted by
(XN,i

t )i=1,...,N . Moreover, it holds

lim
N→∞

(
max
1≤i≤N

(
sup

t∈[0,T ]
E[|XN,i

t −Xi
t|δ]

)
+ sup

t∈[0,T ]
E
[
Wδ

( 1

N

N∑
i=1

δ
XN,i

t
,L(X1

t )
)δ])

= 0. (5.7)

The rate of convergence in (5.7) is explicitly stated in the next lemma.

Lemma 5.5. Supposing the assumptions and notation of Theorem 5.4, it holds that

max
1≤i≤N

(
sup

t∈[0,T ]
E[|XN,i

t − Xi
t|δ]

)
+ sup

t∈[0,T ]
E
[
Wδ

( 1

N

N∑
i=1

δ
XN,i

t
,L(X1

t )
)δ]

≲ εN , (5.8)

where (εN )N∈N is given by

εN =

{ N−1/2, if d < 2δ

N−1/2 log2(1 +N), if d = 2δ

N−δ/d, if d > 2δ

. (5.9)

Remark 5.6. The rates of convergence obtained in (5.9) are analogue to the classical rates
for ordinary mean-�eld SDEs with Lipschitz coe�cients (see [CD22a, Theorem 3.20]), us-
ing Wδ(· · · )δ instead of W2(· · · )2 and, consequently, replacing the exponent 2/d by δ/d
in (5.9). Note that in the case of ordinary mean-�eld SDEs one obtains a pathwise prop-
agation of chaos result (meaning that the sup in (5.8) is inside the expectation opera-
tors), which is a stronger type of convergence than the pointwise convergence presented in
Theorem 5.4. This weaker type of convergence is caused by the missing availability of a
Burkholder�Davis�Gundy inequality for stochastic Volterra processes. However, the rates
of convergence provided in Lemma 5.5 seem to be optimal for synchronous coupling meth-
ods, since it is shown in [FG15, Theorem 1 and there after] that for terms of the form
E[Wδ(ρ̄N , ρ)

δ] the rates in (5.9) are sharp. Consequently, optimality could be only lost in
the inequalities (5.48) or (5.49), which, at least in general, appears not to be the case.
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5.1.2 Mean-�eld SVEs with Hölder continuous di�usion coe�cients

In this subsection we consider mean-�eld SVEs in a one-dimensional setting, i.e. we assume
d = m = 1. This allows to relax the Lipschitz assumption on the di�usion coe�cient σ to
Hölder continuity in the space variable, provided that σ is independent of the distribution
of the solution and that the kernels are su�ciently regular. More precisely, we consider
the one-dimensional mean-�eld stochastic Volterra equation

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs,L(Xs)) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (5.10)

where (Bt)t∈[0,T ] is a one-dimensional Brownian motion, X0 is an F0-measurable random
variable, the coe�cients µ : [0, T ] × R × Pp(R) → R, σ : [0, T ] × R → R and the kernels
Kµ,Kσ : ∆T → R are measurable functions. We consider two di�erent sets of assumptions
on the kernels and on the initial condition.

Assumption 5.7. Let γ ∈ (0, 12 ] and ε > 0. Let X0 be an F0-measurable random variable
and Kµ,Kσ : ∆T → R be continuous functions such that:

(i) Kµ(s, ·) is absolutely continuous for every s ∈ [0, T ] and ∂2Kµ is bounded on ∆T ;

(ii) Kσ(·, t) is absolutely continuous for every t ∈ [0, T ], Kσ(s, ·) is absolutely continuous
for every s ∈ [0, T ] with ∂2Kσ ∈ L2(∆T ), and ∂2Kσ(·, t) is absolutely continuous for
every t ∈ [0, T ]. Furthermore, there is a constant C1 > 0 such that |Kσ(t, t)| ≥ C1

for any t ∈ [0, T ], and there exists C2 > 0 such that∫ s

0
|Kσ(u, t)−Kσ(u, s)|2+ε du ≤ C2|t− s|γ(2+ε) and

|∂1Kσ(s, t)|+ |∂2Kσ(s, s)|+
∫ t

s
|∂21Kσ(s, u)|du ≤ C2

hold for any (s, t) ∈ ∆T ;

(iii) X0 ∈ Lp(Ω;R) for p > max{ 1
γ , 1 +

2
ε}.

Instead of Assumption 5.7, we can alternatively require Kµ,Kσ and X0 to ful�ll the
following assumption, where the kernels are supposed to be convolutional.

Assumption 5.8. Let X0 be an F0-measurable random variable and Kµ,Kσ : ∆T → R
be continuous functions such that:

(i) Kµ(s, t) = Kσ(s, t) = K̃(t− s) for some K̃ ∈ C1([0, T ];R);

(ii) X0 ∈ Lp(Ω;R) for p > 2.

Next, we formulate the assumptions on the coe�cients.

Assumption 5.9. Let µ : [0, T ] × R × P1(R) → R and σ : [0, T ] × R → R be measurable
functions such that:
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(i) for any bounded set K ⊂ P1(R), there is a constant CK > 0, such that the linear
growth condition

|µ(t, x, ρ)|+ |σ(t, x)| ≤ CKρ(1 + |x|)

holds for all ρ ∈ K, t ∈ [0, T ] and x ∈ R;

(ii) µ is Lipschitz continuous in x and ρ w.r.t. the 1-Wasserstein distance, uniformly in
t, i.e. there is a constant Cµ > 0 such that

|µ(t, x, ρ)− µ(t, x̃, ρ̃)| ≤ Cµ

(
|x− x̃|+W1(ρ, ρ̃)

)
,

holds for all t ∈ [0, T ], x, x̃ ∈ R and ρ, ρ̃ ∈ P1(R), and σ is Hölder continuous of
order 1

2 + ξ for some ξ ∈ [0, 12 ] in x uniformly in t, i.e. there is a constant Cσ > 0
such that

|σ(t, x)− σ(t, x̃)| ≤ Cσ|x− x̃|
1
2
+ξ,

holds for all t ∈ [0, T ] and x, x̃ ∈ R.

First, we establish the well-posedness of the mean-�eld stochastic Volterra equation (5.10)
with Hölder continuous di�usion coe�cients. Its proof is based on a Yamada�Watanabe
type approach [YW71], which requires essentially a one-dimensional setting and leads to
the stronger assumptions on the kernels.

Theorem 5.10. Suppose Assumption 5.9, and the kernels Kµ,Kσ and the initial con-
dition X0 satisfy Assumption 5.7 or Assumption 5.8 with p given as therein. Then, the
mean-�eld stochastic Volterra equation (5.10) is well-posed in Lp. Moreover, for any q ≥ 1,
if X0 ∈ Lq(Ω;Rd), the unique solution X of (5.10) satis�es

sup
t∈[0,T ]

E[|Xt|q] <∞.

Secondly, we establish propagation of chaos for one-dimensional stochastic mean-�eld
SVEs with Hölder continuous di�usion coe�cients. To that end, we consider the sym-
metric system of N mean-�eld stochastic Volterra equations

XN,i
t = Xi

0+

∫ t

0
Kµ(s, t)µ(s,X

N,i
s , ρ̄Ns ) ds+

∫ t

0
Kσ(s, t)σ(s,X

N,i
s ) dBi

s, t ∈ [0, T ], (5.11)

for i ∈ {1, . . . , N}, where (Xi
0)i∈N ⊂ Lp(Ω;R) is an i.i.d. sequence of initial conditions,

and (Bi)i∈N is a sequence of independent one-dimensional Brownian motions. Moreover,
for i ∈ N, Xi denotes the solution of the mean-�eld SVE (5.10) with initial condition Xi

0

and driving Brownian motion Bi. In the present one-dimensional setting, we obtain the
following convergence result.

Theorem 5.11 (Volterra propagation of chaos). Suppose Assumption 5.9, and the kernels
Kµ,Kσ and the initial conditions Xi

0, for i ∈ N, satisfy Assumption 5.7 or Assumption 5.8
with p given as therein. Then, the system (5.11) of mean-�eld SVEs is well-posed in Lp,
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where the unique Lp-solution is denoted by (XN,i
t )i=1,...,N for every N ≥ 1. Moreover, it

holds

lim
N→∞

(
max
1≤i≤N

(
sup

t∈[0,T ]
E[|XN,i

t − Xi
t|]
)
+ sup

t∈[0,T ]
E
[
W1

( 1

N

N∑
i=1

δ
XN,i

t
,L(X1

t )
)])

= 0. (5.12)

The rate of convergence in (5.12) is explicitly stated in the next lemma.

Lemma 5.12. Supposing the assumptions and notation of Theorem 5.11, it holds that

max
1≤i≤N

(
sup

t∈[0,T ]
E[|XN,i

t − Xi
t|]
)
+ sup

t∈[0,T ]
E
[
W1

( 1

N

N∑
i=1

δ
XN,i

t
,L(X1

t )
)]

≲ N−1/2. (5.13)

Remark 5.13. The rate of convergence in (5.13) is expected to be optimal for synchronous
coupling methods, cf. Remark 5.6, since it is shown in [FG15, Theorem 1 and there after]
that for terms of the form E[W1(ρ̄N , ρ)] the rate is sharp. Consequently, optimality could
be only lost in the inequalities (5.36) or (5.47).

5.2 On the well-posedness of ordinary stochastic Volterra

equations

In this section, we provide various well-posedness results for ordinary stochastic Volterra
equations with random initial conditions that are needed to prove the well-posedness
results for mean-�eld stochastic Volterra equations presented in Section 5.1. We start
with SVEs with Lipschitz continuous coe�cients, which is a slight modi�cation of [Wan08,
Theorem 1.1].

Lemma 5.14. Let the kernels Kµ,Kσ ful�ll Assumption 5.1, p > max{ 1
γ , 1 + 2

ε} with

γ ∈ (0, 12 ] and ε > 0 from Assumption 5.1, the initial value X0 ∈ Lp(Ω;Rd), and the
measurable coe�cients µ : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×m for some d,m ∈ N
ful�ll the linear growth condition

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|),

for some Cµ,σ > 0 and all t ∈ [0, T ], x ∈ Rd, and the Lipschitz condition

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ Cµ,σ|x− y|,

for some Cµ,σ > 0 and all t ∈ [0, T ], x, y ∈ Rd. Then, the d-dimensional stochastic
Volterra equation

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ],

is well-posed in Lp, where (Bt)t∈[0,T ] is an m-dimensional Brownian motion.
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Proof. With the assumed integrability on X0, it is straightforward to adapt the Picard
iteration and the Grönwall type estimates in proof of [Wan08, Theorem 1.1] to allow for
random initial conditions X0, as stated in Lemma 5.14.

