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Abstract

The evolution of deep learning has led to a need for models with enhanced inter-
pretability and generalization behaviors. As part of this, discrete representations
play a significant role since they tend to be more interpretable. This thesis explores
discrete representations in Stochastic Computation Graphs (SCGs), focusing on
challenges, benefits, and novel strategies for their structure and parameter learn-
ing. Recent successes in model-based reinforcement learning and text-to-image
generation have demonstrated the empirical advantages of discrete latent represen-
tations. However, the reasons behind their benefits remain unclear. Furthermore,
training deep learning models with discrete representations presents unique prob-
lems, primarily associated with differentiating through probability distributions. In
response, we establish a background as a solid foundation for our research, focus-
ing on SCGs. We then analyze the challenges associated with training models with
discrete representations and their benefits. In addition, we propose novel strategies
to address these challenges, which we evaluate experimentally across various do-
mains. On the one hand, we propose learning the structure of computation graphs
for efficient Neural Architecture Search. On the other hand, we propose alter-
ing the scale parameter of Gumbel noise perturbations and implementing dropout
residual connections for efficient parameter learning of discrete SCGs. Further-
more, we present a new approach of employing a categorical Variational Autoen-
coder to enhance disentanglement. Our extensive experimental evaluations across
diverse domains demonstrate the effectiveness of the proposed methods. We find
that the challenges associated with training discrete representations can be signifi-
cantly mitigated, and our strategies help to improve the models’ interpretability and
generalization behavior. Our findings also reveal the inherent grid structure of cate-
gorical distributions as an efficient inductive prior for disentangled representations.
This study provides critical insights into discrete representations in deep learning,
extending our understanding and proposing novel methods that show promising re-
sults in experimental evaluations. Our work highlights promising future work for
further refinement of discrete representations and their diverse applications.
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Zusammenfassung

Die Weiterentwicklung im Bereich des Deep Learning hat zu einem Bedarf an Mo-
dellen mit verbesserter Interpretierbarkeit und Generalisierbarkeit geführt. Diskrete
Repräsentationen spielen dabei aufgrund ihrer Interpretierbarkeit eine bedeutende
Rolle. Diese Dissertation untersucht diskrete Repräsentationen in Stochastic Com-
putation Graphs (SCGs) und konzentriert sich dabei auf Herausforderungen, Vor-
teile und ihre strukturellen und parametrischen Lernaspekte. Jüngste Erfolge im
modellbasierten Reinforcement Learning und der Text-zu-Bild-Generierung ha-
ben die empirischen Vorteile diskreter latenter Repräsentationen aufgezeigt. Die
Gründe für ihre Vorteile bleiben jedoch unklar. Zudem ergeben sich spezifische
Probleme beim Training von Deep-Learning-Modellen mit diskreten Darstellun-
gen, die hauptsächlich mit der Differenzierung durch Wahrscheinlichkeitsvertei-
lungen verbunden sind. Als Antwort darauf etablieren wir eine theoretische Grund-
lage für unsere Forschung, wobei wir uns auf SCGs konzentrieren. Wir analy-
sieren die Herausforderungen, die mit dem Training von Modellen mit diskreten
Repräsentationen einhergehen, sowie deren Vorteile. Darüber hinaus schlagen wir
neue Strategien zur Bewältigung dieser Herausforderungen vor, die wir in verschie-
denen Domänen experimentell evaluieren. Einerseits schlagen wir vor, die Struktur
von Computation Graphs für eine effiziente Neural Architecture Search zu lernen.
Andererseits schlagen wir vor, den Skalenparameter von Gumbel-Verteilungen an-
zupassen und Dropout-Residualverbindungen für ein effizientes Parameterlernen
von diskreten SCGs zu implementieren. Zusätzlich präsentieren wir einen neuen
Ansatz zur Verwendung eines kategorischen Variational Autoencoders zur Verbes-
serung der Entflechtung von Repräsentationen. Unsere umfangreichen experimen-
tellen Auswertungen in verschiedenen Domänen demonstrieren die Effektivität der
vorgeschlagenen Methoden. Wir stellen fest, dass die mit dem Training diskre-
ter Repräsentationen verbundenen Herausforderungen erheblich reduziert werden
können und dass unsere Strategien zur Verbesserung der Interpretierbarkeit und
der Generalisierungsleistung der Modelle beitragen. Zudem zeigen unsere Ergeb-
nisse, dass die Gitterstruktur von kategorischen Verteilungen als effizienter indukti-
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ver Prior für entflochtene Repräsentationen dient. Diese Studie liefert wichtige Er-
kenntnisse über diskrete Repräsentationen im Bereich des Deep Learning, erweitert
unser Verständnis und stellt neue Methoden vor, die in experimentellen Auswer-
tungen vielversprechende Ergebnisse zeigen. Unsere Arbeit legt den Grundstein
für vielversprechende zukünftige Forschung zur weiteren Verbesserung diskreter
Darstellungen und ihrer vielfältigen Anwendungen.
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Chapter 1

Introduction

Deep learning has transformed the landscape of artificial intelligence by enabling
machines to learn representations directly from raw data. Representation learning
transforms complex, high-dimensional data into low-dimensional and manageable
forms [7]. When optimizing these representations for machine learning tasks, the
decision to use continuous or discrete representations is fundamental. While the
former has seen wide adoption due to their differentiability, the latter has gained
interest due to their distinct benefits, such as interpretability and better generaliza-
tion [12], motivating the profound exploration of discrete representations.

Discrete representations are challenging to optimize due to their non-differentiabil-
ity [30, 109, 29]. However, they hold great potential for increased interpretability
and effective data structuring [12]. Unlike continuous representations, which often
require a close examination of their context for interpretation, discrete representa-
tions such as symbols or graphs can enhance the transparency and trustworthiness
of the models. Moreover, discrete representations can capture data structures more
effectively, which is beneficial in tasks like natural language processing or program
synthesis [76, 15].

Additionally, there have been an increasing number of empirical successes of dis-
crete representations across a variety of machine learning tasks [35, 75, 81, 91, 36].
Methods based on discrete latent spaces in image generation [91] and model-based
reinforcement learning [36] outperform their continuous counterparts. However, a
comprehensive understanding of the reasons behind these empirical successes and
under which conditions they occur remains unknown [35]. This creates a knowl-
edge gap in the current literature and highlights the need for a deeper exploration
into the benefits of discrete representation learning.
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CHAPTER 1. INTRODUCTION 2

Given the potential advantages of discrete representations and their demonstrated
successes, it is evident that the obstacles preventing their wider adoption must be
addressed. Discrete representations are often depicted as random variables that
are stochastic nodes in the computation graph [41, 64]. Stochastic Computation
Graphs (SCGs) were first introduced by Schulman et al. [95] as a general frame-
work for modeling and optimizing differentiable computation graphs with such
stochastic nodes. Estimators that aim to circumvent the non-differentiability of
discrete random variables suffer from high variances and biasedness, complicating
the training process [30, 109, 29]. This motivates the search for novel techniques
and methods that can leverage the benefits of discrete representations while miti-
gating the challenges associated with their optimization.

The overall motivation for this thesis lies in exploring the unknown properties of
discrete representations within discrete SCGs. Understanding their challenges and
benefits and proposing novel strategies for their effective utilization form the core
of this exploration. By bridging the existing gaps in this field, this work aims to
advance our understanding of discrete representation learning and contribute to the
development of more robust and interpretable models.

1.1 Discrete Representation Learning

Representation learning focuses on automatically discovering representations of
raw data inputs needed for machine learning tasks [7]. The goal is to replace man-
ual feature engineering with efficient algorithms that find important data features in
an unsupervised manner. This capability is particularly critical for complex tasks
such as natural language processing or computer vision, where raw data (like text
or pixels) need to be transformed into higher-level features for more effective pro-
cessing [19].

A key consideration in representation learning is whether the learned representa-
tions should be continuous or discrete [110]. Continuous representations, often
used in deep learning, encode input data as real-valued vectors. These represen-
tations have been effective for tasks like image classification, where inputs (such
as pixels) have natural continuity [37]. On the other hand, discrete representations
express input data as discrete variables. A simple example is one-hot encoding,
where each category in the data is represented as a binary vector. In this thesis,
we concentrate on discrete representations depicted as random variables that are
stochastic nodes in the computation graph [41, 64]. These computation graphs
represent a discrete version of Stochastic Computation Graphs [95].

Discrete representations have gained attention in deep learning research because
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they offer several advantages. They are often more interpretable than their contin-
uous counterparts. While a continuous vector is challenging to interpret beyond its
immediate neighbors, discrete representations can capture the structure of the data
more effectively. In natural language processing, for instance, a graph representa-
tion of a sentence can capture its syntactic structure, which a vector might not [15].
Similarly, in program synthesis, a discrete program representation naturally cap-
tures the program’s control flow structure [76]. However, it is important to note
that the benefits of discrete representations extend beyond tasks that inherently in-
volve discrete structures. Empirical evidence shows that discrete representations
can also benefit various machine learning tasks, including non-discrete datasets.
For instance, the application of discrete representations in image generation and
model-based reinforcement learning has led to substantial advances in these areas.
One prominent example is the use of discrete variational autoencoders in text-to-
image generation models like Dall-E [81] and Stable Diffusion [91], who leveraged
discrete latent variables to achieve state-of-the-art results. Similarly, other work
applied discrete representations for model-based reinforcement learning, demon-
strating improved generalization behavior [35, 75, 36]. Discrete latent spaces sig-
nificantly enhanced performance in these areas, indicating a potential advantage
not restricted to discrete or symbolic tasks.

Nonetheless, the underlying reasons for these empirical successes are not fully un-
derstood, and the question of why discrete representations sometimes outperform
their continuous counterparts is still open [35]. Despite this lack of a concrete theo-
retical understanding, the empirical successes of discrete representations in diverse
areas underline their relevance and significance in the current machine learning
landscape. This emphasizes the need for further research to deepen our under-
standing of the challenges and benefits of discrete representation learning, which
is the primary focus of this thesis.

One of the challenges in learning discrete representations is the non-differentiabil-
ity of discrete variables. This makes it hard to apply popular learning algorithms
like stochastic gradient descent and backpropagation, which rely on smoothly (dif-
ferentiably) changing the model’s parameters. Additionally, optimizing over dis-
crete structures can often be computationally challenging leading to intractable
problems [21]. This is because the space of discrete structures (like graphs) is usu-
ally much larger and less smoothly structured than the space of continuous vectors,
making optimization more difficult. Thus, there is a significant research interest
in developing novel methods for learning discrete representations to utilize their
potential advantages. Such methods form the secondary focus of this thesis.
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1.2 Problem Statement

Discrete representations have shown great promise across various machine learn-
ing tasks. Their potential benefits range from improved interpretability of mod-
els to better generalization performance, particularly in tasks that require complex
reasoning [35, 75, 91]. However, despite these advancements, significant gaps
and challenges still need to be addressed in understanding and effectively training
models based on discrete Stochastic Computation Graphs (SCGs) that employ such
representations.

This section delves into these challenges, exploring two significant problems that
the thesis aims to address. The first subsection discusses the difficulties inherent
in training models based on discrete SCGs, focusing on the non-differentiability
of discrete variables, the associated challenges related to training instability, and
the potential facilitation of local minima. We then move on to the benefits of dis-
crete representations, emphasizing the need for a thorough understanding of their
advantages, particularly in the context of disentangled representations. By address-
ing these problems, we aim to provide a better understanding of the mechanics of
discrete representations and enhance their practical effectiveness in machine learn-
ing tasks.

1.2.1 Challenges in Training Discrete SCGs

Training models that based on discrete SCGs poses several distinct challenges. An
inherent difficulty arises from the non-differentiable nature of discrete variables.
Unlike continuous variables supporting differentiability, discrete variables cannot
be trained by common optimization strategies, such as stochastic gradient descent,
that rely on differentiable functions and their gradients to update model parame-
ters [89].

This non-differentiability issue has motivated the development of methods to cir-
cumvent it, such as the score function estimator [117] and the Gumbel-Softmax
technique [41, 64]. The score function estimator, also known as REINFORCE,
introduces a way to estimate the gradients of the expectation with respect to the
parameters of the distribution over which the expectation is taken. Meanwhile,
the Gumbel-Softmax technique presents a differentiable approximation, making it
possible to backpropagate through categorical variables.

While these approaches address the non-differentiability of discrete variables, they
open new challenges. For instance, the score function estimator is known for its
high variance [67], which can lead to instability during training and slow conver-
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gence. On the other hand, the Gumbel-Softmax technique can introduce bias into
the learning process because it only approximates the discrete function and does
not exactly match it [41, 64]. These challenges of training models with discrete
representations affect the model’s performance and efficiency, underlining the need
for more research into robust and effective techniques for training discrete repre-
sentation models.

Prior research has focused on incorporating control variates to reduce the variance
to improve the stability of the gradient estimators [109, 29]. However, the dynam-
ics of these estimators, when applied to more complex problems such as SCGs
with multiple sequential discrete distributions, are not well-understood. This the-
sis will show that the training instability can often be attributed to local minima
and saturation, leading to insufficient gradient signals. This issue of poor gradient
signals manifests as instability in training, with the model failing to converge or ex-
hibiting erratic behavior over training iterations. Such instability not only hinders
convergence but can also lead to sub-optimal solutions, thereby drastically affect-
ing the performance of the models. We will delve into the analytical and empirical
evidence of these challenges, underscoring the need to develop novel methods to
mitigate them effectively.

In conclusion, the challenges inherent in training models based on discrete SCGs
– from the non-differentiability of discrete variables to the instability of gradient
estimators to the local minima and saturation problems – create a difficult land-
scape for optimization. Addressing these challenges requires approaches that en-
sure stable training behavior and convergence. As part of this thesis, we propose
and evaluate methods designed to mitigate these issues, potentially contributing to
more robust and efficient algorithms for learning discrete representations.

1.2.2 Understanding the Benefits of Discrete Representations

The rise of discrete representations in machine learning has led to significant im-
provements across various tasks. For instance, discrete variational autoencoders,
built upon categorical distributions or vector quantization, have proven success-
ful in large-scale image generation and model-based reinforcement learning [110,
83, 35]. Such models have also demonstrated remarkable performance in text-to-
image generation tasks [81, 91]. Previous works have argued that discrete repre-
sentations are a natural choice in tasks involving complex reasoning or planning,
and empirical evidence indicates better generalization behavior with discrete la-
tent spaces [41, 81, 35]. However, understanding why discrete representations are
beneficial remains an open question, presenting a crucial challenge in the field.
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One significant advantage of discrete representations lies in their interpretability.
As discussed in the previous Section, continuous representations, such as vectors
in a high-dimensional space, can often be challenging to interpret, as their meaning
may heavily depend on the context of neighboring points [26]. Discrete representa-
tions, in contrast, tend to be more comprehensible [6]. For example, in natural lan-
guage processing, graph representations of sentences can depict the syntactic struc-
ture of the language, which a continuous vector representation might fail to capture
effectively [15]. Similarly, in program synthesis, discrete program representations
can accurately reflect the control flow structure of the program, facilitating bet-
ter understanding and manipulation of the represented information [76]. Thus,
discrete representations can potentially enhance interpretability, making models
more transparent and their predictions more trustworthy. Nonetheless, the degree
to which discrete representations enhance interpretability and how this can be max-
imized in practice needs further exploration.

One potential framework to study the structure of latent spaces is the concept of dis-
entanglement. Disentangled representations aim to uncover the low-dimensional
and independent factors of variation in high-dimensional observations [7]. These
representations are considered advantageous due to their potential for greater inter-
pretability of learned features, fairness in predictions, and improved sample com-
plexity for learning [39, 59]. The idea is that if a model can learn to represent
data in a way that aligns with the intuitive, independent factors of variation, it can
better generalize, manipulate, and explain its learned knowledge [7]. In this sense,
disentanglement provides a valuable tool for comprehending the structure of latent
spaces, a critical aspect of understanding the benefits of different types of repre-
sentations. However, the disentanglement literature almost exclusively assumes
continuous representations. The disentangling properties of discrete representa-
tions are mostly unexplored.

Despite the empirical successes of discrete representations, a comprehensive un-
derstanding of their benefits and implications, especially within the context of dis-
entangled representations, is lacking. It remains unclear to what extent and under
which conditions discrete latent spaces facilitate the learning of disentangled rep-
resentations and how the specific structure of discrete spaces impacts this process.
This lack of understanding represents a significant gap in the current state of the
art and poses an important challenge that we address in the scope of this thesis.



CHAPTER 1. INTRODUCTION 7

1.3 Research Questions

In the previous sections, we discussed the challenges and potential benefits of dis-
crete representations. While continuous representations have been extensively used
and studied, discrete representations offer unique challenges and advantages that
require deeper exploration. This exploration forms the basis of our research, where
we aim to obtain a better understanding of the features of discrete representations.

The research questions presented in this section serve as a guide for this explo-
ration. Each question is designed to uncover a specific aspect of discrete repre-
sentations within discrete SCGs. These aspects are understanding their inherent
challenges of training discrete representations, the benefits they provide over con-
tinuous representations, developing methods for effective training, and the integra-
tion of these representations into existing deep learning methods. In the following,
we will depict and explain the research questions in more detail.

RQ1.1: Why is the training of models based on discrete SCGs inherently challeng-
ing?

This question seeks to identify the challenges associated with training models using
discrete representations.

RQ1.2: Why do discrete representations possess structural advantages over their
continuous counterparts?

This question explores the benefits of discrete representations over continuous
ones.

RQ2.1: How can we effectively learn the structure and the parameters of discrete
SCGs?

This question looks at potential strategies for learning the structure and the param-
eters of discrete SCGs improving the efficiency and stability of training.

RQ2.2: How can discrete representations be integrated effectively into existing
deep learning methods?

This question targets the development of methods to incorporate discrete represen-
tations into existing deep learning techniques.

RQ2.3: How can we further enhance the performance and efficiency of common
discrete representations?

This final question aims to identify innovative strategies for refining and optimizing
discrete representations in deep learning applications.
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RQ1.1 and RQ1.2 seek to improve our understanding of discrete SCGs. We are es-
pecially interested in the challenges associated with training models using discrete
representations and their structural advantages over their continuous counterparts.

Building on this foundation, RQ2.1 takes a problem-solving approach. It addresses
the challenge of effectively learning the structure and the parameters of discrete
SCGs, leveraging the insights gained from RQ1.1. We aim to develop novel meth-
ods and techniques to overcome the identified challenges, targeting more efficient
and stable training processes.

RQ2.2 expands on these techniques to consider their integration into existing deep
learning methods. This is a crucial step towards practical application, as we seek to
combine the advantages of discrete representations with established functionalities
of current deep learning techniques.

Finally, RQ2.3 aims to enhance the performance of standard discrete representa-
tions. This question seeks ways to improve discrete representations by building
upon the insights and techniques developed in response to the previous questions.

These research questions are not isolated queries but form an interrelated system.
Each question gradually progresses from understanding the problem and advantage
of discrete representations to developing novel methods based on these insights.

1.4 Contributions

In this thesis, we explore discrete representations, uncovering the inherent chal-
lenges in their training, exploring their structural advantages, and proposing novel
ways to mitigate these challenges and enhance their performance. The main con-
tributions of this thesis are as follows:

Challenges in Training Discrete SCGs (Section 4.1): We analyze possible ex-
planations for the inherent difficulties in training discrete SCGs based on Gumbel-
Softmax distributions. These difficulties can be attributed to small gradient values
leading to suboptimal training outcomes. Theorem 1 clarifies these challenges,
forming the basis of our understanding in this context.

Understanding the Benefits of Discrete Representations (Section 4.2): We ex-
plore the structural benefits of discrete representations and highlight their potential
impact on disentanglement in deep learning applications. Theorem 2 is a primary
result of this section, spotlighting the rotational equivariance of Gaussian latent
spaces and the subsequent challenges it presents to disentanglement.
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Efficient Structure Learning of SCGs (Section 5.1): We propose a novel strat-
egy of using supervised learning to address the difficulties of learning the structure
of SCGs in the context of Neural Architecture Search. This strategy aims to cap-
ture the underlying distributions of the neural architecture representations, thereby
effectively predicting the most promising paths in the SCG.

Efficient Parameter Learning of Discrete SCGs (Section 5.2): We propose two
unique strategies to mitigate the challenges associated with training discrete SCGs,
especially those involving small gradients and local minima. These strategies in-
volve tweaking the scale parameter of the Gumbel noise perturbations and imple-
menting dropout residual connections for discrete-continuous computation graphs.

Learning Disentangled Discrete Representations (Section 5.3): We discuss the
integration of discrete representations within deep learning models and explore
their disentangling properties. We propose a modified categorical VAE that uses a
one-dimensional representation for each category, thereby addressing the rotational
invariance issue associated with Gaussian distributions.

Improving Discrete Representations (Section 5.4): We enhance discrete repre-
sentations further by leveraging findings from the disentanglement literature for
Gaussian VAEs. This enhancement includes a version of the total correlation reg-
ularizer, semi-supervised training, and addressing the Straight-Through Gap.

Besides these theoretical contributions, we present our empirical contributions sup-
porting these findings in Chapter 6.

1.5 Publications

The research undertaken throughout this doctoral thesis, centered on the exploring
discrete representation in deep learning, has culminated in a series of published
works. These publications, presented in a chronological order below, reflect our
research progression:

Friede, D., Lukasik, J., Stuckenschmidt, H., & Keuper, M. (2019). A var-
iational-sequential graph autoencoder for neural architecture performance
prediction. arXiv preprint arXiv:1912.05317.

Lukasik, J., Friede, D., Stuckenschmidt, H., & Keuper, M. (2020). Neu-
ral architecture performance prediction using graph neural networks. In
DAGM GCPR (pp. 188-201). Springer, Cham.

Friede, D., & Niepert, M. (2021). Efficient Learning of Discrete-Continuous
Computation Graphs. Advances in Neural Information Processing Systems,
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34, 6720-6732.

Friede, D., Reimers, C., Stuckenschmidt, H., & Niepert, M. (2023). Learn-
ing Disentangled Discrete Representations. Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD

1.6 Outline

The remainder of this thesis is organized as follows:

Chapter 2: Background This chapter lays the groundwork for understanding Sto-
chastic Computation Graphs (SCGs), their differentiation, reparameterizations, and
their application in Variational Autoencoders (VAEs). It introduces the Gumbel-
Max and Gumbel-Softmax tricks and explores the concept of disentanglement in
the context of VAEs.

Chapter 3: Related Work In this chapter, we examine prior work relevant to our
research, focusing on some key concepts and techniques. We start with prior work
on discrete representations in reinforcement learning and generative models and
discuss gradient estimators for discrete distributions. We further introduce disen-
tanglement and Neural Architecture Search.

Chapter 4: Theoretical Analysis This chapter presents our theoretical analysis of
discrete representations within SCGs. We delve into the challenges of training
discrete representations and explore the potential benefits of these representations,
primarily in enhancing disentanglement.

Chapter 5: Methodology In this chapter, we introduce our methods for efficient
structure and parameter learning of models based on discrete SCGs. We further in-
troduce strategies for improving the integration of discrete representations within
deep learning models and enhancing them using previous findings from the disen-
tanglement literature.

Chapter 6: Experimental Evaluation In this chapter, we validate our methods
for training discrete models and evaluate the benefits of discrete VAE models for
unsupervised disentanglement. We demonstrate the generalization capabilities and
improved interpretability of models based on discrete representations.

Chapter 7: Conclusion In the final chapter, we conclude this thesis’s key findings
and contributions, focussing on the insights regarding the challenges, advantages,
and potential improvements of discrete representations in deep learning.



Chapter 2

Background

This chapter introduces the background of this research, focusing primarily on
Stochastic Computation Graphs (SCGs) [95] and their role in unsupervised learn-
ing with Variational Autoencoders (VAEs) [45]. The theoretical foundation laid
here will serve as a base to engage with the exploration and discussions that will
follow in the upcoming chapters of this thesis.

Section 2.1 provides a detailed introduction to SCGs, computation graphs that com-
bine deterministic and stochastic functions (nodes). These probabilistic computa-
tional models function as key tools in the remainder of this thesis. We discuss the
wide-ranging usefulness of SCGs, underlining their flexibility in handling differ-
ent computational tasks. We also introduce the application of SCGs in the Neural
Architecture Search (NAS) field, explaining how SCGs can represent potential ar-
chitectures.

Proceeding to Section 2.2, our attention shifts to the inner workings of SCGs. This
section analyzes the process of differentiating stochastic nodes, a complex opera-
tion due to the inherent randomness within these elements.

Section 2.3 introduces an approach to managing categorical variables within SCGs.
We explore using Gumbel variables for reparameterization, explaining the Gumbel-
Max Trick and the Gumbel-Softmax Trick in detail [41, 64]. This procedure en-
ables gradient-based optimization for SCGs with discrete variables.

Next, we introduce the Gumbel-Softmax distribution in Section 2.4. This distribu-
tion extends the behavior of the categorical distribution, providing a differentiable
approximation [41, 64]. The section discusses this distribution’s formal structure
and key properties, focusing on the gradients of the sampling operation.

11
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We conclude this chapter with Section 2.5, where we introduce a well-known appli-
cation of SCGs, the Variational Autoencoder (VAE) [45]. VAEs provide a robust
method for learning complex data distributions without supervision. We further
discuss the concept of disentanglement, which refers to isolating the independent
factors of variation within the data.

2.1 Introduction to Stochastic Computation Graphs

The loss function in many machine learning problems, originating from supervised,
unsupervised, and reinforcement learning, is defined by an expectation over a col-
lection of random variables. These random variables might be part of a probabilis-
tic model or the external world and exhibit different behavior than the determinis-
tic nodes in standard computation graphs. Stochastic Computation Graphs (SCGs)
were first introduced by Schulman et al. [95] as a general framework for model-
ing and optimizing differentiable computation graphs with such stochastic nodes.
SCGs provide a flexible way to model the complex relationships between different
types of variables by treating stochastic nodes in the computation graph separately.
They enable end-to-end training with gradient-based optimization methods, which
is beneficial when learning challenging tasks involving discrete decisions.

Discrete representations are often represented stochastically using the score func-
tion estimator [117] or the Gumbel-softmax trick [41, 64]. The score function
estimator, also known as REINFORCE, is a method for estimating gradients of ex-
pectations with respect to parameters of a model. For instance, in reinforcement
learning, it estimates gradients of the expected reward concerning the parameters
of a policy. The Gumbel-softmax trick is a continuous relaxation of discrete prob-
ability distributions that allows for gradient-based optimization. Thus, SCGs are a
straightforward choice for modeling models with discrete representations.

In practice, SCGs are directed acyclic graphs (DAGs) consisting of deterministic
functions and conditional probability distributions. The deterministic functions de-
fine the relationship between the deterministic nodes in the graph, while the condi-
tional probability distributions describe the stochastic nodes. Figure 2.1 illustrates
an example. The SCG combines information from the input nodes, representing
the MNIST images of handwritten digits, through a series of deterministic and
stochastic nodes. The deterministic nodes, denoted by diamond shapes, perform
transformations or computations on the data, often capturing the structural depen-
dencies in the problem. The stochastic nodes, represented by blue circles, capture
the inherent uncertainty in the model, and their conditional probability distributions
can be learned or inferred from the data. The edges in the SCG indicate the flow
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Figure 2.1: A stochastic computation graph (SCG) representation of a model that
predicts the sum of two MNIST images. The input nodes contain two MNIST
images, one representing the digit 5 and the other representing the digit 2. The
model processes these inputs through deterministic (diamond-shaped) and stochas-
tic (circle-shaped) nodes, with a black-and-white pattern indicating the probability
distributions representing the values of the digits seen on the individual MNIST
images. The output node contains the predicted sum, 7, in this case.

of information between the nodes, with the direction of the arrows representing the
dependencies between the nodes. In this example, the SCG models the addition of
two handwritten digits, with the stochastic nodes representing the discrete classes
of the 10 MNIST digits. The output node contains the predicted sum based on the
learned discrete classes.

SCGs are a powerful modeling framework, as they can be adapted to various appli-
cations, from simple arithmetic operations to more complex tasks, such as learning
variational autoencoders (VAEs), neural architecture search (NAS), and decision-
making under uncertainty. By leveraging both deterministic and stochastic com-
ponents, SCGs can effectively capture and represent the underlying structure and
uncertainty in various real-world problems [95].

2.1.1 Levels of Difficulty in Stochastic Computation Graphs

In this section, we will explore various levels of complexity in SCGs, ranging from
deterministic computation graphs to hierarchical SCGs with internal graph execu-
tion. The goal is to provide a comprehensive understanding of the different chal-
lenges and tasks that will be tackled with SCGs throughout this thesis. Figure 2.2
illustrates four levels of SCGs with increasing difficulty. As we progress from left
to right, the complexity of the SCGs increases. We take inspiration from Jang et al.
[41] to visualize the SCGs in the following figures.



CHAPTER 2. BACKGROUND 14

Figure 2.2: Illustration of four SCG levels with increasing difficulty. From left
to right: (1) Deterministic Computation Graph, featuring a path of deterministic
nodes; (2) Simple SCG, composed of a path including one stochastic node (blue
circle); (3) SCG with two separate paths with stochastic nodes converging into a
single deterministic node; and (4) SCG with two nodes on the same path, which
demonstrates a single path containing two stochastic nodes on the same path.

The deterministic computation graph (1) is the simplest form, consisting only of
deterministic nodes. In this case, the computation is completely predictable, and
the graph can be traversed without any uncertainty.

The simple SCG (2) introduces a stochastic node (blue circle) into the computation
graph. This node represents a point of uncertainty, where multiple outcomes are
possible with varying probabilities. The presence of stochastic nodes increases the
difficulty in determining the optimal path or solution to a given problem.

In the third complexity level, the SCG consists of two separate paths with stochastic
nodes that eventually converge (3). This structure poses a challenge in determin-
ing the optimal combination of the two paths, as the outcomes of both stochastic
nodes influence the final result. The sum of two MNIST images, as illustrated in
Figure 2.1, serves as an example of such an SCG.

The fourth complexity level features an SCG with two stochastic nodes on the same
computation path (4), further complicating the problem-solving process. The out-
come of one stochastic node can influence the outcome of the subsequent stochastic
node, resulting in a complex interplay of probabilities. An example of such an SCG
is the 3-MNIST addition problem, as illustrated in Figure 2.3.

