The Journal of Systems and Software 212 (2024) 111971

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

L)

Check for

Promoting open science in test-driven software experiments™ e

Marcus Kessel *, Colin Atkinson
University of Mannheim, 68159 Mannheim, Germany

ARTICLE INFO

Keywords:
Software
Engineering
Empirical
Experimentation
Observation
Behavior
Reproducibility
Replication
Data structures
Open science

ABSTRACT

A core principle of open science is the clear, concise and accessible publication of empirical data, including
“raw” observational data as well as processed results. However, in empirical software engineering there are
no established standards (de jure or de facto) for representing and “opening” observations collected in test-
driven software experiments — that is, experiments involving the execution of software subjects in controlled
scenarios. Execution data is therefore usually represented in ad hoc ways, often making it abstruse and difficult
to access without significant manual effort. In this paper we present new data structures designed to address
this problem by clearly defining, correlating and representing the stimuli and responses used to execute
software subjects in test-driven experiments. To demonstrate their utility, we show how they can be used to
promote the repetition, replication and reproduction of experimental evaluations of Al-based code completion
tools. We also show how the proposed data structures facilitate the incremental expansion of execution data

Large language models

Machine learning

Generative artificial intelligence
Benchmark

Language-to-code

HumanEval

Automation

Measurement

sets, and thus promote their repurposing for new experiments addressing new research questions.

1. Introduction

Empirical studies have grown in importance in software engineer-
ing research over the last few years as leading software engineering
conferences and journals have placed increased emphasis on the need
for research claims to be supported by empirical results (Siegmund
et al.,, 2015; ESE, 2023). Most recently, this trend has evolved to
encompass the principles of “Open Science” which aims to facilitate
transparency, collaboration, and accessibility in software engineering
research by making research data, methods and findings publicly avail-
able (Méndez Fernandez et al., 2019). Today, open science is actively
promoted by most leading software engineering conferences and jour-
nals such as EMSE!, and has spawned new research communities such
as the “Empirical Software Engineering and Measurement” (ESEM)
symposium (ESEM, 2023).

The basic motivation for this trend is broadly the same across all
scientific and engineering disciplines — namely, making all elements
of empirical studies available for other researchers to examine, use
and build upon, so that research communities can reach consensus

* Editor: Alexander Serebrenik.
* Corresponding author.

on their conclusions and more easily repeat, replicate and reproduce
them. According to the ACM (ACM, 2023), repetition involves the
original team reperforming an empirical study with the original setup,
replication involves a different team reperforming an empirical study
with the original setup, and reproduction involves a different team
reperforming the empirical study with a different design and/or setup.

The fundamental principles and ingredients of open science are
also basically the same across scientific disciplines, even though the
terminology and the detailed breakdown of steps may differ. In the
social science domain, Minocher et al. (2020) define four fundamental
prerequisites for an empirical study to be fully reproducible - “(1)
data recoverability, the availability of the involved data and other
materials to attempt reproduction of analyses, (2) data usability, the
completeness and clarity of data, when available, (3) analytical clarity,
the adequacy of published reports for repeating analyses, and (4) agree-
ment of reproduced results with published results”. In their overview of
open science in software engineering, Mendez et al. (2020) point out
that the first of these, data recoverability, involves the dissemination

E-mail addresses: marcus.kessel@uni-mannheim.de (M. Kessel), colin.atkinson@uni-mannheim.de (C. Atkinson).

1 with its Open Science Initiative (https://emsejournal.github.io/open_science)

https://doi.org/10.1016/j.jss.2024.111971

Received 2 August 2023; Received in revised form 8 December 2023; Accepted 15 January 2024

Available online 12 March 2024

0164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:marcus.kessel@uni-mannheim.de
mailto:colin.atkinson@uni-mannheim.de
https://emsejournal.github.io/open_science
https://doi.org/10.1016/j.jss.2024.111971
https://doi.org/10.1016/j.jss.2024.111971
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.111971&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Kessel and C. Atkinson

of manifold artifacts including (a) the data sets and observed results
(i.e., open data), (b) the artifacts used to support empirical studies such
as infrastructure support and analysis scripts (i.e., open materials), (c)
the (prototype) realizations of the studied objects (i.e., open source),
and (d) the final descriptions of the findings (i.e., open access).

Although the software engineering community has made progress in
addressing many of these prerequisites for open science, Mendez et al.
(2020) note that the community is “‘struggling in adapting open science
to the particularities of our discipline”. The area of empirical software
engineering in which the challenges are arguably the most acute is
“test-driven software experimentation”, where software subjects are
executed in controlled settings through carefully selected sets of stimuli
(i.e., tests) to observe their behavior. These observations are then used
to infer properties about the executed software subjects and/or the
tests, often to validate hypotheses about the tools and techniques that
created and/or assembled them.

Test-driven Software Experiments (TDSEs) have an important role
to play in empirical software engineering because of Rice’s theorem,
which states that “all non-trivial properties of programs are unde-
cidable” (Rice, 1953). This means it is impossible to create general
algorithms that can analytically determine certain important properties
of software, such as its run-time semantics (a.k.a. as its run-time
behavior or functionality) or its execution properties (e.g., performance
and resource usage). Such properties can therefore only be measured or
estimated “dynamically” by executing the software in question using
known and carefully selected tests.

There are many reasons why supporting open science is currently
challenging in the context of test-driven software experimentation.
Chief among them are —

1. Data Recoverability: to attain generalizable results, the object of
an experiment must be applied to large numbers of software
subjects. However, although it is relatively easy to retrieve
code from online open source repositories, a large proportion
of this software is not immediately executable for technical
reasons such as incomplete build information, missing parts or
other incompatibilities (Palsberg and Lopes, 2018). As a result,
the subjects of test-driven software experiments are still today
mainly “curated” (i.e., collected and managed) by hand, which
takes a lot of manual effort and usually means that executable
software data sets (a.k.a. executable software corpora) quickly
degrade over time due to a lack of maintenance (Dietrich et al.,
2017; Kessel and Atkinson, 2019a). This not only directly im-
pacts the data recoverability prerequisite of Minocher et al. it
means the data (i.e., software) is often not in a form that can be
readily used to repeat, replicate or reproduce an experiment.

2. Data Usability: even if a software subject is executable, it may
not be compatible with the test sets selected to stimulate it in
a software experiment. In other words, the interface by which
a software subject offers its functionality might not match the
interface by which a test expects to invoke it. Therefore, most
TDSEs performed to date have required a lot of “set up and
adaptation” code, often written by hand, to make the subjects
of the experiment compatible with the tests (Just et al., 2014;
Palsberg and Lopes, 2018). This set up code is usually written
in mainstream programming and/or scripting language, and is
often poorly structured and documented (Nong et al., 2023),
defeating the data usability prerequisite of Minocher et al.

3. Analytic Clarity: the tests used in TDSEs are almost always de-
scribed using a mainstream unit testing platform such as JU-
nit (JUnit, 2022) which was designed for practical software
testing applications not experimentation. Such “test descrip-
tions” are written in a mainstream programming language and
usually “bury” the actual stimuli of the subject software in
extensive scaffolding code to generate instances and place it in
a desired state, and testing frameworks like JUnit only issue

The Journal of Systems & Software 212 (2024) 111971

messages about whether the responses to stimuli “passed” or
“failed”. They do not attempt to record the actual outputs re-
turned by the subject software (i.e., the observed responses) and
provide little if any tracing data (e.g., stack traces) to help third
parties understand the conclusions. Moreover, any behavioral
observations that are recorded are usually stored in ad hoc ways
that bear little or no relationship to the test descriptions. Thus,
the current approaches used to define the stimuli, and record the
system responses, involved in TDSEs greatly reduce the analytic
clarity of the produced data.

4. Consensual Results: because of the ad hoc and non-standard ways
in which TDSE execution outcomes are stored or reported, a
lot of dedicated analysis code usually has to be written to
process the data and obtain the final results. As with the “set
up and adaptation” code, this is often written in a mainstream
programming language and is poorly documented. Moreover,
since usually only aggregated results are disseminated, and all
the intermediate steps and/or data required to reproduce them
are omitted, the published results of TDSEs often cannot be fully
understood without analyzing the code used to generate them.
This is a major obstacle to establishing consensus about results
and the derivable conclusions.

Even when all the artifacts involved in TDSEs are openly dissem-
inated, therefore (which is often not the case (Nong et al., 2023)), it
is still extremely difficult for third party researchers to gain an un-
derstanding of the exact conditions under which the software subjects
were executed, what stimuli were actually used to invoke them, what
resulting behavior was observed, and how these observations were
processed. Researchers performing TDSEs therefore face significant
challenges in fulfilling the principles and expectations of open science,
and these challenges increase dramatically as the scale of experiments is
increased to improve statistical power and generalizability (cf. Wohlin
et al., 2012).

This paper is based on the premise that to address these problems
and make TDSEs more amenable to open science, the software engi-
neering research community needs (a) new data structures for clearly
and simply representing software tests and the expected and/or actual
responses of software subjects, (b) new data structures for systemati-
cally storing and analyzing the many stimulus/response pairs that are
generated in TDSEs, (c) new domain specific languages for applying
these data structures and defining the high-level steps involved in
study pipelines, and (d) a dedicated platform to execute such pipelines,
automate the executions involved in TDSEs and “open” the resulting
data structures according to the principles of open science.

The focus of the paper is on presenting the data structures offered
by our LASSO (Large-Scale Software Observatorium) platform?® for
addressing (a) and (b). For space reasons, the paper is unable to provide
much detail about (c), the so-called LASSO Scripting Language used to
represent study pipelines, and since descriptions of LASSO have been
published in previous papers (Kessel and Atkinson, 2019; Kessel and
Atkinson, 2019b; Kessel and Atkinson, 2022), the paper provides only
a very high level overview of (d). A detailed description of LASSO is
available in the first author’s PhD thesis (Kessel, 2023).

To demonstrate their utility for promoting open science in TDSE,
we show how the data structures can be used to represent and publish
the results of three TDSE-based evaluations of Al-based code generation
tools powered by Large Language Models (Austin et al., 2021), a technol-
ogy that is currently receiving a great deal of attention due to chatbots
like ChatGPT that use the popular transformer architecture (Vaswani
et al., 2017). More specifically, we show how the proposed data struc-
tures can be used to concisely and transparently —

2 The platform and its project are freely available on GitHub: https://
softwareobservatorium.github.io/

https://softwareobservatorium.github.io/
https://softwareobservatorium.github.io/

M. Kessel and C. Atkinson

1. replicate a recent high-profile experiment evaluating the effec-
tiveness of Al-based code completion tools using a well-known
benchmarking data set (Chen et al., 2021; Cassano et al., 2023b),

2. reproduce the above experiment using an enhanced experimental
design,

3. repurpose and extend the data structures from the aforemen-
tioned replication and reproduction of the experiment to answer
new research questions.

The rest of the paper is structured as follows. We first present the
background to test-driven software experimentation in Section 2 and in-
troduce the terminology we use in the rest of the paper. Section 3 then
presents the proposed data structures. This is followed by a description
of three TDSEs used to demonstrate the benefits of these data structures,
the experimental setup used to support these TDSEs, and how the
concepts/subjects in the replicated experiment are adapted to LASSO’s
platform. The three sections that follow then present each of the TDSEs
which, in turn, replicate, reproduce and repurpose the HumanEval
benchmarking experiment described in Cassano et al. (2023b). Finally,
Section 8 discusses the strengths and weaknesses of the approach and
concludes with some closing remarks in Section 9.

2. Background and terminology

The terminology used in empirical research in general, and empiri-
cal software engineering in particular, is sometimes confusing and often
used inconsistently (Wohlin, 2021). This section therefore clarifies the
terminology used in the rest of the paper and positions the contribu-
tions of this paper in the field of empirical software engineering.

2.1. Test-driven software experimentation

Generally speaking, the notion of empirical software engineering
covers all methods that use data-driven and statistically-based tech-
niques to derive new knowledge about software, software engineering
and related technologies. These range from methods originating in
social sciences (such as systematic literature reviews, surveys, action
research and questionnaires) and data mining techniques (such as
software repository analysis and meta-analysis) to experimental tech-
niques such as case studies, quasi experiments and controlled experi-
ments (Wohlin et al., 2003, 2012).

In their paper “Empirical research in software engineering - a
literature survey"”, Zhang et al. (2018) identify three basic purposes
for empirical research in this field — “exploratory research”, which
aims to discover new software-related phenomena, generate hypotheses
and gain a broader understanding of things of interest (e.g., what
are possible coverage goals in automated test generation? Fraser and
Arcuri, 2012), “explanatory research”, which aims to interpret such
phenomena, establish causal relationships between them and provide
clear explanations (e.g., what is the impact of automated unit test
generation on revealing real faults? Shamshiri et al., 2015), and “tech-
nical validations”, which aim to validate or disprove hypotheses about
methods, tools and techniques applied to software (e.g., does tool X
generate tests that achieve higher coverage than tool Y? Fraser and
Arcuri, 2014). However, these categories have to be used with care,
since particular experiments may belong to more than one category, or
none at all (in which case they are classified as “other”).

Experimentation is one of the most widely used methods in em-
pirical software engineering, as it is in most scientific disciplines. The
canonical type of experiment in science is the controlled experiment,
where one variable, the factor, of the object under study is carefully
manipulated, and other dependent variables are measured to observe
the suspected effects and establish cause-and-effect relationships in a
systematic manner (Basili et al., 1986; Wohlin et al., 2012). The object
is applied to multiple experimental units, or subjects, through which
the dependent variables are controlled. For instance, in a medical study

The Journal of Systems & Software 212 (2024) 111971

testing the effectiveness of a new drug, the individual patients would
be the experimental units, while in agricultural research studying the
growth of plants under different conditions, each plant or plot of land
might be considered an experimental unit.

In experimental software engineering, the experimental units in-
volve one or more software engineering products, such as requirements,
design artifacts or software (i.e., code). For example, in an experiment
to evaluate the effectiveness of an automated program repair tool
(i.e., to find solutions to software defects automatically Monperrus,
2018), the experimental units (i.e., subjects) would be examples of code
components with static defects (e.g., classes or methods) to which the
tool (i.e., the object) is applied. The evaluation would then involve de-
termining, for each experimental unit, whether the proposed software
solution has (a) indeed fixed the defect, and (b) has the same semantics
(i.e., behavior) as the original. If the subject code components are very
small (which can of course be arranged in a controlled experiment)
both (a) and (b) can be established by “static” analysis techniques,
such as symbolic execution. However, for non-trivial software subjects,
static analysis techniques are often not applicable, so the only way to
address (b) and gain confidence that the refactored code solution has
the same behavior as the original is to execute it, which predicates the
availability of suitable tests. Generally speaking, any software analysis
technique that involves the execution of the subject software over
some inputs is referred to as a dynamic technique, while any analysis
technique that does not involve the execution of the subject software,
but examines its code, is referred to as static (Ernst, 2003).

