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Abstract

We develop a latent variable forest (LV Forest) algorithm for the estimation of latent
variable scores with one or more latent variables. LV Forest estimates unbiased latent
variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or
numerical response variables. Through parametric model restrictions paired with a
nonparametric tree-based machine learning approach, LV Forest estimates latent vari-
able scores using models that are unbiased with respect to relevant subgroups in the
population. This way, estimated latent variable scores are interpretable with respect
to systematic influences of covariates without being biased by these variables. By
building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable
modeling into account to capture subgroups with both good model fit and stable
parameter estimates. We apply LV Forest to simulated data with heterogeneous
model parameters as well as to real large-scale survey data. We show that LV Forest
improves the accuracy of score estimation if parameter heterogeneity is present.
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Introduction

The use of psychological questionnaires or tests in research usually involves the

assumption of a latent variable measured by the questionnaire items. Latent variable

modeling provides a versatile toolkit for measuring such latent traits. There are two
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main areas where latent variables, and particularly latent variable scores, are used:

Scaling individuals on a single construct, and estimating latent variable effects in

factor score regression (FSR) (see Devlieger et al., 2016, 2019) applications.

The first purpose of psychometric latent variable modeling, individual assessment

of psychological traits, is a critical component of the cognitive and behavioral

sciences (American Psychological Association [APA], 2014). Individual latent vari-

able scores based on observed responses to items of psychological tests are used for

psychopathological diagnoses as well as assessment of abilities and personality in

occupations and education. However, a major problem is the validity of psychological

tests, especially with respect to social minorities (Reynolds et al., 2021). Generally,

validity means that a variable measures what it is supposed to measure. Evidence

against test validity usually relies on the hypothesis of construct underrepresentation

or construct-irrelevant variance, meaning that a variable measures more or less than it

should (APA, 2014, p. 12).

Providing evidence for validity usually includes taking into account deviating

response behavior in subgroups. Systematic deviations may indicate that the function-

ing of the scale item differs with regard to certain construct-irrelevant variables. This

phenomenon is referred to as measurement noninvariance (Van De Schoot et al.,

2015) or differential item functioning (DIF, Bulut & Suh, 2017), and it is present if

item parameters differ between subgroups. An item identified as exhibiting DIF is

considered biased if the source of variability is irrelevant to the trait being assessed

by the test (i.e., construct-irrelevant). However, because any individual characteristic

could be defined as construct irrelevant, controlling for item bias may cause real

group differences on these variables to be interpreted as bias (see Davies, 2010).

Latent variable scores can be estimated based on item response theory (IRT)

(Hartig & Höhler, 2009; Immekus et al., 2019) or confirmatory factor analysis (CFA)

(Li, 2016) models (Bhaktha & Lechner, 2021). Practically, construct underrepresen-

tation can be tested for through model fit tests of CFA or IRT models (APA, 2014).

Because parameter heterogeneity leads to parameter instability, the assumption of

measurement invariance may be investigated via parameter instability tests (Zeileis

& Hornik, 2007). However, such a parameter test usually requires a hypothesis about

the covariates that negatively affect the parameter stability of a model. In other

words, it requires a priori specification of the subgroups for which DIF is suspected.

In recent years, tree-based machine learning methods have been proposed to

algorithmically control for DIF in unidimensional IRT models (Komboz et al., 2018;

Strobl et al., 2015) through recursive partitioning (Zeileis et al., 2008). Machine

learning methods have also been developed to deal with effect heterogeneity in

experimental and observational studies (Athey et al., 2019; Athey & Imbens, 2016;

Wager & Athey, 2018). As these methods touch on (distinct) aspects of construct

validity, they form the ingredients of our approach that focuses on the estimation of

unbiased latent variable scores.

We propose latent variable forest (LV Forest) for estimating latent variable

scores. LV Forest tackles parameter heterogeneity in latent variable models with
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ordinal and/or numerical response variables by splitting the original data set to reduce

parameter heterogeneity. This way, parameter stability with respect to relevant sub-

groups is established. LV Forest automatically detects relevant subgroups within

which parameters do not differ w.r.t. construct-irrelevant variables. LV Forest outputs

latent variable score estimates from latent variable models with good model fit esti-

mated separately for each relevant subgroup. However, the estimated latent variable

scores may differ between these relevant subgroups. This way, latent variable scores

may be estimated without true-value group differences being misinterpreted as bias.

In psychometric testing, the opportunities and the treatment for examinees as well as

the assessment and interpretation of test scores need to be comparable across all indi-

viduals and groups in a population. For the stages between assessment and interpreta-

tion of test scores this means that construct-irrelevant variables as well as construct

underrepresentation have no systematic effect on latent variable scores (Xi, 2010).

However, relevant subgroups in which this is the case usually have to be defined a

priori. LV Forest overcomes this limitation by automatically creating suggestions for

structures of relevant subgroups. Thus, the proposal of this method fills a gap in test

methodology. LV Forest is based on the SEMTree algorithm to ensure computational

efficiency (Arnold et al., 2021; A. M. Brandmaier et al., 2013).

LV Forest comes with a number of favorable properties that allow to take

complex heterogeneities in the context of latent variable modeling into account. First,

LV Forest uses a data-driven approach for detecting groups that are subject to para-

meter heterogeneity. The researcher only needs to specify a set of construct-irrelevant

partitioning variables for which she suspects differences in model parameters. The

partitioning variables are then used to algorithmically search for subgroups with con-

ditionally stable parameters in a decision tree-like fashion. This approach is particu-

larly valuable in situations in which a priori specification of all relevant subgroups

based on theoretical assumptions may not be feasible and/or is likely to be insuffi-

cient. Second, LV Forest computes multiple decision trees to account for the instabil-

ity of single trees to small changes in the data to detect relevant subgroups robustly.

This approach is inspired by random forests and includes random split selection and

bagging to increase tree diversity (Breiman, 2001a). Third, decision trees in LV

Forest are heavily pruned. This means that subgroups that are subject to parameter

heterogeneity are only selected if the model fits the data and the model parameters

are stable with respect to a prespecified vector of covariates.

When applying LV Forest in practice, the algorithm iteratively learns which sub-

groups in the sample are relevant for estimation and uses these subgroups to repeat-

edly estimate latent variable scores. Thus, LV Forest can be used for latent variable

score estimation especially if the assumed latent variable model does not fit the (full)

data and/or includes parameter estimates that are unstable with respect to construct-

irrelevant covariates. We show that LV Forest estimates accurate scores in complex

settings and outperforms naive and singe tree approaches in simulations.

