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Ridge regression is a popular method for dense least squares regularization. In this article, ridge regression is studied in the
context of VAR model estimation and inference. The implications of anisotropic penalization are discussed, and a comparison
is made with Bayesian ridge-type estimators. The asymptotic distribution and the properties of cross-validation techniques are
analyzed. Finally, the estimation of impulse response functions is evaluated with Monte Carlo simulations and ridge regression
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1. INTRODUCTION

While the idea of using ridge regression for vector autoregressive model estimation dates back to Hamilton (1994),
there seems to be no complete analysis of its properties and asymptotic theory in the literature. This article fills this
gap by analyzing the geometric and distributional properties of ridge in a VAR estimation framework, discussing
its comparison to well-known Bayesian approaches and deriving the validity of cross-validation as a selection
procedure for the ridge penalty.

First, I show that the shrinkage induced by the ridge estimator, while intuitive in the setting of an isotropic
penalty, produces complex effects when estimating a VAR model with a more flexible penalization scheme. This
implies that the benefits of the bias-variance trade-off (Hastie, 2020) may be hard to gauge a priori. I provide
a tractable example where ridge can yield estimates that have higher autoregressive dependence than the least
squares solution. To better understand how different ridge penalization strategies can be designed, I also make a
comparison with Bayesian VAR estimators commonly used in macroeconometric practice.

Second, I generalize the analysis of Fu and Knight (2000) and prove the consistency and asymptotic normality
of the ridge estimator, a result that seems to be missing in the literature. For standard inference, the ridge penalty
should either be negligible in the limit or its centering converge in probability to the true parameter vector. In both
these cases, there is no asymptotic bias and no reduction in variance. Alternatively, in settings where a researcher
is willing to assume that a subset of the VAR parameters features small coefficients, one can achieve an asymptotic
reduction of variance by correctly tuning the ridge penalty matrix. I further derive the properties of cross-validation,
which is a popular approach in practical applications to tune penalized estimators (Hastie et al., 2009; Bergmeir
et al., 2018). More specifically, I show that cross-validation is able to select penalties that are asymptotically valid
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2 G. BALLARIN

for inference. In passing, I also prove that, in an autoregressive setup, the time dependence of regressors has an
exponentially small effect on in-sample prediction error evaluation.

Lastly, I use Monte Carlo simulations to study the performance of the different ridge approaches discussed,
focusing on impulse response inference. I consider two exercises: one is based on a three-variable VARMA(1,1)
data generating process from Kilian and Kim (2011); the other is a VAR(5) model estimated in levels from a set of
seven macroeconomic series, following Giannone et al. (2015). The finding is that ridge can lead to improvements
over unregularized methods in impulse response confidence interval length, while Bayesian estimators show the
best overall performance due to the underlying flexibility of their priors.

1.1. Related Literature

This article does not discuss the high-dimensional setting, where the number of regressors grows together with the
sample size. Some important work has been done in this direction already. Dobriban and Wager (2018) derive an
explicit expression for the predictive risk of ridge regression assuming a high-dimensional random effects model.
Other works in this vein are Liu and Dobriban (2020); Patil et al. (2021) and Hastie et al. (2022), which are mostly
focused on penalty selection by cross-validation, as well as structural features of ridge. Generally speaking, the
complexity of analyzing ridge regression in high dimensions is a challenge to precisely understanding its practical
implications. As I show below, in the context of finite-dimensional VARs, asymptotic inference demands that
the ridge penalty becomes asymptotically negligible at appropriate rates. Thus, a challenge is understanding in
what way high-dimensional time series problems would benefit from the use of ridge. This question is beyond
the scope of this article.

In the time series forecasting literature, ridge regression is commonly used for prediction. I provide a partial list
of contributions in this direction. Inoue and Kilian (2008) use ridge regularization for forecasting U.S. consumer
price inflation and argue that it compares favorably with bagging techniques; De Mol et al. (2008) use a Bayesian
VAR with posterior mean equivalent to a ridge regression in forecasting; Ghosh et al. (2019) again study the
Bayesian ridge, this time, however, in the high-dimensional context; Goulet Coulombe et al. (2022), Fuleky (2020),
Babii et al. (2021), and Medeiros et al. (2021) compare LASSO, ridge and other machine learning techniques
for forecasting with large economic datasets. Fuleky (2020) gives a textbook treatment of penalized time series
estimation, including ridge, but does not discuss inference. The ridge penalty is considered within a more general
mixed 𝓁1-𝓁2 penalization setting in Smeekes and Wijler (2018), who study the performance and robustness of
penalized estimates for constructing forecasts.

Regarding inference, Li et al. (2024) provided a general exploration of shrinkage procedures in the context
of structural impulse response estimation. Very recently, Cavaliere et al. (2023) suggested a methodology for
inference on ridge-type estimators that relies on bootstrapping. Finally, shrinkage of autoregressive models to
constrained submodels was discussed by Hansen (2016b) in a more general setting.

Finally, various estimation problems can either be cast as or augmented with ridge-type regressions. Goulet
Coulombe (2023) shows that the estimation of VARs with time-varying parameters can be written as ridge regres-
sion. Plagborg-Møller (2016) and Barnichon and Brownlees (2019) both use ridge to derive smoothed local
projection impulse response functions.

1.2. Outline

Section 2 provides a discussion of the ridge penalty and the ridge VAR estimator. In Section 3 I deal with the prop-
erties of ridge-induced shrinkage in the autoregressive coefficients. I discuss the connections between frequentist
and Bayesian ridge for VAR models within Section 4. Section 5 develops the asymptotic theory and inference
result in the case where there is no asymptotic shrinkage. This includes studying the property of cross-validation
under dependence. Section 6 provides inference and CV results in a setting where some shrinkage of a subset
of parameters is possible. Section 7 presents Monte Carlo simulations focused on impulse response estimation.
Section 8 concludes. Finally, the Data S1 Supplementary Appendix contains more detailed derivations, as well as
all proofs, additional tables and further information on simulations.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 3

1.3. Notation

Define R+ to be the set of strictly positive real numbers. Vectors v ∈ RN and matrices A ∈ RN×M are always
denoted with lower and uppercase letters respectively. Throughout, I will use IM to represent the identity matrix
of dimension M. For any vector v ∈ RN , ‖v‖ is the Euclidean norm. For any matrix A ∈ RN×M , ‖A‖ is the spectral
norm unless stated otherwise; ‖A‖max = maxi,j

|
|
|
aij
|
|
|

is the maximal entry norm; ‖A‖F = (tr{A′A})−1∕2 is the
Frobenius norm; vec(⋅) is the vectorization operator and⊗ is the Kronecker product (Lütkepohl, 2005). If a vector
represents a vectorized matrix, then it will be written in bold, that is, for A ∈ RN×M I write vec(A) = a ∈ RNM .
Let Λ = diag{𝜆1, … , 𝜆K2p}, 𝜆i > 0 for all i = 1, … ,K2p. To give the partial ordering of diagonal positive

semi-definite penalization matrices, let Λ1 = diag{𝜆1,j}
K2p
j=1 and Λ2 = diag{𝜆2,j}

K2p
j=1 . I write Λ1 ≺ Λ2 if 𝜆1,i < 𝜆2,i

for all i = 1, … ,K2p; Λ1 ⪯ Λ2 if 𝜆1,i ≤ 𝜆2,i for all i and ∃ j ∈ 1, … ,K2p such that 𝜆1,j < 𝜆2,j. Symbols
P
−−→ and

d
−−→ are used to indicate convergence in probability and convergence in distribution respectively.

2. RIDGE REGULARIZED VAR ESTIMATION

Let yt = (y1t, … , yKt)′ be a K-dimensional vector autoregressive process with lag length p ≥ 1 and parametrization

yt = 𝜈t + A1yt−1 + A2yt−2 + · · · + Apyt−p + ut, (1)

where ut = (u1t, … , uKt)′ is additive noise such that ut are i.i.d. with E[uit] = 0 and Var[ut] = Σu, and 𝜈t

is a deterministic trend. For simplicity, in the remainder I shall assume that 𝜈t = 0 so that yt has no trend
component – equivalently, yt is a detrended series.

For a given sample size T define Y = (y1, … , yT ) ∈ RK×T , zt = (y′t , y
′
t−1, … , y′t−p+1)

′ ∈ RKp, Z =
(z0, … , zT−1) ∈ RKp×T , B = (A1, … ,Ap) ∈ RK×Kp, U = (u1, … , uT ) ∈ RK×T , and vectorized counter-
parts y = vec(Y), 𝜷 = vec(B) and u = vec(U). Accordingly, Y = BZ + U and y = (Z′ ⊗ IK)𝜷 + u,
where Σu = IK ⊗ Σu. Importantly, throughout this article, I will assume that the cross-sectional dimension K
remains fixed.

