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Abstract
Differential item functioning (DIF) is a common challenge when examining latent traits in large
scale surveys. In recent work, methods from the field of machine learning such as model-based
recursive partitioning have been proposed to identify subgroups with DIF when little theoretical
guidance and many potential subgroups are available. On this basis, we propose and compare
recursive partitioning techniques for detecting DIF with a focus on measurement models with
multiple latent variables and ordinal response data. We implement tree-based approaches for
identifying subgroups that contribute to DIF in multidimensional latent variable modeling and
propose a robust, yet scalable extension, inspired by random forests. The proposed techniques
are applied and compared with simulations. We show that the proposed methods are able to
efficiently detect DIF and allow to extract decision rules that lead to subgroups with well fitting
models.

Keywords
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Introduction

Multi-item batteries are frequently used in social scientific surveys to examine latent traits.
Examples include the measurement of creativity (Jauk et al., 2014), social anxiety (Prenoveau
et al., 2011), and personality disorders (Drislane & Patrick, 2017). Some traits, such as self-
leadership (Furtner et al., 2015), may include multiple dimensions and can involve complex
(i.e., multidimensional) measurement structures. If these latent traits are to be meaningfully used
for substantive analyses, one must assume measurement invariance. This requires that the
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association between items of the questionnaire and latent traits of individuals do not depend on
group membership. However, especially in the context of large scale surveys, the measurement
invariance assumption rarely holds because of the heterogeneous nature of survey samples (Van
De Schoot et al., 2015). Furthermore, a researcher can rarely identify and control all factors that
jeopardize this assumption.

Measurement non-invariance is also referred to as differential item functioning (DIF). If group
differences are found in latent factors measured by a survey questionnaire, it cannot be ruled out
that this effect is only an artifact due to unnoticed DIF. That is, if DIF remains undetected, group
differences can be misinterpreted. The common methods used to test for DIF usually require pre-
specification of the subgroups in which DIF is assumed (Hambleton et al., 1991, p. 110). The
decision which subgroups to consider for assumed DIF is often driven by theoretical priors, strong
convention and biases (see Brand et al., 2019). This lets many potential relevant subgroups
undetected if they do not reflect the researcher’s assumptions. Therefore, more flexible, data-
driven approaches can complement traditional approaches for detecting DIF.

By using data-driven, algorithmic approaches, it is possible to detect subgroups with DIF when
little theoretical guidance on the relevant subgroups is available. This strand of research includes
the work of Vaughn and Wang (2010) and Schauberger and Tutz (2016), who propose data-driven
methods for detecting DIF for single dichotomous items in tests or questionnaires. A particularly
promising method to algorithmically account for heterogeneity is model-based recursive par-
titioning (MOB), which embeds model estimation and subgroup detection in one methodological
framework (Zeileis et al., 2008). In this case, the researcher only needs to specify a set of
partitioning variables along with the statistical model, which are then used to iteratively search for
relevant subgroups. Tutz and Berger (2016) as well as Strobl et al. (2015) present the usage of
MOB for detecting DIF in the Rasch model. Komboz et al. (2018) propose a MOB-based ap-
proach for the Partial Credit Model, called PCM Tree, in which a single latent variable that may be
susceptible to DIF is assumed. Similar in spirit, structural equation model tree (SEMTree)
approaches have been proposed to detect homogeneous subgroups in latent variable modeling via
recursive partitioning (Arnold et al., 2021; Brandmaier et al., 2013). However, there is little
guidance on how recursive partitioning may be best utilized for multidimensional measurement
models with ordinal response variables.

In this study, we propose and compare recursive partitioning techniques for detecting DIF with
a focus on measurement models with multiple latent variables. In terms of the response variables,
we consider ordinal scales, for example, Likert or ratings scales, that are often used in social
scientific applications. Such models may be referred to as multidimensional graded response
(MGR) models. Table 1 gives an overview of the methods considered in this paper. Starting from
PCM Tree, we will demonstrate that a direct analogue for graded response models using full
information estimation (MML) is hardly feasible to use in practice due to its high computational
costs. We therefore propose a MOB for MGR approach that eases computational burden in the
multidimensional setting by focusing on limited information estimation (ML,WLS). Furthermore,
we compare different algorithmic approaches provided by the partykit and the semtree packages.

In addition, we address the instability issues of single tree approaches when modeling DIF. Due
to MOB’s hierarchical nature, small changes in the data can severely affect which subgroups are
eventually identified in the splitting process (Brandmaier et al., 2016). While PCM Tree as well as
the partykit and semtree approaches are susceptible to such changes, a random forest-like ex-
tension to MOB for MGRmodels, is analyzed that allows to robustly identify subgroups with DIF
in multidimensional latent variable models.

We test and compare the outlined methods in simulations. Multiple simulation scenarios are
considered that vary in the complexity of the partitioning task. The simulation results show that the
proposed methods are able to correctly retrieve subgroups with distinct sets of model parameters.
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While partykit and semtree correctly identify subgroups in settings with clean partitioning
structures, their multi-tree extensions are able to retrieve complex groups that could not have been
recovered by a single decision tree. Nonetheless, computation time varies considerably across all
considered methods.

Methodology

Methodological Background

Stochastic models which specify the relationship between single items with a limited amount of
response categories and a continuous latent variable are consolidated under the term item response
theory (IRT). Usually, in IRT models, a latent variable represents the ability of the respondent.
This ability is assumed to underlie their response behavior (Steyer & Eid, 2013). In the following,
we refer to this latent variable as ξ. Let the graded response to item i be denoted by the response
variable Yi. In IRT models for ordered response variables, as opposed to dichotomous response
variables, ξ is measured by a number of items i = 1, …, m, to which the respondent answers by
choosing one of the ordered response categories ki = 0, …, li. The most widely applied IRT
framework for items with a small amount of ordered response categories is the graded response
model (GRM) (Samejima, 1969). Furthermore, in a multidimensional IRT framework (also re-
ferred to as MIRT, see Forero and Maydeu-Olivares (2009)) a response variable Yi may be linked
to more than one latent variable. In the following, we refer to the multidimensional GRM as MGR
model. For an MGR model, ξ is a p × 1 vector containing all latent variables ξg " g = 1, …, p.

Table 1. Comparison of tree-based methods for detecting DIF in MGR models.

Method Estimation

Multiple
latent
variables?

Complex
models*?

Computa-
tionally
practical?

Robustified
approach?

Uncom-
promised
model
assumptions?

