Exploiting Consistency Maintenance for Planning*

Guido Moerkotte and Holger Muiller

Universitat Karlsruhe
Fakultat fir Informatik

D-7500 Karlsruhe

West Germany
Netmail: {moer,mueller}@ira.uka.de

1 Introduction

A planning problem mainly consists of a description of an initial world, a set of formulas
which declaratively define a goal world and a set of operator specifications which can be
used to derive new worlds from given worlds. The goal of the planning procedure is to
find a sequence of operators such that if they are applied to the initial world in succession,
they result in a goal world in which all the formulas of the goal description hold.

Deductive databases can be described by a triple consisting of a set of facts, a set of
rules, and a set of constraints that each database state has to obey. Deductive databases
will be used to model worlds in a planning domain. Further, we assume the existence of
a consistency maintenance procedure which allows to find for an inconsistent database
state consistent ones.

The exploitation of automatic consistency maintenance is the main issue of the pa-
per. Hence, it will be described first. A simple example will motivate the usefulness of
consistency maintenance for planning. Then, a planning procedure and some variants are
specified which build upon consistency maintenance. This planner mainly consists of two
layers, the deductive database and a specialized procedure devoted to planning. We call
this a hybrid or heterogeneous approach. The basic planning procedure as well as some
more advanced ones will be specified and some theoretical and empirical results will be
given.

While this planner outperforms existing ones in both, expressiveness and performance,
there still exist some problems which have to be tackled in order to improve its perfor-
mance. This will lead to a new, homogeneous planner. The key idea is to axiomatize the
planning procedure and use consistency maintenance to derive descriptions of possible
plans.

“This work was supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 314 “Arti-
ficial Intelligence and Knowledge-Based Systems”, Project D5.

225

2 Deductive Databases

This section review the main results of [11].

2.1 Pr_eliminaries

To begin with, we quickly review the subset of first-order predicate calculus that we
will use throughout this paper. A signature ¥ is a triple (Kg, Prg,as) where Ky is
a set of constants, Pry is a set of predicates, and oy is a mapping ay : Pry — N
called arity. Variables are denoted by x,y,z,... possibly with subscript. A term is a
variable symbol or a constant symbol. The set of all terms is denoted by Ty. Substy =
P({z/t | z variable,t € Tx}) is the set of substitutions. The set of atoms is defined as
Aty = {p(t1...tx) | ti € Tx,az(p) = n,p € Prg}. An atom, not containing any variable
is called a ground atom or simply a fact. Faks denotes the set of all facts. Any atom
is a literal. If [is a literal then I is a literal. The set of all literals is denoted by Lits,
the set of all ground literals by GLitg. If 11, ...,1, are literals and l,+1 i1s an atom then
liy...,ln = la1 is a rule. All atoms are formulas. If f; and f, are formulas then -f1,
fih fa, iV fo, and f; = f; are formulas. Further, if z is a variable and f is a formula.
then Yz f and 3z f are formulas. The set of all formulas is denoted by Fors.

A database is a triple DB := (DB*, DB", DB*) where DB® is a set of facts, DB is a
set of stratified rules, and DB® is a set of closed formulas called consistency constraints. A
predicate of Pry which occurs in a head of a rule in DB is called a derived predicate,
otherwise the predicate is called a base predicate. We assume that DB® only consists
of facts of base predicates. The set of all facts which are eligible for DB® is denoted by
Fak¥*. The extension of a database is defined as

M(DB) := {a| a is a fact, DB*U DB’ k= a}.
The completion of a database DB (see [13]) is given by
C(DB):= M(DB) U {~a| ais a fact, DB* U DB" }£ a}.
We abbreviate C(DB) |= by DB |=. A database is called consistent if C(DB)U DB¢ is

consistent. Deviating from the set-up in classical logic, but in accordance with its usage
in deductive database theory we define a set F' of formulas to be consistent if there is a
model M of F where every element of M is named by exactly one constant symbol. Thus
consistency of C(DB) U DB° is equivalent to DB k= ¢ for each ¢ € DB°. We make the
reasonable assumption that DB™ U DB°® is consistent.

A transaction is a finite sequence TA := a;(a1),...,aq(a,) where o € {add, del}
are instructions and a; are ground atoms. Further, a mapping ' from the set of all
transactions to a subset of all ground literals is defined as (T A) := {a|del(a) € TA} U

{—aladd(a) € T A}. If not stated otherwise, only transactions with I'(T'A) consistent will
be considered.

2.1.1 Symptoms, Causes, and Repairs

Now, the main definitions for symptoms, causes, and repairs follow. For each of these
definitions two different cases are considered. First, the notions are defined for the case of

226

a single consistency constraint, and subsequently for the case of the entire set DB°. The
former will be referred to as potential symptoms (causes, repairs), the latter as definite
symptoms (causes, repairs). For the definitions two mappings are needed. The first one
(0s) will be used to modify the completion C(DB) of a database whereas the second (oc¢)
is used to denote modifications to the fact base DB®.

Definition 2.1 If A, B C Litg then ogs,0¢ : P(Litg) x P(Lits) — P(Lits) are defined

as follows:
1. AosB:=(A\B)UB
2. Aoc B:=(A\ {blb € B,be Atz}) U {b|-b € B,be Atsg)

where B for a set of literals is defined as B := {a|-a € B, ais an atom} U {-ala € B, a
is an atom}, and P denotes the powerset operator. Further define DB o¢c X for a set X
of ground literals as (DB® o¢c X, DB", DB¢)

Let a,b,¢,d,e,... be facts. Consider the following database DB = ({a,b},{a =
c},0). Then C(DB) = {a,b,c,~d,—e...}. If we now wish the extension of DB to
exclude a but include d this can be denoted by C(DB) og {a,—~d} which results in
{—a,b,¢c,d,-e,...}. That d is added to the fact base and a deleted from it can be denoted
by DB® oc {a,—~d}. The completion of the thus modified database is slightly different,
namely {-a,b,-c¢,d, —e,...}.

The example demonstrates that the completion of a database can be seen as the con-
tents of the database as it appears to the user. Hence, it makes sense from a pragmatic
standpoint as well to use the completion to define the consistency of the database. Con-
sequently, the analysis of a consistency violation is first performed at the level of the
completion. This yields symptoms which are allowed to be derived facts. In a second step
causes are derived from these symptoms, which directly concern DB®.

One problem arises if several consistency constraints are presented. It is quite pos-
sible that the “repair” of one consistency constraint may violate another. Therefore we
distinguish between a potential symptom which is concerned with a single consistency
constraint, and a definite symptom which takes into consideration the entire set of con-
sistency constraints.

Definition 2.2 (symptom) For a database DB = (DB*,DB",DB°), and ¢ € DB°
with C(DB) U {p} inconsistent, a subset S C Lity of ground literals is called

1. (potential) symptom :<~ (C(DB)os S) U {¢} consistent and S minimal

2. definite symptom : <> (C(DB) os S) U DB° consistent and S minimal

In other words, a symptom is a set of literals that must be applied by os in order to
restore consistency.

Having detected the symptoms does not by itself help to alleviate the consistency
violation, since the facts in the completion need not necessarily be present in the database.
This is especially true for negated facts. On the other hand, a repair can certainly be
applied only to the set DB® of stored facts. Hence, we need a notion that relates repairs
to such facts. This notion, referred to as cause, should be differentiated in a way similar
to symptoms.

227

Definition 2.3 (cause) Be C C Lity, DB = (DB®,DB",DB°) a database, and ¢ €
DB¢. If C(DB) U {p} is inconsistent then C is called

1. (potential) cause :<> C(DB o¢ C)U {¢} consistent and C minimal

2. definite cause :<>~ C(DB o¢ C)U DB¢ consistent and C minimal

Hence, a cause is a set of literals that must be eliminated by applying oc¢ in order to
regain consistency.

Clearly, one of our subsequent objectives must be to establish a connection between
symptoms and causes. Ultimately we wish to provide the user with a transaction, i.e., a
sequence of operations which resolve the inconsistency. This kind of transaction will be
called repair.