In this paper, therefore, we define a test-driven software experiment
(TDSE) as an experiment in which the experimental unit involves
software (i.e., code) that is executed under controlled conditions by
means of one or more tests. Although they are executed during a TDSE,
the tests are usually not regarded as being part of the experimental unit,
because they are only a means to an end (i.e., the execution of the soft-
ware in the experimental unit), not the end themselves. However, when
the tool or algorithm under investigation in the experiment generates
or manipulates the tests, the tests themselves become part of the exper-
imental unit and thus become subjects in the experiment. For example,
in an experiment to judge the effectiveness of a test generation tool,
multiple tests generated by the tool have to be applied to multiple im-
plementations of different software systems. In this case, both the tests,
and the examples of software functionality (e.g., classes or methods) are
part of the experimental unit to be replicated multiple times and are
thus referred to as “subject software”. The focus of an experimental
unit is usually not just an individual software component, therefore,
but a collection of related software components which either test or
implement a “functional abstraction”, such as a class representing a
stack, a method for sorting lists of elements or a method for calculating
the greatest common denominator of two integers. For example, if
the test-generation TDSE mentioned above were to use mutation score
as one of the test quality metrics, the experimental unit would have
to include multiple implementations of a given functional abstraction
— one “correct” implementation and multiple, intentionally-incorrect
implementations (i.e., mutants) to establish how many are killed by the
generated test set (cf. Andrews et al., 2005; Ammann and Offutt, 2016).

2.2. Ultra large-scale TDSEs

Although TDSEs have played an important role in empirical soft-
ware engineering for many years, they have traditionally been per-
formed only on a small scale, at least relative to studies and exper-
iments that are exclusively based on static techniques. In the early
days of empirical software engineering, finding sufficient numbers of
software components to serve as experimental subjects was a significant
problem, but since the exponential growth of large, online software
repositories like GitHub, obtaining large quantities of open source
software is no longer a major issue. This has spurred the growth of
large, heterogeneous software data sets (sometimes called corpora)

M. Kessel and C. Atkinson

The Journal of Systems & Software 212 (2024) 111971

Purpose/

Same Purpose (i.e., RQs)

Different Purpose (i.e., RQs)

Design Same Design

Team

Different Design

Repetition:

* same purpose

* original team

* same (logical) design

Original Team

Replication:

* same purpose

* independent team

* same (logical) design

Different Team

Reproduction:

Repurposing:

 different purpose (i.e., RQs)
Sl S I piekis « original or independent team
original or « different (logical) design

independent team * performed in a different way
different (logical)

design

Fig. 1. The four experiment (re)use cases based on ACM’s “Artifact Review and Badging” policy (ACM, 2023).

such as GHTorrent (Gousios, 2013), “Public Git Archive” (Markovtsev
and Long, 2018), CopeDJ (Maj et al., 2021), World of Code (WoC) (Ma
et al.,, 2021) and “The Stack” (Kocetkov et al., 2022). These offer
researchers convenient access to version control data that link query
development histories retrieved from version control systems like Git
(e.g., commits, tags and social data like developers etc.) to facilitate
mining activities and empirical studies.

Several specialized platforms for “ultra large scale” static analysis
of software have also emerged over the last decade. Perhaps the most
prominent example is the Boa platform, which makes a huge reposi-
tory of software components analyzable in an abstract way through a
dedicated, high-level, domain specific language. Boa supports arbitrary
queries over the abstract syntax (tree) of code units and allows new
analysis capabilities to be added by users (e.g., to power recommender
services (Diamantopoulos et al., 2016). Similarly, SourcererCC (Sajnani
et al., 2016), an extension to the Sourcerer platform Bajracharya et al.,
2014), provides services that support syntactic code clone detection on
a very large scale (e.g., Lopes et al., 2017).

The limitation of these initiatives to support empirical software
studies at the “ultra-large” scale is that they do not accommodate
dynamic (i.e., test-driven) analysis techniques. In other words, they do
not address the high levels of manual effort still needed to perform
TDSEs described in Section 1. The Large-Scale Software Observatorium
(LASSO), which hosts the data structures proposed in this paper, was
developed to fill this gap by (semi)-automating test-driven software
experiments at an ultra-large scale (Kessel, 2023). The platform not
only aims to support the dynamic (i.e., run-time) algorithms and work-
flow steps involved in TDSEs, but also offers a large corpus of readily
executable software. The main goal of LASSO, therefore, is to comple-
ment static analysis platforms such as Boa by dramatically reducing
the manual effort involved in performing the dynamic elements of
ultra-large TDSEs.

2.3. Reinforcing and reusing TDSEs

One of the key goals of open science is to allow the knowledge
and insights gained from empirical studies to be reinforced and reused.
The generic term “reproduction” is often used to capture this goal,
where the reproduction of an experiment involves some kind of reper-
formance of the study. However, ACM’s “Artifact Review and Badging”
policy (ACM, 2023) assigns a more precise meaning to this term in the
context of experimentation and distinguishes it from two other ways
of reinforcing experiments. These are summarized in the gray part of
Fig. 1 —

* repetition is where an experiment is repeated by the original team
that performed it, using the same basic design. The only things
that change are the details of how the experiment is performed,
for example using a more powerful computing platform. More
subjects may also be analyzed to increase statistical power.

« replication is conceptually similar to repetition except that the
reperformance of the experiment is carried out by a different
team, independent of the team that performed the first incar-
nation of the experiment. The practical difference is significant,
however, since it is predicated on all the data, materials and
descriptions from the first incarnation of the experiment being
accessible, understandable, complete and clearly communicated.
reproduction differs from repetition and replication in that the
logical design of the experiment is also changed in some way. For
example, the metrics or algorithms used to measure the properties
of interest may differ, but the underlying research questions the
new experiment is designed to answer are the same. It is concep-
tually unimportant whether the original team or the independent
team performs the new experiment, although the aforementioned
practical differences remain (see Fig. 1).

A second major goal of LASSO, and in particular the data structures
presented in this paper, is to simplify and promote the repetition, repli-
cation and reproduction of TDSEs according to the ACM’s definition of
these terms. In addition, LASSO supports another important use case —
the reuse of the observational data gathered in a TDSE to help answer
new research questions. This goes beyond the first three use cases by
essentially repurposing data gathered in one TDSE to amplify the results
of another TDSE.

We therefore extended the ACM’s set of use cases with a fourth case,
shown on the right-hand side of Fig. 1, which we refer to as repurposing

« repurposing differs from the original three reuse cases in that
the research questions the original experiment was designed to
investigate are changed or extended. In other words, when the
data created in an experiment are “repurposed”, they are reused
in a new (usually larger) experiment to investigate new research
questions, and thus essentially form part of a new experiment.
This is a powerful new kind of use case, since it means that the
data used in TDSEs can be “grown” incrementally and reused for
new purpose over time.

To demonstrate the utility of LASSO’s data structures for test-driven
software experimentation, in Sections 5 to 7 we show how they can
be used to support three of the four use cases described above in the
evaluation of three Al-based code completion tools. More specifically,
we demonstrate (a) the replication of a previous published experiment,*
(b) the reproduction of (a) to answer the same research question
but with an enhanced way of determining functional correctness of
the software subjects, and (c) the repurposing of the observational

3 We are, of course, unable to demonstrate the repetition case since we are
a different, independent team.

M. Kessel and C. Atkinson

Functional Abstraction
name: GCD (Greatest Common Divisor)
Interface: gcd(Inputl:long,input2:long)->long

Stimulus Sequence Sheet

Signature: testGCD(p1:Class, p2:Inputl, p3:Input2)

A B c D E
.§" 1 create | ?pl
o 2 ged Al ?p2 ?p3

The Journal of Systems & Software 212 (2024) 111971

Actuation Sequence Sheets

testGCD(Imp1, 3, 7)

A 8 c D E
i create | Impl
2|1 ged Al 3 7

testGCD(Imp1, 10, 15)

A B c D E
3 create | Impl
215 ged Al 10 15
testGCD(Imp1, 49, 14)
A B c D E
i create | Impl
2 |7 ged Al 49 14
testGCD(Imp1, 144, 60)
A B C D E
1 create | Impl
2 (12 ged Al 144 60

Fig. 2. Example of a stimulus sequence sheet and actuation sequence sheets for the GCD abstraction.

data from (a) and (b), along with new data, to answer new research
questions about the tools. The TDSE data from (a) is thus reused and
extended in (b), and the data in (b) is extended and reused in (c).

3. Data structures for test-driven software experimentation

This section presents the new LASSO data structures designed to
support open science in large-scale, test-driven software experimen-
tation. Although these are core components of the LASSO platform,
they are intended to be open and independently-usable with other
platforms. The relationship is similar to that between a spreadsheet tool
like Microsoft Excel and the “spreadsheet” data structure itself. While
Excel played an important role in the development of spreadsheets,
and its functionality is intimately tied to them, today spreadsheets are
supported by a wide range tools.

3.1. Sequence sheet notation

To facilitate TDSEs it is necessary to (a) create executable de-
scriptions of how the subject software is to be stimulated (e.g., tests),
and (b) record how the subject software responds to these stimuli.
As mentioned in the introduction, current test definition approaches
and languages do a poor job of tying these two aspects together.
To address this problem, LASSO therefore offers a new approach for
specifying sequences of stimuli of software components and recording
their responses — the Sequence Sheet Notation (SSN) — which is both
a data structure and a language. It is a language, since it supports the
creation of stimuli descriptions (i.e., tests) that can be understood by
LASSO and used to invoke the software subjects in TDSEs, and it is a
data structure, since it supports the persistent storage of those stimuli
and the responses of the software subjects.

SSN does not support the control flow constructs of fully-blown
programming languages such as Java (e.g., loops and if statements),
and thus is not a Turing-complete language. However, this is not
necessary when writing tests, since each potential path through a test
written using a full programming language like Java can be written
as a separate “uni-path” test in SSN.* This has the advantage that the
invocations of the methods of a software component are known before

4 Note that this does not rule out parameterized tests.

execution so that the responses can be recorded next to the stimuli that
caused them. In LASSO, such stimuli/response pairs are referred to as
actuations.

Sequence sheets have two facets (i.e., can be viewed from two
perspectives). The first is the so-called body, or white-box facet, which
shows the details of the individual invocations of the stimulated soft-
ware component that occur when the sheet is executed. The second is
the so-called signature, or black-box facet, which shows the name of
the sequence sheet and any parameters that it needs or returns when
executed.

There are two basic kinds of sequence sheets — stimulus sequence
sheets and actuation sequence sheets. The former kind only defines
the invocations to be made on the software component under test
when the sheet is executed (i.e., it “encodes” the sequence ready for
execution), while the latter kind augments this invocation information
with a record of the responses. Therefore, since sequence sheets not
only drive the run-time invocations of the subject software in a TDSE
(like a program) but also record the results for future analysis (like a
data structure), they blur the traditional boundary between static and
dynamic structures (cf. Ernst, 2003). Fig. 2 shows an example of both
kinds of sheets for a functional abstraction that is an experimental unit
in the example TDSE presented in Sections 5 to 7.

The top left-hand part of the figure identifies the name of the
abstraction, Greatest Common Divisor (or GCD for short), as well as its
signature. This shows that the GCD operation takes in two parameters
of type long, inputl and input2, and returns another 1ong value that is
their greatest common divisor. The bottom left-hand part of the figure
shows the signature and body of a parameterized stimulus sequence
sheet for exercising the GCD operation. The signature gives the name
of the sheet, testGCD, and indicates that it receives three parameters,
p1, which is a class (i.e., the component under test), as well as p2 and
p3, which are of type long.

The “spreadsheet” below the signature defines the sequence of
invocations that are executed when the sequence sheet is executed.
Using a tabular spreadsheet-like notation is useful since it allows the
various elements of the sequence sheet to be easily referenced. The rows
of a sequence sheet all represent invocations of methods in the interface
of the component under test, and are executed sequentially from top to
bottom. The columns, on the other hand, play three distinct roles. One
of the columns identifies the names of the operations that are called in
each invocation, in the case of Fig. 2 this is column B. The columns to

M. Kessel and C. Atkinson

Functional Abstraction

name: Queue (first in, first out)

Interface: Queue {
enqueue(Integer)->boolean
dequeue()->Integer
size()->Integer }

Stimulus Sequence Sheet

testQueueElements(p1:Class)

The Journal of Systems & Software 212 (2024) 111971

Actuation Sequence Sheet

testQueueElements(Queuelmp)

A B c D A B c D
1 create ?pl 1 create Queuelmp
2 enqueue | Al 1 2 TRUE enqueue | Al 1
3 enqueue | Al 2 3 TRUE enqueue | Al 2
4 size Al 4 2 size Al
5 dequeue | Al 5 1 dequeue | Al
6 size Al 6 1 size Al

Fig. 3. Example of a stimulus sequence sheet and actuation sequence sheet for the stateful Queue abstraction.

the right of column B (i.e., C, D and E) contain the input parameters to
each invocation, while the column to the left of B (i.e., A) contains the
output parameters or response from the stimulated component when
the sheet is executed. In the case of the stimulus sheet on the left of
Fig. 2, there are no output values shown.

The right-hand side of the figure shows four different actuation
sequence sheets generated from the stimulus sheet on the left-hand side
by executing it on a concrete implementation of the GCD functional ab-
straction, Imp1. The signature of an actuation sheet describes an actual
invocation of the stimulus sheet on a particular GCD implementation,
including the actual input parameters. As shown in Fig. 2, the actual
response of the GCD implementation to each invocation is stored in the
first column of the actuation sheet.

In general, sequence sheets can have an unlimited number of output
parameters, but when the components under test are written in a
language like Java that only allows methods to return one result,
only one output column is needed.® If desired, actuation sheets can be
written by human oracles to define the desired behavior of a software
component by providing the expected values in the output column(s).
The first input parameter of a sequence sheet plays a special role. It is
used to input the subject component to be executed as shown by the cell
reference in the spreadsheet notation (i.e., C1). The create method is a
special method that creates an instance (i.e., object) of the component
(here a Java class) which is stored in cell Al. This abstract approach is
used to set up the subject implementation, since it is not always possible
to obtain an instance of a class in a regular way (e.g., by using the
“new” keyword in Java) when dealing with heterogeneous components
retrieved from software repositories (i.e., when adapters need to be
created).

Note that stimulus sheets can theoretically contain an unlimited
number of operation invocations (i.e., rows), so it would be possible
for all four sequences in the actuation sheets in Fig. 2 to be included
in a single stimulus sheet, leading to a single actuation sheet when
executed. However, when recording the results of multiple invocations
of multiple implementations of the functionality in question (e.g., in
a TDSE), it is convenient to make each logical test separate. Note
that sequence sheets can also include invocations of other components
(i.e., classes) such as utility or helper classes that support the testing
process (e.g., invocations to methods of Java’s JDK), and the special
create method mentioned above also supports input parameters, like
constructors, do for instance creation.

5 Note that some programming languages like Python support multiple
output parameters.

3.1.1. Stateful abstractions

The sequence sheets shown in Fig. 2 are rather simple because the
functional abstraction being stimulated is a single, stateless operation
(GCD in this case). However, sequence sheets can be used to stimulate
and record the behavior of stateful abstractions as well (i.e., objects). In
this case a test typically includes multiple method invocations. A simple
example of the use of a sequence sheet to stimulate a stateful functional
abstraction is shown in Fig. 3. The example is a simple queue with first
in — first out (FIFO) semantics.

