Aspects of Consistency Driven Planning *
Guido Moerkotte Holger Miiller Joachim Posegga

Universitat Karlsruhe
Fakultat fiir Informatik
Postfach 6980, 7500 Karlsruhe, FRG

{moer|mueller|posegga}@ira.uka.de

Abstract

A new planning paradigm called consistency driven planning was introduced
in [1]. It builds on current deductive database technology, especially on consistency
maintenance. This paper extends the approach and discusses several theoretical
and practical aspects of consistency driven planning. More specifically, we are dis-
cussing the formal properties resulting from the combination of different planning
strategies, search strategies, and pruning techniques. Especially, we are interested
in the completeness of the different combinations. Some experimental results give
first insight into the performance of the various techniques.

1 Introduction

We describe an approach to planning based on deduction. The advantages of deductive
systems are well-known; they have clear semantics (namely the semantics of the underlying
logic) and are quite well understood from a theoretical point of view. However, in practical
applications deduction techniques tend to be rather inefficient, unless applied carefully.

STRIPS [4] and the situation calculus [6] show two extremes of using deduction within
a planner. In STRIPS, deduction is only used for checking preconditions of actions, while
situation calculus does everything by deduction using a theorem prover. The latter does
not seem appropriate when one is interested in building usable planners, since small toy
problems already overwhelm state-of-the-art provers with inferences [2].

The approach we propose lies between these two extremes. We use deduction for mo-
deling states and transitions between states, but leave the actual search for a plan to a
specialized algorithm. This avoids the semantic problems of STRIPS [9] and rules out
the most important reasons for inefficiency. Additionally, incompleteness of linear plan-
ners, exemplified by the Sussman Anomaly can be avoided. The rest of the introduction
informally describes the basic ideas of our approach. Subsequent sections elaborate and
formalize these ideas.

“This work was partly supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 314
“Artificial Intelligence and Knowledge-Based Systems”, Project D5.

301

The starting point is a description of an initial world Wj in a planning scenario (in a
suitable first-order language), and a set of domain constraints C that must always hold.
If an operator op is executed, we want to compute the subsequent world W;. The first
problem to be faced is the frame problem [10]. Ginsberg and Smith [5] offer the following
solution: put the action’s postconditions into W) and copy all formulas from W, to W;.
Then delete as few formulas with origin W, as possible from W; until it becomes consistent
with C. The qualification and ramification problem can be treated in a similar way.

Our approach adopts this idea but uses a deductive database for modeling states and
a repair mechanism which allows us to automatically detect and remove inconsistencies
in the database (see [11, 12]). There are two important advantages over the Ginsberg and
Smith approach. First, we avoid the problem that syntactically different but semantically
equivalent axiomatizations yield different results [15] by a careful choice of the language’s
syntax. And, secondly, we not only allow formulas from W, to survive in Wy, but also
generate new ones if necessary!. This is advantageous, because it allows us to compute
more information than is given by the original goal before the actual planning starts.
Thus, we perform a completion of the goal. This completed description gives valuable
information for the plan search. Sussman’s conjunctive goal problem (see Fig. 1) is used
for illustration.

a
c b
a b c
Initial world Goal world

Figure 1: The conjunctive goal problem

W, is given by the facts {on(a,table). on(c,a), on(b,table)}, the goal G is {on(a,b),
on(b,c)}, and C is a set of appropriate domain constraints for the blocks world (like “no
object must be at two places”, “blocks must not ‘fly around’ but rest on something that
is fixed”, etc.) In order to get a complete description of the goal state Wg, we add G to
Wy resulting in

We = {on(a,table),on(c, a),on(b,table), on(a,b),on(b,c)}.

This violates several constraints: block ‘a’ is at two places, thus ‘on(a,table)’ must be
deleted. For the same reason ‘on(b,table)’ must go?. We now have Wg = { on(a,b),
on(b,c), on(c,a)}, which is an impossible ‘circular’ tower, therefore ‘on(c,a)’ also disap-
pears. The result is —in this case- a world holding only the goal. However, this still
violates a constraint, namely that every object must be at a certain place. Block ‘¢’ is
not, so we must find a place for it. The only choice here is adding ‘on(c, table)’, so finally
We = {on(a,b),on(d, c), on(c,table)}, the goal state of figure 1. As it can be seen, we
arrived at a complete description of the goal state.

IThere is of course a price to be paid for that: a complete description of the world is required.
?Recall that only formulas coming froth Wy may be deleted.

302

To summarize, the key idea of our approach is to borrow ideas from deductive data-
base technology for modeling worlds in planning and to use techniques for detecting and
resolving inconsistencies to model transitions from one world to another. By these means,
we compute a complete description of a possible goal world and use this information to
guide a dedicated (linear) planning algorithm. As the main driving force is regaining
consistency, we call our approach Consistency Driven Planning (CDP).

The rest of the paper is organized as follows. In section 2, we show how planning do-
mains can be formalized using the CDP approach. The repair mechanism used to achieve
consistent worlds is presented in section 3. Major properties of the repair mechanism
are stated also. Section 4 includes the basic planning algorithm and several techniques
which allow to prune parts of the search tree. The completeness of the planner is proven
in 5. Some empirical results for different domains are presented in section 6. Section 7
concludes the paper.

2 Formal Representation of Domains

The description of domains and states of domains is based on a subset of the language
of the first-order predicate calculus. Therefore, we repeat some of the basic definitions.
A signature ¥ is a pair (Ksx,(Ps,:);) where Ky is a set of constant symbols usually
denoted by small letters a,b,c,... and (Pg;); is a family of predicate symbols. V is a
set of variables which are denoted by small letters from the end of the alphabet. The
set of atoms Atomsg is defined as {p(t1,...,ts) | t: € Kz UV & p € Pgn}. The set of
literals Lity is the union of all atoms and their negations. A literal is called ground if it
contains no variables. A fact is a ground atom. The complement operator ¢ changes the
signs of a set of literals L C Litg: L° = {—ala € Lity N Atomzg} U {a|-a € Lit\ Atomg}.
The set of formulas Forg is the smallest set obeying the following inductive definition:

e all atoms are formulas

o if fi and f; are formulas and z is a variable then ~ f1, fi V fa, fiA fo, fi = f2, V2 fy,
and dz f; are formulas.

Deviating from classical logic, we restrict the definition of the consequence relation =C
Fors X Fors to models I where every element of universe of I is named by exactly one
constant ¢ € Ky. Thus, we assume that each model satisfies the domain closure axiom
and the unique names assumption. In other words, in the subsequent formalization of
domains each object of the domain is represented by exactly one constant.

A universally quantified formula f of the form Vz;...Vzi(ai,...,a, = ao) where
ag, ..., a0, are atoms is called a rule. ag is the head of the rule f and ay,...,a, is the
body of f. A predicate which occurs in a head of at least one rule is a derived predicate
otherwise it is a base predicate. In the following, we assume that all formulas are range-
restricted®. Range restricted formulas are domain independent, i. e., the truth value of a
formula does not depend on the selected signature X.