PCM Treea CML
(FIML)

7 7 3 7 3

Partykitb MML
(FIML)c

3 7 7 7 3

ML, WLS
(LIML)

3 3 3 7 7

Naive semtreed ML, WLS
(LIML)

3 3 7 7 7

Score-guided semtreee ML, WLS
(LIML)

3 3 3 7 7

Partykit forest ML, WLS
(LIML)

3 3 7 3 7

Score-guided semtree
forest

ML, WLS
(LIML)

3 3 3 3 7

*Multivariate models with correlated latent variables or hierarchical structure.
aProposed by Komboz et al. (2018).
bproposed by Zeileis et al. (2008).
cfollowing Schneider et al. (2021).
dproposed by Brandmaier et al. (2013).
eproposed by Arnold et al. (2021).
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The fact that the latent variables are measured by graded responses on items means that the
probability of answering in a category smaller or equal to a certain ordered category ki depends on
the (multidimensional) distribution of the latent variables. In the MGR model, this relationship is
defined by the cumulative category response function, that is the ξ-conditional probability
function

PðYi ≥ kijξÞ ¼ Φ
�
β0iξ � αik

�
: (1)

The link function Φ is the distribution function of the standard normal distribution. The threshold
parameter αik is the location on the underlying latent variable space where P(Yi ≥ ki |ξ) = 0.5. The
threshold parameters are, per definition, ordered in size, so that αi1 < αi2 < … < αil. Note that for
every item i there is one threshold parameter αik less than the total number of ordered categories li
within item i. The discrimination parameters βig, that make up the p × 1 vector βi, can be in-
terpreted as the slope parameters of the multidimensional probability function P(Yi ≥ ki |ξ) for all
categories ki = 0, …, li of item i. Because IRT parameters specify the relation between items and
latent variables, we will refer to the MGR model parameters as item parameters, which form the
item parameter vector, that is

q ¼ �
α11,…, αml, β11,…, βmp,Varðξ1Þ,…,Var

�
ξp
�
,Covðξ1, ξ2Þ,…,Cov

�
ξp�1, ξp

��
: (2)

Note that Var(ξp) is fixed to 1 if β1p is freely estimated (and vice versa). Also, estimating covariances
between latent variables has an impact on the estimation of item threshold and discrimination pa-
rameters. We therefore consider latent variable variances and covariances as item parameters.

In IRT models, differential item functioning (DIF) occurs if an item parameter depends on
covariates of Y, that is a m × 1 vector of observed response variables. Such covariates can take the
form of characteristics of the individuals who respond to the items. Different scores on these
covariates classify different subgroups in the population. The item parameters for each of these
subgroups may differ. The difficulty of an item may, for example, depend on ethnicity, education,
or gender. Differential item functioning means that the item parameter vector q depends on the
covariate vector Z. It does not necessarily mean that the latent variable vector ξ also depends on Z.
This implies that DIF is present when the probability of responding to an item is different for two
individuals with the same ability, only because of their group membership.

In practice, DIF can be very problematic because the number of relevant covariates may be
large. Also, there is an even greater amount of possible values or value ranges of these covariates
for which the item parameters might differ. In addition, complex interactions within the covariate
vector Z are possible so that subgroups may only be detected by considering several covariates
jointly. If DIF remains undetected, group differences with respect to the latent variables can be
misinterpreted (Komboz et al., 2018).

Usually, the hypothesis q1 ≠ q2, where h = 2 stands for a focal subgroup and h = 1 stands for a
reference group, can be tested empirically. Let’s assume that, in this exemplary case, the subgroups
that are tested for DIF are split at the median on the metric covariate Z1. In this situation, the
Likelihood Ratio (LR) test can be applied to test if an augmentedmodel, where all item parameters
are allowed to vary across the two groups, outperforms a template model, in which all item
parameters are constrained to be equal across the reference and the focal group (Bulut & Suh,
2017). If this is the case, the researcher must assume DIF for these two groups.

Turning to model parameter estimation, social scientists often use confirmatory factor analysis
(CFA) to operationalize and estimate latent variable models with Likert-scale items (Li, 2016). In a
classic CFAmodel, the observed items are assumed to be measured on a continuous (metric) scale.
The basic factor analytic model with intercepts is
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Y ¼ π þ β0ξ þ ϵ, (3)

where ϵ is them × 1 vector of residual variables and π is them × 1 vector of intercepts representing
the expected values of Yi " i = 1,…, m, when the values of ξ are zero (Jöreskog, 1969). Note that
model fit is not affected by the estimation of intercepts. In the factor analytic framework, the model
parameter vector is

θ ¼ �
π1,…, πm, β11,…, βmp,Varðξ1Þ,…,Var

�
ξp
�
,Covðξ1, ξ2Þ,…,

Cov
�
ξp�1, ξp

�
,Varðϵ1Þ,…,VarðϵmÞ

�
:

(4)

The CFA approach can also be used to estimate MGRmodel parameters. For this, a continuous,
normally distributed latent response variable Y*i is assumed to underlie each observed response
variable Yi for item i (Muthén, 1984). In the factor analytic approach for ordinal items, the latent

response variable Y*i of item i is related to the observed categorical response variable Yi via a
threshold relation, that is

Yi ¼ ki   if  αik < y
*
i < αiðkþ1Þ: (5)

It is assumed that a respondent chooses a response category ki when the respondent’s latent
response value y*i lies between thresholds αik and αi(k+1).

Parameter estimation in the factor analytic framework for metric items is usually done with the
maximum likelihood (ML) estimator (Jöreskog, 1969). The use of ML estimation in SEM requires
the assumption that the observed variables follow a multivariate normal distribution (Li, 2016).
Note that this assumption rarely holds for ordinal items. In the factor analytic framework for metric
items only univariate and bivariate information is used for parameter estimation. For this, the
objective function FML is minimized, that is

FMLðθÞ ¼ lnjΣðθÞj þ tr
�
SΣ�1ðθÞ�� lnjSj � m, (6)

where Σ(θ) is the model implied covariance matrix and S is the sample covariance matrix
(Jöreskog, 1969). This approach for parameter estimation is thus called limited information
approach (LIML) and is computationally more efficient than the full information approach
(FIML, see SupplementalMaterial S3).

