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1 Introduction

“If you cannot describe what you are doing as a process, you do not know what you

are doing.” (Deming, 2018)

Defined as a series of interconnected activities and tasks that are designed to achieve specific

business objectives, business processes play a significant role in ensuring operational efficiency

and effectiveness (Dumas et al., 2018). Business processes encompass the flow of information,

materials, and activities within an organization, and guide the efficient and effective execution

of tasks. In essence, business processes serve as the foundation for how work is organized,

coordinated, and performed in enterprises (Davenport et al., 1990; Harmon, 2019; Van Looy &

Shafagatova, 2016).

Studying business processes is of utmost importance for several reasons. First, gaining a

thorough understanding of existing processes allows organizations to identify areas that can

be optimized, leading to improved performance and cost-effectiveness (Elbashir et al., 2008;

Gebauer & Schober, 2006). Second, by studying business processes, organizations can detect

bottlenecks or areas of inefficiency and ineffectiveness, enabling targeted process improvement

efforts (Melville et al., 2004). Third, analyzing business processes provides valuable insights into

how different parts of the organization are interconnected thereby fostering better coordination

and alignment across departments (McCormack & Johnson, 2001). Lastly, studying business

processes is essential for successfully implementing enterprise systems, as it ensures that these

systems are tailored to meet the specific needs and workflows of the organization (Dumas et al.,

2018).

Analyzing the execution of processes in real-world scenarios provides valuable insights into

their actual performance, enabling organizations to optimize their workflows and enhance overall

productivity (Sakr et al., 2018). In fact, the evaluation of digital footprints of processes assumes

critical importance due to their proximity to the actual performance of organizations, bring-
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ing more transparency to the underlying workflows. The availability of abundant event data

further amplifies the significance of process analysis, creating new opportunities for in-depth

investigation and improvement (Van der Aalst, 2016).

In this context, Process-Aware Information Systems (PAIS) emerge as crucial components,

having a long-standing presence in various domains for decades (Dumas et al., 2005). Enterprise

Systems, including widely adopted Enterprise Resource Planning (ERP) systems, prove to hold

valuable repositories of event data, encompassing essential business process footprints due to

the process-centric nature of these systems (Yu Chung Wang et al., 2022). Leveraging such

data enables the analysis of business processes on a larger scale, facilitating a comprehensive

understanding of organizational workflows (Van der Aalst, 2008).

Process mining, as an emerging topic within the broader topic of business intelligence (BI)

(H. Chen et al., 2012), is a data-driven approach that aims to extract valuable insights and

knowledge from event logs (Van der Aalst, 2016). It involves the systematic analysis of event

data to discover, monitor, and improve business processes. At its core, process mining leverages

the digital footprints left by activities and transactions recorded in event logs within enterprise

systems, such as Customer Relationship Management (CRM), ERP, or Supply Chain Manage-

ment (SCM) systems (Van Der Aalst et al., 2007). These event logs capture the sequence of

events, timestamps, and relevant contextual data that provide a detailed representation of actual

process executions (Van der Aalst et al., 2011).

In summary, process mining enables organizations to gain insights into their processes by

analyzing event logs generated by enterprise systems. By providing detailed and data-driven

information about how business processes are performing, process mining contributes to the

domain of organizational performance. The significant roles of process mining in this context

are multifaceted. First, process mining enables organizations to gain an objective and accurate

view of their processes, bypassing biases that may be present in manual process documentation
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(Van der Aalst & Dustdar, 2012). Analyzing real data with process mining allows for building

a complete and unbiased picture of process performance (Eggers & Hein, 2020).

Second, process mining aids in conformance checking, where the observed process behavior is

compared against the intended process model (Carmona et al., 2022). This verification ensures

that processes are adhering to predefined guidelines and compliance requirements (Becker &

Buchkremer, 2019). Organizations make informed corrective decisions when they are aware of

process deviations, thus effectively ensuring process integrity (De Medeiros et al., 2007).

Third, process mining contributes to process enhancement by offering insights into variations

in process execution (Van der Aalst, 2012b). Organizations can identify best practices and

successful process paths, paving the way for process optimization and standardization across the

organization (Van der Aalst & Dustdar, 2012). Specifically, process mining uses the information

stored within event logs. It generates insights on performance analysis, providing quantitative

metrics and Key Performance Indicators (KPIs) to evaluate process efficiency, compliance, cycle

times, and resource utilization (Badakhshan et al., 2022).

Fourth, process mining primarily centers on process discovery, a crucial set of methods to

extract valuable insights from event logs and generate visual process models (De Leoni et al.,

2016). A key feature of the event log is its ability to capture the control flow of process steps.

This control flow represents the chronological order in which activities are performed within a

business process for each case (Van der Aalst, 2016). Among many studies, Mans et al. exhibit

how process mining can reveal the actual execution paths, variations, and deviations that occur

in real-world processes by analyzing the control flow in event logs (2009). This unique aspect of

the event log provides valuable insights into process performance and organizational performance

(Badakhshan et al., 2022). Therefore, research can leverage the information embedded in the

event logs to study complex topics such as organizational routines (Mahringer & Pentland, 2021;

Wurm et al., 2021).
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In short, studying process mining event logs enables organizations to gain business intelli-

gence by visualizing and understanding their processes, identifying inefficiencies, and evaluating

performance (Badakhshan et al., 2022; H. Chen et al., 2012; Reinkemeyer, 2020). Studying pro-

cess mining event logs in combination with contextual data (e.g., production and error reporting

data) provides more meaningful insights (Van der Aalst, 2012a). This contextual information

adds relevancy to the analysis by highlighting the best practices, successful process paths, and

potential areas for performance enhancement (Bose & Van der Aalst, 2009b).

This dissertation explores the intrinsic value of analyzing event logs to obtain business intelli-

gence and enhance organizational performance. Notably, it acknowledges the previous contribu-

tions made in event log analysis, particularly within the area of process discovery, which studies

event logs to understand business processes more deeply. Building upon these advancements,

this research aspires to further delve into the untapped potentials latent in event logs, striving to

unveil novel approaches that extract more comprehensive and profound insights from the data

they encapsulate.

Moreover, this study augments its scope by leveraging the information extracted from event

logs to contribute to the discipline of business intelligence and organizational behavior, with a

particular focus on organizational routine, routine performance, and error management topics.

Information systems scholars have already addressed this research gap, wherein, for example,

Pentland, Recker, et al. (2020) underscored the potential inherent in analyzing event data to

study organizational routines and develop theoretical underpinnings for information systems.

This dissertation aims to extend and enrich the body of knowledge in the business intelligence

and organizational performance domains by using event log analysis as a powerful tool to explore

the dynamics of organizational behavior and performance.

In light of this introduction, this dissertation proposes the following overarching research

question:
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ORQ: “How does studying event logs facilitate the acquisition of business intelligence

and contribute to enhancing organizational performance?”

To address the overarching research question, the present study embarks on an exploratory

journey, comprising multiple steps (see figure 1) that collectively contribute to advancing the

understanding and significance of event logs in the domain of process mining and organizational

behavior. Accordingly, four papers were developed to address the aforementioned overarching

research question.

Figure 1: A representation of the main topics discussed in this dissertation

The first paper, highlights the unique value inherent in event logs, particularly focusing

on the control flow data structure encoded within the event log traces. By conducting an

extensive review encompassing 101 papers on the topic of trace clustering, this paper introduces a

generic framework for trace clustering, which encompasses critical aspects such as event log data,

processing requirements, and the availability of domain knowledge. Through this comprehensive

framework, the study sheds light on the substantial potential embedded within event log analysis.

In the second paper, a detailed investigation is conducted into the identification of unwanted

patterns in process execution, with a particular emphasis on incorporating basic contextual

knowledge about process steps. This study characterizes inefficient patterns within the process

using the provided contextual information. Ultimately, this study proposes a process inefficiency

index. The case study results in this paper underscore the rich information that each event

log encapsulates in terms of process patterns, thereby reinforcing the significance of event log

analysis for process optimization.
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Moving forward, the third paper emphasizes the crucial role of capturing and analyzing

patterns from event logs and seeks to offer a unified library of process measures previously

introduced in process mining research (Zandkarimi, Decker, et al., 2021). This paper provides

an invaluable analytical tool that facilitates and fosters further research and exploration of event

logs, opening new avenues for innovative investigations.

Finally, the fourth paper explores the control flow of a production process event log, where

the order of process steps for long-term orders remains constant. This unique setting presents

an opportunity to design a natural experiment that examines performance changes, specifically

related to performance efficiency and performance effectiveness, in response to errors. In this

study, a crucial step was to separate the control and test groups for the experiment. How-

ever, achieving this separation necessitated the extraction of process execution paths from the

event log. This process allowed for the identification and isolation of distinct groups, enabling

a more rigorous analysis of the experimental variables. Similarly, when measuring the indepen-

dent variables, namely throughput time and reporting accuracy, the event log data proved to be

indispensable. The event log provided the necessary information to quantify these variables accu-

rately and objectively, ensuring the reliability and validity of the findings. Thus, the utilization

of event log data played a pivotal role in enabling the successful execution and interpretation of

the experiment, ultimately enhancing the robustness of the research outcomes. The paper aims

to uncover and elucidate the intricate dynamics that lead to performance changes in response

to errors.

Through this multi-faceted approach, the study seeks to advance the frontiers of process min-

ing by using the potential value encoded within event logs and exploring various aspects that

contribute to organizational performance enhancement. Considering the distinct contributions

of each paper, this research strives to enrich the academic discourse and contribute meaning-

fully to the field of process mining and its implications for organizational studies, specifically,

organizational routines and organizational performance.
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Table 1: Summary of each paper’s contribution

Paper Research gap Contribution Results
Paper 1 Due to the diverse range of

algorithmic capacities,
similarity functions, data
characteristics, and
computational complexities
involved, the process of
selecting the most appropriate
trace clustering method
becomes a non-trivial task.

Consolidate
state-of-the-art trace
clustering techniques
and concepts.
Highlight the unique
structure of event log
traces.

A generic
framework for
trace clustering.

Paper 2 Existing indicators represent a
(too) generic inefficiency index,
such as the presence of
inefficient activities in a case,
they fall short in leveraging the
information encoded within the
event logs, hence offering an
incomplete understanding of
process inefficiencies.

Identify inefficient
patterns in event logs
and introduce an
inefficiency index
based on basic domain
knowledge about
process execution
rules.

An artifact to
quantify various
aspects of
inefficiency within
a process trace.

Paper 3 Previous studies do not refer to
fully distinct and exclusive
measures, leading to the
repeated implementation of
similar measures on different
platforms.

Review the previous
studies implementing
event log measures.

A coherent library
of 73 event log
measures.

Paper 4 Lack of research on dynamics of
production routines, which have
unique characteristics,
including shorter turnaround
times, strict regulatory
standards, fixed action
sequences. The role of errors as
interruptive events in shaping
these routines remains
understudied due to challenges
in obtaining objective and
quantifiable data. Empirical
studies focusing on errors and
their impact on organizational
routines are encouraged to
develop novel error
management strategies based
on changes in employee
performance.

Investigate the effect
of error
communication on
routine performance.

Routine efficiency
and effectiveness
are positively
affected by errors
but only for
orders with fewer
prior errors.
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2 Research Papers

2.1 Introduction to Paper One

Paper one (Zandkarimi et al., 2020) presents a comprehensive study on the topic of trace clus-

tering in process mining, which aims to simplify complex process models obtained from event

log data (Bose & Van der Aalst, 2009b). Process discovery, a critical function in process mining,

generates process models from event logs but often results in intricate and difficult-to-understand

“spaghetti models” (Medeiros et al., 2007). Trace clustering is a powerful technique to address

this issue, as it groups event log traces into cohesive sub-logs, allowing for the creation of less

complex and more comprehensible process models. Over the last 15 years, numerous approaches

to trace clustering have been proposed, each with varying algorithmic capacities, data charac-

teristics, computational complexity, and integration of contextual information.

The paper’s main contributions are a systematic literature review on trace clustering and

the proposal of a generic framework for structuring and defining relevant components of trace

clustering methods. The framework serves two purposes. First, it provides an overview of

existing trace clustering techniques and methods, offering a methodological model. Second, it

acts as a basis for advancing the field of trace clustering by identifying similarities with related

data mining areas. This study suggests that the choice of the best trace clustering approach

depends on the specific context, such as available data, data quality, and computational resources.

Overall, this paper contributes to the advancement of trace clustering research and aids in the

development of improved process discovery methods.

This paper has been published at the 2nd International Conference on Process Mining

(ICPM). My role as the initiator and lead author included collecting and organizing the sys-

tematic literature review, developing interim findings, and shaping the main contribution of the

paper, i.e., the generic framework. Collaborating closely with co-authors, I made significant

8



contributions to crafting the manuscript. The culmination of our collective effort resulted in the

paper’s acceptance at the ICPM conference, where I presented our work to the community.

2.2 Introduction to Paper Two

Paper two (Zandkarimi, Rennemeier, et al., 2021) focuses on analyzing event logs to measure

process inefficiency. Process efficiency is a significant component of organizational efficiency. In-

efficient process design and implementation lead to improper resource allocation, hence missing

organizational goals. The first trivial step in controlling process inefficiency is deploying mea-

surement tools, i.e., process performance measurement. An event log includes data about each

process step. Hence, potential inefficient patterns can be identified, quantified, and monitored

based on the event log data.

Most industrial process mining tools offer an inefficiency index to measure process inefficiency

based on event log data. The paper reviews the previous studies on inefficiency and highlights the

inefficiency nuances that are overlooked by the current industry tools. The article proposes an

artifact that implements the previously missing aspects of process inefficiencies into a new process

performance measurement index. The introduced index captures more inefficiency dimensions

than previous approaches, e.g., measuring the distance between occurrences of non-value-added

activities. The final results indicate that the proposed approach captures aspects of process

inefficiency previously overlooked by existing tools. Ultimately, the findings trigger interesting

questions about process inefficiency, e.g., whether process inefficiency is an institutionalized

phenomenon that generally does not tend to change rapidly.

Serving as the primary initiator and lead author, I closely collaborated with my co-authors,

offering substantial support in developing the artifact and conducting an extensive literature

study on nuances of process inefficiency. Our collective efforts resulted in the submission and
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acceptance of the manuscript at the 19th International Conference on Business Process Manage-

ment (BPM), where I presented our work to the community.

2.3 Introduction to Paper Three

In process mining projects, event log measures play a vital role in characterizing event logs and

providing valuable insights for various process mining applications. These measures, numeric

representations of raw data, are calculated at the trace level and aggregated to represent event

log characteristics. However, the multitude of process mining applications often leads to the

re-implementation of event log measures across different platforms. To address this issue, we

developed Fig4PM, an open-source application, to establish a standard, comprehensive, and

reusable library for calculating event log measures (Zandkarimi, Decker, et al., 2021). The

current version of Fig4PM offers 73 distinct control-flow measures, derived from the literature

or existing measures. The ultimate goal is to create a public Python library that facilitates

feature generation in process mining applications, reducing redundancy and enhancing research

efficiency.

The relevance of event log measures in process mining is evident through their application in

various studies and applications, including data preprocessing, data quality assessment, predic-

tive process mining, deep learning techniques, business process simulation, process complexity

analysis, and trace clustering. To avoid duplication of effort and promote collaboration, the

Fig4PM library serves as a repository where researchers and practitioners can access previously

implemented event log measures. It acts as a starting point for further development, enabling

users to contribute new measures, enhance existing functions, and improve overall performance.

By fostering a standardized approach to event log measures, Fig4PM aims to streamline the

process mining workflow and advance research in the field, ultimately facilitating better data

analysis and insights for process improvement and decision-making.
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This paper has been published at the 3rd International Conference on Process Mining (ICPM).

My role as the initiator and lead author included supporting the development of the artifact,

collecting the measures, and publishing the final work as a public library. Collaborating closely

with co-authors, I made significant contributions to crafting the manuscript. Eventually, the

paper accepted at the ICPM conference, where I presented our work to the community.

2.4 Introduction to Paper Four

Paper four investigates the impact of errors on the performance of frontline employees in the

context of production routines. The study presents a unique contribution by employing a novel

dataset derived from production routines within a large Dutch public holding company. Through

a comprehensive analysis of the 75,000 reported errors associated with 3 million production

batches over six years, the study aims to understand how errors influence post-error improvement

in accuracy (PIA) and post-error slowing (PES) in organizational routines. This study finds

evidence that production teams tend to work more accurately and faster after errors are reported,

although this effect diminishes with increasing error frequency.

Theoretical implications of this study extend to the field of organizational routines and error

management. The study contributes to routine dynamics by showcasing how errors can shape

and transform employees’ actions within an inflexible environment. This unique perspective

contributes to the discourse on the adaptive nature of organizational routines and their respon-

siveness to external influences. Moreover, the research underscores the significance of examining

the temporal aspects of error effects, filling a gap in error management literature. The findings

also emphasize the need for further research on error-induced performance changes in varying

organizational contexts and the impact of other factors like employee turnover.

Practical implications stemming from this research underscore the critical role of errors

as potential sources of innovation and improved performance within organizational routines.
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Managers are advised to recognize errors not merely as disruptions, but as opportunities to

drive positive changes in employees’ behaviors. It is imperative for management to strike a

balance between error prevention and effective error management strategies. Although occa-

sional errors can drive short-term performance enhancements, addressing recurring mistakes

promptly becomes crucial to sustaining productivity gains and upholding customer satisfaction.

By acknowledging the nuanced interplay between errors and performance, managers can tailor

strategies that use errors’ positive potential while minimizing their adverse impacts in the long

term.

Overall, the paper emphasizes the significance of errors as triggers for adaptive changes in

organizational routines and highlights the intricate relationship between error management and

sustained performance improvement in dynamic work environments.

As the lead author, I was responsible for several activities. Firstly, I managed communi-

cations with the industry partner, ensuring secure and effective data access. This involved

collecting metadata to understand their production processes as well as reporting our research

goals to the management team. Secondly, I developed a large-scale data preprocessing and

cleansing pipeline to address various data quality issues we encountered. Thirdly, I conducted

the extraction of the entire process event log, a massive data transformation process necessary

for building all the statistical analyses later presented in the paper. I played a key role in formu-

lating the theories and crafting the overall manuscript, which was completed with the support

of my co-authors in conducting the final statistical analysis and writing up the paper.

Together with my co-authors, we have chosen to submit this paper to the Information Sys-

tems Research (ISR) journal, as ISR is known for its emphasis on rigorous empirical research in

the field of information systems. By employing event log data to conduct a controlled experiment

on performance changes in response to errors, this study exemplifies the kind of methodological

approach and empirical depth valued by ISR. Its contribution to understanding the intricate
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dynamics of organizational routines aligns with the journal’s emphasis on advancing the under-

standing of information systems’ impact on organizations performance.
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3 Paper 1: A Generic Framework for Trace Clustering in Pro-

cess Mining

3.1 Abstract

The goal of process discovery is to visualize event log data as a process model. In reality, however,

these models are often highly complex. Process trace clustering is a well-studied and powerful

technique to address this. It groups an event log into more cohesive sub logs, such that the

discovered process models become less complex and easier to understand. Over the past 15

years, researchers proposed various approaches for trace clustering in process discovery. The

developed approaches vary greatly with regard to algorithmic capacities, data characteristics,

computational complexity, and integration of additional information. In this paper, we provide

a state-of-the-art analysis of trace clustering by a) performing a systematic literature review,

and b) proposing a generic framework for trace clustering. Eventually, our goal is to provide

an overview of current trace clustering research and a basis for developing new methods and

approaches to trace clustering.

3.2 Introduction

Process discovery is one of the three main functions in process mining (PM). Its main goal is

to visualize a real-life business process, as recorded in an event log, in a human-readable way

(Van der Aalst, 2016). Therefore, discovery approaches generate process models, which are

supposed to provide their users with a graphical representation of the examined process. In

reality, however, these approaches often produce so-called spaghetti models, i.e., highly complex

models that are difficult to read and understand (Medeiros et al., 2007). This is particularly

relevant because process discovery is typically the first step in a process mining project and the

resulting models are used for many purposes, such as conformance checking or process simulation.
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Hence, improved process discovery results may lead to an overall improvement of process-based

decisions made by humans and/or machines.

One way to achieve those improved results is to preprocess the event log before applying

process discovery in order to decrease the process model complexity. For this purpose, process

trace clustering is a well-known and effective technique (Bose & Van der Aalst, 2009b). It groups

the traces in the log, such that the traces in each group (called cluster) are more similar to each

other than to those outside the group, keeping the clusters as distinct as possible (Reijers et al.,

2011). Applying process discovery on those more cohesive sub logs results in less complex and

better readable models, which do not represent the entire event log at once. For example, the log

of a hospital emergency room will contain multiple process variants, depending on the urgency,

diagnosis, and treatment of the individual patients (Lu et al., 2019). In order to analyze the

process effectively, trace clustering can divide the log along with these attributes, such that the

process flow for each group of patients can be examined individually.

Over the past 15 years, researchers proposed various approaches to apply trace clustering

in the context of process discovery. The developed approaches vary greatly with regard to

algorithmic capacities (e.g., density-based or hierarchical clustering), similarity functions (e.g.,

activity-based similarity), data characteristics (e.g., event log attributes), computational com-

plexity, and integration of external knowledge (e.g., domain expertise). This makes trace clus-

tering a context-specific task, i.e., the choice of the best approach depends on the availability of

data, quality of the data, or available processing power, among others.

In this contribution, we aim to structure the existing body of knowledge in trace clustering.

Therefore, we perform a systematic literature review to identify and summarize the current state-

of-the-art. Based on that, we propose a generic framework for defining and structuring relevant

building blocks of trace clustering methods. The goal of the framework is twofold. It summarizes

the current trace clustering techniques and methods in the form of a methodological model and
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it provides a framework for further developing the field of trace clustering by identifying similar

techniques in the related data mining areas. Therefore, we first summarize the background of

clustering in process mining in Section 3.3. Section 3.4 describes our research method. The

results of our literature review and the proposed framework are covered in Section 3.5. Section

3.6 discusses the results and concludes the paper.

3.3 Background

Cluster analysis is a well-established data mining technique aimed at finding groups of similar

items in a dataset (Landau et al., 2011). It is typically categorized as an unsupervised ma-

chine learning technique (Berkhin, 2006). Clustering techniques are widely used for analyzing

sequential data, e.g., sequence analysis techniques in bioinformatics, sequential pattern mining

for user buying patterns, and sequence labeling for part of speech tagging. In the PM context,

it can be applied to many different data objects, including events, activities, and process models.

Arguably, however, the most relevant application is the application of clustering techniques on

process event logs, which we focus on in this contribution. Trace clustering is often used as a

preprocessing technique to improve process discovery results. For example, it can help to find

statistical outliers and reduce noise in an event log (Fani Sani et al., 2018; Weijters & Aalst,

2001), but it may also support predictive monitoring of business processes by finding predicates

that a running instance will most likely fulfill (Di Francescomarino et al., 2016).