In section ‘‘Combining Factor Analytic Modeling and Item Response Theory,’’

we describe the methodological background of this paper and how the ideas of IRT
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and Confirmatory Factor Analysis (CFA) can be merged. In section ‘‘Parameter

Heterogeneity,’’ the issues of parameter heterogeneity are described and the M-fluc-

tuation test is introduced. In section ‘‘Tree-based Machine Learning,’’ we briefly

introduce tree-based machine learning methods and how the algorithmic modeling

perspective can be used to account for heterogeneity. Subsequently, our LV Forest

approach is described (section ‘‘LV Forest’’). In sections ‘‘Simulation’’ and ‘‘Real

Data Application,’’ simulations as well as an empirical application of LV Forest with

survey data are presented. The advantages and limitations of the proposed method

are discussed in section ‘‘Discussion.’’

Latent Variable Modeling and Score Estimation

Stochastic models which specify the relationship between individual responses to

items with a limited amount of response categories and an underlying continuous

latent variable are consolidated under the term IRT. Note that IRT was originally

developed to examine the response process of individuals. Confirmatory factor anal-

ysis (CFA), however, is commonly used to formulate assumptions about items within

a model that is supposed to reflect a common unobservable phenomenon. The ade-

quacy of these assumptions is usually tested for by testing model quality (Bean &

Bowen, 2021). However, modern estimation methods merge the two traditions of

latent variable modeling so that certain variants of CFAs are equivalent to an IRT

model (Kamata & Bauer, 2008; ten Holt et al., 2010). This means that IRT models

may be used for scale evaluation, that is, to determine whether a set of items mea-

sures a latent variable. The advantage of an IRT approach is that it better maps the

response process to ordinal or dichotomous response variables.

Combining Factor Analytic Modeling and Item Response Theory

Usually, in IRT models, a latent variable represents the ability of the respondent.

This ability is assumed to underlie the response behavior (Steyer & Eid, 2013). In

the following, we refer to this latent variable as h. In the multidimensional GRM

(see Immekus et al., 2019; Samejima, 1969), a multidimensional IRT model (MIRT)

for graded responses which can cover various model structures, several latent vari-

ables are measured by response variables Yi 8 i = 1, . . . , m, with ordered response

categories. The latent variables are comprised in the vector h. This means that the

probability of answering in a category smaller or equal to a certain ordered category

ki depends on the (multidimensional) distribution of the latent variables. This rela-

tionship is described by the cumulative category response function, that is the

h�conditional probability function:

P Yi � ki jhð Þ=F b0ih� aikÞ:ð ð1Þ

The link function F is the distribution function of the standard normal distribution.

The threshold parameter aik may be interpreted as the item-category-specific
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intercept whereas the discrimination parameters bij, that make up the p31 vector bi,

can be interpreted as the slope parameters of the multidimensional probability func-

tion in Equation 1.

It is possible to efficiently estimate MIRT parameters via CFA modeling. This

means that assumptions of an MIRT model can be translated into a special CFA

model and parameters can then be estimated in a computationally efficient manner

that is common in the CFA framework (limited information approach, see Li, 2016).

For this, a continuous, normally distributed latent response variable Y �i is assumed to

underlie each nonnumerical observed response variable/endogenous variable Yi. The

relation between the latent response variable Y �i and the (multidimensional) distribu-

tion of the latent variables is described by the conditional expectation function:

E Y �i jh
� �

= b0i h: ð2Þ

Note that in this model, the discrimination parameters bij are equivalent to the fac-

tor loadings in a CFA model. In the factor analytic approach to MIRT modeling, the

latent response variable Y �i of item i is related to the observed categorical response

variable Yi via a threshold relation, that is

Yi = ki if aik\y�i\ai(k + 1): ð3Þ

Using the factor analytic approach makes it possible to estimate MIRT parameters

through weighed least squares (WLS) estimation (Muthén, 1984). Note that WLS

estimation makes it possible to include numerical and ordinal endogenous variables

within one model. For a numerical response variable Yi, the basic factor analytic

model is

Yi = pi + b0i h + E i, ð4Þ

where pi is the intercept and E i is the residual variable for item i. The conditional

expectation function E Yi jhð Þ is estimated such that the threshold relationship shown

in equation 3 is omitted.

For simplicity, we refer to CFA models with continuous and/or categorical vari-

ables as well as multidimensional GRMs as latent variable models in this paper. In

IRT, the location of an individual on a construct and specific item characteristics are

the only factors that account for a person’s response (Immekus et al., 2019; Reeve &

Fayers, 2005). From this point of view, it is usually desirable to determine the level

of a person in relation to the construct. When using the limited information approach

to parameter estimation of the CFA framework, one has to create scores to represent

each individual’s placement on the latent variable. These latent variable scores are

estimated from fitted models and can be used as dependent or independent variables

in regression analyses (DiStefano et al., 2009).

The latent variable score estimates in ĥ, however, do not represent a unique solu-

tion to the latent variable h. For any single factor h in a model, there is an infinite

number of sets of scores that are equally consistent with the model’s parameters. A
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latent variable score estimate may not even have identical rankings on different sets

of factor scores for the same latent variable. Due to this problem, that is referred to

as indeterminacy, one can regard ĥ only as an indicator of h that contains measure-

ment error (Bollen, 1989, p. 305). Thus, the degree to which latent scores are inter-

pretable highly depends on the degree of indeterminacy.

The indeterminacy of latent variable scores varies widely across different models,

applications and methods for latent variable score estimation. It may depend, for

example, on the degree of commonality between latent variables and response vari-

ables (Grice, 2001). It is suggested by Grice (2001), to examine the correlational

relationship between h and ĥ (referred to as validity) as well as the correlational

accuracy among the scores of all latent variables within the model to evaluate the

degree of indeterminacy of latent variable scores. This could, for example, be done

through simulation studies.

Parameter Heterogeneity

In MIRT models, DIF occurs when an item- or category-specific parameter depends

on covariates of the manifest variables (i.e., response variables). Such covariates

may take the form of characteristics of the individuals responding to the items. For

example, the difficulty of an item may depend on ethnicity, education, or gender.

Conditioning on such covariates is equivalent to analyzing separately certain sub-

groups defined by different values on these covariates. Similarly, in CFA models the

structural parameters determining the relation between latent variables and endogen-

ous variables may differ between subgroups. We refer to between-subgroup differ-

ences of parameters in both MIRT and CFA models as parameter heterogeneity.

Let Z be the vector of covariates Z1, . . . , ZRð Þ that contribute to parameter hetero-

geneity. Let R1, . . . , RH , be the subgroups for which there is parameter heterogene-

ity and let the subgroups be defined as subsets of the covariate space over Z and let

the model parameters be different across all subgroups. In this case, the association

with a subgroup Rh corresponds to the event Z = Rhf g. The model parameters in a

subgroup Rh are homogeneous.