Calculating the log-likelihood function for every single individual j in the sample, that is

ln L
�
yj, θ

� ¼ �1

2

n
ln
��ΣðθÞj��þ �

yj � πj

�T
ΣðθÞ�1

j

�
yj � πj

�o
,

"j ¼ 1,…, n,
: (7)

where πj denotes the subvector of the model-implied mean vector and Σ(θ)j denotes the submatrix
of the model-implied covariance matrix with respect to yj. Summing the results of equation (7)
across the whole sample and maximizing the results yields asymptotically equivalent parameter
estimates to limited information maximum likelihood estimation (Lee & Shi, 2021). The de-
rivative of equation (7) can easily be derived from a model that has been fitted with FML. This
derivative is also referred to as the score function and is particularly important for parameter
instability testing.

It is also possible to use the limited information approach to parameter estimation for factor
analysis with ordinal items. As mentioned above, normal distribution of the observed response
variables cannot be assumed in this case. However, through the use of an asymptotically dis-
tribution free weighted least squares (WLS) estimator, normal distribution of the observed
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response variables need not be assumed. Prior to parameter estimation, the thresholds that define
the relation of Y* to Y (see equation (5)) are estimated through bivariate contingency tables.
Additionally, bivariate polychoric correlations are estimated in this step (Muthén, 1984). A
polychoric correlation captures the strength of the considered linear dependence between Y*i and

Y*s for i ≠ s. The model parameters are then estimated through minimization of the WLS fit
function, that is

FWLSðθÞ ¼ ½bκ� κðθÞ�0cW ½bκ� κðθÞ�, (8)

where κ(θ) contains the vectorized elements of the lower half of the model implied covariance
matrix Σ(θ) and bκ is a vector of corresponding polychoric correlation estimates below the diagonal

of the polychoric correlation matrix K. The weight matrix cW is the asymptotic covariance matrix
of the polychoric correlation estimates bκ. The weight matrix is supposed to account for distri-
butional variability among the observed variables (Li, 2016).

Both CFA and MGR models can be consolidated under the structural equation model (SEM)
framework, as both models hypothesize about multivariate constructs by specifying relationships
between observable and latent variables.

Model Based Recursive Partitioning to Detect Differential Item Functioning

The application of tests such as the LR test to detect DIF requires a priori specification of the
analyzed groups. Often though there are several numerical or categorical covariates and a large
number of possible splitting points and the researcher may not have specified theoretical priors for
all of the possible subgroups. Consequently, some subgroups with DIF might remain uncovered.
In cases like this, recursive partitioning can be used as a data-driven method to uncover relevant
groups for DIF. Recursive partitioning methods follow tree-based, algorithmic approaches
(Breiman et al., 1984). In recursive partitioning, the full sample sits at the root of a decision tree.
This root is considered a candidate for potential splitting into subgroups with respect to any of the
covariates Zr in {Z1,…, ZR} (also called partitioning variables). A subgroup represents a tree node,
which in turn is a candidate for further splitting. The algorithm may continue splitting until certain
predefined stopping criteria are met. This is usually the case when there is no more significant
instability in a tree node or when the subsample becomes too small. The terminal nodes of a
decision tree are also called leaves. There are several methods that can be grouped under the
umbrella term Model Based Recursive Partitioning (MOB), which we present below.

Originally, Structural equation model trees (SEM Trees), as presented by Brandmaier et al.
(2013), combine recursive partitioning with the LR test. The algorithm searches through all
partitioning variables to find subgroups that differ with respect to the model parameters. It is
implemented in the semtree package (Brandmaier et al., 2015).

With the original (or “naive”) semtree approach, the parameters in θ are first estimated jointly
for the entire sample using an M-estimator (like the ML estimator, see section methodological
background). Then, the augmented models for all possible split points of all partitioning variables
Zr in {Z1, …, ZR} are fitted. Note that especially if there are several (unordered) categorical and
numerical partitioning variables, this means that there is a large number of augmented models to
fit. However, this step is necessary to compute the log likelihood ratio for every augmented model
against the template model. For every partitioning variable, the maximum log likelihood ratio is
used to set the optimal split point. Then, the LR test is performed for every partitioning variable.
The partitioning variable Zr* with the smallest p-value in the LR test is then chosen for splitting. If
none of the partitioning variables show a significant p-value, the partitioning process is stopped.
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Bonferroni adjustments may be used to account for multiple comparisons. The procedure results in
a tree structure with one fitted SEM for each terminal node.

One clear advantage of the naive semtree approach, compared to the LR test, is that the
researcher does not need to pre-specify the functional form between the covariates and DIF.
Rather, the tree structure is learned from the data in an exploratory way (Brandmaier et al., 2013).
Another advantage is the ease of interpretation of the resulting subgroups. They are directly
interpretable because they are built on traceable sample splits. Thus, the advantage that no pre-
specification of subgroups is necessary, as in mixture models (Rost, 1990), are combined with the
advantage of the LR approach, that the resulting subgroups are interpretable with respect to
covariates. However, the high computational cost of this method can make its application on large
data sets and complex models unfeasible.

A similar recursive partitioning approach is provided in the partykit package by Hothorn and
Zeileis (2015). In contrast to the naive semtree approach, partykit tests a fitted model in a node for
parameter instability with respect to any of the partitioning variables. If there is significant
parameter instability, the node is eventually split at a point on the covariate with the greatest
instability into two locally optimal segments. If an M-estimator is used to fit the model, parameter
instability of the fitted model with respect to a covariate can be detected through the generalized
M-fluctuation test (Zeileis & Hornik, 2007). The null hypothesis of the generalized M-fluctuation
test is rejected if the empirical fluctuation during parameter estimation with respect to a covariate is
improbably large.

Following Stefanski and Boos (2002), an M-estimator bθ is defined as the solution to the
equation

Xn

j¼1

ψ
�
yj, θ

� ¼ 0: (9)

In the context of SEM, ψ is a (k × 1)-function where k denotes the number of parameters estimated
in a SEM model. The estimator bθ is the solution that minimizes the model’s objective function

(e.g., FML or FWLS, see equation (6) and (8)). For ML estimation, ψðyj,bθÞ is the derivative function
of the individual contributions to the model’s log likelihood with respect to the parameter vector

(see equation (7)). For bθ, the derivatives add up to zero across all individuals in the sample. For k
parameters in the latent variable model, the derivative function is

ψ
�
yj,bθ� ¼

�
∂ ln L

�
yj,bθ�

∂bθ1 ,…,
∂ ln L

�
yj,bθ�

∂bθk
�
,"j ¼ 1,…, n: (10)

The generalized M-fluctuation test uses the function ψðyj,bθÞ to derive tests statistics that

capture the empirical fluctuation process across all parameter estimates in bθ. For this, different
kinds of test statistics can be used. For example, for numerical covariates, partykit uses a test
statistic that is equivalent with the maxLM statistic from Merkle and Zeileis (2013). To assess
instability with respect to categorical or ordinal covariates, different kinds of test statistics based
on the sum of the scores in every category are used.