Fig. 3 is arranged in a similar way to Fig. 2. The top left part
shows the name and interface of the functional abstraction, while
the bottom left-hand part of the figure shows the signature and body
of a parameterized stimulus sequence sheet for exercising the queue
functional abstraction. The right-hand side of the figure shows the
resulting actuation sheet generated from the stimulus sheet on the
left-hand side by executing it on a concrete implementation of the
queue abstraction (here the class Queuelmp). As before, column A stores
the output values returned by the method invocations. Although the
sequence sheet notation described in this section can be used on its
own to describe and record tests, in TDSEs it is designed to be used in
conjunction with the data structure described in the next subsection.

3.2. Stimulus response matrix

Conducting controlled TDSEs on a large scale is challenging. For
example, MurTiPL-E’s HumanEval benchmark experiment, which we use
for demonstration purposes in Sections 5 to 7, involved the execution
of 94800 (= 3 x 158 x 200) component-test pairs, since there were
three LLM-based, code completion tools (i.e., study objects), 158 coding
problems (i.e., functional abstractions), and 200 code completions per
tool per problem (i.e., subject software components). Note that this
is a theoretical maximum, since some of the software components
generated may not be executable (e.g., due syntax issues etc.). Each
of these pairs requires the subject component (i.e., code) to be (1)
represented, (2) executed, and (3) enriched (or linked) with test results
including behavioral observations. All observations made at run-time
(i.e., measurements) also need to be stored and retrievable for later
analysis to answer the research questions.

Since the execution logistics involved in such a large number of
component-test pairs is overwhelming for humans to manage manu-
ally, a high degree of automation is necessary. Existing state-of-the-art
approaches, however, use ad hoc techniques (typically using custom
scripting) to address the representation problem, the execution logis-
tics and the recording of observations. The authors of MuLtiPL-E, for
instance, use custom Python scripting as a solution with an ad hoc
representation of the execution process (i.e., compilation, testing etc.)
and linking of the results. The biggest drawback is that such “custom”

M. Kessel and C. Atkinson

The Journal of Systems & Software 212 (2024) 111971

S1 Si Sn
T, | T) (S) Ty(Sp)
Coordinate
(Ty, Sk)
Tj TSy ,.) T;(S; ,144,60) Ti(Sn ,.)
Method Invocation
T | TnG1) [/] TlSi o) TnGic:)
Observational Record & 3 . D 2
Measurements such as 1 create | S:
outputs, metrics etc.
| 2 |12 gcd Al 144 60

Fig. 4. SRM for the GCD abstraction.

5 S Sn 5 S Sn

T, TGS TGS TG) T, TGS TGS) TG)

RIS TS)) Pipeline T TG TGS) TS 1)
“Script

T | TG v T (S;) T(Sy) = T | WG | | TG Tu(S)

Stimulus Matrix

~ =

O I 0 s
% Stimulus Response Matrix

N’

Fig. 5. Populating SRMs (recording observations).

approaches (i.e., the experiment material) are not only hard to develop
in the first place (i.e., highly error-prone) and hard to maintain, they
are also hard for third-parties to understand and set up in the same way
as the original authors (thereby hindering replication).

To address these problems in a scalable manner, LASSO offers the
new Stimulus Response Matrix (SRM) data structure. Whereas se-
quence sheets focus on the description of individual tests of individual
software components, SRMs scale this up to the description of multiple
tests on multiple components. SRMs essentially contain large numbers
of actuation sheets corresponding to the invocation of multiple stimulus
sheets on multiple implementations of the functional abstraction under
investigation. As explained previously, it is assumed that all tests
(i.e., stimulus sheets) and all implementations invoke, or support, the
same functional abstraction (with the same interface).

Fig. 4 illustrates an SRM for the GCD abstraction introduced in the
previous subsection. The columns of this SRM correspond to the differ-
ent software components under test, .S| to S, (i.e., implementations of
GCD), while the rows correspond to the tests (represented as sequence
sheets), T to T,,,.

The figure highlights the synergy between SRMs and sequence
sheets. The cell in row T; and column S; corresponds to the application
of the stimulus sheet for 7; to the component implementation for
column S;. This application can be represented in a black box way
by showing the signature of each invocation or in a white box way
by showing the body of the actuation sheet as illustrated in Fig. 4. An
SRM therefore provides a systematic and comprehensive data structure
for storing all stimuli and responses for multiple tests and multiple
implementations, thereby allowing their behavior to be easily com-
pared. Moreover, measurements other than those related to functional
behavior can also be stored and retrieved for each cell of the SRM, such
as dynamic metrics.

The dichotomy between stimulus sequence sheets and actuation
sequence sheets is mirrored in two basic variants of SRM. Since SRMs
contain the results of the stimulations of alternative software compo-
nents as well as the stimuli that lead to them, they play a similar
“recording” role to actuation sheets. In fact, as shown in Fig. 4, they
are essentially systematically organized ensembles of actuation sheets,

and therefore could be referred to as actuation matrices. Stimulus
sheets also have an analogue at the ensemble level which are referred
to as Stimulus Matrices (SMs). These are systematically organized
ensembles of stimulus sheets which define what collections of stimuli
have to be applied to what collections of software components. SMs
therefore essentially represent inputs, while SRMs represent outputs. As
shown in Fig. 5, we refer to the part of the LASSO platform that actually
carries out the executions and observations needed to populate SRMs
(i.e., the test driver) as the arena. SMs are therefore inputs to the arena
and SRMs are outputs.

SRMs can not only be serialized and stored for later data-driven
analysis, they can also be re-executed under the same, or different,
controlled conditions to enable repetition and replication. The impor-
tant advantage of SRMs over existing approaches is that they allow
the traditional “online” analysis of observational records to be shifted
to classic “offline” analysis performed in a data-driven manner using
sophisticated tooling (e.g., as known in statistics and data science).
Among other things, this means that judging functional correctness can
be postponed to the analysis phase of the experimental process.

3.3. Stimulus response hypercube

SRMs provide the core data structure for storing “raw” observation
data gathered when multiple software components are stimulated by
multiple tests. The common thing that ties all elements in an SRM
together is the functional abstraction. All the columns in an SRM
are (supposed to be) implementations of that functional abstraction
(e.g., the GCD functional abstraction from HumanEval) and all the rows
in the SRM are (supposed to be) tests of that functional abstraction.
However, it is rarely the case that one SRM is sufficient to capture all
the observational data needed in an experiment. Usually it is necessary
to observe the behavior of multiple functional abstractions in order to
be able to generalize the results (as mentioned above, HumanEval in-
volved 158 functional abstractions), and if non-deterministic algorithms
are involved such as the LLM models in the running example, multi-
ple repeat executions are recommended to obtain adequate statistical
power (Arcuri and Briand, 2014). In other words, in most TDSEs, SRMs

M. Kessel and C. Atkinson

Functional
~_ Abstractions

Tests

Systems

Measurements &
Context

Fig. 6. Multi-dimensional arrangement of functional abstractions, systems, tests and
repeat executions in an SRH.

represent individual experimental units which are repeated as many
times as possible. There is therefore a need to tie the multiple related
SRMs generated in a TDSE together within a higher order abstraction to
allow users to understand the context in which each SRM was created
and to navigate over them to extract and compare specific observations.

To fulfill this need and support the analysis phase of experiments,
LASSO supports the notion of Stimulus Response Hypercubes (SRHs).
Like the hypercubes used in data warehousing applications (cf. online
analytical processing, OLAP), SRHs are structures over multidimen-
sional data that “bundle” the ensembles of SRMs created in a TDSE
into a single logical hypercube. Each dimension provides the categor-
ical context for navigation to, and understanding of, the individual
measurements (i.e., observations) stored in each cell of the underlying
SRMs. Fig. 6 shows how an SRH can be used to provide a single,
multidimensional view of an ensemble of related SRMs.

Each individual SRM in Fig. 6 is an ensemble of actuation sheets for
a given functional abstraction. The “tests” and ‘“systems” dimensions
of the hypercube therefore correspond to the different tests and com-
ponents in each SRM. Each closely grouped set of SRMs in the figure
represents repeated executions of the contained tests and components
in order to obtain sufficient statistical significance for non-deterministic
algorithms, giving rise to a “repetition” dimension. And finally, for each
functional abstraction studied in the experiment, there is a different
set of SRM repetitions, giving rise to the “functional abstraction”
dimension.

Fig. 6 shows an SRM ensemble organized in terms of four naviga-
tion dimensions. However, in general there can be more dimensions,
depending on the number of independent variables in the study. For ex-
ample, in the context of benchmarking code models (see Section 4), one
variable that could be varied is the temperature. Other variables that
either need to be fixed or varied in controlled ways include the run-time
environment of software components (e.g., the Java language version
used). Another dimension arises when other kinds of measurements are
made about an individual actuation recorded in a cell of an SRM, such
as the execution time, the resource usage, or more complex data such as
the run-time stack of called methods (i.e., execution trace). These are all
associated with one individual cell in an SRM, and can be accessed via
an extra “measurement” or “record” dimension. The actuation sheets
would therefore represent only one element within this “record” dimen-
sion. Finally, since actuation sheets are themselves two-dimensional
data structures, they themselves contain further dimensions which a
user could “drill down” to during data analysis.

In general, therefore, SRHs provide a multidimensional way for all
the data collected in TDSESs, organized primarily through the notion

The Journal of Systems & Software 212 (2024) 111971

of actuation sheets and SRMs, to be wrapped into a single, navigable
and analyzable data structure. Moreover, SRHs allow the analysis of
observation data to be conducted offline in mainstream data analytics
platforms which offer rich ecosystems of tools and are supported by
active user communities. Since these platforms all offer similar ways
of manipulating tabular data in a cube-like way (operations like piv-
oting, for instance, cf. Caserta and Kimball, 2013), they all support
natural ways of analyzing SRHs. In the example TDSEs presented in
Sections 5 to 7, R (The R. Foundation, 2022) is used to analyze the
SRHs.

3.4. LASSO platform

As mentioned in Section 1, the LASSO platform itself is not the focus
of this paper. However, this subsection provides a brief overview of the
platform’s main features and the additional languages and capabilities
it provides to support the use of the aforementioned data structures.
Overall, LASSO offers a broad array of software code analysis services
to facilitate two primary goals: (a) developing innovative or improved
solutions for specific software engineering challenges (e.g., diversity-
driven test generation (Kessel and Atkinson, 2022) or automated cu-
ration of executable live datasets Kessel and Atkinson, 2019a), and (b)
supporting test-driven software experimentation. Some of the TDSEs for
which it has been used include investigations into functional equiva-
lence in behavior sampling (e.g., Kessel and Atkinson, 2019b) and test
set quality assessment (e.g., Kessel and Atkinson, 2022). What distin-
guishes LASSO’s platform from related platforms for experimentation
like Boa (Dyer et al., 2013, 2015) for mining software repositories,
is its integration of large scale, dynamic analysis services with static,
syntax-based services.

As shown in the high-level overview of the components of the
platform in Fig. 7, LASSO basically has three core building blocks -

+ an executable corpus of execution-ready software components,

* a study pipeline engine that executes TDSEs according to the steps
described in study pipeline scripts,

* software analytics support for analyzing and validating the result-
ing data.

Executable corpus:. Curating data sets of executable software com-
ponents is hard (Dietrich et al., 2017; Kessel and Atkinson, 2019a)
(cf. Section 1). To support the (semi) automation of the curation
process, LASSO maintains a systematically organized and extensible
corpus of executable software. LASSO’s corpus has been built from a
vast collection of executable (Java) software components sourced from
Maven Central (Sonatype, 2022) as well as other prominent software
engineering repositories such as SF110 (Fraser and Arcuri, 2014). This
large corpus of software components can be used to automatically
provide custom data sets for specific TDSEs.

Study pipelines:. LASSO allows experimenters to write scripts to access,
manipulate and analyze software from the aforementioned executable
corpus based on their desired experimental process. Using this scripting
language, called the LASSO Scripting Language (LSL), users can create
multi-step pipelines to effectively analyze and retrieve software com-
ponents from LASSO’s software corpus. Pipelines typically include steps
to —

1. retrieve software components with particular properties from the
corpus (typically classes and methods),

2. define tests to stimulate the selected components using stimula-
tion sheets,

3. load the selected components and tests into the arena as SMs and
record the component’s responses to the tests as SRMs,

4. export and analyze the collected data in a multidimensional
way using the SRH structure to answer research questions using
mainstream data analytics platforms.

M. Kessel and C. Atkinson

Large-Scale Software Observatorium (Platform)

The Journal of Systems & Software 212 (2024) 111971

create SMs,

store SRMs

manipulate SRMs ill ::

execute SMs,

analyse SRMs

en Sélection o

: SRHs

L -

Study Pipeline Scripts

Fig. 7. LASSO platform - high-level overview of concepts.

Software analytics:. Once the experimental data has been collected,
LASSO allows experimenters to handle and examine SRMs in two main
ways. In the first method, observational data can be retrieved and
modified during the execution of study pipelines. In the second method,
experimenters can export the SRM data as SRHs into external data
analytics tools that support advanced analysis options such as statistical
testing.

3.4.1. Realization of SRMs and SRHs

This section discusses how the presented data structures are repre-
sented and stored, and subsequently how they can be analyzed in a
classic, data-driven manner using statistical analytics.

SRMs:. SRMs and sequence sheets are tabular representations of data.
Tabular data is easily shareable and can be presented in a standard-
ized format, which in most data science technologies is referred to
as the “data frame” format. This is crucial for open science, where
transparency and reproducibility are key principles. Since tabular data
is generally easy to interpret and understand, sharing data sets in a
tabular format makes it easier for others to replicate experiments, verify
results, and build upon existing research. Rows and columns provide a
clear structure, and researchers can easily identify patterns, trends, and
relationships within the data. This makes it straightforward for both
experts and non-experts to comprehend and interpret the results.

Technically, the tabular format of SRMs provides a simple and
intuitive way to work with observational data, since it allow users to
perform various operations such as filtering, sorting, aggregating, and
transforming data without requiring extensive programming knowledge
or complex algorithms. It also supports high-dimensional analyses using
abstractions such as hypercubes. Second, data frames are widespread,
since they are commonly used in experimentation as well as in pop-
ular data science libraries such as Pandas (Python), Apache Spark
DataFrames (Scala) and data.frame (R). Third, data frames can be
used with various programming languages, making them a versatile
tool for working with structured data across different platforms and
applications. Finally, data frames also scale well, making them an ideal
choice for representing SRMs that grow in size, and for managing
and analyzing “big code” (cf. Allamanis et al., 2018) data sets. The
popularity of data frames has led to increased interoperability between
different tools, libraries, and platforms.

The realization approach used in LASSO was guided by the technol-
ogy that powers its distributed platform, Apache Ignite (The Apache
Software Foundation, 2022), which encourages data frames to be re-
alized in a “relational” way. Ignite comes with an in-memory, key—
value store that also acts as a relational database. LASSO uses the
Entity-Attribute Value (EAV) data modeling technique, that allows
the strict schema constraints imposed by relational databases to be
relaxed, which in turn facilitates the flexible storage of observations
in test-driven software experiments.