For one-dimensional ordinary stochastic Volterra equations the Lipschitz assumption on
the di�usion coe�cients can be relaxed to Hölder continuity, provided the kernels are suf-
�ciently regular or have a convolutional structure. The next results is a slight modi�cation
of Theorem 2.3, allowing for SVEs with random initial conditions.

Lemma 5.15. Let the kernels Kµ,Kσ ful�ll Assumption 5.7, p > max{ 1
γ , 1 + 2

ε} with

γ ∈ (0, 12 ] and ε > 0 from Assumption 5.7, the initial value X0 ∈ Lp(Ω;R), and the
measurable coe�cients µ : [0, T ] × R → R and σ : [0, T ] × R → R ful�ll the linear growth
condition

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|),

for some Cµ,σ > 0 and all t ∈ [0, T ], x ∈ R, µ the Lipschitz condition

|µ(t, x)− µ(t, y)| ≤ Cµ|x− y|,

for some Cµ > 0 and all t ∈ [0, T ], x, y ∈ R, and σ the Hölder condition

|σ(t, x)− σ(t, y)| ≤ Cσ|x− y|
1
2
+ξ,

for ξ ∈ [0, 12 ], some Cσ > 0 and all t ∈ [0, T ], x, y ∈ R. Then, the stochastic Volterra
equation

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ],

is well-posed in Lp, where (Bt)t∈[0,T ] is a one-dimensional Brownian motion.

Proof. With the assumed integrability on X0, it is straightforward to adapt the proof of
Theorem 2.3 to the case that X0 is a random variable.

The next lemma is a slight generalization of [AJEE19b, Proposition B.3], providing the
well-posedness of one-dimensional SVEs with convolutional kernels and random initial
conditions.

Lemma 5.16. Suppose that X0 ∈ Lp(Ω;R) for some p > 2, the kernels are of the form
Kµ(s, t) = Kσ(s, t) = K̃(t−s) for some K̃ ∈ C1([0, T ];R), and the measurable coe�cients
µ : [0, T ]× R → R and σ : [0, T ]× R → R ful�ll the linear growth condition

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|),

for some Cµ,σ > 0 and all t ∈ [0, T ], x ∈ R, µ the Lipschitz condition

|µ(t, x)− µ(t, y)| ≤ Cµ|x− y|,
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for some Cµ > 0 and all t ∈ [0, T ], x, y ∈ R, and σ the Hölder condition

|σ(t, x)− σ(t, y)| ≤ Cσ|x− y|
1
2
+ξ,

for ξ ∈ [0, 12 ], some Cσ > 0 and all t ∈ [0, T ], x, y ∈ R. Then, the stochastic Volterra
equation

Xt = X0 +

∫ t

0
K̃(t− s)µ(s,Xs) ds+

∫ t

0
K̃(t− s)σ(s,Xs) dBs, t ∈ [0, T ], (5.14)

is well-posed in Lp, where (Bt)t∈[0,T ] is a one-dimensional Brownian motion.

Proof. The weak existence of some Lp-solution to the SVE (5.14) follows from Theo-
rem 3.10 with the straightforward adaptation to random initial conditions X0. For the
pathwise uniqueness, one can adapt the proof from [AJEE19b, Proposition B.3] using the
Lipschitz and Hölder continuity of µ, σ uniformly in t.

Moreover, for the well-posedness results of mean-�eld SVEs we need a multi-dimensional
well-posedness result for stochastic Volterra equations where the Hölder continuous coef-
�cient σ is a diagonal matrix, where each entry only depends on the component of the
solution of the respective dimension, as provided in the next remark.

Remark 5.17. For N ∈ N let us consider the N -dimensional stochastic Volterra equation

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (5.15)

where (Bt)t∈[0,T ] is an N -dimensional Brownian motion,

Xt =

 X1
t
...

XN
t

 , X0 =

 X1
0
...

XN
0

 , µ(s,Xs) =

 µ1(s,Xs)
...

µN (s,Xs)


and

σ(s,Xs) =

 σ1(s,X
1
s ) · · · 0
...

. . .
...

0 · · · σN (s,XN
s )

 .

Suppose that the kernels Kµ,Kσ and the initial value X0 ful�ll Assumption 5.7 or As-
sumption 5.8 with p given from there, that µ : [0, T ] × RN → RN is Lipschitz continuous
in the space variable, uniformly in the time variable, and each σi : [0, T ] × R → R for
i ∈ {1, . . . , N} is 1/2 + ξ-Hölder continuous in the space variable, uniformly in the time
variable for some ξ ∈ [0, 1/2]. By considering each dimension separately, as e.g. done
for SDEs in [YW71, Theorem 1], it is straightforward to conclude the well-posedness in
Lp of the SVE (5.15) from the corresponding one-dimensional results in Lemma 5.15 and
Lemma 5.16.
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We conclude this section with a remark on the path regularity of solutions and one on the
notion of Lp-well-posedness.

Remark 5.18 (Path regularity). Let X be the unique (d-, 1- or N -dimensional) solution
to the stochastic Volterra equation in either of the settings in Lemma 5.14, Lemma 5.15,
Lemma 5.16 or Remark 5.17 with p > max{ 1

γ , 1 +
2
ε}. In the case of Assumption 5.8, we

can set γ = 1
2 and p > 2 given from there. By adapting Lemma 2.7 and Lemma 2.10 to

the multi-dimensional setting, it follows that

sup
t∈[0,T ]

E[|Xt|q] <∞,

and

E[|Xt −Xs|q] ≲ |t− s|βq

for any q ≥ 1, β ∈ (0, γ− 1
p), s, t ∈ [0, T ], and, hence, that the solution X has a modi�cation

with β-Hölder continuous sample paths.

Remark 5.19. The notion of Lp-well-posedness, as used Lemma 5.14, Lemma 5.15,
Lemma 5.16 and Remark 5.17, appears to be necessary to prove the existence of a strong
solution and pathwise uniqueness. First, one needs to assume that a solution X is in
Lp(Ω × [0, T ];Rd) to conclude continuity of its sample paths with standard estimates, as
in Lemma 2.7. Secondly, in order to be able to apply Grönwall's Lemma to an inequality
of the form

E[|Xt − Yt|p] ≲
∫ t

0
E[|Xs − Ys|p] ds,

one needs to assume that both solutions X,Y are in Lp(Ω× [0, T ];Rd) to guarantee �nite-
ness of the expectations sups∈[0,t] E[|Xs|p] and sups∈[0,t] E[|Ys|p] by standard estimates, as
in Lemma 2.10.

5.3 Well-posedness: Proof of Theorem 5.3 and 5.10

This section is devoted to the proofs of Theorem 5.3 and of Theorem 5.10.

Proof of Theorem 5.3. We de�ne the solution map Φ by

Φ: C
(
[0, T ];Pδ(Rd)

)
→ C

(
[0, T ];Pδ(Rd)

)
, ρ 7→ Φ(ρ) :=

(
L(Xρ

t )
)
t∈[0,T ]

, (5.16)

where Xρ is the unique Lp-solution to the stochastic Volterra equation

Xt = X0 +

∫ t

0
Kµ(s, t)µ(s,Xs, ρs) ds+

∫ t

0
Kσ(s, t)σ(s,Xs, ρs) dBs, t ∈ [0, T ]. (5.17)

Note that a unique �xed point of the solution map Φ implies the existence of a unique
Lp-solution X = (Xt)t∈[0,T ] to the mean-�eld SVE (5.2) satisfying supt∈[0,T ] E[|Xt|q] <∞
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5. Mean-�eld SVEs

for every q ≥ 1, c.f. Step 1 below. Hence, it is su�cient to prove that the solution map Φ
has a unique �xed point.
Step 1: We show the well-de�nedness of the solution map Φ.
For a �xed ρ = (ρt)t∈[0,T ] ∈ C([0, T ];Pδ(Rd)), the integral equation (5.17) is an or-
dinary stochastic Volterra equation. Due to Assumption 5.2, the linear growth and
Lipschitz condition of Lemma 5.14 are satis�ed. Hence, there exists a unique strong
Lp-solution Xρ = (Xρ

t )t∈[0,T ] to the SVE (5.17) and, by Remark 5.18, we get that
supt∈[0,T ] E[|X

ρ
t |q] < ∞ for all q ≥ 1 and that the sample paths of Xρ are almost surely

continuous. Moreover, note that
(
L(Xρ

t )
)
t∈[0,T ]

∈ C
(
[0, T ];Pδ(Rd)

)
, since, by the repre-

sentation of the Wasserstein distance in terms of random variables (see [CD18a, (5.14)])
and by Remark 5.18, we have

Wδ

(
L(Xρ

t ),L(Xρ
s )
)
≤ E

[
|Xρ

t −Xρ
s |δ

] 1
δ ≲ |t− s|β, s, t ∈ [0, T ],

for any β ∈ (0, γ−1/p) with γ ∈ (0, 12 ], where the parameters are given in Assumption 5.1.
Step 2: For ρ, ρ̃ ∈ C

(
[0, T ];Pδ(Rd)

)
, we show that

sup
s∈[0,t]

Wδ(Φ(ρ)s,Φ(ρ̃)s)
δ ≲

∫ t

0
Wδ(ρs, ρ̃s)

δ ds, t ∈ [0, T ]. (5.18)

We get that

E
[
|Xρ

t −X ρ̃
t |δ

]
≲ E

[∣∣∣ ∫ t

0
Kµ(s, t)

(
µ(s,Xρ

s , ρs)− µ(s,X ρ̃
s , ρ̃s)

)
ds

∣∣∣δ]
+ E

[∣∣∣ ∫ t

0
Kσ(s, t)

(
σ(s,Xρ

s , ρs)− σ(s,X ρ̃
s , ρ̃s)