Definition 2.4 (repair) Be TA a transaction, DB = (DB®,DB",DB°) a database and
¢ € DB° a consistency constraint. If C(DB) U {p} is inconsistent then TA is called

1. (potential) repair :<~ C(TA(DB))U {p} consistent and TA minimal
2. definite repair : <>~ C(TA(DB))U DB¢ consistent und TA minimal

Obviously, a transaction T'A4 is a repair iff I'(T'A) is a cause, e.g., if {del(p(a)), add(q(b))}
is a repair then, taking into account the definition of og, {p(a), ~q(d)} clearly is a cause,
and vice versa. Thus, the paper will concentrate on the steps of extracting symptoms from
the inconsistency, i.e., violated consistency constraints, and on the steps of generating the
causes from the symptoms.

2.2 Extracting Symptoms from Inconsistency

In this chapter the step of extracting symptoms from inconsistencies is taken. For this,
the violated consistency constraint, more specifically instances of it, are analyzed.

For any formula f in prenex normal form with its matrix in disjunctive normal form,
which is inconsistent with C(DB), we define a set Symp(f) of sets of literals. Each
S € Symp(f) is a symptom for the inconsistency of f and Symp(f) is intended to contain
all symptoms.

Definition 2.5 (Symp(f))

o If f=fiN...A f, with literals f; then
Symp(f) = {{f;IC(DB) ¢ f;,1 <j < n}};

o If f=FfiV...V fi then
Symp(f) = U{Symp(£;)IC(DB) & f;,1 <i < k};

o If f=Vzfy then

Symp(f) = {s1U--- U s | s; € Symp(folz « i])}
where {c1,...,ck} = {c € Ky | C(DB) ¥ fo[z — d]}

o If f=23zf, then
Symp(f) = U{Symp(folz « ¢] | c € Kx}.

228

Of course, considering all constants ¢ € Ky in the case of existential quantifiers is in-
tractable. The problem of “guessing” the right constants is beyond the scope of this
paper and described in [12] and [9].

Theorem 2.6 If C(DB)os W |= f, then there is S € Symp(f) with S C W.

Note that the application of MIN to Symp(f) guarantees the result to contain exactly
the potential symptoms.

2.3 Generating Causes from Symptoms

Generating causes from symptoms is related to the view update problem in that updates
at the intentional level must be compiled to the extensional level. The following procedure
resembles [15). The central notion of this chapter which lays the foundation of all essential
results is the notion of derivation tree.

Definition 2.7 (Derivation Tree DT,,) For a set of facts A, a set of stratified rules D,
and a ground literal | € GLits we define the derivation tree DT (I, A, D). DTw(l, A, D)
is an and-or-tree where the nodes are labled with ground literals b € GLits or pairs (r,o)

for a rule r € DB" and a substitution o € Substy. Further the following conditions must
hold:

1. The root is labeled by I.
2. For each node N labeled with a derived literal b and for each pair (r,0) s.t.

e T = ln+1 @ll,...,ln,
® 10 = |b], and

e ro closed,
N is followed by a node N' labeled with (r, o).

e Ifl is a positive literal, N is an or-node and N’ is an and-node which has as

successor nodes ezactly the roots of DT (o, A, D),...,DTw(l,0, A, D).

o Ifl is a negative literal, N is an and-node_and N' is an or-node which has as
successor nodes exactly the roots of DTo (110, A, D),..., DT (l0,A, D).

3. For each node N labeled with a literal b of a base predicate, if b is positive and
b€ DB® holds, N is an or-node and N has ezactly one more and-successor node

labeled by b.

If b is a negative literal and b € DB® holds, N is an and-node and N has ezactly
one or-successor node labeled by b.

Derivation trees represent all possibilities to derive the literal ! from AU D using input
resolution and negation-as-failure as the only inference rule. In this respect derivation
trees are similar to the SLDNF-trees as defined in, e.g., [8]. The differences are, that in
derivation trees labels to or-nodes are atoms, while the corresponding nodes in SLDNF-
trees are labeled by conjunctive goals and furthermore that and-nodes are not explicitly
represented in SLDNF-trees.

229

Example 2.8

Signature: Prg = {a,b,c,d,e, f}, Vp € Prg : a,(p) =0

Facts: DB* = {a,b,d}

Rules: DB" = {e <= ¢,d; f < a,b; f <= d,—e;e <= ¢, ~aje < ¢, b}

The derivation tree for e is shown in Figure 1. Circles correspond to or-nodes whereas
rectangles correspond to and-nodes.

[f<=a,b] [f<=d,—e |

Figure 1: Derivation tree DT (e) of the example

Though it is intuitively clear how to translate derivation trees into SLD-trees and vice
versa the technical details are cumbersome. The equivalence of both concepts can be
established via the fixpoint characterization (for further details see [11]). Derivations in
derivation trees will play the same role as successful branches in SLD-trees.

Definition 2.9 (Derivation) Let DB = (DB*, DB", DB®) be a database. For a ground
literal | € GLity a derivation DE(I) of | over DT (1, A, D) is defined as a finite subtree
of DT (1, A, D) where the following conditions hold:

1. The root of DE(1) is the same as the oot of DTs (I, A, D).
2. DE(l) contains for each or-node exactly one successor node.

3. DE(l) contains for each and-node all the successor nodes of the corresponding and-
node in DT (1, A, D).

4. Every leaf N in DE(I) is a node labeled by a ground base literal I'. If I' is positive,
N is an and-node, otherwise N is an or-node.

Lemma 2.10 Let DB = (DB®,DB",DB®) be a database and | an arbitrary ground
literal. Then

l € C(DB) <> there exists a derivation of | in DTw,(1, DB*, DB").

230

In dealing with derivation trees we encounter the problem, that even when a (finite)
derivation exists, the derivation tree itself may be infinite:

Example 2.11 Let DB® =0, DB™ = {b < a;a < b;}. DT..(b,DB®, DB") is an infinite

derivation tree.

Since we deal only with ground formulas there is an easy solution to this problem. We
call a derivation repetition free if no branch contains two nodes labeled by the same
literal.

Definition 2.12 (repetition free derivation tree DT) The repetition free derivation
tree DT'(1, A, D) is the subtree of DToo(l, A, D) obtained by applying iteratively the follow-

tng operations:

1. If two or-nodes Ny and N, are marked by the same label and N, is a descendent of
Ny , delete N, and all nodes following N,.

2. If at least one successor node of the and-node N has been deleted, delete N also.

3. If all successor nodes of the or-node N have been deleted, then delete N also.

For the rest of the paper we abbreviate DT(I, DB*, DB") by DT(l) and DT.(l, DB*, DB")
by DT ().

Lemma 2.13 Let DB = (DB*, DB", DB°) be a database, | € GLits.

1. there ezxists a derivation of | from DB <>
there erists a repetition free derivation of ! from DB

2. there exists a repetition free derivation of | in DT (1) <>
there exists a derivation of | in DT(I)

Sometimes when [is not derivable from DB, DT(I) can be the empty tree. Since our
set-up does not include function symbols repetition-free derivation trees are always finite.
In the general case that need not be true, but 2.13 continues to hold.

We are now ready for the definition of causes(l) or more precisely causes(l, DB). The
idea is that causes(l) is a collection of sets X of ground literals, such that

DB Ochél

In fact causes(a) will contain exactly the sets X which are minimal with respect to
the stated non-derivability condition. Minimality will be achieved by respected use of the
minimum operator MIN, which for any collection A of sets is defined by:

MIN(A) ={X : X is a minimal set in A}
Definition 2.14 (causes) Let DB be a database, | € GLits. If DB | 1, then causes(l) =

0. Now assume DB |= 1. For all nodes N in the derivation tree DT(l) causes(N) is in-
ductively defined by

231

1. If N is an leave labeled by I' with no successor:

if N is an and-node and I is a positive literal or N is an and-node and | is negative,

e then causes(N) = {{I'}}.

o clse causes(N) =0

2. If N is an and-node with successor nodes Ny, ..., N, then
causes(N) = MIN(causes(Ny) U --- U causes(Ny)).

3. If N is an or-node with successor nodes Ny, ..., Ny, then

causes(N) = MIN({C1U---UCi | C;i € causes(N;)})
Finally causes(l) = causes(R) where R is the root of DT().

We illustrate the definition by the example 2.8. Clearly DB = e. The derivation tree
was shown in Figure 1. Remember that the and-nodes are surrounded by squares and the
or-nodes by circles. We have:

o for example, for the and-node —e: {{a, ~c}, {b, =c}, {d}}
e and for the root f the following causes: {{a,-c}, {a,d}, {b,~c}, {b,d}}

We state the following elementary properties of causes(NV).