We define event logs as collections of traces that represent the behavior of a business process

and assume that each trace has one mandatory attribute (the case identifier) and consists of a

sequence of events, denoting the execution of activities. Each event also has mandatory attribute

(the activity identifier). We call case identifiers, activity identifiers, and the ordering of events

in a trace the control-flow perspective. If traces or events have additional attributes, such as

timestamps, cost, and resources, we address those as the context perspective.
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Trace clustering as a preprocessing technique for process discovery has been researched for

more than a decade (Greco et al., 2004) and has experienced multiple developments regarding

the techniques, similarity measures, computational complexity, and maturity. The morphological

box by Thaler et al. (2015). gives a good overview of the approaches published before 2015

(Thaler et al., 2015). Early approaches to trace clustering treated traces as bags of activities,

losing information on context or execution order (Greco et al., 2006; Medeiros et al., 2007). This

was addressed by using different similarity measures such as the generic edit distance (Bose &

Van der Aalst, 2009b), sequences (Veiga & Ferreira, 2010), or temporal proximity (Luengo &

Sepúlveda, 2012). All of those approaches are two-staged, such that the discovery results are

not considered during clustering. This problem is addressed by considering the properties of

the discovered model during clustering (De Weerdt et al., 2013), mining more accurate process

variants or sub-processes (García-Bañuelos et al., 2014), or finding a more appropriate distance

measure (Evermann et al., 2016).

Given the plethora of technically mature approaches, current research on trace clustering

focuses on making the results more accessible for process analysts. De Koninck, De Weerdt, et

al. (2017) describe an approach for explaining the assignment of traces to clusters and a new

technique for trace clustering that incorporates expert knowledge (De Koninck, Nelissen, et al.,

2017). Seeliger et al. (2019) present the ProcessExplorer tool, which is set out to support the

typical workflow of a process analyst to interactively explore a dataset.

Although a large body of research on trace clustering already exists, we are currently unaware

of any generic framework, which would help to systematically assess the body of knowledge and

the gaps in the field.
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Table 3: Systematic literature review

Round Search.Criteria Time Results
1 ”clustering” + ”process mining” 2000 - 2020 5860
2 (”trace clustering”) + (”process mining”)

[”trace clustering” clustering OR process OR
processes OR traces ”process mining”]

2000 - 2020 691

3 English papers only 2000 - 2020 630
4 Relevance according to titles; removing case

studies, literature reviews, books, and short
papers

2006 - 2020 126

5 Relevance according to abstract and content,
removing duplicates

2006 - 2020 70

6 Forward and backward search 2006 - 2020 103

3.4 Research Method

In order to design such a generic framework for trace clustering in process discovery, we first

conducted a systematic literature review (Webster & Watson, 2002), summarized in Table 3.

We conducted our search using Google Scholar, which contains, among other databases, IEEE

Xplore, SpringerLink, and the ACM Digital Library. Our final search string was designed to

capture studies mentioning trace clustering and process mining. We started without any further

filters in the first round, and then restrained the search terms and filters after each iteration.

Keyword search inside the whole text for peer-reviewed publications in English returned 630

studies. We filtered out duplicates, books, short papers, datasets, and irrelevant studies (based

on title, abstract, and keywords). The resulting set contained 126 studies, which we filtered

based on their content. 70 papers were kept as relevant. We then conducted a forward and

backward search on those papers to cover studies missed by term search (Webster & Watson,

2002). Finally, a set of 103 papers was used to conduct this literature review. Table 4 shows the

distribution of papers over the years.

We used the 103 papers found in the literature review to design a generic framework for

trace clustering in process mining (see: Appendix A). First, we identified common concepts and
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Table 4: Distribution of the collected studies per year.

Year Results
2004-2011 16
2012 4
2013 7
2014 7
2015 11
2016 11
2017 18
2018 11
2019 11
2020 7

building blocks that constitute different trace clustering approaches. Then, we focused on the

ordering and dependencies of these building blocks. This included explicating the data flow

between them and differentiating between necessary and optional steps. At this point, we had

a framework that illustrated the generic procedure of trace clustering as found in the current

literature. We then extended this framework with additional building blocks that were not found

in the process mining domain, but were established and promising techniques that are used for

cluster analysis in data mining. The purpose of this step was to get a more complete overview

of trace clustering and to show opportunities for future research. Finally, we went back to the

103 papers and identified the concepts and techniques that they used to realize each generic

building block. This framework is a methodological model, as it is derived from studying trace

clustering methods and reflects the possible method development paths. We also argue that this

model is mostly descriptive (relying mostly on the given literature) and partly normative (due

to introducing new building blocks).
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Figure 2: Generic framework for Trace Clustering in Process Mining

3.5 A Framework for Trace Clustering

3.5.1 Overview

Figure 2 shows our proposed generic framework for trace clustering in process discovery. It

consists of blue boxes, which describe the generic building blocks of trace clustering approaches.

One of the first things we noticed in analyzing the trace clustering papers was that many of these

building blocks depend on the availability of either certain attributes in the event log to measure

trace similarity or certain processing capabilities to execute computationally complex clustering

algorithms. Therefore, we divided the building blocks into three major groups, indicated by

the grey areas in the framework. Building blocks in the “fundamental” area can be applied in

any trace clustering context, where a basic event log and standard processing capabilities are

present. Building blocks in the area “extended data availability” can only be applied if the event

log fulfills certain properties regarding data richness and volume. This may refer to the presence

of a certain attribute, the number of attributes, or the amount of traces in the log (Leyer, 2011).
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Finally, building blocks in the “extended processing capabilities” area can only be applied if

large computational resources are available, because standard capabilities are not able to apply

computationally complex algorithms to large event logs.

The building blocks of the framework are connected by arrows, which represent their ordering

in the trace clustering process and the flow of data between them. The solid-line arrows show

the flow of event log data, while the dotted arrows are signs of exchanging metadata, e.g., signals

or parameters.

We consider domain knowledge as an optional input to trace clustering, which can be utilized

to different building blocks. These blocks are marked with a double-line effect meaning that

during our literature analysis, we found the potential of applying domain knowledge in that

particular step.

Each trace clustering project starts with an event log, which is represented by the building

block in the top left corner. As explained in the background section, we consider two general

perspectives on the event log, depending on the available data. The control-flow perspective only

refers to case identifiers and sequences of activity identifiers (i.e., events). All possible paths

in the fundamental area are applicable to such a basic event log. If a given event log contains

additional attributes, e.g., resources, timestamps, or cost, these are represented by the context

perspective. In this case, the blocks in the “extended data availability” area become applicable

to this event log.

All available attributes in an event log can be mapped to either of the two following possible

granularity levels: activity-level (e.g. cost of activity, department, user) and trace-level (e.g. order

type, order duration, customer satisfaction). In terms of data types, all attributes in the event

log are either numeric or categoric data. Transforming these two data types into each other

occurs in the succeeding steps.
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Table 5: Two examples of treating categoric and numeric data types

Inout Matrix Vector Scalar

< 𝑎𝑏𝑎𝑐 >
𝑎
𝑏
𝑐

⎡⎢
⎣

1 0 1 0
0 1 0 0
0 0 0 1

⎤⎥
⎦

⎡⎢
⎣

2
1
1
⎤⎥
⎦

√
6 ≈ 2.45

< 15, 12, 8, 5 >
𝑎
𝑏
𝑐

⎡⎢
⎣

15 0 8 0
0 12 0 0
0 0 0 5

⎤⎥
⎦

⎡⎢
⎣

23
12
5

⎤⎥
⎦

√
698 ≈ 25.42

In the following sections, we discuss the framework’s building blocks in more detail. A

summary of the concepts and techniques used to realize them is presented in Table 7.

3.5.2 Feature generation

The first step towards trace clustering is to generate features from the provided event log (Song

et al., 2009). A feature can be any property or attribute contained in the event log. As the

overall goal is to assess the similarity between individual traces, features will be generated at

trace or event level. According to our observations in the literature, two data structures are

typically used for feature generation. We categorize them as linear structures and non-linear

structures. Linear features typically refer to simple data structures, such as scalars. Non-linear

structures, e.g. graph and tree structures are used when the non-linear behavior of traces cannot

be fully captured by those linear data structures. Depending on the required features, numeric

or categoric data from the event log may get transformed from one type to another. In the

following, we provide examples for such transformations.

Assume a sample trace < 𝑎𝑏𝑎𝑐 > with the following durations < 15, 12, 8, 5 > associated

with the respective events. For this trace, we can generate a new feature with a different data

type by mapping any duration value lower than 10 to low (𝐿) and values higher than 10 to high

(𝐻), resulting in the (linear) feature < 𝐻, 𝐻, 𝐿, 𝐿 >. This is a simple example of converting

numeric data type to categoric.
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Table 5 provides an example of three possible representations of a trace < 𝑎𝑏𝑎𝑐 > with

durations < 15, 12, 8, 5 >. This trace can be represented by a two-dimensional array (matrix),

a one-dimensional array (vector), or a single value (scalar). Table 5 shows how those numeric

features are extracted from a categoric (first row) and a numeric (second row) input. In both

examples, the rows in the matrix represents the activities and the columns represent the positions

in the trace, meaning that activity a appears both in the 1st and 3rd position and that the

duration of the 2nd activity is 12. Depending on the required level of information abstraction,

different transition functions (e.g., count, sum, mean) can be applied to transform these matrices

into new data structures. In our example, the rows are summed up to transform the matrix into

a vector. This reduces the feature size and therefore its sparsity, but also loses information on

the trace ordering. The same happens when the vector is transformed into a scalar by applying

a magnitude (sum of squares) function (Luengo & Sepúlveda, 2012).

Moving from matrices to scalars results in a higher abstraction level. A similar observation

would be moving from activity-level to trace-level features. The provided example in Table

5 shows individual activities of a trace, but one can consider the same features for any given

subsets of a trace.

A subset of trace t is also known as an n-gram, where 0 < 𝑛 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡). For example,

< 𝑎𝑐(0) > is a 2-grams of < 𝑎𝑏𝑎𝑐 > that represents the occurrence of a followed by c with a

distance of zero. Two principal approaches can be considered when processing an event log based

on n-grams: manual (brute force) and algorithmic approach (explorative algorithms) (Greco et

al., 2006). The manual approach tries all possible n-grams and extracts features from them,

whereas in the algorithmic approach, only significant n-grams, such as the most frequent ones,

are used for feature generation (Bose & Van der Aalst, 2010b).

In our example, the underlying data structure is linear, i.e. we can interpret the trace as a

sequence of activities that can be cut into subsets of different sizes. However, one could also
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Table 6: Conceptualizing a trace as a graph

Graph Matrix Incoming Outgoing

𝑎 𝑏 𝑐
𝑎
𝑏
𝑐

⎡⎢
⎣

0 1 1
1 0 0
0 0 0

⎤⎥
⎦

𝑎
𝑏
𝑐

⎡⎢
⎣

1
1
1
⎤⎥
⎦

𝑎
𝑏
𝑐

⎡⎢
⎣

2
1
0
⎤⎥
⎦

conceptualize a trace as a graph structure, highlighting the existence of a link between any pairs

of activities (Diamantini et al., 2016; Ha et al., 2016). In this case, we can generate new features

by, e.g., discovering isomorphic subgraphs. As an example of the same trace (< 𝑎𝑏𝑎𝑐 >), the

degree vector would be < 2, 1, 1 > for the respected undirected graph. For the directed graph, we

can consider < 3, 2, 1 > as the degree vector, < 2, 1, 0 > as the outgoing vector, and < 1, 1, 1 >

as the incoming vector (see Table 6).

3.5.3 Feature transformation

The generated features of the previous step provide the input for the next one. Feature transfor-

mation includes generating secondary features and assuring feature quality and interpretability

by applying techniques for normalization, collinearity, and dimensionality. Normalization en-

sures the comparability of features. Collinearity checks for redundancy, i.e., eliminating identical

or similar features. Dimensionality ensures a certain degree of richness, so multiple versions of

one attribute exist in the final pool of features, so if feature selection removes certain attributes,

not all information is lost (Song et al., 2013).

Secondary (or transformed) features are generated by applying linear techniques,

e.g. wavelets (Taymouri, Rosa, et al., 2020), principal component analysis (PCA), factor

analysis (Bartl et al., 2011), or non-linear techniques (machine learning (ML)-based and

non-ML-based).
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3.5.4 Feature selection

In the last step of the pre-clustering phase, the generated and transformed features are reduced by

feature selection techniques (Greco et al., 2004). Those techniques are needed to avoid problems

with overfitting, precision issues, and extra processing costs, which can appear when using too

many features. However, the feature selection process itself needs processing resources, too. It

happens either in an all-at-once (single-view) or incremental (multiple-view) fashion (Appice &

Malerba, 2015). The former usually yields relatively fewer features, whereas the latter allows

for selecting more features in the final set.

Generally, feature selection techniques can be split into two categories, depending on whether

they are based on machine learning (ML). Non-ML-based techniques include for example entropy-

based filtering (De Weerdt et al., 2013), filtering collinear features (S. Lee et al., 2013), and

frequency-based selection. They also allow to integrate experts’ domain knowledge into the

feature selection process.

The ML-based techniques can be divided into two main approaches, embedded and wrapping.

The embedded approach is a built-in feature selection mechanism that occurs during some trace

classification algorithms (Cuzzocrea et al., 2018). It refers to the selection of significant features

during trace classification, which we call partial classification. After processing a subset of traces,

a set of clusters is defined, to which the remaining clusters are then assigned (Di Francescomarino

et al., 2016). Features are justified based on the model performance, i.e., significant features

have better accuracy in assigning clusters. The wrapping approach, on the other hand, tests

different combinations of features in order to find the most significant ones. Features are justified

based on the evaluation results of ML techniques (Genga et al., 2020).
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3.5.5 Event log splitting approach

Dataset splitting is a common approach in data mining field mostly to handle complex and large

data volumes (Berkhin, 2006; Zhao et al., 2019), which can become relevant for trace clustering

as well. Dealing with large event logs can be computationally expensive and time-consuming.

Processing the whole event log, however, does not guarantee optimal results. Hence, depending

on the dataset, technique, and available computing resources, it might make sense to preprocess

the event log by splitting it prior to clustering. Principal approaches in dealing with large event

logs can be labeled as parallel and evolutionary. In both approaches, the event log is split into

multiple sub logs.

The parallel approach exploits clustering and classification techniques to process all sub

logs simultaneously. The applied settings and algorithms can vary for each sub log, to ensure

the distinctness of the results. Processing each sub log yields a set of sub-clusters, which are

merged to obtain the final clusters. In the evolutionary approach, randomly sampled sub logs

are processed sequentially, until either all sub logs are processed or the updated clusters do not

change significantly.

None of the approaches that were found in the literature review had implemented event

log splitting prior to clustering. However, we included it in the framework, because it’s an

established technique in data mining, which we propose and recommend for future research,

especially when dealing with very large event logs.

3.5.6 Clustering inputs

Clustering algorithms aim to group similar traces such that traces inside the same group are

similar and traces from different clusters are different. The way in which trace (feature) sim-

ilarities and differences are measured is therefore central to the resulting clusters. Distance

measures are a popular technique for measuring trace similarity. Using them, we can compute
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a so-called similarity matrix, which contains pairwise similarity values for all traces in a log and

serves as input for some clustering algorithms. Other potential inputs for clustering algorithms

are probabilistic models and segments. These three potential building blocks of trace clustering

are shortly discussed in the following.

3.5.6.1 Distance There are multiple ways to calculate the distance between two traces (or

their respective features), which vary according to distance type, granularity, and robustness

function. The distance type can either be string-based, accepting all types of features, or arith-

metic, accepting only numeric features. Calculating arithmetic distance requires mathematical

operations which is not the case for string distance. Instead, string-based distance measures

quantify the differences between two sequences of features of any type. One way to compute

these differences is the edit distance, which refers to the number of operations (insert, delete

or move) required to make two given sequences completely similar. In case of actual strings,

this is also known as the Levenshtein distance (Levenshtein et al., 1966). Other string distance

functions use different methods to calculate these differences. Behavioral distance is applied for

features with a tree-like data structure. Morphing-based functions are used to compare traces.

The base-model distance approach discovers an initial model, e.g. a graph, based on limited or

all traces. This base-model calculates pairwise edge distances for respective nodes of the traces

on the model and updates the results (Diamantini et al., 2016).

So far, we assumed that all approaches compare traces to model their differences. However,

the same is possible by changing the unit of processing to batches of traces, i.e., segments

(Ceravolo et al., 2017). Transition functions can build new “per segment” features. One last

optional part of this step is implementing robustness functions. These functions help to moderate

inappropriate distance values, happening due to the presence of erroneous data points (e.g. noise

and outlier) in the event log (Delias et al., 2015).
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Table 7: Underlying techniques and concepts of the proposed framework

3.5.6.2 Probability Another option for trace clustering is to use probabilistic computation

models instead of deterministic ones. In this approach, Markovian probabilistic models are built.

The probability of observing a trace given the Markovian probabilistic model(s) determines to

which cluster each trace belongs (Ferreira, 2009; Huang et al., 2015; Veiga & Ferreira, 2010).

3.5.6.3 Segments The third option in clustering inputs are segment-based computation

techniques. In this approach, a conceptual grid is built, either gradually or all-at-once. In the

all-at-once method, each segment together with its neighbors is tested to see whether merging

them supports the goal of clustering or not (Kanj et al., 2018). The gradual model starts with

the whole event log. In each iteration, the event log is split into segments until the clustering

algorithm decides to stop. This decision is made based on the expressive power of clusters to

satisfy the clustering goal. The final segments are basically the final clusters (H. Nguyen et al.,

2019).
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3.5.7 Clustering and classification

Clustering input blocks provide the necessary input data for clustering and classification al-

gorithms. The clustering algorithm triggers new rounds of building the clustering input(s),

iteratively. The provided input(s) are used by the clustering algorithm directly (e.g. k-means)

or with further transformations (e.g. spectral clustering). We considered three main approaches

for clustering, namely full clustering, full classification, and partial clustering. In the full clus-

tering approach, detecting the initial clusters (implicit class definition) as well as assigning all

traces to those clusters are all done mainly by the clustering algorithm. This approach also

allows for integrating experts’ knowledge when defining the initial clusters (Lu et al., 2019).

In the full classification approach, expert knowledge (in the form of manual grouping or to-be

process models) is used to define the initial classes (explicit classes) that are later used by clas-

sification techniques to assign the rest of the traces to the clusters (Boltenhagen et al., 2019).

In the partial clustering approach, a combination of clustering and classification techniques is

used. Clustering techniques, with the possible help of experts’ knowledge, are applied to build

the initial clusters based on a limited part of the event log. Eventually, classification part takes

the final clusters as its initial classes and continues with processing the rest of the event log.

All three presented clustering inputs in the framework, i.e. distance models, probabilistic

models, and segment-based models, provide input to feed classification and clustering algorithms

(except segment block that cannot feed classification algorithms). Clustering building blocks and

clustering techniques can be matched as follows. Segment-based matches with grid-based and

top-down hierarchical clustering (Medeiros et al., 2007). Distance-based matches with hierarchi-

cal (bottom-up) (Seeliger et al., 2018), density-based (La Rosa et al., 2015), and partitioning

(Delias et al., 2015). Probability-based clustering methods can be categorized based on their

kernel methods (e.g. Gaussian, non-Gaussian) as well as their estimation methods (e.g. Bayesian,

non-Bayesian).
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In terms of cluster borders, clustering techniques divide into two categories, one allowing

for overlapping (soft) and the other one not (hard). We observed implementing probability-

based approaches for soft cluster splitting, however fuzzy approach is not implemented in any

of observed trace clustering studies, so it remains as our suggestion for future research.

3.5.8 Evaluation

Usually classification and clustering algorithms have their own built-in objectives. However,

we can also define extra objectives (evaluation criteria) depending on trace clustering’s ultimate

goal, e.g. enhancing process model discovery, demands for higher model simplicity, and fitness as

evaluation objectives (Thaler et al., 2015). When a paper is not focused on making a methodical

contribution to trace clustering or process mining, e.g., in case studies, usually standard built-in

objectives suffice (we refer to this as non-PM-related evaluation criteria).

The purpose of defining extra objectives is assisting clustering and classification algorithms

(PM-related evaluation criteria). This is achieved by generating feedback in two different ways,

namely internally and externally. Internal feedback is generated per each iteration of running

the algorithms (internal) (De Weerdt et al., 2013), while external is generated once, i.e. after

finishing the algorithm (external) (Delias et al., 2015).

Internal feedback improves the precision of assigning traces in each iteration of running clas-

sification and clustering algorithms. External feedback optimizes the parameters of classification

and clustering algorithms, e.g. number of clusters, nominated set of features, weights of each

building block, etc.

It worth mentioning that clustering and classification algorithms can have multiple objectives

(Delias et al., 2019). There are several techniques to handle this situation based on multi-

objective decision making (MODM) approaches, e.g. weighted sum, disaggregation method, goal

programming, and Pareto optimality.
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3.5.9 Demonstrating a sample study in the framework

In order to demonstrate the validity of our framework, we briefly introduce an individual study

(Delias et al., 2015) and map its components to our proposed framework. The authors exclusively

work with the control-flow perspective of the event log. In the feature generation step, for each

trace, they generate two trace-level numerical features in the form of vectors. Two transition

functions generate these vectors based on appearance of each activity in the trace (1-gram

subsets) and pairwise inversed sequence-distance of activities (2-gram subsets). In terms of

advanced feature generation, we did not observe any relevant actions. The authors applied a

cosine similarity distance function on both available features to generate two similarity matrices,

namely activities-similarity and transitions-similarity (we refer to as clustering inputs). In this

approach, neither event log splitting nor classification techniques were implemented. Spectral

clustering algorithm applied two different weights (determined by the help of experts’ knowledge)

to each similarity matrix and then combined them into a single matrix using weighted sum

function. We observed exploiting a robustness function (density-based weighting) to reduce

the effect of outlier and noises in the data. In the absence of PM-related goals, no evaluation

(internal, external) loops were presented in this study.

3.6 Conclusion

Trace clustering has been a topic of interest in process mining research for almost two decades.

In this context, the goal of this paper was to structure the existing body of knowledge and

give a comprehensive overview on the state-of-the-art in trace clustering. Therefore, we first

performed a systematic literature review, in which we identified 103 relevant research works

on trace clustering between 2004 and 2020. We then used these works to design a generic

framework on trace clustering in an iterative, bottom-up way. This framework consists of 15

building blocks, which are grouped by applicability. The flow of data and metadata between
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those building blocks represents the generic process of trace clustering. In a second step, we

analyzed how the 103 identified research works realized some of those building blocks, leading

to a conceptual and technical overview of trace clustering capabilities, as shown in Table 7.

However, our research also suffers from multiple limitations. Despite following a methodical

approach, we do not claim that our literature review or the framework are complete or exhaustive.

Our choice of search terms or databases could have excluded relevant research works, which either

used a different terminology or were not contained in the respective databases. Hence, there

could be unidentified contributions to trace clustering, which could add additional aspects to our

framework. The framework in its current form insinuates a generic process of trace clustering,

which we have found to be true for many existing approaches, but which new approaches to

trace clustering do not necessarily have to follow.

