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Abstract

The Internet has a major impact not only on how people retrieve information but also on

how they communicate.Distributed interactive applicationssupport the communication and
collaboration of people through the sharing and manipulation of rich multimedia content via

the Internet. Aside from shared text editors, meeting support systems, and distributed virtual
environments, shared whiteboards are a prominent example of distributed interactive appli-

cations. They allow the presentation and joint editing of documents in video conferencing
scenarios. The design of such a shared whiteboard application, themultimedia lecture board

(mlb), is a main contribution of this thesis. Like many other distributed interactive applica-

tions, the mlb has a replicated architecture where each user runs an instance of the application.
This has the distinct advantage that the application can be deployed in a lightweight fashion,

without relying on a supporting server infrastructure. But at the same time, this peer-to-peer
architecture raises a number of challenging problems: First, application data needs to be dis-

tributed among all instances. For this purpose, we present the network protocol RTP/I for the
standardized communication of distributed interactive applications, and a novel application-

level multicast protocol that realizes efficient group communication while taking application-
level knowledge into account. Second, consistency control mechanisms are required to keep
the replicated application data synchronized. We present the consistency control algorithms

“local lag”, “timewarp”, and “state request”, show how they can be combined, and discuss
how to provide visual feedback so that the session members are able to handle conflicting ac-

tions. Finally, late-joining participants need to be initialized with the current application state
before they are able to participate in a collaborative session. We propose a novel late-join

algorithm, which is both flexible and scalable. All algorithms and protocols presented in this
dissertation solve the aforementioned problems in a generic way. We demonstrate how they

can be employed for the mlb as well as for other distributed interactive applications.





Zusammenfassung

Das Internet hat sich zu einem allt¨aglichen und universellen Werkzeug der Informations-

beschaffung und der zwischenmenschlichen Kommunikation entwickelt. Durch den Aus-
tausch von multimedialen Inhalten ¨uber das Internet erm¨oglichen es so genannteverteilte

interaktive Anwendungeneiner Gruppe von Benutzern, miteinander zu kommunizieren und
zusammenzuarbeiten. Beispiele f¨ur verteilte interaktive Anwendungen sind Mehrbenutzer-

Texteditoren, Systeme zur Unterst¨utzung von Projektteams, virtuelle Realit¨aten und Shared
Whiteboards. Letztere dienen zum Pr¨asentieren und Erstellen von Dokumenten in Video-
konferenz-Szenarien. Die Entwicklung eines solchen Shared Whiteboards, desmultimedia

lecture boards (mlb), ist ein zentraler Beitrag dieser Dissertation. Wie viele andere verteilte
interaktive Anwendungen auch hat das mlb eine replizierte Architektur, bei der jeder Be-

nutzer auf seinem lokalen Rechner eine vollwertige und gleichberechtigte Anwendungsin-
stanz ausf¨uhrt. Eine solche Architektur hat den Vorteil, dass die Anwendung ohne die In-

stallation von zentralen Serverkomponenten sofort einsetzbar ist. Gleichzeitig birgt eine
replizierte Architektur aber auch eine Reihe von technischen Herausforderungen, die von

einer verteilten interaktiven Anwendung gel¨ost werden m¨ussen: Zun¨achst ist es erforder-
lich, die Anwendungsdaten ¨uber geeignete Netzwerkprotokolle zwischen den beteiligten An-
wendungsinstanzen auszutauschen. Zu diesem Zweck wurden im Rahmen dieser Disserta-

tion das RTP/I-Protokoll zur standardisierten Kommunikation und ein neuartiges Protokoll
zur effizienten Multicast-Kommunikation auf Anwendungsebene unter Ber¨ucksichtigung

von Anwendungswissen entwickelt. Des Weiteren werden Verfahren zur Konsistenzer-
haltung ben¨otigt, die die replizierten Anwendungsdaten miteinander abgleichen und auf

dem neuesten Stand halten. Die Dissertation stellt die Konsistenzerhaltungs-Mechanismen
Local Lag, Timewarp und Zustandsanfrage vor und zeigt, wie diese kombiniert werden

können. Zus¨atzlich wird ein neues Visualisierungs-Schema eingef¨uhrt, das es den einzel-
nen Benutzern erlaubt, Konflikte beim gleichzeitigen Zugriff auf die Anwendungsdaten zu
erkennen und aufzul¨osen. Als letztem Schwerpunkt besch¨aftigt sich die Dissertation mit

der Frage, wie neu hinzu gekommene Anwendungsinstanzen mit den aktuellen Anwen-
dungsdaten initialisiert werden k¨onnen. Der hierzu vorgeschlagene Late-Join-Algorithmus

ist sowohl effizient als auch flexibel. Alle besprochenen Algorithmen und Protokolle k¨onnen
als generische L¨osungen neben dem mlb f¨ur eine Vielzahl von verteilten interaktiven Anwen-

dungen verwendet werden.
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Chapter 1

Introduction

Computer technology in general and the Internet in particular have a great impact on how

people retrieve information and communicate. They make us independent from space and,

if desired, also of time: As long as communication partners have access to a computer with

an Internet connection, their locations do not matter, and they may either share information

in real-time (synchronously) or delayed (asynchronously). Aside from the ubiquitous tools

of email for asynchronous communication and instant messaging for synchronous commu-

nication, new technologies have emerged in recent years offering rich functionality and mul-

timedia content. Prominent examples are computer-supported video conferencing systems

for private and business meetings, telemedicine and teleteaching, groupware applications for

the joint editing of documents or program code, peer-to-peer file sharing, distributed virtual

environments, and even multiplayer computer games.

In many video conferencing scenarios, so-calledshared whiteboardsare employed that al-

low the users to present and edit slides and other documents. For instance, in a teleteach-

ing session where a lecture is transmitted via the Internet to a group of students, the shared

whiteboard is a substitute for the traditional blackboard and visualizes presentation slides and

annotations to all students. Together with the audio and video of the teacher, a shared white-

board helps to achieve a good approximation of regular face-to-face lectures. The design of

a shared whiteboard, the multimedia lecture board (mlb), is one major topic of this thesis.

The mlb and most of the other applications listed above share important properties. For one,

they all connect a set of spatially separated users via a computer network, and they allow the

users to access and manipulate the same application data. For instance, in an mlb presentation

all users see the same document and may also change it (e.g., by a written annotation). In

the ideal case, such a change becomes immediately visible to all users. For this purpose,

continuous updates need to be distributed from their point of origin over the network to the
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individual end-systems of the other users. Because the application data is distributed and the

users may interact with it, we denote such applications asdistributed interactive applications.

The design of such a distributed interactive application needs to consider aspects from a num-

ber of disciplines and poses various challenges: Since components of the application reside

at different locations (e.g., the end-systems of the users), the algorithms employed are dis-

tributed, and data needs to be synchronized among all locations. The exchange of data is to

be handled by appropriate network protocols that meet the application’s requirements (e.g.,

with respect to the propagation delay). In many cases, different media such as video and

documents are used together, and their joint handling is in the scope of multimedia tech-

nology. Since multiple users collaborate, distributed interactive applications usually have a

more complex architecture than a comparable single-user application. Thus, the design of

the human-computer interface is an important issue. Finally, the ultimate goal for distributed

interactive applications is to facilitate human-human interaction. Thus, findings from hu-

manities such as psychology and sociology have to be incorporated in addition to technical

issues. For instance, distributed interactive applications have to explicitly rebuild social pro-

tocols that are naturally given in face-to-face situations, such as eye contact and gestures (e.g.,

hand-raising).

The main focus of this thesis is on synchronization algorithms and network protocols for

distributed interactive applications, but we also keep the other factors mentioned above in

mind. While the shared whiteboard mlb is a starting point for many of our considerations, we

seek to find solutions that are applicable to other distributed interactive applications as well.

1.1 Problem Statement and Outline

This thesis covers various aspects that are vital for distributed interactive applications and that

range from the design of network protocols over distributed algorithms to human-computer

interaction. We believe that it is important to keep the dependencies between these differ-

ent aspects in mind when designing an algorithm for a certain problem. For instance, some

distributed interactive applications require the user to obtain appropriate rights before appli-

cation data can be accessed or modified. While this simplifies several technical issues, it

also prevents spontaneous and effortless collaboration. Another major goal of this thesis is to

find solutions not only for the multimedia lecture board but for the whole class of distributed

interactive applications. Thus, we repeatedly use two other applications as examples, each

with its own challenges: Instant Collaboration, which supports long-term sessions where not

all users have to be online at the same time, and a multi-player game where the application

state is not only updated by user actions but also by time-controlled changes. In addition to

these “real” applications, important results are validated by means of simulation studies.
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For the structure of this thesis, a top-down approach was adopted that begins at the

application-level, then covers synchronization algorithms, and finally discusses communi-

cation protocols.

In Chapter 2, a general introduction to distributed interactive applications is given. After dis-

cussing the advantages and disadvantages of different architectures, a formal data model for

distributed interactive applications is defined. This data model captures the main characteris-

tics of such applications and allows to address common problems independent from specific

applications. Following, the main challenges when designing a distributed interactive appli-

cation are identified. Finally, three sample applications are presented.

Chapter 3 describes the multimedia lecture board (mlb) that was developed in the course of

this thesis and that was the origin of many issues discussed later on. Starting from the user

interface, the most important features of the mlb are presented. Aside from the functionality

to edit and present documents in video conferencing scenarios with multiple users, the mlb

also offers mechanisms to coordinate session members and provides them with information

about each other’s actions. The mlb can also be used on small handheld devices, which

opens novel usage scenarios in face-to-face meetings. The chapter concludes with software

engineering aspects.

Distributed interactive applications allow multiple users to manipulate the same application

data. For instance, all participants of an mlb session have access to the current presentation

slide and may also annotate it. But in fact, each user sees a local copy of that data that is

held by the corresponding end-system. Thus, the application needs to ensure the synchro-

nization of all these copies so that all users have the same view. In Chapter 4, consistency

control algorithms are discussed that accomplish this task. After defining formal consistency

criteria and analyzing existing approaches, a novel and generic consistency control service is

presented. Using the examples of the mlb, Instant Collaboration, and the network game, it

is demonstrated that this service is well-suited for many different applications. Moreover, a

method to undo user actions without endangering the application’s consistency is proposed.

But keeping the application data consistent is not only a technical challenge. The users also

need to understand how the current state of the application data came to be, or, more specifi-

cally, who changed when which parts of the data by which actions and for what purpose. This

is especially important in situations where several users modify data within a short period of

time or when some actions conflict with each other, and the system is unable to resolve the

conflict automatically. In Chapter 5, possibilities to visualize information are investigated that

support the user in answering these questions. Following, a powerful visualization technique

based on the history of all actions is proposed. A prototype of this visualization technique is

integrated into the mlb.
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Distributed interactive applications often allow users to join or leave a session at any time.

But in case a participant joins an ongoing session, he has missed all user actions that took

place since the beginning. Thus, another important synchronization algorithm is necessary

to initialize the application instances of late-joining users. For example, a late-comer would

need at least the slide currently presented in the mlb so that he is able to participate in the

session. Late-join algorithms that provide this vital initialization data are discussed in Chap-

ter 6. Even though the late- join problem is critical, most existing applications integrate only

basic late-join mechanisms that might result in high application and network loads. Espe-

cially for applications like Instant Collaboration, where users may also modify data while

they are disconnected from the network, a carefully designed late-join algorithm is required

since late-joins happen frequently, and initialization data cannot always be sent. As is shown

by means of extensive simulation studies, the late- join algorithms presented in this thesis

meet these challenges and reduce the application and network loads significantly. As in the

case of consistency control, the late-join mechanism is realized as a generic service that can

be adapted to the specific needs of an application.

The design of generic algorithms that are valid for all distributed interactive applications is

facilitated by the common data model of these applications. If the information of that model

is exposed in such a way that it can be accessed from outside the application and without any

application-specific knowledge, it is also possible to implement these algorithms in the form

of generic services that can be reused by all applications. A standardized network protocol is

well-suited for this task, and in Chapter 7, the standardized application-level protocol RTP/I

is introduced for this purpose. As a consequence, complex functionality needs to be designed,

implemented, and verified only once. After describing the protocol functionality of RTP/I, it

is demonstrated how RTP/I can be used to realize the generic services of consistency control

and late-join, and how the communication model of the mlb is based on RTP/I.

A prerequisite for keeping the local copies of the application data synchronized, all modifi-

cations need to be distributed from their originating end-system to the sites of all other users

by some form of group communication (multicast). In Chapter 8, a novel multicast routing

algorithm is proposed that constructs an efficient, tree-shaped overlay network by connecting

all sites at the application level. Unlike other application-level multicast routing algorithms,

it allows the application to influence the shape of the distribution tree so that the propagation

delay of important messages is minimized. After analyzing the properties of this routing al-

gorithm in simulated scenarios, we present an operational application-level multicast protocol

that can be employed together with RTP/I and that is validated in Internet experiments.

In Chapter 9, the main results and contributions of this thesis are summarized and possible

areas of future research are outlined.
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Distributed Interactive Applications

Distributed interactive applicationsallow a group of users connected via a computer network

to collaborate in order to accomplish a common task [59, 14]. They facilitate both human-

human and human-computer interaction in a wide spectrum of scenarios: The users may

be located in the same room or be distributed spatially. And the users may interact at the

same time (i.e., synchronously) or collaborate asynchronously at different times [130, 95].

The variety of distributed interactive applications in this spectrum is large and includes such

different applications as instant messaging, video conferencing and meeting applications,

teleteaching, document sharing and editing, software development, virtual environments, and

network computer games. But all these applications have in common that users access and

manipulate the same data within a so-calledshared workspace.

The design of distributed interactive applications is influenced by many research areas [93]:

First, such applications belong to the class of distributed systems that generally include all

systems where (parts of) the functionality is located on different computers. The message

exchange among those parts is managed via a computer network so that the design of network

protocols is an important aspect. In many cases, interactive applications integrate different

media such as audio, video, and documents, and the handling of such media is in the scope

of multimedia technology. Since multiple users are able to access the shared workspace, an

appropriate user interface and human-computer interaction paradigm are especially important

so that interaction patterns are captured by the application and users are able to interpret the

actions of remote participants. Finally, the human-human collaboration, which is the main

goal of a distributed interactive application, needs to be supported by findings from sociology,

organizational theory, and work flow design. For instance, an application that supports the

process of decision finding in group meetings should be aware of the individual roles of

the users [59]. In the remainder of this thesis, we will focus on distributed systems and

networking aspects but keep the other factors in mind.



6 Chapter 2 – Distributed Interactive Applications

First, fundamental choices regarding the architecture of a distributed interactive application

are discussed. In Section 2.2, a formalized data model is introduced that captures the com-

mon aspects of distributed interactive applications. This data model allows an application-

independent discussion of technical challenges and their solutions in Section 2.3. Following,

important sample applications are presented in Section 2.4. The general discussion of dis-

tributed interactive applications is then concluded in Section 2.5.

2.1 Architecture of Distributed Interactive Applications:

Centralized vs. Replicated

The architecture of a distributed interactive application can be varied between the two ex-

tremes of a centralized architecture on the one hand and a replicated architecture on the other

hand [162]. Acentralized architectureconcentrates the main functionality of an application

at a single server process. This means that the server is responsible for maintaining the shared

workspace and also for coordinating all accesses to the application data. In case a user wants

to change an object of the shared workspace, his client software sends an appropriate request

to the server and receives the corresponding update as a reply. Thus, the task of a client

process is merely to provide an interface to visualize the shared workspace and to accept ac-

tions of the local user. The main advantages of a centralized approach are that it simplifies

the coordination among the participating users and that it relieves the client processes from

the execution of complicated algorithms. However, it also has several drawbacks: First, the

server itself might become a bottleneck in case the tasks consume a high amount of resources

such as processing time and memory space. Second, in case the server fails, the applica-

tion is terminated for all users, and data might be lost. Last, the server itself needs to be set

up and administrated so that it is available. This might prevent a spontaneous usage of the

application [83].

The other extreme arereplicated architectures[39], which are also known as peer-to-peer

approach. Here, each user runs an identical instance of the distributed interactive applica-

tion. Thus, both the complete functionality of the application and the data within the shared

workspace are replicated at the each user’s site, and the coordination of the users’ activities

has to be accomplished by the individual application instances. A local user action updating

the shared workspace needs to be propagated to all remote instances so that these can syn-

chronize their local state copies. The main advantages of the replicated architecture are that

it is very robust against the failure of single instances and that the required resources can be

provided by many sites. Moreover, it does not depend on a certain infrastructure, and since

data is stored locally, it can be accessed without network connection. Also, the user expe-

riences very short response times since most actions can be executed immediately on local



7

data. But at the same time, the coordination of all application instances and the synchroniza-

tion of the individual user actions is rather complex. A replicated architecture also requires

more resources at the end-users’ sites when compared to the centralized approach.

Between the two extremes of centralized and fully replicated architectures, a distributed in-

teractive application might adopt a hybrid approach combining properties from both possibil-

ities. For example, the application data might be replicated in order to increase the system’s

robustness but changes of shared objects are coordinated by a specific instance in order to

avoid concurrent access. Or some application functionality might be provided by a server in

order to save resources (e.g., for storing certain data). Most functionality presented in this

thesis is realized in a replicated fashion but in some cases we fall back on a client-server

architecture (e.g., see Section 7.4.3).

2.2 Formalization of the Data Model

Even though the variety of distributed interactive applications is rather large, they share a ba-

sic data model that is valid for both centralized and replicated architectures. This data model

was first described by Mauve [156] and allows us to discuss aspects that need to be addressed

when developing a distributed interactive application independent from the application itself.

Distributed interactive applications have astate, which includes the values of all attributes

needed to encode the data within the shared workspace at a certain point in time. For instance,

the state of a shared whiteboard contains the set of all slides together with the graphical ob-

jects present on the individual slides. This application state is not constant but might change

for two reasons: First, the state might change with thepassage of time. State changes due to

the passage of time are deterministic and can be calculated on the basis of the current state

of an object and the physical laws that are valid within the shared workspace. For instance,

when an animated object moves across the screen, the state of that object includes its current

position, speed, and direction. Together with parameters such as friction and gravitation, the

object’s future positions can then be determined independently by each application instance.

Thus, time-related state changes usually do not need to be propagated to the participating

sites.

Second, the state of an interactive application might be modified byevents. Events are trig-

gered either by user actions (e.g., a user changes an object’s direction) or by other non-

deterministic influences (e.g., by sensor input or computer-controlled agents). Since an event

is non-deterministic, the application state needs to be updated explicitly and has to be prop-

agated to all application instances. We denote applications that allow only state changes due

to user actions asdiscrete, whereas applications supporting both types are calledcontinuous.
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Examples of discrete applications are shared whiteboards, instant messengers, and shared text

editors. In the continuous domain, events have a scheduled execution time at which they need

to be applied to the application’s state [6] since the effect of an event depends on the point in

time it is executed. For instance, the new path of an animated, moving object depends on the

point in time a “change direction” event is executed. Distributed virtual environments and

network games are examples of continuous interactive applications.

For easier handling, the application state may be partitioned into several independent objects.

In this case,identifiersare required to reference single objects. These identifiers need to be

unique during the lifetime of a shared workspace (see Sections 3.3.1 and 7.2.1). Partitioning

the state allows an application instance to maintain only the state of those objects the local

user is interested in. For instance, consider a large virtual environment where a user is located

in a certain room. Then the user’s application instance can save a considerable amount of

resources when keeping track only of those objects that are actually visible for the user [156,

173]. We denote objects visible to the local user asactive, and all others aspassive.

All sites accessing the shared workspace of a distributed interactive application exchange

messages via a computer network. These messages may either be status updates or informal

notifications, and they can be classified as four different types: (1) Astateincludes all infor-

mation necessary to (re-)create a certain object (e.g., the color, position, speed, and direction

of an animated object). (2) Aneventencodes the change of single object attributes and can be

interpreted only on the basis of a valid state. (3) Adelta stateaccumulates the state updates

of several events and can also be decoded on the basis of a certain state only. (4) Informal

notifications that do not alter the shared state of the application are transported ascues. Like

events, cues may depend on a certain state. Examples of cues are temporary visualizations

of user actions such as invoking a menu, transient mouse movements, and indications when

a user is idle for some time.

We denote states, events, and delta states asoperationssince they update the state. Which op-

eration type is used to announce a state change is application-dependent: An event is usually

more efficient, but the redundant information contained in states and delta states increases the

robustness of the message exchange. In the continuous domain, operations and cues are valid

at a certain point in time only.

Events cause either relative or absolute state changes. The result of a relative event depends

on the former value of the modified attribute (e.g., when an object is moved to the left by ten

pixels). In contrast, absolute events replace the former value of the attribute changed (e.g.,

when an object is moved to position(5, 3)). The advantage of absolute events is that they are

more robust and easier to handle whereas relative events introduce dependencies into the data
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stream that need to be considered by the application. But in some cases, relative operations

might be required semantically (e.g., for shared text editors [59, 238]).