Different aspects of a planning domain can be represented by different elements of the
CDP-language. Properties which should hold but which could be violated by operators

3The notion of range-restrictedness was introduced in [13]

303

are formulated by consistency constraints and properties which express universal relations
are described by rules. The actual state of a domain is represented by a set of facts.

Definition 2.1 (possible worlds) A possible world is a triple (Wsacts, Wrutess Weonstr)
where: .

o Wiaers is a set of ground atoms
o Wiues s a set of range restricted rules

o Wionstr 15 a set of range restricted formulas called consistency constraints*

and no fact of Wgaees has a derived predicate.

Obviously, a possible world can directly be represented by deductive database. In order
to model constant parts of a domain, protected predicates are introduced whose cor-
responding facts may not be affected by any action. For example, information concerning
the type’ of a constant can be described by a protected predicate is. A fact ¢s(a, block) in
the blocks world domain describes the unchangeable property of a to be a block. A possi-

ble world W = (W/,ctsy Wiutes; Weonstr) describes the state of a domain by its completion
comp(W):

comp(W) :=
{alais a fact, Wyges U Wintes |= a} U {—ala is a fact, Wyaets U Wiwtes = a}

By incorporating the closed-world assumption, we arrive at a complete description of the
state. For a formula f (or a set of formulas F), Comp(W) = f (F) is abbreviated by

W = f (F).
Definition 2.2 (consistent worlds) A world W = (Wactsy Wrules, Weonstr) 15 consi-
stent iff comp(W) U Weonstr is logically consistent

Because of the modified definition of the consequence relation = the defining condition
of 2.2 is equivalent to the assertion comp(W) = Weonstr-

The change of a world is described by a world transition wt C {add(l), del(l) |
! ground atom }:

wt((Wfactsa Wrules, Wconstr)) =
(Wraets \ {1 | del(l) € wt} U {I] add(l) € wt}, Wrutes, Weonstr))

In the terminology of database systems world transitions are simply transactions which
operate on databases. The function I' maps a world transition wt to a set of literals
{1| add(l) € wt} U {=l | del(l) € wt}: Since I is bijective I'(wt) can be seen as another
representation of wt. Subsequently, we will use both forms for the representation of world
transitions. The A-operator describes the difference between two sets of literals:

AL L):={l|le U\L}u{l°|le L\ L}

Ajacts yields the difference between the set of facts of two possible worlds and Acomp
between the completion of both.

World transitions are used to describe the effects which can be achieved by an agent
in a domain. Since an agent cannot handle every object in every state of the domain the
functionality of agents are described by operator specifications:

4a synonymous term would be integrity constraints

304

Definition 2.3 (operator specifications) An operator specification is defined as

declare opsym(zi,...,zn)
Range Fi,nge C Forg
Pre Fyre C Forg
Post Lyost C Litg
end

where opsym is the name of the operator and the parameters 1, ..., T, are variables. All
predicates of Frange have to be protected and Lp,se must not contain any derived predicate.
The formulas of Frange,” Fpre, and Lyost may contain only i,...,T, as free variables.
The formulas 3zy, ..., 3T AseFrang. f a4 AseF,,. fo where o is a ground substitution for
zy,...,T, have to be range restricted.

An operator op is a head of an operator specification, where all parameters xy,...,z,
are replaced by constants. range(op), pre(op) and post(op) refer to the fully instantiated
sets of Frange, Fpre, and Lyost, respectively. An operator op is a valid instantiation of
an operator specification with respect to world W if W = range(op).

The range restrictedness of the formulas guarantees that the truth value of the range
and the precondition of an operator op for a possible world W depends only on Wyacis
and Wy, and not on the signature ¥. Since the range of a specification contains only
protected predicates the range range(op) of an operator op is valid either in all possible
worlds of a domain or in none. Therefore the range specifies the domain or ’type’ of
the parameters of an operator. Whereas the precondition specifies those possible worlds
in which an operator is applicable. If we use deductive databases to represent possible
worlds, we can use the answer mechanism of the deductive database system to determine
all valid instantiations by the usage of queries representing the range of the specification.

op(W) = I'"1(post(op))(W) is the world which results from the application (or execu-
tion) of an operator op on a world W. Since the postcondition of an operator contains
no derived predicates the postcondition holds after the execution: op(W) k= post(op)® A

plan is a sequence of operators. The application of a plan [op1,...,0ps] on a world W is
defined by the application of the concatenated operators op, o- -0 op; on W. Each plan
[op1, - .., 0p,] defines a unique sequence of possible worlds Wi, ..., Wy:

L Wfacts,i = (Wfacts,i—l \ POSt—(OPi))UP03t+(0Pi)

whereas I'Vrulee;e,t' = rules = rules,0 &Ild Wconstr,i = constr = constr,0 remain unChanged'
An operator op; is called an establisher of a literal ! for a world Wj if I € post(op),
Wi_1 ¥, and W, |= [for each k =,...,j. In the case of I° € post(op) and Wiy =1 the
operator op; is a destroyer of [.

Finally, with the definitions above, the two main notions of planning can be formalized:
planning problems and their solutions. A planning problem is a triple (Ws, OP,G),
where W, is a consistent initial world, OP a set of operator specifications, and G is

5If we allowed derived predicates in the postcondition, we would have to select between two difficulties.
Firstly, if we had not changed the above definition of operator application, the deletion of a derived fact f
might not result in a world in which —f holds. Secondly, in order to delete f in any case several other
facts which allow the derivation of f may also be deleted from Wyaces. In this case there may be several
ways to achieve this goal, i.e., the operator application would yield several possible successor worlds.

305

a set of closed, range-restricted formulas called the goal. For uniformity reasons, we
assume that a goal G implicitly introduces an operator goal(), where pre(goal()) := G and
post(goal()) is empty.

A plan is called a solution for a planning problem, iff

1. op, = goal(),
2. Vie {1,...,n} : Comp(W;_,) = Pre(op;), and
3. Vie {l,...,n} : W; is consistent.

In terms of planning, this means that before inserting an operator into an operator se-
quence two things have to be verified: (i) the preconditions of the operator must be
satisfied, and (i1) the resulting world must be consistent. An operator which violates one
of these conditions is called critical.

A plan P = [op,,...,0p,] is a subplan of a plan P’ = [op,..., op},] (P C P') if there
exists a monotonic and injective function 7 such that op! = op,; for each € {1,...,n}.
A solution plan is optimal if no subplan of plan is a solution.

The blocks world is used to illustrate the definitions above. A complete axiomatization
is presented in figure 2. The rules and constraints Wiyies 0 and Weonstr,o verbally read as
follows:

support-rule-1: an object which stands on another one is supported
by that object

support-rule-2: every object supports all objects that stand on it

constr-1: everything can be at one place only

constr-2: only one block can be on another

constr-3: every block is supported by the table

constr-4: only blocks can stand on other objects

3 Achieving Consistent Worlds

In this section, we mainly summarize the results of [12]. In the last part, we proof a key
property of the repair system which lay the foundation for the completeness proofs of the
various pruning techniques of section 4.