Controlling for parameter heterogeneity for ordinal dependent variables in latent

variable models can be formalized by assuming h�conditional probability functions

of the category ki on the response variable Yi given membership to the subgroup Rh,

that is

PZ = Rh Yi � ki jhð Þ=F b0ih h� aikhÞ:ð ð5Þ

Accordingly, for a numeric response variable Yi, the h�conditional expectation is

assumed to depend on membership to the subgroup Rh, that is

EZ = Rh Yi jhð Þ= pih + b0ihh: ð6Þ
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If the latent variables are properly defined, the latent variable vector h does not

depend on the covariate vector Z within the subgroups Rh 8 h = 1, . . . , H in which

the parameters are homogeneous, only the model parameters do. This shows that

parameter heterogeneity is present when the conditional probability of responding to

an item (or the conditional expectation of an item) is different for two individuals

with the same ability, only because of their group membership.

In practice, parameter heterogeneity can be very problematic because the number

of relevant covariates may be very large. Also, there is an even greater amount of

possible values or value ranges of these covariates for which model parameters may

differ. In addition, complex interactions within the covariate vector Z are possible so

that subgroups may only be detected by considering several covariates jointly. If

parameter heterogeneity remains undetected, group differences with respect to the

latent variables could be misinterpreted (Komboz et al., 2018), meaning they may be

due to bias not due to real latent variable score differences.

Systematic parameter instability with regard to a covariate Zr can be tested with

the generalized M-fluctuation test (Zeileis & Hornik, 2007). The test is applicable

for latent variable models that were fitted to a data set via maximum likelihood

(ML). The null hypothesis of the M-fluctuation test is rejected if the empirical fluc-

tuation during parameter estimation is improbably large. To represent the empirical

fluctuation process, the partial derivatives of the individual log-likelihood function

ln Lðyj, ûÞ are used. For k parameters in the latent variable model, this is given by

the score function:

cðyj, ûÞ=
∂ lnLðyj, ûÞ

∂û1

, . . . ,
∂ lnLðyj, ûÞ

∂ûk

 !
, 8 j = 1, . . . , n: ð7Þ

Summing this function across the sample and maximizing the results yields

asymptotically equivalent parameter estimates to limited information maximum like-

lihood estimation in CFA models for metric variables (maximum likelihood estima-

tion, see Lee & Shi, 2021). Thus, in the estimation process, the score function c

leads to the parameter estimates û via the condition
Pn

i = 1 c yi, û
� �

= 0. The M-fluc-

tuation test checks for systematic fluctuations of the scores, ordered with regard to a

covariate Zr. If parameter heterogeneity is present, the scores will differ for different

subgroups that are defined as subsets of Zr. Thus, a test statistic is derived from the

scaled cumulative sum of the ordered scores and critical values are obtained from

simulation (Wang et al., 2014). Given multiple covariates Zr 2 Z, the generalized

M-fluctuation test should be applied for all covariates using a Bonferroni-corrected

a�level.

Tree-based Machine Learning

In section ‘‘Parameter Heterogeneity,’’ we introduced the problem of parameter het-

erogeneity in latent variable models. We assume that reducing parameter instability
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by conditioning on a set of covariates Z will lead to several latent variable models

with stable parameters. However, we must assume that the relation between the

model parameters in a latent variable model and the covariates Z could be nonlinear

and that associations may be complex. Thus, we need a method for which no hypoth-

eses or assumptions about the functional form of parameter heterogeneity need to be

prespecified. In other words, we need an exploratory method that is able to resemble

the complex nature of parameter heterogeneity in a latent variable model. For this,

we draw on tree-based machine learning methodology.

Machine learning models are considered parts of the algorithmic modeling cul-

ture. As a counterpart to models from the data modeling culture, algorithmic models

assume that natural mechanisms, which produce data, are unknown. Data models like

latent variable models, however, are stochastic models that are supposed to represent

how response variables are truly associated with latent variables. Most often though,

stochastic models are not complex enough to emulate the true nature of the associa-

tion between latent variables and response variables (Shmueli, 2010).

In contrast, algorithmic models serve the purpose of predicting new or future

observations through flexible modeling with minimal assumptions. Algorithmic mod-

els need to be flexible enough to approximate the data generating function while also

being robust toward changes in the data used to fit the model. This compromise is

referred to as the bias-variance trade-off (Hastie et al., 2009). Algorithmic models

acknowledge the complex and inconceivable ways that nature produces data. They

do not need to be fully interpretable, they rather need to provide accurate information

(Breiman, 2001b).

Decision trees represent a popular set of nonparametric machine learning methods

that are usually used for prediction of an outcome variable. A predictive model

(referred to as a tree) is built by recursively partitioning the covariate space over Z

into a set of nodes (referred to as leaves) in which the outcome is considered homo-

geneous (Kern et al., 2019).

Score-based structural equation model trees, as presented by Arnold et al. (2021),

combine tree-based machine learning with latent variable modeling. The algorithm

searches through all partitioning variables to find subgroups that differ with respect

to the model parameters. The aim is to find nodes in which the model parameters are

considered homogeneous. For this, the generalized M-fluctuation test with respect to

any of the partitioning variables is performed at every node of the tree. If there is sig-

nificant parameter instability, the node is eventually split at a point on the covariate

with the greatest instability into two locally optimal segments. The split point is iden-

tified as the location on a partitioning variable at which splitting maximizes the

respective score-based test statistic (Arnold et al., 2021, p. 8). As a result, the model

only needs to be fitted once at each node of the decision tree. Thus, score-based

structural equation model trees are computationally efficient methods for parameter

heterogeneity reduction. For simplicity we refer to them as SEMTrees.

For the purpose of iteratively reducing parameter heterogeneity, it is important not

to overfit a decision tree. At first, a minimum sample size within the terminal nodes
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(leaves) of the tree must be established so that parameters for latent variable models

can be properly estimated for the subsamples in the terminal nodes. Then, only splits

that significantly reduce parameter heterogeneity (according to the generalized M-

fluctuation test) should be performed, otherwise spurious parameter heterogeneities

may be induced for the models in the terminal nodes.

A popular extension to single decision trees is random forests. They are purely

predictive methods where the true functional form of the relationship between input

and response variables is assumed to be unknown before the procedure is applied and

the function approximated by random forest is not directly interpretable. The predic-

tions of a random forest, however, are likely to be more accurate than the predictions

of most data models (Fife & D’Onofrio, 2021; Shmueli, 2010). If we acknowledge

that nature produces data in complex and inconceivable ways, the approximation

through a nonstochastic but accurate function by random forest might be preferable

compared with data models.

Random forest methodology can be tailored to serve other purposes. For example,

SEM forests by A. Brandmaier et al. (2016) can be used for selection of variables that

predict differences across individuals w.r.t. parameters in Structural Equation Models

(SEMs). The method can also be used for outlier detection and clustering. Another

method that extends Breiman’s random forest algorithm is the causal forest approach

(see also Athey et al., 2019; Athey & Imbens, 2016; Wager & Athey, 2018) that is

used for the estimation of individual treatment effects. Given such tailored exten-

sions, tree-based machine learning methods are being applied more commonly in the

social science and survey research context (Buskirk, 2018; Kern et al., 2019).