In addition, the framework’s current building blocks result from our understanding and inter-

pretation of the existing literature and could be conceptualized differently by other researchers.

For example, one could argue that there are more than two perspectives to look at an event log

or that trace classification is not part of trace clustering in a narrow sense. Also, our list of

concepts and techniques that realize the respective building blocks can also not seen as complete,

because it’s highly likely that we missed or misclassified some approaches, for example due to

different parametrization options. Our framework also falls short with regard to the generic

data mining aspects and will require a more thorough argumentation on how they could address

apparent gaps in trace clustering.

The overall goal of our generic framework is twofold. For practitioners, we want to give an

overview over the current state-of-the-art in trace clustering and take a first step towards building

the big picture of trace clustering techniques and implementation approaches. Categories like

“extended data availability” and “extended processing availability” may help in this regard.

However, the framework in its current form lacks practical utility, because it focuses more on
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the generic trace clustering process than on the capabilities of individual approaches. In addition,

it has not been empirically validated by, e.g., other researchers or practitioners. In future work,

this can be addressed by asking authors of our identified papers to position their work within

our framework.

For researchers, we want to make it easier to position their own research with regard to the

state-of-the-art in trace clustering. Although this is not the main focus of this paper, several

of these gaps already became evident during our analysis. For example, there are no works on

the “cluster-ability” of an event log, i.e., the attributes that an event log has to fulfill for trace

clustering to be useful. Similarly, depending on the characteristics of the log, some clustering

approaches could be more useful than others. These and many more challenges can be found

from inspecting the state-of-the-art as represented in our framework and form a good basis for

future research.
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4 Paper 2: Are We Doing Things Right? An Approach to Mea-

sure Process Inefficiencies in the Control Flow

4.1 Abstract

A major dimension for assessing organizational performance is efficiency, i.e., the amount of

output obtained from a given input. Organizational efficiency is closely connected to business

process efficiency. Inefficiently executed processes may consume a lot of resources and still not

achieve their internal goals. Because “you cannot improve what you cannot measure”, process

mining tools try to quantify process inefficiency with rather basic indicators, which provide only

limited information. This paper introduces an approach that measures process inefficiencies in

the control flow, taking factors like an activity’s intended position in the trace and the allowed

number of repetitions into account. Our evaluation results show that the process performance

indicators that our approach defines capture aspects of process inefficiency that have not been

taken into account in the baseline indicator that is currently provided in process mining tools.

4.2 Introduction

Operational efficiency, i.e., the amount of output obtained from a given input, is one of the

major dimensions for assessing organizational performance (Davis & Peri, 2002). The efficiency

of an organization is closely connected to the efficiency of its business processes (Melville et al.,

2004). Inefficiently executed processes may consume a lot of time, cost, and personnel resources

and still not achieve their internal goals. This is particularly problematic for support processes,

like HR or purchasing, whose goal is to enable the execution of the organization’s value-creating

core processes.

For successful business process management (BPM), measuring process inefficiency is the first

step towards improvement (Van Looy & Shafagatova, 2016). Inefficiencies in process execution
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like rework or change activities, loops, or cancellations can be observed in the event log that

captures the execution of the respective process in an IT system. Companies like Uber (El-Wafi,

2020) and Siemens (Rowlson, 2020) have been trying to harmonize their processes and reduce

rework and loops to achieve higher efficiency levels. The identification of efficient processes also

is a challenge for robotic process automation (RPA) because automating inefficient processes

will amplify the inefficiency (Reinkemeyer, 2020). However, there is no explicit indicator for

process inefficiency in the process mining literature (Van Looy & Shafagatova, 2016).

Process mining vendors appear to have recognized an industrial need for measuring process

inefficiencies (Aull, 2020), but the indicators that they provide tend to be very basic and therefore

do not provide a lot of value. For example, in Celonis, a case is labelled as inefficient if it contains

an inefficient activity (e.g., change price) (Badakhshan et al., 2020). Process inefficiency is then

defined as the ratio of inefficient cases in an event log. This indicator misrepresents process

inefficiency with regard to the above understanding of efficiency as a relation of input and

output, because it does not consider cases that include more than one inefficient activity.

In this paper, we present a novel approach for measuring process inefficiencies (AMPI). It

is based on the idea that a process inefficiency is caused by either the type of activity (e.g., a

deletion), its location (the activity is executed at the wrong position in the trace), or its frequency

(the activity is executed more often than intended). Our approach defines a set of performance

indicators, which measure the inefficiency of individual traces independent from the overall event

log. It is defined on the trace level, hence allowing for a comparison between cases, and relies

only on the control flow, hence requiring only a partial order within the trace. Therefore, we

report on related work in Section 4.3. The process of developing AMPI is described in Section

4.4 and evaluated in Section 4.5. Section 4.6 discusses contributions and limitations, before the

paper is concluded in Section 4.7.
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4.3 Related Work

Our research takes a process-centric view on organizational performance, an important con-

struct in strategic management. Researchers have defined countless measures for assessing an

organization’s performance in so-called performance measurement models (PMMs) (Van Looy

& Shafagatova, 2016). Organizational PMMs (Cross & Lynch, 1988; Kaplan & Norton, 2001)

cover all aspects of the business, whereas business process PMMs (Kueng, 2000; Neely et al.,

2000) focus on individual business processes, which makes them particularly relevant for BPM

(Van Looy & Shafagatova, 2016).

Business processes are accepted as a significant construct in all of the mentioned PMMs. The

Balanced Scorecard offers four main perspectives to managers (customers, internal processes,

innovation, improvement activities). To define and measure the internal process perspective,

companies must consider different variables for their business processes, e.g., project closeout

cycle, project performance effectiveness index, and rework (Kaplan & Norton, 1998). Similarly,

the 4-level pyramid model by Cross and Lynch (Cross & Lynch, 1988) contains “the vision” on

the top and “operational measures” (including quality, delivery, process time, and cost) on the

bottom.

Process performance measurement systems (PPMSs) play a major role in improving business

processes for any process-oriented organization (Kueng, 2000). Dumas et al. describe time, cost,

quality, and flexibility as the main dimensions of a PPMS (2018). Because those dimensions are

multi-faceted and rather abstract, various performance indicators are suggested to quantify the

goals associated with each dimension. Such indicators for general organizational performance

are called key performance indicators (KPIs). Process performance indicators (PPIs) are the

process-related version of KPIs (Rosenberg et al., 2011).

They should satisfy the SMART (specific, measurable, achievable, relevant, time-bounded)

criteria for KPIs (Shahin & Mahbod, 2007) and also be expressive, understandable, traceable,
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and automatically measurable (del-Río-Ortega et al., 2013). The PPINOT metamodel allows

for an unambiguous and complete definition and implementation of PPIs (del-Río-Ortega et al.,

2013) and is enhanced by a graphical notation for defining and visualizing PPIs with business

process models (del-Río-Ortega et al., 2019).

Process inefficiency, which is defined as the performance gap in comparison to a best practice,

can either be design-related or intrinsic, i.e., related to process execution (Burger & Moormann,

2009). Design-related inefficiencies are highly domain-specific and have to be addressed during

the design stage of the business process life cycle (Dumas et al., 2018). However, even an

efficiently designed process needs to account for the necessary flexibility in execution (B. Hompes

et al., 2016), so the mere conformance of an execution is not an indicator for its organizational

performance (Van Den Ingh et al., 2020). For example, a process-executing IT system must allow

for the termination of an incomplete process instance (e.g., on cancellation) or give employees

the opportunity to correct or update wrong or outdated data. Nevertheless, those activities

should be avoided to reduce intrinsic inefficiencies and improve the process’s performance.

A recent review on PPIs did not find any explicit indicator for process inefficiency in the

process mining literature (Van Looy & Shafagatova, 2016). However, there are a few studies

that have dealt with measuring process inefficiencies. Dohmen and Moormann apply a three-

stage approach to discover the association of intrinsic process execution characteristics and their

efficiency score (Dohmen & Moormann, 2010). This case study measures the inefficiency of

banking transactions by comparing them to the best-practice transactions. This means that

the measure cannot be assessed for individual cases, but always depends on the most efficient

transaction in the log. Also, the proposed method is domain-specific and limited to the financial

sector. Van Den Ingh et al. describe an approach to measure process performance based on

process mining (Van Den Ingh et al., 2020). Their approach evaluates variants of a P2P process

based on control flow and context, but control flow inefficiency is assessed with very basic

indicators, e.g., percentage of activities that was executed more than once. Höhenberger &
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Delfmann (2015) applied automated model query approaches to collect weakness (process model)

patterns. Using their discovered patterns, they were able to find weaknesses in new process

models from different context. This approach emphasizes the detection of patterns as the first

step to discover and solve underlying root causes.

4.4 AMPI: An Approach for Measuring Process Inefficiency

4.4.1 Objectives

In the following, we describe AMPI, which, once applied to a specific process in a concrete

context, results in a set of inefficiency PPIs. AMPI targets the following types of inefficiencies.

4.4.1.1 Non value-adding activities Activities can add value to the process by providing

value to the customer (e.g., the receipt of goods in a P2P process) or to the business (e.g., the

approval of a payment) (Dumas et al., 2018). If activities do not fall within those two categories,

they can be seen as inefficient. This includes activities like hand-offs or cancellations, but also

so-called rework activities, like price changes (e.g., El-Wafi (2020)), which revoke the outcome

of a previously executed activity.

4.4.1.2 Loops Loops indicate a repetition of activities, which is perceived as inefficient be-

cause the same work has to be done twice. This is not the case for all activities. In a P2P

process, for example, more than one occurrence of “release purchase requisition item” per case

would be inefficient (El-Wafi, 2020, p. 82), but a case can have multiple goods receipts. For

unintended loops, the magnitude of the inefficiency is determined by number of iterations (the

more executions, the more inefficient) and their length. Research has provided evidence for

a “bullwhip effect” at a process level, meaning that occurring mistakes or problems should be

addressed and handled as soon as possible, because otherwise, its consequences become more

damaging (Mahendrawathi et al., 2018). If, for example the price of a purchase order item is
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changed twice in a row, it is less inefficient than if the second change happens after the invoice

is confirmed.

4.4.1.3 Wrong start and end activities Start and end activities of a process are particu-

larly relevant, because they provide the basic information for initiating or concluding a case. If

start activities are wrongly positioned, the other activities will lack information and therefore

be incomplete. If end activities are wrongly positioned, follow-up activities cannot be executed

efficiently. A purchase order item, for example, should not be created at the end of a P2P

process, because it provides the informational basis for the entire case.

4.4.2 Outline

These examples show that for an insightful measure of process inefficiency, it is not sufficient to

count the ratio of inefficient activities. Instead, AMPI takes the following steps to calculate the

ratio of inefficient behavior in a trace.

1. Defining Activity Clusters: The basis of any inefficiency lies in the nature of the activities.

We define a generic framework for classifying activities by their intended frequency (0, 1,

multiple) and location (start, core, end). This results in nine activity clusters, which form

the basis of AMPI.

2. Identifying Drivers of Inefficient Behavior: Some inefficiencies are revealed or exacerbated

by certain conditions in the control flow, like repetitions of the same activity. We call

those conditions “drivers” of inefficient behavior. They are defined and computed for each

occurrence of an activity in a trace.

3. Calculating Cluster-based Inefficiencies: We calculate the (absolute) inefficiency per cluster

by aggregating the relevant drivers of inefficiency for all activities in the cluster and all

occurrences of that activity.
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4. Computing the Trace-level Inefficiency: To compute the trace-level inefficiency, we nor-

malize the cluster-based inefficiencies and then take the average across all clusters.

In the following, we say that 𝐴 = ⋃𝑚
𝑗=1 𝑎𝑗 is the universe of activities. An occurrence or

event 𝑒(𝑎) denotes the execution of an activity 𝑎 within a process and can be denoted as 𝑎, if

the context is clear. A case denotes one execution of a process, which has at least two attributes

(an ID and a trace). A trace 𝑡 is a finite sequence of occurrences 𝑒1, ..., 𝑒𝑛, where each 𝑡[𝑘] = 𝑒𝑘

denotes an occurrence of an activity 𝑎 ∈ 𝐴 at the 𝑘th position of 𝑡, and |𝑡| = 𝑛 denotes the

length of the trace. 𝐴𝑡 = ⋃𝑒(𝑎)∈𝑡 𝑎 is the set of distinct activities for 𝑡. The frequency of any

distinct activity 𝑎𝑡 ∈ 𝐴𝑡 is defined as the number of occurrences, written |𝑎𝑡|. Occurrences of

𝑎 in 𝑡 are denoted as 𝑎𝑡
𝑖, where 𝑎𝑡

1 indicates the first occurrence of 𝑎 in 𝑡 and 𝑎𝑡
𝑙 , 1 ≤ 𝑙 ≤ |𝑡|

indicates the last occurrence of 𝑎 in 𝑡. [𝑎𝑡
𝑖] denotes the location of an occurrence in a trace, i.e.,

the index 𝑘, for which 𝑒𝑘 = 𝑎𝑡
𝑖.

4.4.3 Assigning Activities to Clusters

The first dimension of process inefficiency is the intended frequency of activities, which has

three categories. The red category contains undesired activities, which do not add any value

and should therefore not occur at all. The green category contains desired activities, which can

be executed multiple times. Activities that should explicitly occur only once per trace fall into

the yellow category.

The second dimension of process inefficiency is an activity’s intended location in the trace.

Therefore, we partition the trace into three sections. The start section and the end section

contain the first and last activities of a trace, respectively. The core of the trace comprises all

remaining activities in between the start and end. This separation recognizes the crucial role

that start and end activities play in the trace, but leaves enough flexibility for process execution.
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Table 8: Activity clusters defined by intended activity frequency and location

Location
Start Core End

0 Cluster S0 Cluster C0 Cluster E0
1 Cluster S1 Cluster C1 Cluster E1Frequency

Multiple Cluster S2 Cluster C2 Cluster E2

Combining the two dimensions with three categories each results in nine distinct activity

clusters, as listed in Table 8. Readers should note that the same activity will usually be part

of multiple clusters. The activity clusters are based on theoretical considerations and therefore

independent from the analyzed process itself. To apply it to a concrete process, we need e.g., a

process analyst or a domain expert to assign process activities to clusters.

4.4.4 Identifying Drivers of Inefficient Behavior

The clusters impose an intended behavior on their activities. Inefficiencies occur if activities do

not adhere to this behavior. To identify these inefficiencies, we need to inspect the control flow

context in which activities occur. This context reveals some inefficiencies, e,g., repetitions of

yellow activities, and exacerbates others, e.g„ loops. Below, we discuss four drivers of inefficient

behavior in the control flow. Each driver is defined for an activity or an occurrence of an activity.

Because AMPI should allow for the comparison of individual traces, the drivers are normalized

to the trace length. When computing the overall trace inefficiency, we can then sum up the

normalized drivers and obtain a normalized inefficiency value. This normalization at driver level

is necessary, because the normalization basis depends on the nature of the cluster. Therefore,

the following equations are only valid for their respective cluster and its assigned activities.

4.4.4.1 Repetition The intended activity frequency determines whether the repetition of an

activity adds additional value to the process. Any additional occurrence above what is intended

by the respective cluster is regarded as inefficient. For most clusters, those occurrences can
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just be counted when computing the overall trace inefficiency, but for clusters S1 or E1, which

cover singular start or end activities, exceeding the intended frequency is particularly damaging.

We account for such violations by individually factoring in their repetitions. Moreover, we also

count for the variation of inefficient activities within one case, i.e., “multiple occurrences of one

inefficient activity” is better (less inefficient) than “multiple occurrence of multiple inefficient

activities”. The rationale behind this decision lays in the nature of organizations where involving

different actions usually requires extra communication and handover costs. However, performing

the same action in the same company most likely costs relatively less overhead.

𝑟𝑆1(𝑎𝑡
𝑖) = 𝑟𝐸1(𝑎𝑡

𝑖) = 𝑖 − 1
max(1, |𝑡| − 1) (1)

4.4.4.2 Location The location of an activity is defined as its index in the trace. For each

activity, the intended location can either be 0 (start activity), |𝑡| − 1 (end activity), or any

number in between (core activity). We assume inefficient behavior to be less severe early in

the trace, so we differentiate between the first and all other occurrences. For C0 activities, an

inefficiency of zero cannot be achieved if any C0 activity occurs at the core of the trace. For

C1 activities, we assess their locations with help of two measures, 𝑙𝐶1 and 𝑏𝐶1, to avoid twofold

evaluation of activities where 𝑙𝐶1 = 𝑙𝑆1. Whereas 𝑙𝐶1 evaluates the location of C1 activities at

the core, 𝑏𝐶1 only assesses the start and end of the trace in terms of C1 activities. Location

measures for clusters S0, E0, and C2 are not specified here, because the (absolute) location is

the only relevant driver for these clusters.

𝑙𝐶0(𝑎𝑡
𝑖) =

⎧{{
⎨{{⎩

[𝑎𝑡
𝑖 ]

max(1,|𝑡|−2) , for 𝑖 = 1

[𝑎𝑡
𝑖 ]−1

max(1,|𝑡|−3) , otherwise

(2)
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𝑏𝐶1(𝑎𝑡) =

⎧{{{{
⎨{{{{⎩

1, if 𝑡[0] and 𝑡[|𝑡| − 1] ∈ 𝐶1

0.5, if 𝑡[0] or 𝑡[|𝑡| − 1] ∈ 𝐶1

0, otherwise

(3)

𝑙𝑆1(𝑎𝑡
𝑖) = [𝑎𝑡

𝑖]
max(1, |𝑡| − 1) (4)

𝑙𝑆2(𝑎𝑡
𝑖) = 1 − 𝑖 + [𝑎𝑡

𝑖]
max(1, |𝑡| − 𝑖) (5)

𝑙𝐸1(𝑎𝑡
𝑖) = 1 − [𝑎𝑡

𝑖]
max(1, |𝑡| − 1) (6)

𝑙𝐸2(𝑎𝑡
𝑖) = 1 − 1 − 𝑖 + [𝑎𝑡

𝑖]
max(1, |𝑡| − 𝑖) (7)

4.4.4.3 Distance Not all repetitions of red or yellow activities are equally inefficient. To

assess the impact of a repeated activity on the trace, we measure the distance between activi-

ties, defined as the absolute difference between their locations. We recall our assumption that

repetitions are less inefficient if they are close together and ensure that we always compute the

distance of a repetition to the first occurrence of the activity. As yellow activities should only

occur once at most, any distance of a repeated activity is treated inefficient. In contrast, the

optimal distance for green activities highly depends on the number of repeated activities. Note

that 𝑑𝐶1 = 𝑑𝐸1 = 𝑑𝑆1, and 𝑑𝐸2 = 𝑑𝑆2.

𝑑𝐶0(𝑎𝑡
𝑖) = [𝑎𝑡

𝑖] − [𝑎𝑡
1] − 1

max(1, |𝑡| − 3) (8)
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𝑑𝑆1(𝑎𝑡
𝑖) = [𝑎𝑡

𝑖] − [𝑎𝑡
1]

max(1, |𝑡| − 1) (9)

𝑑𝑆2(𝑎𝑡
𝑖) = 1 − 𝑖 + [𝑎𝑡

𝑖] − [𝑎𝑡
1]

max(1, |𝑡| − 𝑖) (10)

4.4.4.4 Distinct activities In some situations, the previous measures are not sufficient to

accurately assess process inefficiency. Consider a trace with a C0 activity at the core. The

existence of a second distinct C0 activity at the core impacts the level of inefficiency to another

degree than an additional C0-activity of the same type. This must be considered by an additional

driver. For this purpose, we define the distinct activities per cluster as the number of distinct

activities in a trace that are assigned to the same cluster.

𝑑𝑎𝐶0(𝑎𝑡) = |𝐴𝑡| − 1
max(1, |𝑡| − 3) (11)

𝑑𝑎𝑆2(𝑎𝑡) = 𝑑𝑎𝐸2(𝑎𝑡) = |𝐴𝑡| − 1
max(1, |𝑡| − 1) (12)

4.4.5 Calculating Cluster-based Inefficiencies

The drivers of inefficiency are defined on activities or occurrences and can be used to compute

the (absolute) inefficiency level of the individual clusters (with regard to one trace). Because the

idea behind the start and end dimensions are very similar, the computation and the formulas of

the inefficiency levels of clusters S2, S1, and S0 are in line with those of E2, E1, and E0. For this

purpose, we analyze the clusters with the same intended frequency together. Related activities

then only differ in their intended location.
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Activities from S2 may occur multiple times at the start of a trace, so their occurrences do

not represent inefficient behavior if they directly follow each other. Hence, repetitions do not

impact the inefficiency, but location, distance, and distinct activities must be considered. The

optimal location and distance of these activities depend on their number of occurrences. The

second occurrence should, e.g., occur at location 1 with a distance of 1 to the first occurrence.

The reverse holds true for activities assigned to cluster E2. In contrast, activities from S1 or E1

may occur only once in a trace, so repetitions play a crucial role. Their optimal location is at

the start or end of the trace, so it is independent from other activities. The distance between

the occurrences is considered, too.

absolute inefficiency𝑆2(𝑡) = ∑
𝑎𝑡∈𝐴𝑡

|𝑎𝑡|
∑
𝑖=1

𝑙𝑆2(𝑎𝑡
𝑖) × (1 + 𝑑𝑆2(𝑎𝑡

𝑖) + 𝑑𝑎𝑆2(𝑎𝑡)) (13)

absolute inefficiency𝐸2(𝑡) = ∑
𝑎𝑡∈𝐴𝑡

|𝑎𝑡|
∑
𝑖=1

𝑙𝐸2(𝑎𝑡
𝑖) × (1 + 𝑑𝐸2(𝑎𝑡

𝑖) + 𝑑𝑎𝐸2(𝑎𝑡)) (14)

absolute inefficiency𝑆1(𝑡) = ∑
𝑎𝑡∈𝐴𝑡

|𝑎𝑡|
∑
𝑖=1

𝑙𝑆1(𝑎𝑡
𝑖) × (1 + 𝑑𝑆1(𝑎𝑡

𝑖) + 𝑟𝑆1(𝑎𝑡
𝑖)) (15)

absolute inefficiency𝐸1(𝑡) = ∑
𝑎𝑡∈𝐴𝑡

|𝑎𝑡|
∑
𝑖=1

𝑙𝐸1(𝑎𝑡
𝑖) × (1 + 𝑑𝐸1(𝑎𝑡

𝑖) + 𝑟𝐸1(𝑎𝑡
𝑖)) (16)

The absolute inefficiency of S0 and E0 is determined in a different way. Here, most drivers

do not have to be assessed because assigned activities should simply never occur. This behavior

can be depicted by a binary location variable. In case of cluster S0, this variable is equal to one

if the start of a trace is occupied by an assigned activity. The same applies to cluster E0 for the

end of a trace.

absolute inefficiency𝑆0(𝑡) =

⎧{{
⎨{{⎩

1, if 𝑡[0] ∈ 𝑆0

0, otherwise

(17)
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absolute inefficiency𝐸0(𝑡) =

⎧{{
⎨{{⎩

1, if 𝑡[|𝑡| − 1] ∈ 𝐸0

0, otherwise

(18)

The core of a trace contains all activities that occur between the start and end. The activities

assigned to clusters C2, C1, and C0 differ in their intended frequency. For the activities in C2,

no restrictions are imposed, given that they occur in the core. So, the inefficiency level of cluster

C2 is only determined by the location. If those activities are located at the start and end of

the trace, the inefficiency level is equal to one. If either the start or the end is occupied by

a C2 activity, the level is equal to 0.5 and only if both locations are free of C2 activities, no

inefficiency in terms of cluster C2 is present.