)
dBs

∣∣∣δ]
≲

(∫ t

0
|Kµ(s, t)|

4+2ε
4+ε ds

) 4+ε
1+ε

∫ t

0
E
[∣∣µ(s,Xρ

s , ρs)− µ(s,X ρ̃
s , ρ̃s)

∣∣δ]ds
+ E

[(∫ t

0

∣∣Kσ(s, t)
(
σ(s,Xρ

s , ρs)− σ(s,X ρ̃
s , ρ̃s)

)∣∣2 ds) δ
2

]
≲

∫ t

0
E
[∣∣µ(s,Xρ

s , ρs)− µ(s,X ρ̃
s , ρ̃s)

∣∣δ]ds
+
(∫ t

0
|Kσ(s, t)|2+ε ds

) 4+2ε
ε(2+ε)

∫ t

0
E
[∣∣σ(s,Xρ

s , ρs)− σ(s,X ρ̃
s , ρ̃s)

∣∣δ]ds
≲

∫ t

0

(
E
[∣∣Xρ

s −X ρ̃
s

∣∣δ]+Wδ(ρs, ρ̃s)
δ
)
ds. (5.19)

for t ∈ [0, T ], where we used Hölder's inequality in the drift integral with 4+2ε
4+ε < 1 + ε

such that by the choice of δ in (5.3), 4+ε
4+2ε + 1

δ = 1 and in the di�usion integral with
2+ε
2 such that (5.4) holds, Burkholder�Davis�Gundy's inequality, Fubini's theorem, the

integrability of the kernels from Assumption 5.1 and the Lipschitz continuity of µ and σ
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from Assumption 5.2. Since we have that

sup
s∈[0,T ]

E[|Xρ
s −X ρ̃

s |δ] <∞,

we can apply Grönwall's inequality to conclude that

E
[
|Xρ

t −X ρ̃
t |δ

]
≲

∫ t

0
Wδ(ρs, ρ̃s)

δ ds. (5.20)

Since by assumption ρ, ρ̃ ∈ C
(
[0, T ];Pδ(Rd)

)
, we can bound the Wasserstein distance by

Wδ(Φ(ρ)t,Φ(ρ̃)t) =Wδ(L(Xρ
t ),L(X

ρ̃
t )) ≤ E[|Xρ

t −X ρ̃
t |δ]

1
δ ,

c.f. [CD18a, (5.14)], and plugging this into (5.20) and taking the supremum, we ob-
tain (5.18).
Step 3: We show that the solution map Φ has a unique �xed point.
First note that it is su�cient to show that Φk is a contraction, see [Bry68, Theorem],
since the Wasserstein space C([0, T ];Pδ(Rd)) is a complete metric space, see e.g. [PZ20,
Proposition 2.2.8], where Φk denotes the k-th composition of Φ with itself. Let C > 0
denote the generic constant in (5.18). Then, we get iteratively for k ∈ N,

sup
s∈[0,T ]

Wδ(Φ
k(ρ)s,Φ

k(ρ̃)s)
δ ≤ Ck

∫ T

0

(T − s)k−1

(k − 1)!
Wδ(ρs, ρ̃s)

δ ds

≤ CkT k

k!
sup

s∈[0,T ]
Wδ(ρs, ρ̃s)

δ.

Thus, choosing k large enough such that CkTk

k! < 1, we see that the mapping Φk is a
contraction and, hence, Φ admits a unique �xed point, which completes the proof.

Next, we provide the proof of Theorem 5.10. We keep its presentation fairly short since it
is in parts similar to the proof of Theorem 5.3.

Proof of Theorem 5.10. We again consider the solution map Φ as de�ned in (5.16) but
choose δ = 1 and d = 1, that is,

Φ: C
(
[0, T ];P1(R)

)
→ C

(
[0, T ];P1(R)

)
, ρ 7→ Φ(ρ) :=

(
L(Xρ

t )
)
t∈[0,T ]

.

In the following we show that the solution map Φ possesses a unique �xed point. We
proceed as in the proof of Theorem 5.3. Step 1 works exactly the same, using Lemma 5.15
and Lemma 5.16, respectively, instead of Lemma 5.14, and Step 3 works exactly the same.
That means we only need to show Step 2, or more precisely, estimate (5.20) with δ = 1. To
do that, we treat the cases that Assumption 5.7 or that Assumption 5.8 holds separately.

Case (i): Suppose the kernels Kµ,Kσ and initial condition X0 satisfy Assumption 5.7.
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5. Mean-�eld SVEs

To get an analogue estimate as (5.20), we use the semimartingale property of a solution
(Xρ

t )t∈[0,T ] to (5.2) with �xed ρ ∈ P1(R) (cf. Lemma 2.12 or [Pro85, Theorem 3.3]),

Xρ
t −X0 =

∫ t

0
Kσ(s, s)σ(s,X

ρ
s , ρs) dBs +

∫ t

0
Kµ(s, s)µ(s,X

ρ
s , ρs) ds

+

∫ t

0

(∫ s

0
∂2Kµ(u, s)µ(u,X

ρ
u, ρu) du+

∫ s

0
∂2Kσ(u, s)σ(u,X

ρ
u, ρu) dBu

)
ds,

and the Yamada�Watanabe functions ϕn for n ∈ N (cf. the proof of Theorem 2.22 or the
original work [YW71]) that approximate the absolute value function in the following way:
Let (an)n∈N be a strictly decreasing sequence with a0 = 1 such that an → 0 as n → ∞
and ∫ an−1

an

1

|x|1+2ξ
dx = n,

where 1
2 + ξ is the Hölder regularity of σ. Furthermore, we de�ne a sequence of molli�ers:

let (ψn)n∈N ∈ C∞
0 (R) be smooth functions with compact support such that supp(ψn) ⊂

(an, an−1), and with the properties

0 ≤ ψn(x) ≤
2

n|x|1+2ξ
, ∀x ∈ R, and

∫ an−1

an

ψn(x) dx = 1. (5.21)

We set

ϕn(x) :=

∫ |x|

0

(∫ y

0
ψn(z) dz

)
dy, x ∈ R.

By (5.21) and the compact support of ψn, it follows that ϕn(·) → |· | uniformly as n→ ∞.
Since every ψn and, thus, every ϕn is zero in a neighborhood around zero, the functions ϕn
are smooth with

∥ϕ′n∥∞ ≤ 1, ϕ′n(x) = sgn(x)
∫ |x|

0
ψn(y) dy, and ϕ′′n(x) = ψn(|x|) for x ∈ R,

where ∥ · ∥∞ denotes the sup-norm on R.
Using ϕn, we apply Itô's formula to X̃t := Xρ

t −X ρ̃
t , with the notation

Z̃t :=

∫ t

0

(
µ(s,Xρ

s , ρs)−µ(s,X ρ̃
s , ρ̃s)

)
ds, Y ρ

t :=

∫ t

0
σ(s,Xρ

s ) dBs, H
ρ
t :=

∫ t

0
∂2Kσ(s, t) dY

ρ
s ,

and Y ρ̃
t and H ρ̃

t analogue, as well as Ỹt := Y ρ
t − Y ρ̃

t , and H̃t := Hρ
t −H ρ̃

t , for t ∈ [0, T ], to
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obtain

ϕn(X̃t) =

∫ t

0
ϕ′n(X̃s) dX̃s +

1

2

∫ t

0
ϕ′′n(X̃s) d⟨X̃⟩s

=

∫ t

0
ϕ′n(X̃s)Kµ(s, s)(µ(s,X

ρ
s , ρs)− µ(s,X ρ̃

s , ρ̃s)) ds

+

∫ t

0
ϕ′n(X̃s)

(∫ s

0
∂2Kµ(u, s) dZ̃u

)
ds

+

∫ t

0
ϕ′n(X̃s)H̃s ds+

∫ t

0
ϕ′n(X̃s)Kσ(s, s) dỸs

+
1

2

∫ t

0
ϕ′′n(X̃s)Kσ(s, s)

2
(
σ(s,Xρ

s )− σ(s,X ρ̃
s )
)2

ds

=:In1,t + In2,t + In3,t + In4,t + In5,t. (5.22)

For In1,t, the bound ∥ϕ′n∥∞ ≤ 1, boundedness of Kµ, Lipschitz continuity of µ, and Jensen's
inequality yield

E[In1,t] ≲
∫ t

0

(
E[|X̃s|] +W1(ρs, ρ̃s)

)
ds. (5.23)

For In2,t, we additionally use the boundedness of ∂2Kµ(u, s) on ∆T to obtain

E[In2,t] ≲
∫ t

0

(
E[|X̃s|] +W1(ρs, ρ̃s)

)
ds. (5.24)

For In3,t, we use ∥ϕ′n∥∞ ≤ 1 and the integration by parts formula to estimate

E[In3,t] ≤
∫ t

0
E[|H̃s|] ds

≤
∫ t

0
|∂2Kσ(s, s)|E[|Ỹs|] ds+

∫ t

0

∫ s

0
|∂21Kσ(u, s)|E[|Ỹu|] du ds

≤
∫ t

0
E[|Ỹs|]

(
∂2Kσ(s, s) +

∫ t

s
|∂21Kσ(s, u)|du

)
ds

≲
∫ t

0
E[|Ỹs|] ds, (5.25)

with the boundedness of ∂2Kσ(s, s) and
∫ t
s ∂21Kσ(s, u) du from Assumption 5.7. For In4,t,

since In4,t is a martingale by [Pro04, p. 73, Corollary 3] due to the boundedness of Kσ, the
growth bound on σ and the �niteness of the moments of Xρ and X ρ̃ (cf. Lemma 2.10),
we get

E[In4,t] = E
[∫ t

0
ϕ′n(X̃s)Kσ(s, s)(σ(s,X

ρ
s )− σ(s,X ρ̃

s )) dBs

]
= 0. (5.26)
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For In5,t, we get by using the boundedness of Kσ, the Hölder continuity of σ, and the
inequality ϕ′′n(x) ≤ 2

n|x|1+2ξ that

E[In5,t] ≲ E
[ ∫ t

0
ϕ′′n(X̃s)|X̃s|1+2ξ ds

]
≤ E

[ ∫ t

0

2

n|X̃s|1+2ξ
|X̃s|1+2ξ ds

]
≲

1

n
. (5.27)

Sending n → ∞ and combining the �ve previous estimates (5.23), (5.24), (5.25), (5.26)
and (5.27) with (5.22) yields