The fifth complexity level features a hierarchical SCG with an internal SCG as a
stochastic node (5), as illustrated in Figure 2.4. In this scenario, the external SCG
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Figure 2.3: Illustration of an SCG for the 3-MNIST addition problem. Three input
MNIST images are processed by deterministic encoder nodes (Enc), followed by
stochastic nodes. The first two input images converge and are channeled through
a second stochastic node on the same path, representing the sum of the first two
digits. The third input image is processed in a separate path. The outputs of these
paths converge into a second deterministic addition node (+), showcasing the com-
positionality of the model.

processes the input – [max 2 9] – through a deterministic node and a stochastic
node containing the internal SCG. The internal graph represents the parsing of the
tokens [max], [2], and [9] as nodes. This structure poses a challenge in learning
the correct graph structure and executing it within the external SCG to produce
the desired output. The graph traversal continues through the inner SCG, and the
connection between the outer and inner SCG is indicated by a dashed arrow. Ul-
timately, the output 9 is produced after traversing both the external and internal
SCGs. In this level of complexity, not only does the model need to account for
stochastic nodes and their interplay of probabilities, but it also has to learn and ex-
ecute an internal graph structure as part of the overall computation in the external
SCG. This represents a more complex task, requiring a deeper understanding of the
underlying problems and a more sophisticated problem-solving approach.

2.1.2 Neural Architecture Search in the Context of Stochastic Com-
putation Graphs

One application of Stochastic Computation Graphs (SCGs) is their use in Neural
Architecture Search (NAS), an area of machine learning focusing on automating
the design of neural network architectures. NAS leverages stochastic search strate-
gies to explore the vast space of potential architectures, making SCGs a natural fit
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Figure 2.4: Illustration of a hierarchical SCG (5) with an internal SCG as a stochas-
tic node. The external SCG processes the input – [max 2 9] – through a determinis-
tic node followed by a stochastic node. Inside the stochastic node, an internal graph
is learned, representing the parsing of the tokens [max], [2], and [9] as nodes. The
dashed arrow indicates the connection between the outer and inner SCG. The graph
traversal continues through the inner SCG, ultimately producing the output 9.

for representing and guiding this search process.

In the context of NAS, the SCG represents the possible neural network architec-
tures in an internal graph and the selection of a specific architecture in the external
graph. The stochastic nodes represent the randomness of selecting specific archi-
tecture choices. These often discrete distributions range from categorical for the
operation choice, e.g., a convolutional layer or max pooling, to binary for the edge
indication. These operations form the internal nodes of the SCG, whereas the in-
ternal edges between these nodes represent the flow of data through the neural
network. The challenge in NAS lies in learning the optimal architecture, which es-
sentially boils down to learning the optimal internal computation graph that, when
followed, would form the best-performing architecture for the given task.

This use of SCGs in NAS is an example of the fifth level of complexity mentioned
in Section 2.1.1, involving the learning of an internal graph structure (the neural
architecture) as part of the overall computation in the external SCG. Hence, the
associated complexities and challenges in optimizing such SCGs in NAS include
managing uncertainty related to the stochastic nodes when learning the graph struc-
ture representing the optimal neural architecture.
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Figure 2.5: Illustration of the gradients of a deterministic computation graph (top)
and a stochastic computation graph (bottom). Top: In the deterministic graph,
gradients flow smoothly from the function f back to the parameter θ (red arrows).
Bottom: In the stochastic computation graph, a stochastic node z introduces com-
plexity, as it draws from a distribution pθ(z) determined by θ. This introduces a
problem when trying to compute the gradient from f through z to θ.

2.2 Differentiating through Stochastic Nodes

Stochastic nodes introduce a layer of complexity into computation graphs that does
not exist in deterministic computation graphs. A stochastic node in a computa-
tion graph represents a random variable or a distribution over potential outcomes.
When we attempt to compute the gradient of the expectation of such a node during
backpropagation, we encounter issues such as non-existent closed forms or non-
differentiability [68].

To mathematically express the issue of calculating gradients with respect to the
parameters of a distribution, let us formulate some initial equations. Assume f is a
smooth function (such as the loss function in a learning problem). The gradient of
f at the stochastic node can be expressed as:

∇θEpθ(z) [f(z)] = ∇θ

∫

z
f(z)pθ(z)dz. (2.1)

Here, we rewrite the expectation as an integral over z. The bottom half of Fig-
ure 2.5 illustrates the computation graph for this operation, highlighting the flow
of gradients through the nodes of the SCG. The stochastic node, represented by z,
introduces randomness, which complicates the computation of gradients. Under
certain conditions, we can apply Leibniz’s rule for differentiation under the inte-
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gral sign to switch the gradient and the integral in Equation (2.1), yielding:

∇θEpθ(z) [f(z)] =

∫

z
f(z)∇θpθ(z)dz. (2.2)

Unfortunately, the right-hand side of Equation (2.2) typically does not possess a
closed-form expectation. This is because, in general, the gradient of a density
function is not itself a density function. Thus, a straightforward Monte Carlo esti-
mation is not applicable.

Instead, we need to seek alternative methods to deal with this challenge, like the
score function estimator [117] or the reparameterization trick [45]. These methods
introduce a way to bypass or handle the problem of calculating gradients with
respect to the parameters of a distribution caused by the stochastic nodes, allowing
us to perform backpropagation effectively. We will explore these methods in more
detail and highlight their advantages and limitations.

2.2.1 The Score Function Estimator

The Score Function Estimator (SFE), also referred to as the REINFORCE algo-
rithm in the context of reinforcement learning [117], is a method for estimating
gradients through stochastic nodes. SFE utilizes the log-derivative trick:

∇θpθ(z) = pθ(z)∇θ log pθ(z). (2.3)

This trick allows the gradient to be reformulated such that it can be computed using
samples from the distribution:

∇θEpθ(z) [f(z)] = Epθ(z) [f(z)∇θ log pθ(z)] . (2.4)

The gradient flow in this estimator, as depicted in Figure 2.6, bypasses the stochas-
tic node by backpropagating along the surrogate loss f∇ log pθ(z). The expec-
tation on the right-hand side of Equation (2.4) can be estimated via Monte Carlo
methods, as it forms a closed-form expectation. Crucially, this expectation relies
solely on the score function, ∇θ log pθ(z), rather than the derivative of the func-
tion f(z) itself. This feature renders the SFE highly flexible and broadly applicable
to various types of stochastic nodes, such as discrete distributions. However, de-
spite its broad applicability, SFE is often prone to high variance, which can hinder
learning or even render it unstable [30].

Prior research has focused on modifying the SFE to reduce its variance. This is
accomplished by incorporating control variates, denoted as b(z), into the SFE. The
modified SFE then becomes:

∇θEpθ(z) [f(z)] = Epθ(z) [(f(z)− b(z))∇θ log pθ(z)] + µb, (2.5)
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Figure 2.6: Visual explanation of the Score Function Estimator and its gradient
flow. The gradient bypasses the stochastic node by differentiating the surrogate
loss f∇ log pθ(z). The exact gradients can be derived by the log-derivative trick.

where µb = Epθ(z) [b(z)∇θ log pθ(z)] represents the analytical expectation of the
control variate. This inclusion ensures that the estimator remains unbiased. Tech-
niques to reduce variance in score function estimators are diverse, spanning from
straightforward baselines [82, 67] to the Rao-Blackwellization method [84, 104],
and gradient-based control variates [103].

A notable issue with the variance of SFE is its linear scaling with the number of
dimensions in the sample vector [87]. This characteristic poses distinct challenges
when the estimator is applied to categorical distributions [41]. While the reparam-
eterization trick [45] may be less flexible than SFE since its functionality depends
on certain conditions being met, it often provides powerful estimators with advan-
tageous attributes, such as a reduced variance [95].

2.2.2 The Reparameterization Trick

The Reparameterization Trick [45] offers a more efficient approach for certain
types of stochastic nodes. Instead of directly differentiating the stochastic node,
the Reparameterization Trick introduces an auxiliary noise variable, allowing the
gradient to pass through deterministic nodes. For a class of distributions known
as location-scale families (which includes the Gaussian distribution), the Repa-
rameterization Trick provides a lower-variance gradient estimator compared to the
Score Function Estimator [45, 95]. However, the Reparameterization Trick’s major
limitation is that it is not universally applicable. It can only be applied to distri-
butions that can be reparameterized in the following way. The idea is to find a
function g and distribution ρ such that one can replace z ∼ pθ(z) by z = g(ϵ, θ)
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Figure 2.7: Visualization of the Reparameterization Trick applied in a Stochastic
Computation Graph. The parameters θ and the noise term ϵ are transformed by
a deterministic function g(ϵ, θ) to generate a reparameterized random variable z.
The gradients can flow back from the function f(z) to the parameters θ, bypassing
the stochastic node, as indicated by the red arrows.

with ϵ ∼ ρ(ϵ). If this is possible, then one can write

∇θEz∼pθ(z) [f(z)] = Eϵ∼ρ(ϵ) [∇θf (g(ϵ, θ))] . (2.6)

Figure 2.7 visually depicts the Reparameterization Trick. The introduced auxiliary
noise variable, ϵ, is sampled from a base distribution, ρ(ϵ). The deterministic node
g(ϵ, θ) computes the value of z from the noise variable and the parameters θ. The
gradient flows directly through the deterministic nodes, effectively bypassing the
stochastic node.

To fully take advantage of the Reparameterization Trick, two key conditions must
be met. Firstly, the function f(z) must be differentiable with respect to its input z.
This is a crucial difference from the Score Function Estimator and restricts the
types of functions that can be used in this context. Secondly, a function g(ϵ, θ)
must exist and be differentiable with respect to θ. This function maps the noise
variable ϵ and the model parameters θ to a new variable z = g(ϵ, θ).

The Gaussian distribution serves as an example where a reparameterization can
be obtained. Consider a sample z drawn from a univariate Gaussian distribution
pθ(z) = N (µ, σ2). Given that the family of Gaussian distributions is closed under
linear transformations, we can reparameterize z = µ + σϵ with ϵ ∼ N (0, 1).
Therefore, we can reformulate the expectation under the original distribution in
terms of the expectation under the reparameterized distribution:

EN (z;µ,σ2) [f(z)] = EN (ϵ;0,1) [f(µ+ σϵ)] (2.7)
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Figure 2.8: Reparameterization of a Gaussian distribution using the Reparame-
terization Trick. Left: The traditional Gaussian distribution is shown, where the
parameters (µ, σ) generate a stochastic node z. Right: The Gaussian distribution
is reparameterized as z = µ+ σϵ using the auxiliary variable ϵ ∼ N (0, 1).

Figure 2.8 illustrates this process of reparameterization for the Gaussian distribu-
tion. On the left, the original stochastic node z is drawn from a Gaussian distri-
bution parameterized by (µ, σ). On the right, we see the reparameterization of z
as a deterministic function of the noise variable ϵ and the parameters (µ, σ). This
transformation enables the gradient of the expectation E [f(z)] to be computed
more efficiently since the dependency on the parameters is now entirely within
deterministic nodes.

The existence and differentiability of this function g(ϵ, θ) is not always guaranteed,
especially for discrete categorical variables. Indeed, the challenge of applying the
Reparameterization Trick to discrete variables has motivated the development of
techniques such as the Gumbel-Softmax Trick [41, 64] that is based on the Gumbel-
Max Trick [33].

The Gumbel-Max Trick [33] offers a way to construct the function g(ϵ, θ) for dis-
crete categorical variables. It involves adding Gumbel-distributed noise to the log-
its of a categorical distribution and then taking the argmax operation to draw a
sample. However, because of the discrete nature of the argmax operation, the
resulting function g(ϵ, θ) is not differentiable with respect to θ, which makes it
challenging to use in gradient-based optimization methods. Recognizing this lim-
itation, the Gumbel-Softmax Trick [41, 64] was developed as a relaxation of the
Gumbel-Max Trick. It replaces the non-differentiable argmax operation with a
differentiable softmax operation, which allows the gradients to be computed and
backpropagated through. The resulting function g(ϵ, θ) is differentiable with re-
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spect to θ, fulfilling the requirements of the Reparameterization Trick. However,
the Gumbel-Softmax Trick introduces a bias because the softmax operation re-
turns a probability distribution over all categories rather than a single categorical
outcome, as in the Gumbel-Max Trick. This can lead to a discrepancy between
the true distribution and the approximated one, which could potentially affect the
learning process and the quality of the results.

We will delve deeper into these two techniques and their applications in the follow-
ing section. Despite their limitations, these tricks broaden the range of distributions
to which reparameterization can be applied.

2.3 Reparameterizations using Gumbel Variables

The Reparameterization Trick and its application to continuous variables have nu-
merous benefits, including providing a lower variance gradient estimator. How-
ever, in real-world situations, we often work with discrete random variables. These
pose a significant challenge due to their non-differentiable nature. In the previous
section, we briefly introduced the Gumbel-Softmax Trick, a method developed to
tackle this issue and extend the benefits of reparameterization to discrete categori-
cal variables.

This section will delve deeper into the Gumbel-Softmax Trick and its predecessor,
the Gumbel-Max Trick. We will explain in detail how they work and successfully
handle the problem of differentiability with discrete variables, increasing the scope
of reparameterization in deep generative modeling.

2.3.1 The Gumbel-Max Trick

The concept of the Gumbel-Max Trick extends the Reparameterization Trick to
handle discrete variables [33]. Named after Emil Julius Gumbel, who first intro-
duced the Gumbel distribution in extreme value theory, this trick presents an inno-
vative approach for sampling from a discrete categorical distribution [32]. How-
ever, it does come with a notable drawback, the non-differentiability issue, which
limits its direct use in gradient-based learning methods.

Let z ∼ Cat(θ) be a discrete variable distributed according to a categorical distri-
bution with unnormalized category probabilities θ = (θ1, . . . , θm) with θk > 0 for
all k = 1, . . . ,m, where m is the number of categories. This means that

P(z = j | θ) = θj∑m
k θk

. (2.8)
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log θj + ϵj argmaxjCat(z;θ)θ

?

Figure 2.9: Schematic representation of the standard approach and the Gumbel-
Max Trick for sampling from a categorical distribution. Left: The standard ap-
proach directly uses the unnormalized category probabilities θ to sample from
the categorical distribution Cat(z;θ). Right: The Gumbel-Max Trick introduces
Gumbel-distributed noise variables ϵ. These variables combine with the log θj val-
ues to pass through an argmax operation, which selects the index of the maximum
value, thereby creating a reparameterization of the categorical variable z. The red
question mark signifies the non-differentiability issue of the argmax operation.

The Gumbel-Max Trick uses the Gumbel distribution ϵ ∼ Gumbel(0, 1), which is
defined by

ϵ = − log (− log(u)) , (2.9)

where u ∼ Uniform(0, 1), to provide a reparameterization of the categorical dis-
tribution. Gumbel [33] showed that we can reparameterize z ∼ Cat(θ) by

z = argmax(log θj + ϵj), (2.10)

where ϵj ∼ Gumbel(0, 1) for all j = 1, . . . ,m. This reparameterization approach,
the Gumbel-Max Trick, is visualized on the right side of Figure 2.9. The graph be-
gins with the unnormalized category probabilities θ for a categorical distribution.
Each noise variable ϵj corresponds to a specific category j in the categorical distri-
bution. The index of the maximum value in this array corresponds to the sample z
drawn from the categorical distribution, enabling a reparameterization of the cate-
gorical distribution.

However, the presence of the argmax operation introduces a significant difficulty in
the context of gradient-based learning. The argmax operation is non-differentiable,
which means it does not allow the flow of gradient information. This limitation is
problematic because it prevents the direct application of the Reparameterization
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Trick, which requires the differentiability of the function g(ϵ, θ). The following
subsection will show how the Gumbel-Softmax Trick addresses this problem.

2.3.2 The Gumbel-Softmax Trick

Recognizing the limitation posed by the non-differentiability of the argmax oper-
ation in the Gumbel-Max Trick, a more flexible approach was introduced, known
as the Gumbel-Softmax Trick [41, 64]. This technique is essentially a relaxation
of the Gumbel-Max Trick that makes it suitable for gradient-based optimization
methods. In particular, the Gumbel-Softmax Trick replaces the non-differentiable
argmax operation with the differentiable softmax operation. This change allows
for the computation of gradients, enabling backpropagation through the sampling
procedure.

The softmax function is defined as

softmax(x)j =
exp(xj)∑m
k=1 exp(xk)

(2.11)

for a given vector x = (x1, . . . , xm).

The reparameterization of a categorical variable z using the Gumbel-Softmax Trick
is then given by

z = softmax((log θ + ϵ)/τ), (2.12)

where τ > 0 is a temperature parameter that controls the sharpness of the distribu-
tion and ϵj ∼ Gumbel(0, 1) for all j = 1, . . . ,m. Note that z in Equation (2.12)
is a vector of size m, the number of categories, and normalized. For τ → 0, the
softmax function tends towards the argmax function, making the Gumbel-Softmax
Trick reduce to the Gumbel-Max Trick [41, 64], if we represent the categories as
one-hot vectors. We will discuss this in more detail in Section 2.4. Conversely, for
τ → ∞, the output of the softmax function approaches a uniform distribution [41].
This process is visualized in Figure 2.10, which depicts the steps in the Gumbel-
Softmax Trick. The softmax operation provides a differentiable transformation,
turning the categorical variable z into an approximated representation. This al-
lows for backpropagation through the sampling process, which makes it possible
to optimize the parameters θ with respect to the loss function using gradient-based
methods.

Figure 2.11 illustrates the effect of different temperature values on the Gumbel-
Softmax distribution. Each subfigure presents a ternary plot representing the distri-
bution of a categorical variable reparameterized using the Gumbel-Softmax Trick
with a specific τ value. As τ increases, the distribution becomes smoother and
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Figure 2.10: Schematic representation of the Gumbel-Softmax Trick. Here, θ is
the unnormalized category probabilities of a categorical distribution, and ϵ are
Gumbel-distributed noise variables. The log θ values and ϵ are summed and passed
through a softmax function, yielding a differentiable approximation of the categor-
ical distribution. The τ symbol denotes the temperature parameter, which modu-
lates the sharpness of the resulting distribution.

approaches a uniform distribution. Conversely, as τ decreases, the distribution be-
comes sharper and tends towards the original discrete distribution determined by
the unnormalized category probabilities θ.

While the Gumbel-Softmax Trick provides a differentiable approximation of the
Gumbel-Max Trick, it introduces a bias in the sampling process [64]. The softmax
operation returns a probability distribution rather than a single categorical outcome,
resulting in a continuous approximation to the original discrete distribution. This
may cause a discrepancy between the true and the approximated distribution.

To reduce the variance of the gradient estimator used in the Gumbel-Softmax Trick,
prior research [109, 29] has focused on incorporating parameterized control vari-
ates, as introduced in Equation (2.5). These control variates can theoretically be
generalized to chains of stochastic nodes [109, 29]. However, the learning be-
havior of these estimators for the more complex SCGs that we have discussed in
Section 2.1 is not extensively discussed in the literature.

In this thesis, we focus on efficiently training models with gradient estimates for
categorical distributions and understanding their advantages. Section 4.1 discusses
the challenges posed by the Gumbel-Softmax Trick, particularly in the context of
complex discrete-continuous computation graphs with multiple sequential discrete
distributions. In Section 5.2, we aim to improve the training efficiency and perfor-
mance of these models by investigating novel methods and techniques.
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τ = 2.0 τ = 1.0 τ = 0.5 τ = 0.1

Figure 2.11: Visualization of the Gumbel-Softmax Trick for the unnormalized
probabilities θ = (2.0, 0.5, 1.0) with varying temperature parameter τ . Each sub-
figure represents a ternary plot showing the distribution of a categorical variable
reparameterized using the Gumbel-Softmax Trick. Yellow depicts high, and blue
depicts low values. As τ increases, the distribution becomes smoother and ap-
proaches a uniform distribution. Conversely, as τ decreases, the distribution be-
comes sharper and tends towards the categorical distribution.

2.4 The Gumbel-Softmax Distribution

The Gumbel-Softmax Trick yields a unique distribution introduced for modeling
discrete data. This section presents a detailed description of the main features of
this distribution, mainly following Maddison et al. [64].

The random vector z of the Gumbel-Softmax distribution follows a simplex con-
straint such that z ∈ ∆m−1 = {z ∈ Rm | zj ∈ [0, 1],

∑m
j=1 zj = 1}, which

reflects the fact that the vector z represents probabilities.

Definition 1 (Gumbel-Softmax Distribution). Given unnormalized category prob-
abilities θ ∈ (0,∞)m and temperature τ > 0, a random variable z ∈ ∆m−1

follows a Gumbel-Softmax distribution GS(θ, τ) if its probability density function
is given by

pθ,τ (z) = (m− 1)!τm−1
m∏

k=1

θkz
−τ−1
k∑m

j=1 θjz
−τ
j

. (2.13)

The density function is determined by the unnormalized category probabilities θ,
the temperature τ , and the particular values of the random vector z.

2.4.1 Properties of the Gumbel-Softmax Distribution

The following proposition features some key features of the Gumbel-Softmax dis-
tribution as introduced in Maddison et al. [64].



CHAPTER 2. BACKGROUND 27

Proposition 1 (Properties of the Gumbel-Softmax Distribution). Let z be a ran-
dom variable following the Gumbel-Softmax distribution, i.e., z ∼ GS(θ, τ) with
unnormalized category probabilities θ ∈ (0,∞)m and temperature τ > 0. Then,
it holds that

1. (Reparameterization) If ϵk ∼ Gumbel(0, 1), then z =
exp(log θj+ϵj)∑m

k=1 exp(log θk+ϵk)
,

2. (Zero temperature) P(limτ→0 zk = 1) = θk∑m
j=1 θj

,

3. (Jacobian) ∂zi
∂θj

=

{
1
τ zi(1− zi) if i = j

− 1
τ zizj if i ̸= j.

The first property shows that one can sample from the Gumbel-Softmax distribu-
tion using the previous section’s reparameterization, making it possible to propa-
gate gradients through the sampling operation.

The second property relates to the behavior of the Gumbel-Softmax distribution
as the temperature parameter τ approaches zero. Specifically, as τ decreases, the
probability of the random variable zk being one tends to the proportion of the
unnormalized category probability θk among all category probabilities. This means
that the Gumbel-Softmax distribution converges to a categorical distribution in the
zero-temperature limit, showcasing the link between these two distributions.

The third property, the Jacobian, relates to the derivatives of the components of the
random vector z with respect to the parameters θj . This property plays a key role
in understanding the challenges in training discrete representations in Section 4.1.

2.5 Variational Autoencoders

In Section 2.1.1, we explored various levels of complexity within Stochastic Com-
putation Graphs (SCGs). One common feature of the models discussed was that
the training process was guided by the relationship between the input and corre-
sponding labels. The model, therefore, needed to capture the internal structure of
the data (e.g., the appropriate categories for the stochastic nodes) and the external
structure (e.g., the correct parsing of the partial computation graphs) in order to
connect the input to the corresponding labels.

However, a greater challenge lies in utilizing SCGs to manage data inputs in an
entirely unsupervised manner – without the guidance of any labels. This leads
us to Variational Autoencoders (VAEs), which strive to learn a low-dimensional
latent representation of the input data, capturing the underlying structure of the
data distribution [45].
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Figure 2.12: This diagram presents a typical Variational Autoencoder (VAE).
Given an input image from the MNIST dataset, the image is processed through
a deterministic encoder, represented by the diamond shape. This encoder trans-
lates the high-dimensional data into a lower-dimensional latent space. The blue
circle represents the stochastic node, which models the inherent randomness of the
data using a learned distribution. The image is then reconstructed through a de-
terministic decoder (also a diamond shape), resulting in an output image that is
ideally close to the original input image.

VAEs, introduced by Kingma and Welling [45], provide a probabilistic method for
describing an observation in latent space. Essentially, they are an extension of Au-
toencoders, neural networks trained to reconstruct their input data [4], but with an
added constraint to the encoding part. Specifically, VAEs enforce the latent vari-
ables to follow a specified distribution. This constraint encourages the model to
learn a more robust representation of the data and enhances its generative capabil-
ities [45]. Figure 2.12 illustrates an example of a VAE.

The primary objective of a VAE is to learn the posterior distribution of the latent
variables given the input data. This objective is achieved by maximizing the evi-
dence lower bound (ELBO), which entails two components: the reconstruction loss
and the Kullback-Leibler (KL) divergence loss. The reconstruction loss measures
the discrepancy between the original input and the reconstructed output, while the
KL-divergence loss quantifies the difference between the learned latent distribution
and the prior. Training a VAE is typically addressed with the reparameterization
trick as introduced in Section 2.2.2.

2.5.1 The Evidence Lower Bound

The representation learning literature is usually premised on the assumption that
a high-dimensional observation x from the data space X is generated from a low-
dimensional latent variable z whose entries correspond to the dataset’s ground-
truth factors of variation such as position, color, or shape [7, 108]. First, the
ground-truth factors are sampled from some distribution z ∼ p(z) =

∏
p(zi).

The observation is then a sample from the conditional probability x ∼ p(x|z).
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The formalism of variational autoencoders [45] enables an estimation of these dis-
tributions. Assuming a known prior p(z), we can depict the conditional proba-
bility pψ(x|z) as a parameterized probabilistic decoder. In general, the posterior
pψ(z|x) is intractable. Thus, we turn to variational inference and approximate
the posterior by a parameterized probabilistic encoder qϕ(z|x) and minimize the
Kullback-Leibler (KL) divergence DKL

(
qϕ(z|x) ∥ pψ(z|x)

)
. This term, too, is

intractable but can be minimized by maximizing the evidence lower bound (ELBO)

Lψ,ϕ(x) = Eqϕ(z|x) [log pψ(x|z)]−DKL

(
qϕ(z|x) ∥ p(z)

)
. (2.14)

At its core, the ELBO aims to make the modeling of z more accurate while making
the encoder qϕ(z|x) close to the true but intractable posterior pψ(z|x). The first
term of Equation (2.14) is the expected log likelihood Eqϕ(z|x) [log pψ(x|z)]. It
captures how well the decoder can reconstruct the input x given a latent code z
sampled from the encoder’s distribution. A higher value for this term means that
the decoder is better at reconstruction, so we want to maximize this term. The
second term is the KL divergence DKL

(
qϕ(z|x) ∥ p(z)

)
. This term measures

the difference between the distribution of the encoder and the prior. We aim to
minimize this term, encouraging the encoder to produce latent codes z that closely
match the prior distribution p(z).

Maximizing the ELBO leads to a model that can reconstruct its input data well
while ensuring that the learned representations stick to a structure chosen in ad-
vance (the prior). Higgins et al. [38] discussed the latent space structure in detail
for the diagonal Gaussian prior within the concept of disentanglement. In this the-
sis, we build upon the idea of [38] by questioning the default use of a Gaussian
prior and discussing the advantages of a discrete, categorical prior.

2.5.2 Disentangled Representations

The disentanglement literature [7, 39, 59] provides a common approach to analyz-
ing the structure of latent spaces. Disentangled representations [7] recover the low-
dimensional and independent ground-truth factors of variation of high-dimensional
observations. Such representations promise interpretability [39, 1], fairness [58,
17, 106], and better sample complexity for learning [93, 7, 79, 111]. State-of-
the-art unsupervised disentanglement methods enrich Gaussian variational autoen-
coders [45] with various regularizers encouraging disentangling properties [38, 52,
11, 44, 14]. Locatello et al. [59] showed that unsupervised disentanglement with-
out inductive priors is theoretically impossible. This is why a recent line of work
has shifted to weakly-supervised disentanglement [61, 97, 60, 47].
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Recall from the last section that we have ground-truth factors that are sampled from
some distribution z ∼ p(z) =

∏
p(zi). The observation is then a sample from the

conditional probability x ∼ p(x|z). The goal of disentanglement learning is to
find a representation r(x) such that each ground-truth factor zi is recovered in
one and only one dimension of the representation. The idea of mapping a single
dimension of the representation to each ground-truth factor and the idea that one
ground-truth factor should influence only one dimension of the representation have
been discussed thoroughly by Eastwood and Williams [23].

State-of-the-art unsupervised disentanglement methods assume a Normal prior dis-
tribution p(z) = N

(
0, I

)
as well as an amortized diagonal Gaussian for the ap-

proximated posterior distribution qϕ(z|x) = N
(
z | µϕ(x),σϕ(x)I

)
. They en-

rich the ELBO with regularizers encouraging disentangling [38, 52, 11, 44, 14] and
choose the representation as the mean of the approximated posterior r(x) = µϕ(x)
[59].

The β-VAE model [38] introduces a hyperparameter to control the trade-off be-
tween the reconstruction loss and the KL-divergence term, promoting disentangled
latent representations. The annealedVAE [11] adapts to the β-VAE by annealing
the β hyperparameter during training. FactorVAE [44] and β-TCVAE [14] promote
independence among latent variables by controlling the total correlation between
them. DIP-VAE-I and DIP-VAE-II [52] are two variants that enforce disentangled
latent factors by matching the covariance of the aggregated posterior to that of the
prior.

While regularization and supervision have been discussed extensively in the disen-
tanglement literature, the variational autoencoder is a component that has mainly
remained constant. At the same time, multivariate Gaussian distributions suffer
from rotational invariance, which can harm disentangling properties [116]. We
will show in Section 4.2 that switching to a categorical distribution, with its inher-
ent grid structure, mitigates this problem and acts as an efficient inductive prior for
disentangled representations.

2.5.3 Measuring Disentanglement

Many metrics have been proposed to quantify the degree of disentanglement. How-
ever, designing such a measure is not straightforward due to the complexity of the
problem [59]. In this section, we focus on a commonly used approach to measur-
ing disentanglement, the Mutual Information Gap (MIG) [14]. Our exploration of
this metric closely follows the work of Locatello et al. [59], who comprehensively
explored the challenges in evaluating disentangled representations.
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Mutual Information Gap

Chen et al. [14] argued that the previously used metrics for evaluating the disentan-
glement of representations are neither general nor unbiased due to their reliance on
specific hyperparameters. In contrast, they proposed a different metric known as
the Mutual Information Gap (MIG), which relies on the concept of mutual infor-
mation, a measure from information theory that quantifies the information shared
between two variables.