The database schema actually represents the structure of each cell in
an SRM, containing its coordinates for navigability, its (measurement)
type, its value and contextual information such measurement context.
Each record effectively becomes a row in the table which allows SRMs
to be stored in a sparse manner since only the cells that have content
need to be represented. However, multiple measurements for the same
coordinate can also be stored, which enables multidimensionality.

Note that since we use tabular representations, the actual storage is
generally agnostic to the underlying database technology. One may just
distribute SRMs as raw data frames in CSV files or in more sophisticated
formats like Apache’s Parquet.® Of course, the cells of an SRM can
be represented in various ways in different database technologies. For
example, they could be stored in distributed, large-scale databases
like wide-column stores (e.g., Apache Cassandra, Google BigTable or
Amazon DynamoDB).

SRHs:. Unlike the storage options for SRMs, supporting the multidi-
mensional analysis of SRMs through SRHs is dependent on the ca-
pabilities of the database technology and/or data analytics tool at
hand. We used R to connect to LASSO’s Ignite database and RJDBC’
to manipulate the SRM records. R has a rich ecosystem of tools that
offer cube operations to treat ensembles of SRMs as hypercubes. We
used the tidyverse library® that offers cube operations (e.g., pivoting)
to enable rich analysis approaches such as behavior-based clustering
(cf. Sections 5 to 7). Similar functionality can also be found in other
popular tools such as the Python ecosystem of libraries (e.g., Pandas
etc.).

6 https://parquet.apache.org/
7 https://cran.r-project.org/web/packages/RJDBC/
8 https://www.tidyverse.org/

https://parquet.apache.org/
https://cran.r-project.org/web/packages/RJDBC/
https://www.tidyverse.org/

M. Kessel and C. Atkinson

Sequence sheets and object serialization:. As previously mentioned, in
the LASSO platform tests are executed in the arena component, serving
as the test driver for stimulus sheets. The internal implementation of
the arena employs introspection (specifically, Java reflection) to run
through each row within the test sequence outlined in a sheet. Using
a tabular data structure allows both the inputs and outputs to be
recorded systematically (based on indices that ease navigability) and
stored in SRMs as actuation sheets. This makes it necessary to adopt a
serialization schema that can store an object’s state in a tabular way
to facilitate comparisons between inputs and outputs. LASSO realizes
the required serialization by representing objects as strings in the
data types supported by JSON, which can then be compared for their
equivalence or similarity.

4. Benchmarking large language models for code generation

As mentioned in the introduction, this paper makes two main con-
tributions — (1) it describes three data structures designed to provide
a simple and flexible basis for representing observations of run-time
behavior, and (2) it showcases these data structures in the replication,
reproduction and repurposing of TDSEs from the domain of Al code
model benchmarking — the HumanEval benchmark for Java (Cassano
et al.,, 2023b). The paper therefore essentially uses this benchmark as
a running example to evolve a series of experiments and shows how
observation data can be “opened” and reused according to open science
practices. To set the scene for the detailed experiment descriptions,
therefore, this section provides an overview of the running example.
It also aligns the terminology used in the example benchmark TDSE
with the terminology used in the LASSO platform.

4.1. Background

In order to demonstrate the utility of our proposed data structures
for test-driven software experimentation, we apply them in a domain
that is currently receiving a huge amount of attention due to the general
excitement around Large Language Models (LLMs) in generative A’ —
the “benchmarking” of LLM-powered programming tools (a.k.a. code
models). Code models have emerged as a novel subfield of program
synthesis (Gulwani et al., 2017) that capitalizes on the availability of
big code and the recent advances in LLMs to potentially revolution-
ize the way software is developed. The technology basically aims to
make software development faster and more efficient by accelerating
various software engineering activities (e.g., coding and test generation,
documentation etc.), and making them more accessible to developers
by lowering barriers (e.g., by teaching coding activities through code
explanations Finnie-Ansley et al., 2022).

Code models such as OpenAl’s “Davinci” model (Chen et al., 2021)
that powers Codex and GitHub Copilot are probabilistic LLM-based
models that can create code from user specifications, typically called
“prompts”, which describe a coding problem in natural language. These
models are trained on massive datasets of code as well as natural
language text, allowing them to create new code from scratch or modify
existing code to meet new requirements.

4.1.1. Code models

At the time of writing, quite a number of code models have been
described in the literature. A recent overview can be found in Li et al.
(2023), where code models are roughly classified by their accessibil-
ity (i.e., as open when a model’s weights are published, and closed
when not). Three of the most well-known and widely-described code
generation models are CodeGen, InCoder and Codex.

9 especially breakthroughs stemming from the transformer architec-

ture (Vaswani et al.,, 2017) that powers popular chatbots like OpenAI’s
ChatGPT

10

The Journal of Systems & Software 212 (2024) 111971

CodeGen (Nijkamp et al., 2023) is a massive parameter language
model that has been extensively trained using a next-token predic-
tion objective. The benchmark in this work focused on evaluating
the multilingual version of CodeGen, which was initially trained on
“The Pile” (Gao et al., 2020), a vast dataset containing mostly natural
language text with approximately 8% GitHub-scraped code. To further
enhance its performance and adaptability across various programming
languages, the multilingual CodeGen model underwent fine-tuning on
a carefully selected subset of six popular programming languages: C,
C++, Go, Java, JavaScript, and Python.

InCoder (Fried et al.,, 2023) is a powerful parameter language
model that has been extensively trained using a causal masking ob-
jective (Aghajanyan et al., 2022). The primary purpose of InCoder
is to provide both code infilling and code completion services. The
latter is evaluated in the running example. To achieve its high level of
performance, InCoder was trained on an enormous dataset consisting
of 159 GB of deduplicated (Allamanis, 2019) and filtered code from
GitHub (approximately one-third of which is written in Python) and a
further 57 GB of code snippets from StackOverflow.

Codex (Chen et al.,, 2021) is a powerful GPT-3 language model
that has been specifically fine-tuned on code to generate high-quality,
contextually-relevant program snippets and other software develop-
ment artifacts. Until recently, it powered services like OpenAl Codex
and GitHub Copilot. The benchmark focused on the more recent 175
GB parameter version of Codex (codex-davinci-002), which has
been trained on multiple languages. Unfortunately, details about the
training set for this particular model are not publicly available (i.e., it
is a closed code model).

4.1.2. Benchmarking approaches

In order to evaluate the effectiveness of the various code models
described above, and to compare them to other code delivery services
such as code search engines, there is an urgent need for effective
comparison platforms and approaches. At the time of writing, a variety
of benchmarking approaches have been described in the literature.
For the task of code generation in particular, one can roughly clas-
sify benchmarks according to whether the functional correctness of
software components is established by —

« textual similarity metrics, originating from NLP practices, such as
the BLEU metric (Papineni et al., 2002) where generated software
components are compared to a reference component, or by

* unit tests, ideally hidden from the models, which determine
whether software components deliver the expected behavior when
executed.

Since textual similarity is only a weak indicator of functional cor-
rectness, test-driven evaluation of components based on representative
tests is regarded as providing a stronger assessment of functional
correctness (Chen et al., 2021; Li et al., 2022). Several benchmarks
based on the test-driven evaluation of component behavior have been
proposed. They all consist of diverse coding problems, of differing dif-
ficulty, mined from various internet sites that provide natural language
descriptions of some desired functionality that components have to
exhibit (i.e., natural language-to-code). At the time of writing, such
benchmarks typically contain coding problems for the Python language.

One of the highest profile benchmarks is the HumanEval bench-
mark for the Java language generated using MurTiPL-E (Cassano et al.,
2023b), and originally introduced by the authors of OpenAl’s Davinci
model (Chen et al., 2021) to assess the functional correctness of the
Python code it generates. Apart from the HumanEval benchmark, other
benchmarks of varying size and problem difficulty have been proposed,
including MBPP (Austin et al., 2021), and Deepmind’s CodeContests to
assess AlphaCode (Li et al., 2022).

Although initiatives exist to offer systematic evaluation frameworks
for code models by bundling existing benchmarks together (e.g., Ben
Allal et al., 2022), these do not attempt to solve the problem addressed
in this paper as outlined in the introduction.

M. Kessel and C. Atkinson

1 // START PROMPT
2 import java.lang.reflect.*;
3 import org.javatuples.*;
4 import java.security.x;
5 import java.math.*;
6 import java.io.*;
7 import java.util.stream.*;
8 class Problem {
9 // Return a greatest common divisor of two integers a
< andbd
10 // >>> greatestCommonDivisor((31), (51))
11 /7 (1)
12 // >>> greatestCommonDivisor((251), (151))
13 /7 (51)
14 public static long greatestCommonDivisor(long a, long
s b){
15 // generated by code LLM
16 // END PROMPT
17 }
18
19 // START HIDDEN TESTS (hidden from LLM, standard Java
o using assert statement)
20 public static void main(Stringl[] args) {
21 assert(greatestCommonDivisor ((31), (71)) == (11));
22 assert (greatestCommonDivisor ((101), (151)) ==
< (51));
23 assert (greatestCommonDivisor ((491), (141)) ==
s (T1));
24 assert (greatestCommonDivisor ((1441), (601)) ==
- (121));
25 }
26 // END HIDDEN TESTS
27 }
Listing 1: Code prompt and tests of problem “Hu-

manEval_13_greatest common_divisor” (cf. HumanEval from MultiPL-E
Cassano et al. (2023b))

4.2. HumanEval-J benchmark

This subsection provides an overview of the design of the MurtiPL-E
experiment that is the basis for the running example, and the Hu-
manEval benchmark upon which it is based (further details can be
found in Cassano et al., 2023b; Chen et al., 2021). Since the original
HumanEval benchmark consists exclusively of Python coding prob-
lems, the MuLtiPL-E experiment translated them into 18 additional
programming languages selected by their popularity and program-
ming paradigms. The objective was to demonstrate the code models’
performance across a range of widely used languages. Since the cur-
rent version of LASSO focuses on the execution and analysis of code
written in the Java programming language, we only reperformed the
benchmark for the translated Java coding problems. In other words,
we essentially replicated, reproduced and repurposed the experimental
design used by MuLtiPL-E for the evaluation of the models’ performance
for Java code generation. To avoid confusion, in the remainder of the
work, we refer to the Java version of HumanEval as HumanEval-J.

HumanEval-J contains a manually curated set of coding problems
for which code generation models need to complete the code of single
methods. For each coding problem, therefore, the model under evalua-
tion is “prompted” to complete a given method body for a single coding
task. The prompts for these task consists of three core ingredients (see
Listing 1) —

1. a method signature including the name, input parameters and
return parameter,

2. a code comment in natural language that describes the expected
behavior of the method,

3. a list of example method invocations.

Based on the given set of problems, the performance of a model
is then judged by the functional correctness of its code completions
with respect to a supplied set of unit tests which are “hidden” from the

The Journal of Systems & Software 212 (2024) 111971

models (i.e., not the same as the set of example method invocations).
Hiding the tests from the models is important in order to ensure the
validity of the results, since it is important that the tests and coding
problems are not “known” to the model (i.e., that it was not trained on
them). For this reason, the coding problems, including their tests, were
manually curated from the internet, and ideally were not part of the
data sets used to train the models.

The evaluation criterion used to assess whether code completions
generated by the models are functionally correct is test-driven. Once
a generated code completion for a problem passes all the provided
unit tests that compare the expected behavior to the actual exhibited
behavior, functional correctness is deemed to have been satisfied. Since
exhaustive testing is infeasible in practice (Ammann and Offutt, 2016)
and functional correctness is judged based on a small set of tests as part
of the benchmark, it is assumed that these tests are “strong enough” to
characterize the desired behavior for a given problem.

4.2.1. Code models (study objects)
Based on MuLtiPL-E’s experimental design, we evaluated the perfor-
mance of three state-of-the-art code generation models —

» OpenAl’s Codex (codex—-davinci-002) (Chen et al., 2021),
» CodeGen (Nijkamp et al., 2023),
» InCoder (Fried et al., 2023).

For each problem, the original experiment sampled 200 code com-
pletions from each model based on a fixed “temperature” hyperparam-
eter (0.2) which basically controls the predictability of code comple-
tions. More predictable completions correspond to lower temperature
values, while more creative, less predictable completions correspond to
higher temperature values. In other words, lower temperatures make
code completions more deterministic, whereas higher temperatures
make them less deterministic.

4.2.2. Code generation (study subjects)

MuLtiPL-E’s attempt to translate the original 164 python coding
problems into the Java programming language was successful 158
times. Note that we took the “reworded” data set variant of the prob-
lems tailored to other programming languages from (Cassano et al.,
2023c). Since the (statistically sound) sampling of generated code
from the models was costly and very time-consuming (cf. Cassano
et al., 2023b), and the authors made the code completions accessible
online (Cassano et al., 2023a), we did not resample the generated code
in our running example.

4.3. Translation to LASSO platform

To replicate and reuse HumanEval-J, we translated the experimental
design used in Cassano et al. (2023b) to the LASSO platform to exploit
its experimentation and analysis services. LASSO is used as the platform
for the running example since it realizes the data structures proposed in
Section 3 and provides an execution platform to automate the operation
phases of the experiments.

We basically carried out three main translation tasks to execute the
experiments in the running example using LASSO —

» Functional Abstractions: we translated the 158 Java coding prob-
lems of HumanEval-J into LASSO’s concept of functional abstrac-
tions,

* Executable Corpus: we migrated the code completions sampled by
MurtiPL-E into LASSO’s single, underlying, executable corpus (for
the purpose of code indexing and retrieval),

» Study Pipelines: we translated and encoded MuttiPL-E’s experimen-
tal design into study pipeline scripts (based on LASSO’s script-
ing language) that serve as executable, reusable and shareable
experimental design descriptions.

In the following subsections, we give an overview of each transla-
tion task, and streamline the terminology used in the running example.

M. Kessel and C. Atkinson

4.3.1. Functional abstractions

To streamline the terminology used to refer to the software code
units generated by the models in the experiment, we use the term
software component to refer to the code completions of methods.
Technically, these have to be encapsulated inside a Java class to make
the methods invocable.'®

As explained previously, a HumanEval-J coding problem describes
the desired functionality in three basic ways (name, interface and a set
of tests) without providing an executable reference component imple-
mentation. In LASSO, such “desired functionality” is referred to as a
functional abstraction. HumanEval-J’s description of each functional
abstraction was therefore mapped into LASSO’s format, including the
translation of unit tests into stimulus sheets as explained in Section 3.

4.3.2. Executable corpus

To integrate the software components sampled from the three code
models for HumanEval-J into LASSO, we set up a simple ETL process
(extract, transform, load) to load them into the platform’s executable
code corpus. For the running example, we set up a study pipeline to
extract each software component (i.e., solution to a code completion
task) represented as a Java class from the completions provided in Cas-
sano et al. (2023a). Then we generated a Maven project for each class
and loaded it into LASSO’s executable corpus as a new data source by
(1) indexing its source code (including static code measurements) for
later retrieval purposes, and (2) uploading the Maven build artifact, in-
cluding source and compiled code, to the underlying Maven repository
for subsequent retrieval. Some software components generated by the
models contained static faults such as syntax errors and were marked
accordingly for later analysis.

