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Abstract 

 

We present mathematical approaches for CPU accelerations to calculate matrix multiplications between 

a Single Nucleotide Polymorphism (SNP) matrix and another SNP matrix or a real-valued matrix. These 

accelerations are important in crucial time-relevant calculations of single-step evaluations and other 

methods in genetics. The presented algorithms are much faster than previous algorithms. The C-code is 

released as part of the software project ’miraculix’, which has been integrated into existing software 

such as MoBPS and MiXBLUP. We also discuss precision problems and missing SNP genotypes. 
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Introduction 

 

Many free and commercial software packages 

offer a broad range of methods in quantitative 

genetics, such as PLINK (Chang et al., 2015) and 

GCTA (Yang et al., 2011) to name a few. Others 

deal only with specific aspects, e.g., MiXBLUP 

(Vandenplas et al., 2022) with breeding value 

estimation or MoBPS (Pook, 2020) with breeding 

program simulation. In many of these 

applications, the most time-consuming steps are 

related to the Single Nucleotide Polymorphism 

SNP-matrix 𝑍 ∈ {0,1,2}𝑛×𝑠, which is multiplied 

to its transposed or a real-valued matrix. Here, 𝑛 

is the number of individuals and 𝑠 the number of 

SNPs per individual. Many packages uncompress 

the 2-bit-packed SNP-matrix in some way before 

further calculations. Here, some approaches for 

CPUs are presented that avoid this unpacking 

partially or fully. 

We will deal with matrix products of the form 

𝑍⊤𝑍 and 𝑍𝑍⊤, 

which is the so-called unweighted genomic 

relationship matrix (GRM), up to a factor 

(Fragomeni et al., 2017). Afterwards, we will deal 

with products of the form 

𝑍⊤𝑉 

where 𝑉 ∈ 𝑅𝑛×𝑝. As matrix products boil down 

mathematically to a collection of scalar products, 

we consider here scalar products, only. We first 

assume that missing values are absent. Afterwards, 

SNP matrices with missing values are considered 

together with certain precision considerations and 

centring of SNP matrices, since all three problems 

have similar mathematical foundations. We refer 

to Freudenberg et al. (2023a, 2023b) for 

benchmarks, including GPU solutions, and to 

Schlather (2020) for related and former methods. 

 

Materials and Methods 

 

For simplicity and clarity, we will primarily refer 

to commands of the Intel SSE instruction set 

family (128 bits). We comment on AVX2 and 

AVX512 explicitly when extensions of SSE are 

not obvious or when SSE is not enough for the 

given instructions. Note that most SSE commands 

can be easily transferred to the NEON instruction 

set through the header file sse2neon.h, for 

instance, in contrast to AVX commands. 

 

Notations 

In the subsequent pseudo-codes, &, |, and >>    

denote bitwise and, bitwise or, and shift to the 
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right, respectively. The signs ‘+’ and ‘-’ denote 

addition and subtraction in the decimal system. 

They can be interpreted as parallel operations on 

𝑘-bit pieces if it is guaranteed that no 𝑘-bit 

overflow or underflow appears. We will use this 

fact several times, for 𝑘 = 2,4,6,8 bits. 

In case a register is filled by a repeated 

sequence s of bits we write (s)*. For instance, 

(01)* means that zeros and ones are alternated. 

The variable ‘sum’ refers to some register that 

accumulates summands; in case partial sums must 

be calculated first, sum is further added up in a 

variable called `total’. 

Variables in the code pieces refer to Single 

Instruction Multiple Data (SIMD) registers, if not 

indicated differently; 𝑎 and 𝑏 indicate SNP values 

with a certain compressed coding. Finally, 

indexing assumes little endian. 

Mini Lookup Tables

The SSE command _mm_shuffle_epi8 offers a 

lookup table with 16 entries of 1 Byte. AVX 

implementations realize only more parallel 

lookups, while the size of the lookup table does 

not change. The lower 4 bits of each byte in the 

SIMD register are used to realize 16 lookups at 

once at a cheap prize of at most 1 clock cycle. 