E[|X̃t|] ≲
∫ t

0

(
E[|X̃s|] + E[|Ỹs|] +W1(ρs, ρ̃s)

)
ds. (5.28)

To apply Grönwall's lemma, we setM(t) := E[|X̃t|]+E[|Ỹt|] for t ∈ [0, T ]. To �nd a bound
for E[|Ỹt|], we apply integration by part formula to obtain

X̃t =

∫ t

0
Kµ(s, t)(µ(s,X

ρ
s , ρs)− µ(s,X ρ̃

s , ρ̃s)) ds+

∫ t

0
Kσ(s, t) dỸs

=

∫ t

0
Kµ(s, t)(µ(s,X

ρ
s , ρs)− µ(s,X ρ̃

s , ρ̃s)) ds+Kσ(t, t)Ỹt −
∫ t

0
∂1Kσ(s, t)Ỹs ds

(5.29)

keeping in mind that that Kσ(·, t) is absolutely continuous for every t ∈ [0, T ]. Due to
|Kσ(t, t)| > C for some constant C > 0, we can rearrange (5.29) and use (5.28) to get

E
[
|Ỹt|

]
≤C

(∫ t

0
E
[
|µ(s,Xρ

s , ρs)− µ(s,X ρ̃
s , ρ̃s)|

]
ds

+ E
[
|X̃t|

]
+

∫ t

0
|∂1Kσ(s, t)|E

[
|Ỹs|

]
ds

)
≲
∫ t

0

(
E
[
|X̃s|

]
+ E[|Ỹs|] +W1(ρs, ρ̃s)

)
ds. (5.30)

Now, Grönwall's Lemma applied to (5.28) and (5.30) yields M(t) ≲
∫ t
0 W1(ρs, ρ̃s) ds and

hence E[|Xρ
t −X ρ̃

t |] ≲
∫ t
0 W1(ρs, ρ̃s) ds, which is the analogue estimate of (5.20).

Case (ii): Suppose the kernels Kµ,Kσ and initial condition X0 to satisfy Assumption 5.8.
We need to �nd an analogue to estimate (5.20). By using the notation X̃t := Xρ

t − X ρ̃
t

and Y ρ
t :=

∫ t
0 µ(s,X

ρ
s , ρs) ds +

∫ t
0 σ(s,X

ρ
s ) dBs, Y

ρ̃
t analogue, Ỹt := Y ρ

t − Y ρ̃
t and the

semimartingale property

Xρ
t −X0 =

∫ t

0
K̃(0) dY ρ

s +

∫ t

0

∫ s

0
K̃ ′(s− u) dY ρ

u ds,
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we can implement the Yamada�Watanabe approach with

ϕn(X̃t) =

∫ t

0
ϕ′n(X̃s)K̃(0) dỸs +

∫ t

0
ϕ′n(X̃s)

∫ s

0
K̃ ′(s− u) dỸu ds

+
1

2

∫ t

0
ϕ′′n(X̃s)K̃(0)2

(
σ(s,Xρ

s )− σ(s,X ρ̃
s )
)2

ds

=:In1,t + In2,t + In3,t. (5.31)

Now, the Lipschitz assumption on µ applied to In1,t and I
n
2,t such as the Hölder assumption

on σ applied to In3,t, the boundedness of K̃ and K̃ ′, the inequalities ∥ϕn∥∞ ≤ 1 and
ϕ′′n(x) ≤ 2

n|x|1+2ξ , and sending n → ∞ yields as in Case (i) with Grönwall's Lemma the

inequality E[|Xρ
t −X ρ̃

t |] ≲
∫ t
0 W1(ρs, ρ̃s) ds, which implies the estimate (5.20) and, hence,

yields the claimed well-posedness of the mean-�eld SVE (5.10).

Remark 5.20. The well-posedness from Theorems 5.3 and 5.10 implies together with a
general version of the classical Yamada�Watanabe result (see e.g. [Kur14, Theorem 1.5],
see also [Kur14, Example 2.14]) that there is some measurable map G : Rd×C([0, T ];Rm) →
C([0, T ];Rd) such that any solution X of (5.2) and (5.10), respectively, given some initial
value X0 and Brownian motion B can be represented as X = G(X0, B). Hence, if X, X̃
are solutions of (5.2) and (5.10), respectively, for initial values X0, X̃0 with the same
law, and Brownian motions B, B̃, it is straightforward that L(Xt) = L(X̃t) a.s. for all
t ∈ [0, T ].

5.4 Propagation of chaos: Proof of Theorem 5.4 and 5.11

An important argument in the proofs of the propagation of chaos results will be to
show that the coupled processes ((XN,i,Xi))1≤i≤N are identically distributed. To that
end, the following lemma plays a crucial role. Recall that a sequence of random vari-
ables (ζ1, ζ2, . . . ) is called exchangeable if for any N ∈ N the vectors (ζ1, . . . , ζN ) and
(ζσ(1), . . . , ζσ(N)) have the same joint distribution, where {σ(1), . . . , σ(N)} is an arbitrary
permutation of {1, . . . , N}.
Lemma 5.21. Let (A,FA) and (B,FB) be measurable spaces and let for some �xed N ∈ N,
(ζ1, . . . , ζN ) be an exchangeable family of A-valued random variables. Let F : A → B be
a measurable function and de�ne the family of random variables (X1, . . . , XN ) by Xi :=
F (ζi) for i ∈ {1, . . . , N}. Further, let G : AN → BN be a measurable function which ful�lls
the following exchangeability property:

(y1, . . . , yN ) = G((x1, . . . , xN )) ⇒ (yσ(1), . . . , yσ(N)) = G((xσ(1), . . . , xσ(N))), (5.32)

for arbitrary x1, . . . , xN ∈ A and any permutation {σ(1), . . . , σ(N)} of {1, . . . , N}. De�ne
the family of random variables (Y 1, . . . , Y N ) by

(Y 1, . . . , Y N ) := G
(
(ζ1, . . . , ζN )

)
.

Then, the coupled family of random variables ((Xi, Y i))1≤i≤N is exchangeable.
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Proof. Let {σ(1), . . . , σ(N)} be an arbitrary permutation of {1, . . . , N}. By (5.32), we
have that

Y σ(1) = G1

(
(ζσ(1), ζσ(2), . . . , ζσ(N−1), ζσ(N))

)
,

Y σ(2) = G1

(
(ζσ(2), ζσ(3), . . . , ζσ(N), ζσ(1))

)
,

. . .

Y σ(N) = G1

(
(ζσ(N), ζσ(1), . . . , ζσ(N−2), ζσ(N−1))

)
, (5.33)

where G1 denotes the �rst component of the N -dimensional mapping G. De�ne W i :=
(Xi, Y i) for i ∈ {1, . . . , N}. Then, by the de�nition of Xi and (5.33),

W σ(1) =
(
F (ζσ(1)), G1

(
(ζσ(1), ζσ(2), . . . , ζσ(N−1), ζσ(N))

))
,

W σ(2) =
(
F (ζσ(2)), G1

(
(ζσ(2), ζσ(3), . . . , ζσ(N), ζσ(1))

))
,

. . .

W σ(N) =
(
F (ζσ(N)), G1

(
(ζσ(N), ζσ(1), . . . , ζσ(N−2), ζσ(N−1))

))
. (5.34)

Analogous, we have

W 1 =
(
F (ζ1), G1

(
(ζ1, ζ2, . . . , ζN−1, ζN )

))
,

W 2 =
(
F (ζ2), G1

(
(ζ2, ζ3, . . . , ζN , ζ1)

))
,

. . .

WN =
(
F (ζN ), G1

(
(ζN , ζ1, . . . , ζN−2, ζN−1)

))
. (5.35)

Now, since by assumption (ζ1, . . . , ζN ) and (ζσ(1), . . . , ζσ(N)) have the same joint distri-
bution, (5.34) and (5.35) yield that also (W 1, . . . ,WN ) and (W σ(1), . . . ,W σ(N)) have the
same joint distribution which proves the claimed exchangeability.

We start with the proof of Theorem 5.4.

Proof of Theorem 5.4. Let us brie�y outline the main steps of the proof:

Step 1: We show the existence of the system of processes (XN,i)i=1,...,N uniquely solv-
ing (5.6), for every N ∈ N.

Step 2: We prove the inequality

E[|XN,i
t −Xi

t|δ] ≲
∫ t

0
E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(Xi
s)
)δ]

ds, t ∈ [0, T ], (5.36)

for any 1 ≤ i ≤ N . Recall that XN,i is de�ned in (5.6) and Xi is de�ned as the
solution of the mean-�eld SVE (5.2) with initial condition Xi

0 and driving Brownian
motion Bi.
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Step 3: We prove that the right-hand side of (5.36) tends to zero.

Step 4: We show that Step 2 and Step 3 imply the statement.

Step 1: By the Lipschitz continuity of µ and σ, and the observation that Wδ(ρ̄
N
x , ρ̄

N
y )δ ≤

1
N

∑N
j=1 |xj − yj |δ for x, y ∈ RN×d with the notation ρ̄Nx = 1

N

∑N
j=1 δxj ∈ Pδ(Rd), we

obtain for every i ∈ {1, . . . , N} the Lipschitz condition

∣∣µ(t, xi, ρ̄Nx )− µ(t, yi, ρ̄
N
y )

∣∣δ + ∣∣σ(t, xi, ρ̄Nx )− σ(t, yi, ρ̄
N
y )

∣∣δ ≲ |xi − yi|δ +
1

N

N∑
j=1

|xj − yj |δ

≲ ∥x− y∥δN×d,

where ∥ · ∥N×d denotes the row sum norm on RN×d. With the notation µ̃i(t, x) :=
µ(t, xi, ρ̄

N
x ) and σ̃i(t, x) analogue for any 1 ≤ i ≤ N , we directly conclude that the growth

condition is ful�lled by∣∣µ̃i(t, x)∣∣+ ∣∣σ̃i(t, x)∣∣ ≤ ∣∣µ̃i(t, x)− µ̃i(t, 0)
∣∣+ ∣∣σ̃i(t, x)− σ̃i(t, 0)

∣∣+ ∣∣µ̃i(t, 0)∣∣+ ∣∣σ̃i(t, 0)∣∣
≲ ∥x∥N×d +

∣∣µ(t, 0, δ0)∣∣+ ∣∣σ(t, 0, δ0)∣∣
≲ ∥x∥N×d + Cδ0

≲ 1 + ∥x∥N×d,

for all t ∈ [0, T ], x ∈ RN×d. Thus, due to the equivalence of all norms on the �nite
dimensional vector space RN×d, we can apply the standard Volterra well-posedness result
for Lipschitz coe�cients from Lemma 5.14 to obtain the system of processes (XN,i)i=1,...,N,

which uniquely solves (5.6), for every N ∈ N.