Ridge regularization is a modification of the least squares objective by the addition of a term dependent on
the Euclidean norm of the coefficient vector. The isotropic Ridge-regularized Least Squares (RLS) estimator is
therefore defined as

̂𝜷
R
(𝜆) ∶= arg min

𝜷

1
T
‖
‖y − (Z′ ⊗ IK)𝜷‖‖

2 + 𝜆‖𝜷‖2
,

where 𝜆 > 0 is the scalar regularization parameter or regularizer. When 𝜆‖𝜷‖2 is replaced with quadratic form
𝜷 ′Λ𝜷 for a positive definite matrix Λ the above is often termed Tikhonov regularization. To avoid confusion, I
shall also refer to it as ‘ridge’, since in what followsΛwill always be assumed diagonal. AsΛ does not, in general,
penalize all coefficients equally, it can be used to construct an anisotropic ridge estimator. By solving the normal
equations (see Supplementary Appendix A.1), the RLS estimator with positive semi-definite regularization matrix
Λ ∈ RK2p×K2p is shown to be

̂𝜷
R
(Λ) =

(
ZZ′

T
⊗ IK + Λ

)−1 (Z ⊗ IK)y
T

.

When a centering vector 𝜷0 ≠ 0 is included in penalty (𝜷 − 𝜷0)′Λ(𝜷 − 𝜷0), the RLS estimator becomes

̂𝜷
R
(Λ, 𝜷0) =

(
ZZ′

T
⊗ IK + Λ

)−1 ( (Z ⊗ IK)y
T

+ Λ𝜷0

)

. (2)

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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4 G. BALLARIN

In the context of multi-variate estimation, one has to make a further distinction between two related types of

ridge estimators. I let ̂B
R(Λ, 𝜷0) be the de-vectorized coefficient estimator obtained from reshaping ̂𝜷

R
(Λ,𝜷0) to a

K × Kp matrix. But one can also consider the matrix RLS estimator ̂B
R

mat(ΛKp,B0) given by

̂B
R

mat(ΛKp,B0) = T−1(Y + B0 ΛKp)Z′
(
T−1ZZ′ + ΛKp

)−1
,

where ΛKp = diag{𝜆1, … , 𝜆Kp} and B0 is a centering matrix. The distinction is important because the vectorized

and matrix RLS estimators in general need not coincide. As discussed in Supplementary Appendix A.2, ̂B
R(Λ,𝜷0)

allows for more general penalty structures compared to ̂B
R

mat(ΛKp,B0). I, therefore, focus on the former rather than
the latter.

Remark 1. Equation (2) implies that ̂𝜷
R
(Λ,𝜷0) and, therefore, ̂𝜷

R
(Λ) provide simultaneous estimation of all

the coefficients in 𝜷. However, by analogy with ordinary least squares (OLS) VAR estimation, one may also
consider an equation-by-equation ridge regression (ebe-RLS) scheme. For k = 1, … ,K, let yk = (Z′ ⊗
IK)𝜷k + uk be the autoregressive equation for the kth series of yt. Then, we can define the kth equation RLS
estimator to be

̂𝜷
R

k (Λ, 𝜷0) =
(

ZZ′

T
⊗ IK + Λk

)−1 ( (Z ⊗ IK)yk

T
+ Λ𝜷0k

)

,

where 0 ⪯ Λk and 𝜷0k are the kth equation regularizer and centering respectively. Notice that the ebe-RLS
approach allows, by construction, to penalize the estimates for one component differently than for another, and
the two can be independently chosen. This provides a higher degree of freedom than the one afforded by, for
example, the anisotropic lag-adapted scheme proposed in Section 3.2 or the Bayesian schemes of Section 4.
However, implementing ebe-RLS in applications inherently implies that data-driven tuning of Λk will be signifi-
cantly more computationally intensive – with costs growing linearly in K. Due to this higher complexity, in both
theoretical derivation and simulations below, I will focus on studying the properties of the simultaneous RLS
estimator.

Remark 2. Further regarding ebe-RLS, another way to approach estimation is through the recursive form of the
VAR model. Let Σu = P−1DP−1′ , where P−1 is an unitriangular matrix and D a diagonal matrix, so that we may
write

Y = GZ − ̃PY + D−1∕2E,

where G = PB, ̃P = P − IK and noise term E has identity covariance matrix. Estimation can now be performed in
ebe-RLS fashion, and matrices P, B and D are recovered (Hausman, 1983). Notice, however, that in this frame-
work the ordering of variables plays a role, since it also determines the decomposition of Σu. Indeed, even if a
penalization scheme is fixed, permuting the entries may yield different penalized estimates for P, B and D, so that
both slope and covariance parameter estimates are different, implying (structural) IRF estimates will also differ.
However, note that this issue is somewhat mirrored in a recursive shock identification approach: after estimation,
̂Σu is Cholesky decomposed to identify the shocks’ rotation, and the ordering of variables is key and must be
economically justified.

3. SHRINKAGE

Here, I discuss both the isotropic ridge penalty, i.e., the ‘standard’ ridge approach, and an anisotropic penalty
that is better adapted to the VAR setting. An important result is that, even in simple setups with only two vari-
ables, the shrinkage induced by ridge can either increase or reduce bias, as well as the stability of autoregressive
estimates.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 5

Throughout this section, I consider fixed design matrices and the focus will be on the geometric properties of
ridge.

3.1. Isotropic Penalty

The most common way to perform a ridge regression is through isotropic regularization, that is, Λ = 𝜆I for
some scalar 𝜆 ≥ 0. Isotropic ridge has been extensively studied, see for example, the comprehensive review of
Hastie (2020). With regard to shrinkage, an isotropic ridge penalty can be readily studied.

Proposition 1. Let Z ∈ RM×T , Y ∈ RT for T > M be regression matrices. For 𝜆• > 𝜆 > 0 and isotropic RLS

estimator ̂𝛽
R(𝜆) ∶= (T−1ZZ′ + 𝜆IM)−1(T−1ZY) it holds

‖
‖
‖
̂
𝛽

R(𝜆•)
‖
‖
‖
<

‖
‖
‖
̂
𝛽

R(𝜆)‖‖
‖
.

Proof. Using the full singular-value decomposition (SVD), decompose T−1∕2Z = UDV ′ ∈ RM×T where U is
M ×M orthogonal, D is M × T diagonal and V is T × T orthogonal. Write

̂
𝛽

R(𝜆•) = (T−1ZZ′ + 𝜆•IM)−1(T−1ZY)
= (UDV ′VDU′ + 𝜆•IM)−1UDV ′(T−1∕2Y)
= U(D2 + 𝜆•IM)−1DV ′(T−1∕2Y)
= U(D2 + 𝜆•IM)−1(D2 + 𝜆IM)(D2 + 𝜆IM)−1DV ′(T−1∕2Y)

=
[
U(D2 + 𝜆•IM)−1(D2 + 𝜆IM)U′]

̂
𝛽

R(𝜆).

Since D2 = diag{𝜎2
j }

M
j=1, the term within brackets is U diag{(𝜎2

j + 𝜆)∕(𝜎
2
j + 𝜆•)}

M
j=1 U′. Moreover, because the

spectral norm is unitary invariant and 𝜆1 > 𝜆2, it follows that

‖
‖U(D2 + 𝜆•IM)−1(D2 + 𝜆IM)U′‖

‖ =
‖
‖
‖

diag{(𝜎2
j + 𝜆)∕(𝜎

2
j + 𝜆•)}

M
j=1
‖
‖
‖
< 1.

Finally, by the sub-multiplicative property it holds

‖
‖
‖
̂
𝛽

R(𝜆•)
‖
‖
‖
≤ ‖
‖U(D2 + 𝜆1IM)−1(D2 + 𝜆IM)U′‖

‖ ⋅
‖
‖
‖
̂
𝛽

R(𝜆)‖‖
‖
<

‖
‖
‖
̂
𝛽

R(𝜆)‖‖
‖
,

as claimed. ◾

Proposition 1 and its proof expose the main ingredients of ridge regression. From the SVD of T−1∕2Z used above,
it is clear that ridge regularization acts uniformly along the orthogonal directions that are the columns of V . The
improvement in the conditioning of the inverse comes from all diagonal factors [(D2 + 𝜆•IM)−1D]j = 𝜎j∕(𝜎2

j + 𝜆•)
being well-defined, even when 𝜎j = 0 (as is the case in systems with collinear regressors).

However, directly applying isotropic ridge to vector autoregressive models is not necessarily the most effective
estimation approach. Stable VAR models show decay in the absolute size of coefficients over lags. Thus, it is
reasonable to choose a more general ridge penalty that can accommodate lag decay.

3.2. Lag-Adapted Penalty

I now consider a different form for Λ that is of interest when applying ridge specifically to a VAR model. Define
family  (p) of lag-adapted ridge penalty matrices as


(p) = {diag{𝜆1, … , 𝜆p}⊗ IK2 |𝜆i ∈ R+, i = 1, … , p},

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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6 G. BALLARIN

where each 𝜆i intuitively implies a different penalty for the elements of each coefficient matrix Ai, i = 1, … , p.1

The family (p) allows imposing a ridge penalty that is coherent with the lag dimension of an autoregressive model.
It is parametrized by p distinct penalty factors, meaning that the penalization is anisotropic.