Starting from its initial state, the content of a shared workspace is changed by operations and

possibly by the passage of time. All operations issued during a session form ahistory. As we

will see in later chapters, this operation history is important for numerous functions such as

consistency control, undo, and session recording.

2.3 Design Considerations

The realization of a distributed interactive application is challenging and considerably more

complex than an equivalent single-user application [59, 96]. For instance, operations need

to be transmitted with appropriate network protocols, the actions of many users have to be

coordinated, and replicated data should be in the same state at all application instances. Be-

sides those technical aspects, human behavior has to be considered so that the application

allows “natural” human-human interaction. Finding a trade-off between flexible usage of the

application, sufficient support for achieving the common task, and a user interface that is easy

to use is especially demanding. In the following, we discuss these design considerations in

more detail.

2.3.1 Collaboration Management and User Interface

As categorized by Fluckiger, a multi-user application can be eithercollaboration-awareor

collaboration-unaware[69]. In the latter case, the application itself is not designed for

multiple users and lacks the specific functionality of a distributed interactive application.

Typical examples are single-user applications that are extended to multi-user scenarios by

an application-sharing system [14]. Such systems have a centralized architecture. With

application-sharing, the user interface of a regular single-user application is exported from the

node it runs on to the sites of all participants. The actions of remote users are captured by the

system and delivered to the executing site. Even though remote users are able change the ap-

plication’s state, all user actions need to be serialized by means of a turn-taking protocol [14].

The main advantage of application-sharing is that existing and well-known applications can

be reused. But at the same time, a single-user application obviously does not support col-

laboration but relies on the application-sharing system. Moreover, not all scenarios can be

realized with application-sharing. For instance, virtual environments or multi-player games

usually include representations (“avatars”) of all users that cannot be reproduced when shar-

ing a single-user application.
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Thus, we concentrate on collaboration-aware applications specifically designed for multi-

user scenarios. Here, the application provides functionality to support and coordinate the

interaction among all participants of a session. This functionality is vital since the users are

physically separated, and the social protocols that usually regulate the collaboration in face-

to-face situations such as eye contact, gestures, and facial expressions have to be reproduced

explicitly [69].

2.3.1.1 Session Control and Floor Control

Session and floor control establish social protocols in distributed interactive applications. The

task of asession controlis to manage the group of users and their individual roles [49]. The

group may either be open to anyone or allow admission by invitation only. In both cases, the

composition of a group may be dynamic so that users are allowed to join and leave a session

anytime. As found by Ellis et al., a role defines the behavior of a user and often includes

certain rights and duties [59]. For instance, consider a teleteaching scenario where a lecturer

is giving a presentation. Then the lecturer determines the content of the shared workspace and

assigns access rights to his students, i.e., rights to read or change shared objects. Such access

rights to certain resources of the application are managed by afloor controlmechanism. The

floor control also defines how access rights are granted, who is allowed to request certain

rights, and who grants them.

Depending on the usage scenario, an application might establish strict interaction rules that

are managed by session and floor control. This approach is common in workflow applications

capturing business processes in a company [14]. Alternatively, the application can provide

collaborative tools without enforcing that they are used in a certain way so that the interaction

is coordinated by the users rather than the application. This approach is more flexible, but

requires coordination through social protocols among the users and might therefore be less

efficient. An example is a multi-point video conference.

2.3.1.2 WYSIWIS

The user interface of a distributed interactive application provides access to the objects within

the shared workspace. The basic design principle for such a user interface isWhat You See Is

What I See(WYSIWIS) described by Stefik et al. [231]: WYSIWIS means that the informa-

tion of the shared application state is presented to all users in the same way. Strict WYSIWIS

requires that all users have an identical view of the shared workspace, i.e., each application

instance displays the same information in the same way. While strict WYSIWIS facilitates a

joint understanding of the application’s state, it also prevents users from exploring and chang-

ing data independent from others [14]. In contrast, relaxed WYSIWIS allows users to have

an individual view of the application state and also permits private information within the
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shared workspace, which is visible only to some participants such as the private annotations

of a student in a teleteaching scenario [78].

2.3.1.3 Awareness

Besides visualizing the actual content of the shared workspace, the application should also

display information about the individual participants and indicate who is currently present

in a session and who is responsible for which actions. For instance, the Modular Advanced

Collaboration System (MACS) represents every user with a thumbnail picture and visualizes

a floor request with an icon next to the requesting participant [18]. Such information is nec-

essary to create anawarenessfor the status and the actions of remote participants: Awareness

allows a user to understand the activities of others and to adapt his own actions in order to

accomplish a common task [51, 4]. Establishing a certain degree of awareness is vital for

distributed interactive applications [101], especially when they are designed for large groups,

allow multiple users to modify the shared state at the same time, and lack strict interaction

rules.

Awareness information can either be generated explicitly (e.g., when the users vote to rate a

solution) or can be derived from operations (e.g., when a participant is marked as active after

issuing events) [51]. Ellis et al. identifytelepointersas a powerful tool for explicitly creating

awareness by visualizing the local mouse movements to remote participants [59] (also see

Section 3.5.2). When integrating awareness information into the application, it has to be

considered that this might violate the privacy of users [120] and that too many notifications

might be distracting [99].

In addition to the shared workspace, many collaborative systems employ separate audio and

video communication channels. Even though an audio channel can be used only by one

person at a time, and the utility of video significantly declines with an increasing number of

participants, they both are important tools to create a social presence.

2.3.1.4 Responsiveness

Another aspect that has a substantial effect on the usability of a distributed interactive appli-

cation and that needs to be considered is theresponsivenessof the application [223]: Respon-

siveness generally describes how fast user actions are absorbed by the shared workspace and

displayed to all participants. It has two elements [59]: (1) Theresponse timedenotes the time

span until the user who issued an operation can see its effect, and (2) thenotification time

denotes the time until all remote users can see a state update. They are determined by the

architecture (e.g., centralized architectures tend to have higher response times), interaction

rules (e.g., requesting access rights increases the response time), and communication model
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(e.g., high network delays result in large notification times). Low response and notification

times (i.e., high responsiveness) are important for a natural behavior of the application and

for a smooth interaction.

2.3.2 Synchronization Algorithms

The task ofsynchronization algorithmsis to ensure that all local copies of the application’s

state that are managed by the individual application instances are identical. This is a ma-

jor requirement for the collaboration of multiple users [14, 59, 238] and is also expressed

by the WYSIWIS principle [231]. In this thesis, we cover synchronization algorithms for

consistency control and for the handling of late-join situations.

In case the application has a replicated architecture, a so-calledconsistency controlmecha-

nism is required to ensure that all application instances reach the same state after a sequence

of operations has been issued. Critical situations may arise when users are allowed to modify

the same object at the same time. For instance, two participants might change an object’s

color simultaneously. In this case, the consistency control algorithm has to select the op-

eration that determines the new color of the object and also has to make sure that all sites

eventually reach the same state.

The consistency control mechanism has a strong influence on the usability of the applica-

tion. While concurrent operations can be prevented by a floor control mechanism that grants

exclusive access rights [2], this also restricts the users in their possibilities to collaborate ef-

ficiently. In a multi-player game, users might need to manipulate the same object at the same

time in order to accomplish a task, making floor control unsuitable. And a centralized algo-

rithm might result in a low responsiveness [59]. In case the response time differs to a large

extent from the notification time, participants observe different versions of the same object

for a certain time span, which might result in inappropriate operations. These consistency

issues and appropriate consistency control algorithms are discussed in Chapter 4.

A second synchronization algorithm is required to handlelate-join situations where a new

participant joins an ongoing session. In case the initial state of a late-joining application

instance differs from the current shared state, it needs to be initialized by an appropriate

late-join algorithm. Since the current state might be large, a late-join algorithm should mini-

mize the consumption of network and end-system resources. Moreover, the late-joining user

should perceive only a small delay until he is able to participate actively in the session. In

Chapter 6, an efficient late-join algorithm is presented that meets these demands.
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2.3.3 Communication Model

Distributed interactive applications require messages to be exchanged among all participating

sites: Actions changing the content of the shared workspace need to be propagated as oper-

ations in order to keep replicated data consistent. Moreover, awareness information needs to

be transmitted in order to support the collaboration process. Thus, the design of the commu-

nication functionality is one of the most important issues for distributed interactive applica-

tions [59].

2.3.3.1 The Internet

The message exchange among the instances of a distributed interactive application is handled

over a computer network such as the Internet. Basically, the Internet connects independent

Local Area Networks (LANs) by a world-wide hierarchy of intermediate nodes [245]. End-

systems holding the instances of a distributed interactive application are each located in a

certain LAN. A LAN provides a broadcast medium where a message is received by all nodes

that are member of the same LAN. But if a message needs to be delivered to an end-system

that resides in a different LAN, it is forwarded explicitly by the intermediate nodes of the In-

ternet: Each intermediate node is connected to some other nodes and decides upon reception

of the packet about the next link over which the packet should be sent until the destination

is reached. This forwarding process is also known asrouting [122], the intermediate nodes

are denoted asrouters, and the path of a message from its sender to the receiver(s) is de-

termined by arouting protocol. In the Internet, the message exchange between end-systems

is managed by the Internet Protocol (IP) [197] whereas the routing paths can be established

by different routing protocols such as Open Shortest Path First (OSPF) [175] and the Rout-

ing Information Protocol (RIP) [152]. Data delivery with IP is best-effort, which means that

the network seeks to optimize criteria such as the transmission delay and the network load

but does not give any delivery guarantees. Thus, applications need to anticipate exceptional

situations such as higher-than-average notification times.

2.3.3.2 Group Communication

The most common form of communication in the Internet isunicast, or point-to-point, where

a message is transmitted from the sender to a single receiver. IP is responsible for the de-

livery of data between two end-systems. On the basis of IP, there exist two unicast transport

protocols realizing the message exchange between two application instances that are running

on these end-systems: The User Datagram Protocol (UDP) [196] provides no additional ser-

vices aside from the process-level communication link. With UDP, every packet is forwarded

separately, without a relationship to other packets. In contrast, the Transmission Control Pro-
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tocol (TCP) [198] is connection-oriented and offers additional functionality such as flow and

congestion control, and the reliable transport of messages.

Distributed interactive applications usually require that data is delivered to multiple destina-

tions, i.e., in a replicated architecture a state update has to be forwarded to all participating

sites even if they are distributed over different LANs. This communication form is also known

asmulticastor group communication[273]. In the Internet, there exist two possibilities to

realize group communication: IP multicast and application-level multicast. The multicast

version of the IP protocol provides efficient group communication where the source sends

each packet only once, and the distribution of a packet to multiple destinations is handled by

the routers alone, i.e., packets are duplicated within the routers where necessary [41]. UDP

is the only transport protocol supporting IP multicast.

Alternatively, group communication can be realized with application-level multicast [30].

Here, the end-systems are responsible for the distribution of data and explicitly send a packet

to multiple destinations via separate unicast connections, i.e., the end-systems build a tree-

shaped overlay network and duplicate the packets where necessary. Application-level mul-

ticast can be implemented using either UDP or TCP as transport protocols. In Chapter 8,

IP and application-level multicast are discussed in more detail, and a novel application-level

multicast protocol for distributed interactive applications is introduced.

2.3.3.3 Reliable Delivery of Data

Many distributed interactive applications require that data be transported reliably in order to

keep replicated data consistent and to allow seamless collaboration. In the Internet, data may

be lost for several reasons: First, a packet might be corrupted so that the received sequence of

bits differs from the original sequence, and the receiver has to discard it. Moreover, physical

links might fail completely or routes may change while a packet is in transfer. But in most

cases, data is lost when routers receive more packets than they are able to handle and drop

these overflowing packets.

While TCP implements a mechanism to repair packet loss for unicast connections, there is no

equivalent reliable transport protocol for multicast. Instead, the application has to integrate

appropriate reliability mechanisms, irrespective whether it uses IP or application-level multi-

cast1. In the past decade, many different mechanisms have emerged, and it is widely believed

that there are too many application scenarios for a single algorithm to fit all cases [67, 147].

1In the case of application-level multicast, individual links between two end-systems might be protected
with TCP. But since inner nodes of the tree might fail or get overloaded, a reliability mechanism is nevertheless
necessary.
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The first class of reliability mechanisms retransmit lost packets and are also known as Au-

tomatic Repeat reQuest (ARQ) approaches. They can be either sender-based or receiver-

based. Insender-basedapproaches, the sender ensures that data is successfully delivered to

all receivers: Each data packet has to be acknowledged by all receivers. In case an acknowl-

edgment (ACK) is still missing after a certain period of time, the packet is retransmitted.

Thus, the sender might have to process a high number of ACKs, resulting in a so-called

ACK-implosion. Additionally, receivers can trigger a retransmission explicitly by sending a

negative acknowledgment (NACK). But for both ACKs and NACKs, the sender has to keep

track of each receiver so that the sender-based approach does not scale well with the number

of receivers. For this reason,receiver-basedapproaches reverse the responsibility for repair-

ing packet loss to the receivers that request retransmissions by NACKs. When many receivers

detect a missing packet, this might lead to a NACK-implosion. The Scalable Reliable Mul-

ticast (SRM) protocol developed by Floyd et al. seeks to prevent NACK-implosions with a

timer-based suppression algorithm [68]: Before sending a NACK to the multicast group, it

is delayed for a certain time spanT . In case another NACK for the same packet is received

duringT , the own NACK is not sent. While NACKs and NACK suppression reduce the load

for the original sender of a packet, the source is still burdened when a packet is lost.

Hierarchical approaches seek to spread the responsibility for processing ACKs and NACKs

and for retransmitting packets from the original source to several members of the multicast

group [145]. For instance, in SRM all sites that have received the requested data can answer

a NACK, and SRM preferably selects a site with a low network delay to the NACK’s sender,

reducing the repair time [68]. Besides this locally-scoped multicast, hierarchies can also be

constructed by layered multicast with multiple groups [134] or by organizing participants

in trees [192]. But hierarchical approaches also introduce an overhead for managing the

hierarchy, they are problematic if the group of participants changes dynamically, and they

may require several request rounds when a packet is lost close to its source (which increases

the total distribution delay).

The main drawback of the ARQ approaches is that they increase the notification time for

messages by the time needed to detect, request, and resend a lost packet. An alternative idea

is to distribute redundant information together with the original data. In case a packet is lost,

it can be recovered as long as enough redundancy information is received [121, 19]. This

approach is also known as Forward Error Correction (FEC). While it decreases the average

propagation delay, it also increases the network load and the overhead for processing packets.

For cases where too many packets are lost for compensation to work, FEC might be combined

with ARQ [136].
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2.3.3.4 Flow and Congestion Control

The network traffic generated by a distributed interactive application might be too high for

some receivers or for the network. In the first case, when sites are connected via a low-

bandwidth link, the sending rates have to be adapted such that all sites can handle the amount

of network traffic. This is the task of aflow controlalgorithm. Second, the network routers

might receive more packets than they are able to process. In this case, packets are dropped and

the network is said to be congested. Acongestion controlalgorithm adapts the sending rates

such that network congestion is avoided. In [271], Widmer and Handley propose a multicast

congestion control protocol that adjusts a sending rate to the maximum TCP-friendly rate that

can be achieved without causing packet loss.

Both flow and congestion control algorithms require that the network traffic is adapted to the

current conditions. But for distributed interactive applications, lowering the sending rate is

possible only for non-vital messages such as cues. For operations, this is impractical: Un-

like audio and video, operations usually cannot be encoded in a lower quality (which would

decrease the packet size), and messages cannot be omitted or delayed without endangering

the consistency of the shared state and obstructing the collaboration of the users. In [272],

Widmer et al. therefore propose to lower the load for a congested network by temporarily

disconnecting some of the receivers in a controlled way.

2.3.3.5 Security

The termnetwork securitycovers a wide range of aspects [245]. It includes that certain

resources cannot be accessed without having the appropriate authorization. For instance,

messages sent over a network can be protected by encryption. For sensitive information,

it is also important that the source can be authenticated and that the information cannot be

manipulated by others. Security issues can be critical for distributed interactive applications

that are used in companies such as the teamwork software Groove [94].

In [268], we propose a novel encryption and authentication algorithm on the basis of the

Open Pretty Good Privacy (OpenPGP) [21] protocol where the secret keys are stored on a

smart card and never leave it. Instead, the smart card generates a session key that is used on

the more powerful end-system to encrypt and decrypt network traffic. This is calledremotely

keyed encryption.

2.3.3.6 Protocol Architecture

The communication functionality of the Internet is organized in independentlayers[245]. For

instance, the network layer is responsible for routing and the transport layer for reliability

and congestion control. Each layer performs its tasks independent from the other layers
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but provides services to the next layer. Information is exchanged between two layers via a

standardized interface, the so-called service access point. The layering approach has several

advantages. First, the complex design of a communication model can be reduced to basic

functions that are implemented and tested independently. Moreover, layers are generic and

can be reused for different applications. Finally, parts within a layer can be exchanged easily

as long as the interface and the encoding of packets are not changed.

But at the same time, the layering approach tends to be inefficient since a single packet is

processed several times and might contain redundant information for independent layers (e.g.,

sequence numbers). In addition, the application has only limited possibilities to influence

individual functions.

An alternative approach isIntegrated Layer Processing(ILP), which was proposed by Clark

and Tennenhouse [33]. The main idea of ILP is to combine all communication functionality

and to process a packet in a single step so that the number of copy operations is reduced,

and packet header fields can be used by different functions. ILP requires that all messages

are composed such that they can be processed and interpreted independent from other mes-

sages [33]. This principle is called Application-Level Framing (ALF), and the messages

are also denoted as Application Data Units (ADUs). ALF complies with the operations and

cues in our data model for distributed interactive applications. ALF allows to process ADUs

immediately even when they arrive out of order. Moreover, protocol functionality can be

customized for different ADU types to fit the needs of the application. For instance, while

events are transmitted reliably with ARQ, lost cues could be ignored. But when compared to

the layering approach, the realization of such an integrated communication module is consid-

erably more complex. Thus, it might be reasonable for applications to combine elements of

both approaches.

2.3.4 Generic Services

As indicated above, a distributed interactive application has to address many different issues

such as support for collaboration and awareness, consistency control, and network commu-

nication. Instead of application-specific solutions, it is therefore desirable to develop generic

algorithms that can be employed by different distributed interactive applications so that com-

plex mechanisms have to be designed, implemented, and tested only once [50]. At the same

time, such generic solutions should be flexible enough to be adapted to the specific needs of

an application.

Generic services can be realized on the basis of our data model for distributed interactive

applications [156, 158]: In Chapter 4, a generic consistency control service is proposed,

and in Chapter 6 a generic late-join mechanism is presented that allows participants to join
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an ongoing session at any time. Other services conceivable are floor and session control,

authentication and encryption, and recording and archiving of sessions. All these services

can be implemented on the basis of a network protocol that captures and reveals the common

characteristics of distributed interactive applications [158]. Such a protocol is introduced in

Chapter 7.

2.4 Selected Distributed Interactive Applications

Shared whiteboards are a prominent example for distributed interactive applications. They of-

fer a shared workspace for the presentation and joint editing of documents, and they are used

in electronic meetings, group discussions, teleteaching, etc. In Chapter 3, we discuss shared

whiteboards in general and then present the multimedia lecture board developed in the course

of this thesis. In the following, three other sample applications are introduced: TeCo3D, a

shared workspace for interactive 3D models, a multi-player game, and Instant Collaboration,

a system for synchronous and asynchronous collaboration. Other examples of distributed in-

teractive applications not discussed here are shared text editors [106], distributed virtual envi-

ronments [104], distributed interactive simulations [123], instant messengers [275], meeting

environments [82], shared animations [142], and workflow systems [1].

2.4.1 TeCo3D

TeCo3D was developed by Mauve at the University of Mannheim [154] and allows to share

interactive and dynamic 3D models that are defined in the Virtual Reality Modeling Lan-

guage (VRML) [264]. Unlike distributed virtual environments, the models themselves are

collaboration-unaware, and the collaborative functionality is provided by TeCo3D. For this

purpose, a 3D model is loaded into the shared workspace of TeCo3D as depicted in Figure 2.1.

The users themselves are not represented by the model but act from an outside perspective.

TeCo3D follows the relaxed WYSIWIS principle so that each user may choose its individual

view point. The only awareness information given is a list of participants.

Since 3D models are dynamic and may change with the passage of time, TeCo3D falls into

the category of continuous applications. Its architecture is replicated, the state of the 3D

model is managed as a whole, and the message exchange among the individual application

instances uses state and event operations [154]: States distribute the 3D model when it is

loaded by a certain user. Interactions with the model are propagated as events (e.g., when a

user assembles the parts of a cupboard as shown in Figure 2.1). The message exchange is

based on IP multicast, enhanced by a separate reliability layer. All user actions are serialized

by a floor control mechanism: Before modifying a model, a participant has to acquire the
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Figure 2.1: TeCo3D user interface

floor. Consistency of the shared state is ensured by the algorithmslocal lag and timewarp

that are discussed in Chapter 4. As stated by Mauve, an important issue when designing

TeCo3D was to realize functionality in the form of generic services [156].