The MIG is calculated as follows: First, the mutual information I(rj , zi) between
each ground truth factor of variation zi and each dimension of the computed repre-
sentation r(x) is computed. For each ground truth factor zi, the dimensions in r(x)
with the highest and second highest mutual information are identified. The MIG is
then defined as the average difference between these two quantities, normalized by
the entropy of the ground truth factor H(zi).

This metric, therefore, aims to reward representations where each dimension is
highly sensitive to exactly one ground truth factor of variation. Specifically, the
MIG rewards situations, in which the highest mutual information is significantly
higher than the second highest, indicating that each dimension in the latent space
corresponds to a distinct factor of variation in the data.

We closely follow the implementation of Locatello et al. [59] to estimate the dis-
crete mutual information. Each dimension of the representations obtained from
10 000 points is binned into 20 bins. The score is computed according to the fol-
lowing formula:

1

n

n∑

i=1

1

H(zi)

(
I(rji , zi)−max

j ̸=ji
I(rj , zi)

)
, (2.15)

where zi is a factor of variation, rj is a dimension of the latent representation, and
ji = argmaxj I(rj , zi). Applying this formula ensures that the disentanglement
measure is consistent across different datasets and does not depend on particular
hyperparameters.
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Related Work

This chapter provides an overview of the work that has informed this thesis. It cov-
ers discrete representations in reinforcement learning and generative models, the
development and improvement of gradient estimators for discrete latent variables,
the evolution of unsupervised and semi-supervised disentanglement approaches,
and a brief insight into Neural Architecture Search (NAS).

In Section 3.1, we discuss the importance of discrete representations in machine
learning, highlighting how they have been utilized and enhanced in both genera-
tive models and reinforcement learning. Section 3.2 examines gradient estimators
for discrete latent variables, presenting various algorithms and methods that al-
low backpropagation through stochastic nodes. Next, we address the learning of
disentangled representations, especially in the context of unsupervised and semi-
supervised learning in Section 3.3. We discuss prior works that have attempted to
separate underlying factors of variation within data. Lastly, Section 3.4 introduces
Neural Architecture Search, providing an overview of the paradigms and bench-
marks in this area.

While each section in this chapter provides a robust foundation for the specific area,
it is not an exhaustive review of all the related work. Rather, it gives a concise yet
comprehensive overview of the key concepts, methods, and contributions relevant
to this thesis’ scope.

32
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3.1 Discrete Representations in Reinforcement Learning
and Generative Models

The importance of discrete representations in the field of machine learning is ev-
ident in several recent developments. Notably, Vector Quantised-Variational Au-
toEncoder (VQ-VAE) introduced by Van Den Oord et al. [110] is a generative
model that yields discrete representations and overcomes typical issues observed
in VAE framework like posterior collapse [62]. These discrete codes utilize an
autoregressive prior for generating high-quality multimedia outputs. Razavi et al.
[83] extended this concept by using the VQ-VAE-2 model for large-scale image
generation. They showed that using simple feed-forward encoder and decoder net-
works along with VQ-VAE can generate synthetic samples of high coherence and
fidelity, rivaling state-of-the-art Generative Adversarial Networks (GANs) [31].

Moving to reinforcement learning, Hafner et al. [35] utilized discrete world models
for better generalization and increased sample efficiency. They introduced Dream-
erV2, an agent that learns from predictions in the compact latent space of a world
model using discrete representations. This model achieved human-level perfor-
mance on the Atari benchmark, outperforming top single-GPU agents. Ozair et al.
[75] used discrete autoencoders to handle stochastic and partially-observable en-
vironments in model-based RL. They leveraged discrete latent variables for plan-
ning in uncertain conditions, outperforming an offline version of MuZero [94] on
a stochastic interpretation of chess. In a later work, Hafner et al. [36] showcased
the ability of world models in diverse domains. With their DreamerV3 model, they
tackled tasks across continuous and discrete actions, visual and low-dimensional
inputs, and 2D and 3D worlds, demonstrating their method’s flexibility.

Ramesh et al. [81] used transformers that autoregressively model text and discrete
image tokens, showcasing the potential of transformers in generating images from
textual descriptions in a zero-shot fashion. Furthermore, Rombach et al. [91] used
latent diffusion models (LDMs) for high-resolution image synthesis. By training
diffusion models (DMs) [40] in the latent space of pre-trained autoencoders, they
maintained the quality of DMs while reducing computational requirements.

Prior work has argued that discrete representations are a natural fit for complex
reasoning or planning [41, 81, 75] and has shown empirically that a discrete latent
space yields better generalization behavior [35, 91]. Hafner et al. [35] hypothesize
that the sparsity enforced by a vector of discrete latent variables could encourage
generalization behavior. However, they admit that ”we do not know the reason
why the categorical variables are beneficial.” We focus on an extensive study of the
structural impact of discrete representations to answer this question.
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3.2 Gradient Estimators for Discrete Latent Variables

Various gradient estimators have been proposed for the problem of backpropa-
gating through stochastic nodes. The REINFORCE algorithm [117] utilizes the
log-derivative trick. The Straight-Through estimator [8] back-propagates through
hard samples by replacing the threshold function with the identity in the backward
pass. More recent approaches are based on reparameterization tricks [45] that en-
able the gradient computation by removing the dependence of the density on the
input parameters. Maddison et al. [64] and Jang et al. [41] propose the Gumbel-
Softmax trick, a continuous (but biased) reparameterization trick for categorical
distributions. Tucker et al. [109] and Grathwohl et al. [29] introduce parameterized
control variates to lower the variance for these gradient estimators. They show that
these estimators can, in theory, also be generalized to chains of stochastic nodes
but do not discuss the learning behavior of such models. Shayer et al. [96] modify
the local reparameterization trick [46] to improve the training of discrete gradient
estimators. Paulus et al. [77] proposed a framework that generalizes the Gumbel-
Softmax trick for various discrete probability distributions.

Pervez et al. [78] showed how to utilize harmonic analysis for boolean functions to
control the bias and variance for gradient estimates for boolean latent variable mod-
els. SparseMAP [74] is an approach to structured prediction and latent variables,
replacing the exponential distribution (specifically, the softmax) with a sparser dis-
tribution. LP-SparseMAP [73] is a continuation of SparseMAP using a relaxation
of the optimization problem rather than a MAP oracle. In addition, the idea to en-
force more sparsity can also be exploited for efficient marginal inference in latent
variable models [16], which can then be used to compute stochastic gradients.

We aim not to improve gradient estimators for a single stochastic node but to an-
alyze the behavior of discrete-continuous computation graphs with multiple se-
quential discrete components. During this exploration, we show both analytically
and empirically that it is challenging to optimize the parameters of these mod-
els, mainly due to insufficient gradient signals often caused by local minima and
saturation. We then propose two new methods for mitigating the causes of poor
optimization behavior.

3.3 Unsupervised and Semi-supervised Disentanglement

State-of-the-art unsupervised disentanglement methods enhance Gaussian VAEs
with various regularizers that encourage disentangling properties. The β-VAE
model [38] introduces a hyperparameter to control the trade-off between the re-
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construction loss and the KL-divergence term, promoting disentangled latent rep-
resentations. The AnnealedVAE [11] adapts the β-VAE by annealing the β hy-
perparameter during training. FactorVAE [44] and β-TCVAE [14] promote inde-
pendence among latent variables by controlling the total correlation between them.
DIP-VAE-I and DIP-VAE-II [52] are two variants that enforce disentangled latent
factors by matching the covariance of the aggregated posterior to that of the prior.

In a critical review of these methods, Locatello et al. [59] argue that the unsuper-
vised learning of disentangled representations is fundamentally impossible with-
out inductive biases on both the models and the data. While different methods can
enforce disentangling properties encouraged by their corresponding losse, several
studies have started to approach disentanglement learning from a semi-supervised
perspective. The Deep Convolutional Inverse Graphics Network (DC-IGN) [51]
learns an interpretable representation of images that is disentangled with respect
to three-dimensional scene structure and viewing transformations. The model uti-
lizes the Stochastic Gradient Variational Bayes (SGVB) algorithm to train its mul-
tilayered convolutional and deconvolutional architecture. Siddharth et al. [98] pro-
pose to learn disentangled representations using model architectures that generalize
from standard VAEs, employing a general graphical model structure in the encoder
and decoder. This approach allows for the training of models that make strong
assumptions about a subset of interpretable variables and rely on the flexibility of
neural networks to learn representations for the remaining variables. Furthermore,
two recent studies explored weakly-supervised disentanglement learning [61, 60].
They demonstrated that it is possible to reliably learn disentangled representations
with little and potentially imprecise supervision.

In the context of disentangling with discrete factors, Makhzani et al. [65] pro-
pose adversarial autoencoders (AAE) for variational inference by matching the
aggregated posterior of the hidden code vector of the autoencoder with an arbitrary
prior distribution. This setup ensures meaningful samples across the entire prior
space. Dupont [22] introduce a framework for learning disentangled and inter-
pretable jointly continuous and discrete representations in an unsupervised manner,
enabling the discovery of continuous and categorical factors of variation. Finally,
Jeong and Song [42] propose an alternating minimization problem for unsuper-
vised disentanglement of discrete and continuous explanatory factors of data.

Instead of employing Gaussian VAEs, we propose using a categorical one. In our
approach, we treat every ground-truth factor not as a continuous variable but as
a discrete representation. We show that the grid structure of the categorical VAE
depicts an inductive prior that encourages disentanglement.
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3.4 Core Concepts of Neural Architecture Search and its
Benchmarks

Neural Architecture Search (NAS) [24] is the process of designing neural network
architectures in an automatic way. The currently most successful approaches fol-
low different paradigms: Reinforcement learning (RL) [127, 128, 80] considers the
neural architecture generation as the agent’s action with its reward given in terms
of validation accuracy. Evolutionary Algorithm (EA) [85, 56] approaches optimiz-
ing the neural architectures themselves by guiding the mutation of architectures
and evaluating their fitness given in terms of validation accuracy. Bayesian op-
timization (BO) [43] derives kernels for architecture similarity measurements to
extrapolate the search space. Gradient-based methods [57, 63] use continuous re-
laxations of neural architectures to allow for gradient-based optimization.

NAS-Bench-101 [123] is a public dataset of ∼ 423 000 neural architectures and
provides tabular benchmark results for a restricted cell structured architecture search
space [127] with exhaustive evaluation on the CIFAR-10 image classification dataset
[50]. As shown in Zela et al. [125], only subspaces of the architectures in NAS-
Bench-101 can be used to evaluate one-shot NAS methods [57, 80], motivating
their proposed variant NAS-Bench-1shot1 [125]. Similarly to NAS-Bench-101,
NAS-Bench-201 [20] uses a restricted, cell-structured search space, while the em-
ployed graph representation allows to evaluate discrete and one-shot NAS algo-
rithms. The search space is more restricted than NAS-Bench-101, providing only
∼ 6 000 unique evaluated architectures. We conduct our experiments on NAS-
Bench-101, the largest available tabular neural architecture benchmark for com-
puter vision problems.



Chapter 4

Theoretical Analysis

This chapter presents our theoretical analysis of discrete representations within
Stochastic Computation Graphs (SCGs). We explore both the challenges and po-
tential benefits of using discrete representations.

In Section 4.1, we tackle the difficulties of training discrete representations in
SCGs focusing on problems posed by the Gumbel-softmax trick. We discuss how
the distribution categories are not fully utilized during training. A key finding of
this section is the discussion of a constraint on the gradient of a parameter of the
Gumbel-softmax distribution.

Section 4.2 focuses on the benefits of using discrete representations. We analyze
the impact of these representations on the latent space and how they can enhance
disentanglement. We discuss the issue of rotational equivariance of Gaussian Vari-
ational Autoencoders (VAEs) and suggest a variant of the discrete variational au-
toencoder (D-VAE) as a potential solution.

Hence, this chapter provides a theoretical understanding of using discrete repre-
sentations in SCGs. It sets the groundwork for developing improved methods dis-
cussed in Chapter 5.

4.1 Challenges in Training Discrete Stochastic Computa-
tion Graphs

This section introduces the challenges in the training process when dealing with
discrete representations. It highlights the potential problems associated with using
discrete representations in the context of Stochastic computation graphs (SCGs).

37
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This discussion addresses our research question RQ1.1: Why is the training of
models based on discrete SCGs inherently challenging?

Stochastic computation graphs, which extend neural networks by incorporating
stochastic operations, complicate the training process by introducing the need to
compute gradients with respect to the parameters of a distribution [95]. This
challenge becomes even more evident when training SCGs that involve stochas-
tic nodes based on categorical (discrete) distributions.

Here, our analysis focuses on the behavior of the Gumbel-softmax trick in com-
plex SCGs, involving sequential discrete components on a single execution path.
We discuss the tendency of such models to not fully utilize all existing categories
during training, and to map different input representations to the same category.

A significant result in our understanding of this issue is presented in Theorem 1.
The theorem outlines a constraint on the gradient of a parameter of the Gumbel-
softmax distribution by the normalized probability of a category. This observation
helps explain the issues related to gradient optimization, where small gradient val-
ues can lead to suboptimal training outcomes.

The content of this section primarily draws upon the following publication:

Friede, D., & Niepert, M. (2021). Efficient Learning of Discrete-Continuous
Computation Graphs. Advances in Neural Information Processing Systems,
34, 6720-6732.

4.1.1 Background

Neuro-symbolic learning systems aim to combine discrete and continuous opera-
tions. The majority of recent research has focused on integrating neural network
components into probabilistic logics [90, 66], that is, making logic-based reason-
ing approaches more amenable to noisy and high-dimensional input data. On the
other end of the spectrum are the data-driven approaches, which aim to learn a
modular and discrete program structure in an end-to-end neural network based sys-
tem. The broader vision followed by proponents of these approaches are systems
capable of assembling the required modular operations to solve a variety of tasks
with heterogeneous input data. Reinforcement learning [102], neuro-symbolic pro-
gram synthesis [76], and neural module networks [2] are instances of such data-
integrated discrete-continuous learning systems.

We focus on learning systems comprised of both symbolic and continuous oper-
ations where the symbolic operations are modeled as discrete probability distri-
butions. The resulting systems can be described by their stochastic computation
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graphs (SCGs), as introduced in Section 2.1, a formalism recently introduced to
unify several related approaches [95]. Figure 2.1, Figure 2.3, and Figure 2.4 il-
lustrate three instances of such stochastic computation graphs. For a given high-
dimensional input such as a set of images or a list of symbols, a computation graph,
consisting of stochastic (discrete) and continuous (neural) nodes, is created to solve
a particular task. Both, the mechanism to assemble the graphs (if not already
provided) and the various operations are learned end-to-end. Discrete nodes in
the computation graph are Gibbs distributions modeled at a particular temperature
which can also be used to model the argmax operation at zero temperature.

The majority of prior work has focused on graphs with a single discrete probabil-
ity distribution along each execution path. Examples are the discrete variational
autoencoder [41], learning to explain [13], and other applications of stochastic
softmax tricks [77]. We aim to analyze the training behavior of complex compu-
tation graphs, that is, graphs with more than one discrete probability distribution
in its execution paths. More concretely, we focus on computation graphs where
the stochastic nodes are categorical random variables modeled with the Gumbel-
softmax trick [41, 64], as introduced in Section 2.3. In this section, we demonstrate
analytically that optimizing the parameters of these models poses significant chal-
lenges, primarily due to inadequate gradient signals, which are often instigated by
local minima and saturation.

4.1.2 Challenges in Training Stochastic Compuation Graphs

Standard neural networks compose basic differentiable functions. These networks,
therefore, can be fully described by a directed acyclic graph (the computation
graph) that determines the operations executed during the forward and backward
passes. Schulman et al. [95] proposed stochastic computation graphs (SCGs) as an
extension of neural networks that combine deterministic and stochastic operations
– a node in the computation graph can be either a differentiable function or a prob-
ability distribution. For a more detailed overview of SCGs and their derivations,
we refer the reader to Sections 2.1 and 2.2. In this section, however, we will only
provide a brief summary. A stochastic node z is typically a random variable with a
parameterized probability distribution pθ(z) with parameters θ. Suppose that f is a
smooth function (such as the loss function of a learning problem), then the gradient
of f at the stochastic node is ∇θEpθ(z)[f(z)]. Kingma and Welling [45] proposed
the reparameterization trick, as introduced in Section 2.2.2, to overcome the prob-
lem of computing gradients with respect to the parameters of a distribution The
idea is to find a function g and distribution ρ such that one can replace z ∼ pθ(z)
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by z = g(ϵ,θ) with ϵ ∼ ρ(ϵ). If this is possible, then one can write

∇θEz∼pθ(z)[f(z)] = Eϵ∼ρ(ϵ)[∇θf(g(ϵ,θ))] (4.1a)

≈ 1

S

S∑

i=1

∇θf(g(ϵ
i,θ)) with ϵi ∼ ρ(z). (4.1b)

In the following, we address the problem of training stochastic computation graphs
where the stochastic nodes are based on categorical (discrete) distributions approx-
imated using stochastic softmax tricks [41, 64, 77]. More specifically, we consider
discrete-continuous components modeling a categorical variable X with k possi-
ble values z1, ...,zk. Each of the zi is the one-hot encoding of the category i. We
consider discrete-continuous functions1 f : Rn → Rn with v = f(u) defined as
follows

θ = gw(u) (4.2a)

p(zi;θ) =
exp(θi)∑k
j=1 exp(θj)

(4.2b)

z ∼ p(z;θ) (4.2c)

v = hw′(z) (4.2d)

u θ ~ z vp(z; θ)

g h
f

Figure 4.1: Illustration of a generic dis-
crete-continuous component.

Note that, compared to Equation (2.8), here, we treat θ as logits. We assume that
the functions g and h (parameterized by w and w′) are expressed using differen-
tiable neural network components. In the majority of cases, h is defined as z⊺w′

for a learnable matrix w′, mapping object zi to its learned vector representation.
Figure 4.1 illustrates a generic discrete-continuous component.

In the following, we give a short summary of the reparameterizations using Gumbel
variables as introduced in Section 2.3. Let Gumbel(0, β) be the Gumbel distribu-
tion with location 0 and scale β. Using the Gumbel-max trick, we can sample
z ∼ p(z;θ) as follows:

z = ei with i = argmax
j∈{1,...,m}

[θj + ϵj ] where ϵj ∼ Gumbel(0, 1), (4.3)

where eij = 1, if i = j and eij = 0, otherwise. The Gumbel-softmax trick is
a relaxation of the Gumbel-max trick (relaxing the argmax into a softmax with a
scaling parameter τ ) that allows one to perform standard backpropagation:

zi =
exp ((θi + ϵi)/τ)∑k
j=1 exp ((θj + ϵj)/τ)

where ϵi ∼ Gumbel(0, 1). (4.4)

1For the sake of simplicity we assume the same input and output dimensions.
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Figure 4.2: A comparison of the learning behavior of different annealing schemes
for the MNIST addition task, averaged over 8 trained models. Left: The base
model (Base), with constant parameters τ = 8 and β = 1, cannot achieve an ac-
curacy of more than 0.7. Increasing β during training (TM) achieves better results
than annealing τ (TauAnn). Middle: Two training runs for TM and TauAnn, re-
spectively, where an accuracy of 0.9 was reached the latest. The accuracy curves
of TM jump to the next plateau earlier and more consistently. The dotted grey line
depicts the moment when a run of TM achieves an accuracy of ∼ 1.0. Right: For
the same run, zj and the absolute value of ∂L/∂θj are plotted. The downstream
gradient signal for θj is largely neutralized by a small value of zj until the corre-
sponding category is used and its average probability abruptly reaches 0.1.

Hence, instead of sampling a discrete z, the Gumbel-Softmax trick computes a
relaxed z in its place.

We are concerned with the analysis of the behavior of the Gumbel-softmax trick
in more complex stochastic computation graphs. In these computation graphs,
multiple sequential Gumbel-softmax components occur on a single execution path.
Throughout the remainder of this thesis, we assume that during training, we use
the Softmax-trick as outlined above, while at test time, we sample discretely using
the Gumbel-max trick. Depending on the use case, we also sometimes compute
the argmax at test time instead of samples from the distribution.

Let us first take a look at ∂v/∂u, that is, the partial derivative of the output of
the discrete-continuous function f with respect to its input. Using the chain rule
(and with a slight abuse of notation to simplify the presentation), we can write
∂v/∂u = (∂v/∂z)(∂z/∂θ)(∂θ/∂u). By assumption ∂v/∂z and ∂θ/∂u exist
and are efficiently computable. As mentioned in Section 2.4, we have

∂zi
∂θj

=

{
1
τ zi(1− zi) if i = j

− 1
τ zizj if i ̸= j.

(4.5)

We have empirically observed that during training, there is a tendency of the mod-
els to not utilize all existing categories of the distribution and to wrongfully map
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different input representations to the same category. For instance, for the MNIST
addition problem, all encoded images of two digits are mapped to the same cat-
egory of the distribution. In these cases, the gradients of the parameters of the
unused categories are vanishingly small. In order to analyze this behavior more
closely, we derive an upper bound on the gradient of a parameter θj of the categor-
ical distribution with respect to a loss function L.

We believe that the core of the problem can be attributed to a unique property of the
Jacobian of the softmax function. The gradient of a parameter θj of the Gumbel-
softmax distribution is constrained by the normalized probability zj . To be more
precise, we propose the following theorem.

Theorem 1. Let z be a random variable following the Gumbel-Softmax distribu-
tion, i.e., z ∼ GS(θ, τ) with unnormalized category probabilities θ ∈ (0,∞)m

and temperature τ > 0. If
∥∥∂L
∂z

∥∥
F
< C ′ for some constant C ′ ∈ R, then a constant

C ∈ R exists for all j = 1, . . . ,m such that

|grad(θj)| :=
∣∣∣∣
∂L

∂θj

∣∣∣∣ ≤ Czj . (4.6)

Here, ∥ · ∥F is the Frobenius norm. If the condition
∥∥∂L
∂z

∥∥
F
< C ′ is met, the

following issue arises: a small value of θj (and consequently zj) leads to a corre-
spondingly small gradient for θj . As a consequence, such models are more prone
to fall into poor minima during training. Figure 4.2 illustrates an example of such a
situation, which we encountered in practice. The small value of a specific zj leads
to a small gradient at θj (right) as well as to suboptimal plateauing of the accuracy
curve (middle). In other words, the downstream gradients information for θj is
neutralized by a small zj .

To provide an intuition for the condition
∥∥∂L
∂z

∥∥
F
< C ′, we examine two common

use cases. As previously mentioned, in most scenarios, the function h from Equa-
tion (4.2d) is defined as z⊺w′ for a learnable matrix w′, mapping the object zi to
its learned vector representation. Consequently, (∂h/∂z) = w′⊺ is independent
of z. Therefore, (∂L/∂z) = (∂L/∂h)(∂h/∂z) is also independent of z. This
independence is important as we are particularly interested in the case where zj
is small, i.e., zj → 0 for some j = 1, . . . ,m. Thus, in most cases, the condition∥∥∂L
∂z

∥∥
F
< C ′ is fulfilled, regardless of the behavior of z.

In contrast, the condition does not hold for the cross-entropy (CE) loss function,
which presents a different use case. The unique behavior of the CE loss counteracts
the dependence on z of the derivative of the softmax function. The CE loss is
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defined as

Ly(z) = −
m∑

j=1

yj log zj , (4.7)

for a one-hot encoded label vector y. The CE loss yields a large value in the event
of a small zj , if yj = 1. Specifically, we have

∂Ly

∂z
= −y

z
, (4.8)

demonstrating the dependence on z. Consequently, when zj is small, i.e., zj → 0
for some j = 1, . . . ,m, the condition

∥∥∂L
∂z

∥∥
F
< C ′ is not met.

In the following, we aim to prove Theorem 1. Initially, we seek a sub-multiplicative
matrix norm that bounds the Jacobian of the softmax function from Equation (4.5)
by z. More precisely, we propose the following Lemma.

Lemma 1. Let z be a random variable following the Gumbel-Softmax distribution,
i.e., z ∼ GS(θ, τ) with unnormalized category probabilities θ ∈ (0,∞)m and
temperature τ > 0. Let ∥·∥F be the Frobenius norm. Then, for each j = 1, . . . ,m,
it holds that ∥∥∥∥

∂z

∂θj

∥∥∥∥
F

≤
√
2

τ
zj . (4.9)

Proof. Let us first take a look at the Jacobian of the softmax function. We have

∂z

∂θ
=

1

τ




z1(1− z1) −z1z2 −z1z3 . . . −z1zm
−z2z1 z2(1− z2) −z2z3 . . . −z2zm

...
. . .

...
−zmz1 −zmz2 . . . −zmzm−1 zm(1− zm)



.

Therefore, for a fixed but arbitrary j = 1, . . . ,m, we have

∂z

∂θj
=

1

τ

[
−z1zj · · · − zj−1zj zj(1− zj) −zj+1zj . . . −zmzj

]⊺
.

The Frobenius Norm of a matrix A ∈ Km×n with matrix elements aij is defined

as ∥A∥F =
√∑n

i

∑m
j |aij |2. For clarity, we consider the squared Frobenius norm
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of ∂z
∂θj

. Simple calculus yields

∥∥∥∥
∂z

∂θj

∥∥∥∥
2

F

=

∥∥∥∥
(
∂z1
∂θj

. . .
∂zm
∂θj

)⊺∥∥∥∥
2

F

=
m∑

i=1

∣∣∣∣
∂zi
∂θj

∣∣∣∣
2

=

∣∣∣∣
1

τ
zj(1− zj)

∣∣∣∣
2

+
∑

i ̸=j

∣∣∣∣
1

τ
zizj

∣∣∣∣
2

=
1

τ2
z2j (1− zj)

2 +
∑

i ̸=j

1

τ2
z2i z

2
j

=
1

τ2
(
z2j (1− zj)

2 +
∑

i ̸=j
z2i z

2
j

)

=
1

τ2
z2j
(
(1− zj)

2 +
∑

i ̸=j
z2i
)
.

For all i = 1, . . . ,m, we have zi ∈ [0, 1] and
∑m

i=1 zi = 1. Therefore, we have∑
i ̸=j z

2
i ≤ ∑

i ̸=j zi ≤ 1 and (1− zj)
2 ≤ 1 and thus,

1

τ2
z2j
(
(1− zj)

2 +
∑

i ̸=j
z2i
)
≤ 1

τ2
z2j

(
(1− zj)

2 + 1
)

≤ 1

τ2
z2j (1 + 1)

=
2

τ2
z2j .

Taking the square root leads us to the conclusion that
∥∥∥ ∂z
∂θj

∥∥∥
F
≤

√
2
τ zj .

We can now utilize the fact that the Frobenius norm is sub-multiplicative to derive
a similar upper bound for

∣∣∣ ∂L∂θj
∣∣∣, as depicted in the following lemma.

Lemma 2. Let z be a random variable following the Gumbel-Softmax distribution,
i.e., z ∼ GS(θ, τ) with unnormalized category probabilities θ ∈ (0,∞)m and
temperature τ > 0. Let ∥·∥F be the Frobenius norm. Then, for each j = 1, . . . ,m,
it holds that ∣∣∣∣

∂L

∂θj

∣∣∣∣ ≤
√
2

τ

∥∥∥∥
∂L

∂z

∥∥∥∥
F

zj . (4.10)
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Proof.
∣∣∣∣
∂L

∂θj

∣∣∣∣ =
∥∥∥∥
∂L

∂θj

∥∥∥∥
F

=

∥∥∥∥
∂L

∂z

∂z

∂θj

∥∥∥∥
F

≤
∥∥∥∥
∂L

∂z

∥∥∥∥
F

∥∥∥∥
∂z

∂θj

∥∥∥∥
F

≤
√
2

τ

∥∥∥∥
∂L

∂z

∥∥∥∥
F

zj .

The first inequality follows from the sub-multiplicativity of the Frobenius norm,
while the second inequality is the result of Lemma 1.

Theorem 1 is now a direct consequence of Lemma 2.

Proof of Theorem 1. If we choose C =
√
2
τ C

′, Lemma 2 yields

|grad(θj)| =
∣∣∣∣
∂L

∂θj

∣∣∣∣ ≤
√
2

τ

∥∥∥∥
∂L

∂z

∥∥∥∥
F

zj ≤ Czj .

The second inequality stems from the condition
∥∥∂L
∂z

∥∥
F
< C ′.

As discussed before, a small value of θj (and consequently zj) leads to a small
gradient for θj , which let such models to be more prone to fall into poor minima
during training. A related problem is the saturation of probabilities in sequentially
connected probabilistic components. This issue parallels the problem of sigmoid
activation units in deep neural networks, which have been replaced by ReLUs and
other modern activation functions due to their tendency to cause vanishing gradi-
ents. Indeed, in several of our experiments, we observed that the Gumbel-softmax
distributions saturate and, consequently, insufficient gradient information reaches
the parameters of upstream neural network components.

In Section 5.2, we will introduce two strategies to mitigate the vanishing gradient
behavior in complex discrete-continuous computation graphs. Firstly, we analyze
the interplay between the temperature parameter τ and the scale parameter β of the
Gumbel distribution. We discuss the subtle difference between these parameters,
which may also be of interest for improving stochastic softmax tricks [77]. By
increasing β relative to τ while keeping τ fixed, we enhance the probability of a
gradient flow in the event of saturation. Our research indicates that the larger β
becomes, the more uniformly distributed (across categories) the discrete samples
from the distribution become, thereby increasing the likelihood of escaping poor
minima. Secondly, we introduce dropout residual connections. These allow us to
establish a lower bound for the gradients in expectation, leading to a more direct
gradient flow to parameters of upstream model components.



CHAPTER 4. THEORETICAL ANALYSIS 46

4.1.3 Conclusion

This section has offered a detailed exploration of the challenges posed by train-
ing stochastic computation graphs (SCGs) with discrete representations, answer-
ing our research question RQ1.1. The issues become particularly apparent when
dealing with complex SCGs with sequential discrete components. We highlighted
the central concern, which is the tendency of models to underutilize the available
categories, often causing multiple distinct input representations to be mapped to a
single category.