Proposition 2. Let Z ∈ RKp×T , y ∈ RKT for T > Kp be multi-variate VAR regression matrices. Given subset

 ⊆ {1, … , p} of cardinality s = ||, for Λ(p) ∈  (p) define ̂𝜷
R
(Λ(p))[] as the vector of sK2 coefficient estimates

located at indexes 1 + K2(j − 1), … ,K2j for j ∈  . Let c = {1, … , p}⧵ be the complement of  .

a. If 𝜆1 ≥ 𝜆2, then ‖
‖
‖
̂𝜷

R
(𝜆1IK2p)[ ]

‖
‖
‖
≤
‖
‖
‖
̂𝜷

R
(𝜆2IK2p)[ ]

‖
‖
‖

for any  ⊂ {1, … ,K2p}. The inequality is strict when
𝜆1 > 𝜆2.

b. Let ̂𝜷
LS

[] be the least squares estimator of the autoregressive model with only the lags indexed by  included

and zeros as coefficients for the lags indexed by c. Similarly, let Λ(p)[] be the subset of diagonal elements in

Λ(p) penalizing the lags in  . Then

lim
Λ(p)[]→0

Λ(p)[c ]→∞

̂𝜷
R
(Λ(p)) = ̂𝜷

LS

[],

where Λ(p)[] → 0 and Λ(p)[c] → ∞ are to be intended as the element-wise convergence.

Proposition 2 shows that the limiting geometry of a lag-adapted ridge estimator is thus identical to that of a
least squares regression run on the subset specified by  . By controlling the size of coefficients {𝜆1, … , 𝜆p}
it is therefore possible to obtain pseudo-model-selection. However, in the next section, I show that anisotropic
penalization produces complex effects on the model’s coefficient estimates.

3.3. Illustration of Anisotropic Penalization

Here, I aim to illustrate the effects of a lag-adapted ridge penalty on VAR coefficients estimates using a particular
example. This further helps motivate and contextualize the results of the simulation exercises provided in Section 7.
More generally, before moving on to the discussion of more sophisticated forms of ridge regression, it is important
to gain some intuition regrading the properties of anisotropic penalization, which I highlight with the help of a
simple bivariate VAR(2) model.

Note that, since ridge operates along principal components, there is no immediate relationship between a specific
subset of the estimated coefficients and a given diagonal block of Λ(p). With regard to autoregressive modeling,
three effects are of interest: the shrinkage of coefficient matrices Ai relative to the choice of 𝜆i; the entity of the
bias introduced by shrinkage, and the impact of shrinkage on the persistence of the estimated model.

To showcase these effects, I consider the VAR(2) model

yt = A1yt−1 + A2yt−2 + ut, ut ∼ i.i.d.  (0,Σu),

where

A1 =

[
0.8 0.1

− 0.1 0.7

]

, A2 =

[
0.1 −0.2

− 0.1 0.1

]

, Σu =

[
0.3 0

0 5

]

.

1 Note that with a lag-adapted penalty it is also possible to directly use the matrix ridge estimator since the penalty for ̂𝜷
R

is given by
diag{𝜆1, … , 𝜆p}⊗ IK2 = (diag{𝜆1, … , 𝜆p}⊗ IK)⊗ IK , see Supplementary Appendix A.2. Importantly, this kind of structure is minimal in
terms of modeling the relative size of coefficients within each coefficient matrix Ai. If economic theory or intuition provides information about
the effects of one specific variable and lag on another – say, the contemporaneous effect of the first series on the second series is zero – more
structure can be integrated into the ridge penalty matrix. This would mean, however, that different ridge estimator forms are not equivalent.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 7
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Figure 1. Shrinkage of coefficients estimate in Frobenius norm (a); bias induced by shrinkage (b); change in stability
of estimated VAR model at different levels of penalization, measured by the absolute value of the largest companion

form eigenvalue (c)

A single sample of length T = 200 is drawn, demeaned and used to estimate coefficients A1 and A2. The VAR(2)

model is fitted using the lag-adapted ridge estimator ̂B
R(Λ(2)), where Λ(2) = diag{𝜆1, 𝜆2}⊗ I2. Note that ̂B

R(Λ(2))
can be partitioned into estimates Â

R

1 (Λ
(2)) and Â

R

2 (Λ
(2)) for the respective parameter matrices.

3.3.1. Shrinkage
To illustrate shrinkage, I consider the restricted case of 𝜆1 ∈ [10−2

, 106] and 𝜆2 = 0. The ridge estimator is

computed for varying 𝜆1 over a logarithmically spaced grid. Figure 1(a) shows that ‖‖
‖
̂B

R(Λ(2))‖‖
‖F

≈ ‖
‖
‖
̂B

LS‖
‖
‖F

for

𝜆1 ≈ 0, but as the penalty increases ‖‖
‖

Â
R

1 (Λ
(2))‖‖

‖F
decreases while ‖

‖
‖

Â
R

2 (Λ
(2))‖‖

‖F
grows. The resulting behavior of

‖
‖
‖
̂B

R(Λ(2))‖‖
‖F

is non-monotonic in 𝜆1, although indeed ‖
‖
‖
̂B

R(Λ(2))‖‖
‖F

<

‖
‖
‖
̂B

LS‖
‖
‖F

in the limit 𝜆1 → ∞. This effect is

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 G. BALLARIN

due to the model selection properties of lag-adapted ridge, and the resulting omitted variable bias. Therefore, in
practice, it is not generally true that anisotropic ridge induces monotonic shrinkage of estimates.

3.4. Bias

Since ridge bias is hard to study theoretically, I use a simulation with the same setup of Figure 1(a), this time with
𝜆1, 𝜆2 ∈ [10−2

, 104]. The grid is logarithmic with 150 points. Figure 1(b) presents a level plot of the sup-norm

ridge bias ‖‖
‖
̂B

R(Λ(2)) − B‖‖
‖∞

given multiple combinations of 𝜆1 and 𝜆2. While there can be gains compared to the

least squares estimator ̂B
LS

, they are modest. Moreover, level curves of the bias surface show that gains concentrate
in a very thin region of the parameter space. Consequently, one may imagine that, in practice, any (data-driven)
ridge penalty selection criterion is unlikely to yield bias improvement over least squares. Yet, in large VAR models
with many lags, the reduction in variance of the ridge estimator often yields improvements over un-regularized
procedures (Li et al., 2024). However, the bias-variance trade-off in ridge is not a free-lunch when performing
inference. Pratt (1961) showed that it is not possible to produce a test (equivalently, a CI procedure) which is valid
uniformly over the parameter space and yields meaningfully smaller confidence intervals than any other valid
method.

3.5. Stability

To study the stability of ridge VAR estimates, I reuse the results of the bias simulation above. Let A be the com-

panion matrix of [A1,A2], and ̂A
R

the companion matrix of estimates [ÂR

1 (Λ
(2)),ÂR

2 (Λ
(2))]. For all combinations

(𝜆1, 𝜆2), I compute the largest eigenvalue 𝜔1( ̂A
R
) of ̂A

R
. Note that if |𝜔1( ̂A)| < 1, then the estimated VAR(2) is

stable (Lütkepohl, 2005). Figure 1(c) presents the level sets for the surface of maximal eigenvalue moduli, and for

comparison |𝜔1( ̂B
LS)| is shown at the origin.2 While along the main diagonal there is a clear decrease in |𝜔1( ̂A

R
)|

as isotropic penalization increases, when 𝜆1 is large and 𝜆2 ≪ 1 (or vice versa) the maximal eigenvalue increases
instead. Therefore, an estimate of a VAR model obtained with anisotropic ridge may be closer to unit root than
the least squares estimate.

4. BAYESIAN AND FREQUENTIST RIDGE

So far, I have discussed standard ridge penalization schemes. Here, I study the posterior mean of Bayesian VAR
(BVAR) priors commonly applied in the macroeconometrics literature. I show that such posteriors are in fact
specific GLS formulations of the ridge estimator. This comparison highlights that ridge can be seen as a way to
embed prior knowledge into the least squares estimation procedure by means of centering and rescaling coefficient
estimates.