The generalized M-fluctuation test rejects the null hypothesis of “no structural change” when
the empirical fluctuation process becomes exceptionally large in comparison to the fluctuation of
the limiting process. This limiting process is represented by the limiting distribution which can be
approximated as closed form solutions to certain functions. If closed form solutions are not
possible, critical values for hypothesis testing can be simulated “on the fly” (Zeileis, 2006a).
Although solutions in closed form are faster, the p-values can be calculated very quickly in this
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way. The generalized M-fluctuation test is provided in the strucchange package (Zeileis et al.,
2002).

Note that the function ψðyj,bθÞ is easily obtained for ML estimation. As mentioned in section
2.1, from SEM models fitted with the limited information ML method, individual log-likelihood
values (equation (7)) can be easily derived (see Zeileis, 2006b). However, this is not (yet) the case
for SEM models fitted with the limited information WLS method. Parameter instability tests for
MGR models fitted with WLS are not yet available. In this paper, we therefore do not directly
apply the M-fluctuation test to models fitted with WLS.

In every node of a decision tree partykit tests for parameter instability. If there is overall
parameter instability in the current node, that is, if the instability test for any of the partitioning
variables falls below a prespecified significance level, the partitioning variable Z

r*
that is as-

sociated with the smallest p-value is chosen for splitting. To find the optimal split point in a binary
partykit decision tree, the segmented objective functions of two rival segmentations are compared
until the optimal split point on Z

r* is found (Zeileis et al., 2008, p. 498f.). Note that this requires
fitting as many models as there are possible segmentations of the partitioning variable Z

r*
.

Compared to the naive semtree approach, one advantage of partykit is reduced computation
time. To apply the generalizedM-fluctuation test to all partitioning variables, the model needs only
be fitted once. Split point selection, however, is more time consuming because the model has to be
fit for all possible segmentations of the selected partitioning variable.

The idea of testing a fitted model in a node for parameter instability with respect to the
partitioning variables is also used in the “score-guided” semtree approach (Arnold et al., 2021),
which supersedes naive semtree. As with the partykit method, the first step of the algorithm is to
select the partition variable. This is done in the same way as in partykit, through the generalized
M-fluctuation test.

The key difference between partykit and score-guided semtree is that the latter performs a
different procedure than partykit for selecting the split point given a selected partitioning variable.
Instead of calculating the log likelihoods for all possible rival segmentations, score-guided
semtree identifies which of the unique values of a partitioning variable maximizes the respective
score-based test statistic (Arnold et al., 2021, p. 8). As a result, the model only needs to be fitted
once at each node of the decision tree. Compared to the partykit method, score-guided semtree can
further reduce computation time in the construction of the decision tree. For the generalized
M-fluctuation test, both partykit and score-guided semtree use the supLM (or equivantly maxLM)
test statistic for metric covariates and the LMuo statistic for categorical variables (see Merkle &
Zeileis, 2013). Score-guided semtree uses the maxLM statistic for ordered variables (maxLMo)
(Merkle et al., 2014). All these test statistics are implemented in the strucchange package.

A drawback of naive and score-guided semtree as well as partykit is their instability towards
small changes in the data because of the hierarchical nature of the tree growing process. The
position of a split point in the partition determines how the sample is split up in new nodes. The
position of the split point as well as the selection of the splitting variable, however, strongly
depend on the particular distribution of the data. The entire structure of the tree could be altered if
one splitting variable or split point was chosen differently (Strobl et al., 2009).

Recursive Partitioning for Multidimensional Graded Response Models

Asmentioned in Section 2.2, recursive partitioning can be applied to any kind of parametric model
that is fitted using an M-estimator (e.g., maximum-likelihood). Komboz et al. (2018) propose a
recursive partitioning algorithm to detect DIF in the Partial Credit Model (PCM), called PCM
Tree. The PCM is another model from the IRT framework. The PCM Tree algorithm includes a
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global test for measurement invariance. If there is significant item parameter instability with
respect to any of the covariates Zr in Z, then the assumption of measurement invariance (no DIF)
should be rejected.

In PCMTree, only one latent variable ξ can be considered in the models that are associated with
the tree’s nodes and thus multidimensional graded response (MGR) models cannot be handled. A
direct analogue to PCM Tree for MGR models would draw on full information parameter es-
timation in the tree growing process (see Schneider et al., 2021). In Supplemental Material S3,
however, we establish that model based recursive partitioning for MGR models using the full
information approach is rarely feasible due to enormous computational costs. Thus, in order to
conduct MOB for MGR models, computationally efficient approaches are needed.

We present and compare practicable methods to test and control for differential item func-
tioning for complex survey scales and large scale survey data. Particularly, we suggest to combine
the limited information approach for parameter estimation (Section 2.1) and recursive partitioning
algorithms (Section 2.2) in order to efficiently compute MGR model based decision trees and to
evaluate the resulting models with regard to model fit.

Recursive Partitioning for Multidimensional Graded Response Models: Single Tree. In this section, we
introduce different ways to efficiently compute a single recursive partitioning tree for MGR
models. We distinguish between the tree growing process (first step) and the terminal node model
estimation process (second step). On this basis, we draw on different estimators to detect sub-
groups with DIF and to estimate fit indices and parameter estimates in an MGR modeling context.
We present three algorithms, utilizing the semtree and the partykit packages (Section 2.2). The
proposed methods are summarized schematically in Supplemental Material S1 in Algorithm 1, 2,
and 3. Note that the algorithms differ with respect to the tree growing process as implied by the
different packages used.

To start tree growing with the naive semtree approach, numerous models have to be fitted for
which the log likelihoods are then compared with the template model. In the first step of the
partykit method and the score-guided semtree method, the score function (see equation (10)) is
used to build the tree structure. Usually, the MML estimation method is too computationally
expensive for these approaches (see Supplemental Material S3). To efficiently calculate log-
likelihoods for naive semtree and the score function for partykit and score-guided semtree, we
propose to use (limited information) ML estimation in the tree growing process, that is, parameter
estimates are computed by minimizing the objective function of the ML estimator (equation (6)).
Thus for all three algorithms, we compromise on our assumptions about the distribution of the
response variables. In the first step of the proposed recursive partitioning approaches for MGR
models, information is used that is based on the assumption that the observed variables follow a
continuous multivariate distribution. This may lead to problems in the tree growing process. In this
study, we therefore analyze tree stability using data with simulated numeric response variables
(based on a traditional CFAmodel) and compare the resulting trees to those grown using data with
ordinal response variables (based on a MGR model).