Such mini lookup tables have a broad field of 

applications. For instance, they can be used for 

data transformation, adding-up neighboured 2-bit 

values, and to implement population counts (i.e., 

the number of bits in a register that equal 1) on 

systems without genuine popcnt command (Mula 

et al., 2016). We define 

shuffle(x) :=  

_mm_shuffle_epi8(x & (00001111)*, table) +       

_mm_shuffle_epi8((x>>4) & (00001111)*, table) 

where the values of the table depend on the context 

and can always be obtained by simple 

calculations. For instance, the popcnt table is 

{0,1,1,2, 1,2,2,3, 1,2,2,3, 2,3,3,4}. Since ‘sum’ 

may not exceed the value 255, regular clearance of 

‘sum’ is necessary. In case of popcnt this must 

happen after 31 iterations, the latest. 

Large Lookup Tables 

A lookup table with more than 16 entries can still 

be accessed in a reasonable time if the table fits 

well into the L1 cache. Hence, lookup tables for 

AVX registers should be addressed by at most 8-

bit, and ALU registers by at most 14 bits. 

Strassen algorithm 

An important algorithm for calculating a matrix 

product between large matrices is the Strassen 

algorithm (Strassen, 1969). For a quadratic matrix 

𝑍 ∈ 𝑅𝑛×𝑛 the standard costs for the product 𝑍𝑍⊤

are of order 𝑛3, whereas the costs of the Strassen

algorithm are of order 𝑛2.807. Indeed, in a

standard set-up of a double-precision matrix 𝑍, the 

Strassen algorithm is faster than the standard 

algorithm if 𝑛 is larger than about 103. Numerical

experiments suggest that the Strassen algorithm 

will be beaten in a SNP-SNP matrix multiplication 

by the best algorithms presented below up to 𝑛 ≈

106. Note that the Strassen algorithm performs

best in case of quadratic matrices. Otherwise, the

smallest edge length is decisive for its

performance. Hence the Strassen algorithm will

never be an option for calculating 𝑍⊤𝑉 in a single

step framework, where 𝑉 is a vector or a small

matrix. A further disadvantage of the Strassen

algorithm is that its numerical errors are larger

than those of the approaches presented here. Since

the fast multiplication of matrices is still an active

area of research, the limit 𝑛 ≈ 106 may change in

future.

SNP-SNP scalar products by integer product 

An immediate way of calculating the scalar 

product from a compressed 2-bit representation is 

to extract the first two bits of each of the two 

vectors 𝑎 and 𝑏, and to continue with integer 

arithmetic. Then, the next two bits are extracted 

using shifting, and so on. Clearly, this procedure 

can be vectorized. Of advantage here is the SSE 

command _mm_madd_epi16, which multiplies 

and adds two consecutive 16-bit integers so that 

only 7 shifts are necessary. This method is based 

on the 2-bit standard binary coding of {0,1,2}; in 

case of PLINK 1 binary coding, a preceding 

transformation is necessary to the standard 2-bit 

binary coding.  
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The speed can be improved by the following 

consideration. Let 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ {0,1,2} be 4 

SNP numbers. The two products 𝑎1𝑏1 and 𝑎2𝑏2 

can be calculated in a single multiplication 

through 

(𝑎1 + 2𝑐𝑎2)(𝑏1 + 2𝑐𝑏2)= 

 𝑎1𝑏1 + 2𝑐(𝑎2𝑏1 + 𝑎1𝑏2) + 22𝑐𝑎2𝑏2 

provided the result is identifiable, i.e., the three 

summands on the right-hand side occupy different 

bits in the binary representation of the above 

value. This is the case when 𝑐 > 3. Hence, 

convenient choices for 𝑐 are 𝑐 = 4,6 or 8. For 

instance, choosing 𝑐 = 8 reduces the number of 

calls of _mm_madd_epi16 to 4 and the number of 

shifts to 3 by the following code: 

   for (i=0; i<8; i+=2) 

sum += _mm_madd_epi16((a >> i) &       

           (00000011)*, (b >> i) & (00000011)*) 

Clearance of the variable ‘sum’ is necessary after 

7 iterations, 

 total += ((char *) sum)[0] + ((char *) sum)[2] 

The analogue AVX512 command is 

_mm512_dpbusd_epi32, which sums up 4 

products of adjacent 8-bit integers into a 32-bit 

integer. Hence, 𝑐 = 4 and 𝑐 = 8 are not possible 

and 𝑐 = 6 leads to 3 calls of 

_mm512_dpbusd_epi32. 