4.1. Litterman–Minnesota Priors

In Bayesian time series modeling, the so-called Minnesota or Litterman prior has found great success
(Litterman, 1986). For stationary processes which one believes to have reasonably small dependence, a zero-mean
normal prior can be put on the VAR parameters, with non-zero prior variance. Assuming that the covariance matrix
of errors Σu is known, the Litterman–Minnesota has posterior mean

𝜷|Σu =
[

V−1
𝜷
+ (ZZ′ ⊗ Σ−1

u )
]−1
(Z ⊗ Σ−1

u )y, (3)

2 If Λ(2) → 0, then by continuity of eigenvalues it follows that |𝜔1(
̂A

R
)|→ |𝜔1(

̂A
LS
)|, see Supplementary Appendix A.3.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 9

where V
𝜷
≻ 0 is the prior covariance matrix of 𝜷 (Lütkepohl, 2005). It is common to let V

𝜷
be diagonal,

and often the entries follow a simple pattern which depends on lag, individual components variances, and prior
hyperparameters. For example, Bańbura et al. (2010) suggest the following structure for the diagonal

vi,jk =
⎧
⎪
⎨
⎪
⎩

𝜆

2

i2
if j = k,

𝜃

𝜆

2

i2

𝜎

2
j

𝜎

2
k

if j ≠ k,
(4)

where vi,jk is the prior variance for coefficients (Ai)jk for i = 1, … , p and j, k = 1, … ,K. Here, 𝜎j is the jth diagonal
element of Σu, 𝜃 ∈ (0, 1) specifies beliefs on the explanatory importance of own lags relative to other variables’
lags, while 𝜆 ∈ [0,∞] controls the overall tightness of the prior. The extreme 𝜆 = 0 yields a degenerate prior

centered at 𝜷 = 0, while 𝜆 = ∞ reduces the posterior mean to the OLS estimate ̂𝜷
LS

. Factor 1∕i2, which explicitly
shrinks variance at higher lags, was originally introduced by De Mol et al. (2008), who formally developed the
idea that coefficients at deeper lags should be coupled with more penalizing priors. Note that, in (4), assuming
𝜎

2
j = 𝜎

2
k for all j, k = 1, … ,K and setting 𝜃 = 1, produces a V

𝜷
that has a lag-adapted structure with quadratic

lag decay.3

Equation (3) more generally demonstrates that the Minnesota posterior mean is equivalent to a ridge procedure.
It is important to notice that, while with least squares the OLS and GLS estimators of VAR coefficients coincide,
this is not the case with ridge regression. Regularizing a GLS regression will yield

̂𝜷
RGLS

(Λ) ∶=
[
Λ + (ZZ′ ⊗ Σ−1

u )
]−1(Z ⊗ Σ−1

u )y, (5)

instead of ̂𝜷
R
, which is equivalent to (3) under an appropriate choice ofΛ. While I develop the asymptotic results for

̂𝜷
R

assuming a centering parameter 𝜷
0
≠ 0 in general, I do not directly study the properties ̂𝜷

RGLS
. The generaliza-

tion to GLS ridge employing the least squares error covariance estimator ̂ΣLS

T should follow from straightforward

arguments. In Section 7, I focus on providing evidence on the application ̂𝜷
RGLS

in terms of its pointwise impulse
response estimation mean-squared error.

Remark 3. In principle, ridge penalties can be designed to implement shrinkage toward nonstationary or
long memory priors, too. Very recently, for example, Bauwens et al. (2023) have suggested a ridge-type
strategy to estimate a one-lag long memory model: their penalization scheme follows naturally from the
assumption that an observed AR(1) series originates from an infinite-dimensional VAR(1) with an appro-
priate off-diagonal structure. One may also think of applying a unit-root-centered matrix RLS estimator
̂B

R

mat(ΛKp,B
†
0), where B†0 ∶= (IK , 0K , … , 0K) ∈ RK×Kp. This is, in fact, exactly the centering of the

Litterman–Minnesota prior (Bańbura et al., 2010). Notice, however, that this type of prior imposes very strict
assumptions on the form of the unit-root – namely, each component is unaffected by any of the others.4

Finally, shrinkage to subspaces associated with a factor model specification has also been explored (Huber and
Koop, 2023).

3 Bańbura et al. (2010) also assume 𝜃 = 1 in their BVAR estimation. They wish to relax the Litterman–Minnesota assumption that Σu
is a fixed, diagonal matrix and implement estimation directly by augmenting their data with appropriately constructed dummy variables
(Kadiyala and Karlsson, 1997). This approach, however, is selected primarily for computation reasons due to the size of their Bayesian
model.
4 While stationarity of autoregressive estimates can be easily enforced using the Yule–Walker estimator (Brockwell and Davis, 1991), exact
unit-root behavior is inherently hard to encode via penalization due to the complex geometry of the stationary region, see the discussion by
Heaps (2023).

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 G. BALLARIN

4.2. Hierarchical Priors

Recent research on Bayesian vector autoregressions exploit more sophisticated priors compared to the
Litterman–Minnesota design. Giannone et al. (2015) develop an advanced BVAR model by setting up hierarchical
priors which entail not only model parameters, but also hyperparameters. They impose

Σu ∼ IW(Ψ, d),

𝜷|Σu ∼
(

𝜷, 𝜆(Σu ⊗Ω)
)

,

for hyperparameters 𝜷, Ω, Ψ, and d, where IW is the Inverse-Wishart distribution. Here, too, scalar 𝜆 ∈ [0,∞]
controls prior tightness. Let B be the matrix form of the VAR coefficient prior mean, so that vec(B) = 𝜷. The

resulting (conditional) posterior mean B is given by

B|Σu =
[
(𝜆Ω)−1 + ZZ′

]−1 [
ZY + (𝜆Ω)−1B

]
. (6)

Observe that equation (6) is effectively equivalent to a centered ridge estimator, cf. (2).
The introduction of a hierarchical prior leaves space to add informative hyperpriors on the model hyperparam-

eters, allowing for a more flexible fit. Indeed, removing the zero centering constraint from the prior on 𝜷 can
improve estimation. It is often the case that economic time series show a high degree of correlation and temporal
dependence, therefore imposing 𝜷 = 0 as in the Minnesota prior is inadequate. In fact, Giannone et al. (2015) show
that their approach yields substantial improvements in forecasting exercises, even when hyperparameter priors are
relatively flat and uninformative.

5. STANDARD INFERENCE

Here, I state the main asymptotic results for the RLS estimator ̂𝜷
R
(Λ,𝜷0) with general regularization matrix Λ.

I shall allow Λ and non-zero centering coefficient 𝜷0 to be, under appropriate assumptions, random variables
dependent on sample size T . In particular, 𝜷0 may be a consistent estimator of 𝜷.

I will impose the following assumptions.

Assumptions

A. {ut}T
t=1 is a sequence of i.i.d. random variables with E[uit] = 0, covariance E[utu

′
t] = Σu non-singular positive

definite and E
|
|
|
uitujtumtunt

|
|
|
< ∞, i, j,m, n = 1, … ,K.

B. There exists 𝜌 > 1 such that det(IK −
∑p

i=1Aiz
i) ≠ 0 for all complex z, |z| ≤ 𝜌.

C. There exist 0 < m ≤ m < ∞ such that m ≤ 𝜔K(Γ) ≤ 𝜔1(Γ) ≤ m, where Γ = E[ztz
′
t] is the autocovariance

matrix of zt and 𝜔1(Γ), 𝜔K(Γ) are its largest and smallest eigenvalues respectively.

Assumption A is standard and allows proving the main asymptotic results with well-known theoretical devices.
Assuming ut is white noise or assuming yt respects strong mixing conditions (Davidson, 1994) would require more
careful consideration in asymptotic arguments but is otherwise a simple generalization, although more involved
in terms of notation, see e.g., Boubacar Mainassara and Francq (2011). Assumption B guarantees that yt has no
unit roots and is stable. Of course, many setups of interest do not satisfy this assumption, the most significant
ones being unit roots, cointegrated VARs, and local-to-unity settings. Incorrect identification of unit roots does
not invalidate the use of LS or ML estimators (Park and Phillips, 1988, 1989; Phillips, 1988; Sims et al., 1990),
however inference is significantly impacted as a result (Pesavento and Rossi, 2006; Mikusheva, 2007, 2012).
Assumption C is standard in the literature regarding penalized estimation and does not imply significant additional

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 11

constraints on the process yt, cf. Assumption A. It is sufficient to ensure that for large enough T the plug-in sample
autocovariance estimator is invertible even under vanishing Λ.

Before stating the main theorems, let

̂Γ = T−1ZZ′,

Û = Y − ̂B
R
Z,

̂ΣR

u = T−1ÛÛ
′
,

be the regression covariance matrix, regression residuals and sample innovation covariance estimator respectively.

Theorem 1. Let Assumptions A–C hold and define ̂𝜷
R
(Λ,𝜷0) be the centered RLS estimator as in (2). If

√
TΛ

P
−−→Λ0 and 𝜷0

P
−−→ 𝜷

0
, where Λ0 is a positive semi-definite diagonal matrix and 𝜷

0
is a constant vector, then

a. ̂Γ
P
−−→Γ,

b. ̂𝜷
R
(Λ, 𝜷0)

P
−−→𝜷,

c. ̂ΣR

u

P
−−→Σu,

d.
√

T
(
̂𝜷

R
(Λ, 𝜷0) − 𝜷

) d
−−→

(

Γ−1Λ0(𝜷0
− 𝜷),Γ−1

⊗ Σu

)

.

Theorem 1 considers the most general case, and, as previously mentioned, gives the asymptotic distribution of
̂𝜷

R
under rather weak conditions for the regularizer Λ. The resulting normal limit distribution is clearly dependent

on the unknown model parameters 𝜷, complicating inference.

However, it is possible – under strengthened assumptions for Λ or 𝜷0 – for ̂𝜷
R

to have a zero-mean Gaussian
limit distribution.

Theorem 2. In the setting of Theorem 1, results (a)–(c) hold and (d) simplifies to

(d′)
√

T
(
̂𝜷

R
(Λ, 𝜷0) − 𝜷

) d
−−→

(
0,Γ−1

⊗ Σu

)

if either

(i) Λ = oP

(
T−1∕2

)
,

(ii) Λ = OP

(
T−1∕2

)
and 𝜷0 − 𝜷 = op(1).

The Corollary 1 is immediate.