Step 2: We consider the �rst summand on the left-hand side of (5.7), i.e. E[|XN,i
t −Xi

t|δ].
By using Hölder's inequality like in (5.19), Fubini's theorem and the Burkholder�Davis�
Gundy inequality such as the Lipschitz continuity of µ and σ, we can bound, for 1 ≤ i ≤ N ,

E[|XN,i
t −Xi

t|δ]

= E
[∣∣∣∣ ∫ t

0
Kµ(s, t)

(
µ(s,XN,i

s , ρ̄Ns )− µ
(
s,Xi

s,L(Xi
s)
))

ds

+

∫ t

0
Kσ(s, t)

(
σ(s,XN,i

s , ρ̄Ns )− σ
(
s,Xi

s,L(Xi
s)
))

dBi
s

∣∣∣∣δ]
≲

(∫ t

0

∣∣Kµ(s, t)
∣∣ 4+2ε

4+ε ds
) 4+ε

1+ε

∫ t

0
E
[∣∣∣µ(s,XN,i

s , ρ̄Ns )− µ
(
s,Xi

s,L(Xi
s)
)∣∣∣δ] ds

+ E
[(∫ t

0

∣∣Kσ(s, t)
(
σ(s,XN,i

s , ρ̄Ns )− σ
(
s,Xi

s,L(Xi
s)
)∣∣2 ds) δ

2

]
≲

∫ t

0
E
[∣∣∣µ(s,XN,i

s , ρ̄Ns )− µ
(
s,Xi

s,L(Xi
s)
)∣∣∣δ] ds

124



5. Mean-�eld SVEs

+
(∫ t

0
|Kσ(s, t)|2+ε ds

) 4+2ε
ε(2+ε)

∫ t

0
E
[∣∣σ(s,XN,i

s , ρ̄Ns )− σ
(
s,Xi

s,L(Xi
s)
)∣∣δ] ds

≲
∫ t

0
E
[
|XN,i

s −Xi
s|δ +Wδ(ρ̄

N
s ,L(Xi

s))
δ
]
ds, (5.37)

for any t ∈ [0, T ]. By Remark 5.20, we obtain that L(Xi
s) = L(X1

s). Hence, we get that

Wδ

(
ρ̄Ns ,L(Xi

s)
)δ

=Wδ

(
ρ̄Ns ,L(X1

s)

)δ

≤ 2δWδ

(
ρ̄Ns ,

1

N

N∑
j=1

δXj
s

)δ

+ 2δWδ

(
1

N

N∑
j=1

δXj
s

,L(X1
s)

)δ

≲
1

N

N∑
j=1

∣∣XN,j
s −Xj

s

∣∣δ +Wδ

(
1

N

N∑
j=1

δXj
s

,L(X1
s)

)δ

. (5.38)

Moreover, by Remark 5.20, we can �nd a measurable map G : Rd × C([0, T ];Rm) →
C([0, T ];Rd) such that, for any 1 ≤ i ≤ N ,

Xi = G(Xi
0, B

i).

In the same way, there is a measurable map GN : RN×d×C([0, T ];Rm)N → C([0, T ];Rd)N ,
such that

(XN,1, . . . , XN,N ) = GN

(
(X1

0 , . . . , X
N
0 ), (B1, . . . , BN )

)
.

More generally, by the symmetry of the system (5.6), for any permutation ς of {1, . . . , N},
it is

(XN,ς(1), . . . , XN,ς(N)) = GN

(
(X

ς(1)
0 , . . . , X

ς(N)
0 ), (Bς(1), . . . , Bς(N))

)
.

Hence, since the random variables ((Xi
0, B

i))1≤i≤N are i.i.d. and, in particular, exchange-
able, we can apply Lemma 5.21 to obtain that the coupled processes

(
(XN,i,Xi)

)
1≤i≤N

are exchangeable and hence, in particular, are identically distributed. We can for i = 1
insert (5.38) into (5.37) and conclude by Jensen's inequality that

E[|XN,1
t −X1

t |δ]

≲
∫ t

0
E
[
|XN,1

s −X1
s|δ +

1

N

N∑
j=1

∣∣XN,j
s −Xj

s

∣∣δ +Wδ

(
1

N

N∑
j=1

δXj
s

,L(X1
s)

)δ]
ds

=

∫ t

0
E
[
2|XN,1

s −X1
s|δ +Wδ

(
1

N

N∑
j=1

δXj
s

,L(X1
s)

)δ]
ds.

Using Grönwall's lemma, we deduce

E[|XN,1
t −X1

t |δ] ≲
∫ t

0
E
[
Wδ

(
1

N

N∑
j=1

δXj
s

,L(X1
s)

)δ]
ds,
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and since the processes
(
(XN,i,Xi)

)
1≤i≤N

are identically distributed, this completes Step 2.

Step 3: First, we show that

lim
N→∞

E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)δ]

= 0, (5.39)

for any s ∈ [0, T ] by showing convergence in probability and uniform integrability. By the
Glivenko�Cantelli theorem (see [SW09, Chapter 26, Theorem 1] for a general version) and
since the Xj are i.i.d., we get the convergence

1

N

N∑
j=1

δXj
s

→ L(X1
s), as N → ∞,

almost surely and hence in probability. Furthermore, using again the notation ρ̄Ns =

1
N

N∑
j=1

δXj
s

we can bound using Hölder's inequality and the boundedness of all moments of

Xi
s, 1 ≤ i ≤ N , in (5.5), that

sup
N∈N

E
[
Wδ

(
ρ̄Ns ,L(X1

s)
)δ
1{Wδ(ρ̄Ns ,L(X1

s))>K}

]
≤ K−1 sup

N∈N
E
[
Wδ

(
ρ̄Ns ,L(X1

s)
)δ+1]

≤ K−1 sup
N∈N

E
[
Wδ+1

(
ρ̄Ns ,L(X1

s)
)δ+1]

≤ K−1 sup
N∈N

E
[
Wδ+1

(
ρ̄Ns , δ0

)δ+1
+Wδ+1

(
δ0,L(X1

s)
)δ+1]

= K−1 sup
N∈N

E
[ 1

N

( N∑
i=1

|Xi
s|δ+1

)
+ |X1

s|δ+1
]

= 2K−1E[|X1
s|δ+1] → 0, (5.40)

as K → ∞, which shows uniform δ-integrability of the family of random variables

(
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
))

N∈N
.

Hence, Vitali's convergence theorem (see [Bog07, Theorem 4.5.4]) reveals the Lδ-convergence
as claimed in (5.39).
To conclude Step 3, it remains to show that the convergence (5.39) is uniform in s. There-
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fore, we �rst notice that for any p ≥ δ,

E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)p

]
≤ E

[
Wp

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)p

]

≲ E
[
Wp

( 1

N

N∑
j=1

δXj
s

, δ0

)p
]
+Wp

(
δ0,L(X1

s)
)p

=
1

N
E
[ N∑
j=1

|Xj
s|p

]
+ E[|X1

s|p] = 2E[|X1
s|p] <∞, (5.41)

by (5.5). With Jensen's inequality (5.41) also follows for 1 ≤ p < δ.
Let k := ⌈δ⌉ ≥ δ denote the smallest integer greater or equal to δ. Notice that with the
same argumentation as in (5.40) by substituting the exponent δ by k and then bounding
from above using the k+1-Wasserstein distance and again by Vitali's convergence theorem
also the Lk-convergence of the δ-Wasserstein distance in (5.39) follows. Once we show that
this Lk-convergence is uniform in s, then it will follow that

lim
N→∞

sup
s∈[0,T ]

E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)δ]

≤ lim
N→∞

sup
s∈[0,T ]

E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)k] δ

k
= 0. (5.42)

To prove (5.42), using the factorization

ak − bk = (a− b)

k−1∑
r=0

ak−1−rbr, (5.43)

and Hölder's inequality with δ and q = 4+2ε
4+ε such that 1

δ +
1
q = 1, we get∣∣∣∣E[Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)k]

− E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)k]∣∣∣∣

=

∣∣∣∣E[(Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)
−Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
))

k−1∑
r=0

Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)k−1−r

Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)r

]∣∣∣∣
≤

∣∣∣∣E[(Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)
−Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
))δ] 1

δ

E
[( k−1∑

r=0

Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)k−1−r

Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)r

)q] 1
q
∣∣∣∣. (5.44)
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Using again Hölder's inequality such as (5.41), we can bound the second expectation by

E
[( k−1∑

r=0

Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)k−1−r

Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)r

)q] 1
q

≲

( k−1∑
r=0

E
[
Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)q(k−1−r)

Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)qr]) 1

q

≲

( k−1∑
r=0

E
[
Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)2q(k−1−r)] 1

2E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)2qr] 1

2

) 1
q

<∞,

(5.45)

such that inserting (5.45) into (5.44) and using the triangle inequality

Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)

≤Wδ

( 1

N

N∑
j=1

δXj
t

,
1

N

N∑
j=1

δXj
s

)
+Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)
+Wδ

(
L(X1

s),L(X1
t )
)
,

which also holds if we switch s and t, we continue with∣∣∣∣E[Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)k]

− E
[
Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
)k]∣∣∣∣

≲ E
[∣∣∣∣(Wδ

( 1

N

N∑
j=1

δXj
t

,L(X1
t )
)
−Wδ

( 1

N

N∑
j=1

δXj
s

,L(X1
s)
))∣∣∣∣δ] 1

δ

≲ E
[(
Wδ

( 1

N

N∑
j=1

δXj
t

,
1

N

N∑
j=1

δXj
s

)
+Wδ

(
L(X1

t ),L(X1
s)
))δ] 1

δ

≲ E
[
Wδ

( 1

N

N∑
j=1

δXj
t

,
1

N

N∑
j=1

δXj
s

)δ] 1
δ
+ E

[
Wδ

(
L(X1

t ),L(X1
s)
)δ] 1

δ

≲ E[|X1
t −X1

s|δ]
1
δ

≲ |t− s|β,

where the last line holds by Remark 5.18 for any β ∈ (0, γ − 1/p) with γ ∈ (0, 12 ] from
Assumption 5.1. Hence, we obtain that (5.42) holds which shows together with (5.36) that

lim
N→∞

sup
t∈[0,T ]