 

SNP-SNP scalar products by lookup tables 

The following algorithm relies on data with 

PLINK 1 binary format, where the coding 00𝑝 =

0𝑑, 10𝑝 = 1𝑑  and 11𝑝 = 2𝑑  is used. Here, the 

index 𝑝 and 𝑑 denote PLINK 1 binary coding and 

decimal coding, respectively, 

     c:= a xor b 

d:= ~(c >> 1) & c & (01)*  

     sum += shuffle( (a & b) - d ) 

 

Note that 𝑑 = 01𝑏, if the decimal result is 2, and 

𝑑 = 00𝑏  otherwise. 

SNP-SNP scalar product for chromosome data 

If data are available per chromosome, we have two 

matrices 𝑍11, 𝑍12 ∈ {0,1}𝑛×𝑠 where the value 1 

indicates a deviation from the reference allele and 

𝑍11 + 𝑍12 equals the SNP matrix 𝑍. Then, the 

non-centred relationship matrix is given by 

(𝑍11 + 𝑍12)(𝑍11
⊤ + 𝑍12

⊤ )= 

      𝑍11𝑍11
⊤ + 𝑍11𝑍12 + 𝑍12𝑍11

⊤ + 𝑍12𝑍12
⊤  

Note that all scalar products on the right-hand side 

are between binary data, so that the multiplication 

step can be realized by the bitwise & and the 

adding-up by popcnt. Obviously, this algorithm 

can be used also for genomic data after a 

preprocessing step, where the genome data are 

artificially split into data per chromosome. 

 

SNP-SNP scalar product based on the Hamming 

Distance 

An interesting algorithm has been introduced in 

PLINK (Purcell et al., 2007; Chang et al., 2015) 

and has been based on the idea that a value can be 

represented by the number of bits that equal 1 in a 

4-bit representation. The values of the vectors 𝑎 

and 𝑏 must be coded asymmetrically by two 

mappings 𝑓 and 𝑔, say, as a coding by a single 

mapping is not possible. Then, the bitwise &-

operator is applied before popcnt is applied. Table 

1 gives a possible realisation. 

 

Table 1. Values for the Hamming distance method. 

𝑓(⋅) ∧ 𝑔(⋅)  𝑔(0)=0000𝑏  𝑔(1)= 0011𝑏  𝑔(2)=1111𝑏   

𝑓(0)=0000𝑏    000𝑏   0000𝑏   0000𝑏  

𝑓(1)= 0110𝑏    0000𝑏   0010𝑏   0110𝑏  

𝑓(2)=1111𝑏    0000𝑏   0011𝑏   1111𝑏  

 
Overview over SNP-SNP algorithms 

Tables 2-6 give an overview over some properties 

of the divers approaches. 

 

Table 2. Amount of additional cache/memory. 

Method Cache/memory needs 

Integer product Space for partial sums 

Mini lookup table Space for partial sums 

Per chromosome No extra needs for AVX512 

Hamming distance Each SNP needs 8 bits 

instead of 2 
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Table 3. Rough speed of the algorithm; the speed 

depends on the hardware and the specific coding. 

Method Speed 

Integer product Highly hardware dependent; 

fast on AVX512 & GPU 

Mini lookup table Intermediate 

Per chromosome High on AVX512 

Hamming distance High on AVX512 

 

Table 4. Generality of the algorithm with respect to the 

hardware. Note that AVX512 has a lot more commands 

available and that the available set of commands differs 

between CPU and GPU. 

Method Hardware generality 

Integer product Any; currently, hardware is 

being developed in favour of 

this algorithm 

Mini lookup table All SIMD variants 

Per chromosome Well adapted to GPU & 

AVX512; modifications work 

for all SIMD variants 

Hamming distance All SIMD variants 

 

Table 5. Number of registers needed for the 

calculations. 

Method Register need  

Integer product Several 

Mini lookup table Many 

Per chromosome Few 

Hamming distance Few 

 
Table 6. Generality of the algorithm with respect to the 

coding of a SNP. If the algorithm is not general, much 

more memory is needed as a preceding re-coding is 

necessary. 