Note that for partykit and semtree for MGR models, the M-fluctuation test uses the partial
derivative of the objective function with respect to the model parameter vector θ (as opposed to the
item parameter vector q). This means that individual contributions to the score function include
individual deviations with respect to residual variances and nodes are split to minimize the
interindividual variance with respect to these parameters. However, these parameters don’t exist in
the original GRM. In the MGR model, DIF occurs if the item parameter vector q depends on
covariates of the response variables (see Section Methodological Background). Thus, strictly
speaking, the partial score function with respect to the item parameter vector, ψðY , bqÞ, needs to be
considered for DIF detection through partykit or semtree. In Supplemental Material S3, we apply
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the MOBmethod to detect DIF with respect to the item parameter vectorq. However, this method
turned out to be nearly infeasible due to high computational costs as outlined above. The es-
timation is computationally expensive because multidimensional integrals have to be solved in
order to minimize the objective function. Using this full information approach, however, indi-
vidual contributions to the minimization of the objective function are considered and the function

ψðY , bqÞ is derived.
In the second step of our proposed algorithms, the parameter and model fit estimates of the

models that are stored in the terminal nodes of the decision tree are calculated using the dis-
tribution free weighted least squares (WLS) estimator. Thus, for evaluation of the resulting
decision tree, the model fit indices in the terminal nodes are estimated under consideration of non-
normally distributed response variables and the existence of the threshold relation between the
response variable vector Y and latent response variable vector Y*. Thus, parameters and standard
errors are only estimated for models that fit the data within the subgroup. Along with sufficient
sample size, this is very important for correctly estimating parameters and standard errors. Pa-
rameters in models in which the parameters are stable but which don’t fit the data are unlikely to be
interpretable.

Recursive Partitioning for Multidimensional Graded Response Models: Forests. While the outlined
methods allow to efficiently grow a single decision tree, this method may be slightly inaccurate
because MGR model assumptions are compromised. At some splitting points in the decision tree,
variable and split point selection may be different if the objective function considered all pa-
rameters and distributional assumptions of the MGR model (see also Supplemental Material S2).
Also, a single decision tree can be vulnerable to small changes to the data and to the set of
partitioning variables. This is a consequence of the hierarchical nature of the splitting process
(Brandmaier et al., 2016; Kern et al., 2019)—the selection of one particular partitioning variable
Z
r*

at the root node determines the entire tree structure.

Using the computation time saving method described above, we are able to tackle the problem
of unstable and potentially inaccurate trees by computing several structurally different trees and
evaluating the compiled results of the tree ensemble. As the computation of a decision tree using
partykit and score-guided semtree is considerably less time consuming compared to the naive
semtree approach (Arnold et al., 2021) we only consider these methods (i.e., Supplemental
Material S1, Algorithm 2 and 3) as base learner in the ensemble.

We are guided by the concept of random forests, a method that uses an ensemble of decision
trees rather than a single one to enhance prediction performance (Breiman, 2001a).We use random
split selection to grow decorrelated trees for the ensemble that are structurally different from each
other. In this procedure, random selections of partitioning variables are made. The selection of
partitioning variables is redrawn at every node in a decision tree. This way, we encourage that all
partitioning variables are considered at least once, even if a small number of trees are computed.
Another technique used in the random forest framework is bagging. If bagging is used, the tree
growing algorithm is applied to a bootstrap sample drawn from the full sample at every iteration.
However, we refrain from using bagging together with recursive partitioning for MGR models.
Wewant to ensure that the parameter estimates in the subgroups that are found by the algorithm are
directly replicable. This is necessary to ensure that the fit indices of the fitted models are
comparable between the trees.

The steps performed to grow a forest of partykit trees or score-guided semtrees for MGR
models are summarized in Supplemental Material S1 in Algorithm 4. Multiple decision trees are
grown using either partykit or semtree for MGR models (see section Recursive Partitioning for
MGR models: Single Tree) with random sampling of partitioning variables at each node. After
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multiple decision trees are grown, the fit indices of the fitted models in the terminal nodes of each
decision tree are evaluated. In this step, fitted models in terminal nodes that don’t exceed a
predefined cutoff criterion (χ2-test p-value or RMSEA cutoff) are selected. The forest outputs a list
of subgroups for which the proposed MGR model holds and DIF is present.

Simulations

Measurement Model

We test and compare the presented recursive partitioning techniques for MGR models with
simulations. For this, a multidimensional graded response model needs to be defined. In the
following, the simulated data is created based on the assumptions of the probit multistate IRT
model with latent item effect variables for graded responses (PIEG, Classe & Steyer, 2023a).

The PIEG model is a multistate model with latent item effect variables for ordinal observables.
For every category of a response variable, one category-specific latent state variable τikt for
category k of item i at time point t is defined in the PIEGmodel. One reference latent state variable
ηt, which is equal to the latent state variable of the reference item τ11t, is assumed for every time
point of measurement. The latent item effect variable βi is defined as the difference between the
latent state variable of the reference item and the latent state variable of another item. Thus, there
are as many latent item effect variables as there are items, minus the reference item. In this model,
variances and covariances of latent state variables, and latent item effect variables as well as the
covariances between latent item effect variables and latent state variables are estimated. The
model’s discrimination parameters are all fixed at 1. For our application, all threshold parameters
are freely estimated.

To simulate data on the basis of the PIEGmodel, we define three reference latent state variables
ηt and two latent item effect variables βi. We are thus mimicking a longitudinal setting with data
collected for three time points. The proposed latent variables are derived from three items, re-
spectively, resulting in nine five-category ordinal response variables Yit. The model structure is
shown in Figure 1 in Supplemental Material S1. The cumulative category response function of the
PIEG model is

PðYit ≥ kijηt, βiÞ ¼ Φðηt þ βi � κiktÞ,
"k ¼ 1,…, 4,"i ¼ 2,…, 3,"t ¼ 1,…, 3:

(11)

In this model, there are 36 free threshold parameters (4 for every five-category item), 10 free
covariances between the latent variables, and 5 free variances of the latent variables, resulting in
51 free parameters in total.