4.3.3. Study pipelines

The last translation step was the construction of executable study
scripts to conduct the various experiments contained in the running
example. This was accomplished using the LASSO Scripting Language.
To realize the running example, the experiments’ processes were en-
coded into multiple study pipeline scripts which were used to answer
the different research questions (see Appendix A). Unfortunately, for
space reasons, we cannot provide further details about LASSO’s script-
ing language and the pipelines used, so the reader is encouraged to
consult (Kessel, 2023) for further details.

5. Experiment replication example

Having introduced the notion of sequence sheets, SRMs and SRHs,
in the following three sections we show how they facilitate different
forms of reuse of experimental data — experiment replication, repro-
duction and repurposing - in the context of the running example. This
section focuses on the first form of reuse by presenting a replication of
the HumanEval-J experiment. The material and data for this experi-
ment, and the following experiments, is publicly available (Kessel and
Atkinson, 2023).

The goal of the first experiment is to replicate the HumanEval-J
experiment using the LASSO platform to answer the following research
question (i.e., the same one as the original) —

RQ 1. What is the Java code completion performance of the three
code models (with temperature set to 0.2) as judged by functional
correctness?

10 1n classic object-oriented Java, a method cannot exist without a class.

12

The Journal of Systems & Software 212 (2024) 111971

To answer this research question, we first conducted the operation
phase of the experiment using the study pipeline script in Listing 2
(Appendix A) in order to create all the required SMs and produce the
corresponding SRMs. In the first analysis step, for each of the 158
functional abstractions of the benchmark, we retrieved all software
components sampled from each model (up to 200 for each model)
from LASSO’s executable corpus. As part of the second analysis step
(i.e., running the arena test driver), we configured an SM for each func-
tional abstraction by loading the tests of the functional abstraction as
stimulation sheets. This resulted in 158 SMs being input to the arena to
produce the corresponding SRMs as output. Finally, the resulting SRMs
were stored for later analysis, including judging functional correctness
based on the following evaluation criterion.

5.1. Judging functional correctness

In order to judge the functional correctness of the code completed
by the models, we used the pass@k metric. This was originally proposed
by Kulal et al. (2019) as part of their pseudocode-to-code approach,
and was later evolved by Chen et al. (2021) to an unbiased estimator
for obtaining statistically sound results. This is the metric used in the
original MuLTiPL-E experiment being replicated.

Informally, pass@1 represents the probability that one model-
generated software component successfully passes all unit tests. Sim-
ilarly, pass@10 represents the probability that any one of 10 generated
components successfully passes all unit tests. To answer the research
question and compare the models’ performance, pass@1 (k=1) was cal-
culated for each functional abstraction (i.e., for each coding problem),
and then averaged (using the arithmetic mean) over all problems using
to the following equation —

P
pass@k(LLM;, k) = 1 Z pass@k(n,c, k) (@D)]
L
where 7 is the total number of components generated by each model,
¢ the number of correct components (according to the tests), and k is
k in pass@k (set to 1).

5.2. Establishing functional correctness in SRMs

In order to measure pass@k, we first discuss how functional cor-
rectness is established through “offline” analysis of SRMs. Since SRMs
store observational records as actuation sheets, it is possible to select
the output columns of all executed components (i.e., column A in the
spreadsheet notation used by the SSN). This step alone, however, is not
sufficient to perform the comparisons needed to answer the research
question. What is missing is the oracle information for the functional
abstraction. To provide oracle information, we introduce a “virtual”
oracle component that defines the required responses of implementa-
tions of the GCD functional abstraction in the form of actuation sheets.
The actual values are taken from the JUnit assertion statements in the
HumanEval prompt for the GCD problem shown in Listing 1. The virtual
oracle component is manifested as a new column in the SRM which
contains the expected response for each stimulus. Once this oracle
column has been added, the outputs can be compared to the recorded
outputs (i.e., actual responses) of the generated components to judge
their functional correctness.

Fig. 8 demonstrates the change to the configuration of the SRM
when an “oracle” O is introduced as a “virtual” component to enable
comparisons. With the additional information, the responses of the
components can now be pair-wise compared to the oracle responses. If
there are no discrepancies between the output columns, a component
is judged to be functionally correct.

Fig. 9 shows an excerpt of the distribution of responses from the
SRH-based analysis of the SRM for the GCD abstraction for which four

M. Kessel and C. Atkinson

The Journal of Systems & Software 212 (2024) 111971

0 Sy LLM, Sk LLM; S1 LLMy, Sk LLMy,
Ty| T | TuCSip,-) Ty Sipyarys) Ty Sty) Ty Sipag,e)
T | 50 | T TSy,) TSt 1000, TSy,)
Tm Tm(Or) Tm(leLMl‘) Tm(SkLLMl') Tm(leLMn') Tm(SkLLMn')

Fig. 8. Adding a virtual oracle component O (first column) to the SRM to judge functional correctness.

Test@Invocation Oracle CodeGen; CodeGen, CodeGensz CodeGen,
T,@1 1 1 -7 1 1
T,@1 5 5 -15 5 5
T,@1 7 7 28 7 7
T,@1 12 12 60 12 12

Fig. 9. Establishing functional correctness for the GCD abstraction (SRM contains 4 tests, and 5 components including the oracle and 4 components generated by the CodeGen

model).

tests were defined. The filtered SRM includes the virtual oracle com-
ponent (first column) and five components generated by the CodeGen
model.

The oracle constructed from the abstraction is located in the first
column of Fig. 9. When compared in a pair-wise manner to this first
column, it is apparent that three components have result columns
that are equivalent to the oracle’s result column. They are therefore
judged to be functionally correct. The component CodeGen,, however,
has different result values for all four tests and is thus judged to be
functionally incorrect.

5.3. Results

Replicating the original HumanEval-J benchmark experiment using
the LASSO platform allowed us to fully confirm the numbers reported
by MuLtiPL-E’s experiment in Cassano et al. (2023b). We were therefore
able to successfully replicate their work, while benefiting from the
effort-saving advantages of sequence sheets, SRMs and SRHs.

The SRH-based analysis of SRMs was performed using R, including
the judgment of functional correctness and the computation of the
pass@1 metrics. Fig. 10 depicts the resulting average pass@1 measures
as a bar plot. The average pass@l measure was 0.222 for Code-
Gen, 0.416 for Davinci (Codex) and 0.0918 for InCoder. So, as re-
ported in Cassano et al. (2023b) for the replication of Chen et al.’s
results (Chen et al., 2021), we are able to confirm that Davinci is the
best model for the language-to-code task for Java components.

When traditional unit testing practices are used to perform TD-
SEs, such as in MuLtiPL-E’s experimental design, the aforementioned
analyses can only be performed at run-time when the components
are actually executed and compared using assertion statements. The
obtained responses for the different code completions are therefore
actually hidden from the experimenter. In contrast, as demonstrated
by our replication, the use of SRMs and SRHs significantly increases
actuation transparency in a TDSE, since behavioral observations are
recorded and stored. This gives experimenters the ability to analyze
the behavior in a purely offline, data-driven manner. SRMs, there-
fore, facilitate the fine-grained analysis of exhibited behavior by, for
instance, identifying (a) functional similarity (subset of tests passed),
(b) functional equivalence (subsets of components agreeing on certain
responses) across the software components of an abstraction, and (c)
the number of behavioral clusters across abstractions and models.

13

o o I
N w EN

average pass@1

©
=

0.0- | |
Davinci Incoder
Model

Codégen

Fig. 10. Average pass@I: Replication results confirming results reported by MuLtiPL-E.

6. Experiment reproduction example

In this section, we demonstrate how LASSO’s data structures allow
HumanEval-J’s experiment to be easily reproduced to address the same
research question (research question 1, but using a different design to
that of the original experiment in Cassano et al. (2023b).

6.1. Experimental design

The modification we apply to the design is to use an automated
unit test generation tool to extend the set of tests used to judge
functional correctness. In terms of the SRM, this corresponds to adding
additional rows to the SRMs while keeping the columns (i.e., compo-
nents generated by the models) the same. The benefit of doing this
is explained by the following statement made in a recent AlphaCode
paper (Li et al., 2022) - “the lack of sufficient test cases in existing
competitive programming datasets makes the metrics defined on them
prone to high false positive rates (with 30% or more programs which
pass all tests but are not actually correct), and therefore unreliable for
measuring research progress”. In the terminology of these benchmarks,
we enhanced the design by adding extra, “hidden” tests to make the
functional correctness metrics more reliable.

While the AlphaCode authors used fuzzing techniques to mutate in-
put values of the original tests in order to generate additional tests, we
used the best-in-class EvoSuite automatic unit test generator (Fraser and
Arcuri, 2011; Vogl et al., 2021) to obtain additional tests to improve the

M. Kessel and C. Atkinson

The Journal of Systems & Software 212 (2024) 111971

SlLLM1 Sk LLM; St LLMy, Sk LLMp,
Ty | TGy) Ty iy) TGS Ty Siey)
Tj Ti(leLml') T1'(SkLLM1') TI'(SILLM,,') TJ'(SRLLM,[')
Tm Tm(leLMl') Tm(SkLLMl‘) Tm(SlLLMn’) Tm(SkLLMn')
E1 El(SlLLMll) El(SkLLer) EI(SILLMH') El(SkLLM"')
En E"(SlLLMi‘) En(SkLLMl’) En(SlLLM,,') E"(SkLLMn')

Fig. 11. Adding tests generated by EvoSurte to an SRM.

Table 1
Average pass@I: Results before and after adding tests generated by
EvoSurtk, loss in total and in % per model.

Model Before After Loss Loss in %
CodeGen 0.22 0.16 0.06 0.27
Davinci 0.42 0.32 0.10 0.23
InCoder 0.09 0.07 0.03 0.29

reliability of the functional correctness metric. Since EvoSurrte relies on
software components as its input, and since tests have to be executed
on all the other components implementing a functional abstraction,
we ran an additional study pipeline script that is shown in Listing 3
(Appendix A). As illustrated in Fig. 11, the original SRMs from the
replication experiment described in the previous section were “grown”
by adding new rows in the form of new tests generated by EvoSurte.
This ultimately leads to the execution of many more component-test
pairs.

The strategy we followed was inspired by the test amplification
approach categorized as AM P,;, in Danglot et al. (2019), Kessel and
Atkinson (2019). For each abstraction of the benchmark, we randomly
sampled 10 unique functionally correct software components from all
the available functionally correct software components (as judged by
the original tests from HumanEval-J). We then used EvoSurte to gener-
ate additional tests from these samples. Based on the generated tests we
then executed those on all the software components in order to obtain
additional actuation sheets. To obtain an oracle for the generated tests,
we selected the response which the majority of the functionally correct
components agreed on (based on behavioral clustering using SRH-based
analysis of the data as explained in the next section). Together with the
actuations obtained from the original tests, we then judged functional
correctness using the original metric (i.e., pass@k).

Note that in order to execute this experiment, we leveraged LASSO’s
ability to reuse past results (i.e., SRMs) created by previous script
executions. This capability allows experimenters to simply “resume”
at a certain state in a new study pipeline script. Here we resumed
the replicated experiment after the arena produced the output SRMs.
The new script then analyzed the SRMs to filter the functionally cor-
rect components and used them as input for the aforementioned test
amplification strategy.

6.2. Results

Overall, EvoSurte managed to generate 26.29 tests on average for
each functional abstraction from at most 10 randomly sampled func-
tionally correct components. Table 1 shows the average pass@1 metrics
before and after the new tests were added as well as the resulting
changes, while Fig. 12 visualizes these changed metrics as a bar plot.

14

0.4-
I
@
2
50.3-
3
& pass@1
”@‘ 0.2 Before
a B Afer
a
@
o
o
5}
S
5

Codegen Davinci Incoder

Model

Fig. 12. Average pass@1: Results before and after adding tests generated by EvoSurte.

These results show that the generated tests actually changed the
functional correctness judgments from those made using the original set
of tests. We can observe a significant drop in the pass@1 measures for
all three models. A direct comparison to the measures obtained in the
replicated experiment shows an overall decrease of roughly 25%. This
indicates that the original set of tests poorly discriminated the behavior
of the components generated by the model. As well as confirming the
aforementioned statement made by the authors of AlphaCode (Li et al.,
2022), this experiment also demonstrates the benefits of incrementally
extending SRMs. Apart from the newly generated tests, no other tests
had to be re-executed in order to reason over all tests involved in
the analysis of this research question. The SRM data produced by
the replication experiment were reused and extended with the addi-
tional records obtained by running the newly added tests generated by
EvoSurte.

7. Experiment reuse example

In this section, we demonstrate how observational data contained
in SRMs can be repurposed to help answer new research questions by
incrementally “growing” them and the SRH’s used to analyze them.
This shows how the presented data structures can facilitate the fourth
kind of reuse use case discussed in Section 2.3 - the repurposing
of experimental results. To this end, we formulate a novel research
question and extend the previous replication and reproduction of the
HumanEval-J experiments described in Sections 5 and 6 respectively —

RQ 2. What is the variability in observable functional behavior
exhibited by the software components sampled from the code models?

M. Kessel and C. Atkinson

Table 2
Excerpt of 10 (out of 20) behavioral clusters identified for the GCD abstraction
(randomly sampled, unique behavioral clusters, across components of all models).

Cluster ID 29 39 7 54 13 52 38 17 55 25
T,@1 1 3 -1 7 0 5 3 0 7 1
T,@1 5 10 -1 15 O 6 10 10 15 5
T,@1 7 7 -1 14 0 6 49 49 196 EXCEPTION
T;@1 12 24 -1 60 O 3 144 144 3600 EXCEPTION
#Components 643 15 10 29 41 4 17 1 5 1

Table 3

Descriptive statistics of cluster sizes over all functional abstractions (research question

RQ 2).

min q25 median q75 max mean sd
Total 1 11.00 23.50 49.75 143 32.71 29.25
Codegen 1 3.00 9.00 21.00 80 14.45 16.04
Davinci 1 2.00 4.00 7.00 55 5.83 7.39
InCoder 1 6.00 12.00 24.00 76 17.61 16.05

7.1. Behavioral cluster analysis

Answering this new research question demonstrates how the fine-
grained observational records stored in SRMs (i.e., the actuation sheets)
can be leveraged to further analyze the behavior of the components
generated by the three models. To the best of our knowledge, no
work has yet shed light on the bandwidth and variability of behavior
exhibited by the generated components.'!

To explore this question, we identified unique clusters of equivalent
behavior based on the responses of components for each functional ab-
straction in HumanEval-J. In contrast to the previous two experiments,
where the results returned by each component were compared to the
oracle values, in this analysis we identified all unique responses (that
is technically, all unique columns of values) for each abstraction and
grouped them into clusters of identical values.

To illustrate the clustering, Table 2 shows a randomly selected
sample of 10 behavioral clusters out of the 20 clusters identified for
the GCD functional abstraction across the components generated by the
models. It is important to stress that no re-execution of the experiment
was necessary to obtain these measurements, since the SRM records
created in the replication process (cf. Section 5) already contain all the
required data points for the clustering analysis (i.e., actuation records).
In other words, this analysis was conducted exclusively in the data
analytics tool of choice (i.e., R) using SRH-based navigation over the
observational data.