Method SNP coding generality 

Integer product Standard binary coding needed; 

re-coding on the fly possible 

Mini lookup table Principle suits any 2-bit coding; 

adaptions necessary 

Per chromosome Inherent coding; ideal for 

information per chromosome 

Hamming distance Inherent coding 

 

SNP-double scalar products 

In contrast to the bunch of algorithms for SNP-

SNP scalar products, the spectrum of possible 

approaches to perform SNP-double scalar 

products is narrower and the algorithms simpler. 

SNP-double scalar products can be performed 

by preceding conversion to double, essentially in 

the same way as for the integer product, except 

that the obtained, intermediate integer value is 

transformed into a double-precision value before 

being multiplied. 

Since a SNP can take only the three values 0, 

1 and 2, the implementation by addition is 

another, ensnaring approach.  There are at least 

two variants of this idea. First, GPUs and AVX512 

allow a conditional addition by indirect or direct 

masking, e.g., _mm512_mask_add_pd in 

AVX512, without loss of speed in comparison to a 

simple add command. Second, the if-condition is 

a moderately expensive command provided it does 

not lead to a far jump. Hence, the multiplication 

can be implemented by two nested if-conditions. 

The last approach given here is more intriguing 

and mathematically more complex. It is called 

5codes (Freudenberg et al., 2023b). For 

convenience, we repeat the algorithm here.  Let 

𝑌 = 𝑍⊤𝑉 and start with the well-known fact, that 

for fixed, real-valued values 𝑉𝑗 ∈ 𝑅, the product 

𝑍𝑖,𝑗
⊤ 𝑉𝑗 takes only 3 different values for arbitrary 

𝑍𝑖,𝑗
⊤ ∈ {0,1,2}. Hence, a partial scalar product 

𝑍𝑖,𝑗
⊤ 𝑉𝑗 + ⋯ + 𝑍𝑖,𝑗+𝑘−1

⊤ 𝑉𝑗+𝑘−1 can take at most 

3𝑘 different values. So, by creating a lookup table 

𝐻𝑗,𝑘, we can replace 

   for (j=0; j<nrow(Z); j+=k)  

  Y[i] += Z[ j,i]*V[j]+…+Z[ j+k-1,i]*V[j+k-1]  

by 

for (j=0; j<nrow(Z); j+=k) 

       Y[i] += Hj,k(Z[ j,i], … Z[ j + k - 1,i]) . 

Since 35 = 243, we can use 𝑘 = 5 SNP values 

to index 𝐻 by a single byte. Hence, a lookup table 

of doubles has less than 2000 Bytes. Now, 𝑚 

tables may fit into the L1 cache, so that the final 

pseudo-code reads 

  for (j=0; j<nrow(Z); j += m * k) 

     Y[i] += Hj,k(Z[ j,i], …, Z[ j + k - 1,i]) + … + 

  Hj+(m-1)k,k(Z[j + (m-1) k, i], …, Z[j + m k-1, I]) 
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Overview over SNP-double algorithms 

Tables 7-11 give a comparative overview of the 

properties of the different approaches. 

 

Table 7. Amount of additional cache/memory. 

Method Cache/mem need 

Conversion to double Space for converted values 

Conditional adding (mask) None 

Conditional adding (if) None 

5-codes Lookup table in L1 

 
Table 8. Rough speed of the algorithm; the speed 

depends on the hardware and the specific coding. 

Method Speed 

Conversion to double Intermediate 

Conditional adding (mask) Very high 

Conditional adding (if) Very dependent on the 

implementation 

5-code High 

 

Table 9. Generality of the algorithm with respect to the 

hardware. Note that AVX512 has a lot more commands 

available and that the available set of commands differs 

between CPU and GPU. 

Method Hardware generality 

Conversion to double Any 

Conditional adding (mask) AVX512 & GPU 

Conditional adding (if) Any 

5-codes Any 

 
Table 10. Number of registers needed for the 

calculation. 

Method Register need  

Conversion to double Few extra registers 

Conditional adding (mask) Few extra registers 

Conditional adding (if) Extra ALU registers 

5-codes Extra ALU registers 

 
Table 11. Generality of the algorithm with respect to 

the coding of a SNP. If the algorithm is not general, 

much more memory is needed as a preceding re-coding 

is necessary. 