E[|XN,1
t −X1

t |δ] = 0, (5.46)

and knowing that ((XN,i,Xi))1≤i≤N are identically distributed, this completes Step 3.
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Step 4: We already know from Step 3 that the �rst summand in (5.7) converges to zero.
For the second summand, we use the triangle inequality and Jensen's inequality, to obtain

sup
t∈[0,T ]

E
[
Wδ

( 1

N

N∑
i=1

δ
XN,i

t
,L(X1

t )
)δ]

≲ sup
t∈[0,T ]

E
[
Wδ

( 1

N

N∑
i=1

δ
XN,i

t
,
1

N

N∑
i=1

δXi
t

)δ]
+ sup

t∈[0,T ]
E
[
Wδ

( 1

N

N∑
i=1

δXi
t

,L(X1
t )
)δ]

≲ sup
t∈[0,T ]

E
[ 1

N

N∑
i=1

|XN,i
t −Xi

t|δ
]
+ sup

t∈[0,T ]
E
[
Wδ

( 1

N

N∑
i=1

δXi
t

,L(X1
t )
)δ]

, (5.47)

which also tends to 0 as N → ∞, by (5.42) and (5.46).

We continue with the proof of Theorem 5.11. Since the proof is similar to the proof of
Theorem 5.11, we focus, for the sake of brevity, on the main di�erences.

Proof of Theorem 5.11. We prove the statement by using the same Step 1 -Step 4 as in
the proof of Theorem 5.4, but with δ = 1. Only for Step 2, we need to di�er between
Assumption 5.7, referred to as Case (i), and Assumption 5.8, referred to as Case (ii), to
hold.

Step 1: By Remark 5.17, we obtain as in the proof of Theorem 5.4 the unique system of
stochastic processes (XN,i)i=1,...,N that solves (5.6).

Step 2:

Case (i): Suppose the kernels Kµ,Kσ and initial condition X0 satisfy Assumption 5.7. To
mimic inequality (5.36), we use the semimartingale property

XN,i
t −Xi

t =

∫ t

0
Kσ(s, s)

(
σ(s,XN,i

s )− σ(s,Xi
s)
)
dBs

+

∫ t

0
Kµ(s, s)

(
µ(s,XN,i

s , ρ̄Ns )− µ(s,Xi
s,L(Xi

s))
)
ds

+

∫ t

0

(∫ s

0
∂2Kµ(u, s)

(
µ(u,XN,i

u , ρ̄Nu )− µ(u,Xi
u,L(Xi

u))
)
du

+

∫ s

0
∂2Kσ(u, s)

(
σ(u,XN,i

u )− σ(u,Xi
u)
)
dBu

)
ds,

to perform a Yamada�Watanabe approach exactly as we did around equality (5.22), and
obtain for �xed i ∈ {1, . . . , N} with the notationMN,i(t) := E[|XN,i

t −Xi
t|]+E[|Ỹt|], where

Ỹt :=
∫ t
0 σ(s,X

N,i
s ) dBi

s −
∫ t
0 σ(s,X

n
s ) dB

i
s, that

MN,i(t) ≲
∫ t

0

(
MN,i(s) + E[W1(ρ̄

N
s ,L(Xi

s))]
)
ds,
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such that, proceeding as in the proof of Theorem 5.4 including applying Grönwall's in-
equality, we obtain

E[|XN,i
t −Xi

t|] ≲
∫ t

0
E
[
W1(

1

N

N∑
j=1

δXj
s

,L(Xi
s))

]
ds. (5.48)

Case (ii): Suppose the kernels Kµ,Kσ and initial condition X0 satisfy Assumption 5.8.
As in Case (i) to mimic inequality (5.36), we use the semimartingale property

XN,i
t −Xi

t =

∫ t

0
K̃(0)

(
σ(s,XN,i

s )− σ(s,Xi
s)
)
dBs

+

∫ t

0
K̃(0)

(
µ(s,XN,i

s , ρ̄Ns )− µ(s,Xi
s,L(Xi

s))
)
ds

+

∫ t

0

(∫ s

0
K̃ ′(s− u)

(
µ(u,XN,i

u , ρ̄Nu )− µ(u,Xi
u,L(Xi

u))
)
du

+

∫ s

0
K̃ ′(s− u)

(
σ(u,XN,i

u )− σ(u,Xi
u)
)
dBu

)
ds,

perform a Yamada�Watanabe approach and apply Grönwall's inequality as in (5.31) which
yields

E[|XN,i
t −Xi

t|] ≲
∫ t

0
E[W1(

1

N

N∑
j=1

δXj
s

,L(Xi
s))]

)
ds.

Step 3: Obtaining the convergence to zero uniformly in s of the right-hand side of (5.48)
follows now easily by using

E
[
W1(

1

N

N∑
j=1

δXj
s

,L(X1
s))

]
≤ E

[
W2(

1

N

N∑
j=1

δXj
s

,L(X1
s))

2
] 1
2 ,

and then using [CD18a, (5.19)], and proceeding as in [CD18b, Proof of Theorem 2.12].

Step 4: As in (5.47), we obtain

sup
0≤t≤T

E
[
W1

( 1

N

N∑
i=1

δ
XN,i

t
,L(X1

t )
)]

≲ sup
0≤t≤T

E
[ 1

N

N∑
i=1

|XN,i
t −Xi

t|
]
+ sup

0≤t≤T
E
[
W1

( 1

N

N∑
i=1

δXi
t

,L(X1
t )
)]
, (5.49)

which tends to zero by the uniform convergence to zero of the right-hand side of (5.48),
and �nishes the proof.
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5.5 Rate of convergence: Proof of Lemma 5.5 and 5.12

The proofs of Lemma 5.5 and Lemma 5.12 rely on a quantitative Glivenko�Cantelli the-
orem due to Fournier and Guillin [FG15], which provides a sharp estimate of the δ-
Wasserstein distance. For the sake of completeness, we recall [FG15, Theorem 1] in the
following lemma.

Lemma 5.22. Let ρ̄N := 1
N

N∑
i=1

δXi be the empirical distribution of i.i.d. random variables

(Xi)i=1,...,N with common distribution ρ such that ρ ∈ Pp(Rd) for every p ≥ 1. Then, we
have

E[Wδ(ρ̄
N , ρ)δ] ≲ εN ,

where (εN )N∈N is given by (5.9), i.e.

εN =

{ N−1/2, if d < 2δ,

N−1/2 log2(1 +N), if d = 2δ,

N−δ/d, if d > 2δ,

and
E[W1(ρ̄

N , ρ)] ≲ N−1/2.

With this lemma at hand, we can prove Lemma 5.5 and 5.12.

Proof of Lemma 5.5. By Lemma 5.22 we obtain that for any t ∈ [0, T ],

E
[
Wδ

( 1

N

N∑
i=1

δXi
t

,L(X1
t )
)δ]

≲ εN , (5.50)

where (εN )N∈N is given by (5.9) and the right-hand side does not depend on t. Plugging
(5.50) into (5.36) and taking the supremum over [0, T ] and maximum over 1, . . . , N shows
the desired convergence rate of the �rst term in (5.8). Then, using this and plugging (5.50)
into (5.47) gives the desired rate for the second term.

Proof of Lemma 5.12. Case (i): Suppose the kernels Kµ,Kσ and initial condition X0

satisfy Assumption 5.7. By Lemma 5.22 we obtain that

E
[
W1

( 1

N

N∑
i=1

δXi
t

,L(X1
t )
)]

≲ N−1/2, (5.51)

independently from t ∈ [0, T ]. Plugging (5.51) into (5.48) and (5.49) yields the statement.

Case (ii): Suppose the kernels Kµ,Kσ and initial condition X0 satisfy Assumption 5.8.
Plugging (5.51) into the analogues of (5.48) and (5.49) yields the statement.
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Chapter 6

Neural SVEs

The content of this chapter is unpublished so far.

Introduction

We introduce neural stochastic Volterra equations (neural SVEs) and consider the super-
vised learning problem (see [Wat20, Section 1.3.1]) for solutions to SVEs. By supervised
learning of a stochastic equation we mean the setup that we have a training set consisting
of paths of the true process and of the underlying driving stochastic noise and stochastic
initial value, and build a model that tries to reproduce the paths, given the noise path
and initial value, as best as possible. For a supervised learning problem in the case of
stochastic partial di�erential equations, see e.g. [SLG22].
SVEs o�er a wide range of applications, e.g. in �nance or biology, see e.g. [AJEE19b],
[EER19], [MS15], [AJCLP21], and are a natural generalization of ordinary stochastic dif-
ferential equations (SDEs). For SDEs, the concept of neural SDEs was introduced in
[Kid22] where the unsupervised problem was considered, i.e. the setting where the model
receives only the paths of the process as training input without any knowledge of the un-
derlying noise, and tries to reproduce paths that are as similar as possible to those original
paths in some sense in a generative way. In an unsupervised learning setting, the model
can be seen as a distribution over paths, where some randomness must come into play
to generate paths, while in the supervised setting the randomness must already happen
before and given as input into our model which then outputs the path of the belonging
process in a deterministic way.

6.1 Background on stochastic Volterra equations

Let (Ω,F , (Ft)t∈[0,T ],P) be a �ltered probability space, which satis�es the usual conditions,
(Bt)t∈[0,T ] be a standard Brownian motion and T ∈ (0,∞). We consider for d,m ∈ N the
d-dimensional stochastic Volterra equation (SVE) of convolution type driven by an m-
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dimensional Brownian motion,

Xt = ξ g(t) +

∫ t

0
Kµ(t− s)µ(s,Xs) ds+

∫ t

0
Kσ(t− s)σ(s,Xs) dBs, t ∈ [0, T ], (6.1)

where ξ ∈ Rd is the (stochastic) initial value, g : [0, T ] → R is a (deterministic) contin-
uous function (where we usually scale g(0) = 1), the coe�cients µ : [0, T ] × Rd → Rd

and σ : [0, T ] × Rd → Rd×m and the kernels of convolutional type Kµ,Kσ : [0, T ] → R
are measurable functions, and (Bt)t∈[0,T ] is an m-dimensional standard Brownian motion.
Typically, we choose m = d. Furthermore,

∫ t
0 Kσ(t − s)σ(s,Xs) dBs is de�ned as an Itô

integral.