To additionally simulate data with which ML estimation can be performed without com-
promising model assumptions, we define a traditional CFAmodel for which the response variables
are numerical and follow the normal distribution. The model function is

Yit ¼ πit þ ηt þ βi þ ϵi,
"i ¼ 2,…, 3,"t ¼ 1,…, 3:

(12)

where πit is an item- and time-specific intercept and ϵi is an item-specific residual variable. In this
model, there are 10 free covariances between the latent variables, 5 free variances of the latent
variables, 9 free intercepts and 9 free residual variances resulting in 33 free parameters in total.

For all data sets, several partitioning variables Zr " r = 1, …, R are simulated. Different
subgroups Rh " h = 1, …, H for which DIF is present may be defined as different areas on the
(multidimensional) distribution of these partitioning variables.
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Simulation Setup

We create simulated data to test and compare the performance of partykit, naive and score-guided
semtree for MGRmodels. Single decision tree approaches are applied to the first set of simulations
(simulation 1) while ensemble techniques are applied to the second set of simulations (simulation
2). We conduct additional simulations to test the performance of the generalized M-fluctuation test
under misspecification in Supplemental Material S2. R implementations of the proposed methods
and replication materials for all simulations are provided in the following OSF repository: https://
osf.io/sv35m/?view_only=6cdde2777b914322b32ca00ad567ff2b.

Simulation 1. The samples of simulation 1 each consist of 2000 observations with values on
17 variables. There are no missing data points in the samples. We simulate 9 response variables in
two ways: One set of samples with ordinal response variables that are based on the model function
in equation (11) (see Figure 1). We also created a set of numeric samples that are based on the
model function in equation (12). For each (ordinal and numeric) sample, we created two ordinal
variables (cat1 and cat2) with scores on a five-point Likert Scale and one numerical variable
(num1) ranging from 1 to 200. Those three variables are relevant partitioning variables. This
means that they allow to distinguish between four subgroups with 500 observations in each
group. Additionally, for each sample five random partitioning variables (rand1 to rand5) were
simulated that do not systematically differentiate among the four subgroups. There are two
numerical and three ordinal random partitioning variables.

We simulated 100 ordinal samples and 100 numeric samples. For each sample, the data for each
subgroup is simulated with a different set of parameters so that the model function in equation (11) (for
the ordinal data) or equation (12) (for the numerical data) is true for each subgroup, but there is DIF in
the overall sample. The true group-specific parameters differ between the samples. Intercepts and
threshold parameters were sampled from a normal distribution, and latent variable variances and
covariances were sampled from a uniform distribution. Further details and code for replication
purposes is provided in the OSF repository. For each subgroup within one single sample, the values on
the relevant partitioning variables are simulated such that each subgroup is exclusivewith respect to the
values of the relevant partitioning variables. Additionally, the structure of the simulated sample can be
broken down by a single decision tree. The subgroups are defined as

R1 : ¼ ffnum1 < 100g\fcat12f1, 5ggg,
R2 : ¼ ffnum1 < 100g\fcat12f2, 3, 4ggg,
R3 : ¼ ffnum1 ≥ 100g\fcat2 ≤ 2gg,
R4 : ¼ ffnum1 ≥ 100g\fcat2 ≥ 3gg:

All subgroups within one single sample fit the assumed model very well (RMSEA of 0.05 or lower
for the models shown in equations (11) and (12), respectively).

We conduct the simulation analysis in two steps. In the first step, we apply partykit, naive and
score-guided semtree for MGR models to one single ordinal sample of simulation 1 to test if the
methods are able to detect DIF and to compare runtime results for a sample that has a clear
subgroup structure. In the respective model setup, we do not impose constraints on the minimum
sample size in the terminal nodes. Bonferroni adjustments are applied at every node to correct for
the multiple comparisons arising from the repetition of the generalized M-fluctuation test (for
partykit and score-guided semtree) or of the LR-test (for naive semtree). The number of hypothesis
repeated at every node is equal to the number of partitioning variables used.

The PIEG model fit the four subsets of this sample very well (R1: RMSEA
< :001, 95%C:I : ¼ :000� :034, R2: RMSEA < :001, 95%C:I : ¼ :000� :033, R3: RMSEA =
.025, 95%C.I. = .000� .048, R4: RMSEA = .013, 95% C.I. = .000� .041). ThroughMonte Carlo

94 Applied Psychological Measurement 48(3)

https://journals.sagepub.com/doi/suppl/10.1177/01466216241238743
https://osf.io/sv35m/?view_only=6cdde2777b914322b32ca00ad567ff2b
https://osf.io/sv35m/?view_only=6cdde2777b914322b32ca00ad567ff2b


simulation, Classe and Steyer (2023b) found that the quality of the parameter estimates and
standard errors associated with the PIEG model are very good for sample sizes of 500, given the
model fits the data. We therefore assume that recovery of the simulated subgroups, in which the
models fit very well, results in accurate parameter estimation within these subgroups. The input
parameters for all subgroups (R1 to R4) in this sample that are used for data generation are shown in
Tables 1 and Table 2 in Supplemental Material S1.

In the second step, we apply partykit and score-guided semtree to all 100 ordinal and
100 numerical samples and analyze tree stability across simulations.

Simulation 2. The samples of simulation 2 each consist of 2000 observations on 18 variables.
Again, there are five random partitioning variables in these samples. In addition, there are four
relevant partitioning variables: cat1 (categorical), cat2 (ordinal), num1 (numerical) and dicho1
(dichotomous). The relevant partitioning variables differentiate among two (exclusive) subgroups
defined as

R1 : ¼ ffcat 2 ≥ 3g\fcat 2 ≤ 4g\fnum1 ≤ 50gg,
R2 : ¼ ffdicho1 ¼ 0g\fcat12f1, 4, 5ggg:

Figure 1. Results of single sample application of simulation 1. (a) Partykit for MGRmodels. (b) Score-guided
semtree for MGR models. (c) Naive semtree for MGR models.