Definition 3.1 (symptoms and rehpairs) Let W = (Wyacts, Wrules; Weonstr) be a pos-
sible world, F € Forg with W ¥ F, S C Lity a set of ground literals, and wt a world
transition.

1. S is a symptom® for F iff (Comp(W)U S)\ S° = F and S minimal
2. wt is a repair for F iff wt(W) |= F' and wt minimal

SIn [12] the expression (Comp(W)\ S)U S® |= {f} is used to define symptoms. In order to represent
symptoms and world transitions in a similar way, we have changed the original definition.

306

Weutes,o: support-rule-1: Vz,z2: on(zy, z;) = supported-by(zy, z2)
support-rule-2 : Vz,,x2,z3: on(zy,z3) A supported-by(za, z3)
= supported-by(zy, z3)

Weonstr,o0: constr-1: Vzy,z2,23: on(z1,z2) Aon(zy,z3) = o = z3
constr-2 : Vai,z3,z3: is(zy,block) A on(zz, z) A on(zs, z1)
= I3 = I3
constr-3: Vz;: is(z1,block) = supported-by(z1,table)
constr-4 : Vz;, zy: on(zy, r3) = is(zy, block)
Operator:

declare move(z, 22, z3)
range is(zy,block), 1 # zo, 21 # 23,72 # 23
is(z2, block) V z2 = table,
is(z3, block) V z3 = table,
prec on(z1,z2), Vzq —on(zy, 21)
post —-on(zy, z2), on(zy, z3)
end

Figure 2: Formalization of the blocks world

Repairs are computed by a loop which attempts to achieve at least one invalid formula
in each iteration. Repairs (or symptoms) which make a single f € F' valid are called
potential. If they make all formulas of F' valid they are called definite. The computation
of definite repairs can be divided in four levels where the higher levels depend on the result
of the lower ones.

1. definite repairs
f

2. potential repairs
fr

3. repairs for ground literals
fr

4, potential symptoms

Definition 3.2 (Symp(W,f)) Let f € Forg be a formula in prenez normal form and
W a posstble world.

o If f=fiN... N\ f, with literals f; then
Symp(W, f) = {filW £ f;,1 <j <n}};
e If f=fiV...V fi then
Symp(W, f) = U{Symp(W,)W I fi,1 <i < k};
o If f =Vzfo(z) then
Symp(W, f) = {U{g(c)|c € Kz, W [~ folz « c]}| where g is a function defined on
Ks, such that for all c € Kx, g(c) € Symp(W, fo(c/z))};
o If f=3xfo(z) then
Symp(W, f) = U{Symp(W, fofe/z)|c € Ks}.

307

The following theorem shows that Symp(f) contains all symptoms of f for a possible
world W. The set of all symptoms can be obtained by considering only those elements of
Symp(W, f) which are minimal with respect to set-inclusion.

Theorem 3.3 I[f(Comp(W)UL)\L® = f, then there is an S € Symp(W, f) with S C L.

Symptoms may contain ground literals of derived predicates. In order to insert or
delete derived ground literals, we have to add or delete an appropriate set of base facts.
The function G maps a ground literal / and a possible world to a set of repairs which
achieve the literal. The main idea for computation of these repairs is to use a special
derivation tree for ! whose leaves contain the required information. A derivation tree
is an AND/OR graph where the OR-nodes are ground literals and the AND-nodes are
ground matrizes of the rules. The successors of an OR-node ! are AND-nodes which
represent the different ways how ! can be derived. The successors of an AND-node r are
OR-nodes containing the atoms of the body of . Derivation trees represent all possibilities
to derive [using input resolution as the only inference rule. Figure 3 shows the derivation
tree of supported-by(c,table) for the blocks world formalization. The predicate supported-
by is abbreviated by s-b.

s-b(c table)
on{c, lable) >s-b(c table) on(c,a),s-b(a,table}->s-b(c table) on{c,b),s-b(b.table}->s-b(c,table) on(c,c),s-b(c,table)->s-b(c,table)
/ AND \ / AND \)/AND \
on{c, table) on{c,a) s-b(a,table) on{c,b) s-b(b,table) :
L]
V7N N #¥ R\
-> on(c,a) . °

Figure 3: A derivation tree

Through the deletion of all subtrees of which the root has a predecessor containing the
same element as the root, the derivation tree becomes finite. Now, the leaves of the tree
contain the necessary information. The addition of a fact ! requires the insertion of heads
of OR-leaves (i. e., facts which do not hold in the original world). To achieve a negated
fact some facts of AND-leaves must be removed from the original world. The function G
shifts the extracted facts from the leaves to the root. At each inner node G combines the
partial repairs of the corresponding subtree with respect to the type of the node and the
sign of the root literal. The main property of G is stated by the following theorem.

Theorem 3.4 (correctness and completeness of G) Let W be a possible world and
| a ground literal with W £ 1.

wt is a repair of [for W iff wt e G(W,I])
The function PR combines Symp and G in order to generate a set of potential repairs:

PRW, f):=={ U Ri[{h,..-,ln} € Symp(W, f) & Ri € G(W, 1)}

i=1,..n

308

Definite repairs are generated by iterating over already generated potential repairs:

repairs,(W, F) = { Re PR(W,f) | f € F & R free of contradictions}
repairs, (W, F) = { R;UR | R; € repairs;(W, F) &

dfe F:Re PR(R{(W),f) &

R; U R free of contradictions}

After a finite number of steps further iterations do not cause any changes, i. e., the set
repairs,(W, F') contains only definite repairs.

The following theorem is essential for the completeness of the CDP-planner and its
various pruning techniques. It shows that for each world W’ in which F C Fory holds,

repairs;,(W, F') contains a (potential or definite) repair which partly describes the difference
between W and W’.

Theorem 3.5 Let W, W' be possible worlds, F' C Forg, and W }= F and W' | F.
Vi : 3R € repairs;(W, F): R C Ajspus(W, W')
Proof: By induction on the number of iterations ¢.

We first show the theorem for 7 = 0. Let f € F be a formula not holding in W.
By theorem 3.3 Symp(W, f) has a symptom S = {l4,...,l,} which is a subset
of Acomp(W, W'). Since W k= f, there exists a repair B; C Ayaes(W, W) for
each /;. By theorem 3.4 R; € G(W,!) and therefore U;R; € PR(W, f). Since
UiRi C Afaces(W, W') the set U;R; is free of contradictions. Thus U;R; €
repairsy(W, F).

If repairs,(W, F') has a definite R being a subset of Ajus(W, W’') the claim
is obvious for 7 4+ 1. If R is not definite we can conclude from the base case
that there exists a repair R' C Afaets(R(W), W') for a f € F not holding
in R(W). Since Aggets(R(W), W) C Agacts(W,W’) RU R’ is an element of
repairs; (W, F) and RU R' C Afaus(W, W').