We aim to learn strong (Lp-)solutions of the stochastic Volterra equation (6.1) given the
Brownian path. To de�ne the notion of a strong (Lp-)solution, let Lp(Ω × [0, T ]) be
the space of all real-valued, p-integrable functions on Ω × [0, T ]. We call an (Ft)t∈[0,T ]-
progressively measurable stochastic process (Xt)t∈[0,T ] in Lp(Ω× [0, T ]) on the given prob-
ability space (Ω,F , (Ft)t∈[0,T ],P), a (strong) Lp-solution of the SVE (6.1) if

∫ t
0 (|Kµ(t −

s)µ(s,Xs)|+ |Kσ(t− s)σ(s,Xs)|2) ds <∞ for all t ∈ [0, T ] and the integral equation (6.1)
hold P-almost surely. As usual, a strong L1-solution (Xt)t∈[0,T ] of the SVE (6.1) is often
just called solution of the SVE (6.1).

6.2 Neural SVEs

We want to learn the dynamics of the SVE (6.1), i.e. of the operators ξ, g, Kµ, Kσ, µ and
σ, by some neural network structure. Let therefore for some latent dimension dh > d,

Lθ : Rd → Rdh , gθ : [0, T ] → R, Kµ,θ : [0, T ] → R, Kσ,θ : [0, T ] → R,
µθ : [0, T ]× Rdh → Rdh , σθ : [0, T ]× Rdh → Rdh×m, Πθ : Rdh → Rd

be six feedforward neural networks (see [YYK15, Section 3.6.1]) that are parameterized
by some common parameter θ. Note that Lθ lifts the given initial value to the latent space
Rdh , Πθ is the readout back from the latent space to the process space Rd, and the other
networks try to imitate their respectives in equation (6.1), on the latent dh-dimensional
space.

Given input data ξ ∈ Rd and (Bt)t∈[0,T ] ∈ C([0, T ];Rm), a neural SVE is de�ned as

Z0 = Lθ(ξ),

Zt = Z0 gθ(t) +

∫ t

0
Kµ,θ(t− s)µθ(s, Zs) ds+

∫ t

0
Kσ,θ(t− s)σθ(s, Zs) dBs, (6.2)

Xt = Πθ(Zt), t ∈ [0, T ].
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6. Neural SVEs

The objective is to train θ as best as possible such that the generated paths are as close
as possible to the true training paths.
Given a trained supervised model (Lθ,Kµ,θ,Kσ,θ, µθ, σθ,Πθ), we can evaluate the neural
SVE on some data (ξ,B) by solving equation (6.2) using any numerical scheme to solve
a stochastic Volterra equation. We therefore use the Volterra Euler�Maruyama scheme
introduced in [Zha08] for the training procedure. Note that Lipschitz conditions on µθ
and σθ can be imposed by using e.g. LipSwish, ReLU or tanh activation functions.

6.2.1 Neural architecture

The structure of the neural SVE model (6.2) is analogue to the one of neural SDEs
introduced in [Kid22] and to the one of neural SPDEs in [SLG22]. The dh-dimensional
process Z represents the hidden state. We impose the readout Πθ to get back to dimension
d. The model has, at least if one considers a setting where the initial condition cannot be
observed like an unsupervised setting, some minimal amount of architecture. It is in such
a setting necessary to induce the lift Lθ and the randomness by some additional variable ξ̃
to learn the randomness induced by the initial condition X0 = Πθ

(
Lθ(ξ̃)gθ(0)

)
(otherwise

X0 would not be random since it does not depend on B). Moreover, the structure induced
by the lift Lθ and the readout Πθ is the natural choice to lift the d-dimensional SVE (6.1)
to the latent dimension dh > d.

We use LipSwish activation functions in any layer of any network. These were introduced
in [CBDJ19] as ρ(z) = 0.909zσ(z), where σ is the sigmoid function. Due to the con-
stant 0.909, LipSwish activations are Lipschitz continuous with Lipschitz constant one
and smooth. Moreover, they have shown strong empirical evidence in a variety of chal-
lenging approximation tasks, see [RZL17].

For a given latent dimension dh > d, the lift Lθ is modeled as a linear 1-layer network
from dimension d to dh without any additional hidden layer, and as its counterpart the
readout Πθ as a linear 1-layer network from dh to d. The networks Kµ,θ,Kσ,θ and gθ are
all designed as linear networks from dimension 1 to 1 with two hidden layers of size dK for
some additional dimension dK > d. Lastly, the network µθ is de�ned as a linear network
from dimension 1 + dh to dh with one hidden layer of size dh and the network σθ from
1 + dh to dh ·m with one hidden layer of size dh ·m.

6.3 Examples

We introduce the disturbed pendulum equation, the generalized Ornstein�Uhlenbeck pro-
cess and the rough Heston model, which can all be modeled by SVEs and on which we
perform the neural model (6.2). The experimental results are then presented in the fol-
lowing section.
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6.3.1 Disturbed second-order di�erential systems

For the �rst example, we consider general deterministic second-order di�erential systems
(without �rst-order terms) that are disturbed by some multiplicative noise. We derive in
the following that the resulting stochastic process is a Volterra process with the smooth
kernels Kµ(t− s) = Kσ(t− s) = (t− s).
Consider the second-order system

y′′(t) = µ(t, y(t)), t ∈ [0, T ]

that is disturbed by some multiplicative noise such that

y′′(t) = µ(t, y(t)) + σ(t, y(t))Ḃt, t ∈ [0, T ],

where Ḃt =
dBt
dt is White noise for some standard Brownian motion (Bt)t∈[0,T ]. We can

write

y′(t) = y′(0) +

∫ t

0
y′′(s) ds

= y′(0) +

∫ t

0
µ(s, y(s)) ds+

∫ t

0
σ(s, y(s)) dBs,

hence the �rst derivative is the solution of an SDE. Further, by the deterministic and the
stochastic Fubini theorem,

y(t) = y(0) +

∫ t

0
y′(s) ds

= y(0) +

∫ t

0

(
y′(0) +

∫ s

0
µ(u, y(u)) du+

∫ s

0
σ(u, y(u)) dBu

)
ds

= y(0) + t · y′(0) +
∫ t

0

∫ t

u
µ(u, y(u)) ds du+

∫ t

0

∫ t

u
σ(u, y(u)) ds dBu

= y(0) + t · y′(0) +
∫ t

0
(t− u)µ(u, y(u)) du+

∫ t

0
(t− u)σ(u, y(u)) dBu.

Hence, every solution to a multiplicatively disturbed second-order di�erential equation
without �rst-order terms is the solution to a stochastic Volterra equation with smooth
kernels Kµ(t− s) = Kσ(t− s) = (t− s).

A concrete example from physics is the disturbed pendulum equation (see [Ok03, Ex-
ercise 5.12.]) resulting from Newton's second law. The motion of an object X with
deterministic initial value x0 under some force F can be described by the di�erential
equation

m
d2X(t)

dt2
= F (X(t)), X(0) = x0, (6.3)
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6. Neural SVEs

which follows by Newton's second law (see e.g. [Kre99, Section 2.4]). With (small) random
perturbations in its environment we consider for some ε > 0 the disturbed equation

m
d2X(t)

dt2
= F (X(t)) + εX(t)Wt, X(0) = x0, (6.4)

where Wt =
dBt
dt . Then, X solves the SVE

X(t) = x0 + tX ′(0) +

∫ t

0
(t− s)

F (X(s))

m
ds+

∫ t

0
(t− s)

εXs

m
dBs. (6.5)

6.3.2 Generalized Ornstein�Uhlenbeck process

The Ornstein�Uhlenbeck process, introduced in [UO30], is a commonly used stochastic
process with applications �nance, physics or biology (see e.g. [Vas12], [TE99],[Mar94]).
We consider the generalized Ornstein�Uhlenbeck process that is given by the stochastic
di�erential equation

dXt = θ(µ(t,Xt)−Xt) dt+ σ(t,Xt) dBt, t ∈ [0, T ]. (6.6)

We derive in the following that we can rewrite equation (6.6) as an SVE. Itô's formula
yields

Xte
θt = X0 +

∫ t

0
eθs dXs +

∫ t

0
θeθsXs ds

= X0 +

∫ t

0
eθs

(
θ
(
µ(s,Xs)−Xs

))
ds+

∫ t

0
eθsσ(s,Xs) dBs +

∫ t

0
θeθsXs ds

= X0 + θ

∫ t

0
eθsµ(s,Xs) ds+

∫ t

0
eθsσ(s,Xs) dBs.

Hence, the generalized Ornstein�Uhlenbeck process is given by the SVE

Xt = X0e
−θt + θ

∫ t

0
e−θ(t−s)µ(s,Xs) ds+

∫ t

0
e−θ(t−s)σ(s,Xs) dBs, t ∈ [0, T ]. (6.7)

6.3.3 Rough Heston model

The rough Heston model is one of the most prominent representatives of rough volatility
models (see [EER19],[AJEE19b]), where the volatility process is modeled using the singular
kernels Kµ(t− s) = Kσ(t− s) = (t− s)−α for some α ∈ (0, 1/2), by the rough SVE

Vt = V0+
1

Γ(α)

∫ t

0
(t− s)−αλ(θ−Vs) ds+

λν

Γ(α)

∫ t

0
(t− s)−α

√
|Vs|dBs, t ∈ [0, T ], (6.8)

where Γ(x) =
∫∞
0 tx−1e−t dt denotes the real valued Gamma function, and λ, θ, ν ∈ R.

137



6.4 Numerical results

For all the neural SVEs, we chose the latent dimensions dh = dK = 12 which experimen-
tally proved to be well suited. We consider the interval [0, T ] for T = 5 and discretize it
equally-sized using the grid size ∆t = 0.1.