2.4.2 Spaceshooter

Spaceshooter is a simple network game for multiple players that was developed by Friedrich

at the University of Mannheim [73] to demonstrate the feasibility of consistency control by

local lag and timewarp (see Section 4.7.3). As depicted in Figure 2.2, each player controls a

spaceship, which can accelerate, decelerate, turn, and shoot at other ships with a laser beam

of a certain range. The spaceship of the local user is marked by a dot in its center. Aside

from this marking, the strict WYSIWIS approach is pursued. The game field makes players

who leave over one edge reappear at the opposite side. Each spaceship has a predefined

vulnerability counted in hit points that are decremented every time it is hit. If no hit points

remain, the spaceship is removed from the game. The last remaining player wins.

The game has a replicated architecture, and each player is represented as a spaceship. Aside

from the ships, no other objects are present. Since the game field is rather small and un-

segmented, all objects are active for all sites. Shooting or changing the direction or speed

of a ship triggers an event, which is transmitted via IP multicast. As long as a user does

not interfere, a ship follows its current trajectory. Thus, the game is acontinuousinterac-

tive application, which makes the design of an appropriate consistency control mechanism

challenging. This will be addressed in Chapter 4.
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Figure 2.2: Spaceshooter user interface

2.4.3 Instant Collaboration

As indicated in Section 2.3.1, distributed interactive applications realize different levels of

formalization with respect to the collaboration among users [79]: Tools such as email and

instant messaging are very flexible and ad-hoc forms of collaboration but offer only little

support for the users. With email, small pieces of information can be shared easily, but more

extensive activities are difficult to manage with messages scattered in the inbox, multiple

versions of attachments, varying subjects and addressees, and the lack of real-time collabora-

tion [269]. At the other extreme, groupware systems structure and coordinate interaction but

are inflexible, heavy-weight, and require to set up a workspace before content can be shared.

The motivation of Geyer and Cheng when designing Instant Collaboration at IBM Re-

search was to bridge the gap between unstructured and highly structured collaboration by

overriding the separation between workspace and content [79]: The content itself becomes

collaboration-aware, and each shared piece of information (i.e., object) has an individual set

of members, provides object-level awareness, and enables group communication. Shared ob-

jects allow both asynchronous and synchronous types of collaboration: If other participants

are present at the time of accessing an object, they can work synchronously, if not, work is

asynchronous. From a more technical perspective, objects can be considered as “infinite”

persistent sessions. So far, there exist five types of shared objects in Instant Collaboration

that are all discrete: Message, chat, screen shot with annotations, file, and to-do item. These

objects can be structured into larger activities by the users as the collaboration evolves [177].

The prototype of Instant Collaboration is integrated into an email-client as depicted in Fig-

ure 2.3: Inbox (1) and message view window (2) are located on the left of the main window,

and all shared objects are visualized in a tree hierarchy on the right (3). This design was

inspired by Ducheneaut’s and Bellotti’s observation that email is very often the seed of a

collaborative activity [53]. It allows the seamless transition between email and object-centric

sharing: Regular emails can be turned into shared objects via drag and drop. Shared objects
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Figure 2.3: Instant Collaboration user interface

can also be created directly by selecting the desired type. Figure 2.3 shows a chat object (4)

and an annotated screen share object (5). Attached to each object is a list of all members

allowed to access it; they are identified by their email address (or alias). New members may

join an object by invitation. All members currently active are marked by a green icon (6) in

order to provide a quick overview. In case a new object is created or an existing object is

modified, all members are updated eventually (see Section 6.7). As new objects are attached

to existing ones, collaboration evolves into a multi-object activity with a dynamic group of

participants.

We decided to realize Instant Collaboration with a replicated architecture in order to be in-

dependent from a certain infrastructure, and to achieve good responsiveness as well as high

scalability [83]. Each site has a local database so that shared objects are persistent even when

no application instance is running. The message exchange is based on states and events, and

messages are encoded in XML [64] and distributed via TCP by the sender to all receivers.

This is reasonable since usually groups are rather small with no more than ten participants,

and the amount of data exchanged is small. Because the application state may change when

some users are offline, this system design is challenging with respect to the consistency con-

trol mechanisms: All state changes that took place while a site was offline need to be prop-

agated as soon as a communication is possible again so that a consistent state is reached.

Appropriate algorithms are discussed in Sections 4.7.2 and 6.7.
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2.5 Conclusions

The goal of distributed interactive applications is to facilitate human-human interaction with

computer support. They allow users to access and modify shared data via a computer network.

Even though the spectrum of distributed interactive applications is large, they have a common

data model: The state of an application may change because of user actions or because of the

passage of time. Only state updates due to user actions need to be propagated in the form of

operations. And the state may be composed of independent objects that are either active or

passive for a specific application instance.

This model allows us to discuss important issues independent from a specific application so

that complex algorithms can be realized as generic services that may be employed by many

different applications. In the remainder of this thesis, we concentrate on consistency con-

trol, support for late-joining participants, transport of operations, and group communication.

Moreover, the feasibility of these algorithms is demonstrated on the basis of representative

applications and simulations. In the next chapter, the shared whiteboard mlb is discussed in

detail.
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The multimedia lecture board (mlb)

Shared whiteboards are one of the most prominent and most commonly used distributed in-

teractive applications. They provide a shared workspace where users collaboratively create

new documents, or present and edit existing documents [69]. Shared whiteboards are em-

ployed in many video conferencing and electronic meeting scenarios for sketching ideas,

taking notes, exchanging information, presenting documents, and discussing items. For in-

stance, in a teleteaching scenario the lecturer uses a shared whiteboard to present slides to

the students that attend the session either locally, in a remote lecture room, or at home [57].

New slides can be created or existing slides can be annotated by all participants (including

the students) using graphical objects such as freehand lines, text, and imported images.

Most shared whiteboards concentrate on synchronous collaboration. And in most cases, they

do not support objects that change with the passage of time. They are often used together

with other media and applications. For instance, in teleteaching scenarios audio and video

are exchanged among the participating sites using appropriate software or hardware such as

H.320 video conferencing systems, the MBone tools vic [164] and rat [212], or MPEG-2

hardware codecs.

After analyzing existing shared whiteboards and their deficiencies in Section 3.1, the multi-

media lecture board (mlb) is presented that was developed in the course of this thesis. First,

an introduction to the mlb’s basic whiteboard functionality is given in Section 3.2. Following,

the data model and the architecture of the mlb are discussed in Section 3.3. In Section 3.4,

presentation animations are described as an important feature for illustrating talks. The vi-

sualization of awareness information and tools to support multi-user collaboration integrated

into the mlb are presented in Section 3.5. The mlb can also be used together with handheld

devices, which facilitates novel usage scenarios (see Section 3.6). In Section 3.7, software



24 Chapter 3 – The multimedia lecture board

development issues and experiences with the mlb are discussed. The chapter is summarized

in Section 3.8.

3.1 Related Work

One of the first whiteboards with a replicated architecture is wb [126]. It provides a simple

drawing area where graphical objects and text can be created by all users. Because of its

limited drawing functionality, wb is mostly used to annotate preauthored documents, which

can be imported as postscript files. The only awareness information provided is a list of all

participants together with information regarding the number of operations issued by each user

and the time of the last activity. The wb follows the relaxed WYSIWIS principle and allows

a user to view other pages than the active one. Even though the wb has a replicated state, it

does not employ a consistency control mechanism but relies on the users to avoid concurrent

changes. Communication is based on IP multicast and the reliability protocol SRM (see

Section 2.3.3).

The successor of wb is the MediaBoard [249] that is part of the MASH project [185] at UC

Berkeley. The goal of MASH is to integrate tools and applications for video conferencing in

a joint framework with a common user interface. In addition to the basic whiteboard func-

tionality of wb, the MediaBoard displays more awareness information and indicates which

participant is responsible for the current state change. It also allows to form subgroups work-

ing on different slides. Another interesting feature is that the local operation history can

be replayed by traversing older states. The MediaBoard has a replicated architecture and

follows the ALF principle by integrating the reliable multicast protocol SRM into the appli-

cation. This allows to repair packet loss concerning the active page with a higher priority

than other loss. All operations are distributed in the form of events to the other instances of

the MediaBoard, which requires an inefficient replay of the operation history in case a site

needs to retrieve the current state (see Chapter 6).

The Authoring on the Fly (AOF) system of the University of Freiburg integrates different tools

for the production, delivery, and postprocessing of teleteaching courseware [9]. The white-

board AOFwb allows a lecturer to present slides to local and remote students [149]. AOFwb

also supports presentation animations, offers a thumbnail view of all pages, and provides a

telepointer so that the lecturer can point to certain areas of a slide. However, even though the

whiteboard is shared, it is not collaborative, i.e., only the lecturer is able to issue state changes.

Remote students need a special software to receive lectures (AOFrec). Presentations can be

recorded locally together with audio and video in order to generate course material for offline

learning. The recorded data streams can also be postprocessed with AOFedit (e.g., to cut

speech pauses). The data model of AOF transforms all applications into the discrete domain,
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i.e., continuous animations are sampled by storing their state periodically. Generally, all state

changes are encoded as new full states in order to simplify random access to recorded data

streams. This results in very high data rates.

The digital lecture board (dlb) [80] is a precursor of our mlb. It was developed by Geyer

at the University of Mannheim for teleteaching scenarios [57]. Aside from creating discrete

graphical objects, the dlb allows to display and manipulate 3D models described in VRML in

the shared workspace [81]. The dlb also offers a variety of collaborative tools, which support

the interaction among users and facilitate awareness: Voting and feedback tools allow to

gather and aggregate opinions of all participants without relying on an audio channel [78], a

hand-raising tool can be used to coordinate speakers, and an integrated chat tool provides an

additional communication channel. Moreover, the dlb visualizes mouse movements within

the shared drawing area with a telepointer. Following the relaxed WYSIWIS principle, users

can prepare slides in a private workspace, privately annotate pages in the shared workspace,

and view pages independent from other users. Users and resources can be managed by session

and floor control [113]. The dlb has a replicated architecture, and its layered communication

model is based on states and events. These are distributed via IP multicast and a separate

reliability layer, the Scalable Multicast Protocol (SMP) [97], which employs the receiver-

based ARQ mechanism of SRM [68]. Aside from the source-ordering of operations ensured

by SMP, the dlb does not integrate any consistency control mechanisms but relies on the users

or the floor control to prevent conflicting operations. This might be problematic in scenarios

with frequent interactions. Messages can be encrypted using different algorithms [85]. On

top of SMP, the dlb encodes operations with the Real-time Transport Protocol (RTP) [219]

(see Section 7.1), which allows to record dlb sessions in synchronization with parallel audio

and video streams [114].

In addition to the approaches presented above, most systems for tele-collaboration include

simple whiteboards with basic shared drawing functionality such as Microsoft NetMeet-

ing [167], the Modular Advanced Collaboration System (MACS) [17], mStar [176], SunFo-

rum [243], and Interactive Remote Instruction (IRI) [153]. Aside from shared whiteboards,

non-shared electronic whiteboards supporting face-to-face meetings have received consid-

erable attention from human-computer interaction research. For instance, Tivoli [193] and

Flatland [180] are two systems, which provide rich interfaces for pen-based interaction (see

Section 3.6).

In the remainder of this chapter, we present the multimedia lecture board (mlb) whose devel-

opment was a major goal of this thesis. The mlb’s design is inspired by our experience with

the dlb and the AOFwb.
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Figure 3.1: mlb user interface

3.2 Basic Features

The user interface of the multimedia lecture board (mlb) [259] is depicted in Figure 3.1: The

tool bars (1) determine the next user action, the workspace (2) displays the page that is active

for the local user, and the window pane to the left of the workspace may contain different

tools and information such as the page hierarchy (3). In the following, we explain the mlb’s

features from the perspective of the user.

The mlb offers a large number of tools to create, modify, and present documents. A document

has a hierarchy of chapters and pages (3), and each page may contain an arbitrary number of

graphical objects from the set of freehand line, rectangle, oval, polyline, polygon, line, and

arrow. Which object to create with which attributes is selected in the tool bar (1). Moreover,

the mlb allows to create text objects using TrueType fonts, and is able to import external

postscript and image files such as GIF, PNG, JPEG, BMP, etc. All objects can be deleted

or modified, e.g., with respect to their color, size, or position. Hereby, documents can be

prepared for later presentation or are created during a session. All user actions changing the

state of an object can be undone and redone (see Section 4.8).

It is possible to open multiple documents at the same time; each document resides in its own

workspace. But there is only one shared workspace, which is accessible to the local and all
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remote users. The shared workspace is identified by a unique session address, and in case a

user wants to join a session, he has to open a shared workspace with the appropriate address

(see also Section 3.3). Generally, all actions within the shared workspace are visible for all

participants, all users see the same active page (2), and all users are able to modify the state

of the objects displayed. Thus, the shared workspace allows to create a joint document. All

other documents are contained in private workspaces and are visible to the local user only.

A private workspace can be employed to prepare a document, which is to be presented at a

later point in time. The document tree in Figure 3.1 (3) shows one shared and one private

workspace.

The mlb follows the relaxed WYSIWIS principle and allows a participant to annotate the

shared workspace with private objects. These are visible only locally and can be used to

take notes in a presentation. It is also possible to browse the pages of the shared workspace

without disturbing the other session members. Moreover, the user interface of the mlb can

be adapted to the likings of each user. For instance, the zoom factor of the pages can be

selected, and the tool bars and tools, which should be visible, can be set. For the presentation

of preauthored documents, a full screen mode exists, which is less distracting than the editing

mode. All options regarding the user interface and other aspects such as session parameters

are saved in a configuration file.

Large documents can be organized with the help of chapters. Like pages, chapters may

be named individually. Since chapters may contain pages and other chapters, arbitrary hi-

erarchies can be created (e.g., see Figure 3.1 (3)). A document hierarchy can be changed

easily with drag and drop operations. The exchange of content among different workspaces

is also possible via drag and drop: In case a page or a chapter is transferred into the shared

workspace, all relevant state information is distributed to the other session members so that

the relocated content becomes globally visible. When a participant leaves a session, the

shared workspace is transformed into a private workspace so that no content is lost. By

means of the late-join algorithm described in Chapter 6, a user can also rejoin a session at a

later point in time and retrieve the current state of the shared document. This allows to assign

certain tasks to independent teams and merge the results later. In a teleteaching scenario, the

lecturer could access the ongoing work of the individual groups one after another.

The user can navigate within the document hierarchy using the mouse or the key bindings

(page up, page down, etc.). If not in the local browsing mode, a change of the active page

within the shared workspace is announced to all participants. The mlb also provides a thumb-

nail overview of all pages within a workspace. As depicted in Figure 3.2, the thumbnail

overview contains a miniaturized version of all pages, and the user can activate a certain

page by selecting the corresponding thumbnail with a mouse click. A special import button

simplifies the presentation of a document and transfers the respective first page of a private
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Figure 3.2: Thumbnail overview

workspace into the shared workspace (see Figure 3.1 (4)). The transferred page is also acti-

vated automatically for all participants. With this function, the network load is spread over a

longer time span when compared to distributing all pages of a document to all participants at

the start of the session.

All documents can be saved in an XML-compatible [64] format so that the content becomes

persistent. The XML format basically allows to edit mlb documents with other applications.

It is also possible to export mlb documents as HTML, which can be displayed by any web

browser. Moreover, a document can be saved page-by-page in an image format. Docu-

ments created with other applications such as Microsoft PowerPoint [169] can be imported

as postscript, PDF, or pagewise via one of the supported image formats. The latter possibility

usually results in the best quality. Each page of the original document is then displayed as

a background image on an mlb page and can be annotated using the graphical objects of the

mlb. For easier handling, we developed various tools automating this conversion [259].

3.3 Data Model and Architecture

After describing important features from the user’s perspective in the last section, the archi-

tecture and other technical aspects of the mlb are addressed. The mlb is implemented in C++

and Tcl/Tk, and the advantages of object orientation are exploited in the code. As indicated

above, the mlb may hold several documents containing chapters, pages, and graphical objects.

This is reflected in the class hierarchy of the mlb. As depicted in Figure 3.3, all containers

and graphical objects are derived from a generic object class with important properties com-

mon to all classes. Text is modeled as a composite ofTextGroup , Text , andCharacter

objects: When the user begins a new text by placing the cursor on a page, aTextGroup

object is created. This contains aText object for each text element with homogeneous font
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Figure 3.3: Class diagram for mlb objects

properties (size, color, etc.).Text objects hold a list ofCharacter objects and are for data

management purposes only.

3.3.1 Unique Identifiers

As discussed in Section 2.2, unique identifiers are required to reference objects and to relate

operations to their target objects. There exist several alternatives for generating identifiers. A

common approach is to select identifiers randomly from a certain range [219]. If this range

is large and the number of selected identifiers small, the probability that two identifiers are

identical is rather small. Nevertheless, identifiers may collide, and a mechanism is neces-

sary to detect and resolve such collisions. For distributed interactive applications where the

consistency of the shared state depends on operations being assigned unambiguously to their

target object, the random approach is therefore not well suited [111].

An alternative approach for generating unique identifiers is to use the network layer or phys-

ical layer address of an application instance as a basis. An object identifier could then be

created by using the MAC address plus an additional counter. However, it is by no means

guaranteed that the address of an end-system is unique (e.g., some network interface cards

allow to change the predefined MAC address), and the resulting object identifiers would be

rather large and introduce a high overhead for the encoding of operations.

The last alternative is to assign identifiers in coordination among all participants such that col-

lisions are precluded. For instance, a well-known server could manage the identifier names-

pace and be contacted when a new identifier is needed. This server could be responsible for

multiple sessions, and each session could have several independent namespaces (e.g., one for

containers and one for graphical objects). In a request, an application instance then provides

the server with sufficient information to select the appropriate namespace. The server can

also guarantee the persistence of identifiers so that an application instance could regain its
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identifiers when it rejoins the session after it crashed. The scalability of this approach can

be improved when application instances do not request identifiers individually but in ranges

(e.g., 100 identifiers per request), and when several servers exist where each is responsible

for a different area of the hierarchically structured identifier namespace. A prototype of this

service was developed for the mlb, and the size of identifiers is set to 32 bit.

As long as an object resides within the same workspace, its identifier does not change. But

when an object is transferred from a private to the shared workspace, it has to be assigned a

new identifier in order to prevent a possible collision. For instance, consider a situation where

a participant leaves the current session. Then the content of the shared workspace becomes a

private document for this participant as discussed above. In case he rejoins the same session

at a later point in time, his application instance retrieves the current state of this session’s

workspace (see Chapter 6). But the user’s mlb also holds the older version of this state in a

private workspace. In case content is transferred from this private workspace into the shared

document, identifiers would collide. Thus, the mlb assigns new identifiers to all objects that

are moved from a private to the shared workspace.

3.3.2 Display Order of Objects

Another important property that needs to be unique and identical among all mlb instances is

the display order of graphical objects: The display order determines which object is displayed

on top in case two objects overlap on a page. As is common for graphics applications, the

mlb creates new objects above older ones. This display order might be changed byraise

or lower operations: A lower (raise) operation places the concerned object below (above)

of all other objects. Aside from graphical objects, a display order is also required for the

ordering of chapters and pages within their container (see Figure 3.1 (3)). This hierarchy

might be changed by placing an object at a new position, which can be anywhere in the tree.

Because of these possibilities to change the display order, the order in which objects are

created originally is not sufficient, and the display order has to be encoded explicitly as a part

of each object’s state.

For the mlb, the following algorithm was devised: The display order is represented by a 32

bit integero (i.e., 0 ≤ o ≤ 232 − 1) where a higher value means a higher order. All objects

within a container form a list, which is sorted ascending too. Let omax := 232 − 2. In case a

container is empty, the first object inserted is assigned the orderomax

2
. If an object is appended

to a non-empty list (i.e., a new object is created or a raise operation is issued), its order is set

to the order of the current last object plus an offseto∆. In case the lower operation is issued

for an object, it is given the order of the first object decremented byo∆. And if an object

is placed between two other objectsi andj with order numbersoi andoj, it is assigned the
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order oi+oj

2
. We propose to seto∆ := 216, which gives enough clearance to append and insert

objects in most cases.

However, two problems might occur: First, the display order namespace might not allow

to place an object at the front or the back of the list or between two other objects. In this

case, the namespace is depleted, and our mechanism reallocates the namespace by assigning

new ordering numbers to all objects, placing the middle object in the middle of the 32 bit

namespace. But in our experience, the namespace for order numbers is large enough so

that a reallocation is almost never necessary. Second, two ordering numbers may collide

when two participants create new objects at the same time. Then the consistency control

algorithm described in the next chapter determines which object should be created first, and

the other object’s display order is set to the next available ordero. This is possible since the

consistency control algorithm ensures that all operations are executed in the same order at all

mlb instances. Thus, in case the display order of an object needs to be recalculated locally,

the algorithm will reach the same result at all sites.