4 The CDP-Planning Algorithm
4.1 Basic CDP-Algorithm

The main difference between our approach and most planners which are based on a
STRIPS-like formalism ([4]) is that the CDP planner is able to handle range-restricted
formulas which occur either as preconditions or as consistency constraints of a domain.
The repair system allows to map general formulas to a set of ground literals. This capacity
is required during the elemination of critical operators of a plan by insertion of new ones.
If op is a critical operator with respect to a world W the following set of repairs will be
generated:

repairs (W, op) := {R;1 UR; | R, € repairs, (W, pre(op))
& Ry € repairs;(op(R1(W)), Weonstr) &
& R, U post(op) free of contradictions &
& Ry U R, free of contradictions}

309

The following algorithm shows how this mechanism can be incorporated into a simple
planner:

basic CDP-Planner Basic-CDP(W;,G)
init plan := [goal] where pre(goal) := G and post(goal) := @
while plan is no solution do
begin
(1) determine a critical operator op, of plan = [op1,...,0p,]: | :== SC(plan)
let Vi =1...n:W;y = op;(W;)
(2) Rep := repairs;(Wi_1, op;)
(3) choose a subgoal g € U, cperep TeP
(4) choose an operator op: g € post(op)
(5) choose a position j: j <1
(6) plan := plan[l...j — 1] o [op] o plan(j ...n];
end

The lines 3, 4 and 5 are choice points, i.e. the planner has to choose one out of several
possible results and has to store the remaining results in order to allow backtracking.
In line 1, the selection of a critical operator is deterministic. Which critical operator
is selected depends on the applied selection function SC. The special operator goal
allows a uniform treatment of the goal G. If goal is selected as a critical operator the
worlds W' in line 2 are completions of the goal, i.e., we perform a goal completion. Since
the completion of the goal is done in respect to the last world W, _; of the plan”, the
completed worlds always reflect the actual situation of the planning process.

In the following example we demonstrate how the basic planning algorithm generates
a solution for the Sussman Anomaly. In order to keep the example short we assume that
the algorithm always performs optimal choices.

Initialization
The planning algorithm starts with the plan [goal()]. The precondition of the special
operator goal() is the goal G = {on(a,b),on(b,c)}.

First execution of the while body

Step 1.1: (choose a subgoal) To satisfy the precondition of the operator goal() a
list of repairs is computed by the repair mechanism. After that, the planner chooses
a subgoal at the first choice point.

The repair mechanism finds exactly one repair

R = {add(on(a,b)),add(on(b,c)),add(on(c,table)),
del(on(c, a)), del(on(a, table)), del(on(b, table))}

for the world W, and the goal G such that comp(R(Wy))U Weonstro UG is consistent.
Note, that the repair mechanism derives a new fact on(c, table) from Wy and G. The
fact on(a,b) is chosen as a the first subgoal g.

"the goal operator does not change the world W, _;

310

Step 1.2: (choose an operator) The task for the planner is to look for an operator
‘performing’ the subgoal g choosen by the previous choice point. If there are several
possible operators a single one s selected.

The operators move(a, ¢, b) and move(a, table, b) can be used to achieve g = on(a, b).
The second operator is chosen. '

Step 1.3: (choose a position) The algorithm inserts the selected operator in the ge-
nerated plan at some position before the critical operator.
The only possible position for move(a, table, b) is directly before goal().

Second execution of the while body
The selection function SC determines move(a, table, b) as a critical operator.

Step 2.1: (Determine repairs) The subgoal g = —on(c,a) is chosen from the only
repair {-on(c, a), on(c, table)}.

Step 2.2: (choose an operator) Analogously to step 1.2, the operator
move(c, a, table) is chosen.

Step 2.3: (choose a position) Again, the introduction of the chosen operator into
the plan is deterministic. move(c, a, table) is inserted in the first position of the
generated plan:

[move(c, a, table), move(a, table, b), goal()]

Third execution of the while body
goal() is the only critical operator.

Step 3.1: (choose a subgoal) The precondition of goal() and the consistency cons-
traints of the domain hold after the execution of the repair {on(b,c), ~on(b,table)}.
The planner choses on(b, ¢).

Step 3.2: (choose an operator) For the subgoal on(b,c) the second choice point
selects move(b, table, c).

Step 3.3: (choose a position) For move(b, table,c) exist three possible positions.
By insertion of mouve(b, table,c) in the second position of the plan we generate a
solution)

[move(c, a, table), move(b, table, c), move(a, table, b), goal()]

for the planning problem, since the intermediate worlds are consistent and the pre-
conditions of all operators are satisfied.

311

4.2 Enhancements of the Basic Planner

Three different planning strategies, exploiting the fact that the planner allows a deter-
ministic selection of a critical operator of a plan, have been implemented. The ’leftmost
critical operator’ (LMC) strategy always selects the critical operator op; with the smallest
index ¢; the 'rightmost critical operator’ (RMC) strategy uses the critical operator with
the highest index. The third strategy GPS is borrowed from the General Problem Sol-
ver ([3]). GPS is a LMC strategy where a new operator is always inserted directly before
the selected critical operator, i. e., GPS replaces the nondeterministic choice point (5) by
the deterministic statement j :=1[.

On one hand, it is well-known that if the search space of an existing planning strat-
egy is pruned, no minimal plans or — even worse — no plans at all may be found. On
the other hand, the search space often has to be pruned in order to get the necessary
performance to solve even simple problems. In the following we introduce three powerful
pruning heuristics which preserve completeness for LMC and RMC.

The first pruning technique hitting-set (HS) restricts the number of alternatives at
the first choice point of the algorithm above by using a minimal hitting set of all computed
repairs. Note, that the set of repairs can be large. (E.g., if we extended the initial world
of the conjunctive goal problem by the facts on(dy, table), ..., on(d,, table) we would get
n+1 repairs:

{{on(a,b), on(b, c), on(c, z), —on(c, a), ~on(a, table), —on(b, table) }
| z € {table,dy,...,d,},i=1...n}

The branching factor of the first choice point is decreased by restricting the subgoals to a
minimal hitting set HS(Rep) of all computed repairs. This idea is incorporated into the
planner above by replacing line 3 by

(3.a) determine a minimal hitting set of Rep = {Rx,..., Rx}: hs:=HS(Rep);
(3.b) choose a subgoal g € hs

The selection of a hitting set out of several possible ones in line 3.a is done determi-
nisticly therefore no backtracking to this point is necessary.

The second pruning technique reduces the branching factor at the second choice point
by rejecting operators that clobber an already achieved subgoal. As an example consider
the following incomplete plan for the conjunctive goal problem:

[move(c, a, table), move(a, table, b), move(d, table, c)).

The first two operators successfully achieve the subgoals on(c, table) and on(a,b). The
third operator tries to achieve on(b,c), but is not applicable since the precondition of
move(b, table, ¢) requires that the block b is clear. The only way to achieve Vz, : —on(z4,)
is to destroy on(a,b) by inserting additional operators. This plan does not lead to an
optimal solution therefore its expansion should be averted.