Corollary 1. Let ̂𝜷0 be a consistent and asymptotically normal estimator of 𝜷. Then, under condition (i) or (ii) of
Theorem 2 results (a)–(d′) hold.

5.1. Joint Inference

To handle smooth transformations of VAR coefficients, such as impulse responses (Lütkepohl, 1990), I also derive

a standard joint limit result for both ̂𝜷
R

and the variance estimator ̂ΣR

u .

Theorem 3. Let �̂�R = vec( ̂ΣR

u ) and 𝝈 = vec(Σu). Under the assumptions of Theorem 1,

√
T

[
̂𝜷

R
− 𝜷

�̂�
R − 𝝈

]
d
−−→

([
Γ−1Λ0(𝜷0

− 𝜷)
0

]

,

[
Γ−1

⊗ Σu 0

0 Ω

])

.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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12 G. BALLARIN

Under assumption (1) or (2) of Theorem 2,

√
T

[
̂𝜷

R
− 𝜷

�̂�
R − 𝝈

]
d
−−→

(

0,

[
Γ−1

⊗ Σu 0

0 Ω

])

,

where Ω = E
[
vec(utu

′
t) vec(utu

′
t)
′
]
− 𝝈𝝈′.

This result is key as it allows, under the stated assumptions on the penalizer, to construct valid asymptotic
confidence intervals and, specifically, perform impulse response inference, as done in the simulations of Section 7
using the Delta Method (Lütkepohl, 2005).

5.2. Cross-validation

In practice, the choice of ridge penalty is often data-driven, and cross-validation is a very popular approach to

select Λ. I now turn to the properties of CV as applied to the RLS estimator ̂𝜷
R
(Λ).

For simplicity, assume that yt is an AR(p) process, that is, K = 1. In this setting,

̂𝜷
R
(Λ) =

(
ZZ′

T
+ Λ

)−1 Zy
T
,

where Λ = diag{𝜆1, … , 𝜆p}. Following Patil et al. (2021), the prediction error of ridge estimator ̂𝜷
R
(Λ) given

penalty Λ is

Err
(
̂𝜷

R
(Λ)

)

∶= E ỹ,z̃

[(

ỹ − z̃′ ̂𝜷
R
(Λ)

)2|
|
|
Z, y

]

,

where ỹ and z̃ are random variables from an independent copy of yt. In particular, z̃ is the vector of p lags of ỹ.
Moreover, the error curve for Λ is given by

err(Λ) ∶= Err
(
̂𝜷

R
(Λ)

)

.

The prediction error is crucial because it allows to determine the oracle optimal penalization,

Λ∗ ∶= arg min
Λ≽0

err(Λ).

Clearly, err(Λ) is unavailable in practice and Λ∗ must be substituted with a feasible alternative. Cross-validation
proposes to construct a collection of paired, non-overlapping subsets of the sample data such that the first subset
of the pair (estimation set) is used to estimate the model, while the second (validation set) is used to provide
an empirical estimate of the prediction error. The CV penalty is then selected to minimize the total error over
validation sets. A very popular approach to build cross-validation subsets is k-fold CV, wherein the sample is split
into k blocks, so-called folds, of sequential observations (possibly after shuffling the data). Each fold determines a
validation set, and is paired with its complement, which gives the estimation set. For more details, see e.g. Hastie
et al. (2009).

Again with the intent of keeping complexity low – as this article is not focused on cross-validation – I will
make the additional simplifying assumption that CV is implemented with two folds and one pair. Specifically,

the first fold is the estimation set, where Z and y are constructed and ̂𝜷
R
(Λ) is estimated. The second fold is the

validation set and yields ̃Z, ỹ, where ̃Z ∈ Rp×̃T and ỹ ∈ R
̃T . To account for dependence, a buffer of m observations

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 13

between validation and estimation folds is introduced. The last observation of yt in the estimation set is yT , while
the first observation in the validation set is ỹ1 ∶= yT+m+1, that is, the total number of available observations is
T + m + ̃T + 2p + 1. This is a stylized version of the CV setup of Burman et al. (1994) – also called m-block
or non-dependent cross-validation in Bergmeir et al. (2018) – and is effectively equivalent to an out-of-sample
(OOS) validation scheme. Thus, the two-fold m-buffered CV error curve is

cv2m(Λ) ∶=
1
̃T

̃T∑

s=1

(

ỹs − z̃′s
̂𝜷

R
(Λ)

)2
. (7)

Theorem 4. Under Assumptions A–C, for every Λ in the cone of diagonal positive definite penalty matrices with
diagonal entries in (𝜆min,∞), 𝜆min ≥ 0, it holds that

cv2m(Λ) − err(Λ)
a.s.
−−−→ 0,

as T , ̃T →∞. Furthermore, the convergence is uniform in Λ over compact subsets of penalty matrices.

In the current setup, the joint limit T , ̃T → ∞ should be thought as ̃T∕T → 𝛾 ∈ (0, 1), where aspect ratio 𝛾
determines the balance of the cross-validation split.

Remark 4. Under Assumption C, 𝜔K( ̂Γ) > 0 for T large. Therefore, the bounds derived in the proof of Theorem 4
are finite even if Λ = 0. In fact, it is easily seen that the behavior of err(Λ) and cv2m(Λ) is consistent at the
endpoints Λ = 0 and Λ→ ∞, see Patil et al. (2021). Observe that

cv2m(Λ) → Σu and err(Λ)→ Σu

as Λ → 0, while

cv2m(Λ)→ Γ and err(Λ)→ Γ,

as Λ → ∞, as needed.

Theorem 4 thus shows that cv2m(Λ) gives an asymptotically valid way to evaluate the prediction error curve, and
thus tune Λ, over any compact set of diagonal positive semi-definite penalization matrices. Moreover, in Theorem
C.2.1, Supplementary Appendix C.2, I show that the impact of dependence due to the VAR data generating process
is exponentially small for m sufficiently large. This property of cv2m(Λ) is desirable because it lets one choose
m small also in applications with moderate sample sizes, and it theoretically justifies the prescription of Burman
et al. (1994).

5.3. Asymptotically Valid CV

So far, I have shown that a simple two-fold CV – or, equivalently, OOS validation – correctly estimates the predic-
tive error of the ridge estimator, even under dependence. I turn now to the question of selecting an asymptotically
valid penalty, that is, a Λ such that condition (1) of Theorem 2 is fulfilled. This enables inference, since one is in
a setting where the bias is asymptotically negligible.

The idea is to scale the ridge penalty used at the estimation step of CV by a factor
√

T , so that the validated
penalty converges to zero at an appropriate rate as both T and ̃T grow. In other words, an over-smoothed ridge
regression turns out to be key when studying cross-validation. To derive this result, first let

̂𝜷
R

⧫(Λ) ∶=
(

ZZ′

T
+
√

TΛ
)−1 Zy

T
,

be the over-smoothed ridge estimator.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 G. BALLARIN

Theorem 5. Under Assumptions A–C, let 
𝜆

be the compact set of diagonal positive semi-definite penalization
matrices Λ such that ‖Λ‖max ≤ 𝜆 < ∞. It holds

Λ∗⧫ ∶= arg min
Λ∈

𝜆

Err
(
̂𝜷

R

⧫(Λ)
)

= op(T−1∕2).

Remark 5. The previous theorem is stated in terms of the oracle predictive error Err
(
̂𝜷

R

⧫

(
̃Λ
))

, which equals the

2-fold CV error curve up to a factor of order OP(̃T−1∕2). Therefore, assuming that the CV aspect ratio 𝛾 is strictly
between zero and one, the result of Theorem 5 also directly generalizes to an empirically cross-validated penalty.

6. INFERENCE WITH SHRINKAGE

Fu and Knight (2000) have argued that results such as Theorems 1 and 2 portray penalized estimators in a somewhat
unfair light, because they result in asymptotic distributions showing no bias-variance trade-off. Indeed, they show
that ridge shrinkage yields estimates with asymptotic variance no different from that of least squares. Of course, in

finite samples shrinkage has an effect on Γ−1
⊗Σu since ̂ΣR

T is used in place of ̂ΣLS

T to estimate the error term variance
matrix. To better understand the value of ridge penalization in practice, one should therefore consider the situation
where shrinkage is not asymptotically negligible for at least a subset of coefficients. A motivating example would
be that of a VAR(∞) model derived by inverting a stable VARMA(p, q) process: for i sufficiently large, coefficient
matrices Ai decay exponentially to zero.5 One should thus be able to exploit such structural information about
the autoregressive coefficients to asymptotically improve on the bias-variance trade-off. Following this intuition
and the discussion of lag-adapted penalty matrices in Section 3.2, I shall now consider the empirically relevant
regression setup where one assumes that a subset of VAR coefficients are small (with respect to sample size),
but not necessarily zero. Thus, to have inference reflect this type of shrinkage, an asymptotic framework with
non-negligible penalization of higher-order lag coefficients is in fact more appropriate than that of Theorem 1.6

Formally, assume that for some 0 < n ≤ p one can partition the VAR coefficients as 𝜷 = (𝜷 ′1,𝜷
′
2)
′, where

𝜷1 ∈ RK2(p−n) and 𝜷2 ∈ RK2n, and assume that 𝜷2 = T−(1∕2+𝛿) b2 for 𝛿 > 0 and b2 ∈ RK2n is fixed. Such ordered
partitioning of 𝜷 is without loss of generality.7 In this setup, it is clearly desirable to penalize 𝜷1 and 𝜷2 differently

when constructing the ridge penalty. LetΛ = diag{(L′1,L
′
2)
′}⊗IK where L1 ∈ R

K2(p−n)
+ and L2 ∈ RK2n

+ . Assume that

L1 = oP(T−1∕2) and L2

P
−−→ L2,

for a fixed vector L2 ∈ RK2n
+ . In particular, letting Λ1 = diag{L1} and Λ2 = diag{L2},

Λ =

[
Λ1 0

0 Λ2

]

⊗ IK

P
−−→Λ⊗ IK where Λ =

[
0 0

0 Λ2

]

,Λ2 ≻ 0. (8)

One can now develop an asymptotic result which shows non-negligible shrinkage in the limit distribution of the
ridge estimator. For simplicity of exposition, here I will assume that ridge centering 𝜷0 is chosen to be zero.