Our main contribution to this discourse has been the derivation of Theorem 1,
which reveals a constraint on the gradient of a Gumbel-softmax parameter by the
normalized probability of a category. This observation sheds new light on the diffi-
culties encountered during gradient optimization, where small gradient values can
give rise to suboptimal training results.

The insights obtained from this discussion are fundamental for creating novel meth-
ods that efficiently train discrete representations in stochastic computation graphs.
We will present our contribution to such methods in Section 5.2.

4.2 Understanding the Benefits of Discrete Representa-
tions

This section explores the structural benefits of discrete representations, particularly
focusing on the impact on disentanglement when substituting the standard vari-
ational autoencoder with a slightly modified categorical variational autoencoder.
This analysis addresses our research question RQ1.2: Why do discrete representa-
tions possess structural advantages over their continuous counterparts?

Prior works in large-scale image generation and model-based reinforcement learn-
ing have leveraged discrete variational autoencoders and demonstrated better gen-
eralization behavior [83, 35, 81, 91, 36]. Despite the empirical evidence, the exact
reasons behind the advantages of using discrete latent variables remain unclear
[35]. We aim to shed light on this by examining the structural effects of discrete
representations on the latent space.

The primary result of this section is Theorem 2, which highlights an issue regard-
ing the rotational equivariance of Gaussian latent spaces. When the latent space is
represented by a Gaussian distribution, rotations within this space do not change
the structure of the distribution itself. However, rotations pose a significant chal-
lenge to disentanglement, potentially entangling the generative factors that we aim
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to separate.

We propose a discrete variational autoencoder variant (D-VAE) that models a joint
distribution of Gumbel-softmax random variables, with each category represented
by a one-dimensional entity. This structure creates a discrete grid, potentially mit-
igating the rotational problem in the latent space.

Understanding the structural impacts of discrete representations on the latent space
is vital for answering our research question RQ1.2. This understanding could lead
to the development of more effective and efficient models in the future. We will
present such initial methods in Section 5.3. The remainder of this section delves
into a detailed explanation of our discrete variational autoencoder and presents a
comprehensive analysis of the rotational equivariance issue.

The content of this section primarily draws upon the following publication:

Friede, D., Reimers, C., Stuckenschmidt, H., & Niepert, M. (2023). Learn-
ing Disentangled Discrete Representations. Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD

4.2.1 Background

Discrete variational autoencoders based on categorical distributions [41, 64] or vec-
tor quantization [110] have enabled recent success in large-scale image generation
[110, 83], model-based reinforcement learning [35, 75, 36], and perhaps most no-
tably, in text-to-image generation models like Dall-E [81] and Stable Diffusion
[91]. Prior work has argued that discrete representations are a natural fit for com-
plex reasoning or planning [41, 81, 75] and has shown empirically that a discrete
latent space yields better generalization behavior [35, 91]. Hafner et al. [35] hy-
pothesize that the sparsity enforced by a vector of discrete latent variables could
encourage generalization behavior. However, they admit that ”we do not know the
reason why the categorical variables are beneficial.”

We focus on an extensive study of the structural impact of discrete representa-
tions on the latent space. The disentanglement literature [7, 39, 59] provides a
common approach to analyzing the structure of latent spaces. Disentangled rep-
resentations [7] recover the low-dimensional and independent ground-truth factors
of variation of high-dimensional observations. Such representations promise inter-
pretability [39, 1], fairness [58, 17, 106], and better sample complexity for learning
[93, 7, 79, 111]. State-of-the-art unsupervised disentanglement methods enrich
Gaussian variational autoencoders [45] with regularizers encouraging disentan-
gling properties [38, 52, 11, 44, 14]. Locatello et al. [59] showed that unsupervised
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disentanglement without inductive priors is theoretically impossible. Thus, a recent
line of work has shifted to weakly-supervised disentanglement [61, 97, 60, 47].

We focus on the impact on disentanglement of replacing the standard variational
autoencoder with a slightly tailored categorical variational autoencoder [41, 64].
Most disentanglement metrics assume an ordered latent space, which can be tra-
versed and visualized by fixing all but one latent variable [38, 14, 23]. Conven-
tional categorical variational autoencoders lack sortability since there is generally
no order between the categories. In order to enable a direct comparison through the
established disentanglement metrics, we modify the categorical variational autoen-
coder to represent each category with a one-dimensional representation. While reg-
ularization and supervision have been discussed extensively in the disentanglement
literature, the variational autoencoder is a component that has mainly remained
constant. At the same time, Watters et. al [116] have observed that Gaussian
VAEs might suffer from rotations in the latent space, which can harm disentangling
properties. In this section, we analyze the rotational equivariance of multivariate
Gaussian distributions in more detail and show that the underlying grid structure
of categorical distributions mitigates this problem.

4.2.2 The D-VAE

In the following, we recall the definition of disentanglement and the evidence
lower bound (ELBO) from Section 2.5. The disentanglement literature is usu-
ally premised on the assumption that a high-dimensional observation x from the
data space X is generated from a low-dimensional latent variable z whose entries
correspond to the dataset’s ground-truth factors of variation such as position, color,
or shape [7, 108]. First, the independent ground-truth factors are sampled from
some distribution z ∼ p(z) =

∏
p(zi). The observation is then a sample from

the conditional probability x ∼ p(x|z). The goal of disentanglement learning
is to find a representation r(x) such that each ground-truth factor zi is recovered
in one and only one dimension of the representation. The formalism of varia-
tional autoencoders [45] enables an estimation of these distributions. Assuming a
known prior p(z), we can depict the conditional probability pψ(x|z) as a parame-
terized probabilistic decoder. In general, the posterior pψ(z|x) is intractable. Thus,
we turn to variational inference and approximate the posterior by a parameterized
probabilistic encoder qϕ(z|x) and minimize the Kullback-Leibler (KL) divergence
DKL

(
qϕ(z|x) ∥ pψ(z|x)

)
. This term, too, is intractable but can be minimized by

maximizing the evidence lower bound (ELBO)

Lψ,ϕ(x) = Eqϕ(z|x) [log pψ(x|z)]−DKL

(
qϕ(z|x) ∥ p(z)

)
. (4.11)
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Figure 4.3: We utilize n Gumbel-softmax distributions (GS) to approximate the
posterior distribution. Left: An encoder learns nm parameters θji for the n joint
distributions. Each m-dimensional sample zi ∼ GS(θi) is mapped into the one-
dimensional unit interval following Equation (4.13). Right: Two examples of (nor-
malized) parameters of a single Gumbel-softmax distribution and the correspond-
ing one-dimensional distribution of z̄i.

State-of-the-art unsupervised disentanglement methods assume a Normal prior dis-
tribution p(z) = N

(
0, I

)
and an amortized diagonal Gaussian for the approxi-

mated posterior distribution qϕ(z|x) = N
(
z | µϕ(x),σϕ(x)I

)
. They enrich the

ELBO with regularizers encouraging disentangling [38, 52, 11, 44, 14] and choose
the representation as the mean of the approximated posterior r(x) = µϕ(x) [59].

The Discrete VAE (D-VAE)

We propose a variant of the categorical VAE modeling a joint distribution of n
Gumbel-Softmax random variables [41, 64]. Let n be the dimension of z, m be
the number of categories, θji ∈ (0,∞) be the unnormalized probabilities of the
categories and gji ∼ Gumbel(0, 1) be i.i.d. samples drawn from the Gumbel dis-
tribution for i ∈ [n], j ∈ [m]. For each dimension i ∈ [n], we sample a Gumbel-
softmax random variable zi ∼ GS(θi), as introduced in Section 2.3, over the
simplex ∆m−1 = {y ∈ Rn | yj ∈ [0, 1],

∑m
j=1 y

j = 1} by setting

zji =
exp(log θji + gji )∑m
k=1 exp(log θ

k
i + gki )

(4.12)

for j ∈ [m]. Here, we define GS(θ) as GS(θ), 1 with a constant temperature value
of 1. We set the approximated posterior distribution to be a joint distribution of n
Gumbel-softmax distributions, i.e., qϕ(z|x) = GSn

(
z | θϕ(x)

)
and assume a joint

discrete uniform prior distribution p(z) = Un{1,m}. Note that z is of dimension
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n ×m. To obtain the final n-dimensional latent variable z̄, we define a function
f : ∆m−1 → [0, 1] as the dot product of zi with the vector vm = (v1m, . . . , v

m
m) of

m equidistant entries vjm = j−1
m−1 of the interval2 [0, 1], i.e.,

z̄i = f(zi) = zi · vm = 1
m−1

∑m
j=1 jz

j
i (4.13)

as illustrated in Figure 4.3.

We define the representation r(x) of some data point x by choosing the category
with the highest probability for each dimension i = 1, . . . , n, i.e., we have

r(x)i = vkm = k−1
m−1 where k = argmax

j=1,...,m
θ(x)ji , (4.14)

for all i = 1, . . . , n. Thus, each representation is an element of the grid Gn with
G = { j

m−1}m−1
j=0 as illustrated on the right side of Figure 5.6. In the following,

we analyze the rotational equivariance of multivariate Gaussian distributions and
show that this underlying grid structure of the discrete representation mitigates this
problem.

4.2.3 Structural Advantages of the Discrete VAE

Rotations in the latent space present a significant challenge to disentanglement.
The problem of these rotations becomes evident when considering the objective
of disentanglement: the goal is to represent different generative factors of the data
independently in the latent space. The presence of rotations could potentially en-
tangle these generative factors, counteracting the original disentanglement goal. To
better understand the influence of rotations on disentanglement, we first discuss the
differences between the continuous and discrete approach.

Rotations have been observed in the case of a continuous (Gaussian) latent space
[116]. In this context, the ELBO, given by Equation (4.11), depicts an inductive
prior that encourages disentanglement by promoting neighboring points in the data
space to be represented closely in the latent space [11]. As indicated by the work of
Watters et al. [116], this property does not guarantee disentanglement. The feature
of nearby points in the observable space mapping to nearby points in latent space
is invariant under rotations over Rn, while disentanglement is not.

When the latent space is represented by a general Gaussian distribution, rotations
within this space do not change the structure of the distribution itself. Any rotation
of the Gaussian distribution has the same likelihood when training the VAE, since
the subsequent linear layer can immediately compensate for the rotation.

2The choice of the unit interval is arbitrary.
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Figure 4.4: Geometry analysis of the latent space of the circles experiment [116].
Col 1, top: The generative factor distribution of the circles dataset. Bottom: A
selective grid of points in generative factor space spanning the data distribution.
Col 2: The Mutual Information Gap (MIG) [14] for 50 Gaussian VAE (top) and
a categorical VAE (bottom), respectively. The red star denotes the median value.
Cols 3 - 5: The latent space visualized by the representations of the selective grid
of points. We show the best, 5th best, and 10th best models determined by the MIG
score of the Gaussian VAE (top) and the categorical VAE (bottom), respectively.
Unlike the Gaussian latent spaces, the discrete latent spaces are sensitive to the
axes and generally yield better disentanglement scores.

Consequently, it is sensible to use a diagonal covariance matrix for the approxi-
mated posterior q(z|x) = N

(
z | µ(x),σ(x)I

)
. Rotations of a diagonal Gaussian

distribution are generally not diagonal Gaussians themselves. Unfortunately, there
are scenarios where rotations are problematic even with diagonal Gaussian distri-
butions, as the following theorem indicates.

Theorem 2 (Rotational Equivariance). Let α ∈ [0, 2π) and let z ∼ N
(
µ,Σ

)
with

Σ = σI, σ = (σ0, . . . , σn). If σi = σj for some i ̸= j ∈ [n], then z is equivariant

under any i, j-rotation, i.e., Rαijz
d
= y with y ∼ N

(
Rαijµ,Σ

)
.

Since, in the Gaussian VAE, the KL-divergence term in Equation (4.11) is invariant
under rotations, Theorem 2 implies that its latent space can be arbitrarily rotated
in dimensions i, j that have equal variances σi = σj . As in the case of the general
Gaussian distribution, any rotation in dimensions i, j has the same likelihood when
training the VAE, since the subsequent linear layer can immediately compensate
for the rotation. We give two examples to clarify this property.
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Example 1. Let Σ =




0.2 0 0
0 0.2 0
0 0 0.4


 and letR =




1 0 0
0 cos π4 − sin π

4
0 sin π

4 cos π4


 be

the rotational matrix that rotates the last two dimensions 45 degrees. Then

RΣR⊺ =




0.2 0 0
0 0.3 −0.1
0 −0.1 0.3


 .

Example 1 presents the case of a rotation along two axes with different variance
values. The rotation of a diagonal covariance matrix is, in general, not diagonal
itself.

Example 2. Let Σ =




0.2 0 0
0 0.2 0
0 0 0.4


 and letR =




cos π4 − sin π
4 0

sin π
4 cos π4 0

0 0 1


 be

the rotational matrix that rotates the first two dimensions 45 degrees. Then

RΣR⊺ =




0.2 0 0
0 0.2 0
0 0 0.4


 = Σ.

Example 2 presents the case of a rotation along two axes with the same variance
values. The diagonal covariance matrix is invariant under any rotation along these
axes. Thus, any rotation also depicts a diagonal covariance matrix.

Equal variances can occur, for example, when different factors exert a similar influ-
ence on the data space, e.g., X-position and Y-position. Another example is factors
where the variances are close to zero, i.e., factors where potential confusion during
sampling would cause very high log-likelihood costs.

In contrast, the discrete latent space is invariant only under those rotations that
are axially aligned. In the discrete case, the latent space is a subset of the grid
Gn, as we have introduced in Equation (4.14) and illustrated in Figure 5.6 (right).
Distances and rotations exhibit different geometric properties on Gn than on Rn.
First, the closest neighbors are axially aligned. Non-aligned points have a distance
at least

√
2 times larger. Secondly, Gn is invariant only under those rotations that

are axially aligned.

We illustrate this with an example in Figure 4.4. Here, we depict the 2-dimensional
latent space of a Gaussian VAE and a D-VAE model, respectively. These models
are trained on a dataset generated from the two ground-truth factors: X-position
and Y-position. We trained 50 copies of each model and depicted the best, the 5th
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best, and the 10th best latent spaces based on their disentanglement scores, as mea-
sured by the Mutual Information Gap (MIG) [14]. All three latent spaces of the
Gaussian VAE exhibit rotation, with the disentanglement score strongly correlated
with the angle of rotation. This becomes even more visible in Figure B.2 in Ap-
pendix B, which illustrates all 50 latent spaces. The rotations appear to be entirely
random.

Figure 4.4 (bottom right) illustrates the 2-dimensional latent space of a D-VAE
model trained on the same dataset, using the same random seeds as the Gaussian
VAE model. In contrast to the Gaussian latent spaces, the discrete latent spaces are
axis-sensitive and generally yield better disentanglement scores. The set of all 100
latent spaces is available in Figures B.2 and B.3 in Appendix B.

An important note is that being robust against rotations is not sufficient for achiev-
ing disentangling properties. For example, a random shuffling of the latent repre-
sentations on the grid would remove any disentangling properties. In Section 5.3,
we delve into more detail, explaining how exactly the D-VAE model facilitates
disentanglement.

In the following, we aim to prove Theorem 2. Initially, we prove the theorem for
the case n = 2. In this case, σ1 = σ2 and thus, the covariance matrix is a multiple
of the identity. More precisely, we propose the following Lemma.

Lemma 3. Let α ∈ [0, 2π) and let z ∼ N
(
µ,Σ

)
with µ = (µ1, µ2) and Σ =

σI, σ = (σ1, σ2). If σ1 = σ2, then z is equivariant under any rotation, i.e.,

Rαz
d
= y with y ∼ N

(
Rαµ,Σ

)
.

Proof. For the sake of clarity, we write R := Rα. We know that Rz d
= y′ with

y′ ∼ N
(
Rµ, RΣR⊺

)
. Thus, we need to show thatRΣR⊺ = Σ. Let σ̂ := σ1 = σ2.

We have σ = (σ̂, σ̂) and

RΣR⊺ = RσIR⊺ = Rσ̂IR⊺ = σ̂RR⊺ = σI = Σ.

The second last equation follows since every rotation matrix is orthogonal.

Rotations that act on exactly two axes and keep all other dimensions constant be-
have very similarly to rotations on the 2-dimensional plane. We use this idea and
Lemma 2 to prove Theorem 2 by utilizing a change of basis to rotate over the first
two axes.

Proof of Theorem 2. For the sake of clarity, we write R := Rαij . We know that

Rz
d
= y′ with y′ ∼ N

(
Rµ, RΣR⊺

)
. Thus, we need to show that RΣR⊺ = Σ.
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Let σ̂ := σi = σj . For n = 1, there is nothing to prove. We have proven the case
of n = 2 in Lemma 3. For n > 2, we use a change of basis to rotate over the
first two axes. Let P be the permutation matrix that swaps e1 ↔ ei and e2 ↔ ej .
We define σ̄ = (σ3, σ4, . . . , σi−1, σ1, σi+1, . . . , σj−1, σ2, σj+1, . . . , σn) to be the
(n-2)-dimensional covariance vector without σi and σj . Furthermore, we have
P = P−1 = P ⊺ and

RΣR⊺ = P ⊺PRP ⊺PΣP ⊺PR⊺P ⊺P

= P ⊺RPΣPR
⊺
PP

= P ⊺
[
R12 0
0 In−2

] [
σ̂I2 0
0 σ̄In−2

] [
R⊺

12 0
0 In−2

]
P

= P ⊺
[
R12σ̂I2R

⊺
12 0

0 σ̄In−2

]
P

= P ⊺
[
σ̂I2 0
0 σ̄In−2

]
P

= P ⊺ΣPP

= Σ.

Here, we used Lemma 3 for the equality R12σ̂I2R
⊺
12 = σ̂I2.

4.2.4 Conclusion

In this section, we analyzed the structural benefits of discrete representations in
deep learning applications, particularly addressing research question RQ1.2. As a
main result, we analyzed the implications of the rotational equivariance, as demon-
strated by Theorem 2. In a Gaussian latent space, which is common in continuous
representations, rotations can potentially entangle the generative factors the model
aims to separate.

In contrast, we proposed a discrete variational autoencoder (D-VAE), which mod-
els a joint distribution of Gumbel-softmax random variables. The D-VAE creates
a discrete grid in the latent space that mitigates the rotational problem observed in
the continuous counterpart. This structural advantage might explain the observed
better generalization behavior in models employing discrete representations.

Although the D-VAE offers an approach to tackle the rotational equivariance prob-
lem, as noted, being robust against rotations alone does not suffice to achieve dis-
entangling properties. We will delve into more detail in Section 5.3 on how exactly
the D-VAE model encourages disentanglement.



Chapter 5

Methodology

This chapter introduces our methods to efficiently learn the structure and parame-
ters of discrete Stochastic Computation Graphs (SCGs), enhance their integration
within deep learning models, and further optimize them using previous findings
from the disentanglement literature.

Section 5.1 explains how to use supervised learning to address the difficulties of
learning the structure of SCGs in the context of Neural Architecture Search. This
strategy aims to capture the underlying distributions of the stochastic nodes, that
is, the choice of neural architecture operation, side-stepping the difficulties of dif-
ferentiating through them.

Section 5.2 presents our strategies to counter the challenges associated with learn-
ing the parameters of discrete SCGs. To address common issues such as small
gradients and local minima, we propose tweaking the scale parameter of Gum-
bel noise perturbations and implementing dropout residual connections in discrete-
continuous computation graphs.

In Section 5.3, we discuss the integration of discrete representations into deep
learning methods based on VAEs. By replacing the standard Gaussian VAE with
an adapted categorical one, we aim to obtain discrete latent space with the unique
property of well-defined ordered categories encouraging disentanglement.

Lastly, Section 5.4 discusses several strategies to further enhance the efficiency
of discrete representations. This includes the introduction of a total correlation
(TC) regularizer, leveraging semi-supervised training, and addressing the straight-
through gap. These adaptations enable the development of more robust, inter-
pretable, and efficient discrete representations.

55
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5.1 Efficient Structure Learning of Stochastic Computa-
tion Graphs

Neural network architectures define the structure and behavior of the models em-
ployed to learn from complex, high-dimensional data. As the depth and complexity
of these models have increased over time, the task of designing them has progres-
sively shifted from human engineers to automated algorithms. This is broadly
referred to as Neural Architecture Search (NAS) [24].

We can connect our research on discrete representation learning with NAS by rep-
resenting possible architectures as Stochastic Computation Graphs (SCGs). SCGs
enable NAS to model the combinatorially complex space of potential architectures
and apply stochastic search strategies to explore it. In this framework, the stochas-
tic nodes represent the randomness of selecting specific architecture choices. These
often discrete distributions range from categorical for the operation choice, e.g., a
convolutional layer or max pooling, to binary for the edge indication.

Previous NAS research is limited by lengthy computation times and the neces-
sity of extensive computational resources for the recurrent search and evaluation
of new candidate architectures. We believe that the introduction of NAS-Bench-
101 [123], a dataset encompassing over 423 000 fully trained neural architectures,
marks a paradigm shift in NAS research, thus potentially mitigating some of the
previously mentioned barriers. The ability to experiment with data-driven methods,
such as supervised learning to evaluate neural architectures, could enable a broader
spectrum of researchers to contribute to this field. This brings us to our research
question RQ2.1: How can we effectively learn the structure and the parameters of
discrete SCGs?

In this section, we address the first half of this question by presenting an efficient
way of learning the structure of the SCG presenting the neural architecture. We
explore the use of supervised learning to capture the underlying distributions of the
stochastic nodes, thereby side-stepping the need to differentiate through them di-
rectly. By learning these distributions, we can effectively predict the most promis-
ing SCGs, making the search process of neural architectures more efficient.

The following subsections detail the challenges and techniques involved in this
process, particularly in the context of NAS. We further illustrate how our approach
helps to manage the uncertainty related to the stochastic nodes and aids in learn-
ing the correct graph structure, thereby overcoming the challenges associated with
training stochastic computation graphs.
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The content of this section primarily draws upon the following publications:

Friede, D., Lukasik, J., Stuckenschmidt, H., & Keuper, M. (2019). A var-
iational-sequential graph autoencoder for neural architecture performance
prediction. arXiv preprint arXiv:1912.05317.

Lukasik, J., Friede, D., Stuckenschmidt, H., & Keuper, M. (2020). Neu-
ral architecture performance prediction using graph neural networks. In
DAGM GCPR (pp. 188-201). Springer, Cham.

5.1.1 Background

Deep learning through convolutional neural architectures has been the primary
driver behind the recent advancements in computer vision and related domains.
Several interdependent factors such as the growing availability of training data and
computing resources have contributed to this success. Arguably, the development
of novel neural architectures [50, 28] has had the most significant impact. Thus, the
focus of computer vision research has shifted from a feature engineering process
to an architecture engineering process. The desire to automate this process using
machine learning techniques is a direct result.

Neural Architecture Search (NAS) [24] deals with techniques that automate archi-
tecture engineering. Due to the lengthy computation times for the recurrent search
and evaluation of new candidate architectures, for instance, in the proposed ge-
netic algorithms or reinforcement learning [128], NAS research has been largely
inaccessible for researchers lacking access to extensive computational systems.

However, the introduction of NAS-Bench-101 [123], a dataset of over 423k fully
trained neural architectures, facilitates a paradigm shift in NAS research. Instead
of carfeully evaluating each new proposed neural architecture, NAS-Bench-101 al-
lows experimentation with classical data-driven methods such as supervised learn-
ing to evaluate neural architectures. Subsequently, we address the task of recon-
structing and generating neural architectures in a supervised manner using contin-
uous representations of neural architectures.

Most current neural architectures for computer vision can be represented as di-
rected, acyclic graphs (DAGs). Therefore, we base our approach on Graph Neural
Networks. Graph Neural Networks (GNNs) [118] have proven to be very effective
in understanding local node features and graph substructures. This makes them an
extremely useful tool to embed nodes as well as complete graphs like the NAS-
Bench-101 architectures into continuous spaces.

In this context, discovering new neural architectures equates to generating new
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graphs. From the few existing graph-generating models, sequential approaches like
[124] or [55] are quite promising. The model Deep Generative Models of Graphs
(DGMG) in [55], which employs GNNs, demonstrates superiority over Recurrent
Neural Network (RNN) methods. In natural language processing, it is typical to
use RNNs at both the encoder and decoder levels. Inspired by this approach, we
expand the concepts of the DGMG model to create a Variational-Sequential Graph
Autoencoder (VS-GAE), a variational autoencoder [45] that employs GNNs at both
the encoder and decoder levels simultaneously. To the best of our knowledge, we
are introducing the first graph autoencoder based on GNNs that operates on graphs
of different sizes. This makes it a robust tool for handling neural architectures.

In summary, we make the following contributions: In Section 5.1.2, we further
discuss GNNs and graph generating models. Next, we present a graph encoder in
Section 5.1.3 based on GNNs and tailored to the NAS-Bench-101 neural architec-
tures. Lastly, we introduce VS-GAE in Section 5.1.4, a novel variational-sequential
graph autoencoder. VS-GAE specializes in encoding and decoding graphs of vary-
ing lengths using GNNs. This makes it a potent tool for designing new architec-
tures and generating a meaningful graph latent space.

5.1.2 Continuous Graph Representations

The integration of modern machine learning methods with graph-structured data
has increasingly gained popularity. This can be interpreted as an extension of deep
learning techniques to non-Euclidean data [10] or even as introducing relational
biases within deep learning architectures to enable combinatorial generalization
[6]. Due to the discrete nature of graphs, they cannot be trivially optimized in
differentiable learning methods that operate on continuous spaces. In this paper,
we address this issue. We aim to use continuous methods to handle the graphs that
characterize neural architectures from the NAS-Bench-101 dataset.

From Discrete to Continuous

The advancements in GNN research have led to breakthroughs in various areas
related to graph analysis such as computer vision [119, 53, 121], natural language
processing [5], recommender systems [69], chemistry [25], and others. The ability
of GNNs to accurately model dependencies between nodes forms the foundation
of our research. We leverage them to transition from the discrete graph space to
the continuous space, and vice versa.
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From Continuous to Discrete

Generating new graphs, especially new neural architectures, is an ambitious task
that has to overcome multiple fundamental challenges. The primary focus is on the
highly variable graph search space of NAS-Bench-101 and the complex dependen-
cies within a single graph.

Global approaches like the one from Simonovsky and Komodakis [99] are re-
stricted to a fixed and small number of nodes as they employ relaxations of the
adjacency matrix which is inherently quadratic in the number of nodes. Luo et al.
[63] were the first to use RNNs to generate neural architectures in a sequential
manner. Their model acts on graphs with a fixed number of nodes and lacks the ca-
pability to induce complex graph structures. These issues were partially addressed
by You et al. [124]. This model operates on graphs of variable sizes and uses a sec-
ond edge-level RNN to capture edge dependencies. The superiority of using GNNs
over RNNs during the graph generation process was demonstrated by Li et al. [55].

Our model can be interpreted as an extension of the conditional version of Li et al.
[55]. To the best of our knowledge, our model is the first to utilize GNNs at both
the encoding and decoding levels, thus creating a variational-sequential graph au-
toencoder that operates on graphs of different sizes. The model from Zhang et al.
[126] is also related to our work; unlike our model, it operates on a fixed number
of nodes. In contrast to our method, Zhang et al. [126] constructed a model on
an asynchronous message passing scheme that encodes computations rather than
graph structures.

5.1.3 The Graph Encoder

In this section we present our GNN-based model to encode the discrete graph space
of NAS-Bench-101 into a continuous vector space. One can imagine a single GNN
iteration as a two-step procedure. First, each node sends out a message to its neigh-
bors alongside its edges. Second, each node aggregates all incoming messages to
update itself. After a final amount of these iteration steps, the individual node
embeddings are aggregated into a single graph embedding.

Node-Level Propagation

Let G = (V,E) be a graph with nodes v ∈ V and edges e ∈ E ⊆ V × V . We
denote N(v) = {u ∈ V | (u, v) ∈ E} and Nout(v) = {u ∈ V | (v, u) ∈ E} as
the directed neighborhoods of a node v ∈ V . For each node v ∈ V , we associate an
initial node embedding hv ∈ Rdn . In our experiments we use a learnable look-up
table based on the node types. Propagating information through the graph can be
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Figure 5.1: Visualization of the graph encoding process consisting of two main
stages. Left: The process of node-level propagation is presented, which involves
T rounds of bidirectional message passing to facilitate the transfer of information
between interconnected nodes. The arrows indicate the direction of this message
passing. Right: The graph-level aggregation is displayed. This stage involves the
synthesis of all the individual node embeddings into a single, comprehensive graph
embedding, denoted hG. Together, these stages allow our model to effectively
transform discrete graph representations into continuous vector spaces.

seen as an iterative message-passing process

mu→v = Ξu∈N(v)

(
M (t)(h(t−1)

v , h(t−1)
u )

)
, (5.1)

h(t)v = U (t)(h(t−1)
v ,mu→v), (5.2)

with a differentiable message moduleM (t) in (5.1), a differentiable update module
U (t) in (5.2) and a differentiable, permutation invariant aggregation function Ξ.
The message module M (t) is illustrated by the green arrows in Figure 5.1 (left).
To address the directed nature of the NAS-Bench-101 graphs, we add a reverse
message module

mout
u→v = Ξu∈Nout(v)

(
M

(t)
out(h

(t−1)
v , h(t−1)

u

)
, (5.3)

h(t)v = U (t)(h(t−1)
v ,mu→v,m

out
u→v). (5.4)

This is outlined in Figure 5.1 (left) by the red arrows and leads to so-called bidi-
rectional message passing. The update module U (t) utilizes each node’s incoming
messages to update that node’s embedding from h

(t−1)
v to h(t)v .

Exploring many different choices for the message and update modules experimen-
tally, we find that the settings similar to Li et al. [55] work best for our needs. We
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Figure 5.2: Illustration of a single iteration during the graph generation process.
a) A decoder-level GNN propagates the node embeddings through the partially
created graph and aggregates them to form a summary of this graph. b) A new
node is created, and its node type is selected using the summary of both the partially
created and original graphs. c) The newly created node is initialized with a node
embedding. d) A score for all edges connecting the new node is calculated and
evaluated, resulting in the set of new edges.

pick a concatenation together with a single linear layer for our message modules.
The update module consists of a single Gated Recurrent Unit (GRU) where h(t−1)

v

is treated as the hidden state. For the aggregation function, we choose the sum. To
increase the capacity of our model, on the one hand, we apply multiple rounds of
propagation and on the other hand, we use a different set of parameters for each
round.