7.1.1. Results

In order to obtain the results, we first identified the average num-
ber of behavioral clusters across all functional abstractions and all
three code models under investigation. We then identified the behav-
ioral clusters across all abstractions for each model. Table 3 presents
the descriptive statistics from our cluster analysis averaged over all
abstractions (i.e., coding problems).

Overall, we identified 32.71 (median 23.5) unique behavioral clus-
ters per coding problem (i.e., functional abstraction). When we com-
pared the variability of the exhibited behaviors across the generated
components measured by the number of unique clusters, we found that
the Davinci (Codex) model has the least variability with 5.83 clusters
on average (median 4). The two remaining models, however, have a
much larger number of unique clusters with 14.45 clusters for CodeGen

11 The bandwidth and range of behavior are shaped by the inherent struc-
tural design of the produced code. Given the probabilistic nature of the code
models, the components generated for a specific coding problem are expected
to exhibit variations.

15

The Journal of Systems & Software 212 (2024) 111971

(median 9), and 17.61 clusters for InCoder (median 12). Therefore, the
Davinci model not only provides the best performance with respect
to functional correctness (cf. Section 5), it also provides the least
variability in functional behavior across the three models compared.

In terms of the underlying SRMs, this experiment “grew” the origi-
nal SRMs by storing additional measurements together with their con-
text information — namely, observational records of the data obtained
from the clustering analysis. The identification of unique behavioral
clusters creates new possibilities to map (or label) the clusters found
for different functional abstractions, which is a worthwhile endeavor
in its own right.

8. Discussion

In this section we first discuss the threats to validity of the experi-
mental results described in the previous three sections and then discuss
the benefits and drawbacks of the presented approach in the context of
test-driven software experimentation and open science.

8.1. Threats to validity

In Section 5, we demonstrated the utility of SRMs and sequence
sheets by successfully replicating the HumanEval-J benchmark applied
to three code models for the Java programming language. Since we
used the same experimental design, the replication suffers from the
same threats to validity that the authors of MuLTIPL-E mention in their
work (Cassano et al., 2023b).

8.1.1. Inherited threats

MurtiPL-E uses a suite of stripped-down compilers to translate code
generation benchmarks from Python into new languages in order to
enable the evaluation of models for these languages. Since the original
HumanEval benchmark was designed for Python coding problems, the
Java benchmark we used was automatically generated. One threat to
validity, therefore, is that the benchmark itself is not optimized for
Java and the coding problems might not accurately reflect Java’s real-
world performance. The authors mitigated this threat by validating the
generated prompts (including tests) in various ways including manual
inspection and automatic verification through test suites. Related to
this, another threat is the representation and construction of code
prompts as part of the coding problems that were used to generate
software components. The models under assessment are known to be
sensitive to the structure of code prompts, so the threat arises from the
fact that the prompts were not optimized for Java code completions
(e.g., Python poctest'? is not supported in Java). To mitigate the threat,
the authors kept information about all the original Python prompts for
other languages.

Finally, to mitigate the threat of unsound statistical results (i.e., the
lack of generalizable results) due to the inherent non-determinism of
probabilistic models, the authors of MuLTiPL-E used an acknowledged
sampling technique to sample software components generated from the
models in order to obtain measurements of their functional correctness.
To further control non-determinism, the authors chose the commonly
used temperature hyperparameter value of 0.2.

We “reused” the sampled software components selected in the
original experiment, given the significant effort and time involved in
obtaining them (cf. cost discussion in Cassano et al., 2023b). Since the
authors used a well-acknowledged sampling technique, as explained
above, repeating the sampling process (under the same controlled
conditions) would almost certainly have delivered the same overall
results.

12 https://docs.python.org/3/library/doctest.html

https://docs.python.org/3/library/doctest.html

M. Kessel and C. Atkinson

8.1.2. Serializing objects

In Section 7, we demonstrated how the SRMs of the replicated
benchmark can be reused and extended to address additional research
questions. In our approach, we focused on the functional correctness,
equivalence and/or similarity of software components by performing
SRH-based analyses of the observation data stored in the actuation
sheets. In contrast to classic unit testing, which makes these measure-
ments at run-time, we performed the analysis “offline” on the presented
data structures utilizing the data-driven analysis capabilities offered by
the LASSO platform. However, a major challenge in this approach is
effectively serializing the observed responses from the software com-
ponents at run-time (i.e., serializing Java objects), since information
loss may occur as part of the process. Consequently, the comparison of
serialized values in the SRH-based analysis (i.e., the tabular data frame
representation) may not deliver the same results as the equivalence
checks performed by the assertions at execution time. To mitigate this
threat, we employed a carefully designed serialization strategy that
serializes the state of Java objects into a JSON representation. We
manually inspected all the possible object types used in the coding
problems (i.e., the input parameter and output parameter types of
the methods under test) and verified that these could be successfully
serialized.

8.1.3. Automated test generation

Finally, a threat to the validity of the reproduction demonstrated
in Section 6, which leveraged discrepancy-based testing to identify
disagreements between the exhibited behavior of components, is that
tests were automatically generated independently of the “actual” func-
tional abstractions realized by the sampled software components. Since
EvoSurte generates tests solely by analyzing the code provided to it,
the test generator is blind to their functionality (i.e., semantics). To
mitigate this threat, we sampled (up to) 10 unique software components
that were judged to be functionally correct by the original tests of the
benchmark and checked that this was in fact the case. Finally, since
EvoSurte often generates tests at the extremes or borders of the input
space (e.g., null values, negative values etc.), there is a chance that
some of the recorded component responses are syntactically different,
but semantically equivalent. For example, one method may return a
“null” value to signify invalid inputs, whereas another method may
return an empty string, although both indicate the same error (i.e., Java
exception). In our case, we take a strict view of what “same behavior”
means and assume that there is only one correct response to any
stimulus.

8.2. Impact on test-driven software experimentation and open science prac-
tices

As well as the advantages of the tabular representations, in this
subsection we discuss the potential impact of the presented technology
on test-driven software experimentation in general, and on support for
open science practices in particular. In Section 5 we demonstrated how
SRMs are a useful tool to facilitate the operation and analysis phases of
the experimental process, from the execution of the experiment to the
analysis of the results obtained. The improvements provided by SRMs
not only benefit the original team, but also experimenters attempting
to repeat, replicate, reproduce or repurpose previous experiments.

The three notions of reproducibility defined by the ACM, as well as
our notion of repurposing presented in Section 2.3, are all supported
by SRMs. Firstly, the repetition of an experiment can be supported
by producing several instances of the very same SRM. Secondly, the
replicability of the experiment is enabled by comparing past SRMs
with the newly obtained ones. When combined with the other exper-
imentation services offered by LASSO (i.e., the executable corpus and
study pipeline language), the replication process is made much simpler
and (semi)-automated, since comparisons can be achieved in standard-
ized ways. Reproducibility, when independent teams make changes

16

The Journal of Systems & Software 212 (2024) 111971

to the experimental design, is supported by the inherent extensibility
of SRMs, and the ability to analyze ensembles of them offline via a
multidimensional SRH.

The final reuse use case, repurposing, can easily be achieved with
SRMs and SRHs by adding additional rows and/or columns to existing
SRMs, extending them with additional measurements stored with the
appropriate contextual information, and by adding new SRMs. This ad-
ditional information can be used to “tag” variations of experimental de-
signs (make contextual information explicit) and facilitate comparisons
to other measurements that used a different design (e.g., experiments
using different measurement facilities or measurement scopes that are
otherwise identical).

SRMs provide a common format for storing vast numbers of soft-
ware observations. We believe that such a scalable, standard format sig-
nificantly improves the accessibility of TDSEs. Once third parties have
gained a common understanding of SRMs, understanding presented
results (technically) become much easier.

The tabular representation of SRMs also lowers the barriers to shar-
ing them. To date, many (free) platforms exist that explicitly encourage
the sharing of (very) large, open datasets in tabular representations
and even provide some basic viewing and manipulation capabilities
(e.g., Hugginface'®). If bundled with systematic study pipelines like
those supported by LASSO, both open data and open material become
much easier to achieve.

Despite the reproducibility concerns in TDSEs discussed in Sec-
tion 7, we also demonstrated how existing experiments can be ‘“re-
purposed” in a systematic way using SRMs in order to address a new
research question. We showed how new measurements can be added to
existing SRMs (i.e., using behavioral clustering), and demonstrated that
SRMs can be grown to accommodate additional tests (by adding more
rows) and more software components (by adding more columns). This
opens up the possibility of performing new kinds of comparisons. For
example, adding components recommended by traditional search code
engines opens up new experimental designs and richer comparisons
between program synthesis and reuse. Other benchmarks in the field
of program synthesis also offer reference component implementations
which can serve as the oracles for the functionality desired from gener-
ated components (i.e., often used to compute the BLEU metric Papineni
et al., 2002). In terms of SRMs, this reference implementation can be
added as a new column for comparison with the columns of other
components, when judging functional correctness (recall that we used
a virtual component that played the role of the oracle). When SRMs
are gradually extended with components and tests, the transparency of
experimental designs and results increases.

SRMs can be used to partially avoid the costly operation phase of the
experimental process, since behavioral comparisons can be offloaded
to data-driven analysis. Executing software components is non-trivial
and requires reliable, automated execution logistics when performed
on a large scale. Without SRMs and their observational records, exper-
imenters would have to re-execute their experiments whenever they
make modifications to their experimental design (e.g., by adding soft-
ware components, fixing tests etc.). SRMs offer an attractive alternative
that can save time and resources, since experiments typically have
limited time budgets (e.g., access to a computing grid for the mass
execution of software is typically restricted for academia). Moreover,
oracle values can simply be added to SRMs as “virtual” components
without the need to re-execute any component implementations.

Finally, the size of SRMs is practically unlimited. By collecting the
SRMs of many experiments over time, an “observation warehouse”
(i.e., an instance of a data warehouse) can be assembled that not
only enables meta-experimentation, but also offers the opportunity to
use machine learning techniques to derive new insights from software
observations, and eventually feed machine learning models to create
new services (e.g., oracle recommendation Langdon et al., 2017).

13 https://huggingface.co/

https://huggingface.co/

M. Kessel and C. Atkinson
8.3. Limitations

In this work, we demonstrated SRMs and sequence sheets based
on Java software components. As already explained in the threats to
validity subsection, one aspect of SRMs that needs further investigation,
especially with respect to the storage of actuation sheets, is serializing
observed object states at run-time and ensuring that this serializa-
tion results in the same comparison results as assertion statements at
run-time. Apart from that, SRMs and sequence sheets are essentially
independent of the programming language and paradigm used to create
and analyze them. Although we are confident that the serialization
of objects (or program state) is feasible in all relevant programming
languages used today, this issue also requires further investigations.

By their very nature, software observations may cover a wide range
of measurements, from atomic facts like numerical measures to large
execution traces (i.e., dynamic call graphs). Due to their tabular form,
SRMs obviously cannot be used to store such large, monolithic records.
We addressed this limitation by “linking” cells that represent mea-
surements in an SRM to other records like large execution traces.
Third-parties can then resolve those references to the actual records
(e.g., raw files). Based on our experience and the nature of experiments,
however, raw (unstructured) files are typically processed and reduced'*
to structured data that can be stored directly in tabular representations.

The running example (i.e., experiments) we used to showcase the
benefits of SRMs, and the other data structures presented in this paper,
were fully automated and executed as study pipeline scripts on the
LASSO platform. However, a qualitative assessment is needed to rein-
force the validity of the obtained results. Qualitative data, even though
collected manually, can indeed be incorporated into SRMs. Although
we did not demonstrate this capability, in practice, we expect that
general data analytics tools can be used to merge manual data with
SRMs in an automated manner (e.g., by adding manual, virtual oracle
components).

8.4. Continual observation

As explained in Section 3, by providing systematic ways of recording
stimuli and corresponding system behavior, and allowing them to be
viewed and analyzed in a multidimensional way, the three data struc-
tures presented in this paper provide a solid foundation for supporting
the different forms of experiment reuse described above. For example,
the basic goal of supporting repetition and replication is enabled by the
clear, concise and systematic recording of all execution data (i.e., all
responses as well as stimuli) in clearly understandable and navigable
data structures. This is essential for independent teams to be able to
understand how to replicate a TDSE. The statistical power of repetitions
and replications can also be easily enhanced by adding more SRMs for
more subjects in the “functional abstractions” dimension, or by adding
more SRMs in the “repetitions” dimension.

In addition to these options, the reproduction of experimental data
can further be achieved by either using different analysis techniques
to analyze the existing data, or by extending the existing SRMs with
additional tests or additional implementations of functional abstrac-
tions. These can provide the information needed to address the existing
research questions in a deeper or alternative way. Finally, in addition
to all these previous techniques, the repurposing of experimental exe-
cution data can be achieved by adding additional dimensions in which
independent variables that were previously kept constant are varied in
controlled ways.

The options to incrementally extend and re-analyze the observation
data contained in SRMs, and incrementally grown SRHs, opens up the
possibility of “continual” test-driven software experimentation where

14 Assuming that these are not needed for replication purposes

17

The Journal of Systems & Software 212 (2024) 111971

the existing base of observation data is systematically and incremen-
tally expanded to make existing studies more statistically powerful and
to answer new research questions.

9. Conclusion

TDSEs revolves around the execution of software components to in-
vestigate their functionality (i.e., semantics) and dynamic non-
functional properties (e.g., performance). In this paper, we introduced
three new data structures designed to simplify test-driven software
experimentation and promote the repetition, replication, reproduction
and repurposing of TDSEs using open science principles.

The first of the three data structures presented was the sequence
sheet approach for representing stimuli and responses (i.e., actuations
in terms of inputs and outputs) of software components, the second
was the Stimulus Response Matrix (SRM) data structure for storing
actuations of implementations of a given functional abstraction so
that they can be readily compared, and the third was the Stimulus
Response Hypercube (SRH) data structure, which allows ensembles of
SRMs to be analyzed offline using a multidimensional hypercube model
similar to that supported by data warehouses.

The paper showed how the LASSO platform, which supports these
data structures, can be used to reproduce and repurpose a recent
benchmark (i.e., the HumanEval benchmark for Java Chen et al., 2021;
Cassano et al., 2023b) for assessing the performance of large language
models for code generation (i.e., generative Al-based program synthe-
sis). This demonstrated the utility of SRMs as a common representation
for storing observational records, and their ability to foster the re-
producibility of TDSEs. Further, based on the idea of hypercubes in
data warehousing applications, we also demonstrated how SRHs can
be used to effectively analyze the recorded observational data using
today’s widespread data analytics tools. The material and data for these
experiments is publicly available (Kessel and Atkinson, 2023).

Although the existing MuLtiPL-E benchmark used in our running
example was realized in the traditional style by writing large quantities
of dedicated study code, we showed how it can be relatively easily
translated into, and replicated using, the sequence sheet, SRM and
SRH data structures supported by LASSO. Further, we showed that
once in this format, the observation data can be readily extended and
repurposed to support new experiments with new research questions.