Theorem 6. In the setting of Theorem 1, assume that, for 0 < n ≤ p,

5 This result follows from a straightforward generalization of Lemma 1 in Supplementary Appendix C. The choice of norm to measure such
decay is not fundamental, as they are equivalent given that dimension K is fixed.
6 Such an approach to inference also follows De Mol et al. (2008), who argue for explicit lag penalization within BVAR priors on similar
theoretical grounds. In the context of maximum-likelihood estimation, the use of appropriate and plausible model restrictions to improve
efficiency by shrinkage, rather than perform hypothesis testing, has also been discussed by Hansen (2016a).
7 The dimensions of 𝜷1 and 𝜷2 are chosen to be multiples of K2 to better conform to the lag-adapted setting. This choice is also without loss
of generality and simplifies exposition.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 15

(i) 𝜷 = (𝜷 ′1, 𝜷
′
2)
′ where 𝜷1 ∈ RK2(p−n) and 𝜷2 = T−(1∕2+𝛿) b2 for 𝛿 > 0, b2 ∈ RK2n fixed.

(ii) Λ = diag{(L′1,L
′
2)
′} where L1 ∈ R

K2(p−n)
+ and L2 ∈ RK2n

+ .

(iii) L1 = oP(T−1∕2) and L2

P
−−→ L2 as T →∞.

(iv) 𝜷0 = 0.

Let ΓΛ = Γ + Λ where Λ ≽ 0 is given by (8). Then, results (a)-(c) hold and

(d
′ ′
)
√

T
(
̂𝜷

R
(Λ, 𝜷0) − 𝜷

) d
−−→

(

0,Γ−1
Λ
Γ Γ−1

Λ
⊗ Σu

)

.

It is easy to see that indeed the term Γ−1
Λ
Γ Γ−1

Λ
in Theorem 6 is weakly smaller than Γ−1 in the positive-definite

sense. Note that

Γ−1
Λ
Γ Γ−1

Λ
≺ Γ−1 ⟺ (Γ + Λ)−1Γ ≺ Γ−1(Γ + Λ)

⟺ IK2p − (Γ + Λ)−1Λ ≺ IK2p + Γ−1Λ

⟺ 0 ⪯ ((Γ + Λ)−1 + Γ−1)Λ.

The last inequality is true by definition ofΛ. Shrinkage gains are concentrated at the components that have non-zero
asymptotic shrinkage, i.e. those penalized by L2.

Remark 6. A key point in the application of Theorem 6 is identification of 𝜷1 and 𝜷2. In practice, one may then
proceed in two ways. As discussed in Section 4, one can see the ridge approach as a frequentist ‘counterpart’
to implementing a Bayesian prior. Therefore, the researcher may split 𝜷 into subsets of small and large parame-
ters based on economic intuition, domain knowledge or preliminary information. Alternatively, in the following
section, I show that cross-validation is able to automatically tune Λ appropriately.

Finally, it is immediate to generalize the argument of Theorem 6 to the case where 𝜷 is not split into subsets
based on the relative size of coefficients, but rather a non-zero, partially consistent centering sequence 𝜷0 is used.

Corollary 2. Consider the setup of Theorem 6, where now assumptions (i) and (iv) are replaced by

(i ′) 𝜷 = (𝜷 ′1, 𝜷
′
2)
′ where 𝜷1 ∈ RK2(p−n) and 𝜷2 ∈ RK2n are fixed.

(iv ′) 𝜷0 = (𝜷 ′01, 𝜷
′
02)

′ where 𝜷01 ∈ RK2(p−n) is such that 𝜷01 ≠ 𝜷1, and 𝜷02 = 𝜷2 + T−(1∕2+𝛿)b2 for 𝛿 > 0,
b2 ∈ RK2n fixed.

Then, results (a)-(c) and (d ′′) still hold.

6.1. Cross-validation with Partitioned Coefficients

One can use the same approach applied to derive Theorem 5 to show that cross-validating the RLS estimator with

Err( ̂𝜷
R

⧫(Λ)) is also asymptotically valid under partitioning.

Corollary 3. Consider the setup of Theorem 6 and assume that the assumptions of Theorem 5 are met. It holds

[
Λ1,⧫ 0

0 Λ2,⧫

]

∶= arg min
Λ∈

𝜆

Err
(
̂𝜷

R

⧫(Λ)
)

=

[
op(T−1∕2) 0

0 oP(1)

]

Moreover, any Λ2,⧫ such that 0 ⪯ Λ2,⧫ ⪯ 𝜆I is asymptotically valid.

In theory, one would like to be able to quantify the gains obtained in the asymptotic shrinkage setup of Theorem 6
compared to the standard setting of Theorems 1 and 2, particularly when using cross-validation. Unfortunately, it is

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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16 G. BALLARIN

in general hard to study the cross-validation error loss even in setups without dependence. Stephenson et al. (2021),
in fact, show that the ridge leave-one-out CV loss is not generally convex. This suggests that studying the behavior
of CV when penalizing with a diagonal anisotropic Λ can be a very complex task in a finite sample setup.

7. SIMULATIONS

To study the performance of ridge-regularized estimators, I now perform simulation exercises focused on impulse
response functions (IRFs). Throughout the experiments I will consider structural impulse responses, and I assume
that identification can be obtained in a recursive way (Kilian and Lütkepohl, 2017), which is a widely used approach
for structural shock identification in macroeconometrics.

I consider two setups:

1. The three-variable VARMA(1,1) design of Kilian and Kim (2011), representing a small-scale macro model.
I term this setup ‘A’.

2. A VAR(5) model in levels, using the model specification of Giannone et al. (2015) with the dataset of
Hansen (2016b) consisting of K = 7 variables in levels.8 I term this setup ‘B’. For the ease of exposition,
in the discussion I will tabulate results only for three variables – real GDP, investment and federal funds
rate – but complete tables can be found in Supplementary Appendix D.5.

The specification of Kilian and Kim (2011) has already been extensively used in the literature as a benchmark to
gauge the basic properties of inference methods. On the other hand, the estimation task of Giannone et al. (2015)
involves more variables and a higher degree of persistence. This setting is useful to evaluate the effects of ridge
shrinkage when applied to realistic macroeconomic questions. It is also a suitable test bench to compare Bayesian
methods with frequentist ridge.

7.1. Estimators

For frequentist methods, I include both ̂𝜷
R

and ̂𝜷
RGLS

ridge estimators as well as the local projection estimator
of Jordà (2005). For Bayesian methods, I implement both the Minnesota prior approach of Bańbura et al. (2010)
with stationary prior and the hierarchical prior BVAR of Giannone et al. (2015).9 The full list of method I consider
is given in Table I. To make methods comparable, I have extended the ridge estimators to include an intercept in
the regression. A precise discussion regarding the tuning of penalties and hyperparameters of all methods can be
found in Supplementary Appendix D.

7.2. Pointwise MSE

The first two simulation designs explore the MSE performance of ridge-type estimators versus alternatives. Let
𝜃km(h) be the horizon h structural IRF for variable k given a unit shock from variable m. To compute the MSE for
each k, define

MSEk(h) ∶=
K∑

m=1

E

[(
̂
𝜃km(h) − 𝜃km(h)

)2
]

,

which is the total MSE for the kth variable over all possible structural shocks. In simulations, I use B replications
to estimate the expectation. All MSEs are normalized by the mean squared error of the least squares estimator.