LV Forest

We develop a tree-based algorithm for latent variable score estimation: LV Forest.

The proposed algorithm is outlined in Figure 1. We begin our considerations with the

assumption that the parameters of the proposed latent variable model are not equal

for all participants in the population. Parameter heterogeneity in the latent variable

model may imply unintended influence of construct-irrelevant variables on the rela-

tions within the model. Furthermore, we presume that the proposed latent variable

model does not fit the data equally well for all subgroups of the population. With the

proposed algorithm, we aim to detect subgroups relevant to bias in estimated latent

variable scores, and only latent variable models that fulfill conditional independence

from construct-irrelevant variables as well as achieve adequate model fit are chosen

for latent variable score estimation. This way, we establish both unbiasedness with

respect to construct-irrelevant variables in latent variable score estimation and latent

variable scores are not estimated with an underrepresented model. We combine the

limited-information approach for parameter estimation (section ‘‘Combining Factor

Analytic Modeling and Item Response Theory’’) and the SEMTree algorithm (section

‘‘Tree-based Machine Learning’’) to efficiently compute an ensemble of decision

trees, in which each tree reduces parameter instability. We then prune the resulting
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trees to detect subgroups in which the model fits the data and the parameter estima-

tions are stable. Note that we do assume that the proposed latent variable model ful-

fills the criteria for latent variable score determinacy (Grice, 2001, section ‘‘Latent

Variable Modeling and Score Estimation’’).

First, an SEMTree (section ‘‘Tree-based Machine Learning’’) is grown. Note that

for the computation of c, which is necessary for the generalized M-fluctuation test

(see section ‘‘Parameter Heterogeneity’’), we need to fit the model with the maxi-

mum likelihood (ML) estimator. We then re-assess parameter instability for all

construct-irrelevant variables Z1, . . . , ZR using the M-fluctuation test. Second, the

latent variable model is re-fit in each terminal node of the tree. The parameter and

model fit estimates in the terminal nodes of the decision tree are calculated using the

distribution free weighted least squares (WLS) estimator. Using only the models in

the terminal nodes of the tree that fulfill the criteria for model fit and stability of

parameter estimates, latent variable scores are then computed via empirical Bayes

estimation. For the computation of these Empirical Bayes Modal (EBM) scores,

information about response patterns and model parameters are combined with a prior

distribution to obtain a posterior distribution. This method is still appropriate if there

are categorical or ordinal response variables and it has performed well in simulations

(Bhaktha & Lechner, 2021).

Figure 1. Univariate GRM Model.
Item 1 serves as reference item so that l1 is fixed to 1.
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We might say that the decision trees in the ensemble are heavily ‘‘pruned,’’ leav-

ing only those leaves that are most likely to contain models that are adequate for

latent variable score estimation. Specifically, this means that, we exclude terminal

nodes for which (a) the proposed model does not fit the data, and (2) the model’s

parameters are instable w.r.t. the covariates. For (a), an RMSEA-cutoff value is

defined (Hu & Bentler, 1999; Schermelleh-Engel et al., 2003) and all models that

exceed this cutoff are excluded. For (b), the generalized M-fluctuation test for para-

meter instability (Zeileis & Hornik, 2007) is performed. Classe and Kern (2024)

show that the performance of the generalized M-fluctuation test for ordinal data is as

good as for metric data and thus can be used for ML-based models.

We learn from the machine learning literature that a single decision tree may be

vulnerable to small changes in the training data and the set of partitioning variables

(Breiman, 2001a). For the most part, this is a consequence of the hierarchical nature

of the decision tree (A. Brandmaier et al., 2016; Kern et al., 2019). In addition, if an

SEMTree is grown with ordinal data this can lead to inaccuracies in the partitioning

Algorithm 1: LV Forest

Parameters: minimum sample size in terminal node, RMSEA-cutoff, number of trees in
ensemble, number of partitioning variables to sample at each node

1 do
2 fit model for current sample with ML estimator;
3 randomly sample set of partitioning variables;
4 assess item parameter instability though generalized M-fluctuation test with

respect to each selected partitioning variable;
5 if parameters are instable AND stopping criteria are not met then
6 detect covariate Zr� with the strongest instability;
7 select unique value as split point that maximizes the score-based test statistic;
8 split node into two subnodes at split point;
9 for each node of current tree do
10 continue partitioning process;
11 end
12 end
13 else
14 stop splitting;
15 end
16 for each terminal node do
17 re-assess parameter instability w.r.t. each covariate Z1, . . . , ZR (all partitioning

variables considered);
18 re-fit model for subgroup in terminal node with the WLS estimator;
19 if minimum RMSEA-cutoff exceeds AND parameters are stable then
20 estimate latent variable scores for subgroup in terminal node;
21 end
22 end
23 while number of iteration \ number of trees in ensemble;
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process because the ML estimator is used for the computation of the fitted model

scores (section ‘‘Parameter Heterogeneity’’) at the beginning of the tree growing pro-

cess. For parameter estimation via maximum likelihood, the dependent variables are

assumed to be normally distributed. This assumption rarely holds for ordinal data

(Li, 2016). We account for the problem of unstable and potentially inaccurate trees

by computing several structurally different decision trees and evaluating the com-

piled results of this ensemble of trees. We use random split selection together with

bootstrap aggregating (bagging) to ensure that the decision trees in the ensemble are

structurally different from each other. For random split selection, random selections

of partitioning variables are made. The selection of partitioning variables is redrawn

at every node in a decision tree. The researcher can specify the number of partition-

ing variables that are drawn at each node and thus determine the variability between

trees. Bagging means that subsamples are randomly drawn from the full data to grow

an individual decision tree. This process is repeated to build an ensemble of multiple

trees.

After computing all trees in the ensemble, the estimated latent variable scores are

accumulated for each individual over all relevant subgroups in the tree ensemble.

This means that across all relevant subgroups found by the algorithm that contain

individual i, the scores are averaged.

For the application of LV Forest, the R function lvforest was written. In sum-

mary, it computes an ensemble of SEMTrees, automatically estimates latent variable

scores and tests them for independence of potential construct-irrelevant variables.

The R implementation of the proposed method and replication materials for all simu-

lations are provided in the following OSF repository: https://osf.io/gs562/?view_

only=c5c715e8e1594445884bb5a1dec27406.