The experiments presented in the running example not only pro-
vide empirical evidence of the utility of the proposed approach, but
also contribute to the growing body of knowledge about Al-powered
code models by providing new insights into the characteristics of
the software components they generate. Looking ahead, future work
could build on our findings with additional research questions such as
exploring the quality of the components and tests as well as the levels
of redundancy they contain (e.g., to address the ongoing challenge of
“attribution” Chen et al., 2021; Li et al., 2023).

Overall, we hope that third-parties will use the proposed data
structures and the LASSO platform in future TDSEs. In the long run,
we hope to establish a community of the kind found in the data
science and machine learning disciplines, that openly share their SRMs
(e.g., as data frames on popular sharing platforms) in order to grow
an open observation warehouse (i.e., a large collection of SRMs) that
can be mined for additional purposes (e.g., oracle recommendation).
In the meantime, recent publications in the field of Al-based program
synthesis have proposed many more (improved) benchmarks that we
would like to explore using SRMs to include them in open benchmark
suites (e.g., EvalPlus in Liu et al., 2023). Using the LASSO platform
used in this work, we aim to automate and support as much of the
experimental process as possible.

M. Kessel and C. Atkinson

[S N

13

20
21
22
23
24
25
26
27

28
29

30

31
32
33
34

35

36
37
38

39
40
41
42
43
44

dataSource 'multipleBenchmark23’
String benchmarkId = 'humaneval-java-reworded"

study (name: *MultiPLE-HumanEval-Java’) {

def humanEvalBenchmark =
«~ loadBenchmark (benchmarkId) // load
- benchmark

action(name:’select’, type:’Select’) {
execute() {
// create abstraction containers from the
» Dbenchmark’s problems
humanEvalBenchmark.abstractions.each {
«~ problemld, problem ->
abstraction(problemId) { // retrieve
» all code completitions for given
- problem
queryForClasses "x:*" // always
< ’Problem’
rows = Integer.MAX_VALUE

filter ’benchmark:"’+ benchmarkId
s +"™ // specify benchmark
filter ’problem:'"’ + problemId +’'’
~ // specify problem
//filter ’generator: "+ generatorId
« +7" // specific generators
« (code models)

}
¥
}

profile(’myProfile’) {
scope(’class’) { // measurement scope
type = ’class’
methodBlacklist = [’main’, ’<init>’,
o ’<clinit>’] // ignore given methods
}
environment (’javall’) { // ezecution
~ environment
image = ’maven:3.6.3-openjdk-11’ //
o (docker) image template
}
}

action(name:’execute’,type:’ArenaExecute’)
- A1
// use tests and interface provided by the
- benchmark
benchmark = humanEvalBenchmark.name

features = [’cc’] // measure code coverage
< (here JaCoCo)

dependsOn ’select’
includeAbstractions ’*’
profile(’myProfile’)

Listing 2: LASSO Study pipeline script written in LSL (LASSO Scripting
Language) for research RQ 1 and research RQ 2 in Section 5 to 7.

18

The Journal of Systems & Software 212 (2024) 111971

1 dataSource ’multipleBenchmark23’
2
3 def benchmarkId = "humaneval-java-reworded"
4 def studyPath =
& ’90196763-4e3c-419e-9ff2-65e754bee3533: execute’ //
o fetch results from past action
5 def sampleSize = 10 // sample 10 code completions subject
< for test generation
6 def evoSuiteSearchBudget = 30 // EvoSuite’s time budget
7
8 study (name: ’MultiPLE-HumanEval-Java-TestGeneration’) {
9 action(name:’equivalent’) {
10 dependsOn studyPath // depends on other study
o ezecution
11 includeAbstractions ’*’
12 execute {
13 abstractions.each {abName, ab -> // filter by
< oracle
14 def mySrm = srm(abstraction: ab, path:
< studyPath)
15 def expectedBehaviour =
< toOracle(mySrm.sequences)
16 def matchesSrm = mySrm
17 .systems // select all systems
18 .equalTo (expectedBehaviour) //
o functionally equivalent
19
20 ab.systems = matchesSrm.systems
21 ¥
22 }
23 }
24 profile (’myProfile’) {
25 scope(’class’) { // measurement scope
26 type = ’class’
27 methodBlacklist = [’main’, ’<init>’,
& ’<clinit>’] // ignore given methods
28 }
29 environment (’ javall’) { // execution environment
30 image = ’maven:3.6.3-openjdk-11’ // (docker)
< 1image template
31 }
32 }
33 action(name:’generate’,type:’EvoSuite’) {
34 searchBudget = evoSuiteSearchBudget
35
36 dependsOn ’equivalent’
37 includeAbstractions ’*’
38 includeSystems {abName -> // take N unique(!)
< samples
39 List systems = abstractions[abName] .systems
40 if (!systems systems.size() ==0) {
41 return
42 }
43
44 def random = new Random()
45 Set indices = new HashSet ()
46 while(indices.size() < sampleSize) {
47 indices.add(random.nextInt (systems.size()))
48 ¥
49
50 List samples = []
51 indices.each { i —>
52 samples << systems[i]
53 ¥
54
55 abstractions[abName] .systems = samples
56
57 profile(’myProfile’)
58
59 action(name:’execute’,type:’ArenaExecute’) {
60 configure {
61 benchmark = benchmarkId
62 noTestsFromBenchmark = true // only ezecute
< mnewly generated tests
63 features = [’cc’] // enable code coverage
64
65 populateTestsFromAction = ’generate’
66
67
68 dependsOn ’equivalent’
69 includeAbstractions ’*’
70 profile(’myProfile’)
71 }
72 }

Listing 3: LASSO Study pipeline script written in LSL (LASSO Scripting
Language) for reproducing research RQ 1 in Section 6.

M. Kessel and C. Atkinson
CRediT authorship contribution statement

Marcus Kessel: Conceptualization, Data curation, Formal analy-
sis, Funding acquisition, Investigation, Methodology, Project admin-
istration, Resources, Software, Supervision, Validation, Visualization,
Writing — original draft, Writing — review & editing. Colin Atkinson:
Conceptualization, Data curation, Formal analysis, Funding acquisition,
Investigation, Methodology, Project administration, Resources, Soft-
ware, Supervision, Validation, Visualization, Writing — original draft,
Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
The data set is linked in the article.
Acknowledgments

We are grateful for the valuable suggestions and feedback from the
anonymous reviewers. We also thank the authors of MurTiPL-E (Cas-
sano et al., 2023b) and StarCoper (Li et al., 2023) for making their
benchmarking data and material publicly available.

Appendix A

For our experiments in Section 5 to 7, we developed two LSL
pipeline scripts (see Listing 2 and 3) that were executed on the LASSO
platform to address our research questions. Due to space constraints,
however, we are unable to provide an in-depth explanation of the
scripting language and its application within these pipelines. Interested
readers should refer to Kessel (2023) for further information on this
topic.

References

ACM, 2023. Artifact review and badging — version 1.0. URL: https://www.acm.org/
publications/policies/artifact-review-badging.

Aghajanyan, A., Huang, B., Ross, C., Karpukhin, V., Xu, H., Goyal, N., Okhonko, D.,
Joshi, M., Ghosh, G., Lewis, M., Zettlemoyer, L., 2022. CM3: A causal masked
multimodal model of the internet. arXiv:2201.07520.

Allamanis, M., 2019. The adverse effects of code duplication in machine learning mod-
els of code. In: Proceedings of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software. In:
Onward! 2019, Association for Computing Machinery, New York, NY, USA, pp.
143-153. http://dx.doi.org/10.1145/3359591.3359735.

Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C., 2018. A survey of machine learning
for big code and naturalness. ACM Comput. Surv. 51 (4), http://dx.doi.org/10.
1145/3212695.

Ammann, P., Offutt, J., 2016. Introduction to Software Testing. Cambridge University
Press.

Andrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an appropriate tool for
testing experiments? In: Proceedings of the 27th International Conference on
Software Engineering. ICSE ’05, Association for Computing Machinery, New York,
NY, USA, pp. 402-411. http://dx.doi.org/10.1145/1062455.1062530.

Arcuri, A., Briand, L., 2014. A Hitchhiker’s guide to statistical tests for assess-
ing randomized algorithms in software engineering. Softw. Test. Verif. Reliab.
24 (3), 219-250. http://dx.doi.org/10.1002/stvr.1486, URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/stvr.1486.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C.,
Terry, M., Le, Q., Sutton, C., 2021. Program synthesis with large language models.
arXiv:2108.07732.

Bajracharya, S., Ossher, J., Lopes, C., 2014. Sourcerer: An infrastructure for large-
scale collection and analysis of open-source code. Sci. Comput. Program.
79, 241-259. http://dx.doi.org/10.1016/j.scico.2012.04.008, URL: https://www.
sciencedirect.com/science/article/pii/S016764231200072X. Experimental Software
and Toolkits (EST 4): A special issue of the Workshop on Academic Software
Development Tools and Techniques (WASDeTT-3 2010).

19

The Journal of Systems & Software 212 (2024) 111971

Basili, V.R., Selby, R.W., Hutchens, D.H., 1986. Experimentation in software engineer-
ing. IEEE Trans. Softw. Eng. SE-12 (7), 733-743. http://dx.doi.org/10.1109/TSE.
1986.6312975.

Ben Allal, L., Muennighoff, N., Kumar Umapathi, L., Lipkin, B., von Werra, L., 2022.
A framework for the evaluation of code generation models. https://github.com/
bigcode- project/bigcode-evaluation-harness.

Caserta, J., Kimball, R., 2013. The Data Warehouseetl Toolkit: Practical Techniques for
Extracting, Cleaning, Conforming, and Delivering Data. Wiley.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D.,
Yee, M.H., Zi, Y., Anderson, C.J., Feldman, M.Q., Guha, A., Greenberg, M.,
Jangda, A., 2023a. Completions Data Set: Multi-Programming Language Evaluation
of Large Language Models of Code (MultiPL-E). URL: https://huggingface.co/
datasets/bigcode/MultiPL-E-completions.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D.,
Yee, M.H., Zi, Y., Anderson, C.J., Feldman, M.Q., Guha, A., Greenberg, M.,
Jangda, A., 2023b. MultiPL-E: A scalable and polyglot approach to benchmarking
neural code generation. IEEE Trans. Softw. Eng. 1-17. http://dx.doi.org/10.1109/
TSE.2023.3267446.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D.,
Yee, M.H., Zi, Y., Anderson, C.J., Feldman, M.Q., Guha, A., Greenberg, M.,
Jangda, A., 2023c. Problem data set: Multi-programming language evaluation
of large language models of code (MultiPL-E). URL: https://github.com/nuprl/
MultiPL-E.

Chen, M., Tworek, J., Jun, H., et al., 2021. Evaluating large language models trained
on code. arXiv:2107.03374.

Danglot, B., Vera-Perez, O., Yu, Z., Zaidman, A., Monperrus, M., Baudry, B.,
2019. A snowballing literature study on test amplification. J. Syst. Softw.
157, 110398. http://dx.doi.org/10.1016/].jss.2019.110398, URL: https://www.
sciencedirect.com/science/article/pii/S0164121219301736.

Diamantopoulos, T., Thomopoulos, K., Symeonidis, A., 2016. QualBoa: Reusability-
aware recommendations of source code components. In: 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories. MSR, pp. 488-491.

Dietrich, J., Schole, H., Sui, L., Tempero, E., 2017. XCorpus — An executable corpus
of java programs. J. Object Technol. 16 (4), 1:1-24. http://dx.doi.org/10.5381/jot.
2017.16.4.al.

Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N., 2013. Boa: A language and in-
frastructure for analyzing ultra-large-scale software repositories. In: 2013 35th
International Conference on Software Engineering. ICSE, pp. 422-431. http://dx.
doi.org/10.1109/ICSE.2013.6606588.

Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N., 2015. Boa: Ultra-large-scale software
repository and source-code mining. ACM Trans. Softw. Eng. Methodol. 25 (1),
http://dx.doi.org/10.1145/2803171.

Ernst, M.D., 2003. Static and dynamic analysis: Synergy and duality. In: WODA 2003:
ICSE Workshop on Dynamic Analysis. New Mexico State University Portland, OR,
pp. 24-27.

ESE, 2023. Empirical software engineering - An international journal. URL: https:
//www.springer.com/journal/10664.

ESEM, 2023. Empirical software engineering and measurement. URL: https://www.
esem-conferences.org/.

Finnie-Ansley, J., Denny, P., Becker, B.A., Luxton-Reilly, A., Prather, J., 2022. The
robots are coming: Exploring the implications of OpenAl codex on introductory
programming. In: Proceedings of the 24th Australasian Computing Education
Conference. ACE ’22, Association for Computing Machinery, New York, NY, USA,
pp. 10-19. http://dx.doi.org/10.1145/3511861.3511863.

Fraser, G., Arcuri, A., 2011. EvoSuite: Automatic test suite generation for object-
oriented software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering. In: ESEC/FSE
’11, Association for Computing Machinery, New York, NY, USA, pp. 416-419.
http://dx.doi.org/10.1145/2025113.2025179.

Fraser, G., Arcuri, A., 2012. Whole test suite generation. IEEE Trans. Softw. Eng. 39
(2), 276-291.

Fraser, G., Arcuri, A., 2014. A large-scale evaluation of automated unit test generation
using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24 (2), http://dx.doi.org/10.
1145/2685612.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., tau Yih, W.,
Zettlemoyer, L., Lewis, M., 2023. InCoder: A generative model for code infilling
and synthesis. arXiv:2204.05999.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H.,
Thite, A., Nabeshima, N., Presser, S., Leahy, C., 2020. The pile: An 800gb dataset
of diverse text for language modeling. arXiv:2101.00027.

Gousios, G., 2013. The GHTorent dataset and tool suite. In: 2013 10th Working
Conference on Mining Software Repositories. MSR, pp. 233-236. http://dx.doi.org/
10.1109/MSR.2013.6624034.

Gulwani, S., Polozov, O., Singh, R., 2017. Program synthesis. Found. Trends Program.
Lang. 4 (1-2), 1-119. http://dx.doi.org/10.1561/2500000010.

JUnit, 2022. JUnit. URL: https://junit.org/.