Graph-Level Aggregation

After the final round of message-passing, the propagated node embeddings h =
(hv)v∈V are aggregated into a single graph embedding hG ∈ Rdg , where

hG = A(h), (5.5) hvarG = Ã(h). (5.6)

We obtain good results by using a linear layer combined with a gating layer that
adjusts each node’s fraction in the graph embedding. This aggregation layer A in
(5.5) is further illustrated in Figure 5.1 (right). In case that variational outputs are
required, we interpret hG as the mean and add an extra graph aggregation layer Ã
in (5.6) which outputs the variance hvarG .
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5.1.4 The VS-GAE

In this section we present our Variational-Sequential Graph Autoencoder (VS-
GAE). The VS-GAE is composed of the variational version of the graph-based
encoder from Section 5.1.3 and a graph generating decoder using a sequential pro-
cess. The encoder qϕ(z|G) takes graph G with node labels as input and outputs
a prior distribution p(z) over the latent space in line with common variational au-
toencoders. The decoder pψ(G|z) takes a sampled point z from this latent space
p(z) as input and generates a graph iteratively as a sequence of operations that add
new nodes and edges until the end/output node is generated. Note that the sampled
point z contains a summary of the original graph G.

Graph Generating Process

The decoder consists of multiple modules, mainly describing a distribution over
the outcomes of a specific step in the generating sequence. Each module utilizes
for each iteration t one or multiple of the following inputs:

z the sampled point from the latent space,

L a look-up table based on the node types,

h(t) the embedding of the created nodes,

G(t), hG(t) the partial graph and its embedding.

Note that the learnable embedding look-up table L is independent of the one in
Section 5.1.3. Correspondent to the NAS-Bench-101 graphs, we begin the itera-
tion with the start/input node that receives an initial node embedding h(0) = (h0)
according to the sampled point and the look-up table. With these preparations we
can represent the full graph generating process through iterating over the following
modules. Such iteration step can be tracked module by module through following
Figure 5.2. Note that the modules’ weights are shared over different iterations.

GraphProp This module processes the embedding h(t) of the previously created
nodes together with their underlying graph structure G(t) for two complementary
but distinct tasks. First, the node embeddings are updated by propagating through
them. Second, the updated node embeddings are read out and aggregated into a
single graph embedding,

hG(t) , h(t)p = fprop(h
(t), G(t)). (5.7)

This is illustrated in Figure 5.2 a). The graph embedding hG(t) can be interpreted
as a summary of the hitherto created partial graph. We use a GNN to propagate
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and aggregate the node embeddings h(t) in (5.7). More precisely, we use an exact
copy of our encoder from Section 5.1.3 initialized with its own weights. This is
motivated by NLP methods that use two distinct RNNs on the encoder-level and
the decoder-level, respectively.

AddNode In this module, a new node is created and its node type is selected.
The input is the summary of the original graph, i.e., the sampled point z from the
latent space as well as the summary hG(t) of the already created partial graph. The
intention behind these inputs and the ones for the following modules is always the
same: What does the original graph look like? What does the partially created
graph look like? What is missing? This concludes in following module,

NodeType = softmax
(
faddNode(z, hG(t))

)
. (5.8)

The addNode module is outlined in Figure 5.2 b). The output of (5.8) is a cat-
egorical distribution over all possible node types. Note that sampling over this
distribution yields a one-hot encoding of a specific node type. In line with the
structure of NAS-Bench-101 graphs, the iteration stops after running through the
step that adds the end/output node.

InitNode This module initializes the node embedding of the just created node.
The input is the sampled point z, the summary hG(t) of the created graph and the
embedding of the node type L[type] in the look-up table. This embedding of the
new node is then added to the already existing propagated node embeddings,

ht+1 = finitNode(z, hG(t) , L[type]), (5.9)

h(t+1) = (h
(t)
p,1, . . . , h

(t)
p,t, ht+1). (5.10)

This process is further illustrated in Figure 5.2 c).

AddEdges In this module, the edges towards the newly created node are selected.
For this purpose, a score between the new node ht+1 and each previous node is
calculated, respectively. A high score stands for a high probability of an edge and
vice versa. This is illustrated in Figure 5.2 d).

sv = faddEdges(ht+1, hv, z, hG(t)), hv ∈ h(t)p , (5.11)

Edges = σ(s), (5.12)

where Edges is a family of Bernoulli distributed random variables describing a
probability for each possible edge e connecting the new node. Sampling over these
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distributions yields the new set of edges. We interpret each edge as directed towards
the new node.

In all our experiments, we let faddNode, finitNode and faddEdges be two-layer MLPs
with ReLU nonlinearities.

Training and Loss

Recall that a VAE maximizes the lower bound estimator for a graph G and a latent
space representation z:

L(ψ, ϕ;G) = Eqϕ(z|G)

[
log pψ(G|z)

]
+ DKL(qϕ(z|G)∥pψ(z)). (5.13)

The first term of (5.13) is the model specific reconstruction loss which enforces
high similarity between the input graph and the generated graph. The second term
is the Kullback–Leibler Divergence which regularizes the latent space. In the fol-
lowing, we will discuss the reconstruction loss of VS-GAE.

We train the encoder and the decoder of VS-GAE jointly in an unsupervised man-
ner. Although the encoder is by construction invariant under graph isomorphisms,
the decoder needs a certain ordering over the nodes. To fulfill the prior of the de-
coder that each edge is directed towards the new node, this ordering has to be in
such a manner that the adjacency matrix is an upper triangle matrix. This is, for
example, given by the canonical ordering in which the graphs of NAS-Bench-101
are provided.

Given this fixed ordering of the nodes, we know the ground truth of the outputs
of AddNode (5.8) and AddEdges (5.12) during training. One the one hand, we can
use this ground truth to calculate a node-level loss LiV and an edge-level loss LiE
at each iteration step, respectively. On the other hand, we can replace the model’s
output by the ground truth such that possible errors will not accumulate through
iterations. This is also known as teacher forcing.

In order to calculate the overall reconstruction loss for a graph G, we sum up node
losses and edge losses over all iterations

Lrec = LV + LE . (5.14)

Following Kingma and Welling [45], we assume pψ(z) ∼ N (z; 0, I) as well
as pψ(G|z) ∼ N (µ,Σ). Furthermore, we approximate the posterior by a mul-
tivariate Gaussian distribution with diagonal covariance. This can be written as
log qϕ(z|G) = logN (z;µ, σ2I).
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5.1.5 Conclusion

The present research advances the Neural Architecture Search (NAS) field by
employing supervised learning in the context of Stochastic Computation Graphs
(SCGs) to model the combinatorially complex space of potential architectures.

Our study highlights the role of the NAS-Bench-101 dataset [123] as a potential
reformation in NAS research. The dataset enables employing data-driven meth-
ods like supervised learning to generate these architectures, as we will further
show empirically in Section 6.1. Using supervised learning to train the underly-
ing distributions of stochastic nodes mitigates the inherent complexities mentioned
in Section 4.1. This technique allows us to predict the most SCGs representing the
architectures and effectively guides the search process of neural architectures.

We addressed the first half of the research question RQ2.1 by presenting an effi-
cient way of learning the structure of the SCG in the realm of NAS. In the follow-
ing section, we tackle the second half of the research question by assuming a given
structure of the SCG and presenting an efficient way of learning the parameters of
discrete SCGs. Later, in Section 6.1.1, we will empirically show that it is possible
to learn both the structure and the parameters simultaneously.

5.2 Efficient Parameter Learning of Discrete Stochastic
Computation Graphs

In order to optimize learning models based on discrete Stochastic Computation
Graphs (SCGs), we are interested in the following research question: RQ2.1: How
can we effectively learn the structure and the parameters of discrete SCGs? This
section aims to answer the second half of this question by exploring efficient strate-
gies for learning the parameters of models that combine discrete and continuous
components. Here, we focus on the common challenges of small gradients and
local minima mentioned in Section 4.1.

We propose two novel strategies for mitigating these challenges. The first strategy,
outlined in Section 5.2.2, involves tweaking the scale parameter β of the Gumbel
noise perturbations. The second strategy, discussed in Section 5.2.3, proposes the
implementation of dropout residual connections for discrete SCGs.

The content of this section primarily draws upon the following publication:

Friede, D., & Niepert, M. (2021). Efficient Learning of Discrete-Continuous
Computation Graphs. Advances in Neural Information Processing Systems,
34, 6720-6732.
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5.2.1 Background

Numerous models for supervised and reinforcement learning benefit from combin-
ing discrete and continuous model components [76, 2, 102]. Discrete-continuous
models that can be learned end-to-end are compositional, more likely to gener-
alize effectively, and offer improved interpretability. A widely adopted approach
for constructing discrete SCGs involves integrating discrete probability distribu-
tions into neural networks using stochastic softmax tricks [95, 77]. Previous work
has primarily concentrated on computation graphs that contain a single discrete
component on each of the graph’s execution paths [41, 64]. In contrast, our work
examines more complex SCGs, with multiple sequential discrete components.

We have demonstrated in Section 4.1 that optimizing the parameters of these mod-
els presents a significant challenge, primarily due to small gradients and the pres-
ence of local minima. To overcome these obstacles, we propose two innovative
strategies in this section. Firstly, as shown in Section 5.2.2, we find that increasing
the scale parameter β of the Gumbel noise perturbations can significantly improve
the learning behavior of the models. An increase in β raises the probability of
evading local minima during the training phase. Secondly, we suggest the use of
dropout residual connections for discrete-continuous computation graphs in Sec-
tion 5.2.3. By randomly skipping some discrete distributions, we ensure the provi-
sion of more informative gradients throughout the entire computation graph.

5.2.2 TEMPMATCH: Temperature Matching

We explore the behavior of two interdependent parameters: the Gumbel-softmax
temperature τ and the Gumbel scale parameter β. First, we have the temperature
parameter τ from the Gumbel-softmax trick (see Equation (4.4)). The purpose of
this parameter is to make the output of the softmax function more or less discrete,
that is, more or less concentrated on one of the categories. Second, and this is a
new insight, we can adjust the scale parameter β of the Gumbel distribution. For
scale parameter β, we sample the noise perturbation i.i.d. as ϵi ∼ Gumbel(0, β).
If we use the Gumbel-max trick of Equation (4.3) we implicitly generate samples
from the distribution

p(zi;θ) =
exp(θi/β)∑k
j=1 exp(θj/β)

. (5.15)

Increasing the scale parameter β, therefore, makes the Gumbel-max samples more
uniform and less concentrated. When using the Gumbel-softmax trick instead of
the Gumbel-max trick, we obtain samples zi that are more uniformly distributed
over the categories and more discrete. Indeed, in the limit of β → ∞, we obtain
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Figure 5.3: Visualization of two annealing schemes for the Gumbel-softmax trick
for θ = (2.0, 0.5, 1.0). Yellow depicts high, and blue depicts low values. Top: The
standard procedure of annealing the softmax temperature τ as introduced in [64]
(see also Equation (4.4)). Bottom: Starting with β = 0 and increasing it during
training, the samples are increasingly more discrete but, compared to the standard
annealing approach (τ → 0), more uniformly distributed over the corners of the
probability simplex.

discrete samples uniformly distributed over the categories, independent of the log-
its. For β → 0, we obtain the standard softmax function. Figure 5.3 illustrates the
impact of the two parameters on the Gumbel-softmax distribution.

Now, the problem of insufficient gradients caused by local minima can be mitigated
by increasing the scale parameter β relative to the temperature parameter τ . The
annealing schedule we follow is the inverse exponential annealing βt = τ(1−e−tγ)
for some γ > 0. Increasing β increases the probability of generating samples
whose maximum probabilities are more uniformly distributed over the categories.
This has two desired effects. First, samples drawn during training have a higher
probability of counteracting poor minima caused at an earlier stage of the training.
Figure 4.2 (left) shows that higher values for β allow the model to find its way out
of poor minima. A higher value of β makes the model more likely to utilize cat-
egories with small θs, allowing the model to obtain improved minima (Figure 4.2
(middle)).

Second, gradients propagate to parameters of the upstream components even af-
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Figure 5.4: The values of the parameters, their gradients, and the softmax probabil-
ities for various values of β (the scale parameter) for a constant Gumbel-Softmax
parameter τ . Early during training, a lower scale parameter β (relative to τ ) works
well and has less variance. Once the probabilities saturate, however, we can only
continue to obtain a sufficient gradient signal for larger values of β.

ter downstream components are saturating. To illustrate the second effect, we
conducted the toy experiment depicted in Figure 5.4. The model here computes
Softmax(θ + ϵ) with parameters θ⊺ = (θ1, θ2) and noise variables ϵ⊺ = (ϵ1, ϵ2),
where ϵ1, ϵ2 ∼ Gumbel(0, β). The learning problem is defined through a cross-
entropy loss between the output probabilities and the target vector (1.0, 0.0)⊺. We
observe that early during training, lower values for β work well and exhibit less
variance than higher values. However, once the probabilities and, therefore, the
gradients start to saturate, a higher value for β enables the continued training of
the model. While the example is artificial, it is supposed to show that larger values
of the scale parameter β, sustain gradients for upstream components even if down-
stream components have saturated. Indeed, even though the softmax probability is
close to 1, we observe a continuous increase of the parameter θ1 and a high enough
gradient signal for β ≥ 2. It also shows that annealing the inverse scale parameter,
that is, increasing the scale parameter relative to τ over time, should be beneficial.

In summary, increasing the Gumbel scale parameter β has positive effects on the
training dynamics. We propose an exponential increasing scheme relative to τ .
The two parameters τ and β should be matched, that is, optimized relative to each
other. We show empirically that for more realistic learning problems choosing a
higher value for β is beneficial, especially later during training.

5.2.3 DROPRES: Residual Dropout Connections

Residual (or shortcut) connections play an important role when training deep neural
networks [37]. A standard residual connection for the discrete-continuous compo-
nents we consider here would be achieved by replacing Equation (4.2d) with

v = u+ hw′(z). (5.16)
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Figure 5.5: The influence of dropout residuals on the mean absolute gradients for
ListOps. The values on the x-axis are the GNN message-passing iterations: the
higher the number, the closer to the loss function is the corresponding discrete-
continuous component. Adding dropout residual connections mitigates the vanish-
ing gradient problem for components with greater distance to the loss.

By creating a direct connection to the continuous input of the discrete distributions,
the optimizing problem simplifies. Unfortunately, what sets our problem apart
from other end-to-end learnable neural networks is that we want to completely
remove the residual connections at test time to obtain pure discrete representations
and, therefore, the desired generalization properties. To mitigate the problem of
overfitting to the existence of residual connections while at the same time reducing
vanishing gradients in expectation, we propose DROPRES connections. These are
residual connections sampled from a Bernoulli distribution with parameter α. We
replace Equation (4.2d) by

v =

{
u+ hw′(z) with probability 1− α
hw′(z) with probability α,

(5.17)

that is, we drop out the residual connection with probability α. With probability
(1−α) we obtain a shortcut connection between the neural components, effectively
bypassing the Gumbel-softmax. With probability α the training path goes exclu-
sively through the Gumbel-softmax distribution. The expectation of the gradients,
taken over a Bernoulli random variable with parameter α, is now

E
[
∂v

∂u

]
= (1− α)1+

∂v

∂z

∂z

∂θ

∂θ

∂u
. (5.18)

We propose a simple linear scheme to modify α from 0 → 1 during training.
Hence, the model obtains a stronger gradient signal for upstream models in expec-
tation in the early phase of training.

To illustrate the impact of dropout residual connections, we analyzed the gradients
of message passing steps for the ListOps problem (see experiments) in a discrete-
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continuous computation graph of the type depicted in Figure 2.4. As we can ob-
serve in Figure 5.5, if we do not use dropout residual connections, the greater the
distance of a discrete-continuous operation to the loss function (the lower the value
on the x-axis), the smaller is the mean absolute value of the gradients reaching
it. This illustrates the vanishing gradient problem. When using dropout residual
connections, on the other hand, the mean absolute values of the gradients do not
vanish proportional to their distance to the loss and are more evenly distributed.

To summarize, optimizing the parameters of models comprised of discrete dis-
tributions and continuous neural network components is challenging, mainly due
to local minima and vanishing gradients. By setting the Gumbel scale parame-
ter β = 0 as well as the dropout probability of the residual connections α = 0
at the beginning of training, we obtain a continuous and deterministic relaxation
of the target model. Increasing the DROPRES parameter α over time makes the
model increasingly use the discrete stochastic nodes. Increasing the Gumbel scale
parameter β allows the model to escape local minima and small gradients.

5.2.4 Conclusion

This section explored strategies for the efficient learning of the parameters of dis-
crete SCGs that combine discrete and continuous components, thereby addressing
the second half of our research question RQ2.1.

We have proposed two strategies to counter issues arising in the training of discrete-
continuous computation graphs, such as small gradients and local minima. The first
strategy, named TEMPMATCH, involves the manipulation of the scale parameter β
of the Gumbel noise perturbations. Increasing β can improve the learning behavior
of the models by promoting the models’ ability to escape poor local minima and
facilitating gradient propagation to upstream components, even when downstream
components have saturated.

The second strategy, DROPRES, proposes the introduction of dropout residual con-
nections in discrete-continuous computation graphs. By adding residual connec-
tions that bypass the Gumbel-softmax operation with a certain probability, we can
manage the vanishing gradient problem, particularly prevalent in stochastic nodes
with large distances to the loss function in the computation graph. This method-
ology reduces vanishing gradients, providing a more robust gradient signal during
the early training phase.

We illustrate how these strategies support the training of discrete-continuous mod-
els in the Section 6.1, where we present empirical evidence demonstrating these
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models’ superior performance and generalization capabilities on various bench-
mark datasets.

5.3 Learning Disentangled Discrete Representations

In this section, we analyze the integration of discrete representations by replac-
ing the common Gaussian variational autoencoder (VAE) with a categorical one,
specifically answering our research question RQ2.2: ”How can discrete represen-
tations be integrated effectively into existing deep learning methods?” The focus
lies on discussing the disentangling properties of our adapted categorical VAE.

In Section 4.2, we replaced the standard Gaussian VAE with a categorical one and
explored how the distinct structure of categorical distributions overcomes the rota-
tional invariance issue often associated with Gaussian distributions. A crucial step
in this replacement is modifying the categorical VAE to use a one-dimensional
representation for each category. This adaptation aligns the dimension of the cate-
gorical VAE with the one of the Gaussian VAE, facilitating a direct substitution.

Furthermore, we will define and discuss neighborhoods in the observable and the
discrete latent space and demonstrate how similar observations are encouraged to
be represented close together in the latent space. This property is important in
understanding disentanglement and has been discussed for the Gaussian case by
Burgess et al. [11]. We will show how many of their findings still hold in the case
of our tailored categorical VAE, providing a first step to effectively integrating
disentangling discrete representations into deep learning methods based on VAEs.

The content of this section primarily draws upon the following publication:

Friede, D., Reimers, C., Stuckenschmidt, H., & Niepert, M. (2023). Learn-
ing Disentangled Discrete Representations. Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD

5.3.1 Background

Recent successes in image generation [110, 83], model-based reinforcement learn-
ing [35, 75, 36], and text-to-image generation [81, 91] have demonstrated the em-
pirical advantages of discrete latent representations, although the reasons behind
their benefits remain unclear [35]. We explore the relationship between discrete
latent spaces and disentangled representations by replacing the standard Gaussian
variational autoencoder (VAE) with a tailored categorical variational autoencoder.
We showed in Section 4.2 that the underlying grid structure of categorical distri-
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butions mitigates the problem of rotational invariance associated with multivariate
Gaussian distributions. In this section, we will additionally show that a discrete
latent space acts as an efficient inductive prior for disentangled representations.
We modify the categorical variational autoencoder to represent each category with
a one-dimensional representation to inherit the canonical order of the real num-
bers. On the one hand, this change creates a latent space of the same dimension as
the one of the Gaussian VAE, enabling a direct substitution of the VAE’s distribu-
tion. Specifically, we utilize the same neural architecture for all methods so that all
differences solely emerge from the type of distribution of the VAE. On the other
hand, we will show that equipping the discrete latent space with an order creates
a topology that maps similar observations to neighboring categories encouraging
disentanglement.

In this section, we introduce some properties of the discrete latent space. Firstly,
we discuss the concept of defining neighborhoods in the observable space. We
hypothesize that the closest neighbors of an observation typically differ in only a
single dimension of the ground-truth factors. Secondly, we show that mapping the
discrete categories into a shared unit interval as in Equation (4.13) causes an order-
ing of the discrete categories and, in turn, enables a definition of neighborhoods in
the latent space. Finally, we derive that the main argument from Burgess et al. [11]
still holds in the discrete case, neighboring points in the data space are encouraged
to be represented close together in the latent space.

5.3.2 Defining Neighborhoods in the Observable Space

Locatello et al. [59] showed that there is an infinite number of transformations of
the ground truth factors z ∼ p(z) =

∏
p(zi) that lead to the same data distri-

bution. A representation r(x) that is fully disentangled with respect to z might
be fully entangled with respect to such a transformation ẑ. Without any inductive
biases, unsupervised disentanglement is theoretically impossible. We will make
use of two properties to mitigate this impossibility result. First, we can utilize the
reconstruction loss to define neighboring observations

Uϵ(x) =
{
y | − Eqϕ(z|x) [log pψ(y|z)] ≤ log ϵ

}
. (5.19)

Intuitively, the neighborhood Uϵ(x) of some observation x are those observa-
tions/reconstructions y that have a high log-likelihood when encoding x. This
intuition becomes especially clear in the case of the mean squared error recon-
struction loss since this loss function fulfills the properties of a metric. In this case,
the neighborhood simplifies to Uϵ(x) =

{
y | 1

d∥x− y∥22 ≤ ϵ
}

, and neighboring
observations are those with similar pixel values. We utilize a second property to
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Figure 5.6: Four observations and their latent representation with a Gaussian and
discrete VAE. Both VAEs encourage similar inputs to be placed close to each other
in latent space. Left: Four examples from the MPI3D dataset [27]. The horizon-
tal axis depicts the object’s shape, and the vertical axis depicts the angle of the
arm. Middle: A 2-dimensional latent space of a Gaussian VAE representing the
four examples. Distances in the Gaussian latent space are related to the Euclidean
distance. Right: A categorical latent space augmented with an order of the cat-
egories representing the same examples. The grid structure of the discrete latent
space makes it more robust against rotations compared to its Gaussian counterpart,
constituting a stronger inductive prior for disentanglement.

associate neighboring observations with small changes in the ground truth factors.
Many datasets in the disentanglement literature consist of discrete ground truth fac-
tors [54, 86, 38, 44, 59, 27]. We argue that because of the discrete nature of many
datasets, e.g., pixels, even continuous ground truth factors often convert into dis-
crete changes in the data space. For instance, although we sample the X-position in
the Circles dataset [116] from a random uniform distribution, we only obtain ∼ 40
distinct observations regarding the X-position, see Figure 4.4 (left). As a conse-
quence, we mostly observe incremental changes in the ground truth factors z, that
is, a small change in a single dimension zi or zj or both, but never half a change in
zi and zj as illustrated in Figure 5.6 (left). We hypothesize that, consequently, the
closest neighbors x′ of x are generally those observations whose ground-truth fac-
tors z′ differ in only a single dimension compared to the ground-truth factor z of x.
In the following, we will discuss neighborhoods in the latent space and eventually
show that neighboring points in the data space are encouraged to be represented
close together in the latent space enabling disentangling properties.
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5.3.3 Neighborhoods in the Latent Space

In the Gaussian case, neighboring points in the observable space correspond to
neighboring points in the latent space. As shown in the Section 5.3.2, the ELBO
Loss Equation (4.11), more precisely the reconstruction loss as part of the ELBO,
implies a topology of the observable space. In the case, where the approximated
posterior distribution, qϕ(z|x), is Gaussian and the covariance matrix, Σ(x), is
diagonal, the topology of the latent space can be defined in a similar way: The
negative log-probability is the weighted Euclidean distance to the mean µ(x) of
the distribution

C − log qϕ(z|x) =
1

2
[(z − µ(x))⊺Σ(x)(z − µ(x))]2 =

n∑

i=1

(zi − µi(x))
2

2σi(x)

(5.20)

where C denotes the logarithm of the normalization factor in the Gaussian density
function. Neighboring points in the observable space will be mapped to neighbor-
ing points in the latent space to reduce the log-likelihood cost of sampling in the
latent space [11].

In the case of categorical latent distributions, the induced topology is not related to
the euclidean distance and, hence, it does not encourage that points that are close in
the observable space will be mapped to points that are close in the latent space. The
problem becomes explicit if we consider a single categorical distribution. In the
latent space, neighbourhoods entirely depend on the shared representation space
of the m classes. The canonical representation maps a class j into the one-hot
vector ej = (e1, e2, . . . , em) with ek = 1 for k = j and ek = 0 otherwise. The
representation space consists of the m-dimensional units vectors, and all classes
have the same pairwise distance between each other.

To overcome this problem, we inherit the canonical order of R by depicting a one-
dimensional representation space. We consider the representation z̄i = f(zi) from
Equation (4.13) that maps a class j on the value j−1

m−1 inside the unit interval. In
this way, we create an ordering on the classes 1 < 2 < · · · < m and define the
distance between two classes by d(j, k) = 1

m−1 |j−k|. In the following, we discuss
properties of a VAE using this representation space.

5.3.4 Disentangling Properties of the Discrete VAE

In this section, we show that neighboring points in the observable space are rep-
resented close together in the latent space and that each data point is represented
discretely by a single category j for each dimension i ∈ {1, . . . , n}. First, we
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Figure 5.7: Illustration of three examples of (normalized) parameters of a sin-
gle Gumbel-softmax distribution and the corresponding one-dimensional distri-
bution of z̄i. Each m-dimensional sample zi ∼ GS(θi) is mapped into the
one-dimensional unit interval following Equation (4.13), i.e., via the dot product
z̄i = zi · (0, 1

m−1 , . . . , 1). In order to reduce the variance of z̄i, the model is en-
couraged to place high θji values to neighboring categories. Furthermore, having
tail categories with θji ≈ 0 decreases the support of z̄i further reducing its variance.

show that reconstructing under the latent variable z̄i = f(zi) encourages each data
point to utilize neighboring categories rather than categories with a larger distance.
Second, we discuss how the Gumbel-softmax distribution is encouraged to approx-
imate the discrete categorical distribution. For the Gaussian case, this property was
shown by Burgess et al. [11]. Here, the ELBO, Equation (4.11) depicts an induc-
tive prior that encourages disentanglement by encouraging neighboring points in
the data space to be represented close together in the latent space [11]. To show
these properties for the D-VAE, we use the following proposition.

Proposition 2. Let θi ∈ [0,∞)m, zi ∼ GS(θi) be as in Equation (4.12) and
z̄i = f(zi) be as in Equation (2.13). Define jmin = argminj{θji > 0} and
jmax = argmaxj{θji > 0}. Then it holds that

(a) supp(f) = ( jmin
m−1 ,

jmax
m−1)

(b) θji∑m
k=1 θ

k
i

→ 1 ⇒ P(zji = 1) = 1 ∧ f(zi) = 1{ j
m−1

}.
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Proposition 2 has multiple consequences. First, a class j might have a high density
regarding z̄i = f(zi) although θji ≈ 0. For example, if j is positioned between
two other classes with large θki

(
e.g. j = 3 in Figure 5.7 (a)

)
. Second, if there is

a class j such that θki ≈ 0 for all k ≥ j or k ≤ j, then the density of these classes
is also almost zero

(
Figure 5.7 (a-c)

)
. Note that a small support benefits a small

reconstruction loss since it reduces the probability of sampling a wrong class. The
probabilities of Figure 5.7 (a) and (b) are the same with the only exception that
θ3i ↔ θ5i are swapped. Since the probability distribution in (b) yields a smaller
support and consequently a smaller reconstruction loss while the KL divergence
is the same for both probabilities,1 the model is encouraged to utilize probability
(b) over (a). This encourages the representation of similar inputs in neighboring
classes rather than classes with a larger distance.

Consequently, we can apply the same argument as in Burgess et al. [11] (Sec-
tion 4.2) about the connection of the posterior overlap with minimizing the ELBO.
Since the posterior overlap is highest between neighboring classes, confusions
caused by sampling are more likely in neighboring classes than those with a larger
distance. To minimize the penalization of the reconstruction loss caused by these
confusions, neighboring points in the data space are encouraged to be represented
close together in the latent space. Similar to the Gaussian case [11], we observe
an increase in the KL divergence loss during training while the reconstruction loss
continually decreases. The probability of sampling confusion and, therefore, the
posterior overlap must be reduced as much as possible to reduce the reconstruc-
tion loss. Thus, later in training, data points are encouraged to utilize exactly one
category while accepting some penalization in the form of KL loss, meaning that
θji /(

∑m
k=1 θ

k
i ) → 1. Consequently, the Gumbel-softmax distribution approximates

the discrete categorical distribution, see Proposition 2 (b). An example is shown
in Figure 5.7(c). This training behavior results in the unique situation in which the
latent space approximates a discrete representation while its classes maintain the
discussed order and the property of having neighborhoods.

In the following, we aim to prove Proposition 2. We mainly use properties of
the Gumbel-Softmax distribution discussed in Section 2.4. To prove Part (a) of
Proposition 2, we need to understand how to sample from zi ∼ GS(θi) in the
case where there exists a category j with θj = 0. In this case, the probability of
category j is zero, and thus, the jth dimension of zi will always be zero. This
is the same as sampling from the (n-1)-dimensional Gumbel-Softmax distribution
z̄i ∼ GS(θ̄i), where θ̄i = (θ1i , . . . , θ

j−1
i , θj+1

i , . . . , θmi ) and re-adding a zero into
the dimension j of z̄i. To prove Part (b) of Proposition 2, we initially show an

1The KL divergence is invariant under permutation.
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interesting property of the Gumbel-Softmax distribution, namely that it is invariant
under factor multiplication. More precisely, we propose the following lemma.

Lemma 4. Let θ ∈ [0,∞)m, GS(θ) be as in Equation (4.12). Let c > 0, then it
holds that

GS(θ) = GS(cθ). (5.21)

Proof. By Proposition 1, we know that the density of GS(θ, 1) is

pθ(x) =
(m− 1)!