Method SNP coding generality 

Conversion to double General; adaptions necessary 

Cond. adding (mask) Adaptions necessary 

Conditional adding (if) General; adaptions necessary 

5-codes Inherent coding 

 

Centring, missing values and precision 

The above sections have considered the scalar 

product for the non-centred GRM, only. There, it 

has also been assumed that no missing values are 

present. In this section, we extend the above 

results to centred GRM and allow for missing 

values. We assume, however, that the portion of 

missing values is small. 

A typical situation in genetics is that the 

phenotype 𝑉 is non-negative. Hence, all products 

in 𝑍⊤𝑉 are non-negative, so that the calculation of 

the scalar product cannot profit from 

cancellations. A simple measure for an increased 

precision is to centre 𝑉 and/or 𝑍 before 

calculation. Of course, further action to increase 

precision can be taken, e.g., using higher precision 

formats such as long double. 

Below, we choose an approach that includes 

considerations for calculating both GRM and LD, 

in a rather general set-up. 

 

Centred GRM 

Schlather (2020) has shown that centred and 

normalized GRM (VanRaden, 2008; Wals and 

Lynch, 2018) can be calculated without loss of 

performance. Indeed, first the non-centred GRM 

can be calculated as above. Afterwards, the result 

can be corrected at low costs. To this end, let 𝐼𝑘 be 

the vector of length 𝑘 whose components are all 

equal to 1. The centred and normalized GRM 𝐺 is 

defined as 

𝐺 = (𝑍 − 𝑄) (𝑍 − 𝑄)⊤ 𝜎2⁄  

where 

𝑄 = 2𝐼𝑛𝑝𝑠
⊤ 

𝜎2 = 2 ∑ 𝑝𝑠,𝑖
𝑠
𝑖=1 (1 − 𝑝𝑠,𝑖) 

and the 𝑝𝑠,𝑖 are the allele frequencies. Then, 

𝜎2𝐺 = 𝑍𝑍⊤ − 𝐼𝑛(2𝑍𝑝𝑠)⊤ −

              (2𝑍𝑝𝑠)𝐼𝑛
⊤+4𝐼𝑛(𝑝𝑠

𝑇𝑝𝑠)𝐼𝑛
⊤

. 

Obviously, the matrix 𝜎2𝐺 can be calculated from 

𝑍𝑍⊤ at low computational costs of order 𝑛[𝑠 +

𝑛]. As the calculation of 𝜎2 has costs of order 𝑠, 

the total computational costs for retroactive 

centring are some magnitudes smaller than the 

costs for calculating the cross-product 𝑍𝑍⊤.  

If there are no missing values and 𝑝𝑠 equals the 

empirical allele frequency 𝑛−1𝑍⊤ 𝐼𝑛 2⁄ , the value 

2𝑛2𝜎2 and the matrix 𝑛2𝜎2𝐺 are integer-valued 

and hence can be calculated exactly, so that the 

numerical errors in 𝐺 can be reduced to a 

minimum. The costs for calculating 2𝑛2𝜎2 and 
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𝑛2𝜎2𝐺 from 𝑍𝑍⊤ are also of order 𝑛[𝑠 + 𝑛], see 

Schlather (2020) for details. Note that the 

components of 𝑍𝑍⊤ are unsigned 32-bit integers 

in standard applications, whereas 2𝑛2𝜎2 and 

𝑛2𝜎2𝐺 need a 64-bit integer representation. 

 

Allele frequencies in presence of missing values 

Let 𝑁 ∈ 𝑅𝑠×𝑠 and 𝑆 ∈ 𝑅𝑛×𝑛 be the diagonal 

matrices whose diagonal elements equal to 𝑛 

(respectively 𝑠) minus the number of missing 

values in the respective row (column) of 𝑍⊤. 

Then, the vector of empirical allele frequencies 

might be defined as 

𝑓𝑠: =
1

2
𝑁−1𝑍⊤𝐼𝑛 

Let 

𝑔𝑛: =
1

2
𝑆−1𝑍𝐼𝑠 

be the analogue mean taken in the direction of the 

SNPs, which appears in LD calculations. 