In order to prevent this clobbering of an already achieved subgoal we use the well-
known technique of protected subgoals® (PSG) which only allows the insertion of

8see, e.g.. [14]

312

operators into positions where they do not violate previously defined establisher-user re-
lations. Additionally, the insertion of an operator at a position j is prevented if between j
and the critical operator already lies a potential clobberer. The GPS-planner is extended
by an additional variable psg which lists the currently protected establisher-user relati-
ons. The initialization of Basic-CDP is extended by psg := 0 and line 5 in the planner is
replaced by:

(5.a) choose a position j for op such that:
e ;<1
e the insertion of op at position j does not violate any in psg specified
establisher-user relations
e between j and [are no potential clobbers of g in plan

(5.b) psg:= psgU {“op establishs g for op,”°};

The expansion of the above plan can only partially be prevented by this modification
since the second operator move(a, table,b) could be inserted in order to achieve either
on(a,b) or —on(a,table). In the second case, it would be possible to remove a from b
again. If we protected several subgoals for one establisher, we could also prevent this
case. But so far the problem of efficiently deciding whether an operator can achieve more
than one subgoal and therefore the problem of protection of more than one subgoal for
an operator is unsolved. In the blocks world this is even the main problem. In [7] Gupta
and Nau show that in the worst case the complexity of the computation of an optimal
solution is determined by the problem of deciding whether a block has to be moved by
one or two mowve-operators to its goal position.

The third pruning technique concerns the computation of repairs for a critical opera-
tor op,,;- The selection of a subgoal g can be interpreted as a preference of those repairs
Ry of Rep which contain g. If during further computations op;, is again selected, we
should respect the former decision and try to choose an unachieved subgoal of the "prefer-
red’ repairs Ry which contain g. This consideration is the foundation of the postponed
repair computation (PRC) pruning technique. Each operator op of a plan has a set
of associated repairs assoc-rep(op). Initially, this set is empty. If an operator is selected
by SC, the associated set of repairs is initially used to determine a subgoal. Only if all
associated repairs are already achieved or if no repair is associated a new set of repairs
is computed. After the selection of a subgoal, those repairs which contain the selected
subgoal are linked to the critical operator. We integrate this technique into the planner
through the replacement of line 2 by

(2.a) Rep:= assoc-rep(op,)
(2.b) if IR € Rep: Wi = R
(2.c) then Rep := repairs;,(W;_, op,)

and through the insertion of a 7th and 8th line:

9

we assume that operators which occur several times in a plan can be distinguished from each other

313

(7) assoc-rep(op;) := {R € Rep | g € R}
(8) assoc-rep(op) := 0

The goal operator goal is initialized in line 1 by the new statement assoc-rep(goal) := §.
Since associated repairs may no longer comply with the definition of the term ’repair’
(e. g. they may not be minimal) before the application of HS, the literals already achie-
ved have to be removed from the associated repairs.

Figure 4 shows the entire planner with all three pruning techniques incorporated.

basic CDP-Planner Basic-CDP(Ws,G)
init plan := [goal] where pre(goal) := G and post(goal) := 0
psg:=10
assoc-rep(goal) := 0
while plan is no solution do

begin

(1) determine a critical operator op; of plan = [opy,...,ops]: | := SC(plan)

let Vi=1...n: Wi = op;(W;)

(2.a) Rep:= assoc-rep(op;)

(2.b) if IR € Rep: W1 = R

(2.c) then Rep := repairs;(Wi_1, op;)

(3.a) determine a minimal hitting set of Rep = {Ry,..., Rx}:
hs:= HS({ {l € R|{Wi-1 =1} | R € Rep})

(3.b) choose a subgoal g € hs

(4) choose an operator op: g € post(op)

(5.a) choose a position j for op such that:
. j<I
e the insertion of op at position j does not violate any in psg

specified establisher-user relations

e between j and [are no potential clobbers of g in plan

.b) psg := psgU {“op establishs g for op,”};
plan := plan[1...5 — 1] o [0p] o plan[j ...n];
assoc-rep(op;) := {R € Rep | g € R}

S
6)
7)
8) assoc-rep(op) := 0
d

(
(
(
(

n

Figure 4: The entire CDP-planning algorithm

In the next section, we proof that for LMC and RMC the planning procedure with
minimal hitting set, protected subgoals , and postponed repair computation is complete
(that is, that it finds all minimal plans). We show by an example, that the basic planner
is incomplete for the GPS strategy.-

314

5 Completeness of the CDP-Planner

The basic planning algorithm Basic-CDP defines a search tree which depends on the
planning problem, the employed hitting set function, and the selection function for critical
operators. The following definition describes this search tree.

Definition 5.1 (CDP search tree) Let (Wy, OP,G) be a planning problem, HS a func-
tion which yields a hitting set of a set of repairs, i a number, and SC a selection function.

A CDP search tree ST((Wy, OP,G)) via HS, SC, and t is a tree, satisfying the follo-
wing restrictions:

1. the nodes are separated into the three disjoint sets CP-SG, CP-OP, and CP-POS.

2. Each successor of a CP-SG (CP-OP / CP-POS) node is an element of CP-OP
(CP-POS / CP-SG).

3. A node n can have associated a plan plan(n), an operator op(n), a subgoal sg(n),
and an indez critical(n).

4. the root ng is a CP-SG node with plan(ng) = [goal()]

5. Vn €CP-SG: critical(n) = SC(plan(n)) and each successor n' of n has a unique
sg(n') € HS(repairs;(Weritical(n)—1, OPeritical(n)))
if plan(n) is a solution n has no successors.

6. ¥n €CP-OP: each successor n' of n has a unique op(n') € {op|sg(n) € post(op)}

7. ¥n €CP-POS: for each successor n' of n exists a unique j € {1,...,critical(n)}
with: plan(n’) can be build from plan(n) by inserting op(n) at position j.

8. nodes from CP-OP and CP-POS inherit their plan-value from their predecessors.

Definition 5.2 (Completeness) A planning strategy is complete if for every optimal
solution of a solvable planning problem there ezists a sequence of choices for the choice
points such that the planning strategy finds this solution.

We will illustrate the definition 5.1 by an example which will demonstrate that the
GPS strategy is incomplete.

Example 5.3 (Incompleteness of GPS Strategy) Let Wy = (0,0,0) be the initial
world and G = {q,(r = p)} the goal. The following table specifies the operators of the
domain:

goal(): pre {q,(r=p)} c;p’(): pre op”(): pre 0
post 0 post {q,7} post {p,q}

The figure 5 shows the search tree ST((Wy,OP,G)). As far as the search tree is
depicted in 5 it is independent of the actual choice for the selection function SC, the
hitting set function HS, and the iteration level i. If we employ GPS the only CP-5G node
which contains the optimal solution is pruned. If we employ GPS and PSG together no
solution at all is found.

The following lemma corresponds the theorem 3.5. It shows that the extension of
repairs; in subsection 4.1 has not destroyed the property of repairs; stated in 3.5.