(
∑m

j=1 θjx
−1
j )m

m∏

l=1

θl
x2l
.

Thus, simple calculus gives

pcθ(x) =
(m− 1)!

(
∑m

j=1 cθjx
−1
j )m

m∏

l=1

cθl
x2l

=
(m− 1)!

(c
∑m

j=1 θjx
−1
j )m

cm
m∏

l=1

θl
x2l

=
cm(m− 1)!

cm(
∑m

j=1 θjx
−1
j )m

m∏

l=1

θl
x2l

=
(m− 1)!

(
∑m

j=1 θjx
−1
j )m

m∏

l=1

θl
x2l

= pθ(x).

It follows that GS(θ) = GS(cθ).

We will now prove Proposition 2 in two parts.

Proof of Proposition 2. For the sake of clarity, we ignore the i-index in our nota-
tion and write the j-index as a subscript.

Part (a): Let J be the set of all indices of θ with θj = 0 and let m′ = m − |J | be
the number of elements of θ that are non-zero. We will first show that

supp
(
GS(θ)

)
= int{y ∈ Rn | yj ∈ [0, 1],

m∑

j=1

yj = 1, yk = 0 for k ∈ J}.

Let Pθ : Rm → Rm′
be the projection that maps θ on its non-zero elements

θ′ = Pθ(θ) with θ′j ̸= 0 for all j ∈ [m′]. We write P−1
θ (θ′) = θ for the inverse of
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the projection. Sampling z ∼ GS(θ) is then defined by P−1
θ (z′) for z′ ∼ GS(θ′).

By Proposition 1, we know that the density of GS(θ′) is

pθ′(x) =
(m′ − 1)!

(
∑m′

j=1 θ
′
jx

−1
j )m′

m′∏

k=1

θ′k
x2k
,

which is defined for all x ∈ ∆m′−1 with xj > 0 for all j ∈ [m′]. Furthermore,
we have pθ′(x) > 0 for all x ∈ int∆m′−1 since, in this case, pθ′(x) consists
of a sum and products of a finite number of positive elements. By definition of
z ∼ GS(θ) we reverse the projection Pθ to obtain supp

(
GS(θ)

)
= int{y ∈

Rn | yj ∈ [0, 1],
∑m

j=1 yj = 1, yk = 0 for k ∈ J}.
We will now show that supp(f) = ( jmin

m−1 ,
jmax
m−1). First, let z ∈ supp

(
GS(θ)

)
, then

it holds that

f(z) =
1

m− 1

m∑

j=1

jzj =
1

m− 1

m∑

j=jmin

jzj >
1

m− 1
jmin.

With the same argument, we can show that f(z) < jmax
m−1 . Conclusively, we will

show that

∀z̃ ∈ (
jmin

m− 1
,
jmax

m− 1
) ∃z ∈ supp

(
GS(θ)

)
with z̃ = f(z).

Let z̃ ∈ ( jmin
m−1 ,

jmax
m−1), then there exists δ ∈ (0, 1) with z̃ = δ jmin

m−1 + (1 − δ) jmax
m−1 .

Choose z with

zj =





δ, if j = jmin,

1− δ, if j = jmax,

0, otherwise

to conclude the proof of Part (a).

Part (b): Let c > 0. By Lemma 4, we know that GS(θ) = GS(cθ). We will now
show that θkθj → 0 for all j ̸= k and thus, θ

θj
→ ej with

ejk =

{
1, if k = j,

0, otherwise

and therefore, GS(θ) = GS( 1
θj
θ) → GS(ej) to conclude the proof. By assump-

tion, we have

1∑m
k=1

θk
θj

=

θj
θj

1
θj

∑m
k=1 θk

=
θ−1
j

θ−1
j

θj∑m
k=1 θk

=
θj∑m
k=1 θk

→ 1
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and thus,
∑m

k=1
θk
θj

→ 1. It holds that
∑m

k=1
θk
θj

= 1 +
∑

j ̸=k
θk
θj

and thus,
∑

j ̸=k
θk
θj

→ 0. Since θk
θj

≥ 0 for all j ̸= k, we have θk
θj

→ 0 and the proof
follows.

5.3.5 Conclusion

The section addresses the research question RQ2.2. We detailed the effects of re-
placing a standard Gaussian Variational Autoencoder (VAE) with an adapted cat-
egorical one. By introducing a one-dimensional representation for each category,
the discrete method creates a well-defined latent space with ordered categories.
This property encourages disentanglement, with the arrangement of the categories
reflecting changes in the observable space.

We demonstrated how to define neighborhoods in both the observable and the la-
tent space, with data points that are close together in the data space being repre-
sented close in the latent space. This alignment encourages a disentangling ef-
fect in our model. We further provided Proposition 2, which showcases how the
Gumbel-softmax distribution can approximate the discrete categorical distribution
effectively while keeping these disentangling properties.

Our adapted categorical autoencoder illustrates a promising step towards efficiently
integrating discrete representations into deep learning methods based on VAEs.
As a result, we can transfer findings from the disentanglement theory to further
improve discrete representations. We will discuss this in more detail in Section 5.4.
In Section 6.2, we will also show empirically how our categorical VAE improves
disentangled representations over its Gaussian counterpart.

5.4 Improving Discrete Representations

In Section 5.3, we have shown how to efficiently integrate discrete representations
into deep learning methods based on VAEs. Aligning the categorical VAE with the
Gaussian one allows us to utilize some of the main results from the disentangle-
ment literature to further improve the discrete representations of categorical VAEs.
Thus, the focus of this section is the research question RQ2.3: How can we further
enhance the performance and efficiency of common discrete representations?

While regularizers encouraging disentanglement have been widely discussed [38,
52, 11, 44, 14], their role in models based on discrete latent spaces is minimal. To
address this gap, we propose a version of total correlation (TC) [114] regularizer
as introduced for Gaussian VAEs by Kim and Mnih [44] and Chen et al. [14]. By
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regularizing total correlation, each latent dimension can capture a unique and in-
dependent aspect of the data variance, leading to a more disentangled latent space.

We then explore semi-supervised training for enhancing discrete representations.
In contrast to the Gaussian case [59], we can straight-forwardly incorporate the
number of unique variations of ground-truth factors improving disentanglement
and interpretability in the discrete case.

The final subsection addresses the straight-through gap, which enables selecting
those models based on unsupervised scores whose latent spaces approximate the
discrete latent spaces the most to improve disentangling properties.

The content of this section primarily draws upon the following publication:

Friede, D., Reimers, C., Stuckenschmidt, H., & Niepert, M. (2023). Learn-
ing Disentangled Discrete Representations. Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD

5.4.1 Background

We have shown in Section 4.2 and in Section 5.3 how to efficiently replace the
Gaussian distribution of methods based on Variational Autoencoders (VAEs) with
a tailored categorical one. This categorical VAE encourages latent spaces based on
disentangled representations. Such representations promise interpretability [39, 1],
fairness [58, 17, 106], and better sample complexity for learning [93, 7, 79, 111].

State-of-the-art unsupervised disentanglement methods enrich variational autoen-
coders based on Gaussian distributions [45] with regularizers encouraging disen-
tangling properties [38, 52, 11, 44, 14]. Locatello et al. [59] have shown that
unsupervised disentanglement without inductive priors is theoretically impossi-
ble. Thus, a recent line of work has shifted to weakly-supervised disentanglement
[61, 97, 60, 47]. While regularization and supervision encouraging disentangling
properties have been discussed extensively in the disentanglement literature, they
play little to no role in models based on discrete latent spaces.

Locatello et al. [59] have further shown that disentanglement properties strongly
depend on the initial parameters of the model (the random seed). They argue
that model selection should not depend on the considered disentanglement score
since these heavily rely on ground-truth labels, which are not present in real-world
datasets. We will show that the categorical variational autoencoder admits an un-
supervised disentangling score correlated with several disentanglement metrics.
Hence, to the best of our knowledge, we present the first disentangling model se-
lection based on unsupervised scores.
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5.4.2 Regularizing the Total Correlation

State-of-the-art unsupervised disentanglement methods enrich the Gaussian ELBO
with various regularizers encouraging disentangling properties. Kim and Mnih [44]
and Chen et al. [14] penalize the total correlation (TC) [114]

TC(z) = DKL

(
q(z) ∥ q̂(z)

)
= Eq(z)

[
log

q(z)

q̂(z)

]
(5.22)

where q̂(z) :=
∏n
i=1 q(zi) to reduce the dependencies between the dimensions of

the representation.

The TC quantifies the statistical dependence among multiple variables. It is an ex-
tension of the mutual information to more than two variables and is equal to the
Kullback-Leibler divergence between the joint distribution of the variables and the
product of the marginal distributions [44, 14]. The idea behind regularizing the TC
in disentanglement is to minimize the statistical dependencies between the dimen-
sions of the latent representation. In the context of VAEs, this would encourage
each latent dimension to capture a unique and independent aspect of the data vari-
ance, which leads to a more disentangled latent space. Reducing the TC to zero
would imply that the latent dimensions are statistically independent, enabling fully
disentangled representations.

Kim & Mnih [44] first sample from q̂(z) by randomly shuffling samples from q(z)
across the batch for each latent dimension [3]. They then utilize the density-ratio
trick [71, 101] to estimate the total correlation by training a discriminator D to
classify between samples from q(z) and q̂(z). If D(z) estimates the probability
that z is a sample from q(z) rather than from q̂(z), we can approximate

q(z)

q̂(z)
≈ D(z)(

1−D(z)
) . (5.23)

We have shown in Section 5.3 that the representations of our adapted categorical
VAE belong to the same vector space as the Gaussian representations. Thus, we
can straight-forwardly adopt the same procedure to estimate the total correlation of
q(z̄) of the D-VAE latent variable. We augment the ELBO of the D-VAE with a
total correlation regularizer to obtain the learning objective

Lψ,ϕ(x)− γEq(z)
[
log

D(z̄)

1−D(z̄)

]
(5.24)

for γ > 0 and name the corresponding model FactorDVAE. Finding new regular-
izers of the total correlation, which are tailored to the D-VAE could be interesting
future work.
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Figure 5.8: Visualization of reconstructions and latent space traversals from the
MPI3D dataset [27] of the semi-supervised D-VAE, utilizing masked attentions.
The masked attention allows for the incorporation of the number of unique varia-
tions, such as two for the object size. We visualize four degrees of freedom (DOF),
selected equidistantly from the total of 40. Left: The reconstructions are easily
recognizable, albeit with blurry details. Right: The object color, size, camera an-
gle, and background color (BG) are visually disentangled. The object shape and
the DOF factors remain partially entangled.

5.4.3 Semi-Supervised Training

The idea of semi-supervised disentanglement is that incorporating label informa-
tion of a limited amount of annotated data points during training encourages a latent
space with desirable structure with respect to the ground-truth factors of variation
[61]. The supervision is incorporated by enriching the ELBO with a regularizer
Rs(r(x), z), where Rs is a function of the annotated observation-label pairs. Lo-
catello et al. [61] normalize the targets zi to [0, 1] and propose the binary cross-
entropy loss (BCE) or the L2 loss for Rs. In contrast, we discretize z by binning
each dimension zi into m bins and utilize the cross-entropy loss for Rs obtaining
the learning objective

Lψ,ϕ(x) + ω

n∑

i=1

zji log
θji∑m
k=1 θ

k
i

(5.25)

where ω > 0 and zji = 1 if zi is in bin j and zji = 0 otherwise.

In order to utilize semi-supervised training, a set of data points needs to be anno-
tated beforehand. Different ground-truth factors of variation usually have a specific
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finite number of unique values they can take on, see Table A.3 in Appendix A. It is
unclear how to incorporate the knowledge about the number of unique variations
in the Gaussian VAE. Thus, previous work dismisses this information entirely [61].
In contrast, it is straightforward to implement this information in the D-VAE using
masked attention as introduced for the transformer architecture [112].

If we know that factor zi can assume a total of m′ < m distinct values, we set the
set of them′ active categories to be Ji = {1+⌊j m−1

m′−1⌉}m
′−1

j=0 ⊆ [m] and set θji = 0
for all j ̸∈ Ji. The use of masked attention in the D-VAE can be seen as a form of
negative constraint that is not straightforwardly replicable in the continuous case.

Being able to include the knowledge of the number of unique variations offers
unique advantages, particularly in the context of disentanglement and interpretabil-
ity. First, incorporating this information allows the model to better align the latent
dimensions with the actual ground-truth factors of variation. If we know in ad-
vance that a particular factor can only take on a finite set of distinct values, then we
can design our model accordingly, such that each unique variation corresponds to
a specific value or range in the latent dimension. This facilitates easier and more
intuitive manipulation of the generated samples as illustrated in Figure 5.8.

Second, this ability can also lead to better interpretability of the learned latent
space, a key goal in disentanglement. By incorporating the knowledge of unique
variations, we can help ensure that each unique variation corresponds to a distinct
point or region in the latent space, thereby enhancing its interpretability.

5.4.4 The Straight-Through Gap

In Section 5.3, we have seen that a discrete latent space yields favorable disentan-
gling properties. The latent space approximates a discrete representation while its
classes maintain the discussed order and the property of having neighborhoods. To
further encourage the parameters θ to become increasingly more discrete, we uti-
lize Temperature Matching as introduced in Section 5.2, i.e., increasing the Gumbel
scale parameter during training, which also has positive side-effects on the training
dynamics.

We have observed that sometimes the models approach local minima, for which z
is not entirely discrete. As per the previous discussion, those models have inferior
disentangling properties. We leverage this property by selecting models that yield
discrete latent spaces. Similar to the Straight-Through Estimator [8], we round z
off using argmax and measure the difference between the rounded and original
ELBO, i.e.,

GapST (x) = |LSTψ,ϕ(x)− Lψ,ϕ(x)|, (5.26)
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which equals zero if z is discrete. Similar candidates for the measurement could be
explored in future work. Figure 6.1 (left) illustrates the Spearman rank correlation
between GapST and various disentangling metrics on different datasets. A smaller
GapST value indicates high disentangling scores for most datasets and metrics.

5.4.5 Conclusion

In this section, we have explored several methods to improve the efficiency of
common discrete representations. We first introduced the Total Correlation (TC)
regularizer, a method adapted from the Gaussian VAE. Applying this regularizer
in the discrete context helps ensure that each latent dimension captures a unique
and independent aspect of data variance, which leads to a more disentangled latent
space.

Next, we explored the advantages of semi-supervised training in enhancing discrete
representations. Incorporating the knowledge of the number of unique variations
of ground-truth factors offers benefits such as the interpretability of the learned
latent space compared to the Gaussian approach. Finally, we addressed the straight-
through gap, allowing us to select models that yield the most discrete latent spaces
and hence, improve the disentangling properties.

Further study might explore more refined TC regularizers tailored to categorical
VAEs or investigate additional candidates for the straight-through gap measure. In
Section 6.2, we will show empirically how these improvements to the categorical
VAE not only improve disentangled representations over their Gaussian counter-
part but also beat state-of-the-art unsupervised disentanglement methods based on
Gaussian VAEs.



Chapter 6

Experimental Evaluation

This chapter examines and validates the methods proposed in the preceding chap-
ters analyzing our contributions through extensive experiments and evaluations.

In Section 6.1, we analyze the challenges of training discrete representations. We
evaluate the effectiveness of our proposed dropout residual connections and tem-
perature matching methods for enhancing the training of discrete models. Our
examination covers multiple stochastic computation graph instances, such as unsu-
pervised parsing of ListOps, multi-hop reasoning over Knowledge Graphs, end-to-
end learning of MNIST addition, and the capacity of VS-GAE to generate neural
architectures. Our goals are to demonstrate how these models perform in typical
application domains, evaluate the potential improvements achieved through our
proposed methods, and compare the performance of our discrete-continuous mod-
els with state-of-the-art models that lack stochastic components.

Section 6.2 focuses on the benefits of discrete representations. We analyze various
aspects of discrete Variational Autoencoder (VAE) models for unsupervised dis-
entanglement. The aim is to understand the advantages of discrete VAE models
over Gaussian VAEs, the potential of incorporating label information to enhance
discrete representations, and the interpretability of the latent space through visual-
izations.

In these investigations, we aim to demonstrate the generalization properties, and
improved interpretability of our models across a variety of tasks. We believe that
the enhancements we have made through dropout residual connections and tem-
perature matching enable the training of models based on discrete representations,
which improve over their Gaussian and non-stochastic counterparts.

85
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6.1 Challenges in Training Discrete Representations

This section aims to examine the challenges associated with the training of dis-
crete representations. We believe that by using our proposed approach of dropout
residual connections and temperature matching from Section 5.2 and supervised
learning of the stochastic nodes from Section 5.1, we can effectively enhance the
training of such models. The context of the experiments is threefold.

First, we want to analyze the behavior of complex stochastic computations graphs
arising in typical application domains, such as multi-hop reasoning in knowledge
graphs and unsupervised parsing of lists of operations. Second, we want to evaluate
the behavior of the stochastic computation graphs when incorporating the proposed
methods (dropout residual connections, temperature matching, and supervision on
the stochastic nodes) to improve the training behavior. Third, we want to com-
pare the resulting discrete-continuous models with state-of-the-art models which
do not have stochastic components. Here, we are especially interested in analyzing
the generalization (extrapolation) behavior of the models under consideration. We
present the full implementation details in Appendix A.

The first set of experiments focuses on unsupervised parsing of ListOps [70], a
complex dataset containing a list of operations in prefix arithmetic syntax and its
unique numerical solution. The objective is to understand how our proposed meth-
ods compare to existing stochastic softmax tricks [77] for estimating gradients.

Secondly, we analyze multi-hop reasoning over knowledge graphs (KGs). We con-
sider this a typical complex stochastic computation, and we aim to investigate how
our methods can be beneficial in dealing with multi-hop (path) queries in KGs [34].
As part of this experiment, we will evaluate our methods on a newly created dataset
based on FB15K-237 [105].

Additionally, we aim to understand the advantages of our proposed method com-
pared to state-of-the-art models that either lack stochastic components or need a
hard-coded logic program for the MNIST addition task [66]. On the one hand, our
model learns the structure of addition fully in a data-driven manner. On the other
hand, we learn discrete representations and, thus, obtain interpretable intermediate
outputs for the single MNIST inputs.

Finally, we will explore the behavior of discrete-continuous models whose stochas-
tic nodes are learned in a supervised way. We analyze the ability of VS-GAE to
generate neural architectures. Our evaluations will be based on the NAS-Bench-
101 dataset [123], aiming to understand the model’s capacity to imitate graph gen-
eration in an unsupervised manner during test time.
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The content of this section primarily draws upon the following publications:

Friede, D., & Niepert, M. (2021). Efficient Learning of Discrete-Continuous
Computation Graphs. Advances in Neural Information Processing Systems,
34, 6720-6732.

Friede, D., Lukasik, J., Stuckenschmidt, H., & Keuper, M. (2019). A var-
iational-sequential graph autoencoder for neural architecture performance
prediction. arXiv preprint arXiv:1912.05317.

Lukasik, J., Friede, D., Stuckenschmidt, H., & Keuper, M. (2020). Neu-
ral architecture performance prediction using graph neural networks. In
DAGM GCPR (pp. 188-201). Springer, Cham.

6.1.1 Unsupervised Parsing on ListOps

We investigate how our method compares to using stochastic softmax tricks as in-
troduced by Paulus et al. [77] for estimating gradients on the simplified variant of
the ListOps dataset [70]. The Listops dataset contains sequences in prefix arith-
metic syntax such as max[ 2 9 min[ 4 7 ] 0 ] and its unique numerical solutions
(here: 9) [70]. Prior work adapted and used this dataset to evaluate the perfor-
mance of stochastic softmax tricks [77]. Following this prior work, we first encode
the sequence into a directed acyclic graph and then run a graph neural network
(GNN) on that graph to compute the solution. Since the resulting dataset was not
published, we generated a dataset following their description. In addition to exam-
ples of depth 1 ≤ d ≤ 5, we further generated test examples of depth d = 8, 10 for
the extrapolation experiments. More precisely, we used the three operators min,
max and med and capped the maximum length of a sequence at 50. For each depth
d ∈ {1, 2, 3, 4, 5} we generated 20, 000 samples for the training set and 2, 000 sam-
ples each for the validation set and test set. In order to evaluate the generalization
behavior, we further generated 2, 000 test samples for each depth d ∈ {8, 10}. All
other settings are those of the original code [70].

The arithmetic syntax of each training example induces a directed rooted in-tree,
from now on called arborescence, which is the tree along which the message-
passing steps of a GNN operate. For instance, in the example mentioned above,
there is an edge from each token 2, 9, min[, 0, and the final ] directed to max[
and so on. We use the same bi-LSTM encoder as Paulus et al. [77] to compute the
logits of all possible edges and the same directed GNN architecture. The original
model uses a directed version of Kirchoff’s matrix-tree theorem as introduced by
Koo et al. [48] to induce the arborescence prior. We simplify this idea by taking, for
each node, the Gumbel-softmax over all possible parent nodes. Here we make use
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Table 6.1: The results for unsupervised parsing on ListOps [70]. Results taken
from Paulus et al. [77] are marked with an asterisk (*) and are based on a different
(unpublished) dataset. Column Inter. acc. represents the accuracy evaluated on the
interpretable intermediate representations. Our discrete models extrapolate much
better to depths not seen during training, especially for the task trained on the
ground truth graphs (GT) instead of on the sequence.

Task acc. (extrapolation)

Model Task acc. Edge prec. Inter. acc. d = 8 d = 10

Und.* 91.2± 1.8∗ 33.1± 2.9∗ - n.a. n.a.
Arb.* 95.0± 3.0∗ 75.0± 7.0∗ - n.a. n.a.

LSTM 91.5± 0.3 - - 83.7± 2.0 76.9± 3.7
Arb., τ = 2 96.8± 0.3 77.4± 1.8 - 84.3± 1.4 75.4± 1.7
Ours, τ = 1 96.1± 0.4 82.3± 1.1 70.9± 1.2 92.6± 1.1 86.9± 4.9
Ours, τ = 2 96.3± 0.5 76.8± 2.2 62.9± 2.4 92.7± 1.3 88.7± 3.3

Arb. (GT) 98.7± 0.1 100.0 - 86.4± 1.1 71.0± 2.1
Ours (GT) 99.8± 0.1 100.0 99.9± 0.0 99.8± 0.1 99.9± 0.1

of the fact that in an arborescece, each non-root node has exactly one parent. Note
that this prior is slightly less strict than the arborescence prior. As in Paulus et al.
[77], we exclude edges from the final closing bracket ] since its edge assignment
cannot be learned from the task objective.

In contrast to Paulus et al. [77], where only the edges of the latent graph are mod-
eled with categorical variables, we also modelled the nodes of the latent graphs
with discrete-continuous components as illustrated in Figure 2.4. Let Num ∈
R10×dim be the embedding layer that maps the 10 numeral tokens to their respec-
tive embedding vectors and let Pred : Rdim → R10 be the classification layer that
maps the embedding x ∈ Rdim of the final output to the logits of the 10 classes:
Pred(x) := Lin10×dim(ReLU(Lindim× dim

B (x))). After each message-passing op-
eration of the GNN, we obtain an embedding u ∈ Rdim for each node. By choosing
gw := Pred, we obtain the 10 class logits θ = gw(u) = Pred(u) ∈ R10 for the
numerals 0, . . . , 9. Using the Gumbel-softmax trick with logits θ, scale β, and
temperature τ , we obtain z ∈ R10. We then compute v = hw′(z) = z⊺Num. We
apply this on all intermediate node embeddings simultaneously and repeat this af-
ter each of the first 4 out of 5 message-passing rounds of the GNN. We use dropout
residual connection with increasing dropout probability α. In total, we obtain a
model with 5 sets of discrete operations: one set from the graph generation and 4
from the discrete-continuous message-passing steps. At test time, the model per-
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Table 6.2: The ablation study for the ListOps task. Temperature matching improves
the training behavior of the model. The addition of dropout residual connections is
crucial for efficient learning.

Task acc. (extrapolation)

Model Task acc. Edge prec. Inter. acc. d = 8 d = 10

Ours, τ = 1 96.1± 0.4 82.3± 1.1 70.9± 1.2 92.6± 1.1 86.9± 4.9
(-) TM 95.1± 1.7 76.9± 12.1 66.3± 9.2 90.5± 2.4 83.7± 4.0
(-) DR 74.8± 11.5 43.9± 30.3 29.4± 18.6 70.5± 9.3 66.7± 8.8
(-) DR, TM 56.2± 5.0 15.1± 7.7 12.7± 3.2 53.1± 6.6 49.2± 7.1

forms discrete and interpretable operations. Figure 2.4 depicts an example stochas-
tic computation graph for the task. We used the same LSTM as in Paulus et al. [77]
and a re-implemented version of their model with our customized prior. For abla-
tion purposes, we run all our models with and without dropout residuals and tem-
perature matching, respectively. In the models that use discretization, we slightly
modify the pre-message from node j to node i of the GNN’s message-passing from
[xi, xj ] to [xemb, xj ]. Since all nodes become intermediate results by construction
after the first discretization step, operation nodes would lose the information about
their operators otherwise. We also tested this modification on the baselines with-
out discretization but noticed a decline in performance. All models are run for 100
epochs with a learning rate of 0.005 and we select τ ∈ {1, 2, 4}. We keep all other
hyperparameters as in Paulus et al. [77]. We evaluate the task accuracy, the edge
precision (using the correct graphs), the task accuracy on intermediate operations,
and two extrapolation tasks. For the evaluation of the extrapolation task with depth
d, we run the GNN d rounds instead of 5.

Table 6.1 compares the proposed models with state of the art approaches. The best
performing models are those with discrete-continuous components trained with
dropout residuals and temperature matching. While our models do not improve the
task accuracy itself, they exceed state of the art methods on all other metrics. Most
noticeable is the improved generalization behavior: our models extrapolate much
better to expressions with a depth not seen during training. This becomes even
more visible when trained on the ground truth graph (GT) directly (instead of on
the sequence) where the generalization accuracy is close to 100%. Our model also
achieves the best performance on the graph structure recovery with a precision
of 82.3%. The mismatch between the task accuracy and the edge precision is
mainly due to examples for which the correct latent graph is not required to solve
the problem, e.g., for the task max[ 2 max[ 4 7 ]] it does not matter whether the
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Table 6.3: The results of the path query task on the newly created path query
dataset based on FB15K-237. Our model that discretizes the score function of the
base model performs much better on the path query task and generalizes perfectly
to paths up to length 10.

MRR MRR (etrapolation)

Model 1 2 3 4 5 6 7 8 9 10

ComplEx 32.9 30.6 24.7 20.8 16.5 15.1 12.2 10.5 8.8 7.1
ComplEx-C 31.3 35.2 36.9 37.8 35.2 31.9 25.7 19.4 14.1 9.7

Ours, τ = 4
26.8 52.3 48.8 51.4 52.6 54.2 54.8 54.7 54.9 54.7
±0.25 ±0.39 ±0.08 ±0.47 ±0.10 ±0.26 ±0.58 ±1.37 ±1.20 ±1.03

7 points to the first or the second max[. Note that our method performs discrete
operations at test time which are therefore verifiable and more interpretable. Our
model generates intermediate representations that can be evaluated in exactly the
same way as the final outputs, see Column Inter. acc. in Table 6.1.

The ablation study in Table 6.2 further highlights the challenge of learning discrete-
continuous computation graphs with multiple sequential Gumbel-softmax compo-
nents. It is entirely impossible to train the model without dropout residuals and
temperature matching. The analysis in Section 4.1.2 reveal the reason. As il-
lustrated in Figure 5.5, sequential discrete distributions in the computation graph
cause vanishing gradients. Temperature matching stabilizes learning somewhat but
to avoid vanishing gradients entirely, the use of dropout residuals is necessary.

6.1.2 Multi-Hop Reasoning over Knowledge Graphs

Here we consider the problem of answering multi-hop (path) queries in knowledge
graphs (KGs) [34]. The objective is to find the correct object given the subject
and a sequence of relations (the path) without knowing the intermediate entities.
While traditional knowledge graph completion models like Rescal, [72], DistMult,
[120], and ComplEx, [107] show competitive results for the link prediction task,
[92], they seem less suited to answer path queries, see Guu et al. [34]. The problem
generalizes the standard and popular knowledge graph completion problem. latter
published two datasets for the path query answering task based on the subsets of
WordNet and Freebase from Socher et al. [100]. To overcome the test leakage
problems found in other subsets of Freebase, Toutanova and Chen [105] introduced
the FB15K-237 dataset, which has become the most common dataset to evaluate
link prediction. We evaluate our approach on a newly created dataset based on
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Table 6.4: Results for the path query benchmark [34]. Our proposed model
performs significantly better than the baselines KGC models which do not have
stochastic components (labeled with -C).

WordNet Freebase

Model MQ H@10 MQ H@10

Bilinear-C [34] 89.4 54.3 83.5 42.1
DistMult-C [34] 90.4 31.1 84.8 38.6
TransE-C [34] 93.3 43.5 88.0 50.5
Path-RNN [18] 98.9 – – –
ROP [122] – – 90.7 56.7
CoKE [113] 94.2 67.9 95.0 77.7

Ours, τ = 4 94.4± 0.0 64.3± 0.11 89.6± 0.46 68.7± 0.32

FB15K-237. Particularly, we built the graph consisting of all training triples from
the original dataset and sampled a starting entity uniformly. We then sampled an
incident relation uniformly and sampled the next entity uniformly from all entities
reachable via this relation. Continuing this way, we created a dataset of 272 115
training paths of length (number of relations) 2, 3, 4, 5, respectively. We repeated
this procedure on the graph consisting of all triples (not only training triples) and
removed all duplicates to create 17 535 validation paths of length 2, 3, 4, 5, and
20 466 test paths of length 2, . . . , 10. Finally, we added all of the FB15K-237
triples to the dataset as paths of length 1. For comparison with state-of-the-art
approaches, we further evaluate various approaches on the standard benchmarks
for path queries [34].