Classe and Kern 95

https://journals.sagepub.com/doi/suppl/10.1177/01466216241238743


The subgroups R1 and R2 consist of 500 observations each (within one single sample). The data for
the subgroups are simulated to fit the PIEG model well but with different sets of parameters such
that DIF is present. Again, 100 ordinal samples as well as 100 numeric samples are created. The
values of the simulated response variables for the remaining half of each sample of simulation
2 are random. For the ordinal samples, this means that values between 1 and 5 were randomly
sampled for all response variables for all individuals that did not belong to R1 or R2. For the
numerical samples, the values were randomly sampled from a uniform distribution with a
minimum of �3 and a maximum of 3. Consequently, the PIEG model only holds true for
subgroups R1 and R2. Additionally, the simulated subgroup structure of the sample of simulation
2 cannot be recovered by one single decision tree.

We again proceed in two steps. In the first step, we apply partykit and score-guided semtree
forests to a single ordinal sample of simulation 2 to test whether the methods are able to detect DIF
in a sample in which the subgroup structure is complex and the assumed MGR model does not
hold for every individual in the sample. The data of half of that sample includes the same response
variables as the initial sample of simulation 1 (i.e., except for the randomly generated data points).
The partitioning variables are re-simulated. The input parameters are shown in Supplemental
Material S1 in Table 1 and 2 in column R1 and R2. For every computed decision tree, we refit the
models in each terminal node using the WLS estimator, and gather the model fit information. We
compute an ensemble of 50 trees and set an RMSEA cutoff criterion of 0.05. The minimal size of
the subgroups in the terminal nodes is set to 100 such that model parameters and fit indices can be
estimated properly. Additionally, we set the number of variables randomly sampled as candidates
at each split point to 3. For this data set, we defined the cat2 variable as categorical so that only two
splits are necessary to retrieve the simulated subgroup R1 in a terminal node of a decision tree

R1 : ¼ ffcat22f3, 4gg\fnum1 ≤ 50gg:
In the second step, we compute score-guided semtree forests for all 100 ordinal data sets and for

100 numeric data sets and analyze the method’s ability to retrieve the two simulated subgroups
from a complex sample structure across multiple samples. We computed ensembles of 20 trees
using the same hyperparameters as in the single sample application.

Simulation Results

The results of the single sample application of simulation 1 are shown in Figure 1(a) (partykit), 1b
(score-guided semtree), and 1c (naive semtree). When using partykit and score-guided semtree for
MGR models (Figures 1(a) and (b)), all subgroups (R1 to R4) were retrieved correctly. For the
naive semtree (Figure 1(c)), however, the algorithm did not stop splitting although the parameters
in a terminal node are stable. These results indicate that partykit as well as score-guided semtree
may be used for DIF detection in a sample that has a clear subgroup structure and for which the
assumed MGR model is generally true. For the naive semtree method, on the other hand, it seems
like the LR-test does not perform well with respect to numerical covariates.

When it comes to computation time, there are considerable differences between the three
methods. The computation of the partykit tree took 361.5 seconds (6 minutes), the computation of
score-guided semtree took 7.8 seconds, and the computation of the naive semtree algorithm took
4357 seconds (1.2 hours). These applications were conducted on a processor with a single core and
8 GB RAM. The runtime results show that naive semtree algorithm is computationally demanding
and not a reasonable candidate for growing a decision tree ensemble. The modern, score-guided
semtree, on the other hand, appears to be a considerably more practical method for the detection of
DIF in MGRmodels, also in comparison to partykit. As it allows to choose from different types of
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score-based test statistics, semtree appears to be a good candidate to efficiently calculate robust
tree ensembles.

We analyze and compare tree stability results of 100-fold simulations between partykit and
score-guided semtree as well as between ordinal and numerical response data. We define three
levels of tree stability. A stable tree is defined as a tree in which all splits have been performed at
the correct split points using the correct partitioning variables and all individuals in the sample are
correctly distributed among the terminal nodes. An example for such a perfect split result is shown
in Figures 1(a) and (b). The second level of tree stability is defined as a tree in which the split point
on the numerical variable num1 has not been perfectly detected so that not all individuals in the
sample are correctly distributed among the terminal nodes. An example for such an imperfect split
result is shown in Figure 2(a). The third level of tree stability is defined as a tree in which one or
more faulty splits have been performed. An example for such an incorrect split result is shown in
Figure 2(b).

The results of applying partykit and score-guided semtree to 100 numeric and 100 ordinal
samples are shown in Table 2. The tree stability patterns show no strong differences between
partykit and semtree. However, there are apparent differences when comparing the applications on
ordinal and numerical response data. With numerical response data, more trees were perfectly
stable. However, this is only due to a higher rate of inaccuracies in split point selection and not due
to more (fully) incorrect splits with ordinal response data.

The samples for simulation 2 included two subgroups with DIF (R1 and R2) and random data
such that the PIEG model only holds for a portion of the sample. In addition, the simulated
subgroups are not retrievable through one single decision tree. In a single sample application, we
first investigate if a forest of decision trees is able to correctly detect the simulated subgroups in the
data set. As shown in Tables 3 and 4, both methods are successful in the retrieval of the two
subgroups as those subgroups are repeatedly identified with best model fit. However, there were
other subgroups that also fit the data well (i.e., model fit estimate fell under RMSEA cutoff)
although these subgroups were not explicitly simulated to fit the data. It becomes apparent that the
other subgroups identified by the forests are (random) subsets of either R1 or R2. This result
indicates that not all of the subgroups with acceptable model fit indices in the tree ensembles
should be strictly interpreted as subgroups in which the assumed model is inherently true. Those
groups with the best model fit that do not share any subset with another subgroup in the list,
however, may be interpreted as subgroups in which the assumed model holds.

Figure 2. Examples for tree instability in simulation 1. (a) Inaccurate split point selection. (b) Incorrect splits
performed.
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The runtime of partykit and semtree forest depend on the number of trees of the ensemble.
Thus, holding the number of trees constant, semtree forest take considerably less time to compute
than partykit forest. In simulation 2, the computation time of the single trees in the ensembles were
on average comparable to the computation times in simulation 1, as some trees grew deeper and
others stopped splitting at the root node. Note that growing a forest can be parallelized and
therefore the computation time of recursive partitioning forests also depends on the number of
available processing cores.

Repeating the application of semtree forests with 20 trees in each ensemble on 100 ordinal data
sets resulted in 95% of the forests recovering at least one simulated subgroup (R1 or R2). Fur-
thermore, 41% of the forests recovered both R1 and R2. The same application on 100 numeric data
sets resulted in 78% of the forests recovering at least one simulated subgroup and only 18%
recovering both subgroups. Thus, the problem of inaccurate selection of split points in the decision
tree for ordinal data seems to be solved by using partitioning tree ensembles.