As a benchmark model, we use the Deep Operator Network (DeepONet) algorithm. Deep-
ONet is a popular class of neural learning algorithms for general operators on function
spaces that was introduced in [LJP+21]. A DeepONet consists of two neural networks:
the branch network which operates on the function space C([0, T ]) (where [0, T ] is repre-
sented by some �xed discretization), and the so-called trunk network which operates on
the evaluation point t ∈ [0, T ]. Then, the output of the DeepONet is de�ned as

DeepONet(f)(t) =
p∑

k=1

bktk + b0,

where (bk)k=1,...,p is the output of the branch network operating on the discretization of
f ∈ C([0, T ]), (tk)k=1,...,p is the output of the trunk network operating on t ∈ [0, T ] and
p ∈ N is the dimension of the output of both networks. Following [LJP+21], we model
both networks as feedforward networks. We perform a grid search to optimally determine
the depth and width of both networks such as the activation functions, optimizer and
learning rate.

Note that one big advantage of Neural SVEs is that they are discretization invariant,
i.e. that in the training procedure and also when evaluating a trained model, it does not
matter if the input functions (realizations of the Brownian motion) are discretized by the
same grid. In contrast, the DeepONet needs the same discretization for all functions in
the training and in the evaluation data.

We perform experiments on a one-dimensional disturbed pendulum equation, a one- and
a two-dimensional Ornstein�Uhlenbeck equation such as a one-dimensional rough Heston
equation. We perform the experiments on low-, mid- and high-data regimes with n = 100,
n = 500 and n = 2000, and use 80% of the data for training and 20% for testing. We
compare the results of Neural SVEs to those of DeepONet and consider for both algorithms
the mean relative L2-loss. All experiments are trained for an appropriate number epochs
of iterations until there is no improvement anymore. For Neural SVEs, we use the learning
rate 0.01 and scale the learning rate by a factor 0.8 after every 25% of epochs.
Note that since DeepONet is not able to deal with random initial conditions, we use
deterministic initial conditions ξ = 2 in the DeepONet experiments. For Neural SVEs, we
use initial conditions ξ ∼ N (2, 0.2).

Remark 6.1. The results in this section show that Neural SVEs are able to outperform
DeepONet signi�cantly (see Table 6.1-Table 6.8). Especially, Neural SVEs generalize much
better which can be seen in the good performance on the test sets where Neural SVEs are
up to 20 times better than DeepONet. This can be explained by the explicit structure of
the Volterra equation that is already part of the model for Neural SVEs.
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6. Neural SVEs

Neural SVE Train set Test set
n = 100 0.01 0.013
n = 500 0.008 0.008
n = 2000 0.006 0.006

DeepONet Train set Test set
n = 100 0.003 0.2
n = 500 0.003 0.06
n = 2000 0.003 0.02

Table 6.1: Mean relative L2-losses after training for the disturbed pendulum equation
(6.9).

Another advantage is that Neural SVEs are time-resolution invariant, meaning that they
can be trained and evaluated on arbitrary, possibly di�erent time grid discretizations which
is not possible for DeepONet.

All the code is published in https://github.com/davidscheffels/Neural_SVEs.

Disturbed pendulum equation

We consider the one-dimensional equation

yt = ξ +

∫ t

0
(t− s)ys ds+

∫ t

0
(t− s)ys dBs, t ∈ [0, T ], (6.9)

and learn solutions to it by Neural SVEs and DeepONet. The results are presented in
Table 6.1.

Example paths of the training and the testing sets together with their learned approxi-
mations are shown in Table 6.2. It is clearly visible that while DeepONet is not able to
generalize properly to the testing set, the learned Neural SVE paths are very close to the
true paths also for the test set.

Ornstein�Uhlenbeck process

We consider the one-dimensional equation

Xt = ξe−t +

∫ t

0
e−(t−s)Xs ds+

∫ t

0
e−(t−s)

√
|Xs|dBs, t ∈ [0, T ], (6.10)

and learn solutions to it by Neural SVEs and DeepONet. The results are presented in
Table 6.3.
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Neural SVE:
Training set

Neural SVE:
Test set

DeepONet:
Training set

DeepONet:
Test set

Table 6.2: Sample Neural SVE and DeepONet paths from the training and the test set
for the disturbed pendulum equation and n = 100. Blue (barely visible) are the original
paths and orange the learned approximations.

Neural SVE Train set Test set
n = 100 0.015 0.038
n = 500 0.014 0.036
n = 2000 0.014 0.02

DeepONet Train set Test set
n = 100 0.025 0.23
n = 500 0.018 0.15
n = 2000 0.028 0.12

Table 6.3: Relative L2-losses after training for the one-dimensional Ornstein�Uhlenbeck
equation (6.10).

Neural SVE:
Training set

Neural SVE:
Test set

DeepONet:
Training set

DeepONet:
Test set

Table 6.4: Sample Neural SVE and DeepONet paths from the training and the test set
for the one-dimensional Ornstein�Uhlenbeck equation and n = 500. Blue (barely visible)
are the original paths and orange the learned approximations.
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6. Neural SVEs

Neural SVE Train set Test set
n = 100 0.038 0.095
n = 500 0.04 0.085
n = 2000 0.038 0.04

Table 6.5: Relative L2-losses after training for the two-dimensional Ornstein�Uhlenbeck
equation (6.11).

Example paths of the training and the testing sets together with their learned approxima-
tions are shown in Table 6.4.

Moreover, Neural SVEs are also able to learn multi-dimensional SVEs. As an example,
we consider the two-dimensional equation(

X1
t

X2
t

)
=

(
2
2

)
e−t +

∫ t

0
e−(t−s)

(
X1

s

X2
s

)
ds+

∫ t

0
e−(t−s)

(√
|X1

s |, 0
0,
√
|X2

s |

)
dBs, t ∈ [0, T ],

(6.11)
where B is a 2-dimensional Brownian motion, and learn solutions to it by Neural SVEs.
The results are presented in Table 6.5.

Example paths of the training and the testing sets together with their learned approxima-
tions are shown in Table 6.6.

Rough Heston equation

We consider the one-dimensional equation

Vt = ξ +
1

Γ(0.4)

∫ t

0
(t− s)−0.4(2− Vs) ds+

1

Γ(0.4)

∫ t

0
(t− s)−0.4

√
|Vs|dBs, t ∈ [0, T ],

(6.12)
and learn solutions to it by Neural SVEs and DeepONet. The results are presented in
Table 6.7. Neural SVEs outperform DeepONet here by far.

Example paths of the training and the testing sets together with their learned approxima-
tions are shown in Table 6.8.
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Neural SVE: Training set Neural SVE: Test set

Table 6.6: Sample Neural SVE paths from the training and the test set for the two-
dimensional Ornstein�Uhlenbeck equation and n = 2000. Blue (barely visible) are the
original paths and red the learned approximations.

Neural SVE Train set Test set
n = 100 0.003 0.003
n = 500 0.0025 0.0028
n = 2000 0.0015 0.0017

DeepONet Train set Test set
n = 100 0.035 0.13
n = 500 0.004 0.037
n = 2000 0.003 0.014

Table 6.7: Relative L2-losses after training for the rough Heston equation (6.12).

Neural SVE:
Training set

Neural SVE:
Test set

DeepONet:
Training set

DeepONet:
Test set

Table 6.8: Sample Neural SVE and DeepONet paths from the training and the test set
for the rough Heston equation and n = 2000. Blue (barely visible) are the original paths
and orange the learned approximations.
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6. Neural SVEs

Comparison to neural SDEs

Introduced in [Kid22], a neural stochastic di�erential equation (neural SDE) is de�ned by

Z0 = Lθ(ξ),

Zt = Z0 gθ(t) +

∫ t

0
µθ(s, Zs) ds+

∫ t

0
σθ(s, Zs) dBs, (6.13)

Xt = Πθ(Zt), t ∈ [0, T ],

where all objects are de�ned as in the neural SVE (6.2). Since the neural SDE is missing
the kernel functions Kµ,θ and Kσ,θ compared to the neural SVE (6.2), it is not able to
fully capture the dynamics induced by SVEs.

Note that due to the need of discretizing the time interval when it comes to computations,
some of the properties introduced by the kernels are attenuated. However, the memory
structure of an SVE is a property which can be learned by a neural SVE but in general not
by a neural SDE since SDEs posses the Markov property. Therefore, to see the potential
capabilities of neural SVEs compared to neural SDEs, it is best to look at examples where
the dependency on the whole path plays a crucial role. To construct such an example, we
consider the kernels

Kµ(s, t) := Kσ(s, t) := K(t− s) =

{
1, if (t− s) ≤ T/4,

−1, if (t− s) > T/4,

and aim to learn solutions to the one-dimensional SVE

Xt = ξ +

∫ t

0
K(t− s)(2−Xs) ds+

∫ t

0
K(t− s)

√
|Xs|dBs, t ∈ [0, T ], (6.14)

where ξ ∼ N (5, 0.5) and T = 5. The process (Xt)t∈[0,5] is expected to decrease in the �rst
quarter of the interval [0, 5] where K(t− s) = 1 holds due to the mean-reverting e�ect of
the drift coe�cient µ(s, x) = 2− x, then something unpredictable will happen and �nally
in the last part of the interval t ∈ [0, 5] where the kernels attain −1 for a large proportion
of s ∈ [0, t], the process might become big due to the turning sign in the drift. Hence, it
is to expect that the path dependency will have a substantial impact.
We learn the dynamics of equation (6.14) simulated on an equally-sized grid with grid
size ∆t = 0.1 by a neural SDE and by a neural SVE for a dataset of size n = 500 and
compare the results in Table 6.9. It can be observed that the neural SDE fails to learn
the dynamics of (6.14) properly while the neural SVE performs well.

Example paths of the training and the testing sets together with their learned approxima-
tions are shown in Table 6.10.
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Neural SVE Train set Test set
n = 500 0.008 0.009

Neural SDE Train set Test set
n = 500 0.19 0.21

Table 6.9: Relative L2-losses after training for the SVE (6.14).

Neural SVE:
Training set

Neural SVE:
Test set

Neural SDE:
Training set

Neural SDE:
Test set

Table 6.10: Sample Neural SVE and neural SDE paths from the training and the test
set for the SVE (6.14) and n = 500. Blue are the original paths and orange the learned
approximations.
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