Lemma 2.15 1. Let N be an or-node in DT (a) with successor nodes Ny, ..., Ni then

 for all X € causes(N) and all j, 1 < j < k there is a set Y; € causes(N;) with
,CXx

o forallY; € causes(Vy),...,Ys € causes(Ny) either there are Y{ € causes(N,),...,
Y, € causes(Ng) with Y/U...UY, C Y U...UY} or Y{U...UYx € causes(N).

2. Let N be an and-node in DT(a) with successor nodes Ny, ..., Ny then

o for all X € causes(N) there is an index 7, 1 < j < k with X € causes(N;)
o forallj, 1 < j <k and every Y € causes(N;) there is some jo, 1 < jo < k
and some Yo € causes(N;,) with Yo CY or Y € causes(N).

Theorem 2.16 (Completeness of causes) Let DB be a database, | € GLits, such

that DB =l and X a minimal set of ground base literals such that (DB oc X) & 1. Then
X € causes(l).

Definition 2.17 (Causes) For a database and a set S = {l;,...,l,} of ground literals
we define CAUSES(S) = MIN{g1U...Uga| for all 1 <i < n, g; € causes(l;)}.

Now, the main theorem of this section can be stated.
Theorem 2.18 (symptom ~» cause) Be T a signature, DB = (DB*, DB, DB¢) a data-

base, ¢ € DB° a consistency constraint, C(DB) U {@} inconsistent, and S C Lits a
symptom. Then all causes C with C(DBocC) = C(DB)osS are contained in CAUSES(S).

232

Note that there might exist a C € CAUSES(S) such that C(DBo¢ C) # C(DB)os S,
and that there may be no g such that C(DBocC) = C(DB)osS. Consider the following
- example:

DB® = {a}, DB" = {a = b}, S = {~b}
then

C(DBocC)# C(DB)os S
for all C.

Further note that DB o¢ C must not be consistent with all consistency constraints but
only with the one under consideration (potential cause vs. definite cause). The problem
of extracting causes from symptoms is solved by iterating the indicated process as stated
in the next subsection.

2.4 TIterative Construction of Definite Causes

Up to now, we have only been concerned with the extraction of potential causes. Note
the following connection between potential and definite causes:

e (is a definite cause > there exists a potential cause C’ s.t. C' C C.

In other words, usually the same literal will cause only the violation of one constraint.
If several constraints are violated this will be due to different causes. Consequently, a
definite cause will usually be a combination of potential causes, limited however to those
combinations whose associated repair will restore all violated constraints. The following
procedure will iteratively compute such a “correct” combination (or set) from the potential
causes.

Algorithm 2.19 This algorithm generates the set of definite causes for a given incon-
sistency. pc' denote a set of literals for a natural number i, PC is the set of potential
causes, and DC is the set of definite causes. The upper script i of pc' denotes the level of
the cause, i.e., the number of enhancements, which were made to transform the previous
potential causes of pc' to a definite one.

(1) procedure CAUSESy(DB)

(2) input:

(3) DB = (DB® DB",DB°): (inconsistent) database state
(4) nit PC := {pc® | pc® is a (potential) cause for DB},
(5) DC :=0,

(6) while there exists some pc' € PC do

(7) PC := PC\ {pc'}

(8) if T7Y(pc')(DB) is consistent

(9) then DC := DC U {pc'}

(10) else

(11) if pct is free of contradictions

(12) then

(13) Let pcy, ..., peq be all potential causes for I~ (pc')(DB).
(14) pc};+1 :=pc Upe, forallk=1,...,n.

(15) PC := PCU{pct' |1 <k <n}.

(16) return definite causes DC

233

Obviously, the algorithm computes the set of all definite repairs, if I'~! is applied on
the resulting causes. This set may be very large and not all repairs are of equal value.
Hence, heuristics have to be developed to restrain the set of generated repairs and impose
an order on the remaining ones such that the system is able to present the “top ten”
repairs for a given violation. This issue is beyond the scope of this paper and is treated in
full detail in [12, 9]. A simple solution for this problem is the restriction of the iteration
level i. Instead of computing all definite causes, one only considers the causes of the first 3
levels, i.e., the (potential) causes pc* where k < i. The set of these causes is denoted by
CAUSEs;.

3 Consistency Driven Planning

3.1 Introduction and Motivation

We describe an approach to planning based on deduction. STRIPS (5] and the situation
calculus [6] show two extremes of using deduction within a planner. In STRIPS, deduction
is only used for checking preconditions of actions, while situation calculus does everything
by deduction using a theorem prover. The latter does not seem appropriate when one
is interested in building usable planners, since small toy problems already overwhelm
state-of-the-art provers with inferences [2].

The approach we present in this section lies between these two extremes. On one
hand, we will model worlds W by deductive database states. World transitions can then
be modeled by transaction leading from one database state to the next. On the other
hand, we leave the actual search for a plan to a specialized algorithm which builds upon
the primitives provided by a deductive database system mainly executing transactions
and finding repairs.

Since it is common practice to denote worlds by W and not by DB, we define a world
to be a triple W = (W? W", W¢), where the semantics is the one defined for deductive
databases.

The planning problem can now easily be stated as follows: Given an initial world W,
and a goal G, find a sequence of operations—called plan—that leads from W, to Wg
with We = G. In our approach the goal can be any set of first-order formulas. This
generalizes the possible language to describe goals found in the literature, since there,
only a conjunction of facts is allowed to state a goal. An operator is always an instance
of an operator specification. An operator specification is defined as follows:

Definition 3.1 (operator specifications) An operator specification is defined as

declare opsym(z,,...,z,)
Range Fypye C Forg
Pre Fpre - FOI‘E
Post Lpo,t C Litg

where opsym is the name of the operator and the paramelers zy,...,T, are variables.
All predicates of Frange have to be protected (i.e., it must be assured that their exten-
ston never changes) and L,,,; must not contain any derived predicate. The formulas

234

of Franges Fpre, and Ly,se may contain only x,,...,x, as free variables. The formu-
las 3z1, .., 3T0 Ajerran,. [and Aser,,. fo where o is a ground substitution for ,. .. ,z,
have to be range restricted.

Then, an operator is a head of an operator specification where all parameters are replaced
by constants. range(op), pre(op) and post(op) refer to the fully instantiated sets of Fi,pge,
Fyrey, and Lp,y, respectively. An operator op is a valid instantiation of an operator
specification with respect to a world W if W |= range(op). Note that this operator
definition again generalizes the common operator definitions in that the language used
for specifying preconditions is more powerful.

A plan is a sequence of operators. The application of a plan [opy,...,0p,] on a
world W is defined by the application of the concatenated operators op,0---0o0p, on W.
Each plan [opy,...,0p,] defines a unique sequence of possible worlds Wy,..., W,:

o W2 := W2, oc post(op;)

whereas W] = W™ = W] and W7 = W = W{ remain unchanged. An operator op; is
called a producer of a literal [for a world W; if | € post(op;), Wi—1 ¥ [, and Wy | 1
for each k = 4,...,j. In the case of I € post(op) and Wi_; k= | the operator op; is a
destroyer of [.

We are now ready to state the planning problem formally: A planning problem
is a triple (W,, OP, @), where Wy is a consistent initial world, OP a set of operator
specifications, and G is a set of closed, range-restricted formulas called the goal. For
uniformity reasons, we assume that a goal G implicitly introduces an operator goal, where
pre(goal) := G and post(goal) is empty.

A plan is called a solution for a planning problem, iff

1. op, = goal(),
2. Vie {1,...,n}: Comp(W;_) = pre(op;), and
3. Vi€ {1,...,n} : W; is consistent.

In terms of planning, this means that before inserting an operator into an operator se-
quence two things have to be verified: (i) the preconditions of the operator must be
satisfied, and (ii) the resulting world must be consistent. An operator which violates one
of these conditions is called critical.

Let us now demonstrate these definitions by means of a simple example. This will
also motivate why we use the consistency maintenance mechanism introduced in the last
section for planning purposes. The planning problem considered is the conjunctive goal
problem or Sussman Anomaly. The planning domain is the blocks world. The initial and
the goal world are depicted in figure 2.