8 The dataset is supplied by the author at https://users.ssc.wisc.edu/~bhansen/progs/var.html. While the data provided by Hansen (2016b)
includes releases until 2016, I do not include more recent quarterly data since this is a simulation exercise. Moreover, due to the effects of the
COVID-19 global pandemic, an extended sample would likely only add data released until Q4 2019 due to overwhelming concerns of a break
point.
9 To estimate hierarchical prior BVARs I rely on the original MATLAB implementation provided by Giannone et al. (2015) on the authors’
website at http://faculty.wcas.northwestern.edu/gep575/GLPreplicationWeb.zip.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 17

Table I. List of estimation methods

Type Name Description

Frequentist LS Least squares estimator
RIDGE Ridge estimator, CV penalty

RIDGE-GLS GLS ridge estimator, CV penalty
RIDGE-AS Ridge estimator with asymptotic shrinkage, CV penalty

LP Local projections with Newey-West covariance estimate
Bayesian BVAR-CV Litterman-Minnesota Bayesian VAR, CV tightness prior

H-BVAR Hierarchical Bayesian VAR of Giannone et al. (2015)

Table II. MSE relative to OLS – Setup A

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

Investment RIDGE 0.97 0.74 0.64 0.64 0.65 0.63 0.60
growth RIDGE-GLS 5.16 0.89 0.55 0.47 0.44 0.41 0.38

LP 1.00 1.05 1.13 1.52 2.15 3.20 4.87
BVAR-CV 1.55 0.84 0.70 0.70 0.71 0.70 0.66
H-BVAR 1.80 0.66 0.53 0.52 0.54 0.53 0.50

Deflator RIDGE 0.93 0.78 0.69 0.68 0.67 0.64 0.59
RIDGE-GLS 2.43 0.83 0.59 0.52 0.48 0.44 0.40

LP 1.00 1.05 1.13 1.44 1.99 2.90 4.47
BVAR-CV 1.03 0.89 0.74 0.73 0.73 0.70 0.66
H-BVAR 1.01 0.70 0.58 0.56 0.55 0.53 0.50

Paper rate RIDGE 0.94 0.76 0.66 0.66 0.66 0.64 0.60
RIDGE-GLS 1.80 0.87 0.59 0.52 0.47 0.43 0.39

LP 1.00 1.05 1.13 1.46 1.99 2.86 4.31
BVAR-CV 0.87 0.87 0.74 0.73 0.73 0.71 0.66
H-BVAR 0.81 0.69 0.57 0.55 0.56 0.54 0.51

7.2.1. Setup A
A time series of length T = 200 is generated a number B = 10,000 of times for replication. All VAR estimators
are computed using p = 10 lags, while LPs include q = 10 regression lags. Table II shows relative MSEs for this
design. It is important to notice that, in this situation, GLS ridge has remarkably low performance at horizon h = 1
compared to other methods. The primary issue is that Σu features strong correlation between components, and thus
the diagonal lag-adapted structure does not shrink along the appropriate directions. This is much less prominent as
the horizon increases due to the fact that impulse responses eventually decay to zero, since the underlying VARMA
DGP is stationary. While there is no clear ranking, the MSE of the baseline ridge VAR estimator is in between
those of the BVAR and hierarchical BVAR approaches. The degrading quality of local projection estimates are
mainly due to the smaller samples available in regressions at each increasing horizon (Kilian and Kim, 2011).
This behavior is one of the prime reasons behind the development of LP shrinkage estimators, like that proposed
in Plagborg-Møller (2016) or the SLP estimator of Barnichon and Brownlees (2019).

7.2.2. Setup B
Using the data of Hansen (2016b), I estimate and simulate a stationary but highly persistent VAR(5) model using
the same sample size and number of replications as Setup A. For all methods, p = 5 lags are used, so that VAR
estimators are correctly specified. The results can be found in Table III. In this setup, unlike in the previous exper-
iment, one can clearly notice that impulse responses computed via cross-validated ridge show increasing MSE as
horizon h grows. There are two main reasons behind this behavior. First, the chosen setup features a very persistent
data generating process, as the largest root of the underlying VAR model is 0.9945. This means that the true IRFs

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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18 G. BALLARIN

Table III. MSE relative to OLS – Setup B

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

Real GDP RIDGE 1.11 1.08 1.16 1.06 0.90 0.89 0.94
RIDGE-GLS 1.16 1.00 0.99 1.00 0.93 0.93 0.95

LP 1.00 1.14 1.37 1.52 1.72 1.98 2.24
BVAR-CV 0.90 0.87 1.04 1.01 0.92 0.92 0.98
H-BVAR 0.83 0.62 0.78 0.73 0.62 0.62 0.68

Investment RIDGE 1.49 1.27 1.17 0.99 0.70 0.73 1.61
RIDGE-GLS 1.34 1.14 1.02 1.02 0.86 0.82 0.86

LP 1.00 1.15 1.40 1.63 2.03 2.76 3.59
BVAR-CV 1.51 1.01 0.97 0.97 0.93 1.08 1.24
H-BVAR 1.06 0.68 0.69 0.66 0.63 0.87 1.14

Fed funds RIDGE 2.17 1.21 0.96 0.93 1.03 4.00 53.18
rate RIDGE-GLS 1.21 1.04 0.90 0.93 0.90 0.88 0.91

LP 1.00 1.18 1.51 1.71 1.97 2.44 2.99
BVAR-CV 0.92 0.94 0.91 0.90 0.86 0.87 0.92
H-BVAR 0.75 0.77 1.32 1.38 1.25 1.15 1.20

revert to zero only over long horizons, while lag-adapted ridge estimates yields models with lower persistence
and thus flatter impulse responses. Second, the dataset from Hansen (2016b) is not normalized, and the included
series have markedly heterogenous variances. Since GLS ridge shrinks along covariance-rotated data, shrinkage

is adjusted according to each series variance, unlike that baseline ridge estimator ̂𝜷
R
. The MSE for the Fed Fund

Rate impulse responses shows that the pointwise difference between baseline and GLS ridge can be severe for
long horizon IRFs when the DGP is highly persistent. On short horizons, Bayesian estimators perform on par or
better than baseline least squares estimates, while at longer horizons differences are less stark. It is, however, clear
that the hierarchical prior BVAR of Giannone et al. (2015) shows the overall best results. As in the previous setup,
local projections show degrading performance at larger horizons.

Remark 7. The comparison between methods in both Setup A and Setup B is largely consistent with the findings
of Li et al. (2024), who make extensive computational simulations by simulating from synthetic DGPs. They
provide a comprehensive treatment of the question of which model – VAR or LP – is best suited for IRF inference
in a given scenario in terms of bias-variance trade-off. They show that a key balance of bias vs. variance exists
between LP and VAR estimates of impulse responses: LPs tend to have low bias, due to their flexibility, but they
also feature large variance at higher horizons. Their results allow one to better understand the trade-offs at play in
Tables II and III. In particular, it is clear that ridge shrinkage is beneficial at short horizons only if the penalization
scheme is well-adapted to the DGP at hand. Otherwise, as is the case for RIDGE and RIDGE-GLS methods, the
induced bias can be such that ridge MSEs surpass that of OLS estimates. One also finds that the medium and long
horizons MSE gains over LPs are more pronounced in cases of moderate dependence, but in the case of the Federal
Funds Rate IRFs in Setup B zero-centered RIDGE estimates thoroughly mistake long-term behavior.

7.3. Confidence Intervals

I now try and evaluate whether ridge shrinkage has a negative impact on inference. There have also been recent
contributions directly aimed at studying shrinkage effects. Using the same simulation setups as in the previous
section, I investigate coverage and size properties of pointwise CIs constructed using the methods in Table I. All
confidence intervals are constructed with nominal 90% level coverage.

In this set of simulations, I swap GLS ridge for the asymptotic shrinkage ridge estimator, ̂𝜷
R

as, see Section 6,

since the latter allows for a partially non-negligible penalization in the limit. To implement ̂𝜷
R

as, one needs to

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 19

Table IV. Impulse response inference – Setup A – CI coverage

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

Investment LS 0.88 0.88 0.87 0.88 0.91 0.93 0.94
growth RIDGE 0.90 0.92 0.94 0.93 0.94 0.95 0.95

RIDGE-AS 0.90 0.92 0.88 0.88 0.88 0.89 0.89
LP 0.88 0.97 0.99 0.99 0.99 0.99 0.99

BVAR-CV 0.77 0.88 0.88 0.90 0.92 0.94 0.96
H-BVAR 0.72 0.89 0.89 0.92 0.93 0.95 0.96

Deflator LS 0.88 0.87 0.86 0.88 0.91 0.92 0.94
RIDGE 0.91 0.92 0.93 0.92 0.93 0.94 0.95

RIDGE-AS 0.91 0.91 0.88 0.88 0.87 0.87 0.88
LP 0.88 0.97 0.99 0.99 0.99 0.99 1.00

BVAR-CV 0.80 0.86 0.88 0.91 0.93 0.94 0.96
H-BVAR 0.84 0.88 0.90 0.92 0.94 0.95 0.97

Paper rate LS 0.87 0.86 0.86 0.88 0.90 0.92 0.94
RIDGE 0.90 0.91 0.93 0.93 0.93 0.94 0.95

RIDGE-AS 0.89 0.90 0.89 0.88 0.88 0.88 0.88
LP 0.87 0.97 0.99 0.99 0.99 0.99 0.99

BVAR-CV 0.82 0.84 0.87 0.90 0.92 0.93 0.95
H-BVAR 0.88 0.88 0.90 0.92 0.93 0.95 0.96

choose a partition of 𝜷 which identifies asymptotically negligible coefficient. To do this, I split 𝜷 by lag and
penalize all coefficients with lag orders greater than a given threshold p, such that 1 < p < p. In setup A, I
choose p = 6, while in setup B I set p = 3. In Bayesian methods, including the cross-validated Minnesota
BVAR, I construct high-probability intervals by drawing from the posterior. Comparison between frequentist CIs
and Bayesian posterior densities is not generally valid, because they are not analogous concepts. Therefore, the
discussion below is intended to highlight differences in structure between ridge approaches.