Simulation

Setup

We test the performance of LV Forest with simulated data. We carried out three

simulations. For Simulation 1, the data are simulated based on a simple univariate

latent GRM model, that is

P Yi � ki jhð Þ=F lih� kikð Þ,
8 k = 1, . . . , 6, 8 i = 1, . . . , 5:

ð8Þ

In this model, the variance and mean of the latent variable are estimated. The dis-

crimination parameter pertaining to item 1 (i.e., l1) is fixed at 1. Also, the first thresh-

old parameter pertaining to the first item k11 is fixed at 1. We simulated five items

with seven response categories each, thus there are six threshold parameters kik for

each response variable. The model is shown in Figure 1.

The data set used in Simulation 1 consist of 10 model-compliant subsamples

Rh 8h = 1, . . . , 10ð Þ, each with 500 data points. To simulate model-compliant data,

12 Educational and Psychological Measurement 00(0)
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first, true latent variable scores _h were simulated. Furthermore, values of the condi-

tional probabilities P Yi � ki j _hð Þ were computed for all categories of all items. On

the basis of these conditional probabilities, values for five ordinal response variables

with seven categories each were sampled.

In addition, for each of the simulated subsamples, we created one numerical cov-

ariate numhð Þ ranging from 1 to 200, one ordinal ordhð Þ and one categorical cathð Þ
covariate with scores on a 5-point scale. These covariates serve as partitioning vari-

ables. For each subsample, the range of values on all partitioning variables were

fixed, such that

Rh := numh � 50f g \ cath 2 1, 3, 5f gf g \ ordh � 4f g \
ordis � 3 8 i 2 Rs = numh � 50f g \ cath 2 1, 3, 5f gf gf g,
8 h, s = 1, . . . , 10, s 6¼ h:

This means that the values on numh, cath, and ordh are only fixed for those individ-

uals that belong to subgroup Rh except of those individuals i belonging to any other

subgroup Rs and happen to fall within the range of values of numh \ cath to which Rh

is fixed. Those individuals are fixed w.r.t. cath. This way, given a complete simulated

data set, the model-compliant subsamples are recoverable in the terminal nodes of the

decision trees of a tree ensemble. It is, however, not possible to recover all model-

compliant subsamples in a single decision tree. In simulating the data this way, we

want to mimic the complex data structure produced by natural mechanisms.

All input model parameters that were used to simulate the data differ between all

subgroups Rh (see Tables 1 and 2). This way, overall parameter instability between

the model-compliant partitions of the simulated data set is simulated. The simulation

is set up such that the model (see Equation 8) fits the model-compliant subgroups

very well (see Table 2).

We apply LV Forest to the simulated data set and compute a forest of 10000 deci-

sion trees. All covariates numh, cath, ordh 8 1, . . . , 10ð Þ are included as partitioning

variables. The minimum sample size of the terminal nodes of the trees is set to 200,

random split selection is set to 2. We set the model fit cutoff to a RMSEA value of

0.05 to make sure that only the decision rules for well-fitted models are considered

when estimating latent variable scores.

Latent variable score estimation accuracy is evaluated by comparing the true simu-

lated latent variable scores _h to latent variable score estimates based on different

methods: one fitted model for the entire data set, that is, the naive model ĥnaiveð Þ, a

single SEMTree, that is, one fitted model for each terminal node of the single tree

ĥSEMTreeð Þ, LV Forest ĥLVForestð Þ, and distinct models for the simulated subgroups,

that is, 10 separately fitted latent variable models ĥdist:modelsð Þ. Note that latent vari-

able score estimation using models fitted on the simulated subgroups individually is

not possible in practice as usually the subgroups that are subject to parameter hetero-

geneity are unknown.
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For Simulation 2, we simulated 100 data sets in a simplified form of the proce-

dure described above. We simulated data based on an univariate IRT model with

eight items with five categories each (instead of five items with seven categories like

in Simulation 1). Furthermore, each of the simulated data sets consist of three

model-compliant subsamples for each of which one ordinal ordhð Þ and one numerical

numhð Þ partitioning variable were created. Each of the simulated subgroups consists

of 500 data points so the full data set size is n = 1500 (instead of n = 5000 in

Simulation 1). The range of values on these partitioning variables is fixed, such that

Rh := numh � 50f g \ ordh � 4f g \ ordis � 3 8 i 2 Rs = numh � 50f gf g,
8 h, s = 1, . . . , 3, s 6¼ h:

Thus, the model-compliant subsamples are recoverable in the terminal nodes of

several decision trees, but not in the terminal nodes of a single decision tree. In

Simulation 2, we reduce the number of partitioning variables per simulated data set

to six (instead of 30 in Simulation 1).

We apply LV Forest to each of the simulated data sets using the same hyperpara-

meters as in Simulation 1, except that we compute 20 trees per ensemble (instead of

10,000 in Simulation 1). Furthermore, we apply LV Forest to each of the simulated

data sets and randomly select 5 out of the 6 relevant partitioning variables to be gen-

erally available for the computation of the ensemble. This way, we want to find out

how the absence of relevant partitioning variables affects latent variable score estima-

tion with LV Forest. Note that this is not random split selection, but it is a simulation

scenario in which not all relevant partitioning variables can be used by the algorithm.

We also apply a single SEMTree to each of the simulated data sets, fit a separate

model for each of the terminal nodes and estimate latent variable scores using these

fitted models.

Table 2. Model Fit Indicators and Input Discrimination Parameters of Simulated Data Sets.

x2 p-value RMSEA Var( _h) E( _h) _l1
_l2

_l3
_l4

_l5

R1 0.116 0.039 0.66 0.99 fixed to 1 0.67 0.57 0.80 1.47
R2 0.508 0.000 0.67 0.95 0.80 0.58 1.36 0.89
R3 0.641 0.000 1.13 1.21 1.20 0.48 0.37 1.17
R4 0.178 0.032 0.68 0.77 1.12 1.12 0.66 0.97
R5 0.390 0.009 0.54 0.80 1.51 0.50 1.54 1.33
R6 0.715 0.000 1.04 1.76 0.39 0.90 1.00 1.19
R7 0.285 0.022 1.15 1.67 1.46 0.39 1.23 1.21
R8 0.900 0.000 0.68 1.21 1.57 1.46 0.52 1.36
R9 0.122 0.038 0.54 1.03 0.40 1.44 1.32 1.51
R10 0.513 0.000 0.70 1.25 0.74 1.30 1.21 1.50
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The accuracy of the latent variable score estimations are evaluated by comparing

the true simulated latent variable scores _h to five kinds of latent variable score esti-

mates based on: a naive model ĥnaiveð Þ, a single decision tree ĥSEMTreeð Þ, an LV

Forest with absence of one relevant partitioning variable ðĥpart:LVForestÞ, an LV Forest

including all relevant partitioning variables ĥLVForestð Þ, and three distinct models

fitted on each of the subgroups ĥdist:modelsð Þ. In addition, we evaluate the nonconver-

gence rate of each of the five estimation methods on each of the simulated data sets.