Mainly, Wy is given by the facts {on(a, table), on(c,a), on(b,table)}. The rules and
constraints W] and W§ verbally read as follows:

support-rule-1: an object which stands on another one is supported

by that object
support-rule-2: every object supports all objects that stand on it

235

c b
a b c
Initial world Goal world

Figure 2: The conjunctive goal problem

constr-1: everything can be at one place only
constr-2: only one block can be on another
constr-3: every block is supported by the table
constr-4: only blocks can stand on other objects

A complete axiomatization is presented in figure 3. The goal G is {on(a, b), on(b,c)}.

W§: support-rule-1: Vz;,z,: on(zy,x3) = supported-by(zy, z3)
support-rule-2 : Vzi,z3,2z3: on(zy,z2) A supported-by(z2, z3)
= supported-by(zy, z3)

ws: constr-1: Vzy,z3,z3: on(zy,z3) Aon(zy,z3) = 25 = 3
constr-2: Vzy,z3,z3: is(zy,block) A on(ze,z1) A on(za, z1)
=> Ty =23
constr-3 : Vzy: is(zy, block) = supported-by(zy,table)
constr-4 1 Vzry, o on(zy,z9) = is(zy, block)
Operator:

declare move(z, z2, z3)
range is(zy,block), z, # x2,z) # 23,29 # 3
is(zq,block) V z4 = table,
is(z3, block) V z3 = table,
prec on(z1,z3), Vo4 —on(za, z1)
post —-on(zy, z3), on(zy, z3)

Figure 3: Formalization of the blocks world

In order to motivate the approach of goal completion, let us first demonstrate how
STRIPS or STRIPS-like planners would work on this problem. Since the language of
STRIPS is quite restrictive—no formulas, only atoms are allowed in the preconditions—
the above operator specification of move is not a valid STRIPS operator. This results in a
slightly different modeling of the blocks world domain, since no negation is allowed. More
specifically, an additional predicate clear is needed which states that for clear(z) there is
no block on z. Since there are also no deductive rules in STRIPS, the operators have to
take care of the validity of this predicate.

236

Hence, for STRIPS, several different operator specifications are required depending on
the different actions they take, e.g.:

1. moving a block from a block onto a block:

declare movel(z,y, z)
prec z # table,y # table,z # table

on(z,y), clear(z), clear(z),

post —~clear(z), ~on(z,y)

clear(y), on(z, 2)

2. moving a block from a block onto the table:

declare move2(z, y, table)
prec = # table,y # table,z # y

on(z,y), clear(z)

post —on(z,y)

clear(y), on(z, table)

3. moving a block from the desk onto a block:

declare move3(z, table, z)
prec z # table,z # table,z # =

on(z, table), clear(z)

post —clear(y), ~on(z, table)

on(z, z)

This distinction can be avoided since we allow derived predicates and general formulas—
which obviously subsume negative literals.
The strategy, the STRIPS planner uses is adopted from the General Problem Solver ([3]):

Algorithm 3.2 (GPS-Planner)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

procedure GPS(W ,op)

input:

W: consistent world

op: an operator

wnil plan := [];

while op is critical w.r.t. W do
choose an unsatisfied subgoal g of pre(op);
choose an operator op’: g € post(op’);
plan’ := GPS(W,op’);
plan := plan o plan’ o [op'];
W := plan’ o [op/}(W);

(12) return(plan);

The planner starts with the original world W, and a special operator goal whose precon-
dition is the goal G and whose postcondition is empty . First, plan is initialized with the

237

empty plan; some unsatisfiable subgoal in pre(op)! is chosen and an operator op' is cho-
sen whose postcondition just satisfies this goal. Then, within a recursive call, a subplan,
which fulfills the precondition of op', is constructed. The resulting plan is connected to
the current plan and the loop is entered again, until no more unsatisfied subgoals of op
can be found.

Let us demonstrate this algorithm for the conjunctive goal problem of Figure 2 where
we abstract from the facts stating that something is a block or a table. We simply

concentrate on the extensions of the on predicate. There are two subgoals we can start
with. Namely, on(a,b) and on(b,c):

on(a,b) The only operator op’ which could lead to an optimal solution is move3(a,table,b).
This results in the recursive call GPS(W, move3(a,table,b)).

Out of the preconditions on(a,table) and clear(a), the latter is unsatisfied. Hence,
this operator is critical. An operator having clear(a) in its postcondition is move2(c,a
table). The resulting recursive call is GPS(W, move2(c,a,table)). The preconditions
of this operator are fulfilled. This results in unwinding the recursive calls,

)

At the upper GPS level we now have plan = [move2(c,a,table), move3(a,table,b)]
and W = {on(c,table), on(a,b),on(b,table)}.

There exists still the unsatisfied precondition on(b,c) of the artificial operator goal.
The applicable operator is moved(b,table,c). The recursive call GPS(W,move3(b,
table,c)) results in plan’ = [move2(a,b,table)].

Hence, at the outer level we have plan = [move2(c,a,table), move3(a,table,b), move2(a,
b,table), move3(b,table,c)] and W = {on(b,c), on(b,table), on(a,table)}. Hence,
there still is the unsatisfied subgoal on(a,b). The applicable operator is move3(a,table,
b) whose precondition is fulfilled.

Summing up, the resulting plan is [/move2(c,a,table), move3(a,table,b), move2(a,
b,table), move3(b,table,c), moved(a,table,b)].

on(b,c) As can easily be verified, starting with this subgoal results in the even worse plan
[move3(b,table,c), move2(b,c,table), move2(c,a, table), move3(a,table,b), move2(a,b,
table), move3(b,table,c), moved(a,table,b)].

Obviously, the generated plans are pretty awkward and the shortest plan is {move2(c,
a,table), move3(b,table,c), moved(a,table,b)}. Hence, we can conclude that the GPS pro-
cedure is incomplete, if we define completeness such that all minimal plans are found.
The question we pursue now is, how completeness can be assured.

First, we observe that the goal {on(a,b), on(b,c)} is not a complete description of a
consistent world because it does not contain the fact on(c,table). Second, we observe that
if the goal would be complete in this sense, i.e., would comprise the facts on(a,b), on(b,c),
and on(c,table), then the GPS procedure would easily find the optimal plan when starting
with the goal on(c,table). Hence, we might conjecture that GPS results in a complete
planner, if the goal describes a consistent world. Since the user of the planner should not
be concerned with this restriction, we use the repair mechanism of the previous section
to compute the complete goal world(s).

IThe violation of consistency constraints is not treated by STriPs.

238

For a given goal G, we get a complete description of the goal world Wg, by adding G
to Wy. This results in

We = {on(a, table), on(c,a), on(b, table), on(a, b),on(b,c)}.

Obviously, several constraints are violated: block a is at two places, thus ‘on(a,table)’
must be deleted. For the same reason ‘on(b,table)’ must go. We now have Wy = {
on(a,b), on(b,c), on(c,a)}, which is an impossible ‘circular’ tower, therefore ‘on(c,a)’ also
disappears. The result is—in this case—a world holding only the goal. However, this still
violates a constraint, namely that every object must be at a certain place. Block ‘c’ has
no place, so we must find one for it. The only choice here is the addition of ‘on(c, table)’,
so we finally get the goal state Wg = {on(a, b), on(b, c), on(c, table)} of figure 2. As it can
be seen, we arrived at a complete and consistent description of the goal state.

To summarize, the key idea of our approach is to borrow ideas from deductive database
technology for modeling worlds in planning and to use techniques for detecting and resolv-
ing inconsistencies. By these means, we compute a complete description of a possible goal
world and use this information to guide a dedicated (linear) planning algorithm. As the
main driving force is regaining consistency, we call our approach Consistency Driven
Planning (CDP).

The next subsection gives the definition of the basic CDP procedure which is a gener-
alization of GPS including the repair mechanism. This basic procedure is rather inefficient
since too many search nodes are generated during a planning process. To overcome this
deficiency, some pruning techniques are incorporated. Then, completeness results are
stated. A performance evaluation of the different pruning algorithms will conclude the
subsection.