We model each application of a relation type to an intermediate entity as a discrete-
continuous component that discretely maps to one of the KG entities. The discrete
distribution p(z;θ), therefore, has as many categories as there are entities in the
KG. Let score(s, r,o) : R3×dim → R be a scoring function that maps the em-
beddings of a triple to the logit (unnormalized probability) of the triple being true.
Given the current (intermediate) entity embedding s and relation type embedding
r we compute the logits θ for all possible entities. Hence, the function g computes
the logits for all possible entities. Using the Gumbel-softmax trick with parame-
ter θ, scale β, and temperature τ , we obtain the sample z ∈ Rn. The function h
now computes z⊺E where E be the matrix whose rows are the entity embeddings.
We use dropout residual connection between the input and output vectors of the
discrete-continuous component during training. Note that we do not increase the
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Table 6.5: Results for the extrapolation benchmark [113] for the path query
dataset [34]. Our model achieves best results on 10 out of 16 setups. The ad-
vantage of discretizing is most visible when trained on short paths.

WordNet Freebase

Paths Model MQ H@10 MQ H@10

≤ 4
CoKE 93.6 65.5 93.1 71.2
Ours 94.3± 0.14 64.7± 0.11 88.8± 1.29 69.4± 0.72

≤ 3
CoKE 92.6 65.0 90.6 64.6
Ours 93.4± 0.04 65.0± 0.11 88.3± 1.85 68.5± 0.46

≤ 2
CoKE 90.8 49.5 89.4 59.5
Ours 90.2± 0.04 62.0± 0.04 87.6± 0.62 68.6± 0.36

≤ 1
CoKE 73.5 16.7 72.7 37.3
Ours 81.1± 0.22 52.2± 0.17 82.1± 0.54 63.9± 0.6

number of parameters compared to the base scoring models. We use ComplEx
[107] as the scoring function.

For the FB15K-237 experiments, we use a slight variation of our model for Free-
base and Wordnet to optimize the training in both directions of the path. As base-
lines, we take the same model without the discretization module and train it first
on triples only (ComplEx) and then on all paths (ComplEx-C). We validate the
models using filtered MRR (Bordes et al. [9]) on all validation paths and report
test results on all paths for each length individually. Table 6.3 lists the results
of the experiments on the new FB15K-237 based dataset. The models based on
discrete-continuous components achieve improvements of up to 49% compared to
the baselines. Even more pronounced is the ability of these models to generalize:
the accuracy does not drop even when tested on paths twice the length of those seen
during training. The performance gap between 1 relation and 2 relations is mainly
due to the fact that the test paths of length 1 purely consist of triples from the test
graph while all other paths consist of all triples from the full knowledge graph.

We compare our best performing model on the original dataset from Guu et al. [34]
with their proposed evaluation protocol and baselines against RNN models, Path-
RNN [18], ROP [122] and the state-of-the-art transformer model CoKE [113] for
the standard task as well as in an extrapolation setting.

Table 6.4 lists the results for the proposed model in comparison to several base-
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Table 6.6: A comparison of our proposed method with DeepProbLog and a CNN
baseline. Compared to DeepProbLog, our model does not need a hard-coded logic
program. Instead, it learns addition in a data-driven manner.

Model Task Acc. Interpretable Discrete Learned Structure

Baseline [66] 89.14± 1.22 No No No
DeepProbLog [66] 98.17± 0.20 Yes Yes No
Ours, τ = 8 98.10± 0.15 Yes Yes Yes

lines. Our proposed model performs significantly better than the baselines KGC
models which do not have stochastic components (labeled with -C). On WordNet,
our model can even keep pace with the state of the art transformer model CoKE.

Similar to the results on ListOps, the discrete-continuous models have the strongest
generalization performance (see Table 6.5). Here, we use the same test set as before
but reduce the length of the paths seen during training. Even when trained only on
paths of length ≤ 3, our model performs better on the path query task than most
baselines trained on paths of all lengths.

6.1.3 End-to-End Learning of MNIST Addition

The MNIST addition task addresses the learning problem of simultaneously (i)
recognizing digits from images and (ii) performing the addition operation on the
digit’s numerical values [66]. The dataset was introduced with DeepProbLog, a
system that combines neural elements with a probabilistic logic programming lan-
guage. In DeepProbLog the program that adds two numbers is provided. We
adopt their approach of using a convolutional neural network (CNN) to encode
the MNIST images. Contrary to their approach, we learn the operation without any
prior knowledge about adding numbers in a data-driven manner.

Our proposed model is trained without a given logic program. The addition op-
eration is modeled as Add(x,y) = Lindim×2 dim

B (ReLU(Lin2 dim×2 dim
B ([x;y])))

and we use a single linear layer to compute the logits. Given u ∈ Rdim, the encod-
ing of the digit obained from the CNN, the function g computes θ = Lin(u), that
is, the 19 logits for all possible numbers. Using the Gumbel-softmax trick with
parameter θ, scale β, and temperature τ , we obtain z ∈ R19. The function h now
computes v = z⊺ P ∈ Rdim where P is the weight matrix of Lin. We discretize the
two outputs of the CNN, execute the addition layer and use the single linear layer
P for the classification. This results into a model that has in total fewer parameters
than the baseline in [66].



CHAPTER 6. EXPERIMENTAL EVALUATION 94

Table 6.6 lists the results on this task. Our proposed model, even though trained
without a given logic program and in a data-driven manner, achieves the same
accuracy as DeepProbLog. Since we use hard sampling during test time, we can
discretely read out the outputs of the internal CNN layer.

6.1.4 VS-GAE’s Ability to Generate Neural Architectures

In this section, we evaluate VS-GAE through reconstruction ability and valid gen-
eration of neural architectures based on NAS-Bench-101 [123]. At training time,
the model learns the graph generation in a supervised manner. This experiment
evaluates the model’s ability to imitate the graph generation without supervision
during test time.

NAS-Bench-101 [123] is a public dataset of neural architectures in a restricted cell
structured search space [128] evaluated on the CIFAR-10-classification set [49].
NAS-Bench-101 considers the following constraints to limit the search space: it
only considers directed acyclic graphs, the number of nodes is limited to |V | ≤ 7,
the number of edges is limited to |E| ≤ 9 and only 3 different operations are al-
lowed {3 × 3 convolution, 1 × 1 convolution, 3 × 3 max− pool}. These
restrictions lead to a total of 423k unique convolutional architectures. The archi-
tectures have been trained for four increasing numbers of epochs {4, 12, 36, 108}.
Each of these architectures is mapped to its validation and training measures. In
this experiment we use the architectures trained for 108 epochs.

To evaluate VS-GAE by means of reconstruction ability and valid generation of
neural architectures, we train the VS-GAE on 90% of the dataset and test it on the
10% held-out data.

We first measure the reconstruction accuracy which describes how often our model
can reconstruct the input graphs of the test set perfectly. For this purpose, after cal-
culating the mean hG and the variance hvarG of the approximated posterior qϕ(z|G)
for the test set, we sample z from the latent representation of each input graph 10
times and decode each sample again 10 times. The average portion of the decoded
graphs that are identical to the input ones is then reported as the reconstruction
accuracy.

The second ability we are interested in is the prior validity which quantifies how
often our model is able to generate valid graphs from the VS-GAE prior distribu-
tion. Following Zhang et al. [126], we sample 1, 000 vectors from the latent space
with prior distribution p(z) and decode each vector 10 times. The average portion
of the decoded graphs that are valid is then reported as the prior validity. For a
valid graph by means of the NAS-Bench 101 [123] search space, it has to pass the
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Table 6.7: The reconstruction accuracy and prior validity of VS-GAE in %.

Method Accuracy Validity

VS-GAE 99.99 95.09

following validity checks: 1) exactly one starting point, i.e., the input node, 2) ex-
actly one ending point, i.e., the output node, 3) there exist no nodes which do not
have any predecessors, except for the input node, 4) there exist no nodes which do
not have any successors, except for the output node, 5) the graphs are DAGs.

See Table 6.7 for the evaluation results. Our model, VS-GAE, shows a nearly per-
fect reconstruction accuracy with a high prior validity. Thus, VS-GAE represents a
strong tool for further downstream tasks like sampling or neural architecture gen-
eration.

6.1.5 Conclusion

We demonstrated the role of our proposed approaches in addressing challenges
encountered when training discrete representations. The integration of dropout
residual connections and temperature matching has effectively proven to enhance
the overall performance and robustness of such models.

Our analysis covers multiple stochastic computation graph instances, featuring var-
ied complex structures. Starting with unsupervised parsing on ListOps, we observe
substantial improvement in generalization ability when operating on unseen pars-
ing length. Although the task accuracy was not notably enhanced, the models
excelled in graph structure recovery, generalization, and interpretability.

Furthermore, the introduced variations of the model led to an impressive perfor-
mance gain in the generalization abilities in multi-hop reasoning over knowledge
graphs. This ability to perform well even on paths twice the length of those en-
countered during training further underlines the robustness of our approach.

The MNIST addition task demonstrated the model’s capability to combine image
recognition and addition operation in a data-driven manner without prior knowl-
edge. Despite the absence of a given logic program, our model matched the accu-
racy of DeepProbLog, the standard in this domain, while having fewer parameters.
This illustrates the model’s efficiency and adaptability.

Finally, we evaluated VS-GAE’s ability to generate neural architectures based on
NAS-Bench-101. The model was trained in a supervised manner, but was tested in
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an unsupervised setting, showcasing its strong performance in reconstruction and
validity of generated neural architectures.

The demonstrated generalization and improved interpretability of our models across
a variety of tasks, highlight the advantages of our proposed methods. The enhance-
ments made through dropout residual connections and temperature matching have
demonstrated the potential for significant improvements in the training and perfor-
mance of models based on discrete representations.

6.2 Understanding the Benefits of Discrete Representa-
tions

We present a comprehensive analysis of various aspects of discrete VAE models
for unsupervised disentanglement as introduced in Sections 5.3 and 5.4. First, we
investigate whether a discrete VAE offers advantages over Gaussian VAEs in terms
of disentanglement properties, finding that the discrete model generally outper-
forms its Gaussian counterpart and showing that the FactorDVAE achieves new
state-of-the-art MIG scores on most datasets. Next, we explore the usefulness of
different disentanglement metrics for downstream tasks, revealing that the MIG
score is the most reliable indicator of sample efficiency across different datasets.
Additionally, we propose a model selection criterion based on GapST to find good
discrete models solely using unsupervised scores. Furthermore, we examine how
incorporating label information can further enhance discrete representations, dis-
covering that the unregularized discrete method outperforms other methods in the
semi-supervised disentanglement task, especially when more labels are available.
Lastly, we provide visualizations of the latent categories using a unique approach
that allows straightforward traversal in the discrete latent space. This approach
leads to better interpretability of the latent space as the choice of the values of
different factors of variation becomes intuitive.

The content of this section primarily draws upon the following publication:

Friede, D., Reimers, C., Stuckenschmidt, H., & Niepert, M. (2023). Learn-
ing Disentangled Discrete Representations. Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD

In the following, we give a short summary of the experimental setup.

Methods The experiments aim to compare the Gaussian VAE with the discrete
VAE. For both VAEs, we consider the unregularized version and the total cor-
relation penalizing method, VAE, D-VAE, FactorVAE [44] and FactorDVAE, see
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Equation (5.24). For the semi-supervised experiments, we augment each loss func-
tion with the supervised regularizer Rs as in Section 5.4.3. For the Gaussian VAE,
we choose the BCE and the L2 loss for Rs, respectively. For the discrete VAE, we
select the cross-entropy loss, once without and once with masked attention where
we incorporate the knowledge about the number of unique variations.

Datasets We consider six commonly used disentanglement datasets which offer
explicit access to the ground-truth factors of variation: dSprites [38], C-dSprites
[59], SmallNORB [54], Cars3D [86], Shapes3D [44] and MPI3D [27]. All datasets
are rendered in images of size 64 × 64 and normalized to [0, 1]. As in [59], we
directly sample from the generative model, effectively avoiding overfitting. We
consider gray-scale datasets dSprites, SmallNORB, and Circles, as well as datasets
with three color channels C-dSprites, Cars3D, Shapes3D, and MPI3D. We fol-
lowed the instructions from [116] to create the Circles dataset utilizing the Sprite-
world environment [115], setting the size to 0.2. Table A.3 in Appendix A contains
a set of all ground-truth factors of variation for each dataset.

Metrics We consider the commonly used disentanglement metrics that have been
discussed in detail in [59] to evaluate the representations: BetaVAE metric [38],
FactorVAE metric [44], Mutual Information Gap (MIG) [14], DCI Disentangle-
ment (DCI) [23], Modularity [88] and SAP score (SAP) [52]. As illustrated on the
right side of Figure 6.1, the MIG score seems to be the most reliable indicator of
statistical sample efficiency, that is, the downstream task accuracy based on 100
training samples divided by the accuracy based on 10 000 samples, across differ-
ent datasets. Therefore, we primarily focus on the MIG disentanglement score. We
discuss this in more detail in Section 6.2.2.

Experimental Protocol We adopt the experimental setup of prior work ([59]
and [61]) for the unsupervised and for the semi-supervised experiments, respec-
tively. Specifically, we utilize the same neural architecture for all methods so that
all differences solely emerge from the distribution of the type of VAE. For both
total correlation penalizing methods, we choose 6 values for the hyperparameter
γ from Equation (5.24) in Section 5.4. For the unsupervised case, we run each
considered method on each dataset for 50 different random seeds. Since the two
unregularized methods do not have any extra hyperparameters, we run them for
300 different random seeds instead. For the semi-supervised case, we consider
two numbers (100/1000) of perfectly labeled examples and split the labeled ex-
amples (90%/10%) into a training and validation set. The model cohorts of the
total correlation penalizing methods consist of the 6 hyperparameters γ as well as
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Table 6.8: The median MIG scores in % for state-of-the-art unsupervised methods
compared to the discrete methods. Results taken from [59] are marked with an
asterisk (*). We have re-implemented all other results with the same architecture
as in [59] for the sake of fairness. The last row depicts the scores of the models
selected by the smallest GapST . The 25% and the 75% quantiles are depicted in
the squared brackets below the median values.

Model dSprites C-dSprites SmallNORB Cars3D Shapes3D MPI3D

β-VAE [38] 11.3∗ 12.5∗ 20.2∗ 9.5∗ n.a. n.a.
[7.5,15.8] [9.7,14.6] [19.1,22.8] [5.6,11.7]

β-TCVAE [14] 17.6∗ 14.6∗ 21.5∗ 12.0∗
n.a. n.a.

[13.6,22.2] [10.4,18.0] [18.3,24.5] [7.3,14.0]

DIP-VAE-I [52] 3.6∗ 4.7∗ 16.7∗ 5.3∗ n.a. n.a.
[1.9,9.4] [2.4,9.0] [8.5,20.9] [3.4,7.2]

DIP-VAE-II [52] 6.2∗ 4.9∗ 24.1∗ 4.2∗ n.a. n.a.
[3.6,8.6] [3.2,7.9] [22.4,25.4] [2.7,6.4]

Ann.VAE [11] 7.8∗ 10.7∗ 4.6∗ 6.7∗ n.a. n.a.
[2.9,20.9] [4.8,25.7] [1.5,8.1] [4.6,7.7]

FactorVAE [44] 17.4 14.3 25.3 9.0 34.7 11.1
[12.6,26.3] [11.7,20.9] [24.0,26.4] [7.2,10.6] [27.0,44.3] [6.9,31.3]

D-VAE 17.4 9.4 19.0 8.5 28.8 12.8
[13.2,20.0] [5.5,13.4] [16.3,21.8] [5.8,11.1] [21.8,34.2] [8.9,16.5]

FactorDVAE 21.7 15.5 23.2 14.9 42.4 30.5
[14.5,35.7] [11.3,20.3] [20.6,24.8] [12.8,16.3] [34.8,48.3] [26.0,32.1]

Selection 39.5 20.0 22.7 19.1 40.1 32.3

6 hyperparameters ω as in Equation (5.25) and one random seed, while the model
cohorts of the unregularized methods consist of 6 hyperparameters ω and 6 ran-
dom seeds. We use the Rs value computed on the validation data to select the best
model of each cohort, respectively. We present the full implementation details in
Appendix A.

6.2.1 Improvement in Unsupervised Disentanglement

Comparison of the Unregularized Models In the first experiment, we aim to an-
swer our main research question of whether discrete latent spaces yield structural
advantages over their Gaussian counterparts. Figure 6.2 depicts the comparison
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(A) (B) (C) (D) (E) (F)

BetaVAE
FactorVAE

MIG
DCI

Modularity
SAP

-13 17 -13 -2 -30 -36
-21 17 -3 -11 -25 -24
-29 -8 46 -25 -26 -8
-19 3 -49 -49 -52 -35
-35 -8 -20 -22 -22 -14
-4 -23 7 -15 -14 4

(A) (B) (C) (D) (E) (F)

BetaVAE
FactorVAE

MIG
DCI

Modularity
SAP

-20 -17 -38 -36 -53 -67
-42 -33 -39 -30 -54 -70
21 51 23 62 32 58
32 59 39 19 -39 -19
-62 -76 28 -27 -37 -68
2 59 7 27 -37 33

Figure 6.1: The Spearman rank correlation between various disentanglment met-
rics and GapST (left) and the statistical sample efficiency, i.e., the downstream
task accuracy based on 100 samples divided by the one on 10 000 samples (right)
on different datasets: dSprites (A), C-dSprites (B), SmallNORB (C), Cars3D (D),
Shapes3D (E), MPI3D (F). Left: Correlation to GapST indicates the disentan-
glement skill. Right: Only a high MIG score reliably leads to a higher sample
efficiency over all six datasets.

regarding the disentanglement scores (left) and the datasets (right). The discrete
model achieves a better score on the MPI3D dataset for each metric with median
improvements ranging from 2% for Modularity to 104% for MIG. Furthermore,
the discrete model yields a better score for all datasets but SmallNORB with me-
dian improvements ranging from 50% on C-dSprites to 336% on dSprites. More
detailed results can be found in Figure B.4, and Figure B.5 in Appendix B. Taking
into account all datasets and metrics, the discrete VAE improves over its Gaussian
counterpart in 31 out of 36 cases.

Comparison of the Total Correlation Regularizing Models For each VAE, we
choose the same 6 values of hyperparameter γ for the total correlation penalizing
method and train 50 copies, respectively. The right side of Figure 6.3 depicts the
comparison of FactorVAE and FactorDVAE w.r.t. the MIG metric. The discrete
model achieves a better score for all datasets but SmallNORB with median im-
provements ranging from 8% on C-dSprites to 175% on MPI3D. These findings
indicate that discrete latent spaces indeed yield structural advantages over their
Gaussian counterparts.

6.2.2 Choice of the Disentanglement Metric

In this experiment, we want to determine which disentanglement metric indicates a
sound discrete latent space with respect to downstream tasks. We follow the simple
downstream classification task from [59] of recovering the true factors of variations
from the learned representation using either multi-class logistic regression (LR) or
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Figure 6.2: Comparison between the unregularized Gaussian VAE and the discrete
VAE by kernel density estimates of 300 runs, respectively. Left: Comparison on
the MPI3D dataset w.r.t. the six disentanglement metrics. The discrete model
yields a better score for each metric, with median improvements ranging from 2%
for Modularity to 104% for MIG. Right: Comparison on all six datasets w.r.t. the
MIG metric. With the exception of SmallNORB, the discrete VAE yields a better
score for all datasets with improvements of the median score ranging from 50% on
C-dSprites to 336% on dSprites.

gradient-boosted trees (GBT). More precisely, we sample training sets of two dif-
ferent sizes, 100 and 10 000, and evaluate the average test accuracy across factors
on a test set of size 5 000, respectively. To analyze the sample complexity, we mea-
sure the Spearman rank correlation between the different disentanglement metrics
and the statistical sample efficiency that is, the test accuracy based on 100 training
samples divided by the accuracy based on 10 000 samples. The right side of Fig-
ure 6.1 depicts this correlation regarding the LR task for all six datasets. We can
observe a high variance of the correlation depending on the selected disentangle-
ment metric. The correlation with the DCI, Modularity, and SAP scores depends
on the data, while a high BetaVAE or FactorVAE score even negatively impacts
the sample efficiency. Only a high MIG score reliably leads to a higher sample
efficiency over all six datasets. The experiments regarding the GBT task in Fig-
ure B.1 in Appendix B mostly confirm this finding. Consequently, we are mainly
interested in the structural behavior of discrete representations regarding the MIG
disentanglement score.

6.2.3 Match State-of-the-Art Disentanglement Methods

Current state-of-the-art unsupervised disentanglement methods enrich Gaussian
VAEs with various regularizers encouraging disentangling properties. Table 6.8
depicts the MIG scores of all methods as reported in [59] utilizing the same ar-
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(A) (B) (C) (D) (E) (F)

BetaVAE
FactorVAE

MIG
DCI

Modularity
SAP

26 -1 52 2 -21 61
13 -1 61 -4 -22 54
-41 -41 -29 -45 -13 -66
-51 -43 -40 -33 -38 9
72 35 -45 3 -6 61
21 -50 -5 -24 -16 -51

(A) (B) (C) (D) (E) (F)
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0.2
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0.8

M
IG

FactorVAE
FactorDVAE

Figure 6.3: Disentangling properties of FactorDVAE on different datasets: dSprites
(A), C-dSprites (B), SmallNORB (C), Cars3D (D), Shapes3D (E), MPI3D (F).
Left: The Spearman rank correlation between various disentangling metrics and
GapST of D-VAE and FactorDVAE combined. A small GapST indicates high
disentangling scores for most datasets regarding the MIG, DCI, and SAP metrics.
Right: A comparison of the total correlation regularizing Gaussian and the dis-
crete model w.r.t. the MIG metric. The discrete model yields a better score for
all datasets but SmallNORB with median improvements ranging from 8% on C-
dSprites to 175% on MPI3D.

chitecture as us. We have seen in Experiment 6.2.1 that we can also utilize TC
regularization to improve the discrete VAE further. While the unregularized dis-
crete VAE yields MIG scores that are on par with the regularized state-of-the-art
methods, the TC regularizing discrete method improves these scores heavily. Fac-
torDVAE achieves new state-of-the-art MIG scores on all datasets but SmallNORB,
improving the previous best scores by over 17% on average. These findings sug-
gest that incorporating results from the disentanglement literature might lead to
even stronger models based on discrete representations.

6.2.4 Unsupervised Model Selection for Disentanglement

A remaining challenge in the disentanglement literature is selecting the hyperpa-
rameters and random seeds that lead to good disentanglement scores [61]. The
Gaussian VAE yields unsupervised scores like the KL divergence, the reconstruc-
tion loss, or the ELBO, which are not helpful for model selection [59]. We showed
in Section 4.2.3 that a discrete latent space yields favorable disentangling prop-
erties. We propose a model selection based on an unsupervised score measuring
the discreteness of the latent space utilizing GapST from Section 5.4.4. The left
side of Figure 6.3 depicts the Spearman rank correlation between various disen-
tangling metrics and GapST of D-VAE and FactorDVAE combined. Note that the
unregularized D-VAE model can be identified as a FactorDVAE model with γ = 0.
A small Straight-Through Gap corresponds to high disentangling scores for most
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Figure 6.4: The percentage of each semi-supervised method being the best over
all datasets and disentanglement metrics for different selection methods: median,
lowest Rs, lowest GapST , median for 1000 labels. The unregularized discrete
method outperforms the other methods in semi-supervised disentanglement task.
Utilizing the masked regularizer improves over the unmasked one.

datasets regarding the MIG, DCI, and SAP metrics. This correlation is most vi-
tal for the MIG metric. We anticipate finding good hyperparameters by selecting
those models yielding the smallest GapST . The last row of Table 6.8 confirms this
finding. This model selection yields MIG scores that are, on average, 22% better
than the median score and not worse than 6%.

6.2.5 Semi-Supervised Disentanglement Methods

Locatello et al. [61] suggest utilizing the semi-supervised regularizer Rs from
Equation 5.25 in two different ways. They employ the semi-supervised regular-
izer Rs by including 90% of the label information during training and utilizing
the remaining 10% for a model selection. We also experiment with a model se-
lection based on the GapST value. Figure 6.4 depicts the percentage of each
semi-supervised method being the best over all datasets and disentanglement met-
rics. The unregularized discrete method surpasses the other methods on the semi-
supervised disentanglement task. In contrast to the unsupervised setting, the D-
VAE unexpectedly outperforms FactorDVAE. We hypothesize that the CE regular-
izer is a strong inductive prior for disentanglement itself and gets diminished by the
additional TC regularizer. The advantage of the discrete models is more significant
for the median values than for the model selection. This may also explain why the
advantage of the discrete models is more evident on the median values since 10%
label data might not suffice for the model selection. Utilizing GapST for selecting
the discrete models only partially mitigates this problem. Incorporating the number
of unique variations by utilizing the masked regularizer improves the disentangling
properties significantly, showcasing another advantage of the discrete latent space.
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Floor Wall Color Size Type Azimuth

Latent Category Traversals

Figure 6.5: Reconstructions and latent space traversals from the Shapes3D dataset
[44] of the semi-supervised D-VAE, utilizing masked attentions with the lowestRs
value. The masked attention allows for the incorporation of the number of unique
variations, such as four for the object type. For the other factors of variation,
We visualize four categories, selected equidistantly. Left: The reconstructions are
easily recognizable, albeit with blurry details. Right: All factors of variation are
visually disentangled.

6.2.6 Visualization of the Latent Categories

Prior work uses latent space traversals for qualitative analysis of representations
[38, 11, 44, 116]. A latent vector z ∼ qϕ(z|x) is sampled, and each dimension zi
is traversed while keeping the other dimensions constant. The traversals are then re-
constructed and visualized. Unlike the Gaussian case, the D-VAE’s latent space is
known beforehand, allowing straightforward traversal along the categories. Know-
ing the number of unique variations lets us use masked attention to determine the
number of each factor’s categories, improving latent space interpretability. Fig-
ure 5.8 and Figure 6.5 illustrates the reconstructions of four random inputs and
latent space traversals of the semi-supervised D-VAE utilizing masked attentions
for the the MPI3D dataset [27] and the Shapes3d dataset [44], respectively. While
the reconstructions are easily recognizable, their details can be partially blurry,
particularly concerning the shapes. Most factors of variation, e.g., the object color,
object size, camera angle, and background color are visually disentangled, and
their categories can be selected straightforwardly to create targeted observations.
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The Shapes3d dataset in Figure 6.5 is visually disentangled. Each categorical dis-
tribution belongs to a single factor of variation. For the MPI3D dataset depicted in
Figure 5.8, the partially entangled factors, such as object shape and the two-degree-
of-freedom (DOF) factors, are precisely those also entangled in the observation
space. The observations are two-dimensional projections of a three-dimensional
robotic arm, meaning that different settings of the DOF factors might result in very
similar or even identical projections. Moreover, the projection of the object shape
changes depending on the DOF factors. This finding perfectly aligns with the dis-
cussion in Section 5.3, where we proposed that the model maps observations with
similar pixel values close together in the latent space and learns a disentangled rep-
resentation by finding those observations with the smallest difference in the pixel
values.

6.2.7 Conclusion

Our experimental evaluation and analysis of discrete VAE models have revealed
several key insights into their benefits for unsupervised disentanglement. The re-
sults demonstrate that discrete VAE models generally outperform their Gaussian
counterparts, and the FactorDVAE achieves new state-of-the-art MIG scores across
most datasets. This underlines the structural advantages of discrete latent spaces in
representing data with higher disentanglement quality.

Furthermore, incorporating label information can improve discrete representations,
with the discrete method demonstrating superior performance in semi-supervised
disentanglement, especially when more labels are available. Our findings suggest
that integrating the advancements from the disentanglement literature can lead to
even more robust models based on discrete representations.

Lastly, the visualization approach we presented allows for intuitive traversal of the
discrete latent space, enhancing model interpretability.



Chapter 7

Conclusion

The present thesis, ”Exploring Discrete Representations in Stochastic Computa-
tion Graphs: Challenges, Benefits, and Novel Strategies,” undertakes a comprehen-
sive study of discrete representations with Stochastic Computation Graphs (SCGs).
Five research questions guided the study, focusing on the challenges in training
models using discrete representations, their potential benefits, and novel strategies
to overcome the challenges and maximize the performance and efficiency of these
representations.

In Chapter 2, the background for the thesis was established by investigating the
role of SCGs in deep learning, including within Variational Autoencoders (VAEs).
This investigation further introduced and discussed the concepts of Gumbel-Max
and Gumbel-Softmax tricks and disentanglement in VAEs. We then explored prior
work in Chapter 3, providing context and demonstrating the relevance of this re-
search.

Our theoretical analysis in Chapter 4 confirmed that the training process with dis-
crete representations presents unique challenges. These challenges stem from in-
herent complexities in differentiating through stochastic nodes and the complica-
tions of the Gumbel-softmax trick, such as the underutilization of categories dur-
ing training. Despite these challenges, we have shown that discrete representations
have distinct structural advantages over their continuous counterparts. Primarily,
we found that discrete representations enhance disentanglement, offering a poten-
tial explanation for the recent successes of discrete-representations-based methods.

We developed several methods in Chapter 5 to address these challenges and fur-
ther optimize the use of discrete representations within SCGs. The first method
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involved an efficient method for learning the structure of SCGs using supervised
learning for efficient Neural Architecture Search. Further methods covered the
parameter learning of discrete SCGs. To counter common issues such as small
gradients and local minima, we proposed altering the scale parameter of Gum-
bel noise perturbations and implementing dropout residual connections in discrete-
continuous computation graphs. We also aimed to enhance disentanglement by
substituting standard Gaussian VAEs with a categorical VAE, encouraging the cre-
ation of a discrete latent space.

In Chapter 6, we conducted the experimental evaluation of these methods across
a diverse range of domains, demonstrating their effectiveness. The experiments
proved that the challenges in training discrete representations could be success-
fully mitigated. Moreover, introducing discrete representations improved the mod-
els’ interpretability and generalization behavior. Our findings also revealed that the
underlying grid structure of categorical distributions mitigates the rotational invari-
ance issue associated with multivariate Gaussian distributions, thus serving as an
efficient inductive prior for disentangled representations.

In conclusion, this thesis contributes a robust theoretical understanding, novel meth-
ods, and a comprehensive evaluation of discrete representations with SCGs. It
presents the unique challenges of discrete representations, their benefits, and strate-
gies for maximizing them. The empirical evaluations validate the proposed meth-
ods and strategies, signifying the importance and potential of discrete representa-
tions in deep learning. Future research may build on these findings, contributing
further to the development and refinement of discrete representations and their ap-
plications.