The start and end of a trace must also be analyzed for cluster C1. Here, this is done by

the bounds measure 𝑏𝐶1. In contrast to C2, additional drivers must be considered if a specific

C1 activity occurs more than once. In case of repetitions, we assume the level of inefficiency

to be moderate if the activities follow each other early in the trace. Based on this assumption,

location and distance are relevant for the computation of the inefficiency of cluster C1.

For the analysis of cluster C0, we limit our view on the core of the trace. As those activities

should not be executed, any occurrence increases the inefficiency. If a C0 activity occurs nev-

ertheless, it should happen early in the trace, such that it has less impact on the trace overall.

This is reflected by the location and distance measures. It follows that in case of repetitions,

the optimal distance should be minimized. The more distinct C0 activities there are at the core

of the trace, the more activities violate their intended behavior. Consequently, the number of

distinct C0 activities increases the inefficiency level of cluster C0.

47



absolute inefficiency𝐶2(𝑡) =

⎧{{{{
⎨{{{{⎩

1, if 𝑡[0] and 𝑡[|𝑡| − 1] ∈ 𝐶2

0.5, if 𝑡[0] or 𝑡[|𝑡| − 1] ∈ 𝐶2

0, otherwise

(19)

absolute inefficiency𝐶1(𝑡) = ∑
𝑎𝑡∈𝐴𝑡

(𝑏𝐶1(𝑎𝑡) +
|𝑎𝑡|
∑
𝑖=2

(𝑑𝐶1(𝑎𝑡
𝑖) + 𝑙𝐶1(𝑎𝑡

𝑖))) (20)

absolute inefficiency𝐶0(𝑡) = ∑
𝑎𝑡∈𝐴𝑡

|𝑎𝑡|
∑
𝑖=1

(1 + 𝑑𝑎𝐶0(𝑎𝑡)) × (𝑑𝐶0(𝑎𝑡
𝑖) + 𝑙𝐶0(𝑎𝑡

𝑖)) (21)

4.4.6 Computing the Trace-Level Inefficiency

Once we have the (absolute) inefficiency values for the clusters, we compute the trace-level

inefficiency as follows:

1. Per trace and cluster, we create an artificial worst trace of same length, which contains as

much inefficient behavior (in terms of this cluster) as possible. This trace is an auxiliary

construct and may not necessarily appear in the event log. It serves as a boundary for

100% inefficiency, such that we can express trace-level inefficiency as a normalized value

between 0 and 1.

2. To compute the normalized inefficiency level of a cluster, we compute the absolute ineffi-

ciency value of the artificial worst trace (with regard to the respective cluster) according to

our definitions above. We obtain the inefficiency level of our trace in question by dividing

its absolute inefficiency values by those of the artificial worst trace.

3. The inefficiency of the trace is computed as the average inefficiency level of all clusters. If

one cluster is not assigned any activities, this cluster is not considered in the calculation.
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Partial PPIs (e.g., for only one activity category) are computed as the average between

the respective clusters.

4.5 Evaluation

4.5.1 Outline and Reproducibility

AMPI is evaluated in an experimental analysis by applying it in two different domains and

implementing the resulting PPIs.1 This demonstrates its applicability and generalization in two

different contexts. To avoid representational bias, we did not apply any filter (e.g., for unfinished

cases) to the logs.

4.5.1.1 Purchasing process (BPI 2019) This event log describes a P2P process with

1.5 million events in 251,734 purchase order items (cases) (Dongen, 2019). Depending on the

purchased item, those cases follow four separate flows of activities, which we call item categories

1 to 4. As the optimal control flow and therefore the cluster assignments differ among these

categories, we partition the log into four sublogs and assess the inefficiency of each sublog

individually.

4.5.1.2 Administrative process (BPI 2020) The second log describes a travel reimburse-

ment process, which distinguishes between domestic and international trips (Dongen, 2020).

To account for the different process variants, the data is split into five sublogs: requests for

payment (6,886 cases), domestic declarations (10,500 cases), prepaid travel cost (2,099 cases),

international declarations (6,449 cases), and travel permits (7,065 cases). Again, we assess each

sub log individually.

In the following, we show the separate inefficiency indicators for the start, core, and end

categories of each log, defined as the arithmetic mean between the respective clusters. We also
1The implementation and the full lists of activity assignments can be found at https://bit.ly/3IS4NPa
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Table 9: Inefficiency levels computed by AMPI for BPI 2019

Item
Category

Inefficient
Cases

PPI: Start PPI: Core PPI: End PPI: All
Min Max Avg Min Max Avg Min Max Avg Min Max Avg

1 0.66 0.0 0.17 0.0 0.0 0.50 0.09 0.0 0.60 0.05 0.0 0.28 0.05
2 0.39 0.0 0.56 0.01 0.0 0.50 0.02 0.0 0.59 0.03 0.0 0.43 0.02
3 1.00 0.0 0.60 0.17 0.0 0.33 0.09 0.0 0.59 0.28 0.1 0.43 0.18
4 0.31 0.0 0.17 0.01 0.0 0.50 0.03 0.0 0.83 0.06 0.0 0.38 0.03

Total 0.41 0.0 0.60 0.01 0.0 0.50 0.02 0.0 0.83 0.04 0.0 0.43 0.03

show the overall log inefficiency, defined as the arithmetic mean of the three. This separation

should provide a more detailed insights into the sensitivity of AMPI.

4.5.2 Inefficiencies in a P2P process: BPI 2019

4.5.2.1 Activity Assignment Because this process contains four different variants, we need

four different assignments of activities to clusters. Based on the process description, we assume

that Record goods receipt and Record subsequent invoice may occur multiple times for item

category 1 (C2). Record goods receipt is also assigned to S0 to account for maverick buying.

Create purchase requisition item is a start activity that may not occur anywhere else in the trace

(S1, C0, E0). Clear invoice is the intended end activity (E2). These assignments are applied

to all other item categories, but have to be adapted to account for the intended process flow.

For example, for item category 2, invoices have to be blocked until goods receipt, so Remove

payment block is assigned to C1.

4.5.2.2 Inefficiency Assessment Table 9 shows the results of computing the inefficiency

of the BPI 2019 log. In total, 41% of cases contain some inefficient behavior. Item category

4 contains the least inefficient behavior and item category 2 also contains only 39% inefficient

cases. In contrast, all cases from item category 3 are to some degree inefficient. Cases with the

highest level of inefficiency often include an unusually high number of change activities, given

their trace lengths. For example, the worst cases in terms of the inefficiency at the start begin

with changing the approval three times before creating the PO item. The overall worst cases
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with an inefficiency of 0.83 at the end of the trace belong to item category 4. Such cases should

end with the activity Record goods receipt, but often continue with change and deletion activities.

4.5.3 Inefficiencies in an administrative process: BPI 2020

4.5.3.1 Activity Assignment This process also contains different flows of activities across

the five separate logs. For example, employees require a permission to go on an international trip,

so Permit submitted by employee is assigned to cluster S1. For a domestic trip, employees can

start the process by submitting a declaration instead. Any filing of a document (a permission,

a declaration, etc.) can have a positive or negative outcome. For positive outcomes, the end

activity is Payment Handled is assigned to cluster E1 for all logs. For negative outcomes, the

university rejects the corresponding document and the employee needs to accept the rejection,

so activities like Declaration rejected by employee or Permit rejected by employee are assigned

to cluster E1.

4.5.3.2 Inefficiency Assessment Table 10 reveals a substantial difference among the two

types of trips. Whereas only 10% of domestic trips contain some inefficient behavior, we find

40% inefficient cases for international trips. On average, the inefficiency level is higher for

international trips across all sections of a trace. Employees require a permission for those trips,

but they often start the process without permission or by filing a declaration instead, which

causes the high inefficiency level for the process start.

On average, the end section of a trace exhibits a rather small level of inefficiency, because

most cases have a positive outcome (employees get their costs reimbursed in 90.08% of cases).

The trace core does not contain a high level of inefficiency either. This is due to the assign-

ment of activities. Here, we allowed for repetitions of many activities, such that rejections are

not necessarily considered inefficient.
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Table 10: Inefficiency levels computed by AMPI for BPI 2020

Log Inefficient
Cases

PPI: Start PPI: Core PPI: End PPI: All
Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Dom. 0.10 0.0 0.15 0.00 0.0 0.17 0.00 0.0 0.10 0.00 0.0 0.09 0.00
Int. 0.40 0.0 0.53 0.08 0.0 0.17 0.01 0.0 0.07 0.01 0.0 0.25 0.03

Perm. 0.60 0.0 0.54 0.05 0.0 0.22 0.03 0.0 0.50 0.00 0.0 0.24 0.03
Prep. 0.24 0.0 0.50 0.06 0.0 0.33 0.02 0.0 0.07 0.00 0.0 0.28 0.03
Req. 0.09 0.0 0.14 0.00 0.0 0.17 0.00 0.0 0.54 0.00 0.0 0.20 0.00

4.5.4 Comparative Evaluation

In addition, we compare the results of AMPI to those of a baseline indicator (BI) that is currently

used in a few process mining tools (e.g., Celonis, minit, disco, myInvenio). Like AMPI, BI

evaluates only the control flow of a process. It is defined as a binary measure on case or activity

level. A case is labeled as inefficient if it contains at least one inefficient activity (e.g., El-Wafi

(2020)). Which activities are considered inefficient depends on the context of the process.

To compare the results of AMPI and BI for BPI 2019, we differentiate between the four item

categories and plot the monthly start, core, end, and average inefficiencies, shown in Figure 3.

We see that BI most often calculates a higher inefficiency value than AMPI. BI also tends to

decrease towards the end of the year, whereas AMPI indicates an increase across most sections.

This increase is particularly strong for the end category and can be explained by unfinished

cases, which we did not filter out, to avoid representational bias towards AMPI. For a practical

application of AMPI, we suggest using a sliding window approach to avoid a sharp cutoff of

unfinished cases.

Because BI is a binary measure, whereas AMPI computes a value between 0 and 1, it is more

reasonable to evaluate the differences over time instead of the differences between the values.

For example, the inefficiency values for item categories 2 and 4 are rather stable according to

AMPI, but varies significantly throughout the year according to BI.
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(a) (b)

(c) (d)

Figure 3: Comparing AMPI and BI for BPI 2019

The differences between the two approaches also become apparent when analyzing cases of

item category 3. Here, BI labels all cases as inefficient. We recall that AMPI also considers all

cases of item category 3 to be inefficient, but the degree of inefficiency varies considerably 2.

4.6 Discussion

The comparisons between the inefficiency measures by AMPI and by BI illustrate the contri-

butions of our approach. BI only considers the presence of (presumably) inefficient activities,

instead of their order or frequency. Because AMPI considers more drivers of inefficient behav-
2Figure B in the Appendix section presents the results for BPI 2020 dataset.

53



ior, such as activity locations, it is able to find more inefficient cases than BI. Those advantages

become more apparent, when comparing the different values over time.

One commonality between AMPI and BI is that both rely on domain or process expertise

to identify the activities that contribute to inefficient behavior. Whereas BI only categorizes

activities as either efficient or inefficient, AMPI also takes their frequency and location into

account to provide a more elaborated view on control-flow inefficiencies. All in all, the differences

between the two approaches are caused by their respective nature. BI is a binary measure and

evaluates the inefficiency in terms of the presence of inefficient activities. In contrast, AMPI

takes a more sensitive approach and evaluates the level of inefficiency across various dimensions.

AMPI still has a number of limitations, both in design and computation. First, it only

accounts for inefficiencies that appear in the control flow perspective, although other perspec-

tives (such as time or resource) might have a larger impact on process inefficiency. Second, it

recognizes non-value-adding activities, loops, and wrong activity positions, but not other types

of inefficiencies such as interdependencies between activities. Third, one could argue that our

separation of traces in start, core, and end can overestimate the influence of the start and the

end activity and neglects other (core) activities with a potentially higher influence on the overall

inefficiency. However, we made this design choice on purpose based on our experiences with

real-world data. In defining the clusters, we do not impose a specific location on the core activi-

ties, because we have found that this limits the flexibility of the process and that core activities

contribute much less to the overall inefficiency. This assessment might change when we apply

AMPI to other domains.

The choice of clusters is another important limitation of AMPI. We assume that frequency

and location are the two most relevant factors for inefficiency, but there might be others. Our

selected categories are also chosen to cover non-value-adding activities, loops, and wrong activity

positions, but could be further generalized to define, e.g., a specific intended frequency to each
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activity. Also, we weigh all activities within one cluster equally, although their actual impact

may differ considerably. This could be addressed by defining an individual activity weight, which

could be determined by experts or derived from the log itself.

AMPI cannot be calculated for traces with a length smaller than three, because the core of

a trace cannot be empty. Also, AMPI only yields meaningful results for finished cases, because

unfinished cases are always punished for a wrong end activity. For the overall inefficiency measure

(the arithmetic mean between the start, core, and end inefficiency), one could argue that by

weighing them all equally, we further increase the overemphasis on start and end activities.

Another limitation concerns our design choice to make AMPI independent of the other

traces in the log. This allows us to compute inefficiency levels per trace and compare them

across different lengths. However, it also requires the creation of an artificial worst trace as an

auxiliary construct to define the “limits” of inefficiency that can hypothetically be achieved. It

would be more realistic to use a real-life worst trace as comparison, but this would make the

inefficiency of a single trace dependent on the other traces in the log.

The PPIs that follow from applying AMPI fulfill the KPI criteria of being specific (targeted

towards process inefficiencies), measurable (shown in the evaluation), achievable (0% inefficiency

is possible, although difficult), relevant (shown by the industrial need to measure inefficiency),

and time-bounded (inefficiency is only measured for the time span of the event log). They also

comply with the PPI requirements (del-Río-Ortega et al., 2013) in terms of traceability and

automatic measurement. Their expressiveness and understandability depend on the application

context and remain to be evaluated in more practical settings. Yet, these indices are significantly

more complex (in terms of calculations, not structure) than common exemplary PPIs (del-Río-

Ortega et al., 2013, 2019) and cannot be linked to a few specific concepts (e.g., responsible,

informed, scope) due to their context-independent design. Still, the resulting PPIs can be defined

and utilized according to organization-specific policies and goals. So, despite this misalignment,
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AMPI can be framed under the PPINOT metamodel (del-Río-Ortega et al., 2013). Below, we

show a partial calculation of the inefficiency PPI for S2. PPINOT is designed as a generic tool to

increase clarity of PPI definitions, so complex measures should be explained in natural language.

PPI{

identifier: PPI_S2

name: control-flow inefficiency cluster S2

relatedTo: #process name

goals: reduce the level of control-flow inefficiency in the

process with regards to cluster S2

#sum over all distinct activities i of type S2

target: simpleTarget.upperBound: 0.00 #desired value of 0.00

scope: ProcessStateFilter.processState: finished

}

4.7 Conclusion

In this paper, we present our novel approach for measuring process inefficiency (AMPI). When

applied to a specific process in a concrete context, AMPI yields a set of process performance

indicators (PPIs) for measuring process inefficiency. AMPI accounts for several types of inef-

ficient behavior (non-value-adding activities, loops, wrong activity positions) and allows for a

comparison between cases. Compared to the baseline indicator for process inefficiency, which

is currently used by a major process mining tool, AMPI provides a more sensitive and realistic

way of quantifying inefficiencies in the control-flow of a process, which gives process analysts a

better chance of finding improvement potentials.

Although AMPI is a significant improvement over the state of the art in measuring process

inefficiencies, this problem is far from being solved. In future work, we want to address some

of the limitations listed above and extend AMPI to go beyond control flow and include other

factors like execution time. This might entail taking an even more domain-specific perspective

to be able to identify different types of inefficiencies in processes. Our definition of inefficiency in
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this study does not reflect the absence or the disarrangement of desired activities. The required

input for this study, assigning the clusters, is expected to be done manually, thus leaving space

for human errors. This step can be automated in supplementary studies by means of more

advanced techniques, e.g., semantic analysis, and deep learning techniques. Also, we want to

follow up on a theoretical observation that we made during the evaluation. Our results suggest

that the process inefficiency changes rather smoothly over time and does not show dramatic

fluctuations. It appears to behave (or change) as an institutionalized habit. Hence, we could

use AMPI as a basis to theorize about organizational routines and their reactions to endogenous

and exogenous changes (Grisold et al., 2020).
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5 Paper 3: Fig4PM: A Library for Calculating Event Log Mea-

sures

5.1 Abstract

Calculating event log measures (also known as features, metrics, and characteristics) is a com-

mon task required by many process mining applications. Process mining research studies and

industrial applications often need to generate measures depending on their requirements. This

has resulted in a plethora of event log measures being (re-)invented and (re-)implemented on

different platforms. Fig4PM is an attempt toward building a standard, comprehensive, and

reusable library for calculating event log measures. The current version of this open-source

program offers 73 distinct control-flow measures either directly extracted from the literature

(48 measures) or derived from the existing measures (25 measures). Eventually, our objective

is to build a standard public Python library to facilitate feature generation in process mining

applications.

5.2 Introduction

Process mining projects typically start with extracting data from a process-aware information

system and transforming them into an event log (Van der Aalst, 2009). These event logs serve

as input for virtually all process mining applications. In order to characterize the event logs and

assess the specific differences (and similarities) among the traces, process analysts often employ

event log measures, i.e., “numeric representations of raw data” (Zheng & Casari, 2018). These

measures can provide a priori insights about a log, which can then be used to draw conclusions

about their properties. Typically, a measure is calculated at trace level and then aggregated to

represent the event log characteristics. For example, calculating the length of each trace helps

building the average trace length at event log level.
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A wide range of process mining applications utilize such measures. We conducted a literature

review to collect the studies that considered implementing new measures based on an event log’s

control-flow and found 21 scientific papers 3 ranging from 2001 to 2020. Interestingly, we noticed

a certain level of overlap among these studies, i.e., different studies do not refer to fully-distinct

and exclusive measures. According to the results of our literature review, many approaches

require implementing measures, including (but not limited to) data preprocessing (Fani Sani

et al., 2019), data quality (Suriadi et al., 2017), predictive process mining (Márquez-Chamorro

et al., 2017), approaches that use deep learning techniques (Taymouri, La Rosa, et al., 2020),

business process simulation (Martin et al., 2016), process complexity analysis (Augusto et al.,

2022), and trace clustering (Zandkarimi et al., 2020).

To avoid the repeated (re-)invention and (re-)implemented of the same event log measures on

different platforms, we introduce the Fig4PM library.4 It provides researchers and practitioners

with a basic library to access previously implemented event log measures and is specifically set

out to be a starting point for ongoing development efforts. Prospective users may contribute

to this project by developing new measures, improving the existing functions, add more data

connectors, and improve its overall performance.

5.3 Measures

In Fig4PM, we distinguish two types of measures based on the underlying data structure. Linear

measures perceive a trace as an array, matrix, or sequence of letters (a string), whereas non-linear

measures perceive a trace as a directed graph, i.e., nodes represent activities while sequences

determine edges (Zandkarimi et al., 2020).
3Material is available at https://doi.org/10.6084/m9.figshare.14912313.v2.
4Code is available at https://github.com/f-zand/fig4pm.
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5.3.1 Measures Derived From Linear Structures

Table 5.3.1 lists the measures derived from linear structures that were identified in the literature.

For each measure, we list its abbreviation, description, and literature source. The measures are

separated into groups based on their literature source and intended purpose.

The first two groups provide a brief overview of the log size and variability. The large

third group measures structuredness and variance, i.e., risk of producing a Spaghetti model

(Swennen et al., 2015). To quantify these properties, we can measure reoccurring behavior in

terms of self-loops and repetitions as well as the number of start and end events which concern

variability in initialization or termination. As more elaborate measures for structuredness, we

measure the number of distinct traces per 100 traces (𝑡𝑐𝑝ℎ𝑡), absolute trace coverage (𝑡𝑐𝑜) and

the relative trace coverage (𝑟𝑡𝑐𝑜). The lower 𝑡𝑐𝑝ℎ𝑡, the more structured the underlying event

log. 𝑡𝑐𝑜 represents the minimum number of distinct traces required to cover 80% of all traces in

the log hence, evaluating the variants’ frequencies. Relating 𝑡𝑐𝑜 to 𝑛𝑡𝑐 yields the relative trace

coverage, which is better suited for comparison across different (sub-)logs.

The fourth group consists of several measures based on density, similarity (diversity), and

complexity. The fifth group measures event log entropy using 3 different methods.

Table 5.3.1: Literature-Based Measures - Linear Structure

Abbreviation Measure
𝑛𝑒 Total number of events Ribeiro et al. (2014), Kherbouche et al.

(2017), Günther (2009)
𝑛𝑒𝑐 Total number of event classes Ribeiro et al. (2014), Kherbouche et

al. (2017), Günther (2009)
𝑛𝑡 Total number of traces Ribeiro et al. (2014), Kherbouche et al.

(2017), Günther (2009)
𝑛𝑡𝑐 Total number of trace classes Ribeiro et al. (2014), Kherbouche et

al. (2017)

𝑎𝑡𝑙 Average trace length Swennen et al. (2015), Van den Broucke et al.
(2014)

𝑚𝑖𝑡𝑙 Minimum trace length Swennen et al. (2015), Van den Broucke et
al. (2014)
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Abbreviation Measure
𝑚𝑎𝑡𝑙 Maximum trace length Swennen et al. (2015), Van den Broucke et

al. (2014)
𝑎𝑡𝑠 Avg. trace size (level of detail) Benner-Wickner et al. (2014),

Kherbouche et al. (2017), Günther (2009)
𝑛𝑠𝑒𝑐 Number of distinct start events Ribeiro et al. (2014), Swennen et

al. (2015)
𝑛𝑡𝑒𝑐 Number of distinct end events Ribeiro et al. (2014), Swennen et al.