3.2 The Basic CDP Procedure
3.2.1 Basic CDP-Algorithm

The main difference between our approach and most planners which are based on a
STRIPS-like formalism ([5]) is that the CDP planner is able to handle formulas which
occur either as preconditions or as consistency constraints of 2 domain. The repair system
allows to map general formulas to a set of ground literals. This capacity is required during
the elimination of critical operators of a plan by insertion of new ones. If op is a critical
operator with respect to a world W the following set of repairs will be generated:

repairs(W, op) := {R;UR, | Ry € repairs;(W, pre(op))
& R, € repairs;(op(Ry(W)), W¢)
& R, U post(op) free of contradictions
& R U R, free of contradictions}

The index ¢ denotes the repair level. The function repairs; is based on CAUSES; which
was defined in subsection 2.4:

repairs,(W, A) := I '(CAUSES;((W?, W™, A))

The following algorithm shows how this mechanism can be incorporated into a simple
planner:

239

Algorithm 3.3 (basi'c planning algorithm)

(1) procedure Basic-CDP(W;,G)

(2) init plan := [goal] where pre(goal) := G and post(goal) :=

(3) while plan is no solution do

(4) determine a critical op, of plan = [op,, ... ,0pn): 1:= SC(plan)
(5) letVi=1...n: W, = op;(W;)

(6) Rep := repairs;(W,-1, 0p,)

(7 choose a subgoal g € UsepeRep T€P
(8) choose an operator op: g € post(op)
(9) choose a position j: j <

(10) plan := plan[l...j — 1] o [op] o plan[j ... nl;
(11) return plan

The lines 7, 8 and 9 are choice points, l.e., the planner has to choose one out of several
possible results and has to store the remaining results in order to allow backtracking.
In line 4, the selection of a critical operator is deterministic. Which critical operator is
selected depends on the applied selection function SC. The special operator goal
allows a uniform treatment of the goal G. If goal is selected as a critical operator the
applications the repairs computed in line 6 result in completions of the goal, i.e., we
perform a goal completion. Since the completion of the goal is done in respect to the last
world W;,_; of the plan?, the completed worlds always reflect the actual situation of the
planning process.

In the following example we demonstrate how the basic planning algorithm generates
a solution for the Sussman Anomaly. In order to keep the example short we assume that
the algorithm always performs optimal choices.

Initialization
The planning algorithm starts with the plan [goal]. The precondition of the special
operator goal is the goal G' = {on(a, b), on(b, c)}.

First execution of the while body

Step 1.1: (choose a subgoal) 7o satisfy the precondition of the operator goal a list
of repairs is computed by the repair mechanism. After that, the planner chooses a
subgoal at the first choice point.

The repair mechanism finds exactly one repair

R = {add(on(a,b)),add(on(b,c)),add(on(c,table)),
del(on(c, a)), del(on(a, table)), del(on(b, table))}

for the world W, and the goal G such that C(R(Wp)) U W§ UG is consistent. Note,
that the repair mechanism derives a new fact on(c, table) from Wy and G. The fact
on(a,b) is chosen as a the first subgoal g.

*The goal operator does not change the world ¥, _;.

240

Step 1.2: (choose an operator) The task for the planner is to find an operator ‘per-

forming’ the subgoal g choosen by the previous choice point. If there are several
possible operators a single one is selected.

The operators move(a, ¢, b) and move(a, table, b) can be used to achieve g = on(a, b).
The second operator is chosen. '

Step 1.3: (choose a position) The algorithm inserts the selected operator in the
generated plan at some position before the critical operator.
The only possible position for move(a, table, b) is directly before goal.

Second execution of the while body
The selection function SC determines move(a, table, b) as critical operator.

Step 2.1: (Determine repairs) The subgoal g = —on(c,a) is chosen from the only
repair {—on(c,a), on(c, table)}.

Step 2.2: (choose an operator) Analogously to step 1.2, the operator
move(c, a, table) is chosen.

Step 2.3: (choose a position) Again, the introduction of the chosen operator into
the plan is deterministic. move(c, a, table) is inserted in the first position of the
generated plan:

[move(c, a, table), move(a, table, b), goal()]

Third execution of the while body
goal() is the only critical operator.

Step 3.1: (choose a subgoal) The precondition of goal and the consistency con-
straints of the domain hold after the execution of the repair {on(b, c), ~on(b, table)}.
The planner choses on(b, c).

Step 3.2: (choose an operator) For the subgoal on(b,c) the second choice point
selects move(b, table, c).

Step 3.3: (choose a position) For move(b, table, c) exist three possible positions.

By insertion of mowve(b, table,c) in the second position of the plan we generate a
solution

[move(c, a, table), move(b, table, c), move(a, table, b), goal()]

for the planning problem, since the intermediate worlds are consistent and the pre-
conditions of all operators are satisfied.

241

3.3 Enhancements of the Basic Planner

Three different planning strategies, which exploit the fact that the planner allows a deter-
ministic selection of a critical operator of a plan, have been implemented. The ’leftmost
critical operator’ (LMC) strategy always selects the critical operator op; with the small-
est index #; the 'rightmost critical operator’ (RMC) strategy uses the critical operator
with the highest index. The third strategy GPS is borrowed from the General Problem
Solver ([3]). GPS is a LMC strategy where a new operator is always inserted directly
before the selected critical operator, i. e., GPS replaces the nondeterministic choice point
at line 9 by the deterministic statement j := [.

On one hand, it is well-known that if the search space of an existing planning strategy
is pruned, no minimal plans or — even worse — no plans at all may be found. On
the other hand, the search space often has to be pruned in order to get the necessary
performance to solve even simple problems. In the following we introduce three powerful
pruning heuristics which preserve completeness for LMC and RMC.

The first pruning technique hitting-set (HS) restricts the number of alternatives at
the first choice point of the algorithm above by using a2 minimal hitting set of all computed
repairs. Note, that the set of repairs can be large.

Example 3.4 If we extended the initial world of the conjunctive goal problem by the facts
on(dy,table),...,on(d,, table) we would get n+1 repairs:

{{on(a,b), on(b, ¢), on(c, x), ~on(c, a), ~on(a, table), ~on(b, table)}
| z € {table,dy,...,d,},i=1...n}

consisting of 6+n different literals, whereas all minimal hitting-sets, e.g., {on(a,b)}, only
consist of one literal.

The branching factor of the first choice point is decreased by restricting the subgoals to a
minimal hitting set H.S(Rep) of all computed repairs. This idea is incorporated into the
planner above by replacing line 7 by

(7.a) determine a minimal hitting set of Rep = {Ry,..., R¢}: hs:=HS(Rep);
(7.b) choose a subgoal g € hs

The selection of a hitting set out of several possible ones in line 7.a is done determin-
isticly therefore no backtracking capabilities are necessary for this step.

The second pruning technique reduces the branching factor at the second choice point
by rejecting operators that destroy an already achieved subgoal. As an example consider
the following incomplete plan for the conjunctive goal problem:

[move(c, a, table), move(a, table, b), move(b, table, c)}.

The first two operators successfully achieve the subgoals on(c, table) and on(a,b). The
third operator tries to achieve on(b,c), but is not applicable since the precondition of
move(b, table, c) requires that the block b is clear. The only way to achieve Yz, : —on(z4,b)
is to destroy on(a,b) by inserting additional operators. This plan does not lead to an
optimal solution therefore its expansion should be averted.

242

In order to prevent this clobbering of an already achieved subgoal we use the well-
known technique of protected subgoals® (PSG) which only allows the insertion of
operators into positions where they do not violate previously defined producer—consumer
relations. Additionally, the insertion of an operator at a position j is prevented if be-
tween j and the critical operator already lies a potential destroyer. The GPS-planner
is extended by an additional variable psg which lists the currently protected producer—
consumer relations. The initialization of Basic-CDP is extended by psg:= @ and line 9 in
the planner is replaced by: -

(9.2) choose a position j for op such that:
o 1 <1
e the insertion of op at position j does not violate any in psg specified
producer—consumer relations
e between j and [are no potential clobbers of g in plan

(9.b) psg:= psgU {“op produces g for op,”*};

The expansion of the above plan can only partially be prevented by this modification
since the second operator move(a, table,b) could be inserted in order to achieve either
on(a,b) or —on(a,table). In the second case, it would be possible to remove a from b
again. If we protected several subgoals for one producer, we could also prevent this case.
But so far the problem of efficiently deciding whether an operator can achieve more than
one subgoal and therefore the problem of protection of more than one subgoal for an
operator is unsolved. In the blocks world this is even the main problem. In [7] Gupta
and Nau show that the worst case complexity of the computation of an optimal solution
is determined by the problem of deciding whether a block has to be moved by one or two
move-operators to its goal position.