315

[0 2] S Pan={G0aAl0] N ieiaseemeeeeemaecsassemasseses
critical=1

CPOP i eeeicinnnaaeas pan=lgoal()] TTNusususmcnnlGaTE R
$g=q

CP-POS

....................... planw[goal()] S ORI DU

op=op’()

CP-8G iciecccecsepaccmcnnss P'a.ﬂ-[.ﬂp'o‘goalm ...

critical=2
CP-OP e plana(op(),goal)) = Nesecesemens plan=fop(),g0al()] = Neeeeccasccaseammeaas
g sg=p
leaf
CP-POS sulsmisiisssssssbmis s s b s plan=[op'(),g0al()] THeeesmrccmacmmssaan
op-op"s
CP-SG orcvecenmsnanmnanmsmmnnes lan=[op"0.0p (0,89310] N ereeuennan an=[op’().0p"[).goal
rim R B i o e
solution node
H
/\/\/ __/_\./’—\/
would be pruned by GPS would be pruned by PSG

Figure 5: A search tree demonstrating the incompleteness of GPS

Lemma 5.4 Let W, W’ be possible worlds, op an operator which is critical for W and
not critical for W',

Vi : 3R € repairs;(W,op) : R C Ajpes(W, W)
Proof:
By theorem 3.5 there are R; and R, with:

R, € repairs, (W, pre(op)) : Ri C Agacts(W, W)
R; € repairs;(op(Ri(W)), Weonstr) 1 Ra C Ajacts(0p(Br(W)), op(W'))

Since

A facts(0p(R1 (W), 0p(W')) C A saces(Ra(W), W)

and

Afacts(Rl(vV)’ W,) C Afacts(vVa WI)

the union R; U R; is a subset of A jaees(W, W'). Therefore Ry U R, is free of
contradictions. Ry U post(op) also is free of contradictions since:

Afacts(0p(Ry (W), op(W")) N (post(op) U post°(op)) = 0

Thus R; U R, is an element of repairs;,(W, op).

316

Now we can proof the completeness of the basic CDP planner. For that we show that
if a planning problem has a solution plan,, the search tree which is induced by Basic-CDP
has a solution node containing a subplan of plan,,.

Theorem 5.5 (Completeness of the Basic CDP-Planner) Let HS be a hitting set
function, SC a selection function, and i a number. If a planning problem (W,, OP,G)
has a solution plan,, the search tree ST ((Wy, OP,G)) via HS, SC, and i has a CP-SG
leaf n where plan(n) is a solution for (Wy, OP,G) and plan(n) is a subplan of plan,,.

Proof: we will use the solution plan,,; as a guide to determine a path in the search tree
which leads to a solution-node

It suffices to show, that for each CP-SG node n where plan(n) is a subplan
of plan,, and plan(n) is not a solution, there exists a CP-SG (transitive)
successor ngg with plan(nsg) C plan,,,.

Let plan,,, = [op,,...,o0p)], plan(n) = [op},..., opy], Wi the intermediate
worlds of plan,,, and W/ those of plan(n). Further, let 7 be a monotonic
mapping such that op; = op;(i) forallz=1,...,L

By lemma 5.4 there exists an R € repairs,-(Wcr,-ﬁcal(n)_l,op’crmcal(n)) which
is a subset of A(cln'tical(n)—pWw(critical(n))—l)- By the definition of 5.1 and
of HS there exists a direct successor nop of n with sg(nop) € R. sg(nop)
has an establisher op,, with 0 < k < w(critical(n)), in plan,, for the world
Wa(critical(n)) Since Wicritical(n)) = S9(nop) and either W £ sg(nop) or before
op, lies a clobberer of sg(nop) (otherwise sg(nop) could not be in repair R).

Obviously, nop has a successor npos with op(npos) = opy.

If there is no j such that k = =w(j) a successor ngg of npos exists where
plan(nsg) C plan,, (see figure 6). Assume there exists such a j. Then
an operator opf, = opy lies before 0pl icai(n) in plan(n). Since sg(nop) is
an element of a repair for W, i) between op}, and opi,iice(n) must lie
a destroyer of sg(nop). This destroyer lies in plan,, between op,; and
OPr(critical(n))- L Dis is contrary to the fact that op, is an establisher of sg(nop)
for IIVrr(cv'itical(n))-

Note that this theorem does not include the basic planner together with the GPS
strategy.

Theorem 5.6 (Completeness of the Hitting Set Strategy) The basic planner to-
gether with the minimal hitting set strategy is complete.

Proof: This follows directly from 5.5

Theorem 5.7 (Completeness of the PSG Strategy) The basic planner together with
the protected subgoal strategy is complete.

Proof:

317

ic.l

no clobberer of sg(n N

Figure 6: Insertion of an operator

Let 7 be the mapping considered in the proof of theorem 5.5 and ng, n1,...1nmy,
the nodes leading from the root of the search tree to the solution node found
in proof 5.5.

Assume that 7 is adapted to the insertion of an operator at every CP-SG
node such that = always maps an operator of the evolving plan to the same!®
operator of the solution plan. This 7 could be used in the proof of 5.5 since
no special assumptions about 7 are made in 5.5.

Let op}, be inserted in plan(n;) as an establisher of the subgoal g for op;. By
the above considerations we can construct 7 such that the mapping of opj, and
op}, onto two operators op, and op, of the solution plan plan,, by 7 is fixed.
Therefore, on the way from ng to the solution node n,,, only those operators
which lie between op,, and op, in plan,, can be inserted between op}, and opj,.

Since op, is an establisher of g for op, in plan,,, no clobberer of g is inserted.

Therefore, all paths containing a clobbering of an establisher-user relation
which is explicitly introduced by the choice points, can be pruned without
endangering completeness.

Theorem 5.8 (Completeness of the PRC Strategy) The basic planner together with
the postponed repair computation strategy is complete.

Proof:

Let n be a CP-SG node which lies on the path from the root to a solution node
and which inherits the repairs for the critical operator from a predecessor as
described in the section 4.2. Let plan,,, = [opy,...,0p] be a solution plan,
plan(n) = [op}, ..., op}], W; the intermediate worlds of plan,, and W] those

of plan(n). Further, let 7 be a monotonic mapping such that op; = opfy; for
alli=1,...,1L

19sperators which occur several times in a plan have to be distinguished from each other

318

By induction on the number of steps by which the associated repalrs are
inherited, we show that the following assertion holds:

dR € assoc-rep(op::rtttcal(n))) :
{le R| W cnhcal('n-) aEIC Afacts(chucal(n) 1 Waeritical(m)-1) (1)

(This assertion corresponds to 3.5 and 5.4.)

Assume that we have reached node n by applying the means described in the
proof of 5.5 whenever possible and assume that the mapping 7 is constructed
as in the proof of theorem 5.8. Originally the repairs of assoc-rep(0p,;sica(n))
are computed for an operator 0p,;;cai(nr) of a plan plan(n”) of a predecessor n'
of n. Let plan(n") = [op},..., opis] and WY', ..., W) the accompanying worlds.