The nonconvergence rate describes the relative frequency of individuals in a sample

for which latent variable score estimation was not possible, for example, because the

model fitting process did not converge. Note that in an LV Forest, ‘‘nonconver-

gence’’ of latent variable score estimation for individual i means that i is not part of

any relevant subgroup found by the forest and thus scores are not estimated.

For Simulation 3, we simulated one data set in a similar way as in Simulation 1,

but now the full data set is simulated using a single set of parameters. We simulated

the data to fit a univariate model with five response variables with seven response

categories each. We simulate three covariates num1, cat1, ord1ð Þ with random values.

We apply LV Forest to this data set and compute a forest of 10 decision trees. All

covariates are included as partitioning variables. The hyperparameters are set to the

same values as in Simulation 1.

Results

The application of LV Forest with the simulated data resulted in a tree ensemble in

which 425 out of 10,000 decision trees included at least one terminal node in which

the assumed model fits well and the model parameters are stable w.r.t. the partition-

ing variables. Overall, there are 439 terminal nodes in which these two conditions

apply. These terminal nodes remained for the estimation of latent variable scores for

the whole sample. On a 20 core, 170GB RAM server, LV Forest took 5.89 hours

(353.5 minutes) of computation time.

The estimation of the single SEMTree with the simulated data of Simulation 1

took 5.01 minutes on a 20-core, 170GB RAM server. The tree structure is shown in

Figure 2. It is obvious that the single SEMTree did not reproduce the simulated sub-

group structure. The RMSEA values of the models in the 16 terminal node range

from 0.02 to 0.18 but only two of the models have a RMSEA lower than 0.05.

To estimate the naive latent variable scores ĥnaive, we fit the model in Equation 8

to the whole data set. As suspected, the naive model does not fit the entire data set

well RMSEA = :090, 95% C:I := :080� :101ð Þ. The RMSEA values of the distinct

subgroups in the data set range from 0.00 to 0.04.

The correlation matrix of the four sets of latent variable score estimates and the

true simulated latent variable scores are shown in Table 3. We used Spearman’s rank

correlation coefficient because the latent variable score estimations may not follow a

normal distribution. The accuracy of latent variable score estimations, that is, the

correlations with the simulated latent variable scores _h, are highlighted. The
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correlation of _h with ĥnaive (Row 2) is lower than the correlations of ĥSEMTree (row 4)

and ĥLVForest (Row 3) with _h. The correlations of ĥdist:models (row 2) and ĥLVForest

(Row 3) with _h are very similar and noticeably different from the correlations with

ĥSEMTree and ĥnaive with _h. This suggests that latent variable scores estimated by LV

Forest may be more accurate than latent variable scores estimated by a single model

fitted to the entire data set when there is substantial parameter heterogeneity in the

sample. Also, if there is a complex subgroup structure underlying the data, latent

variable scores estimated by LV Forest may be more accurate than those estimated

by a single SEMTree. Note, however, that the accuracy of latent variable scores

depends on the degree of score indeterminacy (see section ‘‘Latent Variable

Modeling and Score Estimation’’). It is still possible that latent variable scores esti-

mated on the basis of a model that fits the data and has stable parameters are

inaccurate.

The results of Simulation 2 in terms of accuracy are shown in Figure 3a and the

results in terms of nonconvergence are shown in Figure 3b. The application of the

different latent variable score estimation methods on 100 simulated data sets shows

that the accuracy of latent variable score estimation based on a naive model ĥnaiveð Þ
is, on average, lower than the accuracy of the other methods. In terms of nonconver-

gence, the naive model did not estimate latent variable scores on one data set. The

SEMTree algorithm did not converge on 4 data sets such that no latent variable score

estimations were made. For 27 data sets, the nonconvergence rate is larger than 10%

as individual models in the terminal nodes did not converge. For 6 data sets, the accu-

racy of the latent variable scores ĥSEMTree is lower than 0.5. The accuracy of ĥLVForest,

and ĥdist:models is, on average, higher than the accuracy of ĥSEMTree. Also, there are no

outliers with accuracy lower than 0.5 for ĥLVForest. Overall, ĥLVForest seems to be very

similar to ĥdist:models in terms of accuracy. However, the analysis of the nonconver-

gence rates show that there are 17 data sets for which the nonconvergence rate of LV

Forest is larger than 10%. Note that if all relevant partitioning variables are included,

nonconvergence can be reduced to 0% if more than 20 trees are computed in an

ensemble. The analysis of ĥpart:LVForest indicates that the high accuracy of LV Forest

is not affected if not all partitioning variables are available. However, 95 of 100 data

sets exhibit a nonconvergence rate of more than 10% and 30 data sets exhibit a non-

convergence rate of over 50%. This indicates that when using LV Forest, the lack of

Table 3. Correlations of Estimated Latent Variable Scores From Simulation 1.

_h ĥdist:models ĥLVForest ĥSEMTree ĥnaive

_h 1.000
ĥdist:models 0.830 1.000
ĥLVForest 0.816 0.986 1.000
ĥSEMTree 0.761 0.922 0.950 1.000
ĥnaive 0.728 0.899 0.936 0.940 1.000
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A

B

Figure 3. Results of Simulation 2.
Latent variable score estimation for 100 data sets based on five different methods. The five methods

estimate ĥnaive (naive model), ĥSEMTree (SEMTree), ĥLVForest (LV Forest), ĥpart:LVForest (LV Forest with

incomplete partitioning variables), and ĥdist:models (distinct models).
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relevant partitioning variables does not affect the accuracy of the estimated scores,

but it does affect the convergence rate and thus the coverage of the scores that are

estimated.

Over all 100 samples, the mean computation time of a single SEMTree was 15.17

seconds. The mean computation time of LV Forest was 37.86 seconds. Note that the

computations were executed on a 20 core, 170GB RAM server and the trees were

computed in parallel.

The results of Simulation 3 show that no splits were performed in any of the 10

LV Forest trees. Thus, in the absence of parameter heterogeneity, the scores estimated

by LV Forest are equal to the scores of the naive model.

Real Data Application

We demonstrate the application of LV Forest using data obtained from the LISS

(Longitudinal Internet studies for the Social Sciences) panel administered by

Centerdata (Tilburg University, The Netherlands). LISS is a comprehensive longitu-

dinal survey conducted annually, encompassing a wide range of topics such as

employment, education, income, housing and personality traits (Scherpenzeel, 2018).

For this application, we analyze the data from the first survey wave in 2008. In this

wave, 8,722 household members were contacted and 6808 individuals responded.

We focus on five items from the satisfaction with life scale (Diener et al., 1985) mea-

suring life satisfaction. We excluded all cases that did not respond on all of the five

items which leads to a final sample of n = 6626. The items were rated on a 7-point

Likert-type scale. The wording of the items is shown in Table 4.