The third pruning technique concerns the computation of repairs for a critical opera-
tor op;. The selection of a subgoal g can be interpreted as a preference of those repairs Ry
of Rep which contain g. If during further computations op, is again selected, we should
respect the former decision and try to choose an unachieved subgoal of the ’preferred’
repairs Ry which contain g. This consideration is the foundation of the postponed re-
pair computation (PRC) pruning technique. Each operator op of a plan has a set of
associated repairs assoc-rep(op). Initially, this set is empty. If an operator is selected
by SC, the associated set of repairs is initially used to determine a subgoal. Only if all
associated repairs are already achieved or if no repair is associated a new set of repairs
is computed. After the selection of a subgoal, those repairs which contain the selected
subgoal are linked to the critical operator. We integrate this technique into the planner
through the replacement of line 6 by

(6.a) Rep:= assoc-rep(op,)
(6.b) if IR € Rep: Wi, E R
(6.c) then Rep := repairs;(W;_,, op,)

3see, e.g., [14]
4we assume that operators which occur several times in a plan can be distinguished from each other

243

and through the insertion of a 11th and 12th line:

(11) assoc-rep(op) := {R € Rep| g € R}
(12) assoc-rep(op) := 0

-The goal operator goal is initialized in line 2 by a new statement assoc-rep(geal) := 0.
Since associated repairs may no longer comply with the definition of the term ’repair’ (e.g.,
they may not be minimal) before the application of HS, the literals already achieved have
to be removed from the associated repairs.

Figure 4 shows the entire planner with all three pruning techniques incorporated.

(1) enhanced CDP-Planner Enhanced-CDP(W,;,G)
(2) init plan := [goal] where pre(goal) := G and post(goal) := 0

(3) psg:=10

(4) assoc-rep(goal) :=)

(5) while plan is no solution do

(6) determine a critical op; of plan = [opy,...,0p,]: | := SC(plan)

M let Vi =1...n: W;y = op;(Wj)
(8) Rep := assoc-rep(op,)
(9) if IR€ Rep: Wi, E R
(10) then Rep := repairs,(W,_1, op,);
(11) determine a minimal hitting set of Rep = {Ry,..., Rx}:
hs:= HS({ {l € Ri\Wi,_1 1} | R € Rep});
(13) choose a subgoal g € hs;
(14) choose an operator op: g € post(op);
(15) choose a position ;7 for op such that:
07 <
¢ the insertion of op at position j does not violate any
in psg specified producer-consumer relations
e between j and [are no potential clobbers of g in plan
(20) psg := psgU {“op producess g for op;” };
(21) plan := plan[l...j — 1] o [op] o plan[j...n];
(22) assoc-rep(op;) :== {R € Rep| g € R}
(23) assoc-rep(op) := 0
(24) return plan

Figure 4: The entire CDP-planning algorithm

We now state some completeness results on the different variants of the CDP pro-
cedure. For that, we first define the notion of completeness. The proofs of following
completeness theorems can be found in {10].

Definition 3.5 (Completeness) A planning strategy is complete if for every minimal
solution of a solvable planning problem there exists a sequence of choices for the choice
points such that the planning strategy finds this solution.

244

Theorem 3.6 (Completeness of the Basic CDP Procedure) The basic CDP pro-
cedure is complete for every repair level 1.

Theorem 3.7 (Completeness of Combination) The basic planner together with with
every combination of the strategies HS, PSG, and PRC is complete.

3.4 Empirical Evaluation of the Planner

In the last section, we have presented different planning strategies and pruning techniques.
In order to evaluate the usefulness of these extensions to the basic planner, we have
conducted a series of experiments with several planning domains. In this section, we
present some of these results.

The tables 1 and 2 summarize performance results for the conjunctive goal problem,
for the river crossing example, and for the railway example. In the river crossing example,
a farmer has to move a goose, a dog, and bag of corn from the left side of a river to the
right side. The farmer has a small boat which can carry himself and at most one further
object. Neither the dog and the goose, nor the goose and the corn may stay on the same
side without the farmer, since the dog would eat the goose and the goose the corn.

In the railway example an engine has to transport a waggon from one end of a small
marshalling yard to the other end. Four operators describe the different actions. The
operator move moves the engine whereas transport moves the engine and the wagon. The
last two operators describe the coupling-up and decoupling of wagon and engine.

All tested configurations incorporate goal completion and pure breadth first search.
No heuristic information is used in the search. Every choice at any choice point induces
the generation of all successors of the corresponding node of the search tree. Note, that
we count the generated nodes and not the expanded (or closed) nodes.

GPS | LMC | GPSy, | LMChs | GPShspsg | LMChg psg
conj. nodes 306 287 36 30 36 30
goal run time| 7.5 6.4 2.8 1.9 2.7 1.9
river nodes >2001 | >2001 | 262 535 208 331
cross. run time 54 56 11 22 6.9 11
rail- nodes >2001 | >2001 76 326 76 326
way run time 89 92 5.5 17 5.6 17

Table 1: Number of generated search nodes and run time for dif-
ferent strategies. All runs include the PRC-strategy.

The application of the hitting set strategy results in the greatest reduction of the
search space. If we look at table 2 which shows the branching factors for the three choice
points, we can see why the minimal hitting set strategy leads to such an improvement.
Its application reduces the branching factor of the subgoal choice point on average by a
factor of 3. Table 2 also shows that the completeness of the LMC planning strategy does
not increase the cost. In comparison with the GPS search strategy the LMC strategy has
a branching factor of the choice point 'choose a position’ which is only about 1.2 times
higher than that of the (incomplete) GPS strategy.

245

‘

' ChOiCC pOiIlt | GPS I LMC [GPShs l LMChs ’ GPS&s.psg | LMChs.psg I

conj. subgoal 2.9 3.2 1 1 1 1
goal operator 2 2 2 2 2 2
ins. pos. 1 1.5 1 1.4 1 1.4
river subgoal 24 | 2.7 1.3 1.2 1.1 1.2
cross. operator 1.3 14 1.6 1.7 1.9 1.7
ns. pos. 1 1.2 1 1.3 1 . 1.3
rail- subgoal 5.9 5.9 1 1 1 1
way operator 3.9 3.9 3.7 5.4 3.7 5.4
Ins. pos. 1 1.1 1 1.2 1 1.3

Table 2: Branching factors of the three choice points for different
strategies. For all runs the PRC-strategy is switched on.

If additional domain independent heuristics® and a best-first search are applied, the
number of generated nodes for the conjunctive goal problem can be reduced to 20 nodes,
52 nodes for the river crossing problem, and 39 nodes for the railway example.

3.5 Summary

We have specified different planning procedures together with a set of pruning heuristics
which still allow complete planning procedures. The approach was heterogeneous in nature
since the planning procedure was a dedicated one which relied on consistency maintenance.
The hitting set strategy was revealed to be the most effective pruning technique.

We now come to the disadvantages of the approach. Consider a blocks world with
many blocks. When a block has to be removed from another block by the operator move,
the actual place where to put the block is open. Every other block and the table are
possible places. The planner made this decision immediately and generates alternatives
depending on the place where the block is actually put. This immediate instantiation of
operators leads to too many alternatives. A better way is to defer the decision until more
information is available. Therefor, variables have to occur within partial plans.

A second disadvantage is that positions of operators are also chosen immediately. This
can lead to too many alternatives if two subgoals are independent. Hence, it might be
promising not only to consider linear plans but also non-linear plans, i.e. those, which
contain operators which are not yet ordered.

The goal of the next section is to design a planner which

e is homogeneous,
e consists of only a single choice point guided by the hitting set technique,
e defers variable instantiation, and

e allows non-linear plans.

Sthe heuristics include the preference of operators which achieve several subgoal or the preference of
uncritical positions for the insertion of operators

246

4 CDP: The.Homogeneous Approach

The previous planner consists of two levels:
1. the dedicated planning algorithm which worked on top of
2. a deductive database with consistency maintenance capabilities.

A sequence of operators is a correct plan iff the precondition of each operator is fulfilled,
the intermediate worlds are consistent, and the goal world is reached by the sequence.
Here, consistency and preconditions are described by logical formulas. The correctness of
the plan is built-in into a specialized planning algorithm.

In [4] an event calculus is used to describe the changes of operators resulting from
their application to worlds. The correctness of a plan can then be deduced. A planning
procedure can be derived by formalizing/modeling the notion of correct plan by facts,
rules, and constraints. A plan can then be derived by repairing the violations of the
constraints.