Base Case:

By theorem 5.4 there is a repair R € repairs; (W i ainn)-11 OPeritical (ny) Which
is also a subset of Afact_q(l«meal(n,,) I,W,r[wmm;(nn)) 1). The subgoal g of
the successor which leads from n” to n lies in such a R. Thus R lies in
a550¢-7eP(0P, . 1icatmy)- T he construction of 7 guarantees that Wi(critical(n))-1 =
Wi(critical(n))—1- Therefore Wi(critical(n))-1 = R and R satisfies 1.

Induction step:

By the induction hypothesis the last time assoc-rep(opirmca,(n)) was updated
by a predecessor n’ of n the set of associated repairs of the critical operator
has a repair R which satisfies 1. Analogue to the base case we can conclude
the existance of an R € assoc-rep(0pg, ticai(n)) Which satisfies 1.

Theorem 5.9 (Completeness of Combination) The basic planner together with all
three strategies HS, PSG, and PRC is complete

Proof: The incorporation of any strategy into the basic planner does not invalidate the
completeness proof of any other strategy.

6 Empirical Evaluation of the Planner

In the last section, we have presented different planning strategies and pruning techniques.
In order to evaluate the usefulness of these extensions to the basic planner, we have
conducted a series of experiments with several planning domains. In this section, we
present some of these results.

The tables 1, 2, 3, and 4 summarize performance results for the conjunctive goal
problem, for the river crossing example, and for the railway example. In the river crossing
example, a farmer has to move a goose, a dog, and bag of corn from the left side of a river
to the right side. The farmer has a small boat which can carry himself and at most one
further object. Neither the dog and the goose, nor the goose and the corn may stay on
the same side without the farmer, since the dog would eat the goose and the goose the
corn. Figure 7 in Appendix A shows a formalization of the domain.

In the railway example (Figure 8 in Appendix B) an engine has to transport a waggon
from one end of a small marshalling yard to the other end. Four operators describe the

319

different actions. The operator move moves the engine whereas transport moves the engine
and the wagon. The last two operators describe the coupling-up and decoupling of wagon
and engine.

All tested configurations incorporate goal completion and pure breadth first search.
No heuristic information is used in the search. Every choice at any choice point induces
the generation of all successors of the corresponding node of the search tree. Note, that
we count the generated nodes and not the expanded (or closed) nodes.

GPS | LMC | GPSs, | LMCy, | GPShspsg | LMChiypag
conj. nodes - 306 287 36 30 36 30
goal runtime| 7.5 6.4 2.8 1.9 2.7 1.9
river nodes >2001 | >2001 262 535 208 331
cross. run time 54 56 11 22 6.9 11
rail- nodes >2001 | >2001 76 326 76 326
way run time 89 92 9.9 17 5.6 17

Table 1: Number of generated search nodes and run time for diffe-
rent strategies. All runs include the PRC-strategy.

[GPS | LMC | GPSy, | LMCh, | GPShopeg | LMChyspsy |

conj. nodes 316 292 36 30 36 30
goal run time| 9.2 8.2 3.3 2.3 3.2 2.3
river nodes >2001 [>2001 | 259 505 208 331
cross. run time 57 58 11 21 6.9 11
rail- nodes >2001 | >2001 76 326 76 326
way run time 90 92 5.6 19 5.4 19

Table 2: Number of generated search nodes and run time for dif-
ferent strategies. For all runs the PRC-strategy is switched off.

The application of the hitting set strategy results in the greatest reduction of the
search space. If we look at table 3 which shows the branching factors for the three choice
points, we can see why the minimal hitting set strategy leads to such an improvement.
Its application reduces the branching.factor of the subgoal choice point on average by a
factor of 3. Table 3 also shows that the completeness of the LMC planning strategy does
not increase the cost. In comparison with the GPS search strategy the LMC strategy has
a branching factor of the choice point ’choose a position’ which is only about 1.2 times
higher than that of the (incomplete) GPS strategy.

The PSG strategy shows only for the river crossing example together with the hitting
set strategy an improvement of the run time (Table 4). The performance of the PRC
strategy is also modest. It results in almost no reduction of the generated nodes (Table 1
and 2). Only the run time is slightly improved since the planner has to compute fewer
repairs if the PRC strategy is employed.

320

| choice point | GPS [LMC | GPSy, | LMCh, | GPSpspsg | LMChspsg |

conj. subgoal 29 | 3.2 1 1 1 1
goal operator 2 2 2 2 2 2
Ins. pos. 1 1.5 1 14 1 1.4
river subgoal 24 | 2.7 1.3 1.2 1.1 1.2
cross. operator 1.3 1.4 1.6 1.7 1.9 1.7
ns. pos. 1 1.2 1 1.3 1 1.3
rail- subgoal 59 | 5.9 1 1 1 1
way operator | 3.9 | 3.9 3.7 5.4 3.7 5.4
ins. pos. 1 1.1 1 1.2 1 1.3

Table 3: Branching factors of the three choice points for different
strategies. For all runs the PRC-strategy is switched on.

conjunctive goal river crossing railway

~psg psg psg psg psg psg
GPS | 306/7.5 | 306/7.3 | >2000/54 | >2000/48 | >2000/89 | >2000/88
-hs | LMC | 287/6.4 | 287/6.6 | >2000/56 | >2000/49 | >2000/92 | >2000/88
RMC | 445/8.6 | 445/8.6 | >2000/46 | >2000/45 | >2000/95 | >2000/95
GPS | 36/2.8 | 36/2.7 262/11 208/6.7 76/5.5 76/5.6
hs | LMC | 30/1.9 | 30/1.9 535/22 331/11 326/18 326/19
RMC | 38/2.2 | 38/1.6 516/21 203/6.7 721/41 721/36

Table 4: (generated search nodes/run time) pairs for different ex-
amples, strategies, and pruning techniques. '-’ indicates the omis-
sion of a technique. For all runs the PRC-strategy is switched on.

If additional domain independent heuristics!' and a best-first search are applied, the
number of generated nodes for the conjunctive goal problem can be reduced to 20 nodes,
52 nodes for the river crossing problem, and 39 nodes for the railway example.

7 Conclusion

The results presented in the previous section show that generally applicable pruning
techniques can reduce the search space. However, they also indicate that these techniques
are not strong enough to handle larger problems. At the moment, we are incorporating two
further techniques: situation abstraction and the explicit treatment of the problem space.
Knoblock ([8]) showed that under certain conditions situation abstraction can reduce the
worst-case complexity from exponential to linear in the solution length. Although these
conditions do not always hold, this result shows the power of abstraction.

1the heuristics include the preference of operators which achieve several subgoal or the preference of
uncritical positions for the insertion of operators

321

References

[1] Martin Decker, Guido Moerkotte, Holger Miiller, and Joachim Posegga. Consistency
driven planning. In P. Barahona, L. Moniz Pereira, and A. Porto, editors, 5th Por-
tuguese Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence,
pages 195-209, Albufeira, Portugal, October 1991.