(2015)

𝑛𝑡𝑠𝑙 Abs. number of traces with a self-loop Swennen et al. (2015)
𝑛𝑡𝑟 Abs. number of traces with a repetition Swennen et al. (2015)

𝑟𝑛𝑠𝑒𝑐 Rel.number of distinct start events Swennen et al. (2015)
𝑟𝑛𝑡𝑒𝑐 Rel. number of distinct end events Swennen et al. (2015)
𝑟𝑛𝑡𝑠𝑙 Rel. number of traces with a self-loop Swennen et al. (2015)
𝑟𝑛𝑡𝑟 Rel. number of traces with a repetition Swennen et al. (2015)
𝑎𝑛𝑠𝑙𝑡 Avg. number of self-loops per trace Swennen et al. (2015)

𝑚𝑎𝑛𝑠𝑙𝑡 Max. number of self-loops per trace Swennen et al. (2015)
𝑎𝑠𝑠𝑙𝑡 Avg. size of self-loops per trace Swennen et al. (2015)

𝑚𝑎𝑠𝑠𝑙𝑡 Max. size of self-loops per trace Swennen et al. (2015)
𝑡𝑐𝑝ℎ𝑡 Number of distinct traces per hundred traces Swennen et al. (2015)
𝑡𝑐𝑜 Absolute trace coverage Swennen et al. (2015)
𝑟𝑡𝑐𝑜 Relative trace coverage Swennen et al. (2015)

𝑒𝑑𝑛 Event density Kherbouche et al. (2017), Benner-Wickner et al.
(2014)

𝑡ℎ𝑟 Traces heterogeneity rate Kherbouche et al. (2017)
𝑡𝑠𝑟 Trace similarity rate Kherbouche et al. (2017)
𝑐𝑓 Complexity factor Kherbouche et al. (2017)
𝑠𝑡𝑑 Simple trace diversity Benner-Wickner et al. (2014)
𝑎𝑡𝑑 Advanced trace diversity Benner-Wickner et al. (2014)

𝑡𝑒𝑛𝑡𝑟 Trace entropy C. Back et al. (2018)
𝑝𝑟𝑒𝑛𝑡𝑟 Prefix entropy C. Back et al. (2018)
𝑎𝑏𝑒𝑛𝑡𝑟 All-block entropy C. Back et al. (2018)

5.3.2 Measures Derived From Non-Linear Structure

Table 5.3.2 lists the literature-based measures derived from non-linear structures. In comparison

to the linear measures, their number is rather limited. Many measures from the literature require

post-discovery knowledge which is out of scope for this study. The remaining measures mainly

focus on the directly-follows-graph (DFG) of the event log, quantifying the relationship between

its nodes 𝑁 and edges 𝐴.
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Table 5.3.2: Literature-Based Measures - Non-Linear Structure

Abbreviation Measure
𝑁 Number of nodes / vertices
𝐴 Number of arcs / edges

𝑔𝑐𝑛𝑐 Coefficient of network connectivity Mendling (2007), Latva-Koivisto
(2001)

𝑔𝑎𝑛𝑑 Average node degree Mendling (2007)
𝑔𝑚𝑛𝑑 Maximum node degree Mendling (2007)
𝑔𝑑𝑛 Density Mendling (2007)
𝑔𝑠𝑡 Structure Günther (2009)
𝑔𝑐𝑛 Cyclomatic number Latva-Koivisto (2001)
𝑔𝑑𝑚 Graph diameter Mendling (2007)
𝑔𝑐𝑣 Number of cut vertices Van den Broucke et al. (2014)

𝑔𝑠𝑒𝑝𝑟 Separability ratio Mendling (2007)
𝑔𝑠𝑒𝑞𝑟 Sequentiality ratio Mendling (2007)
𝑔𝑐𝑦 Cyclicity Mendling (2007)
𝑔𝑎𝑓 Affinity Günther (2009)
𝑔𝑠𝑝𝑐 Simple path complexity Pentland, Liu, et al. (2020)

5.3.3 Self-Developed Measures

Inspired by the initial set of measures, we created 25 new measures to improve comprehensiveness

and cover more topics. Linear structure includes measures focusing on frequency, connectedness,

trace length, trace profile, and spatial proximity. Non-linear structure measures include measures

based on modularity, cut-vertices, and activity labeling.

Section 5.4 provides a summary of the literature review and a list of all measures plus their

respective formulas.
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5.4 Supplementary content

5.4.1 Formulas of literature-based measures — Linear structure

Table 5.4.1: Formulas of literature-based measures — Linear structure

Description Formula

Total number of events 𝑛𝑒 = ∑𝑒 ∈ ℰ 𝑒

Number of event classes 𝑛𝑒𝑐 = ∑𝑛𝑒
𝑖=1 ∑𝑛𝑒

𝑗=𝑖+1(𝑒𝑖 ≡ 𝑒𝑗)|𝑒𝑖, 𝑒𝑗 ∈ ℰ

Total number of traces 𝑛𝑡 = ∑𝜎 ∈ ℒ 𝜎

Number of trace classes 𝑛𝑡𝑐 = ∑𝑛𝑡
𝑖=1 ∑𝑛𝑡

𝑗=𝑖+1(𝜎𝑖 ≡ 𝜎𝑗)|𝜎𝑖, 𝜎𝑗 ∈ ℒ

Average trace length 𝑎𝑡𝑙 = 1
𝑛𝑡 ∑𝑛𝑡

𝑖=1 |𝜎|

Minimum trace length 𝑚𝑖𝑡𝑙 = 𝑚𝑖𝑛(|𝜎1|, ..., |𝜎𝑛𝑡|)

Maximum trace length 𝑚𝑎𝑡𝑙 = 𝑚𝑎𝑥(|𝜎1|, ..., |𝜎𝑛𝑡|)

Average trace size 𝑎𝑡𝑠 = 1
𝑛𝑡 ∑𝑛𝑡

𝑖=1 ∑|𝜎|
𝑗=1 ∑|𝜎|

𝑘=𝑗+1(𝑒𝑗 ≡ 𝑒𝑘|𝑒𝑗, 𝑒𝑘 ∈ 𝜎)

Number of distinct start

events

𝑛𝑠𝑒𝑐 = |𝑠𝑒𝑐| with 𝑠𝑒𝑐 being the set of all start events occurring in

event log ℒ

Number of distinct end

events

𝑛𝑡𝑒𝑐 = |𝑡𝑒𝑐| with 𝑡𝑒𝑐 being the set of all end events occurring in

event log ℒ

Absolute number of traces

with a self-loop

𝑛𝑡𝑠𝑙 = ∑𝜎∈ℒ 𝜎|𝑠𝑙 ⊂ 𝜎, 𝑠𝑙 ∈ 𝑠𝑙𝑠𝑙

Absolute number of traces

with a repetition

𝑛𝑡𝑟 = ∑𝜎∈ℒ 𝜎|𝑟 ⊂ 𝜎, 𝑟 ∈ 𝑟𝑠𝑙

Relative number of

distinct start events

𝑟𝑛𝑠𝑒𝑐 = 𝑛𝑠𝑒𝑐
𝑛𝑒𝑐
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Description Formula

Relative number of

distinct end events

𝑟𝑛𝑡𝑒𝑐 = 𝑛𝑡𝑒𝑐
𝑛𝑒𝑐

Average number of

self-loops per trace

𝑎𝑛𝑠𝑙𝑡 = 1
𝑛𝑡 ∑𝑛𝑡

𝑖=1 |𝑠𝑙𝑠𝑖|

Maximum number of

self-loops per trace

𝑚𝑎𝑛𝑠𝑙𝑡 = 𝑚𝑎𝑥(|𝑠𝑙𝑠𝜎1
|, ..., |𝑠𝑙𝑠𝜎𝑛𝑡

|)

Average size of self-loops

per trace

𝑎𝑠𝑠𝑙𝑡 = 1
𝑛𝑡𝑠𝑙 ∑𝑛𝑡

𝑖=1 ∑𝑠𝑙𝑠
𝑗=1 |𝑠𝑙|

Maximum size of

self-loops per trace

𝑚𝑎𝑠𝑠𝑙𝑡 = 𝑚𝑎𝑥(𝑚𝑎𝑥(|𝑠𝑙|∀𝑠𝑙 ∈ 𝑠𝑙𝑠𝜎1
), ..., 𝑚𝑎𝑥(|𝑠𝑙|∀𝑠𝑙 ∈ 𝑠𝑙𝑠𝜎𝑛𝑡

))

Number of distinct traces

per hundred traces

𝑡𝑐𝑝ℎ𝑡 = 𝑛𝑡𝑐
𝑛𝑡 × 100

Absolute trace coverage 𝑡𝑐𝑜 = ∑𝑛𝑡
𝑖=1 𝜎𝑓𝑖

𝑖 𝑠.𝑡. ∑𝜎∈ℒ 𝑓𝜎 ≥ 0.8 × 𝑛𝑡

Relative trace coverage 𝑟𝑡𝑐𝑜 = 𝑡𝑐𝑜
𝑛𝑡𝑐

Event density edn

Traces heterogeneity rate 𝑡ℎ𝑟 = 𝑙𝑛(𝑛𝑡𝑐)
𝑙𝑛(𝑛𝑡)

Trace similarity rate 𝑡𝑠𝑟 = 2
𝑛𝑡𝑐×(𝑛𝑡𝑐−1) × ∑𝑛𝑡𝑐

𝑖=1 ∑𝑛𝑡𝑐
𝑗=𝑖+1

𝑚𝑎𝑥(|𝜎𝑖|,|𝜎𝑗|)−𝐿𝐷(𝜎𝑖,𝜎𝑗)
𝑚𝑎𝑥(|𝜎𝑖|,|𝜎𝑗|)

Complexity factor 𝑐𝑓 = (𝑙𝑛(𝑛𝑡𝑐)((1−𝑡𝑠𝑟)+𝑒𝑑𝑛) × 𝑎𝑡𝑠)

Simple trace diversity 𝑠𝑡𝑑 = 1 − 𝑎𝑡𝑠
𝑛𝑒𝑐

Advanced trace diversity 𝑎𝑡𝑑 = 2
𝑛𝑡𝑐×(𝑛𝑡𝑐−1)×𝑎𝑡𝑙 × ∑𝑛𝑡

𝑖=1 ∑𝑛𝑡
𝑗=𝑖+1 𝐿𝐷(𝜎𝑖, 𝜎𝑗)

Trace entropy 𝑡𝑒𝑛𝑡𝑟 = − ∑𝑛
𝑖=1 𝑝𝜎𝑗

𝑙𝑜𝑔𝑏𝑝𝜎𝑗

Prefix entropy 𝑡𝑒𝑛𝑡𝑟 = − ∑𝑛
𝑖=1 𝑝𝑝𝑟𝑗

𝑙𝑜𝑔𝑏𝑝𝑝𝑟𝑗

All-block entropy 𝑡𝑒𝑛𝑡𝑟 = − ∑𝑛
𝑖=1 𝑝𝑎𝑏𝑗

𝑙𝑜𝑔𝑏𝑝𝑎𝑏𝑗
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5.4.2 Formulas of literature-based measures — Non-linear structure

Table 5.4.2: Formulas of literature-based measures — Non-linear structure

Description Formula

Number of nodes / vertices 𝑁 = |𝑉 (𝐺)|

Number of arcs / edges 𝐴 = |𝐸(𝐺)|

Coefficient of network

connectivity / complexity

𝑔𝑐𝑛𝑐 = 𝐴
𝑁

Average node degree 𝑔𝑎𝑛𝑑 = 1
𝑁 ∑𝑁

𝑖=1 𝑑𝑒𝑔(𝑣)|𝑣 ∈ 𝑉 (𝐺)

Maximum node degree 𝑔𝑚𝑛𝑑 = 𝑚𝑎𝑥(𝑑𝑒𝑔(𝑣1), .., 𝑑𝑒𝑔(𝑣𝑁))

Density 𝑔𝑑𝑛 = 𝐴
𝑁×(𝑁−1)

Structure 𝑔𝑠𝑡 = 1 − 𝐴
𝑁2

Cyclomatic number 𝑔𝑐𝑛 = 𝐴 − 𝑁 + 1

Graph diameter 𝑔𝑑𝑚 = 𝑚𝑎𝑥𝑢,𝑣𝑑(𝑢, 𝑣)

Number of cut vertices 𝑔𝑐𝑣 = |𝑣𝑐𝑢𝑡|

Separability ratio 𝑔𝑠𝑒𝑝𝑟 = 𝑔𝑐𝑣
𝑁

Sequentiality ratio 𝑔𝑠𝑒𝑞𝑟 = |𝑒𝑛𝑐𝑛|
𝐴

Cyclicity 𝑔𝑐𝑦 = |𝑛𝑐𝑦𝑐|
𝑁

Affinity 𝑔𝑎𝑓 = 2
𝑛𝑡×(𝑛𝑡−1) × ∑𝑛𝑡

𝑖=1 ∑𝑛𝑡
𝑗=𝑖+1

|𝐹(𝜎𝑖)∩𝐹(𝜎𝑗)|
|𝐹(𝜎𝑖)∪𝐹(𝜎𝑗)| with 𝐹(𝜎𝑖) and

𝐹(𝜎𝑗) being the directly following relations of traces 𝜎𝑖 and 𝜎𝑗

Simple path complexity 𝑔𝑠𝑝𝑐 = |𝑠𝑖𝑚𝑝𝑎(𝐺)|
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5.4.3 Literature review on process features

Table 5.4.3: Literature review on process features

Article Title Reference
Finding a complexity measure for business process
models

Latva-Koivisto (2001)

A Discourse on Complexity of Process Models Cardoso et al. (2006)
Process control-flow complexity metric: An empirical
validation

Cardoso (2006)

Understanding the Occurrence of Errors in Process
Models based on Metrics

Mendling, Neumann, et al. (2007b)

On the correlation between process model metrics and
errors

Mendling, Neumann, et al. (2007a)

What Makes Process Models Understandable? Mendling, Reijers, et al. (2007)
Detection and Prediction of Errors in EPC Business
Process Models

Mendling (2007)

Process mining in flexible environments Günther (2009)
Prediction of Business Process Model Quality Based on
Structural Metrics

Sánchez-González et al. (2010)

Measurement in business processes: a systematic review González et al. (2010)
Uncovering the Relationship Between Event Log
Characteristics and Process Discovery Techniques

Van den Broucke et al. (2014)

Slice, Mine and Dice: Complexity-Aware Automated
Discovery of Business Process Models

Ekanayake et al. (2013)

Examining Case Management Demand Using Event Log
Complexity Metrics

Benner-Wickner et al. (2014)

A Recommender System for Process Discovery Ribeiro et al. (2014)
Capturing Process Behavior with Log-Based Process
Metrics

Swennen et al. (2015)

Towards a better assessment of event logs quality Kherbouche et al. (2017)
Detecting Concept Drift in Processes using Graph
Metrics on Process Graphs

Seeliger et al. (2017)

Towards an Entropy-Based Analysis of Log Varisability C. Back et al. (2018)
Case notion discovery and recommendation: automated
event log building on databases

Murillas et al. (2020)

Entropy as a Measure of Log Variability C. O. Back et al. (2019)
The Dynamics of Drift in Digitized Processes Pentland, Liu, et al. (2020)
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6 Paper 4: How Errors Shape Production Routines: An Empir-
ical Examination of Digital Traces in Manufacturing

6.1 Abstract

Prior literature notes that errors can be an important source of reflection and learning for

employees. However, errors are often perceived as uncomfortable experiences, with unclear

implications for employees’ subsequent performance. Using a novel longitudinal data set of

75K reported errors associated with 3M production batches over six years at a large Dutch

public holding company, we investigate the effect of reporting errors on the performance of

organizational routines (i.e., interdependent patterns of action). Based on prior research, we

theorize that errors are associated with post-error improvement in accuracy (PIA) measured by

reporting accuracy and post-error slowing (PES) measured by throughput time. Our results show

that reporting accuracy increases by 0.4 percentage points while throughput time, surprisingly,

decreases by 7 percent for batches started on the day after an error has been reported. We

find that performance only changes after an error is reported and not when it actually occurs.

Interestingly, more severe errors are associated with higher same-day reporting accuracy, but

not with next-day reporting accuracy, and the relationship between errors and performance

becomes stronger for routines with few prior complaints. Our results are robust to various

endogeneity checks using instrumental variables and a difference-in-differences analysis. We

provide managerial implications for designing effective error management policies.

6.2 Introduction

The digital transformation has wide-ranging implications for the use of information technology

(IT) to produce and collect data on organizational processes. This creates numerous opportu-

nities to study how organizations function (Pentland et al., 2021; Turner & Rindova, 2018).

Research on organizational routines, commonly defined as “generative systems that produce
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repetitive, recognizable patterns of interdependent action carried out by multiple participants”

(Pentland & Feldman, 2008, p. 236), can especially benefit from the fact that IT creates large

amounts of real-time data that give granular insights into how processes are executed. To trace

processes in organizations through data, a recent research stream proposes using digital traces,

i.e., time-stamped event log data typically used for process mining (Berente et al., 2019; Dumas

et al., 2018; Van der Aalst, 2013). Although researchers increasingly acknowledge the usefulness

of trace data to study organizational processes at a more granular level (Giardili et al., 2022;

Pentland, Recker, et al., 2020; Pentland et al., 2021), little research thus far uses such data.

Against this backdrop, two major gaps exist in the literature. First, prior work using digital

traces has studied clinical routines (Goh et al., 2011), invoice processing routines (Pentland et

al., 2011), and garbage collection routines (Turner & Rindova, 2018). However, understanding

how routines are shaped in production companies, i.e., production routines, has not received

research attention. Compared to previously investigated routines, production routines have

shorter turnaround times and must comply with strict regulatory standards. The latter aspect

is especially intriguing as production routines typically have no flexibility in the sequence of

performed actions and thus lend themselves to studying differences in the performance of routines

when the patterns are fixed. Production workers are also often professionally and socially bonded

as they may work side-by-side for 8 to 10-hour shifts. Additionally, production routines consume

the majority of resources and are thus of critical importance for the success of manufacturing

firms. Understanding how errors affect production routines would thus help streamline existing

processes and improve production planning (Van Dyck et al., 2005).

Second, in investigating the mechanisms by which the performance of production routines

can be affected, the role of errors as interruptive events has often been overlooked. Prior research

notes that interruptions can shape organizational routines (Zellmer-Bruhn, 2003). Yet, the lack

of objective and quantifiable data makes it often difficult to study the interplay between routines

and errors, as perceptual data on errors is often plagued by biases, such as social desirability.
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In fact, a recent paper (Carroll et al., 2021) highlights that the “analysis of ‘big data’ […] can

boost the generation of high-quality evidence concerning errors and their remedies.” Frese &

Keith (2015), emphesize how studying errors over time enhances error management strategies;

however, the effect of errors on organizational routines has not been investigated. Therefore,

scholars encourage empirical studies on errors to identify new error management strategies based

on employee performance change vis-à-vis errors (Van Dyck et al., 2005). In the light of these

research gaps, we address the following research question.

RQ: Do errors affect production routines’ performance, and if so, how?

In this study, we leverage 75K complaints associated with 3M production batches over six

years to examine the short- and long-term changes in production routines in response to errors.

To do so, we use digital traces, a novel approach to studying business processes as is, i.e.,

how organizations actually run their processes —not how they are supposed to be executed

(Van der Aalst, 2016). The processual knowledge gained from the interaction of human agents

with IT, in the form of digital traces, gives an unprecedented opportunity to study key aspects

of organizations, e.g., organizational routines, learning, and processes (Golder & Macy, 2014;

Pentland, Recker, et al., 2020; Rahmandad et al., 2009).

More specifically, we use digital traces to obtain the production data at a large Dutch public

holding company. We combine the data on production routines with process and order data

to decompose routines into their structures and processes. The granularity of the data enables

us to aggregate it at the routine level and focus on identical routines (pertaining to identical

orders), where employees have limited flexibility to change the sequence of production steps. We

create a daily panel data set of production routines tracking their performance and errors. We

distinguish routine effectiveness and routine efficiency as the two main aspects of production

routines’ performance (Turner & Rindova, 2018). We use reporting accuracy (i.e., the degree to

which employees fulfill the reporting requirements of each order) and throughput time (i.e., the
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time employees spend to process an order from the production start to the end in the production

line) to measure routine effectiveness and routine efficiency, respectively.

This study makes two main contributions. First, it contributes to research on error man-

agement by studying the effects of errors (as an essential component of error management and

culture) at a routine level using “big data.” Specifically, it distinguishes between the effects of er-

rors on production routines’ performances with few vs. many prior errors and thereby highlights

the nuanced implications of errors for employees’ behavior. Second, it contributes to research on

organizational routines by using digital traces to study production routine performance. Thus,

it builds on and extends recent work on process multiplicity (Pentland, Recker, et al., 2020), i.e.,

the possible ways a process can unfold.

6.3 Theoretical Development

Numerous studies measure organizational performance in terms of effectiveness (“resource-

getting ability”) and efficiency (“amount of output obtained from a given input”) (Davis &

Peri, 2002, p. 87). Business processes play a pivotal role in reflecting the effectiveness and

efficiency of organizations (Mans et al., 2013) because they guide the key operations performed

by organizations and reflect their ability to adapt to changing environments.

To examine how errors affect the performance of production routines, we draw upon the

literature on four areas: (1) organizational routines to study the collective performance of a

group of people (i.e., routine participants) working together toward a business objective; (2)

habit theory as regular and frequent interruptions; (3) error management to highlight how

errors at the routine level can be leveraged as a source of learning and innovation; and (4) post-

error behavior to disentangle the cognitive processes triggered by errors. The following sections

present a brief review of these theoretical foundations.
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6.3.1 Organizational Routines

Routines have been used to explain the stability and variability of organizations (Feldman &

Pentland, 2003). Initial research on organizational routines introduced different images of rou-

tines, namely as a source of inertia and inflexibility (Aldrich, 1999; Baum & Singh, 1994; Winter

& Nelson, 1982) versus as a source of flexibility and change (Adler et al., 1999; Feldman, 2000;

Pentland & Rueter, 1994). More recent literature views organizational routines as dynamic and

generative systems (Cohen et al., 1996; Feldman & Pentland, 2003; Hodgson, 2003; Lazaric,

2000; Lazaric et al., 2001; Pentland & Rueter, 1994). This perspective values the constantly

changing nature of routines over their stability (Feldman, 2016). Organizational studies typi-

cally rely on routines to theorize aspects such as organizational capabilities and learning (Felin

et al., 2012).

Whereas research on organizational routines focuses on organization-level performance, re-

search on routine dynamics focuses on routines, per se, and the actions constituting them (Feld-

man et al., 2016). Routine dynamics takes a processual perspective to explain the stability and

change of organizations (Feldman et al., 2016). According to this perspective, routines have

two interdependent components, the ostensive (the enactment of actions, i.e., know-how) and

the performative (“specific actions taken by specific people at specific times when engaged in a

routine,” i.e., know-what) components (Feldman & Pentland, 2003, p. 101). The dynamic out-

comes of routines result from the interplay of these two aspects. Field studies show that action

patterns are temporal (like a dynamic process with some extent of flexibility) and constantly

subject to change, which is viewed as an inherent aspect of routines (Feldman et al., 2016). The

dynamic nature of routines leads to various performances, i.e., executions do not necessarily

become stable over time, and instead change in response to environmental circumstances.