Just, R., Jalali, D., Ernst, M.D., 2014. Defects4J: A database of existing faults to
enable controlled testing studies for java programs. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis. In: ISSTA 2014,
Association for Computing Machinery, New York, NY, USA, pp. 437-440. http:
//dx.doi.org/10.1145/2610384.2628055.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://arxiv.org/abs/2201.07520
http://dx.doi.org/10.1145/3359591.3359735
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3212695
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb5
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb5
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb5
http://dx.doi.org/10.1145/1062455.1062530
http://dx.doi.org/10.1002/stvr.1486
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486
http://arxiv.org/abs/2108.07732
http://dx.doi.org/10.1016/j.scico.2012.04.008
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://www.sciencedirect.com/science/article/pii/S016764231200072X
http://dx.doi.org/10.1109/TSE.1986.6312975
http://dx.doi.org/10.1109/TSE.1986.6312975
http://dx.doi.org/10.1109/TSE.1986.6312975
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb12
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb12
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb12
https://huggingface.co/datasets/bigcode/MultiPL-E-completions
https://huggingface.co/datasets/bigcode/MultiPL-E-completions
https://huggingface.co/datasets/bigcode/MultiPL-E-completions
http://dx.doi.org/10.1109/TSE.2023.3267446
http://dx.doi.org/10.1109/TSE.2023.3267446
http://dx.doi.org/10.1109/TSE.2023.3267446
https://github.com/nuprl/MultiPL-E
https://github.com/nuprl/MultiPL-E
https://github.com/nuprl/MultiPL-E
http://arxiv.org/abs/2107.03374
http://dx.doi.org/10.1016/j.jss.2019.110398
https://www.sciencedirect.com/science/article/pii/S0164121219301736
https://www.sciencedirect.com/science/article/pii/S0164121219301736
https://www.sciencedirect.com/science/article/pii/S0164121219301736
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb18
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb18
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb18
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb18
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb18
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.1109/ICSE.2013.6606588
http://dx.doi.org/10.1109/ICSE.2013.6606588
http://dx.doi.org/10.1109/ICSE.2013.6606588
http://dx.doi.org/10.1145/2803171
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb22
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb22
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb22
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb22
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb22
https://www.springer.com/journal/10664
https://www.springer.com/journal/10664
https://www.springer.com/journal/10664
https://www.esem-conferences.org/
https://www.esem-conferences.org/
https://www.esem-conferences.org/
http://dx.doi.org/10.1145/3511861.3511863
http://dx.doi.org/10.1145/2025113.2025179
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb27
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb27
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb27
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
http://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2101.00027
http://dx.doi.org/10.1109/MSR.2013.6624034
http://dx.doi.org/10.1109/MSR.2013.6624034
http://dx.doi.org/10.1109/MSR.2013.6624034
http://dx.doi.org/10.1561/2500000010
https://junit.org/
http://dx.doi.org/10.1145/2610384.2628055
http://dx.doi.org/10.1145/2610384.2628055
http://dx.doi.org/10.1145/2610384.2628055

M. Kessel and C. Atkinson

Kessel, M., 2023. LASSO - An Observatorium for the Dynamic Selection, Analysis and
Comparison of Software (Ph.D. thesis). Mannheim, URL: https://madoc.bib.uni-
mannheim.de/64107/.

Kessel, M., Atkinson, C., 2019. A platform for diversity-driven test amplification. In:
Proceedings of the 10th ACM SIGSOFT International Workshop on Automating
TEST Case Design, Selection, and Evaluation. In: A-TEST 2019, Association for
Computing Machinery, New York, NY, USA, pp. 35-41. http://dx.doi.org/10.1145/
3340433.3342825.

Kessel, M., Atkinson, C., 2019a. Automatically curated data sets. In: 2019 19th
International Working Conference on Source Code Analysis and Manipulation.
SCAM, pp. 56-61. http://dx.doi.org/10.1109/SCAM.2019.00015.

Kessel, M., Atkinson, C., 2019b. On the efficacy of dynamic behavior comparison for
judging functional equivalence. In: 2019 19th International Working Conference on
Source Code Analysis and Manipulation. SCAM, pp. 193-203. http://dx.doi.org/10.
1109/SCAM.2019.00030.

Kessel, M., Atkinson, C., 2022. Diversity-driven unit test generation. J. Syst. Softw.
193, http://dx.doi.org/10.1016/j.jss.2022.111442, URL: https://www.sciencedirect.
com/science/article/pii/S0164121222001406.

Kessel, M., Atkinson, C., 2023. Data Set: Promoting Open Science in Test-Driven
Software Experiments. http://dx.doi.org/10.5281/zenodo.8208246.

Kocetkov, D., Li, R., Allal, L.B., Li, J., Mou, C., Ferrandis, C.M., Jernite, Y., Mitchell, M.,
Hughes, S., Wolf, T., Bahdanau, D., von Werra, L., de Vries, H., 2022. The stack:
3 TB of permissively licensed source code. arXiv:2211.15533.

Kulal, S., Pasupat, P., Chandra, K., Lee, M., Padon, O., Aiken, A., Liang, P.S.,
2019. SPoC: Search-based pseudocode to code. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (Eds.), In: Ad-
vances in Neural Information Processing Systems, vol. 32, Curran As-
sociates, Inc., URL: https://proceedings.neurips.cc/paper files/paper/2019/file/
7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf.

Langdon, W.B., Yoo, S., Harman, M., 2017. Inferring automatic test oracles. In: 2017
IEEE/ACM 10th International Workshop on Search-Based Software Testing. SBST,
pp. 5-6. http://dx.doi.org/10.1109/SBST.2017.1.

Li, R., Allal, L.B., Zi, Y., et al,, 2023. StarCoder: may the source be with you!.
arXiv:2305.06161.

Li, Y., Choi, D., Chung, J., et al., 2022. Competition-level code generation with
AlphaCode. Science 378 (6624), 1092-1097. http://dx.doi.org/10.1126/science.
abq1158, URL: https://www.science.org/doi/abs/10.1126/science.abq1158.

Liu, J., Xia, C.S., Wang, Y., Zhang, L., 2023. Is your code generated by chatGPT
really correct? Rigorous evaluation of large language models for code generation.
In: Thirty-Seventh Conference on Neural Information Processing Systems. URL:
https://openreview.net/forum?id=1qvx610Cu7.

Lopes, C.V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny, J., Sajnani, H., Vitek, J.,
2017. DéjaVu: A map of code duplicates on GitHub. Proc. ACM Program. Lang. 1
(OOPSLA), http://dx.doi.org/10.1145/3133908.

Ma, Y., Dey, T., Bogart, C., Amreen, S., Valiev, M., Tutko, A., Kennard, D., Zaretzki, R.,
Mockus, A., 2021. World of code: enabling a research workflow for mining and
analyzing the universe of open source VCS data. Empir. Softw. Eng. 26 (2), 22.
http://dx.doi.org/10.1007/510664-020-09905-9.

Maj, P., Siek, K., Kovalenko, A., Vitek, J., 2021. CodeDJ: Reproducible queries
over large-scale software repositories. In: Mgller, A., Sridharan, M. (Eds.), 35th
European Conference on Object-Oriented Programming (ECOOP 2021). In: Leibniz
International Proceedings in Informatics (LIPIcs), vol. 194, Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, pp. 6:1-6:24. http://dx.doi.
org/10.4230/LIPIcs. ECOOP.2021.6, URL: https://drops.dagstuhl.de/opus/volltexte/
2021/14049.

Markovtsev, V., Long, W., 2018. Public git archive: A big code dataset for all. In:
Proceedings of the 15th International Conference on Mining Software Repositories.
MSR ’18, Association for Computing Machinery, New York, NY, USA, pp. 34-37.
http://dx.doi.org/10.1145/3196398.3196464.

Mendez, D., Graziotin, D., Wagner, S., Seibold, H., 2020. Open science in software
engineering. In: Felderer, M., Travassos, G.H. (Eds.), Contemporary Empirical
Methods in Software Engineering. Springer International Publishing, Cham, pp.
477-501. http://dx.doi.org/10.1007/978-3-030-32489-6{_}17.

20

The Journal of Systems & Software 212 (2024) 111971

Méndez Fernandez, D., Monperrus, M., Feldt, R., Zimmermann, T., 2019. The open
science initiative of the empirical software engineering journal. Empir. Softw. Eng.
24 (3), 1057-1060. http://dx.doi.org/10.1007/s10664-019-09712-x.

Minocher, R., Atmaca, S., Bavero, C., McElreath, R., Beheim, B., 2020. Reproducibility
improves exponentially over 63 years of social learning research. http://dx.doi.org/
10.31234/0sf.io/4nzc7, URL: https://osf.io/preprints/psyarxiv/4nzc7.

Monperrus, M., 2018. Automatic software repair: A bibliography. ACM Comput. Surv.
51 (1), http://dx.doi.org/10.1145/3105906.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., Xiong, C.,
2023. CodeGen: An open large language model for code with multi-turn program
synthesis. arXiv:2203.13474.

Nong, Y., Sharma, R., Hamou-Lhadj, A., Luo, X., Cai, H., 2023. Open science in software
engineering: A study on deep learning-based vulnerability detection. IEEE Trans.
Softw. Eng. 49 (4), 1983-2005. http://dx.doi.org/10.1109/TSE.2022.3207149.

Palsberg, J., Lopes, C.V., 2018. NJR: A normalized java resource. In: Companion
Proceedings for the ISSTA/ECOOP 2018 Workshops. ISSTA ’18, Association for
Computing Machinery, New York, NY, USA, pp. 100-106. http://dx.doi.org/10.
1145/3236454.3236501.

Papineni, K., Roukos, S., Ward, T., Zhu, W.J., 2002. BLEU: A method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics. ACL 02, Association for Computational
Linguistics, USA, pp. 311-318. http://dx.doi.org/10.3115/1073083.1073135.

Rice, H., 1953. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc. 74 (2), 358-366, URL: http://www.jstor.org/stable/
1990888.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V., 2016. Sourcerercc:
Scaling code clone detection to big-code. In: Proceedings of the 38th International
Conference on Software Engineering. pp. 1157-1168.

Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A., 2015. Do auto-
matically generated unit tests find real faults? An empirical study of effectiveness
and challenges (t). In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering. ASE, pp. 201-211. http://dx.doi.org/10.1109/ASE.2015.86.

Siegmund, J., Siegmund, N., Apel, S., 2015. Views on internal and external validity
in empirical software engineering. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. pp. 9-19. http://dx.doi.org/10.1109/
ICSE.2015.24.

Sonatype, 2022. Maven Central. URL: http://search.maven.org.

The Apache Software Foundation, 2022. Apache Ignite. URL: https://ignite.apache.org/.

The R. Foundation, 2022. The R Project for Statistical Computing. URL: https://www.r-
project.org/.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I., 2017. Attention is all you need. In: Guyon, I,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(Eds.), In: Advances in Neural Information Processing Systems, vol. 30, Curran
Associates, Inc., URL: https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Vogl, S., Schweikl, S., Fraser, G., Arcuri, A., Campos, J., Panichella, A., 2021. EVO-
SUITE at the SBST 2021 tool competition. In: 2021 IEEE/ACM 14th International
Workshop on Search-Based Software Testing. SBST, IEEE, pp. 28-29.

Wohlin, C., 2021. Case study research in software engineering—It is a case, and it is
a study, but is it a case study? Inf. Softw. Technol. 133, 106514.

Wohlin, C., Host, M., Henningsson, K., 2003. Empirical research methods in software
engineering. In: Conradi, R., Wang, A.I. (Eds.), Empirical Methods and Studies
in Software Engineering: Experiences from ESERNET. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 7-23. http://dx.doi.org/10.1007/978-3-540-45143-3_2.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer Science & Business Media.

Zhang, L., Tian, J.H., Jiang, J., Liu, Y.J., Pu, M.Y., Yue, T., 2018. Empirical research in
software engineering — A literature survey. J. Comput. Sci. Tech. 33 (5), 876-899.
http://dx.doi.org/10.1007/s11390-018-1864-x.

https://madoc.bib.uni-mannheim.de/64107/
https://madoc.bib.uni-mannheim.de/64107/
https://madoc.bib.uni-mannheim.de/64107/
http://dx.doi.org/10.1145/3340433.3342825
http://dx.doi.org/10.1145/3340433.3342825
http://dx.doi.org/10.1145/3340433.3342825
http://dx.doi.org/10.1109/SCAM.2019.00015
http://dx.doi.org/10.1109/SCAM.2019.00030
http://dx.doi.org/10.1109/SCAM.2019.00030
http://dx.doi.org/10.1109/SCAM.2019.00030
http://dx.doi.org/10.1016/j.jss.2022.111442
https://www.sciencedirect.com/science/article/pii/S0164121222001406
https://www.sciencedirect.com/science/article/pii/S0164121222001406
https://www.sciencedirect.com/science/article/pii/S0164121222001406
http://dx.doi.org/10.5281/zenodo.8208246
http://arxiv.org/abs/2211.15533
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
http://dx.doi.org/10.1109/SBST.2017.1
http://arxiv.org/abs/2305.06161
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
http://dx.doi.org/10.1145/3133908
http://dx.doi.org/10.1007/s10664-020-09905-9
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.6
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.6
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.6
https://drops.dagstuhl.de/opus/volltexte/2021/14049
https://drops.dagstuhl.de/opus/volltexte/2021/14049
https://drops.dagstuhl.de/opus/volltexte/2021/14049
http://dx.doi.org/10.1145/3196398.3196464
http://dx.doi.org/10.1007/978-3-030-32489-6{_}17
http://dx.doi.org/10.1007/s10664-019-09712-x
http://dx.doi.org/10.31234/osf.io/4nzc7
http://dx.doi.org/10.31234/osf.io/4nzc7
http://dx.doi.org/10.31234/osf.io/4nzc7
https://osf.io/preprints/psyarxiv/4nzc7
http://dx.doi.org/10.1145/3105906
http://arxiv.org/abs/2203.13474
http://dx.doi.org/10.1109/TSE.2022.3207149
http://dx.doi.org/10.1145/3236454.3236501
http://dx.doi.org/10.1145/3236454.3236501
http://dx.doi.org/10.1145/3236454.3236501
http://dx.doi.org/10.3115/1073083.1073135
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb60
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb60
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb60
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb60
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb60
http://dx.doi.org/10.1109/ASE.2015.86
http://dx.doi.org/10.1109/ICSE.2015.24
http://dx.doi.org/10.1109/ICSE.2015.24
http://dx.doi.org/10.1109/ICSE.2015.24
http://search.maven.org
https://ignite.apache.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb67
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb67
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb67
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb67
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb67
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb68
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb68
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb68
http://dx.doi.org/10.1007/978-3-540-45143-3_2
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb70
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb70
http://refhub.elsevier.com/S0164-1212(24)00014-1/sb70
http://dx.doi.org/10.1007/s11390-018-1864-x

	Promoting open science in test-driven software experiments
	Introduction
	Background and Terminology
	Test-Driven Software Experimentation
	Ultra Large-Scale TDSEs
	Reinforcing and Reusing TDSEs

	Data Structures for Test-Driven Software Experimentation
	Sequence Sheet Notation
	Stateful Abstractions

	Stimulus Response Matrix
	Stimulus Response Hypercube
	LASSO Platform
	Realization of SRMs and SRHs

	Benchmarking Large Language Models for Code Generation
	Background
	Code Models
	Benchmarking Approaches

	HumanEval-J Benchmark
	Code Models (Study Objects)
	Code Generation (Study Subjects)

	Translation to LASSO Platform
	Functional Abstractions
	Executable Corpus
	Study Pipelines

	Experiment Replication Example
	Judging Functional Correctness
	Establishing Functional Correctness in SRMs
	Results

	Experiment Reproduction Example
	Experimental Design
	Results

	Experiment Reuse Example
	Behavioral Cluster Analysis
	Results

	Discussion
	Threats to Validity
	Inherited Threats
	Serializing Objects
	Automated Test Generation

	Impact on Test-Driven Software Experimentation and Open Science Practices
	Limitations
	Continual Observation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A
	References