This section follows this approach. More specifically, the first subsection models the
planning domain whereas the second shows how plans are actually derived.

4.1 Modeling Planning

In order to model planning, we need the following base predicates:

before models the fact that a certain operator occurs before some other operator. We
will not only allow linear but also non-linear plans. More specifically, a plan will be
modeled by a set of positions. Each position has a set of assigned operators.

active Among the operators assigned to a position the operator which actually occurs in
the considered/resulting plan is modeled through the predicate active. Since oper-
ators are not bound to certain positions by themselves, active is a binary predicate
taking the operator and the position as arguments.

value In the CDP planner, as introduced in the last section, all operators have been
fully instantiated. This can lead to major inefficiencies. Hence, within the homo-
geneous approach we model variable assignment to operator arguments explicitly.
The predicate value is binary with variable-modeling constants and object constants
as arguments.

equal expresses that two variables must have an equal assignment.

Let us give a small example how a plan is described. In Figure 5 a simple plan within
the blocks world is modeled. The special operators start and goal are used to simplify the
formalization:

start introduces with its postcondition post(start) the initial world;

goal introduces with its precondition pre(goal) the planning goal {on(c, b)}.

247

Planbeschreibung:

before(start,goal),
before(start,p1),
before(pl,goal),
active(move(c,X1,b),p1),
value(X1,a)

Figure 5: An example for a plan description

The next step in modeling the planning domain is to express correctness of plans
within the formalization. In [1] a truth criterion is introduced which allows to check the
validity of an assertion w.r.t. a non-linear plan without exploiting all linearization of
the plan. This criterion is modeled with a set of rules. We express that a literal ! holds
immediately before the execution of an operator of a position p by holds(l,p). Verbally,
the truth criterion expresses the following: '

holds(l, p) is valid, if there exist a producer op of a position p’ with | € post(op)
within the considered Plan P and there exists no destroyer op’ between p and
p' such that [€ post(op’).

This can be captured as follows:

e (EST-LIT)
holds(base literal I, p) < before*(p',p), effect(p’,1), —destroyer(p’,p,!)

e (DESTR)
destroyer(e, u,) <= ~before™(c,e), =before*(u,c), effect(c, ()

where before® is the transitive closure of before and effect models the postconditions of
active operators (see below). The predicate destroyer models destroyer operators as used
in the description of the truth criterion. Occurring variables are typed, e.g., the variables
p and p' have the domain Posy and [has the domain Lits. The domain could also be
determined by restriction literals ([12]).

Consistency constraints are checked after the execution of an operator. In linear plans
this can be achieved by simply checking the resulting world. For non-linear plans this is
more complicated since the resulting worlds are not necessarily unique. Hence, a special
truth criterion must be employed. Analogously to holds, we define a predicate holds-after:

o (EST-AFTER-LIT1)
holds-after(base literal I, p) < effect(p,)

o (EST-AFTER-LIT2)

holds-after(base literal , p)
<= before(p', p), effect(p’,1), —destroyer(p’, p,1), —effect(p, I°)

248

The effect of an operator depends on the current assignment for variables and the
current equations as modeled by value and equal. The following three rules capture this
dependency:

o (EFFECT1) effect(p,l) < active(op,p) where | € post(op) and op associated to p.
o (EFFECT?2) effeci(p,l[c « V]) <= value(V,c), effect(p,!)
o (EFFECT3) effect(p,l[V «— V']) < equal(V, V"), effect(p,!)

The predicate holds also has to capture whole formulas (not only literals). For that, the
derivation process has to be built into the rule set such that the special semantic FEwortds of
worlds, which includes the unique-name, domain-closure, and closed-world assumptions,
is captured. The following theorem states when a rule set is correct and complete:

Definition 4.1 (correctness and completeness of Ryerive)
Let (We, W™, W¢) be a world over the signature ¥ = (Kg, Prg,ax, Poss), Rierive a rule
set defining the predicate holds and ¢ a closed formula over T.

Raerive is @ correct and complete aziomatization of the the semantic of worlds if and
only if:

comp({holds(l,p) | | € W* U (Fak¥**\ W2)} U Ruerive) = holds(¢,p) iff W Fwortds @

An example for a correct and complete derivation scheme has been given in Section 2. A
direct definition of derivation trees in a rule set Ryerive is:

(ALL) holds(Vz : ¢,p) <= Ak, holds(p[c — z],p)
(EX) holds(3zx : ¢, p) < holds(¢[c — z],p)
where ¢ € Ky constant of object domain
(RULE) holds(a,p) <= holds(A a;, p)
where a < q; ... a, fully instantiated object rule of W~
(NOT) hOldS("'a, p) = /\acal...anfully instantiated rule of W’ hOIdS(—‘al V...V an, p)
(AND) holds(ep A 9, p) <= holds(¢, p), holds(v, p)
(OR) holds(¢ V v, p) < holds(y, p)
holds(¢ V 4, p) < holds(¢, p)

Note that the unique-name and domain-closure assumptions are contained within the
axioms. The closed-world assumption is gained by the completion of Ryerive. The axioms
for holds-after can be derived by replacing holds by holds-after within the above rule set.
Subsequently, we concentrate on holds since all results can be derived analogously for
holds-after.

With the above rule sets the rule interpreter can decide whether a certain precondi-
tion ¢ holds before the execution of an operator op at position p by checking holds(¢p, p).
The uncritical application of an operator can now be formalized by the rule:

¢ (NC) not-critical(op, p) < holds(Apecpre(opy ¥, p), holds-after(Apew- @, p)

We are now ready to axiomatize the correctness of plans. First, we state the condition
that every occurrence of an active operator must be uncritical:

e (PC) Vp,op: active(op,p) = not-critical(op, p)

249

v

The other constraints are general planning conditions which must be fulfilled for every
plan:

¢ There is no cycle within the positions (cycle condition):

(CYC) : V¥V p: position(p) = —before*(p, p)

All positions lie between the start and the goal position:

(5-G) : Vp:p#pstarts P # Pgoat = before*(psiart, p) A before™ (p, pgoar)

Variable assignments are unique (unique variable value):

(UVAR): Vu,c,c : value(v,c), value(v,d) = c=¢
e Equal variables have the same assignment (equal variable value):
(EVV): Vu,v',¢,c : equal*(v,v’), value(v,c), value(v',c') = c=¢

where equal” is the transitive closure of equal.

There is at most one active operator at each position:

(ACT): Vp,op,op : active(op,p), active(op’,p) = op = op'

The start und the goal operator are always active:
(S&G-ACT): active(start, psiars) A active(goal, pyoar)

The rules and constraints introduced so far constitute an axiomatization of the domain
“planning”. Analogously to the description of a world as a triple of facts, rules, and
constraints, a plan is described through a triple P = (P?, P", P¢). In order to distinguish
between the formalization of worlds of a domain and the domain ‘planning’, we denote
the former by object domain and the latter by meta domain. Coupling these domains
is realized by the application of the

e object rules within the rules (RULE) and (NOT) and
o the object constraints and operator preconditions within the rule (NC).

A planning problem is described by a start operator start whose postcondition contains
the initial world, and a goal operator goal whose precondition reflects the planning goal:

pre(start) = 0, post(start) = {I| | € W2 U (Fakbse\ We)}
pre(goal) = G, post(goal) =

We are now able to state an important result which allows us to determine the usefulness
of our plan axiomatization. Verbally, the consistency of a plan P is a sufficient criterion
for the correctness of each linearization of P:

250

Theorem 4.2 (correctness of the planning formalization)

Let P = (P*, P",P°) be a plan for a planning problem (Wo, OP,G), and P (GPC)-

consistent, o= {X/c | value(X,c) € P* orequal*(X, X’), value(X’,c) € P*} and {(opg, po),
-+++(0PnyPn)} = {(opa,p) | active(op, p) € P4}

If P is (PC)-consistent, then every linearization of the plan described by P* is correct,

i.e.,, for all linear plans [op, ,...,op; | such that op, = start, op;, = goal and p;,,...,p;,

is a linarization of before™ the following holds:

Wiy := op;, (Wi) consistent and pre(op;,) is valid in W,

We omit the proof.