Within the context of organizational routines, we borrow the term multiplicity to explain

this study’s focus. Pentland, Mahringer, et al. (2020, p. 5) define process multiplicity as “a
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duality of ‘one’ and ‘many’,” where “one” refers to one process and “many” refers to the space of

possible paths to enact the process. Prior research notes multiplicity in routines’ performative

and ostensive aspects. Whereas prior work often deals with multiplicity in the action patterns

(ostensive) and their sequences (e.g., Turner & Rindova (2018)), we focus on multiplicity in only

the performative aspect where patterns do not change and only the performance changes, for ex-

ample, the process order is always the same, but the process throughput time varies (Mahringer

& Pentland, 2021). Along similar lines, Pentland, Mahringer, et al. (2020) differentiate between

performance and path (i.e., sequence of actions). Adopting their definition, Figure 4 contains

four exemplary performances and two paths —one for performances 1 and 2 and the other for

performances 3 and 4. This study focuses on the variation of multiple performances associated

with a single path. Thus, we study routine participants who generate identical patterns by

executing the same actions in the same order (i.e., the same path) with various performance

measures (e.g., they sometimes perform the routine fast and sometimes perform it slowly). Gen-

erating identical patterns is common in capital intensive, process based, and heavily regulated

industries. Anand et al. (2012) label such circumstances as “intended stability,” defined as the

obligatory adherence to pre-planned operational routines that leads to consistent and conforming

action patterns.

Like processes, routine performance measures vary in two crucial ways: routine efficiency

and routine effectiveness (Turner & Rindova, 2018). Routine efficiency refers the utilization of

resources, such as time and costs, in the execution of routines. Routine effectiveness refers to

outcome quality, for example, whether it deviates from any regulations (e.g., order of actions,

fulfillment of standard requirements) (Bapuji et al., 2019). We use these two terms because the

context of this study does not allow for changes in action patterns. Thus, routine effectiveness

is limited to complying with the quality of work rather than the order of process steps. We use

this opportunity to focus on the multiplicity of the performative aspect, i.e., study the variation

of routines’ performances when patterns must stay the same.
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Figure 4: Process multiplicity for two paths and four performances; based on Pentland et al.
(2020).

We rely on two measures from our digital traces that reflect routine effectiveness and effi-

ciency. Reporting accuracy refers to the coverage ratio of fulfilling the reporting requirements

by routine participants. Throughput time refers to the total time production employees spend

processing a batch.5

6.3.2 Habits

Habits are commonly studied at the individual level, but a strong link exists between individuals’

behavior and the routine in which they participate (Cohen, 2012). According to Wood & Neal

(2009), repeated actions cued by the same context form habits. Applied to production routines,

orders cue the actions of individuals in the context of their work environment and this context is

not subject to regular changes due to the highly regulated nature of the manufacturing industry.

Habits form when thoughtful and conscious actions gradually become automatic and unconscious.

Thus, when employees undertake similar actions repeatedly, they adopt strong work habits.

Accordingly, we draw from research on habits to analyze individuals’ behavior (and change) in

their respective production routines.
5Employees process one batch in each production round. They group small orders in a batch and break large

orders into several batches. All pieces in a batch receive the same treatment.
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Routine participants receive feedback on their performance shortly after the internal quality

assurance team files a customer complaint. Errors play a critical role in employees’ daily activi-

ties with consequences ranging from mandatory group training to the firing of certain employees.

Moreover, habit-changing approaches usually introduce frequent and regular interruptions to

effectively break habitual routines and form new habits (Zellmer-Bruhn, 2003). Interruptive

events invoke a switch from automatic to conscious information processing (Louis & Sutton,

1991) We believe that frequent and regular errors play the commonly known interruption role at

the routine level. However, this interruption occurs in the background as an unplanned action

despite its significant impact on employee performance.

Looking at the big picture, routine participants develop individual habits by repeatedly

conducting the same type of action. The collective behavior of routine participants can be

the result of individuals’ performance, or it can be different from individuals’ performance due

to their role in a team, i.e., individuals’ reaction changes when they participate in teamwork.

Individuals develop habits and thus switch their activities from conscious to unconscious while

repeatedly working on the same activities. Errors interrupt this process due to its critical impact

on employees’ mindset.6

6.3.3 Error Management

Errors represent important components of organizational life and have been the subject of much

prior organizational research (Carroll et al., 2021; Haunschild et al., 2015). The cost of errors

can hurt organizations’ reputations or lead to massive expenses. For example, in 2017, Honda

recalled 800,000 minivans because of faulty seats; Samsung Securities Chief Executive Officer

resigned after an employee made a $105 billion mistake in issuing stocks. Medical errors cause
6In the empirical analysis, we could not disentangle individual and team-level effects as we lack access to

individual-level data. However, in several conversations with managers, we learned that individual frontline
employees are key parts and determinants of routines. Alpha has dedicated professionals for each production step.
So, the same individual is responsible to run the same activity (e.g., sealing) for every order the whole day. This
ensures lower error rates because employees gradually become skilled professionals and make less mistakes.
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over 250,000 deaths annually in the U.S. (Makary & Daniel, 2016). Air France 447 crashed due to

human and machine errors (Oliver et al., 2017). Errors in organizations are defined as unintended

and potentially avoidable deviations from predefined organizational plans that can negatively

impact organizations (Carroll et al., 2021; Frese & Keith, 2015; Lei et al., 2016). Organizations’

typical strategy toward errors is error prevention, i.e., eliminating errors before they happen and

trying to predict errors to control their occurrence. In contrast, error management strategies

suggest accepting errors as an inseparable part of organizations and, instead, controlling their

negative consequences, e.g., by conducting training (Van Dyck et al., 2005). Given that errors

cannot be fully predicted and controlled, organizations can integrate error management strategies

to learn from errors and improve their systems and regulations (Carroll et al., 2021; Stern et al.,

2008).

Many organizations implement error prevention strategies, but not all use additional error

management practices. Researchers highlight that balancing error prevention and error man-

agement requires a deeper understanding of errors. The knowledge gained through post-error

information gathering tends to be an important source for organizational learning (Desai & Mad-

sen, 2022). In fact, research has shown that knowledge gained through errors depreciates more

slowly than knowledge gained from successes (Madsen & Desai, 2010). Thus, organizations that

implement only error prevention protocols (and no error management protocols) reduce their

chances of learning from them (Sitkin, 1992). Errors in organizations can manifest themselves at

the individual, team, or system level, but research has given greater attention to the individual

level (Lei et al., 2016). Studying errors at any level helps organizations effectively balance their

error prevention and error management activities. Scholars encourage more research on the

dynamics of errors and response to errors over time (Carroll et al., 2021; Lei et al., 2016).

This study focuses on errors at the routine level, which is similar to the team-level in the

organizational error literature, e.g., Bell & Kozlowski (2011). We study errors over time to

understand how routines change in response to errors. Our view on errors mirrors that of error
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management scholars, i.e., errors cannot be eliminated but should be accepted as a manageable

aspect of organizations.

6.3.4 Post-Error Behavior

As noted by cognitive science researchers, human behavior changes when their errors are detected

(e.g., Damaso et al. (2020)). This literature considers two major post-error behavioral changes:

(1) post-error slowing (PES) and (2) post-error improvement in accuracy (PIA) (Danielmeier &

Ullsperger, 2011; Notebaert et al., 2009; Schroder & Moser, 2014). PES refers to individuals’

tendency to spend more time on their current task after they made an error in their previous

task. PES studies report the effect duration varying from several minutes to several months (e.g.,

Danielmeier & Ullsperger (2011), Segalowitz et al. (2010)). PIA refers to individuals’ increased

accuracy immediately after they made an error in their previous task.

This paper investigates whether the results of prior post-error studies apply at the team

level. To our knowledge, prior literature lacks a comparable team-level analysis —possibly due

to the complexity of production tasks compared to experimental research tasks. Despite these

contextual differences, we base our initial hypotheses on the results of post-error studies. In the

light of this background, we expect that routine participants respond to errors by slowing down

their work pace to focus on accuracy.

6.3.5 Hypotheses

Habits are shaped when thoughtful and conscious actions gradually become automatic and un-

conscious (Wood, 2017; Wood & Neal, 2009). When errors are reported, we expect performance

changes as individuals switch from automatic and unconscious actions to thoughtful and con-

scious ones. Employees prepare themselves for a serious discussion when being informed about

an error or a complaint linked to their performance with potential measures ranging from group
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training to firing a team member. Therefore, we view errors as significant interruptions, which

are likely to involve team-level performance changes (Zellmer-Bruhn, 2003). When individuals

switch from automatic habits to informed habits (due to the interruption caused by the reported

error), presumably, production slows down because conscious actions demand more mental effort

(Wood & Neal, 2009). This assumption aligns with the post-error slowing effect discussed in the

previous section (Notebaert et al., 2009). Thus, we expect individuals to slow down in response

to errors but work with increased accuracy. In other words, individuals become more attentive

to the work they perform, and, in turn, they require more time. So, we posit the following:

Hypothesis 1 (H1). Previous-day errors are associated with an increase in routines’

reporting accuracy.

Hypothesis 2 (H2). Previous-day errors are associated with an increase in routines’

throughput time.

As previously noted, errors play the interruption role similar to a habit-changing intervention.

Prior studies on habit formation confirm that interruptions are effective if applied frequently

and regularly (Graybiel et al., 2008; Wood, 2017; Wood & Neal, 2009). From a cognitive

science perspective, Notebaert et al. (2009) link post-error performance changes to individuals’

increased attention to infrequent events that direct attention away from the focal task. According

to their findings, infrequent incidents automatically capture individuals’ attention, regardless of

the outcome being failure or success. In an experiment, they increase the number of errors

compared to success and find the slowing effect only after successful attempts. They argue that

individuals get distracted by the surprise of the incident.

Applied to the context of our study, some routines receive errors more frequently than others.

Additional errors might become less distractive to employees for routines with more prior errors

due to their repetitive nature. Accordingly, we anticipate different post-error consequences for

routines with fewer prior errors than routines with more prior errors because frequent interrup-
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tions often lead to sustained changes. This effect is rooted in employees’ exposure to frequent

surprises in that they develop a tolerance against the distraction caused by an error. Thus, we

argue that the previously mentioned post-error consequences are likely weaker for routines with

more prior errors. The habits perspective also suggests that individuals would form new habits

toward routines with more prior errors than routines with fewer errors. In other words, regular

and frequent errors form a new habit that might neutralize immediate performance changes. So,

we posit the following hypothesis, shown along with the other hypotheses in Figure 5.

Hypothesis 3 (H3). The (a) increase in reporting accuracy and the (b) increase in through-

put time after errors is greater among routines with fewer prior errors than routines with more

prior errors.

Figure 5: Research Hypotheses

6.4 Research Setting and Data

6.4.1 Study Context

We conducted this study within a large metal coating company, Alpha, which offers metal treat-

ment services such as applying surface treatment services on unfinished products of customers

from the automotive industry. Original equipment manufacturer (OEM) companies ship their

unfinished products to Alpha to receive the final coating treatments. Alpha applies the required

treatments and returns the finished products to the OEM. A large part of Alpha’s revenue comes
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from long-term periodic orders that are placed regularly by the same customers. These periodic

orders follow the same treatments to ensure consistency with previously delivered orders. Within

Alpha’s IT system, the detailed production specifications and steps of each order are referred to

as article and each distinct article represents a routine in our study. An article might stay in

production for several years.

Any deviation from the planned production process can significantly influence the final prod-

ucts. Coating companies therefore strictly control their production processes to ensure full

compliance with regulatory demands. Thus, production steps must always follow the intended

process order. Although regulations forbid changing the order of actions, no restrictions apply

to the quality of performing the activities such as the time it takes to perform an action or the

degree to which specific steps are recorded.

Alpha operates 15 plants in several European countries, including Germany, Poland, and the

Netherlands. In these plants, Alpha uses a centralized IT system to ensure process compliance

and monitor production performance. Alpha provides all frontline employees with a portable

scanner and asks them to scan the production items twice, once when they start and once when

they finish working on the respective items. These scanners generate granular data that we

describe in the next section. Further contextual information on Alpha is given in Appendix C.1.

6.4.2 Data

We sourced the data through direct access to Alpha’s internal IT systems. Our initial sample

spans 3M batches and 371K unique articles. We refine the sample in five ways, as summarized

in Table 16.

79



Table 16: Sample Selection Procedure

Step Number of Batches Number of Articles

Full sample (Jan 14 2013 to Mar 8 2021) 3,067,939 370,982
After restricting to years from 2016 to 2021 2,490,426 304,892
After restricting to articles with the first error between 2016 and 2021 943,243 33,861
After removing weekends and local holidays 900,988 33,654
After considering throughput times >= 10 minutes 796,675 32,648
After restricting to articles produced >= 10 times 717,916 7,818

First, we remove data before 2016 because many of the plants transitioned to new IT systems

from 2013 to 2015. Thus, the data before 2016 may not be reliable because they were entered

into the system post-hoc. Second, we only consider batches of articles that received their first

error between 2016 and 2021. Articles associated with no errors or many errors before 2016

might differ in unobservable ways. Third, we remove all batches produced on weekends because

fewer employees work on weekends, making the throughput times on weekends longer for batches

produced compared to batches produced during the week. Moreover, Alpha usually stops most

activities on weekends and only produces articles in rare exceptions, for example, if customers

have urgent requests. Fourth, we discard all batches where throughput times are either missing

or below ten minutes. Missing throughput times occur if one or both of the start and end

timestamps are missing. Also, in interviews with production experts at Alpha, we learned

that none of the batches at Alpha could be processed in fewer than ten minutes. This is an

indication that throughput times below ten minutes do not accurately reflect actual throughput

times. Fifth, of the remaining observations, we focus on articles that are produced at least ten

times in our observation period to ensure that these articles are repeatedly produced and thus

reflect the character of repeated actions.7 We collapse the resulting 7,818 articles and 717,916

batches to a panel data set with 265,191 article-day observations. Each article is produced

multiple times. Thus, our panel variable is the article identifier.
7In Table 27 in Appendix D, we show that our findings are qualitatively unchanged to filtering articles that

are produced at least 20, 30, 40, and 50 times.
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6.4.3 Dependent Variables

Each batch has a number of flagged actions that represent the key activities of an article and

are mandatory to report. The dependent variable, reporting accuracy, represents the fraction

of mandatory actions that were reported for article 𝑖 on day 𝑡. Given that each article 𝑖 can

be produced in 1, 2, 3, ..., 𝑛 batches 𝑏 on day 𝑡, the reporting accuracy for article 𝑖 on day 𝑡 is

calculated as:

𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑡 = ∑𝑛
𝑏=1 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑀𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝑖𝑡𝑏

∑𝑛
𝑏=1 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑀𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑖𝑡𝑏

(22)

For example, if one batch of an article is produced and that batch requires four flagged

actions to be reported, then frontline employees must report the four flagged activities to reach

100 percent. If they report three flagged steps, then reporting accuracy would be 75 percent

and so on. We measure throughput time of article 𝑖 on day t as the average number of hours

between the start and end of the batches 𝑏 initiated for article 𝑖 on day 𝑡:

𝑇 ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑇 𝑖𝑚𝑒𝑖𝑡 = ∑𝑛
𝑏=1 [𝐵𝑎𝑡𝑐ℎ𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑖𝑡𝑏 − 𝐵𝑎𝑡𝑐ℎ𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡𝑖𝑡𝑏]

𝑛 (23)

Thus, our measure of throughput time focuses on the core production process, i.e., applying

the coating treatments, excluding the leading and trailing activities such as transportation,

packaging, and shipment. Both dependent variables are undefined if article 𝑖 was not produced

on day 𝑡.

6.4.4 Independent Variable

We separately obtained data on 75K errors that were formally entered into Alpha’s error man-

agement system. Each error is associated with one article. We match this data with the panel

data to track the number of daily errors that were recorded for each article. In total, 28,417

81



errors were recorded for the articles in our sample. Table 17 presents the errors by causes,

consequences, year, and plant.

Table 17: Description of Errors

Characteristics Number of Errors Characteristics Number of Errors

Causes of Errors (Top 6) Errors per Plant
- Activation 1,251 - Plant01 572
- Clamping 2,104 - Plant02 1,767
- Flushing 2,829 - Plant03 879
- Handling 2,636 - Plant04 485
- Residuals 2,367 - Plant05 6,518
- Unknown 1,251 - Plant06 2,971
Consequences of Errors (if any) - Plant07 8,300
- Corrective Actions 3,767 - Plant08 73
- Preventive Actions 2,417 - Plant09 1,509
Errors per Year - Plant10 350
-2016 6,716 - Plant11 18
-2017 5,306 - Plant12 464
-2018 5,649 - Plant13 515
-2019 5,672 - Plant14 2,353
-2020 4,440 - Plant15 1,643
-2021 634

Note:
This table reports descriptive statistics on the errors included in the sample. The numbers on
causes and consequences of errors do not add up.

Our primary independent variable, any error, is measured by a dummy variable indicating

whether any error has been reported for article 𝑖 on day 𝑡. First error is a binary indicator that

denotes one only for the first error reported for an article. Figure 6 plots the seven-day moving

average of the sum of any error and first error. There is considerable variation over time in

both variables. Figure 6a shows strong seasonal trends, with a notable peak for any error in

September 2016 and a considerable drop at the height of the COVID-19 pandemic in the first

half of 2020.8 As expected, Figure 6b shows a downward trend for the sum of first errors. Thus,

most articles receive their first errors toward the beginning of our observation period, which

underscores that the articles in our sample are repeated and long-standing orders. If available,
8In Table 28 in Appendix D, we show that dropping either September 2016 or January to June 2020 did not

influence our results.
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we recorded the date on which an error has occurred, allowing us to separate the effects of

error reporting and error occurrence. Moreover, we track whether errors are associated with

corrective actions and/or preventive actions. Compared to conventional errors without actions,

errors associated with actions hint at the identification of more deeply rooted shortcomings.

Figure 6: Any Error and First Error, 2016 to 2021

Note: The figure plots the seven-day moving average of the sum of any error and first error over the observation
period from 4 January 2016 to 8 March 2021 (inclusive).

6.5 Results

6.5.1 Errors and Routine Performance

As a first test of the effect of errors on routine performance, we regress daily measures of

throughput time and reporting accuracy for an article on lags and leads of errors reported for

that article, controlling for seasonality, heterogeneity across plants, and previous performance.

Our specification follows Durante & Zhuravskaya (2018) in that we include multiple lags and

leads of our independent variable. In particular, we estimate equations of the following form:

𝑅𝑖𝑡 = 𝛼0𝐸𝑖𝑡 +𝛽0𝐸𝑖,𝑡−1 +
7

∑
𝜏=1

𝛼𝜏𝐸𝑖,𝑡+𝜏 +
7

∑
𝜏=2

𝛽𝜏𝐸𝑖,𝑡−𝜏 +𝛾1𝑅𝑖,𝜔𝑡−1 +𝑃𝑖 +𝜂𝑑𝑡
+𝜓𝑚𝑡

+𝜃𝑦𝑡
+𝜖𝑖𝑡 (24)

The term 𝑅𝑖𝑡 is a measure of routine performance (either reporting accuracy or throughput

time) for article 𝑖 on day 𝑡. 𝐸𝑖𝑡 denotes the reporting of any error for article 𝑖 on day 𝑡. We
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focus on the effect of same-day and previous-day errors with and without controls for a series

of its lags and leads. The variable 𝑅𝑖,𝜔𝑡−1 is a measure for the average routine performance for

article 𝑖 one week before (i.e., between 1 and 7 days before day 𝑡). 𝑃𝑖 captures time-invariant

plant fixed effects.9 The terms 𝜂𝑑𝑡
, 𝜓𝑚𝑡

, and 𝜃𝑦𝑡
denote fixed effects for each day of the week,

each calendar month, and each year, respectively.

Figure 7a plots the coefficients on the lags and leads of errors from estimating equation (24).

It shows that the estimated effect of errors that occur the day before on reporting accuracy is

positive and statistically significant. All the lags of errors taken together are jointly significant

(Wald 𝜒2 = 3.76, p < 0.001), and all the leads are jointly insignificant (Wald 𝜒2= 1.02, p =

0.413), indicating that reporting accuracy only increases after an error is reported and that no

spurious or erroneous associations exist before the error is reported. In fact, none of the seven

leads are significant (at p = 0.05), which further corroborates the specific correlation between

errors and reporting accuracy.

In Figure 7b, we show that the estimated effect of errors that occur the day before on

throughput time is negative and statistically significant, which indicates that articles, on average,

are produced faster after an error is reported. Again, all the lags of errors are jointly significant

(Wald 𝜒2 = 5.07, p < 0.001). However, for throughput time the coefficients of several leads are

positive and significant, and all leads taken together are jointly significant (Wald 𝜒2 = 11.68, p

< 0.001).

Figure 10 presents plots based on regressions in which lags and leads of the errors are included

in the regressions one by one instead of simultaneously. These patterns are identical to those

in Figure 7. Thus, our results do not depend on errors and their lags (or leads) being included

simultaneously.
9Our preferred specification uses plant fixed effects instead of article fixed effects because many articles have

low within-cluster variation for reporting accuracy. In Tables 29 and 30 in Appendix D, we present the results of
our regressions with article fixed effects. The results are largely consistent.

84



Table 18 presents the results formally. The effect of errors on reporting accuracy and through-

put time are presented in columns 1-3 and columns 4-6, respectively. Columns 1 and 4 present

the relationship between routine performance and errors conditional only on day-of-the-week,

calendar-month, and year fixed effects. The results indicate that neither reporting accuracy nor

throughput time are significantly correlated with errors on the same day. But if we include

previous-day errors in the list of covariates; the coefficient on yesterday’s error on today’s re-

porting accuracy is positive and statistically significant. By contrast, we find no association

between previous-day errors and today’s throughput time. We present these results in columns

2 and 5, respectively. In columns 3 and 6, we add controls for previous routine performance.

The effect of errors at 𝑡 − 1 on reporting accuracy on day 𝑡 remains positive and statistically

significant. In addition, the effect of errors at 𝑡 − 1 on throughput time becomes negative and

significant.10

Figure 7: Any Error and Routine Performance Including Seven Leads and Lags

Note: The figure reports the estimated coefficients (and respective 95 percent confidence intervals with standard
errors clustered by article) from the regressions of reporting accuracy and throughput time on any reported
errors between 7 days before and 7 days after the event. The left panel uses reporting accuracy as the dependent
variable and the right panel uses the log-transformed throughput time in hours. The list of covariates also
includes year, month, and day-of-the-week fixed effects, and controls for the average reporting accuracy (fig. A)
and throughput times (fig. B) 1 week before. Results come from cols. 1 and 3 of Table E.1.