 

Numerical centring 

While the centring of GRM should always be 

performed retroactively, a preceding centring of 𝑍 

and/or 𝑉 in 𝑍⊤𝑉𝑛 or 𝑍𝑉𝑠 increases the precision of 

the result. A retroactive correction of this 

numerical centring is of low cost. Let 

𝐵 = 𝑍 − 2𝑐𝐼𝑛𝑝𝑠
⊤, 

where 𝑝𝑠 ∈ 𝑅𝑠 is any arbitrary vector. It is close 

to 𝑓𝑠 in standard practical applications. For an 

advantageous centring of 𝑉𝑛, we aim to minimize 

∥ 𝐵(𝑉𝑛 − 𝜇𝑛𝑒𝑛) ∥= min
𝜇𝑛

!, 𝑉𝑛 ∈ 𝑅𝑛 

for some fixed vectors 𝑒𝑛 ∈ 𝑅𝑛, which may 

depend on 𝑍.  The minimization problem has the 

solution 

𝜇𝑛 =
𝑒𝑛

⊤𝐵⊤𝐵

𝑒𝑛
⊤𝐵⊤𝐵𝑒𝑛

𝑉𝑛, 

where 

𝑒𝑛
⊤𝐵⊤𝐵= 

𝑒𝑛
⊤𝑍𝑍⊤ − 2𝑚𝑛𝑐𝑞𝑛

⊤ [[𝑐 −
𝑒𝑛

⊤𝑍𝐼𝑠

𝑚𝑛
] 𝐼𝑛×𝑛 −

𝑆

𝑠
] 

with 𝐼𝑛×𝑛 the identity matrix and 𝑚𝑛 = 2𝑠𝑒𝑛
⊤𝑞𝑛.  

If there are only a few missing values, i.e. 𝑆 𝑠⁄ ≈

𝐼𝑛×𝑛, we have 

𝑒𝑛
⊤𝐵⊤𝐵 ≈ 𝑒𝑛

⊤𝑍𝑍⊤ − 2𝑚𝑛𝑐(𝑐 − 2)𝑔𝑛
⊤. 

If we further choose  𝑒𝑛 = 𝐼𝑛, then 

𝐼𝑛
⊤𝐵⊤𝐵 ≈ 2𝑛𝑓𝑠

⊤𝑍⊤ + 2𝑚𝑛𝑐(𝑐 − 2)𝑔𝑛
⊤ 

and 

𝐼𝑛
⊤𝐵⊤𝐵𝐼𝑛 ≈ 𝐼𝑛

⊤𝑍𝑍⊤𝐼𝑛 + 𝑐(𝑐 − 2)
𝑚2

𝑠
 

where 𝑚 = 𝐼𝑛
⊤𝑍𝐼𝑠. Analogous formulae hold for 

an advantageous centring of  𝑉𝑠. 

 

Genetic centring  

In genetics, the centred matrices 

𝑍 − 2𝐼𝑛𝑝𝑠
⊤  and  𝑍⊤ − 2𝑝𝑠𝐼𝑛

⊤, 𝑧 ∈ {0,1}. 

are of interest, where 𝑝𝑠 is the or any given allele 

frequency. Here, we combine these centred 

matrices with the numerical centring above in a 

rather general way. To this end, let 𝑧 ∈ {0,1} 

denote whether genetically motivated centring is 

of interest, i.e., we consider 

𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ or 𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛

⊤, 𝑧 ∈ {0,1}. 

Let 𝑐, 𝜈 ∈ {0,1} denote whether numerical 

centring of 𝑍 and 𝑉, respectively should be 

performed. Then we get for arbitrary 𝜇𝑛, 𝜇𝑠 ∈ 𝑅, 

𝑝𝑠 ∈ 𝑅𝑠, and 𝑞𝑛 ∈ 𝑅𝑛, that 

(𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤)𝑉𝑛 = 

(𝑍𝑇 − 2𝑐𝐼𝑠𝑞𝑛
⊤)(𝑉𝑛 − 𝜈𝐼𝑛𝜇𝑛)