3.3.3 Data Model

Because of the reasons discussed in Section 2.1, the mlb has a replicated architecture. The

mlb only allows state changes due to user actions and therefore is a discrete interactive appli-

cation. The creation of a new container or graphical object is propagated as a state. All other

changes within the shared workspace are encoded as events or cues. Cues are used for inter-

mediate state updates, which are followed by an event. For instance, in case the user moves

a graphical object to a new position, the intermediate coordinates are encoded as cues. Only

the object’s final position is an event. This distinction allows to handle intermediate changes

differently than final changes (see below). In order to save network resources, the user can

define the percentage of intermediate local changes that should be propagated as cues. From

our experience with capturing mouse movements, a cue rate of only ten percent of all mouse

events is sufficient for a smooth visualization.

All cues and events are encoded and interpreted absolutely in order to prevent dependencies

within the operation history. For instance, instead of encoding a “change size” operation as

“increase size by 10 percent”, the event defines the final size. The most interesting object

in this respect is text: While a certain character can be deleted by an absolute operation that

references the character object’s identifier, an index has to be defined when inserting a new

character. Most shared text editors interpret insert operations relatively since the intention of

the user is to place the character at a distinct position in a word, and the corresponding index

depends on the insert and delete operations that were executed earlier [138, 238] (please refer

to Sections 4.3 and 4.8 for a more detailed discussion). Since such dependencies within
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Figure 3.4: Protocol stack

the operation history would complicate the handling of operations, the mlb interprets insert

character operations absolutely, i.e., a character is always inserted at the index encoded in the

corresponding operation. Because text objects are rarely edited by multiple users at the same

time, this simplification has no negative effect in practice.

Since all users can individually adjust the zoom factor of their local view on the shared

workspace, all pixel coordinates contained in states or state updates need to be transcoded

to standardized coordinates. When interpreting a received operation, an application instance

then applies its local zoom factor.

The mlb displays exactly one page at a certain point in time so that only the graphical objects

of this page are active objects (see Section 2.2). Moreover, the current page and all chapters

in the document tree up to the root are active objects.

3.3.4 Communication Model

The mlb manages the message exchange among the application instances participating in a

session with the communication protocols depicted in Figure 3.4: Group communication is

currently provided by IP multicast, but we are planning to switch to application-level mul-

ticast in the future (see Chapter 8). Reliable transport of data is provided by the Scalable

Multicast Protocol (SMP), which was originally developed for the dlb at the University of

Mannheim [97]. SMP is a receiver-based ARQ protocol and is realized as an independent

protocol layer with its own packet header (see Section 2.3.3). But at the same time, it is

integrated as a library into the mlb and offers a rich interface, which allows to influence

the service level: The mlb transmits operations as ADUs, which can be handled indepen-

dent from other ADUs in case they concern independent parts of the shared state. Thus, the

source-ordering function of SMP is disabled for the mlb, and ADUs are ordered by the mlb’s

consistency control algorithm instead (see Chapter 4). Moreover, SMP allows to transmit

data unreliably, which is used for cues: Since cues either do not change the application state

or are overwritten by a following event (which is propagated reliably), their loss does not

have a severe impact on the application. SMP also offers a basic flow control mechanism for

adapting the send rate to the user’s setting. Congestion control is not part of SMP.
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The Real-time Protocol for distributed Interactive applications (RTP/I) was developed by

Mauve et al. at the University of Mannheim [159]. It captures the common aspects of dis-

tributed interactive applications, as defined by the data model presented in Section 2.2. For

instance, operations are classified into the categories of state, delta state, event, and cue. Such

information allows to design algorithms as generic services. RTP/I is realized as a library,

which offers direct access to its functionality. As suggested by the ALF approach, the ap-

plication can reuse the header fields of RTP/I ADUs for other purposes. RTP/I was strongly

influenced by the mlb and its complex, hierarchical state. It will be discussed in detail in

Chapter 7. RTP/I also makes it possible to record and replay mlb sessions together with

audio and video streams (see Section 7.4.3).

Finally, user actions are encoded as ADUs by the mlb protocol, which defines how states

and state updates of all objects supported by the mlb are propagated [257]. This protocol is

general enough to be reused for other shared whiteboards. It is presented in Section 7.5.2.

3.4 Presentation Animations

A presentation animation allows to predefine a sequence of actions that change the applica-

tion state. The user may then traverse this sequence stepwise. For instance, a presentation

animation could organize the content of a slide into multiple steps, each step showing a cer-

tain amount of text and graphical objects. Thus, presentation animations are a powerful way

to structure presentations and to visualize processes. They are widely used in single-user pre-

sentation software such as PowerPoint [169] and OpenOffice [186] and are also valuable for

shared whiteboards. Presentation animations can either be user-controlled or time-controlled.

In the first case, the user determines when the next state change should happen, e.g., when

unveiling the next line of text by a mouse click. Time-controlled animations change the state

of an object with the passage of time, e.g., when moving an object along a predefined path.

For the mlb, only user-controlled presentation animations were realized in order to keep the

application discrete.

For each page, a presentation animation can be defined using the interaction window depicted

in Figure 3.5 that is displayed on the tool pane of the mlb’s user interface (see Figure 3.1).

An animation consists of an unlimited sequence of steps. In each step, an arbitrary set of

objects can be revealed (+) or hidden (−). The same object may occur in multiple steps. To

execute an animation, the user has to activate the presentation mode. In this mode, the next

animation step is triggered by clicking the mouse or typing a key. When the last step of a

page is reached, the next user action automatically activates the following page.
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Figure 3.5: Presentation animation

The mlb file format supports presentation animations so that they are saved (restored) when

storing (opening) a document. An animation itself is not part of the shared workspace, and

only the user who created an animation (or loaded a document with animations) can see

the steps in the animation window of Figure 3.5. However, the animation is visible to all

participants of a session. The mlb’s data model facilitates a straightforward implementation

of presentation animations: An animation is executed by issuing “show” and “hide” events

for the objects concerned when the next step is activated.

3.5 Collaboration and Awareness

Aside from the functionality for editing shared and private documents, the mlb offers a variety

of tools to coordinate the collaboration among the participants and to provide awareness

information. As discussed in Section 2.3.1, these services are vital for multi-user scenarios

where social protocols such as eye contact and gestures are captured insufficiently or not at

all by the audio and video channels.

3.5.1 Visualization of Participant Information

The mlb provides a lightweight session control where a session basically is open to everyone

where users may join and leave at any time, and where all users have the same rights [107].

Under these conditions, it is especially important for the users to have access to informa-

tion about the other participants. The mlb displays a list of all participants in its tool pane

(see Figure 3.1 (5)). When selecting a certain participant, the information window depicted

in Figure 3.6 is opened. The canonical name (CName) uniquely identifies each participant

and is composed of the user’s login name and the IP address of the end-system. All par-

ticipant information is exchanged periodically with RTP/I among the session members (see

Section 7.3.2); this is similar to the RTCP protocol of standard RTP [219].
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Figure 3.6: Participant information window

Figure 3.7: Indicating the origin of an operation Figure 3.8: Awareness information

In order to simplify the interaction among participants, the mlb does not employ floor control.

This implies that any user can modify the shared state, and it is not always obvious who is

responsible for a certain change. For this reason, the user may activate a tracking mechanism

to display the name of the responsible participant in a temporary tool-tip window next to the

modified object. In Figure 3.7, the user “Wolfgang Effelsberg” just created the lower right

rectangle.

Active participants are also highlighted in the participant list: As indicated in Figure 3.8, the

participant “Juergen Vogel” just issued an operation, which is visualized by displaying his

name in black. In case a participant stays inactive for a certain period of time, the color of his

name degrades (“ages” [11]) to light gray in several steps. The participant list also visualizes

other awareness information. For instance, users that left the session or were disconnected

due to a technical failure are marked: In Figure 3.8, the participant “Wolfgang Effelsberg” is

marked as disconnected by the icon in front of his name. This visualization is more noticeable

than deleting the user’s name from the list when the session has many members. The user

may clear the list from disconnected participants.

3.5.2 Telepointer

For graphical user interfaces, the mouse is a vital input device to control the application.

Telepointers are used to visualize local mouse actions that would otherwise be invisible for

remote participants [59]. Telepointers therefore provide important awareness information to

remote users [103]. A telepointer can be realized as a single shared pointer or as multiple

pointers [181]. In the first case, the local user shares the system’s mouse pointer with all

remote participants: As long as the local user moves the mouse, he has control over the



36 Chapter 3 – The multimedia lecture board

Figure 3.9: Telepointer and telebox

system’s mouse pointer. But while he is inactive, the mouse pointer acts as telepointer, which

now visualizes the mouse movements of a certain remote user. This remote user can be

the currently active participant or the present floor holder in case the application has a floor

control mechanism. But this seamless transition between local pointer and telepointer can be

rather distracting for the user. The shared pointer approach also allows only one telepointer

for all participants.

Thus, the multiple pointer concept is employed for the mlb where each participant controls

its own telepointer. In order to distinguish pointers, which are visible simultaneously, users

can choose individual colors for their pointers [78]. As depicted in Figure 3.9, each partici-

pant with an active telepointer is also marked with a small telepointer icon in the participant

list. Since this icon is displayed in the telepointer’s color, the participant list gives a quick

overview about which telepointer belongs to which participant.

The user activates the telepointer by selecting the appropriate button in the tool bar as depicted

in Figure 3.1 (1). The mlb supports telepointers only in the shared drawing area, i.e., mouse

movements outside that area are not visible to remote users, e.g., when selecting a menu item.

While this limits the amount of awareness information, Geyer argues that it is reasonable for

applications that follow the relaxed WYSIWIS paradigm and that allow users to select an

individual screen layout [78]. Otherwise, it might not be possible to display a telepointer at its

correct position, or the telepointer’s path might be confusing (“jumping telepointer”) [181].

The mlb also provides a telebox to frame a certain area of the shared workspace [44]. It

is assigned the same color as the participant’s telepointer (see Figure 3.9). Other forms of

tele-objects are conceivable, e.g., freehand lines.

Even though telepointers and teleboxes are completely integrated into the mlb’s user inter-

face, internally they are managed as an independent distributed interactive application. For

each active telepointer (telebox), the shared state contains one object whose attributes define

its color, position, etc. [258]. The first position of a pointer movement is transmitted as a state,

intermediate positions as cues (unreliably and with the selected cue rate, see Section 3.3.4),

and the last position as an event. Telepointer and telebox positions are propagated in stan-
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(a) Interface of hand-raising tool (b) Notification window

Figure 3.10: Hand-raising tool

dardized coordinates as described above. All telepointer operations are transmitted via RTP/I,

SMP, UDP, and IP multicast in an independent session. Since each participant controls his

own object, no consistency control mechanism is necessary.

3.5.3 Hand-Raising

Coordinating multiple session members in group discussions or teleteaching sessions can be

difficult with the limitations of the audio and video channels that are usually encountered

in electronic meetings: For larger groups, there is not enough screen space to have a video

window open for every remote participant. Also, there usually is only one audio channel

which requires some discipline to prevent that participants disturb each other.

To overcome this limitation, the mlb offers a hand-raising tool, which allows to coordinate

participants explicitly and was inspired by the dlb [78]. Its user interface is integrated into the

participant list as shown in Figure 3.10(a). For instance in Figure 3.10, the user “Wolfgang

Effelsberg” has a question and requests attention by pressing the “raise hand” button. This

is indicated to all session members by a flashing orange icon next to the requester’s name

in the participant list (see Figure 3.10(a)), and (if desired) by the dialog window shown in

Figure 3.10(b). Since multiple users are able to raise their hand, the right to speak is granted

by selecting a user and pressing the “give control” button. The called participant is then

notified by a dialog window. A user may also cancel his earlier request with the “lower hand”

button. Please note that due to the lack of a true floor control mechanism, the hand-raising

tool is actually not able to assign resources to a certain participant but signals requests only.

The hand-raising tool is also designed as a distributed interactive application of its own [256].

Its state is rather simple with a list of all participants that currently raise their hand. There

exist three different events according to the possible actions described above (“raise hand”,

“lower hand”, and “give control”). States and events are exchanged via the same protocols as

the mlb traffic. Again, a consistency control algorithm is not required.
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Figure 3.11: Chat window

3.5.4 Chat

The mlb provides a chat tool as an additional communication channel, which allows an easier

exchange of text messages than with the mlb’s shared workspace. The chat is also useful

in situations where the audio channel fails or for discussing issues without interrupting an

ongoing presentation (“sidetalks”) [78]. Figure 3.11 depicts the user interface of the chat

tool. A history of all messages is displayed below the entry fields for the local user. The

chat tool is realized as an independent application with its own session. Its state contains a

single object that holds a limited history of the last messages typed. The default value of 20

messages can be changed by the user. The only event possible is to send a new message. A

consistency control mechanism is required to determine the correct order of all messages (see

Chapter 4).

3.5.5 Voting and Feedback

An important task in group discussions is to make decisions about certain topics, e.g., when

voting about different design possibilities or when solving a problem in a lecture. To do

this via the audio channel in sessions with a large audience is rather complicated and time-

consuming. A decision support tool that is designed for polling the opinions of all participants

therefore is a vital element of collaborative systems [190], which also provides rich awareness

information [125, 216].

Like the dlb, the mlb integrates two decision support tools: A voting tool and a feedback

tool [78]. The user interface of the feedback tool is displayed in the tool pane of the mlb.

It allows to continuously evaluate the current session in terms of different (user-defined)

features. For instance, Figure 3.12(a) initiates a survey of the perceived audio quality of

the individual session members. An overview of all surveys defined for the current session

is given in Figure 3.12(b) where the user may change the parameters of a topic or disable

it temporarily (like the “Video Quality” survey in Figure 3.12(b)). A user can vote using

the respective slider in Figure 3.12(c). The accumulated result for all participants is then
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(a) Survey parameters (b) Survey overview (c) Evaluation results

Figure 3.12: Feedback tool

displayed as a bar chart, which gives a quick overview and allows the users to react quickly

to changes.

The voting tool allows to evaluate both quantitative (i.e., multiple choice) and qualitative (i.e.,

text) questions via a separate user interface, which gives more detailed information than the

feedback tool. Both the feedback and the voting tool are independent distributed interactive

applications, which form sessions of their own [255]. Their states maintain an object for each

topic, including the collected answers. The message exchange and the consistency control

are managed as in the mlb.

3.5.6 Application Launch

The application launch tool can be used to start external applications synchronously at all

sites. Its purpose is to allow the integrated presentation of multimedia elements to all partici-

pants without leaving the mlb environment. For instance, a video clip or an animation could

be displayed together with a presentation. Figure 3.13(a) shows the user interface of the ap-

plication launch tool, which is integrated into the tool pane of the mlb (see Figure 3.1). The

details of a specific application are depicted in an extra dialog. For instance, Figure 3.13(b)

gives the parameters of a Java animation. The user starts an application at all sites by select-

ing the appropriate entry and pressing the “execute” button. This requires that the application

to start is installed at all sites and that the local paths (see Figure 3.13(a)) refer to the applica-

tion’s directory. Aside from starting the application, the user has no additional control over

the individual instances (as he would have with application sharing).

Like the other collaborative tools described above, the application launch tool is a separate

discrete distributed interactive application [253]. Its state consists of a list of external appli-

cations together with their parameters whereas the local paths of the applications are not a
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(a) User interface (b) Application parameters

Figure 3.13: Application launch tool

part of the shared state. The tool uses the same consistency control algorithm and network

protocols as the mlb.

3.6 Handheld Devices and Pen-Based Interaction

The mlb was mainly developed for a standard PC with a regular monitor as output device,

and keyboard and mouse as input devices. However, the mlb can also be employed together

with large screen systems such as the LiveBoard [60] or with small handheld devices, e.g.,

pocket PCs [168]. While the mlb can be executed unmodified on large screen systems (i.e.,

the large screen is just a different output device for a PC), this is not possible for handheld

devices since these lack the required resources with respect to processing power, memory

space, as well as screen size and resolution. Thus, a lightweightpocket mlbwith a limited

functionality was developed in this thesis.

Due to their limited resources, handheld devices are mainly used to support collaboration in

face-to-face scenarios where additional communication channels such as audio and video are

not required [179]. The handheld device gives access to the shared workspace of a distributed

interactive application such as the mlb. Figure 3.14 depicts the user interface of the pocket

mlb, which is able to display the active page. In order to optimize the usage of the limited

screen size, pages are shown in full screen either in a landscape mode (see Figure 3.14(a)) or

in a portrait mode (see Figure 3.14(b)) depending on their orientation. Alternatively, pages

can be zoomed by a factor of 2 (see Figure 3.14(c)). In addition to displaying the active page,

the pocket mlb can also visualize the document hierarchy, and it allows the user to change

the active page. Moreover, the user can control a telepointer, which is visible to all session

members. In the future, we plan to extend this functionality such that the pocket mlb is able

to control animations, and to create and modify private and shared annotations. Then, the

handwriting recognition software provided by the mobile device can be employed for editing

text objects.
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(a) Landscape mode (b) Portrait mode (c) Zoomed portrait mode

Figure 3.14: Pocket mlb user interface

Aside from the pocket mlb, other collaborative service for handheld devices were developed

at the University of Mannheim [160]. As Scheele et al. demonstrate, a voting tool can be used

successfully for integrating exercises into lectures with a large number of students [216].

Because of the limited resources of mobile devices, the pocket mlb is designed with a client-

server architecture where all costly tasks such as the management of the shared state and the

scaling of graphical objects to the screen size of a handheld are executed by the server. The

implementation of this architecture is based on the Wireless Interactive Learning Devices

(WILD) system, which was developed at the University of Mannheim [160]. WILD connects

the mobile clients over a Wireless LAN with the server (using TCP). In case of the pocket

mlb, this server is a regular mlb instance that collects all requests from the attached pocket

mlb instances, updates them, and forwards operations to and from other mlb instances via the

communication model presented above. For remote mlb participants, the actions of pocket

mlb instances therefore seem to come from the server mlb instance.

The human-computer interaction with both handheld devices and large screen systems is not

based on the traditional input devices of mouse and keyboard. Instead, pen-based interaction

is employed [165]. Due to the advances in handwriting recognition software, pen-based in-

teraction is also popular with the notebook-sized Tablet PCs [170]. Besides transforming pen

strokes into text, freehand drawings can also be interpreted as graphical objects, which can be

classified, selected, grouped, and modified as proposed by Saund et al. in [215]. Moreover,

pen-based interaction allows to control the application with so-called gestures: A gesture is a

small graphical object that has to be drawn in a certain way. When the application detects a

gesture, the corresponding command is invoked. Usually, gestures consist of a single stroke

and are iconic so that it is easy to associate them with the underlying command [151]. For

instance, the user could delete a graphical object by crossing it out, or select an object by cir-
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cling it. The main advantages of gestures are that they are easy to use, and that they save the

screen space that would otherwise be needed for menus and buttons. Additionally, commands

could also be invoked by interpreting text objects as demonstrated by Rojas et al. in [213].

Integrating such features into the mlb and the pocket mlb remains an issue for future work.

3.7 The mlb as a Software Project

The mlb is the successor of both the AOFwb [149] and the dlb [80]. Its development was

a joint project of the Universities of Freiburg and Mannheim that was sponsored from Oc-

tober 1999 to December 2001 in the project “ANETTE” [7] by the DFN-Verein [45]. Core

elements of the mlb such as data and communication model, shared workspace, presenta-

tion animations, collaborative services, and pocket mlb were developed in the course of this

thesis. Since Summer 2001, the mlb is used regularly in lectures and seminars at several

Universities.

The mlb is implemented in C++ and Tcl/Tk [246]. It uses several libraries, which were also

developed at the University of Mannheim (SMP, RTP/I, late-join, consistency control), plus

the external libraries ImageMagick [124] to process images, and FreeType [72] to display

TrueType fonts. Without these external libraries, the entire mlb comprises approximately

92,000 lines of code. The mlb is executable on both Linux and Windows platforms, and its

code is published as open source under the GNU General Public License [88]. Downloads

and a user manual are available at [259].

3.8 Conclusions

The multimedia lecture board (mlb) is a distributed interactive application for presenting and

editing documents in teleconferencing scenarios. The mlb allows to open one shared and

multiple private documents, supports various graphical objects, has a flexible user interface,

and is able to import and export documents. Presentations can be structured with simple ani-

mations. The shared state of the mlb consists of a hierarchy of chapters, pages, and graphical

objects. All messages are exchanged over IP multicast, the reliable transport protocol SMP,

and the application-level protocol RTP/I.

Aside from the basic shared whiteboard functionality, the mlb provides several tools to co-

ordinate the synchronous collaboration of multiple participants: A telepointer to visualize

mouse movements, a hand-raising tool to serialize requests to speak, a chat tool for dis-

cussions, a voting tool for evaluation questions, and a tool to launch external applications.