10To account for the possibility of information leakage before error reporting, we repeat all the analyses with
leading (i.e., 𝑡 + 1) value of error reporting. None of the results change with this inclusion. The detailed results
are excluded due to space considerations but available from the authors upon request.
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Table 18: Any Error and Routine Performance

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

Any Error𝑡 0.001 0.001 0.002+ 0.012 0.009 0.003
(0.001) (0.001) (0.001) (0.039) (0.036) (0.022)

Any Error𝑡−1 0.005*** 0.004** 0.049 -0.066**
(0.001) (0.001) (0.046) (0.024)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.786***
(0.018)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.691***
(0.012)

Time Fixed Effects Yes Yes Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 265,191 265,098 141,500 265,191 265,098 141,500
Number of Articles 7,818 7,818 5,965 7,818 7,818 5,965
Adj. R-squared 0.247 0.247 0.668 0.196 0.196 0.523

Note:
OLS regressions are presented in cols. 1-6. All regressions include year, month, and day-of-the-week fixed
effects. Standard errors clustered by article are reported in parentheses. The number of observations
differs because of the inclusion of lags and previous week averages in cols. 2, 3, 5, and 6. *** p < 0.001,
** p < 0.01, + p < 0.10.

6.5.2 Robustness

We conduct the following robustness checks. First, Table 23 reports the results for an extended

window of 14 leads and lags, which are consistent with the main results. Second, we test whether

the results are robust to alternative operationalizations of errors. Table 24 reports the results

for the log-transformed number of errors per day instead of a binary measure. Our findings are

robust to this alternative measure. Third, we test whether our results are robust to alternative

operationalizations of reporting accuracy and alternative estimators. We transform reporting

accuracy into a binary variable that denotes 1 if all steps are reported and denotes 0 if any

of the steps have not been reported. Column 1 of Table 25 show the results of the linear

probability model using plant and time fixed effects. In column 3, we additionally control for

previous performance of reporting accuracy. The results are consistent. Columns 2 and 4 of

Table 25 show the results of the regressions using a Logit estimator. We find the results for the

model using only plant and time fixed effects confirmed (col. 2). When controlling for previous
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reporting accuracy performance, the association between previous-day errors and the binary

measure of reporting accuracy is positive but not significant (col. 4). Taken together, these

analyses — although with one exception — support the main premises of our research. Fourth,

we test whether our results are robust to additional control variables. In columns 1 and 4 of

Table 26, we include a linear time trend in place of time fixed effects, in columns 2 and 5, we

add the log-transformed number of cases as an additional control variable.

Finally, in columns 3 and 6, we control for the average performance of the previous 2 weeks

(instead of 1 week). Our findings are robust to including these additional control variables.

6.5.3 Error Occurrence

So far, we have investigated the association between errors and behavior around the time when

errors were formally entered into the error reporting system. A central premise of our analysis

is that employees change their behavior when a complaint is filed and members of the quality

assurance team make employees aware of their shortcomings. If this is indeed the mechanism by

which the observed behavioral responses are elicited, we would expect no change in performance

after an error has occurred. The idea is that individuals either (a) are not aware at the time

that an error has occurred or (b) have no incentive to change their behavior after they make a

mistake because there is a degree of uncertainty whether it will be noticed. In either case, no

significant correlation between error occurrence and routine performance would support the as-

sertion that people change their behavior only if errors are formally recorded by the organization

and employees are held accountable for their mistakes.

To tease out the effect of error occurrence versus error reporting, we exploit the fact that we

know for 4,088 errors when they occurred. On average, errors are reported 18.34 days (standard

deviation = 43.44) after they have occurred. The results are presented in columns 1 and 4

of Table 19. We show that neither error occurrence nor its lag are correlated with reporting
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accuracy (col. 1) and throughput time (col. 4). These results provide strong evidence that the

changes in routine performance are more likely to occur after an error is reported and not when

it occurs.

Table 19: Error Occurrence, Prevention, and Correction and Routine Performance

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

Error Occurred𝑡 -0.006 0.045
(0.007) (0.078)

Error Occurred𝑡−1 0.010 0.096
(0.008) (0.071)

Error Corrective Action𝑡 0.008*** -0.010
(0.002) (0.030)

Error Corrective Action𝑡−1 -0.001 -0.170***
(0.002) (0.030)

Error Preventive Action𝑡 0.013*** 0.043
(0.004) (0.056)

Error Preventive Action𝑡−1 -0.000 -0.090+
(0.005) (0.053)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.786*** 0.786*** 0.786***
(0.018) (0.018) (0.018)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.691*** 0.691*** 0.691***
(0.012) (0.012) (0.012)

Time Fixed Effects Yes Yes Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 141,500 141,500 141,500 141,500 141,500 141,500
Number of Articles 5,965 5,965 5,965 5,965 5,965 5,965
Adj. R-squared 0.668 0.668 0.668 0.523 0.523 0.523

Note:
OLS regressions are presented in cols. 1-6. All regressions include year, month, and day-of-the-week fixed
effects. Standard errors clustered by article are reported in parentheses. *** p < 0.001, + p < 0.10.

6.5.4 Corrective Actions and Preventive Actions

The organization has implemented ISO 9001 as a quality management system. In line with ISO

9001, a subset of errors is associated with corrective actions and preventive actions. According

to ISO (ISO/DIS 9001, 2014, p. 6), corrective action is to “eliminate the case of a nonconformity

and to prevent recurrence” and preventive action is taken to “prevent the occurrence.” In our

sample, corrective actions are typically associated with rework and preventive actions often

involve mandatory trainings. Errors which require corrective or preventive actions are typically

more severe as they reflect the necessity for changes in the way that certain activities are carried
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out. Therefore, we expect such errors to trigger a more direct link of communication between

quality management and front-line employees who carry out the work.

The results are shown in columns 2, 3, 5, and 6 of Table 19. In line with this explanation,

we find that improvements in reporting accuracy materialize immediately on the day errors with

a corrective action (col. 2) and/or preventive action (col. 3) are reported whereas the lagged

variable is no longer significant. This indicates that errors that require changes to current

procedures are most effective in improving compliance on the day that the news are spilled.

Interestingly, changes in throughput time still occur one day after the error both for errors with

corrective actions (col. 5) and preventive actions (col. 6).

6.5.5 Prior Errors

Next, we test the effect of prior errors on throughput time and reporting accuracy. The results

are shown in Table 20. In columns 1 and 4, we replicate our main results and show that the lag

of the first error is positively related to reporting accuracy (p<0.001) and negatively related to

throughput time (p<0.001).11 The magnitudes of the coefficients of first error are substantially

larger than for any error, which presents a first test of our hypothesis that errors have a more

pronounced impact on routine performance if routines have experienced fewer prior errors. In

columns 2 and 5, we estimate the effect in a regression framework using the following model:

𝑅𝑖𝑡 = 𝛽0𝐸𝑖,𝑡−1 + 𝛽1𝐿𝑖,𝑡−1 + 𝛽2𝐸𝑖,𝑡−1 × 𝐿𝑖,𝑡−1 + 𝛾1𝑅𝑖,𝜔𝑡−1 + 𝑃𝑖 + 𝜂𝑑𝑡
+ 𝜓𝑚𝑡

+ 𝜃𝑦𝑡
+ 𝜖𝑖𝑡 (25)

The term 𝐿𝑖,𝑡−1 is a dummy variable that is set to 1 if the number of prior errors for article

𝑖 was low, i.e., no more than one prior error (equal to the median of our sample) up to day 𝑡 − 1,

and 0 otherwise. This helps us test whether employees react differently to articles with only

few errors compared to many errors prior to the focal error. Columns 2 and 5 of Table 20 show
11In columns 5 and 6 of Table 25, we show the robustness of the relationship between first error and reporting

accuracy using the binary operationalization of the dependent variable.
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Table 20: Prior Errors and Routine Performance

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

First Error𝑡 0.007* -0.033
(0.004) (0.042)

First Error𝑡−1 0.008*** -0.194***
(0.002) (0.043)

Any Error𝑡−1 0.003* 0.007** -0.075** -0.195***
(0.001) (0.002) (0.028) (0.039)

Low𝑡−1 -0.000 -0.070***
(0.001) (0.016)

Any Error𝑡−1 ×Low𝑡−1 0.005* -0.057
(0.003) (0.054)

log(1+Prior Errors)𝑡−1 -0.000 0.040***
(0.000) (0.009)

Any Error𝑡−1 ×log(1+Prior Errors)𝑡−1 -0.001+ 0.036*
(0.001) (0.016)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.786*** 0.786*** 0.786***
(0.018) (0.018) (0.018)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.691*** 0.689*** 0.690***
(0.012) (0.012) (0.012)

Time Fixed Effects Yes Yes Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 141,500 141,500 141,500 141,500 141,500 141,500
Number of Articles 5,965 5,965 5,965 5,965 5,965 5,965
(Adj.) R-squared 0.668 0.668 0.668 0.523 0.524 0.524

Test of the coefficient difference of
First Error𝑡−1 and Any Error𝑡−1
SUEST 𝑐ℎ𝑖2-value 4.82 10.33
SUEST p-value 0.0282 0.0013

Note:
OLS regressions are presented in cols. 1-6. All regressions include year, month, and day-of-the-week fixed effects.
Standard errors clustered by article are reported in parentheses. The last two rows present the chi2-values and
p-values for equality between the effects of First Error(t-1) and Any Error(t-1) (presented in cols. 3 and 6 of
Table 12) calculated using seemingly unrelated estimation tests (SUEST). *** p < 0.001, ** p < 0.01, * p <
0.05, + p < 0.10.

significant interactions between any error and low, which indicates that the association between

errors and routine performance is stronger for articles associated with only few prior errors.

In columns 3 and 6, we show the robustness of our results using the log-transformed number

of prior errors instead of a dummy variable. We find consistent results in the sense that the

coefficients on the interaction effects have the opposite signs, suggesting that the relationship

between errors and routine performance becomes weaker as the number of prior errors increases.
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6.5.6 Endogeneity Tests

In the previous subsection, we established a robust association between errors and routine per-

formance. However, our results could be biased because of endogeneity: both errors and routine

performance may be driven by a third unobserved variable. For example, issues with a produc-

tion line may have affected errors and they directly affected routine performance related to that

article. Thus, it is instructive to use an identification strategy that is more robust to unobserved

variables.

We exploit the fact that customers and articles have one-to-many relationships, that is each

customer can order different articles but each article is uniquely associated with one customer.

We implement an instrumental variable (IV) specification similar to that used by (Bartik, 1991)

and (Card, 2001). Specifically, we instrument for errors reported for article 𝑖 on day 𝑡 − 1 using

the following measure:

𝐼𝑉𝑖,𝑡−1 = 𝐸𝑝𝑗,2016
𝐸𝑗,2016

× [𝐸𝑗,𝑡−1 − 𝐸𝑖,𝑡−1] (26)

This IV measure has two components. The term in parentheses represents the errors reported

by customer 𝑗 on day 𝑡−1, excluding article 𝑖’s contribution. This purges the measure of customer

𝑗’s errors from article-specific factors. Instead, the fluctuations in errors reported by customer

𝑗 for other articles — which are assumed to be driven by factors exogenous to 𝑖 — drive the IV

shocks to errors reported for article 𝑖.

In Table 31, we show a sample of three errors reported by a customer on 29 March 2017. Each

error has a different error number, description, and article. This shows that a customer may

report on multiple issues on the same day, indicating that the timing of other errors reported by

that customer is likely to be exogeneous to the conditions related to the focal article 𝑖. Instead,

there may be specific days when customers get in touch with the company to discuss issues

related to their orders.
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We also assume that some articles are likely to receive a larger share of errors reported by

customer 𝑗. To weight the term in brackets, we use the plant p’s share of the total customer

errors in a base period. As each article is produced at one plant, articles produced at plants

with many customer errors in the base period are apt to experience a higher share of the errors

reported by customer 𝑗.12 We use 2016, the first year of our data, as the base. We estimate the

following equation with 2SLS:

𝑅𝑖𝑡 = 𝛽𝐼𝑉
0 𝐸𝑖,𝑡−1 + 𝑃𝑖 + 𝜂𝑑𝑡

+ 𝜓𝑚𝑡
+ 𝜃𝑦𝑡

+ 𝜖𝑖𝑡 (27)

where the previous-day errors 𝐸𝑡−1 is instrumented by the first lag of our IV measure. We use

a more parsimonious specification in this analysis because we have no independent instrument

for same-day and next-day errors. Table 21 presents the results. Column 1 present the first-stage

relationships for previous-day errors. The instrument is a very strong predictor of any error for

article 𝑖 at 𝑡 − 1. Columns 2 and 4 report the results of the second stage for reporting accuracy

and throughput time using OLS regression with the reduced sample. The association between

errors and reporting accuracy remains positive and marginally significant, whereas we do not

find a significant association between errors and throughput time. Columns 3 and 5 report the

results using 2SLS. The Cragg-Donald Wald F-test statistic rejects the null hypothesis of a weak

instrument (Cragg & Donald, 1993). The value is 3485.52 and well above the threshold of 16.38

proposed by Stock and Yogo (2005). The Kleibergen-Paap rk Wald F-statistic is 37.43, which

also mitigates concerns over a weak instrument (Kleibergen & Paap, 2006). The results are

consistent with Table 18 and show a significant increase in reporting accuracy and a marginally

significant decrease in throughput time.
12The results are unchanged when adjusting the share of errors in the base period for the production volume,

V: ( 𝐸𝑝𝑗,2016
𝑉𝑝𝑗,2016

)/( 𝐸𝑗,2016
𝑉𝑗,2016

).
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Table 21: IV Regressions and Previous-Day Errors

Error𝑡+1 Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4) (5)
OLS OLS 2SLS OLS 2SLS

IV𝑡−1 0.020***
(0.003)

Any Error𝑡−1 0.003+ 0.028*** -0.047 -0.180+
(0.002) (0.008) (0.032) (0.108)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.746*** 0.746***
(0.025) (0.025)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.698*** 0.698***
(0.016) (0.016)

Time Fixed Effects Yes Yes Yes Yes Yes

Plant Fixed Effects Yes Yes Yes Yes Yes
Number of Observations 91,555 91,555 91,555 91,555 91,555
Number of Articles 4,090 4,090 4,090 4,090 4,090
(Adj.) R-squared 0.05 0.603 0.601 0.548 0.548

Note:
The table presents IV regressions with weighted number of errors for other articles by the same
customer used as an instrument for the reporting of any error. The sample used in col. 1 is derived
from the sample in cols. 2-5. All regressions include year, month, and day-of-the-week fixed effects.
Standard errors clustered by article are reported in parentheses. *** p < 0.001, + p < 0.10.

In Appendix F, we show that our results are robust to using a difference-in-differences (DID)

approach. We use one-on-one nearest neighbor matching to reduce heterogeneity between treat-

ment and control groups. Taken together, our results suggest that endogeneity should not be a

serious concern.

6.6 Discussion and Conclusion

This paper has focused on understanding the effect of errors on frontline employees’ performance.

Using a novel data set of production routines, we find robust evidence that production teams

tend to work more accurately and faster after an error has been reported. The observed effect,

however, disappears when errors become frequent. We split the performance of routine partic-

ipants into effectiveness and efficiency as we theorize that employees might react to errors by

working more effectively but less efficiently, i.e., they become more attentive to regulations and
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hence work slower. Surprisingly however, our analysis indicates performance increases for both

effectiveness (higher reporting accuracy) and efficiency (shorter throughput time). These results

suggest that frontline employees perceive errors as critical incidents and adapt their behavior

accordingly, underscoring the positive implications of such interruptive events (Zellmer-Bruhn,

2003). However, employees only take errors seriously initially, but after receiving them fre-

quently, they tend to form new habits in which errors become an integral aspect. Further

research is needed to examine the interplay between errors and employees’ performance, such as

by considering the influence of additional factors like feedback delay (Rahmandad et al., 2009)

and individual status (Koster & Aven, 2018).

Furthermore, we isolated the performative aspect of routines from the ostensive aspect in a

large organization practicing the strict process execution of orders. Specifically, we used articles

as specific and predefined production recipes to track orders with the same production path.

Despite following the same process, long-term, multipart, and periodic orders varied in terms

of their performance. This unique setting allowed us to elaborate on process multiplicity of

inflexible production processes. Thus, we contribute to the literature on organizational routines

by reporting new insights on the dynamics of performative patterns pertained to production

routines. Our study responds to Pentland and Feldman’s (2005) call to conduct empirical studies

on variations of performance effectiveness and efficiency at the routine level. The results confirm

the dynamic nature of organizational routines and shed greater light on the action patterns by

reporting performance changes in response to errors.

We contribute to the error management literature by studying how the effects of errors unfold

over time. Modern error management systems (e.g., complaint management systems) provide

unprecedented access to granular data on errors. We use this opportunity to examine team-level

performance changes in response to errors. Prior works (e.g., Carroll et al. (2021), Van Dyck et

al. (2005), Frese & Keith (2015)) anticipate these results and call for further research on this

topic. Our contribution to the error management literature is twofold. First, we confirm the
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constructive potential of errors in empirical research (Desai & Madsen, 2022; Madsen & Desai,

2010). We report on two essential components of routine performance separately, i.e., efficiency

and effectiveness. Second, we elaborate on the circumstances associated with the main effect by

tracking routine performance over time. We observe that the post-error effects fade out when

errors occur frequently. These results suggest the necessity of effective error management policies

to avoid the negative impacts of errors and maximize their potential for organizational learning.

Future research may consider how errors shape performance in the presence of employee turnover

(Joseph et al., 2022) or intentional employee misconduct (Larkin et al., 2021).

This study has several limitations. First, it is limited to the coating industry. We extended

our data set to cover data from multiple plants in various European locations to ensure gener-

alizability in similar contexts. However, as production routines are often context-specific and

strictly regulated, our results may not apply to other types of routines, such as procurement

or clinical routines. Our analysis also does not account for specific contextual factors. To our

knowledge, the company did not face any significant managerial or structural changes during

our study period. Nonetheless, we cannot conclusively rule out other possibly relevant factors,

such as changes in plant managers or increased employee turnover.

Second, we base our analysis on digital traces collected from the direct interaction of humans

with IT systems. Several hardware restrictions (e.g., plant design, sensors), as well as software

controls (e.g., enforcing action orders, and accepting only predefined data ranges), might filter

out possible outliers or erroneous cases. Nevertheless, the available data are still subject to

error, noise, and common data quality issues. To mitigate these issues, we applied thorough

data cleansing operations to minimize possible biases. We also performed several robustness

and endogeneity tests to rule out potential confounds.

Third, scholars on organizational routines label them as complex and dynamic, and requiring

more empirical research (Feldman et al., 2016). We respond to this call by measuring the
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performance of production routines in terms of their effectiveness and efficiency. We do not

claim that our dependent variables, reporting accuracy and throughput time, are the only way

to measure routine performance. Instead, we use these two variables due their reliability in terms

of data quantity and quality. Thus, future research should extend our analysis to incorporate

additional variables, such as customer ratings.

In conclusion, this study offers implications for managers involved in production routines.

They should not underestimate the effect of errors on employees’ performance. Our results

suggest viewing errors as a new source of innovation, change, and productivity gains if leveraged

effectively. When teams learn about their first errors, they become more efficient and effective,

but this potential seems to fade out in the long term if errors become frequent. Thus, managers

must strike a balance between error prevention and error management. Occasional errors seem

to improve performance but recurring mistakes are less likely to “bother” employees in addition

to being detrimental to customer satisfaction. So, managers should seek to prevent repetition

of errors by acting quickly and effectively when they start to reoccur.
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7 Limitations and Future Research

This dissertation delves into the challenges associated with analyzing event log data collected

from enterprise systems and presents innovative solutions to address them. The primary focus

is on process event logs, and each study approaches the data from a distinct perspective, tack-

ling specific data analysis challenges. By blending event log control flow data with contextual

information such as production and error reporting data, the results yield more tangible and

business-relevant insights.

In the first paper, the application of trace clustering at the data preprocessing stage is

explored, offering detailed insights into algorithm adjustments to handle potential complexity

issues effectively. The second paper introduces a novel inefficiency index, capturing various

dimensions of process inefficiency not addressed by previous tools and studies. This index en-

ables enterprises to identify root causes and implement effective control measures. The fourth

paper enriches the analysis with contextual data and draws upon theoretical insights from or-

ganizational science and error management studies. The findings shed valuable light on the

impact of error communications on employee performance, utilizing event log data extracted

from production processes.

Collectively, all studies within this dissertation contribute to the overarching research ques-

tion (ORQ) by proposing novel methods, artifacts, experimental settings, and frameworks to

extract new insights from event log data. The contributions encompass reducing complexity in

event logs (paper one), measuring process inefficiencies (paper two), capturing event log mea-

sures (paper three), and exploring the effect of error communications on employee performance

(paper four). The dissertation offers both generic and specific solutions to the identified prob-

lems, while thoroughly validating the results. It emphasizes that the prospects for research in

this domain are limitless and acknowledges that this work does not claim to cover all potential

issues within the vast research venue. Instead, it lays the foundation for future explorations
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and advancements in leveraging event log data to enhance organizational understanding and

performance.

This dissertation acknowledges several limitations. One primary limitation pertains to the

lack of research on the integration of contextual data attributes in the research on digital traces.

While paper one explores the utilization of contextual attributes and domain expertise to en-

hance trace clustering results, the existing literature lacks practical and theoretical works that

extensively elaborate on integrating contextual information into their approaches. Future re-

search must prioritize addressing this gap to enhance the applicability and robustness of trace

clustering methodologies.

Furthermore, the inefficiency index proposed in paper two solely considers the control-flow

behavior of process traces, neglecting the intertwined nature of inefficiency with business con-

text, such as process throughput time. Integrating contextual attributes into the inefficiency

index could potentially yield more comprehensive findings. Paper two identifies this as a future

research avenue, highlighting the significance of incorporating contextual elements to improve

the accuracy and insights of inefficiency measurements.

In paper four, the study effectively utilizes two contextual attributes, throughput time and

reporting accuracy, in addition to digital trace data. The results underscore the critical role

of contextual attributes in capturing the true effects and implications of process deviations.

Integrating further context into the analysis could offer enhanced explainability and a more

comprehensive understanding of digital trace patterns.

One common limitation pertains to the absence of techniques for incorporating contextual

attributes of event logs. This limitation potentially restricts the ability to comprehensively

account for the contextual nuances that could impact the interpretation and outcomes of the

analyses (Bose et al., 2013). Furthermore, another limitation concerns the accuracy of the event

log data itself, which is inherently tied to the quality of the digital traces collected (Suriadi et
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al., 2017). As a specific instance, the reliability of timestamps in reflecting the actual duration

of work remains circumscribed, thereby potentially introducing an element of distortion into

the analyses. These limitations collectively underscore the need for enhanced approaches to

incorporate contextual variables and enhance the precision of event log data, both of which

would contribute to refining the validity and robustness of the findings across the examined

research papers.

Another limitation lies in the availability of real data sets for testing the generalizability of

novel approaches to studying digital traces proposed in numerous studies. While these studies

showcase promising methodologies, the lack of diverse real-world data sets hinders the ability to

validate their effectiveness in different contexts. Additionally, concerns regarding data protection

and the value of academic-industry collaboration raised by industry partners further complicate

the acquisition of real data sets and hinder qualitative data collection, which could complement

quantitative studies.