We analyze the data using the same univariate GRM model structure that

Simulation 1 is based on (see Equation 8 and Figure 1). First we fit such a model to

the whole data set and refer to it as the naive model. We then we apply LV Forest.

For the application of LV Forest, we choose 11 background variables representing

the construct-irrelevant variables for our latent variable model. These variables

describe the general characteristics of households and household members that

Table 4. Life Satisfaction Scale Items as Asked in the LISS Panel.

Text: Below are five statements with which you may agree or disagree. Using the 1–7 scale
below, indicate your agreement with each item by placing the appropriate number on the line
preceding that item. Please be open and honest in your responding.

Item Wording

i = 1 In most ways my life is close to my ideal
i = 2 The conditions of my life are excellent
i = 3 I am satisfied with my life
i = 4 So far I have gotten the important things I want in life
i = 5 If I could live my life over, I would change almost nothing
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participate in the LISS panel. They encode characteristics on the individual level

(such as gender, age or civil status) as well as on the household level (such as house-

hold income, domestic situation or type of dwelling). The variables are shown in

Table 5. We apply LV Forest to the data set using these background variables as par-

titioning variables and compute an ensemble of 1,000 trees. To reduce computation

time and to ensure that LV Forest outputs a manageable number of relevant sub-

groups w.r.t. post hoc analysis, we set the cutoff RMSEA value to .03. Minimum ter-

minal node size is set to 200 and random split selection to 2.

As a sensitivity check, we additionally apply LV Forest with the same data but dif-

ferent partitioning variables. We apply an ensemble with the same hyperparameters

as described above while using only the first six variables in Table 5 (geslacht to
woonvorm) as partitioning variables.

To illustrate the conditional independence of the estimated latent variable scores,

we perform post hoc tests for independence between the estimated latent variable

scores and the construct-irrelevant variables within the subgroups found by LV

Forest. For this, we apply a test based on the d-variable Hilbert Schmidt indepen-

dence criterion (Pfister et al., 2018). With this kernel-based nonparametric test, we

test for stochastic independence (instead of e.g., linear independence).

As the estimated latent variable scores are accumulated for each individual over

all relevant subgroups, the resulting latent variable scores are not expected to be inde-

pendent of construct-irrelevant partitioning variables for the full sample. Within the

relevant subgroups, however, the latent variable scores are expected to be indepen-

dent of construct-irrelevant variables. Thus, any overall effects of background vari-

ables on latent variable scores imply real differences between the relevant subgroups.

To analyze such effects on the latent variable scores, we apply regression models

using the 11 background variables as individual predictors. We do this for three dif-

ferent outcome variables: the LV Forest scores using all partitioning variables, the

LV Forest scores using only a subset of partitioning variables and the latent variable

scores estimated with the naive model.

We fit the naive model using the WLS estimator (see Section ‘‘Combining Factor

Analytic Modeling and Item Response Theory’’). The model does not fit the data well

RMSEA = :122, C:I : 95%ð Þ= :113� :131ð Þ.
In the LV Forest ensemble, 15 trees (1.5% of the ensemble) each generated one

terminal node that contained a subsample for which the univariate GRM model fits

the data and all parameter estimates are stable w.r.t. all 11 background variables.

The model fit indices for all subgroups are shown in Table 6. For these relevant sub-

groups, latent variable scores were estimated, such that score estimates were avail-

able for n = 2631 individuals (39.7% of the entire sample). On a 20-core, 170GB

RAM server, LV Forest took 32 minutes of computation time. For the LV Forest

application with only 6 partitioning variables, score estimates were available for

n = 1310 individuals. The results of independence tests within the subgroups found

by LV Forest using the full set of partitioning variables are shown in Table 7. There

is only one construct-irrelevant variable (partner) in subgroup R8 that is likely to

22 Educational and Psychological Measurement 00(0)
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be stochastically dependent on the estimated latent variable scores of R8. This is the

case although the parameter estimates of the fitted model used for latent variable

score estimations are stable w.r.t. all construct-irrelevant variables. This result may

be due to latent variable score indeterminacy. The results of the other tests indicate

that parameter stability of well-fitting models w.r.t. construct-irrelevant partitioning

variables generally leads to latent variable scores that are independent of construct-

irrelevant partitioning variables given the affiliation to a relevant subgroup. We con-

clude that these relevant subgroups are found by LV Forest.

We analyzed the effect of the background variables on the different latent variable

score estimations (naive model vs. LV Forest vs. LV Forest with subset of partition-

ing variables). The results are shown in Table 8. The regression coefficients for the

scores of the LV Forest with all partitioning variables indicate a linear effect of two

variables (partnership status and domestic situation). For these same variables, the

regression coefficients for the scores of the reduced LV Forest show a significant

effect. Also, the Spearman’s correlation of the scores of the LV Forest with all parti-

tioning variables and the scores of the reduced LV Forest is 0.99. In contrast, the

coefficients for the naive scores additionally show significant effects of four other

variables (civil status, age, gender, or urban character of dwelling). This indicates

that the effect of partnership status and domestic situation on life satisfaction may

not be due to bias. The effect of civil status, age, gender or urban character of dwell-

ing, however, may be due to bias w.r.t. the background variables.

Discussion

In this study, we proposed LV Forest, an algorithmic approach to latent variable

score estimation. We focused on a setting in which a naive latent variable model is

subject to parameter heterogeneity. In this case, fitting a latent variable model and

estimating latent variable scores on the basis of this model can lead to false conclu-

sions. The proposed latent variable model may, however, not violate measurement

invariance within subgroups that can be defined by covariates. Since tree-based

methods have successfully been applied to account for DIF (Komboz et al., 2018;

Strobl et al., 2015), we utilized the algorithmic machine learning perspective for han-

dling complex subgroup structures in the context of latent variable score estimation.

Assuming that the latent variable scores of a proposed model are determinate (sec-

tion ‘‘Latent Variable Modeling and Score Estimation’’), we argue that scores should

only be estimated if the latent variable in the proposed model is not underrepresented

and independent from construct-irrelevant variables. Construct-irrelevant variables

may have an effect on latent variable scores estimated using LV Forest. However,

this effect may not be due to bias but due to real differences w.r.t. the latent variable

scores between relevant subgroups. We build on the growing body of research that

utilizes techniques from the field of machine learning to flexibilize stochastic models

when they are confronted with complex covariate structures.