Moreover, awareness information about the session members and their actions is displayed.
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In particular, the visualization of information in the participant list that was devised in this

thesis proved to be effective without distracting the user. We also presented a lightweight

version of the mlb for handheld devices (pocket mlb).

In the following chapters, the mlb is used as our main example application for the generic

services and protocols developed in this thesis. In the next chapter, we discuss mechanisms

for keeping the local state copies of distributed applications consistent.





Chapter 4

Consistency Control

Distributed interactive applications often employ a replicated architecture where each user

runs an equal instance of the application, and each instance maintains a local copy of the

application state (see Section 2.1). Local user actions updating this shared state need to be

transmitted to all remote application instances so that these can modify their local state copies

accordingly. For instance, when a participant modifies the position of a graphical object on a

shared whiteboard page, the new coordinates have to be transmitted to all session members.

But without taking special precautions, it cannot be guaranteed that all users perceive the

identical state after such operations have been exchanged, even if all operations were suc-

cessfully delivered to all application instances. The main problem is that the transmission

of an operationO is subject to a certain network delay: WhileO can be executed at once at

the originating site so that the response time is zero, it takes some time to transmit it over

a network to the other instances. Thus, the notification time forO is larger than zero. This

causes two problems: First, for continuous interactive applications the exact execution time

of an operation determines the resulting state. For instance, when changing the direction of

a moving object, the object’s new position depends on the point in time at which the change

in direction was executed. If the distributed system does not take this into account, two sites

with different network delays might not reach the same state.

Second, the propagation delay can result in different orderings of operations [162]. For in-

stance, consider the situation depicted in Figure 4.1 where two participants of a shared white-

board session change the color of a rectangle at almost the same time. Participant 1 changes

the rectangle’s color to black with operationO1, participant 2 to gray withO2. Given the

network delays indicated in Figure 4.1, the same rectangle is displayed in gray for the first

participant and in black for the second participant after both actions have been executed be-

cause the execution orders ofO1 andO2 are different at the two sites.



46 Chapter 4 – Consistency Control

time

O
2

O
1

participant 1 participant 2

Figure 4.1: Network delay results in different operation orders

Such problems can be prevented when the application employs an appropriateconsistency

controlmechanism to keep the local state copies of all participants synchronized. Simplified,

consistency is achieved when all participants eventually see the same application state, e.g.,

both participants in Figure 4.1 finally see either a gray or a black rectangle.

In the following section, the task of such a consistency control algorithm is investigated and

formalized. General design alternatives are discussed in Section 4.2, and in Section 4.3 exist-

ing approaches are analyzed. In the subsequent sections, the concepts of local lag, timewarp,

and state request are presented and combined to a generic consistency control service, which

is applicable to both discrete and continuous interactive applications. This service is evaluated

by means of experiments with the mlb and other applications in Section 4.7. Specifically for

discrete applications, possibilities to undo operations without endangering the application’s

consistency are discussed in Section 4.8. The chapter is concluded in Section 4.9.

4.1 Consistency Criteria

Before discussing different consistency control mechanisms for distributed interactive appli-

cations, possible relations among the operations that are issued in the course of a session

are formalized, and several consistency criteria are defined. First, discrete applications are

examined where the shared state is changed by user interactions only. Following, the consid-

erations are generalized for continuous applications, which also allow state changes due to

the passage of time.

4.1.1 Discrete Interactive Applications

The shared state of a discrete interactive application is changed by user interaction only.

Depending on the communication model of the application, user actions are propagated either

as events or delta states, which are applied to the current state, or the current state is replaced

with a new full state (also see Sections 2.2 and 4.2). We denote events, delta states, and states
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Figure 4.2: Relations among operations

asoperations. In order to simplify the discussion, it is assumed that the shared application

state is not partitioned. This does not impose a restriction since partitions are independent

and each operation has a distinct target object. When applying a set of operations{Ok} to

the local stateSi of an application instancei, the resulting stateS ′
i depends on the execution

order of these operations (see Figure 4.1) [162]. Thus, one important aspect of consistency

concerns the order of operations.

Operations have certain relations, which need to be taken into account when establishing an

order. One such relation is thecause-effect order[209, 162, 238]. For example, consider a

participant first creates a rectangle with the operationO1 and then changes its color withO2.

ThenO2 must always be executed afterO1. To express this, thecausal ordering relation

“→” is defined by Lamport [146]:

Definition 4.1 Given two operationsOi,a and Oj,b generated at the sitesi and j, then

Oi,a → Oj,b iff (1) i = j and Oi,a was issued beforeOj,b, or (2) i 6= j and Oi,a was exe-

cuted beforeOj,b is issued, or (3) there exists an operationOk,c such thatOi,a → Ok,c and

Ok,c → Oj,b.

The different cases are illustrated in Figure 4.2(a) whereOj,1 → Oj,2 andOj,2 → Oi,1. In

caseOi,a → Oj,b, Oj,b is calleddependenton Oi,a. And when neitherOi,a → Oj,b nor

Oj,b → Oi,a, Oi,a andOj,b areconcurrent (see Figure 4.2(b)). In case concurrent operations

affect the same attributes of the state, we denote them asconflicting, e.g.,O1 andO2 in

Figure 4.1 are conflicting. Based on the causal ordering relation, the consistency criterion of

causality is defined by Sun et al. [238]:

Definition 4.2 An application provides causality iff∀Oi,a, Oj,b whereOi,a → Oj,b, Oi,a is

executed beforeOj,b at all sites.

The causal order defines only a partial ordering on all dependent operations, which is not

sufficient to reach identical states at all application instances since concurrent operations are
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not included yet. Thus, the consistency criterion ofconvergenceis defined by Ellis and

Gibbs [58]:

Definition 4.3 Starting from the identical initial stateS0, an application provides conver-

gence iffSi = Sj ∀ i, j after the same set of operations has been executed at all sites.

While the causality criterion aims at the execution order of operations during user interac-

tions, convergence concerns the application’s state after all operations that were issued in a

certain period of time have been exchanged and executed. This has two implications: First,

convergence allows states to differ at a certain point in time when not all operations have

been successfully received by all instances. Second, convergence does not demand that the

operations are actually executed in any specific order. Convergence only guarantees that all

sites determine the same state provided that they have received all operations required to do

so.

Thus, we are also interested in whether the state of an application iscorrect, i.e., whether

the state is the same as the one that will be reached if there is no propagation delay and all

sites execute all operations in the order they are issued. In order to give a formal correctness

criterion, a virtual perfect siteP is defined such thatP receives all operationsOi,a immedi-

ately and executes them in the order they were issued (in case two operationsOi,a andOj,b

are issued at the same physical time,P can use an additional tie-breaker such as the sites’

identifiers to determine a distinct order). The virtual perfect siteP therefore always has the

state a non-distributed application would have.Correctnesscan then be defined as follows:

Definition 4.4 Starting from the identical initial stateS0, an application provides correct-

ness iffSi = SP ∀ i after the same set of operations has been executed at all sites.

As for convergence, correctness applies only to those sites that received all necessary oper-

ations. In case a site received all operations, we denote a correct state ascomplete. Since

correctness is the stronger criterion, establishing correctness implies that convergence is also

achieved.

Now the question arises how it can be determined whether a local execution order of

operations observes causality, convergence, or correctness. For this purpose,state vec-

tors [58, 239] are defined based on Lamport’s work on logical clocks [146]: A state vector

SV is a set of tuples(i, SNi), i = 1, .., n wherei denotes a certain application instance,n

is the number of instances, andSNi is the current sequence number ofi. When i issues

an operationO, SNi is incremented by 1 (starting with 0), and the new state vector is as-

signed toO as well as to the state that results after applyingO. Let SV [i] := SNi. If

we assume that the scenario given in Figure 4.2(a) starts with an initial state, the operations
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would have the following state vectors:SVOj,1
= 〈(i, 0), (j, 1)〉, SVOj,2

= 〈(i, 0), (j, 2)〉, and

SVOi,1
= 〈(i, 1), (j, 2)〉.

Sun et al. show how causality can be tested with the help of state vectors [238]: LetSVOi

be the state vector of an operationOi issued ati andSVj the state vector at sitej the time

Oi is received. ThenOi can be executed at sitej when (1)SVOi
[i] = SVj[i] + 1 and (2)

SVOi
[k] ≤ SVj [k] ∀ k 6= i. This means that prior to the execution ofOi all other operations

thatOi causally depends on have been received and executed byj. If this is the case,Oi is

causally readyand can be applied to the current state. Note that local operations are causally

ready by definition, i.e., they can always be executed immediately which results in an optimal

response time for the user. But ifOi is not causally ready, it needs to be buffered until all

necessary operations have arrived and have been executed, increasing the notification time.

Causality establishes a partial order on all dependent operations. For discussing convergence

and correctness, a global order is needed that also takes concurrent operations into account.

As proposed by Sun et al. [238], such a global order can also be defined on the basis of state

vectors:

Definition 4.5 Let Oi andOj be two operations generated at sitesi and j, SVOi
andSVOj

the state vectors ofOi and Oj, and sum(SV ) :=
∑

k SV [k]. ThenOi < Oj, iff (1)

sum(SVOi
) < sum(SVOj

), or (2) sum(SVOi
) = sum(SVOj

) andi < j.

In the second case, when the state vector sums are equal, the site identifiers are used as tie-

breakers, but other tie-breakers are also conceivable. Correctness can now be achieved when

all operations are executed as defined by this global order. In [241], Sun et al. prove that if

Oi → Oj ⇒ Oi < Oj. Thus, an operation sequence ordered by< observes causality as well.

For the situation given in Figure 4.1, the global order would result in the same ordering of the

“change color” events at both sites, leaving both copies of the rectangle either gray or black

depending on the tie-breaker. However, this does not imply that all operations actually have

to be executed in that global order. It is only required that the final state is identical to the state

that would have been reached by executing the operations in that order. This means that it is

perfectly legal for a consistency control mechanism to execute operations in different orders

at the individual sites as long as the resulting states comply with the correctness criterion and

with causality preservation.

Note that all consistency criteria discussed above do not consider the semantics of operations.

Even when the application’s state fulfills the syntactic criteria of consistency or correctness,

it might not meet the user’s expectations. In the example from above, the application does

not know whether the rectangle should be gray or black from the user’s perspective. Instead,

the rectangle’s color is determined by a formal ordering relation. This issue will be discussed

in more detail in Chapter 5.
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4.1.2 Continuous Interactive Applications

In addition to user-initiated state changes, replicated continuous applications allow state

changes due to the passage of time, which do not require the exchange of update information.

This implies that each instance of the application has access to a physical clock, which can

be used to measure the progress of time [6]. In a real world system, these local clocks will

never be fully synchronized, even when employing mechanisms such as the Network Time

Protocol (NTP) [171] or GPS. The termtime is used to refer to one specific reading of one

specific local clock of a certain site. Due to limited synchronization, this reading may not be

reached simultaneously (in the sense of a common reference clock) by all local clocks [184].

However, a possible offset between local clocks does not affect the application’s consistency,

which is shown in this section.

Because of time-related state changes, consistency in the continuous domain is not only about

finding a correct sequence of operations and ensuring that at each site the result of all oper-

ations looks as if the operations had been executed in that sequence. In addition, it requires

that the result looks as if the operations had been executed at thecorrect point in time. In the

following, we define the terms consistency and correctness for continuous applications [161].

Please note that all consistency criteria and consistency control algorithms for continuous in-

teractive applications are also valid in the discrete domain.

Let Si,t be the state that the application instancei holds at the timet, andOi,to,t∗ an operation

issued byi at timeto and that is to be executed at timet∗. For now, it is assumed thatto = t∗

(in Section 4.4, we will discuss that it may make sense to sett∗ to a value greater thanto). It is

assumed that the resolution of the local clock is sufficiently high so that no two operations can

be issued at the same time at the same site, and therefore an operation is uniquely identified

by i and to. If this is not the case, an additional local counter can be used to distinguish

operations with identical values fori andto. The set of all operationsOi,to,t∗ issued during a

session is calledoperation historyH. Based on the execution timest∗ of the operations, the

physical time order is defined by Mauve [155, 260]:

Definition 4.6 Given two operationsOi,toi ,t∗i andOj,toj ,t∗j , thenOi,toi ,t∗i < Oj,toj ,t∗j iff (1) t∗i < t∗j
or (2) t∗i = t∗j andi < j.

As in the case of the state vector order, the sites’ identifiers are used as tie-breakers. A

consistencycriterion can then be defined as follows [161]:

Definition 4.7 A continuous distributed interactive application provides consistency iff at

any timet for all sites i, j that received all operationsOk,to,t∗ ∈ H with execution times

t∗ ≤ t the statesSi,t andSj,t are identical.
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As in the definition of convergence for discrete applications, sites that have not yet received all

necessary information do not affect the question whether the application ensures consistency

or not. But if at any timet all sites have received all operations, then the state at all sites at

that time must be identical. It should be noted that consistency is completely independent of

the synchronization of the distinct local clocks. The consistency criterion only requires that

at the same reading of the local clocks the same state is reached and not necessarily at the

same reading of a common reference clock.

Like in the discrete domain, the consistency criterion does not demand that the operations

are actually executed in any specific order or that they are executed at their predefined time

t∗. Again, we define a virtual perfect siteP to determine whether the state is also correct,

i.e., whether the state is the same as the one that would have been reached by executing

all operations in the physical time order and at their given execution time.P receives all

operationsOi,to,t∗ ∈ H by t∗ at the latest and therefore always has the state that a single non-

distributed application would have when processingH. Correctnessis defined as follows:

Definition 4.8 A continuous distributed interactive application provides correctness iff at

any timet for all sitesi that received all operationsOk,to,t∗ ∈ H with execution timest∗ ≤ t

the statesSi,t andSP,t are identical.

As for consistency, correctness is independent of clock synchronization and applies only to

those sites that received all necessary operations.

Both the consistency and the correctness criterion make no statement about the time during

that a site has not yet received all operations that it would need to calculate the current state. It

is therefore possible that consistency-related, transient artifacts occur even if the correctness

criterion is met by the application. For instance, letOi,to,t∗ change the direction of a moving

object. In case the sitej receivesOi,to,t∗ after t∗, this object will be in a wrong position.

This wrong position is also seen by the user. Thus,j needs to adjust the object’s position

in order to fulfill the correctness criterion. The application might do this by either changing

the position abruptly (i.e., the object jumps to its new position), or by interpolating a new

heading of the object toward the correct position, which would prolong the inconsistency but

might be more pleasant for the user.

We denote a situation where a sitej did not execute an operationOi,to,t∗ by the timet∗ as

short-term inconsistencyat sitej. This means that the states of at least two instances differ

for a certain amount or time. Ideally, short-term inconsistencies should not occur during a

session. But if such an inconsistency happens, the application needs to repair it with an appro-

priate consistency control mechanism in order to comply with the consistency or correctness

criterion.
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Causality is another important criterion, which was introduced for discrete applications and

makes sure that dependent operations are executed in the correct order. Observing causality

is also important in the continuous domain: For instance, it prevents that an application tries

to execute an operation on an object that does not exist yet. Moreover, it ensures that remote

users can understand the flow of operations. But at the same time, ifOi,toi ,t∗i → Oj,toj ,t∗j and

sitek receivesOj,toj ,t∗j first, it needs to delayOj,toj ,t∗j until Oi,toi ,t∗i arrives. This might cause

a short-term inconsistency for both operations. An application might therefore decide to

observe causality only for certain operations in order to prevent short-term inconsistencies

(e.g., when the target object does not exist yet).

4.2 Design Considerations: Hard State vs. Soft State

Hard state and soft state are two fundamental synchronization approaches, and a distributed

system can adjust its own mechanism between them. In the following, the effects of both

approaches on the application’s robustness and on the propagation delay of state changes are

examined, and their overhead and complexity are discussed.

The soft stateapproach was first introduced by Clark in [32] and is used by a number of

protocols such as RTP [219], RSVP [16], and SAP [108]. It works as follows: One or more

session members periodically announce the current state of the application. Participants dis-

cover new or updated parts of the shared state by these announcements, i.e., there are no

explicit notifications for state changes, and all messages are exchanged in the form of states.

The time span between two announcements is called report interval. An application instance

saves the time of the last announcement for each object of the shared state, and in case it does

not receive any data for several intervals, the concerned object times out and is deleted from

the application’s state. All messages are transmitted unreliably, and packet loss is repaired by

the next state transmission.

The main advantage of the soft state approach is its low complexity since all possible failures

are handled implicitly by the periodic state transmissions, and there is no need for additional

mechanisms to repair packet loss, to initialize late-joining participants, and to repair inconsis-

tencies due to disordered or outdated operations. This simplicity also makes the application

very robust. However, depending on the report interval and the packet loss rate, it might take

a long time until state updates are propagated to all session members. This might result in

frequent short-term inconsistencies. Also, repeated packet loss might even cause false time-

outs and the removal of objects that still exist. Moreover, due to the lack of feedback, the

originator of a state update does not know if and when the other session members received

his update. Another severe drawback is the potentially high network load generated by the

periodic transmissions of the complete shared state, especially for complex distributed inter-
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active applications that tend to have large states. For instance, consider an mlb session where

the same slides would be transmitted again and again.

The alternative to soft state is thehard stateapproach where new objects, state updates, and

the deletion of objects are propagated explicitly and immediately. State changes and deletes

are encoded preferably in the form of events (or cues) so that only essential information

is distributed. All messages are transmitted reliably, and the application or the underlying

protocols need to employ a mechanism to detect and repair packet loss. Moreover, explicit

mechanisms are needed in order to handle late-join situations as well as disordered and out-

dated operations. Since the application needs to address all possible error situations, and all

these mechanisms need to interoperate, the hard state approach often results in a complex

architecture [78, 83, 142, 154, 249, 259]. But when compared to the soft state approach, the

propagation delay for state updates is expected to be much less because of the instantaneous

and reliable announcement of operations. This increases the responsiveness of the application

so that user interaction is more direct, and at the same time it decreases the probability for

short-term inconsistencies. Furthermore, since only data is transmitted that is actually needed

by remote application instances to update their state, the resulting network load is expected

to be considerably less when compared to soft state.

The performance of the soft state approach can be improved by adopting elements from the

hard state approach. As Ji et al. show in [129], the propagation delay and the probability for

short-term inconsistencies can be lowered by announcing state changes explicitly in addition

to the periodic state transmissions. Alternatively, newer information can be reported more

frequently than older information [66, 203]. But for distributed interactive applications, the

biggest drawback of soft state approaches is the high network load. In the remainder of this

chapter, we therefore focus on the hard state approach as it is employed by the mlb, TeCo3D,

Instant Collaboration, and the Spaceshooter game (see Section 2.4 and Chapter 3). As men-

tioned above, this implies that the application has to use explicit error recovery mechanisms.

Reliable transport of operations is beyond the scope of this thesis, and we assume that the

application integrates an appropriate reliability mechanism (see Sections 2.3.3 and 7.2). In

the next sections, mechanisms to achieve consistency for discrete and continuous applications

are discussed.

4.3 Related Work

The state of a distributed interactive application can change either because of the passage of

time or because of user interactions, which are distributed as operations. Operations might

be received in different orders or after their scheduled execution time. Thus, the application
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needs to employ a mechanism that establishes consistency according to the criteria discussed

in Section 4.1.

Consistency control mechanisms can be classified as either pessimistic or optimistic.Pes-

simistic mechanisms prevent concurrent operations and allow only a single participant to

issue state changes at a certain point in time. This can be done by a locking or a floor control

algorithm where exclusive access rights have to be obtained before the participant is allowed

to change the state of an object [91, 178, 138, 240]. Alternatively, operations can be serial-

ized through a distinct controlling instance: All operations changing the state of an object are

first sent to a specific site, which orders operations and distributes them to all session mem-

bers [162]. This approach is used by the collaborative virtual environment MASSIVE-3 [92].

Pessimistic approaches therefore reduce the consistency control challenge to the ordering of

operations that origin from a single source. Even though this technique is very effective, it

has a major drawback: Because of the explicit or implicit exchange of access rights, natural

collaboration among participants is restricted. And for continuous applications, the problem

of outdated operations remains.

Optimisticapproaches, on the other hand, allow users to issue concurrent operations and seek

to repair any short-term inconsistencies that emerge in an efficient way [58, 238]. While these

mechanisms support natural collaboration among users, existing approaches tend to be com-

plex, domain-dependent, and expose the user to frequent short-term inconsistencies. In the

following, operational transformation, serialization, object duplication, and dead reckoning

are examined.