In light of these limitations, conducting supplementary qualitative research emerges as a

future research opportunity to enhance the findings of this dissertation. Qualitative research

can provide valuable insights into complex phenomena, such as routine dynamics and process

inefficiencies, offering a more comprehensive understanding and triangulating the quantitative

findings derived solely from digital trace data.

Overall, this dissertation acknowledges the identified limitations and emphasizes the impor-

tance of addressing them in future research endeavors to strengthen the validity, applicability,

and insights drawn from the analysis of digital traces in various domains.

8 Discussion and Conclusion

In conclusion, this dissertation delves into the domain of processual data analytics, focusing on

the analysis of event logs from enterprise systems to extract valuable insights. It makes significant
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contributions to the field by addressing selected research topics and offering innovative methods

and solutions relevant to both business researchers and practitioners.

The first paper provides a comprehensive review of process trace clustering literature and

presents a generic framework, enabling researchers and practitioners to enhance their trace

clustering approaches effectively. By breaking down complex process event logs into more man-

ageable sub-event logs, trace clustering reduces complexity and enhances business analytics

outcomes.

The second paper introduces a novel inefficiency index, capturing various dimensions of

process inefficiency beyond commonplace industrial tools. It leverages trace features, extracted

from digital traces, to measure inefficiency in the control flow of processes. Additionally, the third

paper introduces a dedicated artifact, Fig4PM, serving as a library of 73 control-flow features

extracted from the process mining literature, streamlining the implementation and reusability

of trace features.

The fourth paper explores the effect of errors on frontline employees’ routine performance.

This study identifies routines with identical execution paths and compares their performative

aspects, focusing on routine effectiveness and efficiency. The results suggest that employee per-

formance increases in terms of accuracy and speed when informed about errors, although this

effect diminishes with excessive error communications. These findings hold significant implica-

tions for employee communication practices, particularly error management policies.

Overall, the dissertation contributes to the field of process mining while differentiating be-

tween action patterns and performance patterns within trace data analysis. This differentiation

sheds light on new avenues for future research, particularly in the exploration of organizational

routines and routine dynamics. Scholars can leverage these findings to further develop the topic

of process multiplicity and facilitate research on processual data in organizational settings.
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As a whole, this dissertation emphasizes the potential of analyzing event logs to gain com-

prehensive insights into business processes, paving the way for data-driven decision-making and

organizational improvement. The contributions made in this research set the stage for further

advancements in processual data analytics, ultimately driving greater process efficiency, effec-

tiveness, and understanding of organizational matters.
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A Appendix A

Table A: List of trace clustering articles in the literature review
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Mining expressive process models by clustering workflow traces Greco et al. (2004)
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Bose & Van der Aalst
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clustering: Process mining visualization

Dogan et al. (2020)

Finding structure in the unstructured: hybrid feature set
clustering for process discovery

Seeliger et al. (2018)
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Article Author
Bringing context inside process research with digital trace data Pentland, Recker, et al.

(2020)
The MinAdept clustering approach for discovering reference
process models out of process variants

C. Li et al. (2010)

Workflow clustering using semantic similarity measures Bergmann et al. (2013)
Discovering workflow changes with time-based trace clustering Accorsi & Stocker (2011)
Detecting Change in Processes Using Comparative Trace
Clustering.

B. F. A. Hompes et al.
(2015a)

Process mining through artificial neural networks and support
vector machines

Maita et al. (2015)

A two-step clustering approach for improving educational process
model discovery

Ariouat et al. (2016)

Clustering event traces by behavioral similarity Koschmider (2017)
Similarity-based approaches for determining the number of trace
clusters in process discovery

Koninck & Weerdt (2017)

Change Detection in Event Logs by Clustering Koschmider & Moreira
(2018)

Anomaly detection based on control-flow pattern of parallel
business processes

Darmawan et al. (2018)

act2vec, trace2vec, log2vec, and model2vec: Representation
Learning for Business Processes

De Koninck et al. (2018)

k-process: Model-Conformance-based Clustering of Process
Instances.

Richter, Wahl, et al.
(2019)

Visualizing Business Process Evolution Yeshchenko et al. (2020)
Model-Aware Clustering of Non-conforming Traces Richter, Zellner, et al.

(2019)
Multi-Perspective Clustering of Process Execution Traces Jablonski et al. (2019)
A non-compensatory approach for trace clustering Delias et al. (2019)
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B Appendix B

Figure B: Comparing AMPI and BI for BPI 2020

Note: Compared to the BI, the ratio of inefficient cases identified by AMPI differs. BI also detects the overall
difference between the two types of trips, but it labels 13% of domestic trips and only 30% of international trips
as inefficient. The difference in the international travels can be explained by the fact that BI only evaluates the
presence of inefficient activities, but not the location of non-inefficient activities. As outlined above, many cases
do not start with submitting a permission for international travels, which does not correspond to the optimal
flow of activities, but is not identified as inefficient behavior by BI.
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C Appendix C

C.1 Additional Information on Alpha

Alpha has 15 plants across six countries. Nine plants are located in Germany, followed by two

plants in the Netherlands, and one each in Austria, Italy, Poland, and the United Kingdom.

Figure 8 shows a production terminal with a barcode scanner located on one of Alpha’s pro-

duction floors. Such terminals are operated by frontline employees and the scanner data are

directly fed into Alpha’s centralized IT system. These granular data represent the basis of our

empirical analysis. In its aggregated form the data are shown on information screens throughout

the plants as shown in Figure 9.

Figure 8: Production Terminal with Barcode Scanner
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Figure 9: Information Screen Showing the Number of Completed, Due, and Overdue Orders
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D Appendix D

D.1 Robustness Checks

Table 23: Additional Lags and Leads for Any Error

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4)
±7 Days ±14 Days ±7 Days ±14 Days
OLS OLS OLS OLS

Any Error𝑡+14 0.001 0.025
(0.001) (0.021)

Any Error𝑡+13 0.001 0.016
(0.001) (0.017)

Any Error𝑡+12 -0.001 0.039+
(0.001) (0.021)

Any Error𝑡+11 0.000 0.008
(0.001) (0.018)

Any Error𝑡+10 -0.000 0.024
(0.001) (0.018)

Any Error𝑡+9 0.001 0.053**
(0.001) (0.021)

Any Error𝑡+8 -0.001 0.025
(0.001) (0.019)

Any Error𝑡+7 -0.002 -0.002 0.038* 0.025
(0.001) (0.001) (0.018) (0.018)

Any Error𝑡+6 -0.001 -0.001 0.070** 0.059**
(0.001) (0.001) (0.022) (0.021)

Any Error𝑡+5 -0.000 -0.000 0.100*** 0.090***
(0.001) (0.001) (0.023) (0.021)

Any Error𝑡+4 0.001 0.001 0.124*** 0.113***
(0.001) (0.001) (0.021) (0.021)

Any Error𝑡+3 -0.002 -0.002 0.105*** 0.095***
(0.001) (0.001) (0.018) (0.017)

Any Error𝑡+2 -0.000 -0.000 0.075*** 0.067***
(0.001) (0.001) (0.019) (0.019)

Any Error𝑡+1 -0.002+ -0.002+ -0.029 -0.035+
(0.001) (0.001) (0.020) (0.019)

Any Error𝑡 0.002 0.002 -0.033 -0.038+
(0.001) (0.001) (0.021) (0.021)

Any Error𝑡−1 0.003** 0.003** -0.105*** -0.112***
(0.001) (0.001) (0.021) (0.021)

Any Error𝑡−2 0.003* 0.003* -0.061** -0.071***
(0.001) (0.001) (0.021) (0.020)

Any Error𝑡−3 0.003** 0.003** 0.001 -0.008
(0.001) (0.001) (0.020) (0.019)

Any Error𝑡−4 0.002* 0.002+ -0.018 -0.028
(0.001) (0.001) (0.018) (0.019)

Any Error𝑡−5 0.001 0.001 0.021 0.01
(0.001) (0.001) (0.020) (0.020)

Any Error𝑡−6 0.000 0.000 0.029 0.017
(0.001) (0.001) (0.019) (0.019)

Any Error𝑡−7 -0.000 -0.000 0.032 0.017
(0.001) (0.001) (0.022) (0.021)

Any Error𝑡−8 0.001 -0.009
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(0.002) (0.020)
Any Error𝑡−9 0.000 0.005

(0.001) (0.021)
Any Error𝑡−10 -0.002+ 0.019

(0.001) (0.019)
Any Error𝑡−11 0.000 -0.002

(0.002) (0.019)
Any Error𝑡−12 -0.001 0.047*

(0.001) (0.019)
Any Error𝑡−13 -0.000 -0.003

(0.002) (0.018)
Any Error𝑡−14 0.000 0.029

(0.001) (0.021)
Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.786*** 0.786***

(0.018) (0.018)
log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.691*** 0.691***

(0.012) (0.012)

Time Fixed Effects Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes
Number of Observations 141,500 141,496 141,500 141,496
Number of Articles 5,965 5,965 5,965 5,965
(Adj.) R-squared 0.668 0.668 0.524 0.524

Note:
The table presents IV regressions with weighted number of errors for other articles by the
same customer used as an instrument for the reporting of any error. The sample used
in col. 1 is derived from the sample in cols. 2-5. All regressions include year, month,
and day-of-the-week fixed effects. Standard errors clustered by article are reported in
parentheses. *** p < 0.001, + p < 0.10.
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Table 24: Lags and Leads for Number of Errors

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (3)
±7 Days ±7 Days
OLS OLS

log(1+Number of Errors)t+7 -0.003 0.039+
(0.002) (0.022)

log(1+Number of Errors)t+6 0.000 0.083**
(0.001) (0.026)

log(1+Number of Errors)t+5 -0.001 0.107***
(0.001) (0.026)

log(1+Number of Errors)t+4 0.000 0.135***
(0.002) (0.023)

log(1+Number of Errors)t+3 -0.003 0.122***
(0.002) (0.021)

log(1+Number of Errors)t+2 -0.001 0.076**
(0.001) (0.025)

log(1+Number of Errors)t+1 -0.002 -0.024
(0.002) (0.025)

log(1+Number of Errors)t 0.002 -0.031
(0.002) (0.024)

log(1+Number of Errors)t-1 0.004* -0.130***
(0.002) (0.028)

log(1+Number of Errors)t-2 0.002+ -0.076**
(0.001) (0.027)

log(1+Number of Errors)t-3 0.004** 0.009
(0.001) (0.026)

log(1+Number of Errors)t-4 0.002 -0.019
(0.002) (0.022)

log(1+Number of Errors)t-5 0.002 0.035
(0.002) (0.025)

log(1+Number of Errors)t-6 0.001 0.039
(0.002) (0.024)

log(1+Number of Errors)t-7 -0.000 0.048+
(0.001) (0.028)

Reporting Accuracy[Prev.-Week Avg.] 0.786***
(0.018)

log(Throughput Time)[Prev.-Week Avg.] 0.691***
(0.012)

Time Fixed Effects Yes Yes
Plant Fixed Effects Yes Yes
Number of Observations 141,500 141,500
Number of Articles 5,965 5,965
(Adj.) R-squared 0.668 0.524

Note:
Note: OLS regressions are presented in cols. 2,3. All regressions include year, month,
and day-of-the-week fixed effects. Standard errors clustered by article reported in
parentheses. *** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.10.
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Table 25: All Steps Reported

All Steps Reported (1=yes, 0=no)

Model (1) (2) (3) (4) (5) (6)
LPM Logit LPM Logit LPM Logit

LPM Logit LPM Logit LPM Logit
Error𝑡−1 0.014* 0.352* 0.011* 0.103

(0.005) (0.139) (0.005) (0.163)
First Error𝑡−1 0.028*** 0.760*

(0.008) (0.383)
Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 2.630*** 20.147*** 2.630*** 20.153***

(0.083) (0.928) (0.083) (0.928)

Time Fixed Effects Yes Yes Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 265,098 264,740 141,500 141,366 141,500 141,366
Number of Articles 7,818 7,806 5,965 5,955 5,965 5,955
(Pseudo) Adj. R-squared 0.267 0.374 0.664 0.660 0.664 0.661

Note:
LPM estimates are presented in cols. 1, 3, and 5. Logit estimates are presented in cols. 2, 4, and 6. All
regressions include year, month, and day-of-the-week fixed effects. Standard errors clustered by article
are reported in parentheses. The number of observations differs because of the inclusion of previous week
average in reporting accuracy in cols. 3-6. The difference in sample size between LPM and logit emerges
because observations without variation in the outcome are dropped for logit regressions. *** p < 0.001, *
p < 0.05.

Table 26: Additional Control Variables

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

Error𝑡−1 0.004** 0.004** 0.004*** -0.075** -0.066** -0.081***
(0.001) (0.001) (0.001) (0.024) (0.024) (0.024)

Time Trend 0.000*** 0.000+
(0.000) (0.000)

log(1 + Number of Cases) -0.001* 0.013
(0.000) -0.016

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.789*** 0.786***
(0.018) (0.018)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−2𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.798***
(0.017)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.687*** 0.692***
(0.012) (0.012)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−2𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.690***
(0.011)

Time Fixed Effects No Yes Yes No Yes Yes
Plant Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 141,500 141,500 162,003 141,500 141,500 162,003
Number of Articles 5,965 5,965 6,602 5,965 5,965 6,602
(Pseudo) Adj. R-squared 0.668 0.668 0.674 0.523 0.478 0.514

Note:
OLS regressions are presented in cols. 1-6. All regressions include year, month, and day-of-the-week fixed effects.
Standard errors clustered by article reported in parentheses.*** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.10.
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Table 27: Variating the Minimum Number of Batches

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4) (5) (6) (7) (8)
>=20 >=30 >=40 >=50 >=20 >=30 >=40 >=50
OLS OLS OLS OLS OLS OLS OLS OLS

Any Error𝑡 0.001 -0.000 -0.000 -0.000 0.011 0.009 0.014 0.015
(0.001) (0.001) (0.001) (0.001) (0.023) (0.023) (0.023) (0.023)

Any Error𝑡−1 0.003** 0.004** 0.004** 0.003** -0.039 -0.022 -0.018 -0.024
(0.001) (0.001) (0.001) (0.001) (0.024) (0.024) (0.024) (0.025)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.817*** 0.832*** 0.838*** 0.847***
(0.017) (0.017) (0.017) (0.016)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.702*** 0.707*** 0.709*** 0.711***
(0.012) (0.013) (0.013) (0.013)

Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Number of Observations 136,357 132,255 128,846 125,700 136,357 132,255 128,846 125,700
Number of Articles 3,647 2,576 2,002 1,654 3,647 2,576 2,002 1,654
Adj. R-squared 0.692 0.704 0.712 0.719 0.536 0.542 0.545 0.547

Note:
OLS regressions are presented in cols. 1-8. All regressions include year, month, and day-of-the-week fixed effects. Standard errors
clustered by article reported in parentheses. The header indicates the minimum number of times an article is produced to be included
in the analysis (i.e., 20, 30, 40, and 50). *** p < 0.001, ** p < 0.01.

Table 28: Excluding September 2016 and the First Half of 2020

Dependent Variables Reporting accuracy log(Throughput time)

Model (1) (2) (3) (4)
Excl. Sep. 2016 Excl. first half 2020 Excl. Sep. 2016 Excl. first half 2020

OLS OLS OLS OLS

Any Error𝑡 0.002+ 0.002 0.002 0.007
(0.001) (0.001) (0.022) (0.023)

Any Error𝑡−1 0.004** 0.003** -0.073** -0.062*
(0.001) (0.001) (0.025) (0.025)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.781*** 0.799***
(0.019) (0.018)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.692*** 0.695***
(0.012) (0.012)

Time Fixed Effects Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes
Number of Observations 139,849 130,016 139,849 130,016
Number of Articles 5,929 5,800 5,929 5,800
(Adj.) R-squared 0.659 0.688 0.523 0.528

Note:
OLS regressions are presented in cols. 1-4. All regressions include year, month, and day-of-the-week fixed effects. Standard
errors clustered by article reported in parentheses. *** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.10.
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Table 29: Errors and Reporting Accuracy Including Article Fixed Effects

Main Effect (H1) Interaction (H3a) Heterogeneity

Model (1) (2) (3) (4) (5) (6)
OLS 2SLS OLS OLS OLS OLS

Any Error𝑡−1 0.002 0.016* 0
(0.001) (0.007) (0.001)

Low𝑡−1 -0.002
(0.001)

Any Error𝑡−1 ×Low𝑡−1 0.008**
(0.002)

First Error𝑡−1 0.007**
(0.002)

Error Corrective Action𝑡 0.003+
(0.002)

Error Preventive Action𝑡 0.007**
(0.003)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.695*** 0.666*** 0.695*** 0.695*** 0.695*** 0.695***
(0.028) (0.037) (0.028) (0.028) (0.028) (0.028)

Time Fixed Effects Yes Yes Yes Yes Yes Yes
Article Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 141,500 91,555 141,500 141,500 141,500 141,500
Number of Articles 5,965 4,090 5,965 5,965 5,965 5,965
(Adj.) R-squared 0.399 0.338 0.399 0.399 0.399 0.399

Note:
All regressions include year, month, and day-of-the-week fixed effects. Standard errors clustered by article
reported in parentheses. Col. 2 shows the results of an IV regression for the years 2017-2021. *** p <
0.001, ** p < 0.01, * p < 0.05, + p < 0.10.
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Table 30: Errors and Throughput Time Including Article Fixed Effects

Main Effect (H2) Interaction (H3b) Heterogeneity

Model (1) (2) (3) (4) (5) (6)
OLS 2SLS OLS OLS OLS OLS

Any Error𝑡−1 -0.070*** -0.077 -0.077***
(0.020) (0.108) (0.022)

Low𝑡−1 0.005
(0.014)

Any Error𝑡−1 ×Low𝑡−1 0.037
(0.048)

First Error𝑡−1 -0.067
(0.041)

Error Corrective Action𝑡 -0.123***
(0.029)

Error Preventive Action𝑡 -0.096+
(0.049)

log(Thtoughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.374*** 0.373*** 0.374*** 0.374*** 0.374*** 0.374***
(0.011) (0.014) (0.011) (0.011) (0.011) (0.011)

Time Fixed Effects Yes Yes Yes Yes Yes Yes
Article Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 141,500 91,555 141,500 141,500 141,500 141,500
Number of Articles 5,965 4,090 5,965 5,965 5,965 5,965
(Adj.) R-squared 0.173 0.174 0.173 0.173 0.173 0.173

Note:
All regressions include year, month, and day-of-the-week fixed effects. Standard errors clustered by article
reported in parentheses. Col. 2 shows the results of an IV regression for the years 2017-2021. *** p < 0.001, +
p < 0.10.

Figure 10: Errors and Routine Performance, Lags and Leads of Errors Included One by One.
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E Appendix E

E.1 Additional Information on Instrumental Variable Approach

Table 31: Errors Reported by Customer 75259 on 29 March 2017

Error No. Description Plant Surface Treatment Article Id Date Order Id Customer Id

116 Wrong spraying technique 10 Painting 320071 2017-03-29 672875 75259
86 Wrong selection of mixed batch 10 Tufram®coating 132405 2017-03-29 671156 75259
49 Wrong production documents 10 Staining 189857 2017-03-29 674740 75259

130



F Appendix F

F.1 Difference-in-Differences Approach

To capture responses to errors using a difference-in-differences approach, we consider changes in

the dependent variables between days before (𝑡−1) and after (𝑡+1), an error on day 𝑡. Following

Foerderer & Schuetz (2022), we kept only an article’s first error in the sample to avoid multiple

treatments of the same article. To construct clean pre- and post-treatment windows, we only

consider panel observations with the first error on day t and no other errors on days 𝑡 − 2, 𝑡 − 1,

𝑡+1, and 𝑡+2. We set this restriction to avoid other errors directly preceding or succeeding our

measurements, influencing the results. Control groups, in contrast, have no prior errors up to

𝑡 + 2. To avoid overlapping observations, we construct control groups so that the control groups

of the same article do not use the same observation twice, i.e., for 𝑡 − 1 and 𝑡 + 1. Where 𝑡 − 1

and 𝑡 + 1 overlap, we only keep the first matching group in chronological order.

The above process results in 372 treatment groups and 4,681 control groups that match the

selection criteria. To achieve a balanced sample, we use one-on-one nearest-neighbor matching

in the Mahalanobis distance (which is a well-established distance measure that has been widely

used for matching procedures in management research; Cui et al. (2020), Friberg & Sanctuary

(2017), Liu et al. (2019)) on average daily throughput time (log-transformed), and average

daily reporting accuracy up to and including each matching point on day 𝑡 − 1. We use the

MatchIt package in R (version 4.2.0) for the matching procedure (Stuart et al., 2011). After this

procedure, we have 369 matching treatment and control groups with two observations per group

(𝑡 − 1 and 𝑡 + 1). The results in Table 32 show that the approach was effective at removing

the imbalance in observable features. In Table 33, we report the results of the difference-in-

differences analysis. The results are consistent with our main analysis and they indicate that

the treatment group has higher reporting accuracy and lower throughput time after an error has

been reported.
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Table 32: Characteristics of Treatment and Control Groups Before and After Matching

(1) Before Matching (2) After Matching

Measure Treatment Control t-statistic Treatment Control t-statistic

Avg. Daily Reporting Accuracy 0.973 0.954 -3.554*** 0.972 0.979 1.178
Avg. Daily log(Throughput Time) 3.434 3.500 1.352 3.434 3.433 -0.014

Number of Observations 372 4,681 369 369

Note:
Matching based on one-on-one nearest neighbor matching in the Mahalanobis distance. *** p < 0.001.

Table 33: Difference-in-Differences Results

Reporting Accuracy log(Throughput Time)

Model (1) (2) (3) (4) (5) (6)
Full Matched Matched + lagged DV Full Matched Matched + lagged DV
OLS OLS OLS OLS OLS OLS

Treat 0.011+ -0.003 -0.001 0.125+ 0.257*** 0.188**
(0.006) (0.006) (0.004) (0.065) (0.077) (0.071)

After -0.001 -0.004* -0.003 -0.079*** -0.020 0.038
(0.001) (0.002) (0.002) (0.015) (0.043) (0.053)

Treat ×After 0.013** 0.015*** 0.013** -0.185** -0.235** -0.355***
(0.004) (0.004) (0.005) (0.060) (0.073) (0.089)

Reporting Accuracy[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.613***
(0.087)

log(Throughput Time)[𝑃𝑟𝑒𝑣.−𝑊𝑒𝑒𝑘𝐴𝑣𝑔.] 0.684***
(0.037)

Time Fixed Effects Yes Yes Yes Yes Yes Yes
Plant Fixed Effects Yes Yes Yes Yes Yes Yes
Number of Observations 10,106 1,476 1,233 10,106 1,476 1,233
Number of Articles 1,282 528 528 1,282 528 528
Adj. R-squared 0.472 0.316 0.639 0.179 0.185 0.478

Note:
OLS regressions are presented in cols. 1-6. All regressions include year, month, and day-of-the-week fixed effects. Standard errors clustered
by article are reported in parentheses. The number of observations differs because of the implementation of one-on-one matching and
the additional inclusion of previous week averages of the dependent variables. *** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.10
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