28 Educational and Psychological Measurement 00(0)
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In psychological assessment, bias refers to systematically under- or overestimat-

ing personality traits or abilities. Especially cultural bias has been a polarizing issue

for many years. The controversy lies in the explanations given for the measured sys-

tematic differences in traits and abilities between specific subgroups. Are they based

on an interaction of genes and environment (i.e., genuinely different ability levels in

different groups) or on different cognitive structures requiring different test charac-

teristics, that is, test bias (see Reynolds et al., 2021). According to Bollen (1989),

causality, and therefore validity, is only possible if there are no systematic differ-

ences in a latent ability or trait with respect to variables outside of the latent variable

model. Thus, if systematic differences between groups are not part of the assumed

model, they are attributable to test bias. This way, no real differences of the latent

variable scores w.r.t. construct-irrelevant variables are interpretable. As virtually all

individual characteristics can be such construct-irrelevant variables, this notion is

problematic (see, e.g., Davies, 2010). We propose a solution to this problem by pro-

posing a method to estimate latent variables scores whose subgroup differences w.r.t.

construct-irrelevant variables are estimable and interpretable.

Latent variable scores estimated using LV Forest are also very useful when it

comes to complex SEMs that include measurement paths between latent variables. In

these models, spurious relations or suppressor relations from response variables to

latent variables are likely to occur (Bollen, 1989, pp. 51–53). These unmodelled rela-

tions distort the other parameters in the model. Therefore, the estimation of effects

between two latent variables should rather be performed via FSR (Devlieger et al.,

2019) with LV Forest being used for latent variable score estimation.

We applied LV Forest to simulated data to test whether the method is suitable for

finding simulated subgroups based on fitting IRT models with stable parameters. The

Table 8. Regression Coefficients of Covariates on Latent Variable Scores in the Real Data
Application.

Naive model LV Forest w. all part. vars LV Forest w. subset of part. vars

Geslacht 0.07* 0.05 0.00
Partner 0.42* 0.14* 0.20*
Burgstat 20.63* 20.47 20.15
Woning 0.54 0.33 20.12
Sted 0.07* 0.03 20.03
woonvorm 0.41* 0.11* 0.21*
Aantalhh 0.09 20.40 20.41
Aantalki 20.04 20.46 20.48
Lftdcat 0.07* 20.02 0.06
Oplzon 20.08 20.13 20.07
Nettocat 0.19 0.16 0.67
N 6626 2631 1310

The LV Forest with a subset of partitioning variables uses the partitioning variables geslacht to

woonvorm.
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results show that the method works well for an univariate GRM model. We also show

that latent variable score accuracy depends, to some degree, on model fit and para-

meter stability of a latent variable model. Furthermore, we show that latent variable

score estimation via a single SEMTree does not perform as good as LV Forest if the

subgroup structure behind the sample cannot be recovered by a single tree. Another

advantage of LV Forest is that a 0% convergence rate is very unlikely. However, non-

convergence rates are likely to be larger for LV Forest compared with a naive model.

However, if there are not many partitioning variables in the data and/or if the data set

is not very large, one might prefer using a single SEMTree over LV Forest to estimate

latent variable scores.

Furthermore, we applied LV Forest to real data from a large-scale survey. We ana-

lyzed five items measuring satisfaction with life and used background variables to

recursively partition the sample. As a result, latent variable scores were estimated for

40% of the sample. When the number of partitioning variables was reduced, scores

were only estimated for 20% of the sample. This shows that LV Forest may be lim-

ited when it comes to exhaustively estimating latent variable scores for the entire

sample. In reality, there may always be individuals for which the proposed latent

variable model does not apply and relevant partitioning variables are not measured.

Our simulations, however, suggest that the accuracy of LV Forest scores is still high,

even given considerable nonconvergence. When this is the case, the researcher may

increase the RMSEA-cutoff to reduce the nonconvergence rate, but potentially com-

promise on latent variable score accuracy.

The fact that the estimated latent variable scores were predominantly

Rh�conditionally independent from all construct-irrelevant variables in the real data

application shows that controlling for DIF w.r.t. construct-irrelevant variables leads

to latent variable scores with no systematic effects regarding construct-irrelevant

variables within relevant subgroups. That is, within these subgroups, all covariance

from construct-irrelevant variables is interpreted as bias. Between those subgroups,

there may be systematic differences regarding construct-irrelevant variables. These

differences can be smaller when fewer partitioning variables and a stricter RMSEA-

cutoff are used, that is, when fewer relevant subgroups are found. LV Forest esti-

mates latent variable scores that can be interpreted w.r.t. systematic effects of

construct-irrelevant variables without inducing bias.

Comparison to Related Methods

Another tree-based machine learning approach to identify and account for parameter

heterogeneity, which is also applicable to different types of latent variable models, is

called Model Based Recursive Partitioning (MOB) (Zeileis et al., 2008). MOB is

designed to grow single trees that avoid overfitting and bias. The MOB algorithm

applies the M-fluctuation test (see section ‘‘Combining Factor Analytic Modeling

and Item Response Theory’’) at every node of the tree. Splitting is only performed if

parameter heterogeneity is significant with regard to at least one covariate. The
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covariate with the lowest p-value is selected for splitting. However, splitting is per-

formed in such a way that the sum of the log-likelihood of the two resulting models is

maximized. Thus, as many models have to be fit as there are possible split points on a

variable chosen for splitting. This is computationally more expensive than score-

based SEMTree.

Limitations

In the LV Forest framework, we focus on latent variable models that may be subject

to parameter heterogeneity. Simultaneously, we claim that we only use models with

Rh�conditionally unbiased measurement paths for latent variable score estimation.

For this, we test for parameter homogeneity using the M-based fluctuation test.

However, it is controversial to rely on this test too much if ordinal response variables

are used because ML estimation is necessary for the computation of the test. If cate-

gorical response variables are used, the assumption of normality of the response vari-

ables may be violated. However, ordinal response variables are relevant for many

applications and (Classe & Kern, 2024) showed that the results of the M-fluctuation

test can be reliable for ordinal response variables.

Practical limitations stem from the fact that it is impossible in many cases to mea-

sure all construct-irrelevant variables that may confound the measurement paths of a

presumed model. The scores estimated by LV Forest should be interpreted with

regard to the fact that there may still be potential construct-irrelevant variables that

were not collected in the study. The simulation showed that the absence of relevant

partitioning variables may lead to nonconvergence score estimation for individuals

in the sample. Thus, if not all relevant partitioning variables are measured, it may

not be possible to estimate unbiased scores for every individual in the sample. We

additionally note that large samples sizes are needed for LV Forest to be efficient.

The sample needs to be large enough that sample sizes in terminal nodes in complex

trees are sufficient to estimate model parameters, as well as to accurately perform

M-fluctuation tests. The simulation also showed that if the subgroup structure of a

sample is complex, many trees and therefore long computation times are needed. In

practice, if an assumed model does not fit the data and/or has unstable parameters it

may be viable for the researcher to adjust the model assumptions before turning to

LV Forest. We also acknowledge that LV Forest does not return an inherently inter-

pretable model function. Like random forests, LV Forest allows to model highly

complex structures of subgroups. However, a direct interpretation of the composition

of these subgroups would lead to results that are unlikely to be generally applicable.

Our proposed method therefore explicitly focuses on the estimation of latent variable

scores.
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