Operational transformationwas first introduced by Ellis and Gibbs in [58] and has evolved

into one of the most important consistency control mechanisms for discrete applica-

tions [237, 238]. The basic idea of operational transformation is that an application instance

i immediately executes all operations that are causally ready. But in order to establish cor-

rectness, each remote operationOj,b is transformed into another operationO′
j,b before it is

executed so thatO′
j,b’s effect on the current stateSi is the same as the effect ofOj,b on Sj

at the timeOj,b was issued. This means thati changes all operations such that the resulting

state is identical to the one that would be calculated by the virtual perfect siteP . One im-

portant property of this scheme is that it considers relative operations (see Section 2.2). For

instance, letOj,b be an operation deleting the two characters “bc” in a text string “abcd”. The

application would encode this operation as “delete 2 characters starting at index 1”. But due

to concurrent operations,i’s state might change untilOj,b is received, e.g., when another user

inserts a character “x” at the beginning of the text string so that the new state ofi would be

“xabcd”. The operational transformation would then adjust the index encoded inOj,b such

that the new position of “bc” is considered before executingOj,b so thatSi = “xad” is reached.

This transformation scheme requires that the application stores the operation history, and that
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all operations carry information about the state that was valid when they were issued (e.g., in

the form of a state vector). It also requires clear and simple semantics of the application so

that the transformations can be computed automatically.

Operational transformation is a robust consistency control mechanism, which allows a site

to repair short-term inconsistencies on the basis of local information. It works best for ap-

plications employing relative state changes (e.g., text editors). But the transformation rules

tend to be very complex [238], and their correctness is difficult to verify. Moreover, it is not

granted that appropriate transformation rules can be found for all applications, especially for

continuous applications.

With serialization[133, 241], all application instances execute all operations in a distinct or-

der, e.g., in the total order on the basis of state vectors as given in Definition 4.5. Since a site

i does not know which operations will be received, it cannot anticipate this order. Instead,

an operation is executed as soon as it is causally ready. As for operational transformation,

all operations are stored in a historyH. In casei receives an operationOj that would vi-

olate the total order when appended toH, a short-term inconsistency has occurred, and the

correct order of the operations needs to be restored. This can be achieved by the following

“undo/do/redo” algorithm presented by Sun et al. in [238]: All operationsOk ∈ H with

Ok < Oj are undone, thenOj is executed, and all operations are redone that were undone in

the first step. Afterwards, the history ofi is identical toH of the virtual perfect site. Thus,

serialization achieves syntactic correctness as defined above1.

Like operational transformation, serialization is able to repair inconsistencies on the basis

of local information. Moreover, local operations can be applied immediately to the current

state resulting in a low response time for the user. However, it requires that the application is

able to undo all operations, which is especially difficult for continuous applications like the

multi-player game presented in Section 2.4.2. For example, consider a situation where the

effects of a shot need to be undone (also see Section 4.8).

Another optimistic consistency control mechanism isobject duplication(or multi-versioning)

as proposed by Sun et al. in [235, 236] for shared graphic editors. The basic idea is to handle

two conflicting operationsOi andOj that change the same attributes of the shared state by du-

plicating the concerned object and by applyingOi to one duplicate andOj to the other. Thus,

multiple versions of the same object might be created and displayed simultaneously. The

different versions of an object are generated such that they incorporate the maximum set of

non-conflicting operations. The participants can either select a certain version or keep them

1Note that the serialization scheme described here is not related to the concept of serialization for
databases [63]: Here, the application’s state depends on the execution order of operations, and the user is
not shielded from concurrent modifications.
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all. Object duplication establishes causality and convergence in the sense that all application

instances create the same object versions, but obviously correctness is not achieved. Draw-

backs to this approach are a complex management of multiple versions of the same object,

and a confusing effect for the user if too many different versions exist (e.g., when subsequent

operations create successive versions). Furthermore, for continuous interactive applications

this approach seems to be problematic. For example, consider a networked computer game

in which object duplication would result in two representations of the same object.

Dead reckoningis commonly employed for consistency control in continuous applications

such as distributed virtual environments and battlefield simulations [229, 224]. It uses a

combination of state prediction and state transmission: Each object of the shared state has

a single controlling application instance, e.g., for a plane the instance of the pilot. State

prediction means that all sites are able to calculate state changes caused by the passage of

time locally [188], e.g., the path of a flying plane. Only the controlling instance is allowed

to issue operations, e.g., when the pilot changes the direction of his plane. These operations

modify the state of the affected object such that it differs significantly from the predicted state.

Thus, the controlling instance has to notify all participants by propagating the updated state.

Following the soft state approach, operations are transmitted unreliably as states, and packet

loss is repaired by periodic announcements. Each site is only responsible for the objects it

controls. For example, a collision between two objects that an application instance does not

control is not discovered by that instance. Instead, the controlling site transmits an update

when it detects the collision.

In order to apply the consistency and correctness criteria to dead reckoning, we say that a

site j has received an operationOi,to,t∗ if it has received a state including the effect of that

operation. With this clarification it can be shown that the consistency criterion is fulfilled

by dead reckoning: If at timet two sitesi and j have received sufficient state updates so

that they know of all operations witht∗ ≤ t, they will have the same state. However, dead

reckoning cannot guarantee correctness because it transmits states instead of events, and the

transmissions are unreliable. Thus, it is not possible for an application instance that receives

a state update to determine how that state came to be. This in turn may lead to an incorrect

state at the controlling site. For example, consider a situation where two planes A and B

approach each other. At some point in time, the instance controlling plane A receives a state

update for B that puts B past A. If some preceding updates were lost, there is no way for

the controlling site of A to determine how B got to this position and whether the two planes

collided or not. The virtual perfect siteP will not have that problem since it receives all

operations reliably and in time. Such problems may not only occur due to packet loss, but

also when the controller of an object receives information about the interaction between two

objects so late that it was not taken into account when calculating its own state.
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The main advantage of the dead reckoning approach is its low complexity, which originates

from the concepts of a single controlling application and the soft state approach. Thus, as

Lin and Shab prove in [150], dead reckoning is highly scalable and is employed successfully

for large simulations and distributed virtual environments. At the same time, dead reckoning

does not provide correctness, might cause a high network load if states are large, and limits

user interaction by the single controlling site.

As we have seen, all consistency control algorithms discussed above have some severe draw-

backs or are applicable to a certain class of applications only. In the following sections, a

generic consistency control service is proposed, which was developed in this thesis. It can be

employed for all discrete and continuous applications and uses a combination of algorithms to

ensure correctness: First,local lagreduces the number of short-term inconsistencies. Second,

timewarprepairs inconsistencies exceeding the time span covered by local lag. Third,state

requestsrepair inconsistencies exceeding the time span covered by timewarp. The common

design principle of these algorithms is that all application instances execute all operations in

the same order (and at the correct execution time in the case of continuous applications).

4.4 Local Lag

The task of a consistency control algorithm is to handle operationsOi,to,t∗ that are received

after their scheduled execution timet∗ or that are received in a wrong order. Such incon-

sistencies are caused by the network delay: While an operationOi,to,t∗ that is issued by the

participanti at the timeto can be executed byi in time even whent∗ = to, all remote instances

will receive that operation later thanto due to the network delay. Figure 4.3 (a) depicts such

a situation for the operationOi,1,1 with t∗ = to. In case a sitej receivesOi,to,t∗ at t > t∗, a

short-term inconsistency has occurred at sitej, either because the local state has changed in

the meantime due to the passage of time or because concurrent operations might have been

received and executed in an order that is wrong when consideringOi,to,t∗ . In both cases,

the current stateSj,t 6= Sj,t∗, and applyingOi,to,t∗ to Sj,t would raise an inconsistency. In

Figure 4.3 (a), participantsj andk experience such a short-term inconsistency.

Even if it is assumed that a short-term inconsistency will eventually be repaired by a mech-

anism ensuring the consistency or the correctness criterion, it has a negative impact: First,

the user perceives an inconsistent state and might act on its basis. Second, the application

has to calculate the correct state, which might consume significant computational resources.

Finally, when the application displays the corrected state, it might be considerably different

from the (wrong) state visible before, causing artifacts such as jumping objects. Thus, it is

desirable to prevent short-term inconsistencies.
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Figure 4.3: Equalization of the operation delay

The lengthI of a short-term inconsistency depends on the offset between the local clocks

of the originating and receiving sites, the transmission delay, and on how much earlier an

operation was issued (to) than executed (t∗). It is calculated for sitej and operationOi,to,t∗ as

follows:

Ij(Oi,to,t∗) = d(i, j) − (T ∗
i − T ∗

j ) − (t∗ − to), (4.1)

whereT ∗
k denotes the reading of a common reference clock at the time the local clock at

sitek reachest∗, andd(i, j) denotes the (unidirectional) network delay fromi to j. If Ij is

negative, then the operation has not caused a short-term inconsistency. The longer a short-

term inconsistency persists, the more distracting it is for the users, and the more likely it is

that users will issue operations on basis of a state suffering from a short-term inconsistency.

Cristian proposes to prevent short-term inconsistencies by shifting the execution timet∗ of an

operation into the future [36], i.e.,t∗ > to for Oi,to,t∗. The time spant∗−to gained is then used

to distributeOi,to,t∗ to all application instances. In the optimal case, distribution is completed

beforet∗ is reached, allowing all instances to executeOi,to,t∗ at the correct time. For instance,

in Figure 4.3 (b) both participantsj andk receiveOi,1,3 before its execution time is reached

and simply buffer the operation until then. As long as this is the case for all operations,

they will be executed in the physical time order (see Definition 4.6), and the resulting local

states will be correct. Because of the artificial delay introduced by the originating site, Mauve

denotes this approach aslocal lag [155]. Local lag is related to the bucket synchronization

mechanism of the multi-player game MiMaze [77, 47].

The concept of local lag is not only useful for continuous interactive applications where it

prevents that operations are outdated immediately after they were issued, but is also beneficial

for discrete interactive applications. Here, the time span gained is used to sort concurrent

operations in the correct order (e.g., in the state vector order, see Definition 4.5) before their
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execution. Thus, local lag prevents a complex reordering of concurrent operations after their

execution as would be the case with the serialization mechanism (or a costly transformation

of operations).

Choosing the right value for the local lag is not easy. On the one hand, a large time span

t∗ − to is desirable to increase the time for distributing an operation to all destinations so that

short-term inconsistencies can be prevented. At the same time,t∗ − to also represents the

response time of the application (see Section 2.3.1): The local user issues an operation atto,

but its effects become only visible att∗. If this response time exceeds a certain threshold, the

user will notice the artificial delay, and the application might feel unnatural. Thus, there exists

a trade-off between the goals of achieving a low response time and minimizing the number

of short-term inconsistencies [161]. This trade-off was first identified by Mauve [155] and is

reflected in Equation 4.1.

The other factor that determines whether an operationOi,to,t∗ causes a short-term inconsis-

tency at the receiver is the clock offset between the local clocks of the senderi and the

receiverj that is given byT ∗
i − T ∗

j in Equation 4.1. This offset might even compensate the

network delayd(i, j) betweeni andj so that a response time of zero could be achieved for

t∗ = to without raising a short-term inconsistency. However, this works only in one direction.

As soon as the previous receiverj becomes the sender, short-term inconsistencies will occur

because of the clock offset, which now prevents that any operation arrives ati in time. Thus,

the clock offset cannot be used to prevent short-term inconsistencies.

In [155] and [161], Mauve investigates the trade-off between low response time and low

probability for short-term inconsistencies: A compromise has to consider the expected av-

erage network delay and the maximum tolerable response time for user actions. The aver-

age network delay depends on the locations of the participants, the quality of the network

path that the exchanged operations traverse, and the employed network protocols. Typical

network delays are: Less than 1 ms for a LAN, 20 ms within a European country, 40 ms

within a continent, and 150 ms for a world-wide session. Depending on the application sce-

nario and the operation issued, the maximum tolerable response time lies between 50 ms and

300 ms [155, 187, 223, 251]. For a given application, it is advisable to conduct a series of

psychological experiments to investigate an adequate value. In the ideal case, the tolerable

response time is larger than the expected network delay, so that a local lag value can be se-

lected that suppresses most short-term inconsistencies. In case the clocks of the participating

sites are not synchronized, the average clock offset should also be included in the local lag

value.

The main advantage of local lag is that the probability for short-term inconsistencies is re-

duced significantly, so that the execution of a heavy-weight repair mechanism is limited to
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exceptional situations where the local lag is not sufficient for distributing an operation to all

session members in time, e.g., when the network is congested. This is achieved by a slight

increase in the response time that might not even be noticeable for the user. A positive side-

effect is that varying network delays are leveled for the remote sites: Park and Kenyon find

that users can adapt better to the effects of a higher but constant notification delay than to one

that changes continuously [189].

Implementation of the local lag concept is straightforward and can be done independent from

a specific application in the form of a generic service as we demonstrate in [260] (see Sec-

tion 7.4.1): The service maintains a queue for all operations that is sorted by the physical

time ordering relation. If the execution timestampt∗ of an operationOi,to,t∗ is reached (and

Oi,to,t∗ is causally ready), the service notifies the application to executeOi,to,t∗. Note that

the local lag concept leads to a new programming paradigm. Traditionally, the functionality

triggered by a local event is as follows: Execute the event and display the new state, then

create and distribute the corresponding operation. With local lag, this changes to: Create

and distribute the operation, insert the operation together with received operations into the

local lag queue, wait until its execution time is reached, then calculate and display the new

state. Thus, with local lag remote and local operations are no longer distinguished once an

operation was created and enqueued.

Even though local lag can reduce the number of short-term inconsistencies significantly, they

can still occur when the time span gained is not sufficient do distribute an operation to all

participants. This might happen if the regular network delay between session members that

are far apart is too high, the network suffers from congestion and/or repeated packet loss,

or when the application allows only short response times for the local user. Indicative of a

possible inconsistency is the receipt of an operationOi,to,t∗ with t∗ < TC whereTC is the

current time of the receiver. In the next section, timewarp is presented as an efficient repair

mechanism for those inconsistencies that cannot be prevented by local lag.

4.5 Timewarp

With the timewarp algorithm, which was first described by Jefferson [128], an application

instance can repair inconsistencies that are not covered by local lag on the basis of a local

operation history. It is related to the serialization approach in the sense that each site ex-

ecutes all operations in a distinct order (see Section 4.3). In the following, first the basic

timewarp algorithm is presented and then various improvements for continuous and discrete

applications are proposed.
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Figure 4.4: The basic timewarp algorithm

4.5.1 The Basic Timewarp Algorithm

The timewarp algorithm requires each application instancei to store all local and remote

operations in a historyHi, which is ordered by a certain ordering relation (e.g., by the physical

time order or the state vector order). Moreover,i periodically saves a snapshot of the current

stateSi,TC
in Hi whereTC denotes the current time.

In casei receives an operationOj,to,t∗x with the execution timet∗x < TC , a short-term in-

consistency has occurred, which is repaired by atimewarpas described by Mauve [155]:

First, Oj,to,t∗x is inserted intoHi at the correct position (see Figure 4.4 (i)). Then, the first

stateSi,t ∈ Hi is determined withSi,t < Oj,to,t∗x, and the state of the application instance

i is set back toSi,t (ii). All states Si,t′ with Si,t < Si,t′ are possibly inconsistent and are

therefore deleted fromHi (iii). Finally, the operation sequenceHi,t with all operations

that follow Si,t is executed in a fast-forward mode untilTC is reached and the application

can continue processing at normal pace (iv). More formally,Hi,t contains all operations

{Oj,to,t∗ ∈ Hi | Si,t < Oj,to,t∗ ∧ t∗ ≤ TC} and is ordered according tot∗. To avoid a

distracting effect, only the final state of the application should be visible to the user.

Instead of deleting outdated statesSi,t′ as described above, they could also be updated while

calculating the new current state. This concept is also known as trailing states [37, 161]

and has the advantage thatHi will contain more states as possible starting points for future

timewarps.
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The timewarp algorithm ensures that all application instances execute all operations in the

same order and therefore fulfills the correctness criterion of Definition 4.4 as proven by

Mauve et al. in [161]. But the timewarp algorithm also has two major drawbacks: First,

the application must support the execution of operations in a fast-forward mode, which might

be difficult to implement for some continuous applications and which might consume a sig-

nificant amount of processing resources. Second, storing the history of exchanged operations

together with (potentially large) state snapshots requires adequate memory space. In the fol-

lowing, several improvements are proposed, which address these drawbacks.

4.5.2 Round-Based Timewarp

The performance of the timewarp algorithm can be improved considerably when it is exe-

cuted round-based: Instead of treating each operation individually, the application collects

all operations during a certain period of timeT . The operation with the smallest execution

time t∗x that has arrived duringT and that is due for processing then determines the start-

ing stateSi,t and the sequenceHi,t for calculating the new current state.Si,t is either the

state calculated in the last round or an older state so that a timewarp is required. Thus, at

most one timewarp perT is executed, independent of the number of late-arriving operations.

As we show in [161], this reduces the complexity of the timewarp algorithm fromO(n3) to

O(n2) wheren is the number of participants. Moreover, it prevents that a timewarp delays

the execution of subsequent operations, which might trigger additional timewarps.

The round-based timewarp is well-suited for continuous applications that often update the

state displayed to the user in a certain frequency (e.g., 25 updates per second).T can be

chosen such that this update frequency is matched when considering the estimated processing

time for one timewarp. IfT is sufficiently small, the user will not be able to notice that

operations are not executed at the exact timet∗. In Section 4.7.3, experimental results for this

approach are given.

Round-based timewarp is also applicable for discrete applications. Additionally, it might be

the case that the local state of a site does not need to be changed during an update intervalT ,

either because there are no new operations or because a late operation nevertheless does not

trigger a timewarp. The latter case is discussed in the next section.

4.5.3 Filtered Timewarp for Discrete Applications

Since a timewarp can be costly in terms of processing power, it is desirable to execute a

timewarp only when absolutely necessary. In this thesis, an approach was devised to reduce

the number of timewarps significantly with the help of application-level knowledge [260]: In
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the discrete domain, there exist quite a few cases where a timewarp is not required, and a

sitei can either ignore a late-arriving operationOj,to,t∗x (short:Oj) or execute it immediately

without a timewarp. The algorithm deciding on how to treatOj is depicted in Figure 4.5:

First, it is checked if there exist executed operationsOk,to,t∗ (short: Ok) with Oj < Ok. If

not,Oj is the last operation so far and can be executed without endangering correctness and

without a timewarp. Second, in case there is a set of operations{Ok | Oj < Ok}, for each

Ok it is checked if itconflictswith Oj. As defined above, two operations are conflicting if

they change the same aspect of the shared state.

In order to decide whether two operations are conflicting, the application has to provide an

appropriate functionconflict( Ok, Oj) . For instance, events changing the objects on a

shared whiteboard page conflict if they target the same object and the same attribute (e.g.,

color, size, position). Figure 4.6 outlines this function for the mlb. The mlb maintains an

operation history for each container object (i.e., page or chapter) so that operations that target

element objects of a container and also affect the state of the container can be discovered as

conflicting (e.g., operations changing the display order of graphical objects). The conflict

function for the mlb decides that two operations are conflicting if: (1) They target the same

object and change aspects of the object that are identical or dependent on each other, (2)

the two objects share the same parent and the stacking order or visibility information of the

objects is changed, (3) both objects change their parent to the same new parent, or (4) the

operations change the active object (e.g., the single page currently displayed is marked as

active). It is important to realize that an application may start with a very simple conflict

function returningtrue in almost all situations. Later on, this function may be improved

to prevent more timewarps. For the mlb, even a relatively simple conflict function already

reduces the number of timewarps significantly.

If no conflicting operationOk is discovered,Oj can be executed immediately without a time-

warp (see Figure 4.5) since the execution order ofOj and the sequence{Ok} has no impact on

the resulting state. Finally, if there exists at least one conflicting operationOk, it is checked if

it overwritesthe effects ofOj. This means that the state that would be reached after executing

Oj andOk is identical to the state that is reached by executingOk only. If there is at least one

suchOk, thenOj can be ignored, and no timewarp is necessary. As for determining conflict-

ing operations, the application has to provide an appropriate functionoverwrite( Ok, Oj)
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conflict(Ok, Oj)

1. object(Ok) = object(Oj)
– Ok is state orOj is state
– Ok is event with type delete
– Ok andOj are events
· type(Ok) = type(Oj)
· type(Ok) and type(Oj) ∈ {raise,lower}

2. object(Ok) 6= object(Oj) and
parent(Ok) = parent(Oj)

– Ok andOj are state
– Oj/k is state andOk/j is event with

type∈ {raise, lower, change parent}
3. object(Ok) 6= object(Oj) and

parent(Ok) 6= parent(Oj)
– Ok andOj are events with types =

change parent and target(Ok) = target(Oj)

4. Ok andOj are events with types = set active

overwrite(Ok, Oj )

1. object(Ok) = object(Oj)
– Ok is state andOj is event
– Ok is event with type delete
– Ok andOj are events
· type(Ok) = type(Oj)

2. Ok andOj are events with types = set active

Figure 4.6: Conflicting operations Figure 4.7: Overwriting operations

deciding whether one operationOk overwrites another operationOj. Figure 4.7 specifies the

overwrite function for the mlb. For instance, letOj andOk be events changing the color of an

object to gray and black, respectively. Then the object’s color will be black after bothOj and

Ok have been executed. Even if a timewarp were executed, the user would miss the fact that

the object was gray for a certain period of time, since only the final state atTC is displayed.