− 2𝑧(𝐼𝑛
⊤𝑉𝑛)𝑝𝑠+2𝑐(𝑞𝑛

⊤𝑉𝑛)𝐼𝑠+𝜈𝜇𝑛𝑍⊤𝐼𝑛

− 𝑐𝜈𝜇𝑛(𝑞𝑛
⊤𝐼𝑛)𝐼𝑠 

and 

(𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤)𝑉𝑠 = 

(𝑍 − 2𝑐𝐼𝑛𝑝𝑠
⊤)(𝑉𝑠 − 𝜈𝐼𝑠𝜇𝑠)+𝜈𝜇𝑠𝑍𝐼𝑠+ 

2(𝑐 − 𝑧)(𝑝𝑠
⊤𝑉𝑠)𝐼𝑛 − 𝑐𝜈𝜇𝑠(𝑝𝑠

⊤𝐼𝑠)𝐼𝑛 

so that the first term on each right side is critical 

concerning computational costs, and the 

remaining summands can be considered as 

correction terms. Note that 𝑍⊤𝐼𝑛 needs to be 

calculated only once in for every genotype matrix 
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𝑍. More generally, let 𝜁 ∈ {0,1} indicate the 

centring in SNP direction. Then formulae for  

(𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛  

and 

(𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠 

can easily be derived from the above equations. 

Note that all the above formulae hold independent 

of the values of 𝑝𝑠 and 𝑞𝑛. We have only assumed 

that the numerical centring of the matrices 𝑍 and 

𝑍⊤ uses the same vectors. 

 

Missing values 

Assume we aim to calculate 

𝑥 = (𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛 

or 

𝑦 = (𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠 

for arbitrary vectors 𝑝𝑠 ∈ 𝑅𝑠 and 𝑞𝑛 ∈ 𝑅𝑛 with a 

missing value in the position (𝑗𝑘, 𝑖𝑘) of the matrix 

𝑍 for  𝑘 = 1, … , ℓ. We define 𝑍𝑗𝑘,𝑖𝑘
: = 0 for all 

𝑘 and let 𝐼 be the set of coordinates of all ℓ  

positions. Then, we have for 𝑧, 𝑐, 𝜈 ∈ {0,1} and 

arbitrary 𝜇𝑛, 𝜇𝑠 ∈ 𝑅, 𝑝𝑠 ∈ 𝑅𝑠, and 𝑞𝑛 ∈ 𝑅𝑛, that 

𝑥𝛼 = ∑ (𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤

𝛽,(𝛼,𝛽)∉𝐼

− 2𝜁𝐼𝑠𝑞𝑛
⊤)𝛼𝛽 (𝑉𝑛)𝛽 

 = ((𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛)
𝛼

+ 

  2 ∑ (

𝛽,(𝛼,𝛽)∈𝐼

𝑧(𝑝𝑠)𝛼 + 𝜁(𝑞𝑛)𝛽)(𝑉𝑛)𝛽 

𝑦𝛼 = ((𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠)
𝛼

+ 

  2 ∑ (

𝛽,(𝛽,𝛼)∈𝐼

𝜁(𝑞𝑛)𝛼 + 𝑧(𝑝𝑠)𝛽)(𝑉𝑠)𝛽. 

This shows that matrix multiplications can be 

corrected for missing values retroactively even in 

very general set-ups. The corrections terms, i.e., 

the second summands in the above two equations, 

cause total computational costs proportional to the 

number of missing values in 𝑍. The 

proportionality constant is large, however, 

because of cache misses, the outage of SIMD 

commands and the outage of tiling, at least in 

simple implementations. 

 

Implementation of the numerical centring 

While the centring of 𝑉𝑛 and 𝑉𝑠 is simple, the 

centring of 𝑍 and 𝑍⊤ comes with extra 

computational costs for the conditional adding 

algorithms. Both the conversion to doubles and the 

5-code algorithm do not lose speed and the 

implementation of the numerical centring is 

simple. 

 

Conclusion  

 

Algorithms for compressed SNP data can differ 

largely from simple approaches, such as 

decompression. Fast algorithms are hardware 

dependent and so change over time. Centring and 

missing values do not need to be considered in fast 

algorithms provided the number of missing values 

is small. Some increase in precision is possible 

without loss of speed, but with additional 

programming effort and use of special coding, 

e.g., 5-codes. 
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