7.3.1. Setup A
Simulations with the DGP of Kilian and Kim (2011), presented in Tables IV and V, highlight some of the advan-

tages of applying ridge when performing inference. Focusing on estimator ̂𝜷
R
, it is clear that CI coverage is in

fact higher than the intervals obtained by least squares estimation in all situations. At impact, ridge CIs are larger
than the LS baseline, but they shrink as horizons increase. Thus, is IRFs revert relatively quickly to zero, ridge can
effectively reduce length while preserving coverage. As discussed in Section 3, these gains are inherently local to
the DGP – shrinkage to zero at deep lags embodies correct prior knowledge of a weakly persistent process. For
Bayesian estimators, one can note that quantile intervals at small horizons tend to be shorter compared to least
squares and ridge methods.

7.3.2. Setup B
The effects of ridge shrinkage on a DGP with high persistence are much more severe, as shown in Tables VI and
VII. Focusing on frequentist ridge, one can observe that close to impact (h = 1) ridge has similar or even higher
coverage than other methods for real GDP10 However, as the IRF horizon grows, shrinkage often leads to severe

undercoverage, with asymptotic shrinkage estimator ̂𝜷
R

as giving the worst results. In comparison, Bayesian methods
are much more reliable at all horizons, although the only estimator that can consistently improve on the benchmark
least squares VAR CIs is the hierarchical prior BVAR of Giannone et al. (2015). The reason behind this is simple
enough: the implementation of the Minnesota-prior BVAR I have used here has a white noise prior on all variables,
which in this case is far from the truth. Indeed, Bańbura et al. (2010) implement the same BVAR by tuning the

10 This also is the case with consumption and compensation, see also Tables 9 and 10 in Supplementary Appendix D.5.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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20 G. BALLARIN

Table V. Impulse response inference – Setup A – CI length

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

Investment LS 2.99 5.11 5.78 5.35 4.79 4.17 3.56

growth RIDGE 3.13 5.20 5.82 5.17 4.48 3.78 3.09

RIDGE-AS 3.11 5.15 4.84 4.33 3.70 3.06 2.48

LP 2.99 7.50 10.97 12.89 13.99 14.55 14.70

BVAR-CV 2.84 4.48 4.70 4.38 3.99 3.56 3.11

H-BVAR 2.71 4.20 4.50 4.29 3.96 3.56 3.13

Deflator LS 1.19 1.92 2.23 2.14 1.94 1.71 1.46

RIDGE 1.24 1.97 2.25 2.09 1.84 1.54 1.26

RIDGE-AS 1.24 1.95 1.95 1.78 1.52 1.25 1.01

LP 1.19 3.03 4.56 5.42 5.90 6.14 6.21

BVAR-CV 1.03 1.69 1.87 1.80 1.67 1.50 1.31

H-BVAR 1.01 1.64 1.83 1.79 1.67 1.51 1.33

Paper rate LS 0.97 1.42 1.64 1.57 1.44 1.27 1.09

RIDGE 1.01 1.44 1.65 1.53 1.36 1.16 0.95

RIDGE-AS 1.01 1.43 1.42 1.31 1.13 0.94 0.77

LP 0.97 2.19 3.28 3.90 4.26 4.43 4.48

BVAR-CV 0.84 1.22 1.35 1.30 1.21 1.09 0.96

H-BVAR 0.85 1.21 1.34 1.31 1.22 1.10 0.97

Table VI. Impulse response inference – Setup B: CI coverage

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

Real GDP LS 0.87 0.81 0.75 0.72 0.71 0.72 0.73

RIDGE 0.90 0.79 0.66 0.62 0.65 0.68 0.68

RIDGE-AS 0.89 0.72 0.61 0.58 0.61 0.65 0.65

LP 0.87 0.93 0.94 0.94 0.93 0.93 0.91

BVAR-CV 0.70 0.71 0.63 0.64 0.71 0.75 0.76

H-BVAR 0.84 0.86 0.76 0.76 0.83 0.88 0.88

Investment LS 0.87 0.82 0.76 0.73 0.75 0.82 0.87

RIDGE 0.85 0.79 0.65 0.62 0.73 0.80 0.81

RIDGE-AS 0.82 0.69 0.59 0.57 0.68 0.77 0.77

LP 0.87 0.94 0.94 0.95 0.94 0.94 0.94

BVAR-CV 0.70 0.73 0.67 0.71 0.77 0.81 0.83

H-BVAR 0.80 0.86 0.81 0.82 0.87 0.88 0.88

Fed funds LS 0.85 0.83 0.80 0.78 0.77 0.79 0.80

rate RIDGE 0.79 0.77 0.74 0.68 0.68 0.72 0.72

RIDGE-AS 0.78 0.66 0.68 0.64 0.64 0.68 0.69

LP 0.85 0.94 0.96 0.96 0.95 0.94 0.93

BVAR-CV 0.76 0.72 0.76 0.77 0.77 0.81 0.83

H-BVAR 0.87 0.86 0.74 0.73 0.78 0.84 0.87

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12737
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RIDGE REGULARIZED ESTIMATION OF VAR MODELS 21

Table VII. Impulse response inference – Setup B: CI length (rescaled ×100)

Variable Method h = 1 h = 4 h = 8 h = 12 h = 16 h = 20 h = 24

Real GDP LS 0.71 1.56 2.07 2.31 2.32 2.24 2.15
RIDGE 0.79 1.56 1.85 1.95 1.92 1.85 1.77

RIDGE-AS 0.74 1.31 1.65 1.76 1.75 1.70 1.64
LP 0.71 2.42 4.21 5.40 5.90 5.91 5.70

BVAR-CV 0.53 1.23 1.74 2.00 2.10 2.13 2.15
H-BVAR 0.58 1.36 1.87 2.16 2.32 2.44 2.55

Investment LS 3.38 6.65 7.89 7.89 7.31 6.69 6.18
RIDGE 3.79 6.81 6.93 6.46 5.79 5.19 4.73

RIDGE-AS 3.59 5.57 6.11 5.77 5.21 4.72 4.34
LP 3.37 10.16 16.00 18.85 19.06 18.22 17.23

BVAR-CV 2.64 5.26 6.59 6.91 6.78 6.57 6.38
H-BVAR 2.89 5.74 7.08 7.54 7.63 7.60 7.58

Fed funds LS 0.25 0.39 0.43 0.43 0.41 0.38 0.35
rate RIDGE 0.29 0.39 0.37 0.36 0.33 0.30 0.29

RIDGE-AS 0.27 0.31 0.33 0.32 0.30 0.28 0.27
LP 0.25 0.59 0.88 1.01 1.05 1.03 0.98

BVAR-CV 0.21 0.31 0.36 0.37 0.36 0.35 0.34
H-BVAR 0.23 0.36 0.42 0.44 0.45 0.45 0.46

prior to a random walk for very persistent variables in their applications. In this sense, the cross-validated BVAR
considered – which is assumed centered at zero – is really the flip-side of ridge estimators. Therefore, the addition
of a prior on the mean of the autoregressive parameters as done by Giannone et al. (2015) is a key element to
perform shrinkage in high persistence setups in a way that does not systematically undermine asymptotic inference
on impulse responses.

8. CONCLUSION

In this article, I have studied ridge regression and its application to vector autoregressive model estimation in
detail. This appears to be the first work that provides a thorough analysis of ridge penalization in the context of
time series data, including geometric as well as asymptotic properties. I have also derived results on the validity
of cross-validation as a method to select the penalty intensity in practice, and I have shown that CV produces
asymptotically valid penalization rates. Finally, I have compared both frequentist and Bayesian ridge formulation
in simulations aimed at quantifying the applicability of ridge for impulse response inference.

The key takeaway of this article is that ridge penalization is a useful approach to VAR estimation as long
as the chosen penalty structure is well-adapted to the model’s structure. Bayesian ridge posteriors are espe-
cially flexible, with hierarchical priors also allowing shrinkage toward non-zero coefficient vectors. However, it
is important to note that the Bayesian approach also permits the researcher to specify uninformative priors, so
that the influence of the priors’ hyperparameters is less pronounced. This is not the case in frequentist ridge,
cf. including an explicit non-zero centering vector. However, prior knowledge or a pre-estimation procedure
may be available to the researcher, so that ridge can be effectively implemented without the need to implement
a BVAR.

To conclude, there are still avenues of research regarding ridge which would be interesting to develop. First and
foremost, the high-dimensional setup, for which, however, it seems non-trivial to find a domain of applicability, as
discussed in the introduction. Second, a more in-depth analysis of cross-validation, especially in the multi-variate
case, would be extremely valuable. Moreover, both the latter and former topics should be jointly addressed in the
context of mild cross-sectional dimension growth, i.e., K →∞ such that K∕T → 𝜌 ∈ (0, 1), which is comparable
to factor model setups.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12737 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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