Note that the set of overwriting operations is a real subset of the set of conflicting operations,

meaning that not all conflicting operations are overwriting operations. For example, letOj

be a state creating a new object on a whiteboard pagep andOk be an event changing the

stacking order of another object onp. ThenOj andOk conflict regarding the display order of

all objects belonging top, butOk does not overwriteOj.

We denote this stepwise testing of the necessity of a timewarp asfiltered timewarpalgorithm.

It is able to significantly reduce the number of timewarps for a discrete application. In Sec-

tion 4.7.1, promising experimental results are presented for the mlb. However, its use is more

difficult for continuous applications due to the fact that here operations are valid only at their

given execution time. The execution of a late-arriving operationOj therefore generally re-

quires a timewarp. IgnoringOj is possible, but deciding whether the effect ofOj would have

been completely overwritten is generally more complex than in the discrete domain.

4.5.4 Restricting the Size of the Operation History

Besides its computational complexity, the timewarp algorithm also might have a high demand

on memory space for storing the operation history. The basic timewarp algorithm requires

that all operations of a session are kept indefinitely. Moreover, depending on the application,
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in particular the periodic state snapshots might be large. Thus, we devised three mechanisms

to limit the size of the operation history: First, long operation sequences may be replaced

by semantically equivalent operations. Second, operations that are known to have been suc-

cessfully delivered and executed by all session members can be deleted from the history [83].

Third, operations that are received exceedingly late are handled by a different repair mecha-

nism [260].

Unlike states and events, cues do not need to be stored in the operation history since they do

not change the application’s state or are followed by an event. In some cases, the application

might also be able to find a shorter semantical representation for an operation sequence that

occurred in the session without losing vital information. For instance, when creating a free-

hand line on an mlb page, each point added by the user is propagated immediately in order to

achieve a good responsiveness (see Section 2.3). But for later usage, this operation sequence

can be substituted with a single state containing the complete freehand line. This shortens the

history significantly.

The second possibility to reduce the size of the operation history is to remove an operation

as soon as it is announced to be executed by all session members [83]. In this case, a site can

assume that no concurrent operations are under way, which could trigger a timewarp. Such

announcements could either be exchanged explicitly or be derived from the state vectors

of operations: Let sitei receive an operationOj from sitej with state vectorSVOj
. Then

SVOj
[k] denotes the sequence number of the last operation thatj received fromk, i.e., j

implicitly acknowledges all older operations ofk. Under the condition thatOj is causally

ready, there can be no short-term inconsistencies triggered by operations fromj that are

concurrent to operations fromk with SNk ≤ SVOj
[k]. This means that fromj’s perspective

i can remove all operations ofk with SNk ≤ SVOj
[k] from its history. Oncei has received

similar acknowledgments from all participants, old operations can be deleted. This process

can be sped up by periodically exchanging status messages with the current state vectors of a

session member.

The third approach is to restrict the time spanTH covered by the operation historyHi by

deleting all operations fromHi that are older thanTC − TH [260]. This has two implica-

tions: (1) The range of the timewarp is limited, meaning that an inconsistency caused by an

operationOj,to,t∗x arriving exceedingly late witht∗x < TC − TH cannot be repaired by time-

warping. ExtendingTH will increase the probability that an inconsistency can be repaired

by a timewarp but will consume more memory space.TH should therefore be chosen by the

application in order to fine-tune this trade-off. For the mlb,TH is initially set to 180 seconds

and can be changed by the user. Such a large value forTH will make it very unlikely that

the operation history is insufficient. (2) The history does not start from the beginning of the

session. In order to execute a timewarp, the history needs to contain at least one stateSi,t
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for each object with a timestampt = TC − TH . In case the trailing state strategy is not used

by the application (see Section 4.5.1), a new state for each object should be inserted into the

history at least everyTH

2
. If a finer granularity is needed, the application might insert states

more frequently.

The last two mechanisms to restrict the size of the operation history bear the risk that a short-

term inconsistency cannot be repaired by timewarp anymore. For instance, a new participant

might late-join an ongoing session, obtain the current state, and issue an operation in parallel

to the operation of another member (also see Chapter 6). In this case, the second approach

might fail since participants clearing their history have no knowledge about the late-joining

application instance. The third approach fails when an operation is received extremely late,

e.g., when recovering from a partitioned network. If the local repair of a short-term inconsis-

tency is not possible, the application has to switch to a different mechanism and request the

concerned state from the other session members. Such a state request mechanism is presented

in Section 4.6.

4.5.5 Timewarp as a Generic Service

The timewarp algorithms described above were realized as an application-independent ser-

vice in this thesis [260] (see Section 7.4.1). One task of the service is to manage the operation

history once operations have passed through the local lag service and were executed by the

application. The history is sorted, older operations are deleted, and new states are inserted as

described above. In case a short-term inconsistency occurs, the timewarp service decides on

the necessary actions as depicted in Figure 4.5 by applying theconflict andoverwrite

functions provided by the application. Should a timewarp be necessary, the service delivers

the starting stateSi,t and the operation sequenceHi,t. The application executes those like

regular operations.

4.6 Requesting Full States

In case a short-term inconsistency cannot be repaired locally, the concerned application in-

stancei needs to request the current state from another session member in order to restore the

correctness of the application. A state request raises two questions: First, who should send

a state as reply, and second, how is it guaranteed that this state received is correct? A state

request mechanism that addresses these questions was developed in this thesis [260].

The first problem is a typical task for a multicast feedback mechanism: Because of the appli-

cation’s replicated architecture, there is no preselected server and a state request can be served
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by a number of session members. But only one answer (feedback) is actually needed. Since

it is a priori unknown which sites are able to respond to a request (e.g., an instance might

suffer from a known inconsistency), state requests are distributed via multicast to all session

members, and an appropriate site to serve the request is selected dynamically by a multicast

feedback mechanisms [74]. Here, theexponential feedback raisealgorithm of Nonnenmacher

and Biersack [183] is used: The basic idea is that each member able to answer the request

sets a feedback timer; the timer values are exponentially distributed. If this timer expires, the

state is sent by multicast. Should the answer of another site be received before the own state

is transmitted, the local timer is canceled. This prevents multiple answers.

The second problem is caused by the fact that a sitej that might want to answer a state request

is not able to guarantee the correctness of its own stateSj . For example, there might be a

late-arriving operation en route toj. A state should therefore carry sufficient information that

allows to check whether it is complete and correct (e.g., in the form of a state vector). The

requesting sitei can then be provided with a correct state byiterative state transmissionsor

by iterative state requests.

With iterative state transmissions, all sitesk compareSj to their local stateSk. The compari-

son can lead to four main results: (1)Sj includes the same operations asSk and nothing needs

to be done. (2)Sj includes all operations that are included inSk as well as some additional

operations. In this case,k has missed some operations and should adopt the received state

Sj . (3) Sk includes all operations that are part ofSj as well as some additional operations. In

this case,j has sent an incorrect or incomplete state, andk will send its own state to repair

this problem (using feedback suppression with exponential timers as described above). (4)

Both states contain operations that are not included in the other one. In this case, both states

suffer from short-term inconsistencies. Now it is checked which state contains more opera-

tions, using the sender identifiers as a tiebreaker if the number of operations is equal. IfSk

contains fewer operations thanSj , thenk discards its local state and adoptsSj . If Sk contains

more operations than the received state, thenSk is transmitted using the appropriate feedback

suppression. We expect this case to be very rare in practice since it is likely that another site

l possesses a complete state that it will distribute in the request process.

After a limited number of iterations, this algorithm will result in all sites having the same

state. If there is no single participant who has received all operations, the overall result is

a consistent state across all site that misses some operations. This is acceptable since it can

only happen because of the exceptional situation that a network is partitioned longer than

covered by the operation history. In this situation, it seems reasonable to keep the state of the

partition where most changes have been executed and adapt the state of the other partition(s).
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The second possibility to deliver a correct state to the requesting sitei is the iterative state

requestsapproach. Here, the responsibility for checking the stateSj sent in the reply lies

entirely withi: i compares the state vector (or other adequate meta-data) ofSj to information

gathered from received operations and from session messages, which are exchanged period-

ically among all session members. If this check leads to the result thatSj is incomplete or

incorrect, it is discarded, and another request round is initiated. This is repeated until the

check is successful. The iterative state request approach might take longer to complete than

iterative state transmission. But if it is assumed that under normal conditions a high per-

centage of session members hold a consistent state, and that sites suffering from a known

inconsistency do not answer to state requests, one would expect only very few cases where a

repeated state request is actually necessary.

For both approaches it is advisable to prevent new actions byi until it is verified thati’s state

is correct in order to prevent operations on the basis of an inconsistent state. Both the iterative

state transmission and the iterative state request mechanism can be managed autonomously

by a generic consistency control service. The application needs to provide only functions for

retrieving and setting the state of objects (see also Section 7.4.1).

4.7 Experimental Results

In the following, the consistency control mechanisms of local lag, timewarp, and state request

are discussed and employed for the mlb, for Instant Collaboration, and for the Spaceshooter

game. Furthermore, results from experiments and simulation studies are presented.

4.7.1 Results for the mlb

The discrete application mlb employs the generic consistency control service, which com-

bines local lag, timewarp, and state request in the form of iterative state transmission. In our

experience of nationwide mlb sessions, a conservative local lag value of 100 ms is sufficient

to prevent practically all short-term inconsistencies without having a negative impact on the

user. Even though some users notice the higher response time, they usually hold the system’s

local software performance responsible for it. Before executing an operation, its state vec-

tor is checked whether it is causally ready. If not, the operation is delayed until the missing

operations have been received. For handling timewarps, the mlb uses a combination of the

round-based and the filtered timewarp. For each chapter or page, an independent operation

history is managed as described in Section 4.5.4. These improvements to the timewarp algo-

rithm allow to execute a timewarp almost in real-time, with typical processing times clearly

below 50 ms on an average PC where the major time is spent for rendering the updated state.
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Figure 4.8: mlb experiment

In order to test the filtering approach for preventing timewarps, we conducted a series of

experiments for two participants collaborating with the mlb [260]. The experimental setup

is a worst-case scenario where each operation received causes a short-term inconsistency (by

introducing an artificial delay) and therefore is a potential candidate for a timewarp. The

task for the two participants was to outline a protocol stack as shown in Figure 4.8. By using

polylines rather than text, the number of operations and objects created during the experiment

is very high.

The prime source of timewarps in this scenario is the creation of objects such as the poly-

line segments that are used for the text: When the creation of two objects overlaps in time,

the corresponding operations are potential candidates for a timewarp since the display order

(foreground/background) of one of the objects could be wrong (see Figure 4.6). Another

potential source of conflicting operations is the resizing and positioning of the boxes. When

both participants are working on the same box, conflicting operations may happen.

The results of three runs of the experiment are shown in Table 4.1. The second column shows

the total number of operations that were received late by both participants, which is identical

to the total number of operations. In a more natural environment with an adequate amount

of local lag, it is expected that only those operations that are dropped by the network and

have to be retransmitted will arrive late. The third column shows the number of operations

that did not cause a timewarp since there was no executed operation with a greater timestamp

than the late-arriving operation (see Figure 4.5). Column four shows the number of opera-

tions that did not cause a timewarp because they were not in conflict with operations with a

larger timestamp. The fifth column indicates the number of operations that were overwritten

and therefore did not lead to a timewarp. Finally, the sixth column shows how many time-

warps took place. Overall, only0.3% to 1% of the late arriving operations actually caused a

timewarp, which demonstrates the efficiency of our approach.
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run late operations no later operations no conflict overwrite timewarps
1 687 310 323 47 7
2 515 193 295 25 2
3 594 246 314 31 2

Table 4.1: Timewarp performance

4.7.2 Results for Instant Collaboration

In this thesis, a consistency control service was also developed for Instant Collaboration (see

Section 2.4.3). Here, local lag is not employed because of two reasons: First, Instant Collab-

oration contains only discrete applications which means that local lag would be useful only

to coordinate concurrent operations. But concurrent operations are rather unlikely in typical

usage scenarios, and almost all consistency-related problems are caused by the interleaved

phases of synchronous and asynchronous collaboration. This aspect will be discussed in de-

tail in Section 6.7. Second, one major design goal was to keep the architecture as simple as

possible without relying on synchronized local clocks at the participating sites [83].

The consistency control mechanism of Instant Collaboration is based on state vectors, and op-

erations are cached until they are causally ready to be executed [83]. Correctness is achieved

with the round-based timewarp algorithm together with filtering. The size of the operation

history is limited by state vector analysis as described in Section 4.5.4. These mechanisms

were evaluated in different scenarios for synchronous and asynchronous collaboration that

reflect the activities of a typical work week of five days for small peer groups of two or three

members [83] (also see Section 6.7.2). In total, three objects are created per work day, and

each participant issues 50 state changes on the average per day. The simulated scenarios dif-

fer with respect to the time spans that a participant spends online or offline. Operations that

cannot be delivered because some participants are offline are cached until the receivers can be

reached again (please refer to Section 6.7.1 for details). The longer the time span is that some

sites spend offline, the more operations need to be cached, and the higher is the probability

that timewarps are triggered when these operations are exchanged later on.

When all participants collaborate synchronously over the entire simulation time, a timewarp

can happen only in the rare case where two or more operations targeting the same shared

object are issued concurrently. For a scenario with two participants, a total number of five

timewarps are triggered with an average number of 6.4 operations that need to be executed

in order to regain a correct state. When both participants work online for only 80% of the

simulated time, a timewarp becomes much more likely since concurrent actions can now

happen over the whole time span where at least one participant is offline. Consequently, a

total number of 27 timewarps occur with 6.7 operations to be executed on the average. When

the time that sites spend online is further reduced to 50%, 118 timewarps happen with an

average of 13.2 operations to be executed. In the last scenario, the two participants worked
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Figure 4.9: Size of the operation history

synchronously only for 20% of the simulated time. Since in this case many shared objects and

subsequent operations are actually created while being offline, the total number of timewarps

decreases to 44 with an average of 9.5 operations to be executed.

The effect of the algorithm to reduce the size of the operation history can be seen in Fig-

ure 4.9, which depicts the total number of operations exchanged in comparison with the

actual size of the history of the two participants, assuming an online time of 80%. In this

scenario, our algorithm is able to limit the size of the histories to approximately 25% of the

total number of exchanged operations. For the other scenarios, this number lies between 20%

and 40%. These savings seem to be only marginal but can be explained by the number of

objects, each with its own history.

4.7.3 Results for the Spaceshooter Game

The concepts of local lag and round-based timewarp are also used to ensure the correctness

of the shared state for the multi-player game presented in Section 2.4.2. In order to evaluate

the properties of these mechanisms and their effects on the user, several experiments were

conducted [161].

In a first scenario, two human players competed with each other, and the trade-off between

a low response time and a low probability for short-term inconsistencies was investigated

by choosing different values for the local lag and the network delay. A local lag below

120 ms was not noticed at all by the test persons. In case the average network delay exceeds

the local lag value, short-term inconsistencies occur. Their impact is the higher, the larger

the difference between network delay and local lag is because the starting state used in a

timewarp dates back further. Once this difference exceeds approximately 140 ms, users were

able to recognize visual artifacts like abrupt changes in the position of the spaceships.
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In the second experiment, a high number of usersn was simulated in order to analyze the

performance of the round-based timewarp algorithm. Besides verifying that the duration

of one timewarp increases byO(n2) with the number of participants, the experiments also

indicate that an optimized implementation can support up to 150 participants on a standard

PC when updating the state 25 times per second [161].

4.8 Undo of Operations

To undo operations is an important feature allowing users to take back incorrect or acciden-

tally issued actions [199]. Furthermore, Gordon et al. argue that with undo users can adopt

a trial and error strategy and easily explore alternative solutions [90]. Even though it might

be possible for a user to undo the effects of a former operation manually by creating new

operations, an application-supported undo is far more efficient; therefore most applications

have built-in undo functions (e.g., Microsoft Office applications). For distributed interactive

applications, undo is especially important since multiple users may issue concurrent and con-

flicting operations on the shared state of the application, and a user might not always be able

to foresee the actions of remote participants. Similarly, it should also be possible to redo

operations that were undone before.

But at the same time, providing undo and redo for distributed interactive applications is chal-

lenging since operations of different users are interleaved and may depend on each other. For

instance, consider the following situation: Useri deletes an object with the operationOi and

userj concurrently modifies the state of that object withOj such thatOi < Oj. Then useri

undoes his own operationOi. Now the question arises how this undo is to be handled: Should

the object, once it is restored, have the state that was valid when useri deleted it, or should

the modification of userj be included in the restored state? Because of these semantic de-

pendencies among interleaved operations of different users, the task of undoing and redoing

operations is problematic for distributed interactive applications: The application does not

understand the intentions of the user when issuing an undo operation and can therefore not

decide on the desired result. Nevertheless, from the user’s perspective an automatic undo

mechanism is desirable.

Undoing operations for continuous applications bears an additional challenge since the shared

state might not only have changed due to operations but also due to the passage of time in the

time span between issuing an operation and undoing it. But in this section, we concentrate

on discrete applications. First, the concepts of undo and redo are introduced more formally,

and fundamental design alternatives for undo algorithms are discussed. Then, existing ap-

proaches are examined. Following, the undo mechanism designed in this thesis for discrete

applications is presented, and its properties are analyzed.
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4.8.1 Formalization of Undo and Redo

There are two different notions of undo and redo: A strict one, which closely observes the

consistency criteria, and a relaxed one, which tries to achieve the user’s intention. In the

strict definition of undo, the desired effect of undoing an operationOi is to reach the state

that would have been calculated ifOi never had been executed, i.e.,Oi and its effects are to

be eliminated from the operation history. In the example described above, this would mean

that the undo operation should recreate the object, and the effect ofj’s operation should be

reflected in the object’s state. And redoingOi should result in the state reached by applying

Oi in the first place, i.e., redoing an operationOi means to undo the undo ofOi.

In the relaxed meaning of undo, the object is restored to the state that it had before the

operationOi to be undone was executed. This means that all operationsOj on the object

following Oi in the operation history are ignored. Thus, only the perspective of the user that

issues the undo operation is considered: In the example, useri wants to restore the object to

its former state. SinceOi < Oj, i is not even aware ofj’s operation, andOj should not be

reflected in the recreated object.

Recent literature seems to prefer the more formal notion of undo [28, 200, 211, 233, 234], but

both notions have their advantages and disadvantages. While the strict undo provably fulfills

the consistency criteria, the relaxed undo is significantly easier to handle for an algorithm.

As discussed above, it is not obvious which of the two meets the desired semantics of the

application better.

4.8.2 Design Considerations for Undo Algorithms

Besides the question of which notion of undo an algorithm should follow, there exist a number

of design choices that need to be taken into account, namely which undo mode to use, whether

relative operations need to be supported, and how undo and redo operations are encoded.

An undo mechanism can be realized in different modes, which determine the next operation

to be undone. In alocal undoscheme, a participant can only undo his own operations whereas

global undoincludes the possibility to undo remote operations as well [3]. Undoing a remote

operation might be confusing for the user when he is not aware of the other participant’s

intention, and is also likely to disturb the remote participant. Orthogonal to the decision

whether the undo mode should be local or global are the modes of linear and selective undo:

If operations can be undone only in the reverse order in which they were originally executed

(i.e., following the reverse order of the operation history), we speak oflinear undo. Alterna-

tively, with selective undo, arbitrary operations might be chosen as the next operation to be

undone [252]. In case global and linear undo are combined, the next operation to be undone
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depends on the local history of an application instance and might be different at different

sites.

Selecting an appropriate undo mode is application-specific, and an undo algorithm should

be able to undo any operationOi that is determined to be undone, independent of howOi is

actually chosen [233]. It is also possible for an application to support different undo modes,

which can be selected by the user, e.g., by providing different buttons for local and global

undo.

An important issue that needs to be considered when designing an undo algorithm is whether

the application employs relative operations (see Section 2.2). If this is the case, then undoing

an operationOi also affects all operations that followOi in the operation history, and an undo

algorithm must include appropriate measures to compensate side-effects. For instance, let

“ab” be the current state of a shared text editor. First, useri issues the operationOi to insert

the character “1” at position 3 at the end of the current text, then userj issuesOj to insert

“2” at position 2 so that the new state is “a2b1”. Wheni undoesOi, the position of “1” has

changed in the meantime, and the naive undo operation “delete character at position 3” would

lead to the incorrect state “a21” (whereas the expected state would be “a2b”).