Discussion

Heterogeneity in survey samples is a common challenge when latent variable models are used to
measure latent traits in substantive research. Survey data may include multiple, complex sub-
groups which can be subject to differential item functioning, and/or for which the implied
measurement model does not hold altogether. Following the work of Strobl et al. (2015) and
Komboz et al. (2018), we investigate several approaches for accounting for DIF in the most
prominent type of multidimensional polytomous IRT model: the multidimensional graded re-
sponse (MGR) model. By focusing on ordinal response scales and allowing for multiple latent

Table 3. Results of the application of semtree forest for MGR models to the sample of simulation 2.
Subgroups with best model fit are shown. The column label “Freq.” refers to the number of decision trees in
the forest that identified the respective subgroup.

Sim.
Subgrp Decision rule Freq n RMSEA

p-value
χ2-test

3 Rsemtree1 : ¼ ffcat22f3, 4gg\fnum1 ≤ 49:88gg 3 499 0 0.592
3 Rsemtree2 : ¼ ffdicho1 ¼ 0g\fcat12f1, 4, 5ggg 1 500 0 0.568
7 Rsemtree3 : ¼ ffdicho1 ¼ 1g\fcat22f3, 4gg\fnum1 ≤ 49:99gg 1 254 0 0.792
7 Rsemtree4 : ¼ ffcat12f1, 4, 5gg\fnum1 ≤ 49:51g\fcat22f3, 4ggg 4 146 0 0.462
7 Rsemtree5 : ¼ ffnum1 ≥ 53:82g\fcat12f1, 4, 5gg\fdicho1 ¼ 0gg 7 373 0.011 0.402
7 Rsemtree6 : ¼ ffcat12f1, 4, 5gg\fnum1 ≥ 49:51g\fdicho1 ¼ 0gg 2 382 0.011 0.398
7 Rsemtree7 : ¼ ffcat12f1, 4, 5gg\fnum1 ≤ 49:98g\fcat22f3, 4ggg 2 147 0.016 0.411
7 Rsemtree8 : ¼ ffcat22f1, 2, 5gg\fcat12f1, 4, 5gg\fdicho1 ¼ 0gg 3 349 0.027 0.198
7 Rsemtree9 : ¼ ffcat12f2, 3gg\fnum1 ≤ 49:91g\fcat22f3, 4ggg 4 353 0.028 0.179

Table 2. Tree stability across repetitions in simulation 1.

Ordinal data Numerical data

Perfect
splits

Inaccurate split
point

Incorrect
splits

Perfect
splits

Inaccurate split
point

Incorrect
splits

Partykit 42% 48% 10% 76% 14% 10%
Semtree 40% 47% 13% 69% 13% 18%
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variables, recursive partitioning for MGRmodels aims to tackle DIF in modeling contexts that are
common in social scientific survey settings. We draw on three different recursive partitioning
algorithms: naive and score-guided semtree (Arnold et al., 2021; Brandmaier et al., 2013) as well
as partykit (Zeileis et al., 2008). As we utilize limited information estimation in building decision
trees, we also propose practicable multi-tree extensions of partykit and semtree for MGR models.
These approaches allow to account for instabilities in the tree growing process while maintaining
computational feasibility.

In simulation 1, we demonstrated that partykit and score-guided semtree can be used to
correctly find subgroups with DIF in MGRmodels. Comparing the algorithms using data in which
the assumptions underlying ML estimation are compromised (i.e., ordinal response data) versus
data in which these assumptions are not compromised (i.e., numeric response data) showed that
there are not more incorrect splits performed with ordinal data. The results of the simulation study
performed in Supplemental Material S2 support this finding as they indicate that different
strucchange tests used on ordinal data do not perform worse than the same tests used on numeric
data. However, compromising the MGR model assumptions during the tree growing process can
lead to more inaccurate split points, at least for numerical partitioning variables.

The results of simulation 2 showed that a forest of semtrees is computationally more practical
than a forest of partykit trees. The repeated application of semtree ensembles indicated that it is
possible to retrieve subgroups with DIF from data with complex subgroup structures using tailored
tree ensemble approaches. Our simulation also showed that applying such a tree ensemble method
to numeric response data does not lead to better subgroup recovery. This result suggests that an
ensemble method may be able to account for the instabilities of the tree caused by the com-
promised MGR model assumptions during tree growth. Note that in real applications, samples
consist of complex subgroup structures anyway, and tree instability may be present even if the
assumptions of the underlying model are not compromised. We may thus conclude that partykit
and (ensembles of) semtree for MGR models represent useful tools for researchers working with
multidimensional latent variable models and ordinal items in survey data.

Note that in extending recursive partitioning for MGR models to a tree ensemble method, we
do no longer focus exclusively on detecting DIF. We rather consider the possibility that the
assumed model structure underlying the ordinal items does not hold for all subgroups of the
sample. Additionally, we acknowledge that the subgroup structure may be too complex to be
disentangled by a single decision tree. In other words, an ensemble of recursive partitioning trees
for MGR models recognizes that traditional data models, such as MGR models, are often not
complex enough to accurately represent the internal processes of all respondents in deciding
which categories to check off on survey scale items. It is rather likely that the assumption of a fixed
model structure with stable parameters does not hold for every individual in every context. In these
cases, parameter heterogeneity and model fit heterogeneity can be expected.

For this reason, we use a hybrid approach that includes an algorithmic model (random forest)
and a data model (multidimensional GRM). Methods from the algorithmic modeling culture
assume that natural mechanisms that produce data are unknown. Algorithmic models are usually
used as “black boxes” to predict outcomes of such natural mechanisms (Breiman, 2001b, p. 205).
Models from the data modeling culture, on the other hand, are typically restrictive explanatory
models used to estimate parameters that are then used to test causal explanations. Algorithmic
models need to be flexible enough to approximate the data generating mechanism well while also
being robust to changes in the data. This compromise is referred to as the bias-variance trade-off in
the algorithmic modeling literature (Hastie et al., 2009, p. 37). A recursive partitioning ensemble
reduces bias by identifying various decision rules and associated parameter values for which the
assumed model fits. It is these decision rules that lead to conditions under which controlling for
DIF in MGR models actually reduces bias. Variance in tree ensembles for MGR models, on the
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other hand, can be controlled via the minimum size of the subgroups in the terminal nodes. Further
extensions to this end could include the use of bootstrap resampling in tree ensembles for MGR
models.
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