7.1 Key Findings

We offer a comprehensive overview of our research’s significant insights on using
discrete representations with Stochastic Computation Graphs (SCGs). Our inves-
tigation focused on two core sets of research questions, primarily concerned with
the challenges, advantages, and potential improvements of discrete representations.
Our first research showcased critical insights about discrete representations. In our
second research, we explored effective structure and parameter learning strategies
for discrete SCGs and further enhancements for discrete representations.

In response to our first research question, RQ1.1: Why is the training of mod-
els based on discrete SCGs inherently challenging?, our analysis, as detailed in
Section 4.1, illustrates some of the intrinsic difficulties associated with training
models using discrete representations. The main issue arising from such models is
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the underutilization of the available categories, causing multiple distinct input rep-
resentations to be mapped to a single category. This creates a challenge because
the model cannot effectively distinguish between unique input data.

We have addressed these concerns with the development of Theorem 1, which
exposes a crucial constraint on the gradient of a Gumbel-softmax parameter deter-
mined by the normalized probability of a category. This theorem clarifies the issues
presented during the gradient optimization, which can produce suboptimal training
results due to small gradient values. A key implication of this finding is that it
provides a better understanding of why discrete representations can be challeng-
ing to train and guides us toward developing methods for more efficient training
processes in Section 5.2.

To answer our second research question, RQ1.2: Why do discrete representations
possess structural advantages over their continuous counterparts?, our analysis in
Section 4.2 explores the structural benefits that discrete representations hold over
continuous ones. Analyzing the rotational equivariance demonstrated by Theo-
rem 2, we find that continuous representations in the form of Gaussian distributions
can potentially entangle generative factors the model intends to disentangle.

We proposed a discrete variational autoencoder (D-VAE) that models a joint dis-
tribution of Gumbel-softmax random variables to address this issue. This D-VAE
constructs a discrete grid in the latent space that mitigates the rotational problem, a
structural advantage that may account for better generalization behavior in models
utilizing discrete representations.

However, it is important to recognize that being robust against rotations alone does
not guarantee achieving disentanglement properties. For this, we present further
analysis of discrete representations’ disentanglement properties in Section 5.3.

Regarding our second set of research questions, our investigations began with
RQ2.1: How can we effectively learn the structure and the parameters of discrete
SCGs? The corresponding discussions in Sections 5.1 and 5.2 helped us answer
this question. We proposed strategies such as leveraging supervised learning to effi-
ciently learn the structure of SCGs within Neural Architecture Search, as discussed
in Section 5.1. However, a limitation is that our strategy of employing supervised
learning for training SCGs depends on the availability of a densely sampled space,
like NAS-Bench-101, which may not be available for real-world applications.

We further proposed two novel strategies for mitigating the challenges associated
with learning the parameters of discrete SCGs in Section 5.2. By adjusting the scale
parameter of the Gumbel noise perturbations and implementing dropout residual
connections in the discrete-continuous computation graphs, we were able to miti-
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gate problems such as small gradients and local minima. These solutions greatly
improved the training behavior of the models and substantially increased their ef-
ficiency. In experiments across diverse domains, we demonstrated in Section 6.1
that our methods enable the training of complex discrete-continuous models, which
could not be learned before. These models beat prior state-of-the-art models with-
out discrete components on several benchmarks and showed a remarkable gain in
generalization behavior.

We answered the research question RQ2.2: How can discrete representations be
integrated effectively into existing deep learning methods? in Section 5.3. We
developed a modified categorical VAE that leverages one-dimensional represen-
tation for each category. This method allows for effectively integrating discrete
representations into deep learning methods. Furthermore, it creates a well-defined
and ordered latent space that encourages disentanglement. However, it is worth
noting that the implementation of such models may face limitations in terms of
reconstruction quality.

Finally, we were able to answer the research question RQ2.3: How can we fur-
ther enhance the performance and efficiency of common discrete representations?
effectively through our discussions in Section 5.4. We proposed several improve-
ments for common discrete representations, including introducing a Total Cor-
relation (TC) regularizer, applying semi-supervised training, and addressing the
straight-through gap. All these enhancements have improved the interpretability
and efficiency of the discrete representations, outperforming Gaussian-based meth-
ods in terms of disentanglement quality, as we have shown in Section 6.2.

Implications of these findings suggest that discrete representations in deep learning
have a significant potential for enhancing model interpretability and generalization
behavior. However, they also highlight the need for continuous development and
refinement of the training methodologies and techniques to ensure efficient learn-
ing and integration of discrete representations. The limitations indicate that while
the proposed methods have shown remarkable results, they are not without their
challenges and should be considered carefully in practical applications. Overall,
these findings pave the way for further research into more innovative strategies and
methods for integrating and enhancing discrete representations in deep learning.

7.2 Future Work

Building on the key findings of this thesis, we offer several promising directions
for future work that can help further the understanding and application of discrete
representations in deep learning. These include expanding their applications, im-
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proving training techniques, developing more powerful models with discrete latent
spaces, and enhancing accuracy and reconstruction capabilities.

Exploring the expansion and application of discrete representations presents op-
portunities for future work. In particular, the potential of applying the proposed
methods to reinforcement learning problems can be further investigated, effectively
sidestepping the problem of using the high variance score function estimator. Fur-
thermore, integrating discrete nodes into computation graphs of existing and new
models can be considered. Combining the automatic assembly and execution of
SCGs, as shown in the ListOps experiments, offers significant potential.

Another important aspect for future research is the improvement of training tech-
niques and strategies for these representations. Despite the advances presented in
this thesis, further challenges in training discrete representations still need to be
solved, such as additional complexities of the Gumbel-Softmax trick. Future re-
search can focus on discovering new model selection strategies tailored to discrete
VAEs. These and other advancements could mitigate the training challenges and
enhance the effectiveness of the discrete representation models.

Developing more powerful models with discrete latent spaces is another promising
direction for future work. We have shown how to integrate discrete representa-
tions into existing VAE models used for disentanglement. Insights from the disen-
tanglement literature could be beneficial in creating advanced models and further
improving the use of discrete representations. Future work could develop novel
regularizers, particularly those tackling total correlation tailored to discrete VAEs.

Lastly, further work might focus on enhancing the accuracy and reconstruction
capabilities in discrete representation models. Although our models based on dis-
crete representations demonstrate good generalization properties and better inter-
pretability, they lag in task accuracy and reconstruction quality compared to their
continuous counterparts. Therefore, future work should concentrate on improving
these aspects, ensuring discrete representations offer a competitive and advanta-
geous choice in all aspects.

In conclusion, exploring discrete representations in deep learning presented in this
thesis opens up many opportunities for future research. The identified limitations
and challenges provide a starting point for future work that, once addressed, can
further the potential and applicability of discrete representations in deep learning.
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Appendix A

Implementation Details

A.1 Efficient Parameter Learning of Discrete Stochastic
Computation Graphs

All our methods were implemented with PyTorch and were run on a GeForce RTX
2080 Ti GPU. For the experiments we picked the best performing learning rate out
of {1e−4, 3e−4, 5e−4, 1e−3} and the best performing softmax temperature τ out of
{1, 2, 4}. We found a temperature of τ = 4 not sufficiently high enough for the
MNIST addition experiments and picked τ = 8 for these experiments.

A.1.1 Unsupervised Parsing on ListOps

For all ListOps experiments, we use a hidden dimension dim = 60, a batch size
of 100, and train the model for a total number of 100 epochs. We use the Adam
optimizer with a learning rate of 0.0005 to minimize the cross-entropy loss. After
every epoch, we evaluate on the validation set and save the best model. We use
discretization after the first 4 out of the 5 GNN message passes. We always use
an exponential function to increase β and a linear function to increase α (during
experiments for which they are not constant). The temperatures are updated 10
times per epoch; we use βt = τ(1 − e−tγ) for γ = 0.008, τ = 1 and αt =
max(1, 0.002t). We repeat every experiment 8 times.

Our model is taken from Paulus et al. [77] and has following structure. For the
encoder, we start with an embedding layer for the 14 tokens. We use two indepen-
dent one-directional LSTMs with a single layer, respectively. We use a token-wise
multiplication of the two sequence outputs to obtain a latent graph and use Gumbel-
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softmax on this latent graph:

x = E1[14,dim](tok)

q = LSTM1(x)

k = LSTM2(x)

A′
ij = qk⊺

Aij =
1

λ
(A′

ij +Gumbel(0, τ)).

To obtain the edge precision, we compare the latent graph Aij with the ground
truth adjacency matrix Bij . Due to our arborescence prior as described in the main
paper, we always have the same number of edges resulting in equality of edge
precision and edge recall. For the GNN we use a second, independent embedding
layer for the tokens. For each GNN message pass, we use the latent representation
after the embedding layer of a token and concatenate it with the representation
of the node of the incoming message. In the baseline experiments (Arb.), we use
the current state of the token instead of the first embedding during all message
passes except the first one. The message is transformed by a message MLP with
dropout probability 0.1 and is summed up regarding the edge weights of the latent
graph Aij . The new node state is summed with the one before the message pass:

xe = E2[14,dim](tok)

p′′ = [xe;xj ] or [xi;xj ]

p′ = Dropout(ReLU(Lindim×2 dim
1,Bias (p′′)))

p = ReLU(Lindim× dim
2,Bias (p′))

m = Aip

x′i = xi +m.

In those experiments that utilize the ground truth edges (GT) instead of the latent
graph, we replace the second last line m = Aip by m = Bip with B being the
ground truth adjacency matrix. To create Figure 5.5, we read out the mean absolute
values of the gradient at xe as well as x′i for each of the first 4 GNN massage passes.
For the discretization, we use the classification layer that maps the embedding of
the final output to the logits of the 10 classes and the weights of the embedding
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layer that map the 10 numeral tokens to their respective embeddings:

θ = Lin10×dim
4 (ReLU(Lindim× dim

3,Bias (x′i)))

z =
1

λ
(θ +Gumbel(0, τ))

v = z⊺E2([0, . . . , 9])

xnext
i =

{
v with probability α,
x′i + v else.

To read out the intermediate results, we compare the final (after the last GNN
message pass) θ of all operation tokens with the ground truth intermediate results
obtained by executing the operations. The experiments without dropout residu-
als are always set to utilize α = 1. To obtain the task class of the full example,
we utilize the same MLP from the discretization as the classification layer, i.e.,
Lin10×dim

4 (ReLU(Lindim× dim
3,Bias (xlast

0 ))).
The baseline LSTM model consists of an one-directional LSTM with a single
layer. The hidden state of the final token is fed to a classification MLP, i.e.,
Lin10×dim(ReLU(Lindim× dim

Bias (h−1))).

A.1.2 Multi-Hop Reasoning over Knowledge Graphs

For all Knowledge Graph experiments, we use a hidden dimension dim = 256,
a batch size of 512, and train the model for a total of 200 epochs. We use the
Adam optimizer with a learning rate of 0.001 to minimize the cross-entropy loss.
We use a randomized grid search training on paths of length 1 and validating hitset
10 on paths of length 2 for the L2 regularization of the entities and the relations
between 1e−20, ..., 1e−5 and for the dropout probabilities for the subject, object and
relations between 0, ..., 0.8, respectively. This results in an entity regularization of
1e−15, a relation regularization of 1e−9, a subject dropout of 0.7 [0.1], an object
dropout of 0.1 [0.6] and a relation dropout of 0.5 [0.2] for WordNet [Freebase].
After every 10th epoch, we evaluate on the validation set and save the best model.
We use discretization after every single relation. We always use an exponential
function to increase β and a linear function to increase α (during experiments for
which they are not constant). The temperatures are updated 3 times per epoch; we
use βt = τ(1− e−tγ) for γ = 0.008, τ = 1 and αt = max(1, 0.005t). We repeat
every experiment 4 times.

Our model is based on the ComplEx model from Trouillon et al. [107]. Given
the current (intermediate) entity embedding s and relation type embedding r we
compute the logits θ for all possible entities with the ComplEx scoring function
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score = Re < s, r, · >. Hence, we obtain the logits for all possible entities.
Using the Gumbel-softmax trick with parameter θ, scale β, and temperature τ ,
we obtain the sample z ∈ Rn. The function h now computes z⊺E where E be the
matrix whose rows are the entity embeddings. We use dropout residual connections
between the input and output vectors of the discrete-continuous component during
training. Guu et al. [34] introduced their own evaluation protocol for multi-hop
reasoning that we adopted. On the one hand, we calculate all possible objects
that can be reached traversing each path. These are the positives and are filtered
during evaluation. On the other hand, we calculate all possible objects that can be
reached by the final relation of the path individually. These are the negatives that
we rank our prediction against. We compare our best performing model against two
RNN models, Path-RNN [18] and ROP [122] as well as against the state-of-the-art
transformer model CoKE [113].

We use a slightly different setup for the FB15K237 experiments in Section 6.1.2.
Here, we train the same model for a total number of 100 epochs and for each path
from subject to object as well as from object to subject using reciprocal relations
[92]. The evaluation is copied from the standard link prediction task [9], that is,
we evaluate all paths in the forward direction from subject to object as well as in
the backward direction from object to subject. We also use the filter method for the
positives, but we compare against all other possible objects and not only the ones
reachable by the last relation.

A.1.3 End-to-End Learning of MNIST Addition

For the MNIST addition experiments, we use a batch size of 16 and train the model
for a total number of 30 epochs. We use the Adam optimizer with a learning rate of
0.0001 to minimize the cross-entropy loss. We use the dataset from Manhaeve et al.
[66]. Since they do not offer a validation set, we validate the model twice per epoch
on the test set and record the best test accuracy for all models. We use discretization
after the CNN encoding layer, i.e., before the addition layer. The temperatures
are updated 8 times per epoch; we increase β and α by βt = τ(1 − e−tγ) for
γ = 0.008, τ = 8 and αt = max(1, 0.002t). We repeat every experiment 8 times.

Our model is based on the baseline model used by Manhaeve et al. [66] and has
the following structure. The CNN encoder consists of two convolutional layers
with kernel size 5 and filter size 6 and 16, respectively. Each convolutional layer is
followed by 2D max-pooling layer of size 2 × 2 and a ReLU activation function.
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An MLP with 3 layers transforms the output to an embedding size of 84.

e′ = ReLU(maxpool2×2(Conv2d6,5(inp)))

e = ReLU(maxpool2×2(Conv2d16,5(e
′)))

x′ = Lin84×84
Bias (ReLU(Lin84×120

Bias (ReLU(Lin120×256
Bias (e))))).

For the discretization we use a single classification matrix C ∈ R19×84. This
matrix is also used for the classification after the addition layer.

θ = Cx′

z =
1

λ
(θ +Gumbel(0, τ))

v = z⊺C

x =

{
v with probability α,
x′ + v else.

The addition layer concatenates the final embeddings of both images and transform
them through a MLP with 2 layers into a single representation.

x1,2 = ReLU(Lin84×168
Bias (ReLU(Lin168×168

Bias ([x1;x2])))).

We obtain the final class log-probabilities by computing Cx1,2. This results in a
model with a total of 94, 900 parameters. We use the code offered by Manhaeve
et al. [66] to run the DeepProbLog experiments as well as the baseline model they
compared to. These two models are executed in a single epoch and use a batch size
of 1 and 2, respectively. The DeepProbLog model uses a similar encoder to get
predictions for each of the images individually and has the following structure.

e′ = ReLU(maxpool2×2(Conv2d6,5(inp)))

e = ReLU(maxpool2×2(Conv2d16,5(e
′)))

out = Lin10×120(ReLU(Lin120×256
Bias (e))),

The 2 image outputs are then fed into the probabilistic logic program ProbLog
together with the following annotated disjunction, which handles the logic of addi-
tion to obtain the final predictions.

nn(mnist net, [X], Y, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) :: digit(X,Y );

add(X,Y, Z) : −digit(X,X2),digit(Y, Y 2), Z is X2 + Y 2.
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Different to DeepProbLog or our model, the baseline model concatenates the im-
ages beforehand and uses the following layers.

e′ = ReLU(maxpool2×2(Conv2d6,5(inp)))

e = ReLU(maxpool2×2(Conv2d16,5(e
′)))

out = Lin19×84(ReLU(Lin84×120
Bias (ReLU(Lin120×704

Bias (e))))),

which results in a model with a total of 98, 951 parameters.

For the experiments in Figure 4.2, we also use a batch size of 16, set τ = 8.0, use
a learning rate of 0.0003 and train the model for a total number of 30 epochs. If
we update temperatures, we also update them 8 times per epoch. We do not use
dropout residuals. For the experiment Base, we use a constant τ = 8.0, β = 1.0
and γ = 0.008. For the experiment TauAnn, we set β = 1.0 constant and anneal
τ by τt = max(1.0, τe−tγ). For the experiment TM, we set τ = 8.0 constant and
increase β by βt = τ(1− e−tγ).

A.2 Efficient Structure Learning of Stochastic Computa-
tion Graphs

The node and graph dimensions, dn = 250 and dg = 56, are chosen as in [126]
to attain comparability. For all experiments, we used the Adam optimizer with no
dropouts. For training VS-GAE, we used a learning rate of 1e−4 for a total amount
of 300 epochs. Whenever the loss did not drop for 10 epochs, we decreased the
learning rate by a factor of 1e−1.

A.2.1 The Encoder

Message The message module M (t) concatenates the embedding of the consid-
ered node h(t−1)

v as well as the incoming embedding h(t−1)
u , each of dimension dn.

It further performs a linear transformation on the concatenated embedding. The
reverse message module M (t)

out is a clone of M (t) initialized with its own weights,

M (t) = Lin2dn×2dn

(
[h(t−1)
v , h(t−1)

u ]
)
,

M
(t)
out = Lin′2dn×2dn

(
[h(t−1)
v , h(t−1)

u ]
)
.

The message module (green) and the reverse message (red) can be seen on the left
side of Figure 5.1 in the main paper.
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Update The update module U (t) is a single GRU cell. First, the incoming mes-
sagesmu→v andmout

u→v are added and handled as the GRU input. Second, the node
embedding h(t−1)

v is treated as the hidden state and is updated,

U (t) = GRUCell2dn,dn
(
mu→v +mout

u→v, h
(t−1)
v

)
.

Aggregation We use two rounds of propagation before aggregating the node em-
beddings into a single graph embedding. This graph aggregation consists of two
parts. First, a linear layer transforms the node embeddings to the required graph
embedding dimension dg. Second, another linear layer combined with a sigmoid
handles each node’s fraction in the graph embedding,

A1 = Lindn×2dn(h
(2)
v ),

A2 = σ
(
Lindn×1(h

(2)
v )

)
,

A =
∑

v

A1 ⊙A2.

The aggregation function for the variational outputs Ã is an exact copy of A with
its own weights. An illustration of the aggregation module is given in Figure 5.1
(right).

A.2.2 VS-GAE

InitNode The learnable embedding look-up table E consists of five embeddings
of size dn, one for each of the five node types. It is initialized from N (0, 1). The
InitNode module concatenates the sampled point of the latent space z of size dg,
the summary of the partially created graph hG(t) of size dg and the node embedding
of the picked node type,

f1initNode = Lin2dg+dn×dg+dn([z, hG(t) , L(type)]),

finitNode = Lindg+dn×dn
(
ReLU(f1initNode)

)
.

This can be seen in Figure 5.2 c). For the very first embedding, we exclude the
partially created graph,

f1startNode = Lindg+dn×dg+dn([z, L(type)]),
fstartNode = Lindg+dn×dn

(
ReLU(f1startNode)

)
.

GraphProp The GraphProp module consists of two rounds of message passing
with the exact same modules from above and a variance-free graph aggregation.
Each of these modules is initialized with its own weights, see Figure 5.2 a).
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AddNode The AddNode module concatenates the sampled point of the latent
space z and the summary of the partially created graph hG(t) and outputs logits
over all five possible node types,

f1addNode = Lin2dg×dg([z, hG(t) ]),

faddNode = Lindg×5

(
ReLU(f1addNode)

)
.

This can be seen in Figure 5.2 b).

AddEdges The AddEdges module concatenates the embedding of the newly cre-
ated node ht+1 and each previous node hv as well as the sampled point of the latent
space z and the summary of the partially created graph hG(t) ,

f1addEdges = Lin2dg+2dn×dg+dn([ht+1, hv, z, hG(t) ]),

faddEdges = Lindg+dn×1

(
ReLU(f1addEdges)

)
.

The output is the score that describes the probability of an edge in logits. This
process is illustrated in Figure 5.2 d).

A.3 Learning Disentangled Discrete Representations

Locatello et al. [59] unified the choice of architecture, batch size, and optimizer
to guarantee a fair comparison among the different methods. We adopt these unifi-
cations and describe them here for the sake of completeness. The only differences
emerge from the Gumbel-softmax distribution from Equation 4.12. For all ex-
periments, we choose the same number of m = 64 categories. If not mentioned
differently, we utilize the symmetric interval [−1, 1] for the latent variable. We uti-
lize a constant Gumbel-softmax temperature of λ = 1.0 and, instead, increase the
scale parameter of the Gumbel distribution from 0.5 to 2.0 w.r.t. a cosine annealing
and set the scale parameter to 0.0 at test time. We found this annealing scheme to
improve training stability while encouraging discrete representations. The imple-
mentation of the architectures is depicted in Table A.1, all hyperparameters can be
found in Table A.2. We utilize the spatial broadcast decoder [116] for the Circles
experiments with a latent space dimension of n = 2. The implementations for the
Circles experiments can be found in Table A.4. If not mentioned differently, we
utilize the ReLU activation function.

A.3.1 Dataset Details

Table A.3 contains a set of all ground-truth factors of variation for each dataset.
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Table A.1: The architectures of the encoders and the decoder for the main experi-
ments in Section 6.2.

Encoder (Gaussian) Encoder (Discrete) Decoder

Input: 64× 64× C Input: 64× 64× C Input: 10
Conv(4× 4, 32, s = 2) Conv(4× 4, 32, s = 2) FC(256)
Conv(4× 4, 32, s = 2) Conv(4× 4, 32, s = 2) FC(4× 4× 64)
Conv(4× 4, 64, s = 2) Conv(4× 4, 64, s = 2) DeConv(4× 4, 64, s = 2)
Conv(4× 4, 64, s = 2) Conv(4× 4, 64, s = 2) DeConv(4× 4, 32, s = 2)
FC(256) FC(256) DeConv(4× 4, 32, s = 2)
FC(2× 10) FC(10× 64) DeConv(4× 4, C, s = 2)

Table A.2: The hyperparameters of the D-VAE model.

Parameter Model Values

Decoder type Bernoulli
Batch size 64
Latent space dim. 10
Optimizer Adam
Adam: β1 0.9
Adam: β2 0.999
Learning rate 1e−4

Training steps 300 000
Latent space dim. (Circles) Circles 2
Number of categories discrete 64
Gumbel scale: init discrete 0.5
Gumbel scale: final discrete 2.0
Disc. Adam: β1 TC regularizing 0.5
Disc. Adam: β2 TC regularizing 0.9
γ TC regularizing [10, 20, 30, 40, 50, 100]
ω semi-supervised [1, 2, 4, 6, 8, 16]
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Table A.3: The ground-truth factors of the datasets.

Dataset Ground-truth factor Number of values

dSprites Shape 3
Scale 6
Orientation 40
X-Position 32
Y-Position 32

C-dSprites Shape 3
Scale 6
Orientation 40
X-Position 32
Y-Position 32
Color Uniform(0.5, 1.0)3

SmallNORB Category 5
Elevation 9
Azimuth 18
Lighting condition 6

Cars3D Elevation 4
Azimuth 24
Object type 183

Shapes3D Floor color 10
Wall color 10
Object color 10
Object size 8
Object type 4
Azimuth 15

MPI3D Object color 4
Object shape 4
Object size 2
Camera height 3
Background colors 3
First DOF 40
Second DOF 40

Circles X-Position Uniform(0.2, 0.8)
Y-Position Uniform(0.2, 0.8)
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Table A.4: The architectures of the discriminator for the TC regularizing experi-
ments and the spatial broadcast decoder [116] for the Circles experiments.

Discriminator Decoder (Circles)

FC(1000), leaky ReLU Input: 2
FC(1000), leaky ReLU Tile(64× 64× 10)
FC(1000), leaky ReLU Concat. coordinate channels
FC(1000), leaky ReLU Conv(4× 4, 64, s = 1)
FC(1000), leaky ReLU Conv(4× 4, 64, s = 1)
FC(1000), leaky ReLU Conv(4× 4, C, s = 1)
FC(2)

(A) (B) (C) (D) (E) (F)

BetaVAE
FactorVAE

MIG
DCI

Modularity
SAP

3 12 -19 9 20 -50
-2 8 -27 7 19 -44
41 20 19 -14 52 61
34 15 24 8 45 1
-29 -3 24 6 8 -49
-7 4 7 -7 17 45

Figure B.1: The statistical efficiency of the simple downstream classification task
of recovering the true factors of variations from the learned representation using
gradient boosted trees (GBT). A high MIG score reliably leads to a higher sample
efficiency for all datasets but Cars3D. The DCI score yields a positive correlation
with the statistical efficiency.



Appendix B

Detailed Experimental Results

B.1 Statistical Sample Efficiency

We follow the simple downstream classification task from [59] of recovering the
true factors of variations from the learned representation using gradient-boosted
trees (GBT). Figure B.1 depicts this correlation regarding the GBT task for all
six datasets. We can observe a high variance of the correlation depending on the
selected disentanglement metric. The correlation with the MIG and DCI leads to a
higher sample efficiency over most datasets.

B.2 Circles Experiment

The latent space visualizations of the circles experiment [116], sorted by the MIG
score of all 50 models of the Gaussian VAE and the discrete VAE, respectively.
Figure B.2 depicts the Gaussian latent spaces. Even the latent spaces yielding the
best MIG scores are affected by rotation. Figure B.3 depicts the discrete latent
spaces. More than 25% of the latent spaces lie parallel to the axes.

B.3 Comparison of the Unregularized Models

Figure B.4 and Figure B.5 depict the comparison of the unregularized models as vi-
olin plots for all datasets and metrics. The discrete VAE improves over its Gaussian
counterpart in 31 out of 36 cases.

133
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Figure B.2: A latent space geometry analysis of the circles experiment [116] in-
cluding the MIG and DCI scores. We depict the latent space visualizations of all
50 models of the Gaussian VAE sorted by the MIG score.
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Figure B.3: A latent space geometry analysis of the circles experiment [116] in-
cluding the MIG and DCI scores. We depict the latent space visualizations of all
50 models of the discrete VAE sorted by the MIG score.
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Figure B.4: A comparison of unregularized Gaussian VAE and the discrete VAE
w.r.t. the 6 disentanglement metrics on dSprites, C-dSprites, SmallNORB.
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Figure B.5: A comparison of unregularized Gaussian VAE and the discrete VAE
w.r.t. the 6 disentanglement metrics on Cars3D, Shapes3D, MPI3D.


	Introduction
	Discrete Representation Learning
	Problem Statement
	Challenges in Training Discrete SCGs
	Understanding the Benefits of Discrete Representations

	Research Questions
	Contributions
	Publications
	Outline

	Background
	Introduction to Stochastic Computation Graphs
	Levels of Difficulty in Stochastic Computation Graphs
	Neural Architecture Search in the Context of Stochastic Computation Graphs

	Differentiating through Stochastic Nodes
	The Score Function Estimator
	The Reparameterization Trick

	Reparameterizations using Gumbel Variables
	The Gumbel-Max Trick
	The Gumbel-Softmax Trick

	The Gumbel-Softmax Distribution
	Properties of the Gumbel-Softmax Distribution

	Variational Autoencoders
	The Evidence Lower Bound
	Disentangled Representations
	Measuring Disentanglement


	Related Work
	Discrete Representations in Reinforcement Learning and Generative Models
	Gradient Estimators for Discrete Latent Variables
	Unsupervised and Semi-supervised Disentanglement
	Core Concepts of Neural Architecture Search and its Benchmarks

	Theoretical Analysis
	Challenges in Training Discrete Stochastic Computation Graphs
	Background
	Challenges in Training Stochastic Compuation Graphs
	Conclusion

	Understanding the Benefits of Discrete Representations
	Background
	The D-VAE
	Structural Advantages of the Discrete VAE
	Conclusion


	Methodology
	Efficient Structure Learning of Stochastic Computation Graphs
	Background
	Continuous Graph Representations
	The Graph Encoder
	The VS-GAE
	Conclusion

	Efficient Parameter Learning of Discrete Stochastic Computation Graphs
	Background
	TempMatch: Temperature Matching
	DropRes: Residual Dropout Connections 
	Conclusion

	Learning Disentangled Discrete Representations
	Background
	Defining Neighborhoods in the Observable Space
	Neighborhoods in the Latent Space
	Disentangling Properties of the Discrete VAE
	Conclusion

	Improving Discrete Representations
	Background
	Regularizing the Total Correlation
	Semi-Supervised Training
	The Straight-Through Gap
	Conclusion


	Experimental Evaluation
	Challenges in Training Discrete Representations
	Unsupervised Parsing on ListOps
	Multi-Hop Reasoning over Knowledge Graphs
	End-to-End Learning of MNIST Addition
	VS-GAE's Ability to Generate Neural Architectures
	Conclusion

	Understanding the Benefits of Discrete Representations
	Improvement in Unsupervised Disentanglement
	Choice of the Disentanglement Metric
	Match State-of-the-Art Disentanglement Methods
	Unsupervised Model Selection for Disentanglement
	Semi-Supervised Disentanglement Methods
	Visualization of the Latent Categories
	Conclusion


	Conclusion
	Key Findings
	Future Work

	Implementation Details
	Efficient Parameter Learning of Discrete Stochastic Computation Graphs
	Unsupervised Parsing on ListOps
	Multi-Hop Reasoning over Knowledge Graphs
	End-to-End Learning of MNIST Addition

	Efficient Structure Learning of Stochastic Computation Graphs
	The Encoder
	VS-GAE

	Learning Disentangled Discrete Representations
	Dataset Details


	Detailed Experimental Results
	Statistical Sample Efficiency
	Circles Experiment
	Comparison of the Unregularized Models