The reverse implication of above theorem is not true. Figure 4.2 contains a counter ex-
ample, where every linearization of the plan is correct but the plan is not (PC)-consistent.
The non-linear ordering of the operators op, and op, causes a negative interaction w.r.t.
the two meta facts holds(a, pgoar) and holds(b, pgoat).

opl: pre={}, post={a,~b} CopD
op2: pre=(}, post={—a,b} @%m

goal: pre={a or b} P

Figure 6: Example of a plan of which all linearizations are correct, but which is not
(PC)~consistent

Nevertheless, for practical reasons the weak completeness of our plan axiomatization
is sufficient:

Theorem 4.3 (weak completeness of the planning formalization)
For every correct plan [op,,,...,op;] for a planning problem P = (W,, OP, @), there
ezists a consistent plan P = (P, P", P°) for P.

We omit this proof, too.

4.2 Plan Generation

Within this subsection we want to demonstrate, that the above formalization is not only
useful in specifying the correctness of plans and its verification, but also to actually
derive correct plans. The central idea is to apply the consistency maintenance procedure
of Section 2.

Again, the main tools are derivation trees. More specifically, derivation trees for
the correctness condition (PC). Figure 7 contains a partial derivation tree for the plan
of Figure 5. This partial tree is used for proving the precondition on(c,b) of the goal
operator goal. Within the nodes, the instantiated meta rules of P are denoted by their
names.

The task of the planner is to generate a consistent solution plan for a given planning

problem (W,,OP,G) where a plan P is consistent if (GPC) and (PC) are satisfied.

251

Figure 7: A part of the derivation tree for the example plan

Whereas (GPC) is easy to verify and guarantee, the main challenge is (PC). There exist
two different causes due to which (PC) can be violated:

1. There exists no solution tree whose leafs are contained in P*°U{-a | a base atom, a g
Pc}. In this case, the simple solution to the problem is to modify P* accordingly.

2. Positions with appropriate active operators are missing.

The latter condition is the real challenge. Missing operators, or those which cannot
be activated because of the constraint (ACT), lead to the problem that there exists no
producer or only producers followed by destroyers for an object base literal {. To account
for this situation, a new position ppe, has to be introduced. A set of partially instantiated
operators containing ! in their postcondition can be assigned to p,.,, in a fixed way. Then,
these operators are those which can potentially be activated (see EFFECT1). Introducing
a new position with new operators allows to generate new instances of (NC), (EST-LIT),
(EST-AFTER-LIT1,2) and (DESTR), and, hence, leads to an expansion of the derivation
tree. This expanded derivation tree then, possibly, contains the potential of gaining
consistency by a simple modification of P¢. Note that the introduction of new positions
occurs, in general, already at the start of the planning process where only the two positions
Pstart and pgoq for the operators start and goal exist.

The reason for introducing new positions is rule (EST-LIT). Its completion results in

holds(base literal I,p) <« 3p’ € Posy : (before™(p',p), effect(p’,!), —destroyer(p',p,1))

252

Replacing destroyer(p’, p, 1) by the body of (DESTR) yields

holds(base literal I, p)
< 3p' € Posg : (before*(p',p), effect(p’,1),
Vp" € Posg : (before*(p",p') V before*(p, p") V —effect(p”, %))

Obviously, only in (EST-LIT) occur position variables which are actually quantified by
an existential quantifier. This requires that the planner must be able to introduce new
positions during the planning process. The derivation tree should also be used to deter-
mine new positions. Therefore, a new successor with the label new-position is assigned
to each node with a label of the form holds(l,p) and where [is an object base literal (see
Figure 8).

new
position

Figure 8: Extension of the derivation tree by a new leaf “new-position”

This enhanced derivation tree is denoted by DTZ**(P). A node “new-position” is a
leaf whose label cannot directly be transformed into a meta base fact, which could be
added to P¢. If during the planning process a new-position leaf is to be satisfied in order
to achieve consistency (validity of (PC)), Posg is extended by a new position ppes, and
the selected new—position node n is eliminated from the derivation tree. The predecessor
n' of n contains a label holds(l,p). According to this literal {, all operators with { in
their postcondition are now associated to ppey,. Finally, the derivation tree DT2*(P) is
adjusted for the new signature £ := S U {pnew }. The resulting planning procedure can be
described as follows:

Algorithm 4.4 (basic planning algorithm)

(1) inil pre(start) := 0, post(start) := {l | [€ W U (Faklgse \ We)}

(2) pre(goal) := G, post(goal) :=

(3) POSE = {pstart,pgoal}

(4) P := {active(start,psiare), active(goal,pyoat), before(psiartsPgoat) }

(5) compute initial derivation tree DTE*(P)

(6) while P not consistent do

(7) choose leaf n of DTE**(P) where meta literal | is not satisfied
by P

(8) tf n is a new-position node

253

(9) then create a new position ppe, € Posg

(10) associate operators
{op | I € post(op) & op min. instanciated} to ppey,
(11) Posy := Posz U {pnew},
(12) adopt DTE>*(P) to the extended signature
(13) else P°:= P*U{l}

First note that this algorithm is still nondeterministic. Nevertheless, opposed to the
previous planners, it contains only a single choice point. Further, this choice point can
be driven by the hitting set heuristic. In order to do so, line 7 is replaced by

* Compute a set of repairs ry,...,r, for the derivation tree DTE*(P) where the
ground meta base literals P*U{-a | a base atom,a ¢ P} describes the valid leaves

® choose a node from the hitting set of r,...,r,
Also, the other goals
L. introduction of variables to avoid immediate binding

2. non-linear plans to avoid immediate ordering

are fulfilled by this algorithm.

5 Conclusion

After shortly reviewing consistency maintenance, its usefulness in planning has been mo-
tivated, and several planning procedures exploiting consistency maintenance have been
given. Theoretical as well as empirical results confirmed the track. Nevertheless, some
possible problems of these planning procedures where pointed out. In order to overcome
them, a new, homogeneous planner was developed. Future empirical studies have to reveal
its performance.

References

(1] David Chapman. Planning for Conjunctive Goals. Artificial Intelligence, 32:333-377,
1987.

[2] Jirgen Dix, Joachim Posegga, and Peter H. Schmitt. Modal Logic for Al Plan-
ning. In First International Conference on Erpert Planning Systems, pages 157-162,
Brighton, GB, July 1990. IEE.

[3] G. Ernst and A. Newell. GPS: A Case Study in Generality and Problem Solving.
Academic Press, 1969.

[4] Kave Eshghi. Abductive planning with event calculus. In Proc. Fifth International
Logic Programming Conference, pages 562-579. MIT Press, 1988.

[5] R. Fikes and N. Nilsson. STRIPS: A new approach to theorem proving in problem
solving. Artificial Intelligence, 2:189-205, 1971.

254

[6] Corell Green. Application of theorem proving to problem solving. In st International
Joint Conference on Artificial Intelligence, pages 219-239, Washington, USA, 1969.
appears also in Readings in Planning.

[7] Naresh Gupta and Dana S. Nau. Compexity results for blocks-world planning. In
Proceedings of the Ninth National Conference on Artificial Intelligence, pages 629-
633, San Francisco, USA, 1991. American Association of Artifical Intelligence.

[8] J.W. Lloyd. Foundations Of Logic Programming (2nd Ed.). Springer, 1987.

[9] G. Moerkotte and P.C. Lockemann. Reactive consistency control in deductive
databases. ACM Trans. on Database Systems, 16(4):670-702, 1991.

[10] G. Moerkotte, H. Miiller, and J. Posegga. Aspects of consistency driven planning.
In Proc. 2nd. Int. Workshop on the Deductive Approach to Information Systems and
Databases, 1992.

[11] G. Moerkotte and P. Schmitt. Analysis and repair of inconsistencies in deductive
databases. submitted, 1991.

[12] Guido Moerkotte. Inkonsistenzen in deduktiven Datenbanken (Inconsistencies in de-
ductive databases). Informatik-Fachberichte 248. Springer, Berlin, FRG, 1990.

[13] R. Reiter. On closed world data bases. In: H. Gallaire And J. Minker (Eds.), Logic
And Data Bases, Plenum, New York:227-253, 1978.

(14] Austin Tate. Generating project networks. In 5th International Joint Conference on
Artificial Intelligence, pages 888-893, Bosten, USA, 1977.

[15] E. Teniente and A. Olive. The events method for view updating in deductive databas-
es. In Proc. European Conf. on Eztending Database Technology (EDBT), pages 245-
260, 1992.

255