[2] Jiirgen Dix, Joachim Posegga, and Peter H. Schmitt. Modal Logic for AI Plan-
ning. In First International Conference on Ezpert Planning Systems, pages 157-162,
Brighton, GB, July 1990. IEE.

[3] G. Ernst and A. Newell. GPS: A Case Study in Generality and Problem Solving.
Academic Press, 1969.

(4] R. Fikes and N. Nilsson. STRIPS: A new approach to theorem proving in problem
solving. Artificial Intelligence, 2:189-205, 1971.

[5] Mattew L. Ginsberg and David E. Smith. Possible Worlds Planning 1. Artificial
Intelligence, 35:165-195, 1988.

[6] Corell Green. Application of theorem proving to problem solving. In Ist International
Joint Conference on Artificial Intelligence, pages 219-239, Washington, USA, 1969.

[7] Naresh Gupta and Dana S. Nau. Compexity results for blocks-world planning. In
Proceedings of the Ninth National Conference on Aritificial Intelligence, pages 629-
633, San Francisco, USA, 1991. American Association of Artifical Intelligence.

[8] Craig A. Knoblock. Search reduction in hierarchical preblem solving. In Procee-
dings of the Ninth National Conference on Aritificial Intelligence, pages 686-691,
San Francisco, USA, 1991. American Association of Artifical Intelligence.

[9] Vladimir Lifschitz. On the semantics of STRIPS. In Michael P. Georgeff and Amy L.
Lansky, editors, Reasoning about Actions and Plans, Proceedings of the 1986 Work-
shop, pages 523-530, Los Altos, USA, 1987. Morgan Kaufmann.

[10) John McCarthy and Pat Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463-502. Edinburgh University Press, Edinburgh, GB, 1969.

[11] Guido Moerkotte and Peter C. Lockemann. Reactive consistency control in deductive
databases. ACM Transactions on Database Systems, 16(4):670-702, December 1991.

[12] Guido Moerkotte and P. H. Schmitt. Analysis and repair of inconsistencies in deduc-
tive databases. (submitted), 1992.

[13] Jean-Marie Nicolas. Logic for improving integrity checking in relational databses.
Acta Informatica, 18:227-253, 1982.

[14] Austin Tate. Generating project networks. In 5th International Joint Conference on
Artificial Intelligence, pages 888-893, Bosten, USA, 1977.

322

(15] Marianne Winslett. Reasoning about Action Using a Possible Models Approach.
In Proceedings of the Seventh National Conference on Aritificial Intelligence, pages
89-93, St. Paul, USA, 1988.

323

A Formalization of the River Crossing Example

initial
world farmer
corn
wa dog
goose
farmer
corn
Wz dog
farmer
W corn
4
goose
farmer
WS
Wiacts 0t is(farmer, object), is(dog,object), is(goose,object), is(corn,object),
pos(farmer,left), pos(dog,left), pos(goose,left), pos(corn,left),
is(left,location), is(right,location)
Weonstr,0: constr-1: Vzydzy: is(z1, object)
= pos(z1,z2) A is(zz, location)
constr-2: Vz,z9,z3: pos(x1,z2) Apos(zy,z3)=>z2 =23
constr-3: Vz: pos(dog, z1) A pos(goose, T1)
= pos(farmer, z,)
constr-4: Vzy: pos(goose, z1) A pos(corn, 1)
= pos(farmer, z;)
Goal G: {pos(farmer, right), pos(dog,right), pos(goose, right), pos(corn,right)}
Operators: declare move(z, 1y, 12))
range is(z,object),is(ly, location), is(lz, location),l; # Iz
prec pos(farmer,li),pos(z, 1)
post pos(farmer, ly), pos(z, l3), ~pos(farmer, 1), ~pos(z, 1)
end

Figure 7: FormaliZation of the river crossing example

324

B Formalization of the Railway Example

WruleJ,O:

I/Vcon.ﬂr,o:

Operators:

w e
initial world I-1 |-1 |‘t |t5 |t6_|
initial worl EIEE.
1
4

: t t t : 1
goal world b ’ s
t
4

rule-1: VXwvy, Xvg, Xp Xp2 :
pos(Xv1, Xp1) A pos(Xva, Xp2) A connected(Xpy, Xp2)
= nert-to(X vy, Xvs)
rule-2: Vazy,zp: is(z1,22) = isa(zy, z2)
rule-3: Vaz: isa(z, engine) => isa(zx, vehicle)
constr-1: V Xwvy,Xve, Xp: pos(Xvy, Xpos) A pos(Xvq, Xp) = Xvy = Xvs
constr-2 : V. Xv, Xpy,Xpa: pos(Xv, Xposi) Apos(Xv, Xp) = Xp1 = Xpo
constr-3 : V¥V Xvy, Xvg, Xvs: coupled(Xvq, Xv1) A coupled(Xv3, Xv1) = Xvg = Xva A
coupled(X vy, Xvq) A coupled(X vy, Xv3) = Xvg = Xvs
constr-4 : ¥V Xv, Xvy: coupled(Xv;, Xvq) = nexzt-to(Xvq, Xvs)
declare transport(X vy, Xvy, X froms, X formy, Xto)
range ¢s(Xwvy,vehicle),is(Xvq, vehicle),
is(X fromy,track),is(X formg, track), is(Xto,track),
connected(X fromza, X fromy) V connected(Xto, X from,),
connected(X fromy, X from,) V connected(X from,, X froms),
connected(X from;, Xto) V connected(Xto, X fromy),
connected(X fromy, Xto) V connected(X from,, X fromy)
prec pos(Xuvy, X fromp), pos(Xvq, X froma),
1s(Xvy,engine) V is(X vz, engine),
coupled(X vy, Xv1) V coupled(X vy, Xvg),
Y Xv —pos(Xv, Xto)
post pos(Xva, X from,;), pos(Xv1, Xto), ~pos(Xvy, X fromy), ~pos(X vz, X froms’
end
declare move(Xe, X from, Xto)
range is(Xe,engine),is(X from,track),is(Xto,track),
connected(X from, Xto) V connected(Xto, X from)
prec pos(Xe, from), coupled(Xe, nil), coupled(nil, Xe)
post pos(Xe, Xto), ~pos(Xe, X from,)
end
declare couple-up(Xwvy, Xvs)
range is(Xvy,vehicle),is(X vz, vehicle)
prec nezt-to(Xvy, Xva),
coupled(X vy, nil), coupled(nil, Xvy),
coupled(Xwvq, nil), coupled(nil, Xvy)
post coupled(Xvy, Xvq), ~coupled(X vy, nil), ~coupled(nil, X vy)
end
declare decouple(Xv,, Xvp)
range is(Xvy,vehicle),is(Xve, vehicle)
prec coupled(Xvy, Xvs)
post coupled(Xvy, nil), coupled(nil, Xv;), ~coupled(X vy, Xvs)
end ’ .

Figure 8: Formalization of the railway example and depiction of a solution with its inter-
mediate worlds

325