The last design consideration concerns how undo and redo operations are propagated to all

session members. Basically, there exist two possibilities: If an undo is encodedsemantically,

it contains all information necessary to change the current state such that the effect ofOi on

the state can be undone. For instance, consider a shared whiteboard session where the user

i changes the color of a rectangle from green to blue withOi. Then the undo would contain

the original color green of the rectangle, and a remote application would only need to apply

the undo operation to its current state to execute the undo. This also implies that the undo

operation would be handled by the application (and its consistency control mechanism) in

exactly the same way as any other operation, e.g., an undo operation carries an independent

state vector.

In contrast, asyntacticundo identifies the operationOi that is to be undone (e.g., byOi’s

sender identifier and sequence number), and a site receiving such an undo needs to calculate

the necessary steps to execute the undo locally. Thus, a syntactic undo introduces a special

operation into the data exchange model of the application and can be recognized as such.

The advantage of syntactic undo is that it is more flexible, e.g., when application instances

have different operation histories. However, this scheme also introduces dependencies into

the operation history that need to be considered by the application and by generic services

operating on the data model of distributed interactive applications (see Sections 2.2 and 7.4).

Irrespective whether an undo is realized syntactically or semantically, we denote the undo

operation forOi asO−1
i , and the redo operation as(O−1

i )
−1

, which is not necessarily identical
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to Oi. For instance, in the strict meaning of undo, only the effects of(O−1
i )

−1
on the current

state are required to be the same as executingOi at its original position in the history.

4.8.3 Related Work

In [12], Berlage proposes a framework for selective undo in distributed interactive applica-

tions. An undo operationO−1
i is derived semantically from the original operationOi without

considering any relative operationsOj that might followOi in the history, andO−1
i is exe-

cuted on the current state. Thus, the approach follows the relaxed concept of undo. The user

can select the operation to be undone in a list containing textual descriptions for the opera-

tions of the history (e.g., “change color of rectangle 23 to green”), i.e., both local and remote

operations can be undone. This list can also be searched with regular expressions. Opera-

tions that currently cannot be undone are not listed. For instance, in case a later operation

has deleted the target object. For applications that depend heavily on relative operations such

as text editors [238], ignoring dependent operations is not a viable approach and might result

in severe inconsistencies. Another drawback is that selecting the operation to be undone via

text-based descriptions might be difficult for the user, especially in extensive histories. For

instance, objects are named by their internal identifier (“rectangle 23”), which has no mean-

ing to the user. From the user’s perspective, it might actually be faster to undo the operation

manually instead of searching the operation list.

The concept of operational transformation was introduced to realize consistency control es-

pecially for applications with relative operations (see Section 4.3). Operational transforma-

tion can also be extended to facilitate undo and redo functionality in a strict meaning. Such

mechanisms are proposed in a number of articles that differ with respect to the undo modes

supported and with respect to their technical details [200, 211, 234]. The common idea for

undoingOi by operational transformation is to first create an undo operationO−1
i that is

the direct inverse ofOi, e.g., if Oi = “insert character 1 at position 3” thenO−1
i = “delete

character 1 at position 3”. In a second step,O−1
i is transformed against all operationsOj

following Oi. The new undo operationO−1′
i is then applied to the current local state. All

undo operations need to be propagated syntactically since the local operation histories of the

participating sites might be ordered differently so that each site has to transform the undo

operation individually. The most powerful and generic undo mechanism is the one presented

by Sun in [234]. It supports all possible undo modes and is also able to handle conflicting op-

erations. However, adding undo and redo capabilities to operational transformation increases

the algorithm’s complexity considerably.

The consistency control mechanism of object duplication (see Section 4.3) is extended by

Chen and Sun in [28] to provide undo and redo. Object duplication handles conflicting oper-
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ations by creating multiple versionsobjk of the same objectobj. Thus, undoing an operation

Oi might delete a certain versionobjk of obj if Oi is the last operation in the operation se-

quence ofobjk conflicting with other versions ofobj. In this case, the concerned versions are

merged. Likewise, when redoing an operation, versions might be restored. The undo/redo

operation itself is encoded syntactically in order to keep the communication overhead low. A

severe drawback of the object duplication approach is that undo or redo might have complex

side-effects that create, delete or merge object versions. These effects might be rather difficult

to understand for the user.

4.8.4 Undo of Operations for the mlb

Since the mlb does not employ relative operations, an undo algorithm was designed based on

the main ideas of the selective undo presented by Berlage in [12]. It complies to the relaxed

notion of undo: An undo operationO−1
i is executed irrespective of any other operationsOj

with Oi < Oj < O−1
i . Moreover, undo and redo operations are encoded semantically in order

to avoid dependencies within the operation history of a session. From the user’s perspective,

O−1
i restores those attributes of the state changed byOi to the state that was valid before

Oi was issued. For instance, when undoing a delete operation, the object is restored to the

latest state that was visible to the user, and any concurrent operations modifying this state are

ignored. For this purpose, the application createsO−1
i for all operationsOi at the same time

thatOi is issued by the user2 such thatO−1
i contains all information necessary to undoOi.

For instance, whenOi deletes an object,O−1
i would be the entire current state of the object,

and if Oi changes the color of an object to green,O−1
i would encode a state change to the

object’s former color.

All undo operations are stored in an undo list. In case the user undoes an operationOi, the

appropriate undo operationO−1
i is retrieved and issued like any other operation, i.e., it is

assigned a current state vector and/or a current timestamp. The application instances handle

O−1
i like a regular operation, i.e., it is added to the operation history and might trigger a

timewarp if it is received too late. At the time the user invokes the undo command, a redo

operation(O−1
i )

−1
is created such that it is able to restore the state that was valid whenO−1

i

is issued. All redo operations are managed in a redo list that is emptied as soon as the user

issues the first operation manually after a series of undo commands. Likewise, when the redo

command is invoked, the corresponding undo command is added to the undo list. The mlb

maintains separate undo and redo lists for each document page.

2Please note that due to local lag the state of the application might be different at the timeto an operation
Oi,to,t∗ is issued and the timet∗ it is executed.
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Even though all possible undo modes are supported, this approach works best with the com-

bination of local and linear undo/redo. This allows to provide users with an interface that is

easy to understand and that resembles the functionality of well-known single-user applica-

tions. Like the consistency control algorithms presented earlier in this chapter, the manage-

ment of undo and redo lists can be realized in an application-independent way on the basis of

operations.

Since our approach follows the relaxed definition of undo, we will now examine its con-

sequences on the example of representative operation sequences and demonstrate that the

resulting shared state is reasonable. Some of these operation sequences are also known as

“undo puzzles” and are widely used to analyze undo algorithms [200, 211, 234]. Leti andj

be two collaborating users,Oi andOj two operations issued byi andj modifying the same

attribute of an objectobj, O†
i andO†

j operations that deleteobj, andO−1
i , O−1

j , O†−1
i , and

O†−1
j the corresponding undo operations.

Example 1:Consider the operation sequenceOi < Oj < O−1
i . O−1

i resetsobj to the state

it had before the sequence was executed and therefore undoesOj at the same time. This is

acceptable from thei’s perspective since the undo was invoked to restore the object’s original

state.

Example 2:O†
i < Oj < O†−1

i . Following the relaxed notion of undo, this restoresobj to

its original state and ignores the modification ofOj, which is acceptable fromi’s perspective

sincei never saw the effects ofOj and would be confused ifobj is not in the expected original

state. Fromj’s perspective, this means that the effects ofOj that were visible before are also

undone, which might be confusing.

Example 3: Oi < O†
j < O−1

i . In this case,O−1
i cannot be applied sinceobj does not

exist anymore andO−1
i holds only information about attributes that were changed byOi.

But in order to restoreobj, O−1
i would need to encode the complete state, which is not a

viable alternative: SinceO†
j andO−1

i could be concurrent operations,i does not know when

O−1
i would need to be an event and when a state. Thus, a state would always be required,

increasing the memory space for storing the undo and redo lists and also the network load.

Instead, the undo algorithm ignoresO−1
i if obj does not exist. This is reasonable when the

useri already saw thatobj was deleted but might be confusing ifO†
j andO−1

i are concurrent.

Example 4:O†
i < O†

j < O†−1
i . Similar to Examples 1 and 2,obj is recreated despite the

double delete operation. This meetsi’s expectation that wantsobj to be undeleted. In com-

parison, the operational transformation approach described by Sun in [234] would restoreobj

only when all delete operations are undone.
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In order to use this undo algorithm for the mlb, all operations on the mlb state are designed

such that they are absolute (see Section 3.3.3). Among all graphical objects, text is the most

critical in this respect. Current group text editors such as DistEdit [138] and REDUCE [238]

model operations to insert and delete characters relatively, i.e., operations identify the indices

where characters are to be inserted or deleted and adjust these indices by means of opera-

tional transformation in case they were changed by other operations. For the mlb, a different

approach is used: Each character is treated like a regular graphical object with its own unique

identifier. When undoing an insert character operation, the corresponding delete operation

can therefore be assigned unambiguously to its target character, even when this has changed

its position in the meantime. In contrast, undoing a delete operation restores the character at

its original index, which might not be what the users intended. For instance, letobj be “hello

world”, Oi = “delete e”,Oj = “insert my at index 0”, andOi < Oj < O−1
i . Then our undo

scheme would determineO−1
i as “insert e at index 1” and the resulting state as “mey hllo

world”. For the mlb, this is nevertheless acceptable since in typical mlb sessions text objects

are rather small and not edited concurrently by several users. Moreover, this problem does

not exist with linear local undo when operations are only issued by a single user. Also, the

situation described above might be problematic semantically but does not cause an inconsis-

tency. The major advantage of this approach is that it substantially simplifies the management

of operations and the history for the application as well as for generic services operating on

the data stream of the application (see Chapter 7).

To employ this undo mechanism for continuous applications would be rather difficult since

O−1
i would have to take the state changes into account that happened because of the passage

of time betweenOi andO−1
i . These changes do not only affect the target objectobj itself,

but might also influence other objects that have interacted withobj, e.g., in a collision of

moving objects. A better solution for the continuous domain might therefore be syntactic

undo operations, which delete the original operation from the history:O−1
i is dated back

to the execution time of the original operationOi, deletes (or neutralizes)Oi, and triggers

a timewarp in order to calculate the updated current state. RemovingOi from the history

might have severe side-effects on operations followingOi so that the updated state differs

significantly from the former state. Please note that all application instances would need to

execute a timewarp so that such an undo operation is heavyweight. Another drawback is that

an additional operation type is necessary, which needs to be considered by generic services.

These issues require further investigation.

Summing up, undo and redo are powerful commands, which allow a user to access and ma-

nipulate past states of the application. This is especially important for distributed interactive

applications allowing concurrent operations since it is difficult for a user to predict the side-

effects of his local operations that are interleaved with the actions of remote participants.
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Thus, it is much more likely that the resulting state does not meet the expectations and inten-

tions of the users when compared to a single user application. In the next chapter, other pos-

sibilities besides the explicit undo and redo commands are presented to visualize the sources

and the effects of such concurrent operations together with alternative operation sequences.

4.9 Conclusions

Replicated interactive applications need to synchronize the local copies of the shared state

managed by the application instances. The consistency of these state copies is endangered by

the concurrent exchange of operations. For continuous applications, the passage of time is

another source of possible inconsistencies when operations are received after their scheduled

execution time. Thus, the application needs to employ an appropriate consistency control

mechanism.

In this chapter, different consistency criteria were introduced, which need to be observed

by discrete and continuous applications:Causalityensures that necessary preconditions are

fulfilled before an operation can be executed, andcorrectnessguarantees that the state of all

instances is identical to the state of a virtual perfect site, which receives all operations without

network delay. Correctness can be achieved by executing all operations in the state vector

order (for discrete applications) or the physical time order (for continuous applications).

Following, the concepts of soft state and hard state were discussed, and after analyzing related

work, a generic consistency control service was presented. This service uses a combination

of consecutive consistency control algorithms to achieve correctness. In a first step, local lag

eliminates a large percentage of short-term inconsistencies by voluntarily delaying the local

execution of operations. Short-term inconsistencies not prevented by local lag are repaired

by timewarp, which uses the local operation history to recalculate the current state. With the

round-based timewarp and the filtered timewarp, two improvements to the basic algorithm

were presented. Moreover, possibilities to restrict the size of the local operation histories

were discussed. Due to this restriction, it is possible that an inconsistency cannot be repaired

by timewarp anymore. Even though this occurs only in exceptional situations, the consistency

control service employs a novel state request mechanism as a last resort. The feasibility and

the good performance of all of these algorithms were demonstrated on the example of three

applications.

In the last section, the possibility to undo and redo operations was identified as an important

issue for distributed interactive applications; it is closely related to consistency control. An

undo mechanism for discrete applications was presented, which is used for the mlb. This

mechanism seeks to observe the intentions of the local user when issuing an undo or redo
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command. In the next chapter, other possibilities for the user to analyze concurrent operations

and to explore alternative solutions and operation sequences are presented.



Chapter 5

Visualization of Conflicting Operations

The combination of local lag, timewarp, and state request presented in the last chapter is an

effective way to establish consistency for distributed interactive applications. Under regular

conditions, most short-term inconsistencies are prevented by local lag. And in the rather un-

likely case that local lag is insufficient and an operation is received at a site after its scheduled

execution time, a timewarp restores the correct shared state. From a technical point of view,

the timewarp algorithm is robust, scalable and economical with respect to its consumption

of resources. And in the worst case, when sufficient history data is no longer available, re-

questing state information from other session members allows the local application instance

to retrieve the current state.

However, from the user’s perspective, the execution of a timewarp might obstruct the collab-

oration among users or cause visual artifacts [91]. For example, in Figure 4.1, two concurrent

operationsO1 andO2 change the color of the same object. If we assume thatO1 < O2, then

the timewarp algorithm with filtering ignoresO1 at site2 and determines the object’s color

to be gray at both sites (see Section 4.5.3). While this is efficient, it also means that the par-

ticipant at site2 is not even aware of the fact that the first user also intended to change the

object’s color. Instead of finding a consensus between the two users about the correct state,

the timewarp algorithm favors the participant whose operation is determined to be last in the

operation history.

Another critical situation is shown in Figure 5.1: The user at site2 intends to raise the white

rectangle to the foremost position while the user at site1 wishes to have the following display

order from bottom to top: White rectangle, gray rectangle, black circle. Even though the

operationO2 issued at1 lies beforeO1, at site1 O1 is executed first. Thus, whenO2 arrives

at 1, a timewarp ensures the correct order of objects (gray rectangle, white rectangle, black

circle). Obviously, the final consistent state of this sequence violates the original intention
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raise 
raise O

O2

participant 1 participant 2

1

Figure 5.1: Concurrent operationsO1 andO2 trigger a timewarp at site1

of user1. And even though at site2 no timewarp is executed, the intention of user2 is also

violated. This effect of concurrent operations is the more disturbing for the users the laterO2

arrives, and the more operations and users are involved.

For continuous applications, a late operationOi,to,t∗ may cause a consistency-related visual

artifact even when the history does not contain an operation conflicting withOi,to,t∗: Let

Oi,to,t∗ modify the direction of a moving objectobj. Then the position ofobj has changed

since the scheduled execution timet∗, and the new position ofobj that is calculated by a time-

warp might differ from its current position so thatobj “jumps” to the corrected coordinates.

In all these cases, the timewarp algorithm displays the final, correct state. But as indicated,

this might be confusing for the users since they do not know how this state came to be. Thus,

from the user’s perspective, it would be desirable to have more insight into the effects of the

timewarp algorithm and into the effects of concurrent operations in general. In this chapter,

we therefore propose to provide information about conflicting operations and to show the

effects of serialization in order to help users to understand the intentions of others. The users

may then employ some social protocol to agree on the shared application state.

First, we analyze the popular concept of intention preservation and show that it is not suffi-

cient for our purpose. Then, semantic conflicts of operations are discussed in Section 5.2, and

important design options for visualization mechanisms are explored in Section 5.3. Related

work is analyzed in Section 5.4. Following, a novel technique to facilitate collaboration and

awareness by visual analysis of the operation history is presented in Section 5.5. The chapter

is concluded in Section 5.6.

5.1 Intention Preservation

A consistency criterion that addresses conflicts in concurrent operations is defined by Sun et

al. in [238] with intention preservation: A distributed interactive application achieves in-

tention preservation when executing an operationOi on the current shared state has the same
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effect as executingOi on the state that was valid at the timeOi was issued. This means that the

original intention of the user is preserved even when the state of some application instances

was modified by concurrent operations in the meantime. Intention preservation mainly aims

at relative operations. For instance, most multi-user text editors use relative insert and delete

operations identifying the position of the concerned characters (e.g., “insert u at index 1 of

string ct”). These positions might have changed due to concurrent operations so that exe-

cuting the original operation would lead to an unintended state. Operational transformation

is a consistency control mechanism that complies with intention preservation by changing

the referenced indices of text operations such that the desired effect is achieved [238] (see

Section 4.3).

However, intention preservation is only successful as long as concurrent actions are not se-

mantically opposed, e.g., when changing the meaning of a sentence. Moreover, for absolute

operations it is not possible to preserve the intentions of all users. For instance, in Fig-

ure 4.1 the rectangle can be either black or gray. The approach of object duplication seeks

to overcome this limitation by creating multiple versions of the same object in the case of

conflicts [236]. But it offers no support for merging different versions and finding a joint

state (also see discussion in Section 4.3).

In the following, we concentrate on serialization as the consistency control algorithm and on

semantic conflicts of operations where the users alone are able to determine the desired state.

5.2 Semantic Conflicts in Operations

While many distributed interactive applications allow all participants to access and modify

the objects within the shared workspace at any time, it may happen that users issue operations

thatconflict semantically. This might lead to a state that does not meet the users’ expectations

and that may be difficult to interpret. More precisely, two operationsOi,ti andOj,tj created at

the sitesi andj at the timesti andtj conflict semantically in case they modify interdependent

aspects of the shared state. For instance, letOi,ti change the position of a rectangle andOj,tj

delete the same rectangle. Then the two participants obviously disagree about the desired

state of that rectangle. A critical situation occurs when such operations are issued within a

brief time span so that the users are not aware of each others’ actions. This means thatOi,ti

andOj,tj are not necessarily concurrent (see Section 4.1.1). Instead, the critical time span

tcr = |ti−tj | depends on the reaction time of the users. For the mlb, preliminary experiments

indicated thattcr is approximately one second when the concerned slide is completely visible

on the screen. The application should therefore visualize all semantic conflicts withintcr in an

appropriate way so that the users are aware of the conflict and are able to find a compromise.
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Semantic conflicts can be discovered when checking received operations against the operation

history using a conflict function similar to the one given in Figure 4.6 for shared whiteboards1.

This should be done for all operations and not only in case a timewarp is triggered. For

instance, both users in Figure 5.1 should be made aware of the emerged conflict so that they

will be able to find an agreement about the objects’ order.

5.3 Design Considerations

Semantic conflicts in user actions can be discovered using predefined functions such as the

one given in Figure 4.6, and they could be resolved syntactically by a consistency control

mechanism such as timewarp where the final shared state is calculated on the basis of certain

rules. However, the application itself is in general not able to determine the desired state. This

would require the computer to understand the motivations and intentions of the users, which

is not possible. Instead, a distributed interactive application should provide information about

any detected conflicts so that the users are aware of them and are able to resolve them. Thus,

our main goal is to visualize conflicting operations and the effects of the timewarp algorithm.

For this purpose, we must determine which information should be visualized, and how that

information should be visualized.

First of all, it should be indicated if a timewarp was triggered or if a conflict occurred so that

the user is aware of this situation. Then the user needs information about all the operations

that are involved in a particular conflict: Which objects are modified and how? And where is

their place in the shared workspace? Which participants are responsible for the operations?

Moreover, since single operations are usually not sufficient to present “the big picture”, addi-

tional information about the general course of action might be necessary, e.g., about the task

that a user is currently working on. In this context, information about related operations that

were issued earlier or by different participants might also be useful. Finally, since a time-

warp might change the order of operations within the history, it is interesting to know about

alternative states that would be reached with a different sorting criterion and that might be

preferred by the session members.

Now the question arises in which form the relevant information about conflicting operations

should be visualized. Again, there are different possibilities concerning the placement of

information (where), the representation (how), the trigger (when), and the duration (how

long): First, data can be displayed within the shared workspace, e.g., next to the concerned

1A function to check for semantic conflicts would differ in some details from the one given in Figure 4.6,
e.g., if both operations are events deleting the same object this would not be considered to be a semantic conflict
since both users have the sameintention.
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objects. While this provides a direct reference, it might be distracting or hide the content of

the workspace in case there is not enough screen space. Alternatively, information can be

shown in a separate window. This prevents that the workspace becomes cluttered but makes

it more difficult to relate awareness information to their objects or actions.

Second, information can be represented in different ways as discussed by Tam in [244]. Most

common are graphic representations such as icons or simple objects. Information can then be

encoded using different colors (e.g., mark objects that are changed by conflicting operations

in red), shapes (e.g., show a delete event as cross), and sizes (e.g., display the names of

conflicting participants in a larger font size). The nuances and order within a single category

also expose information. For instance, there might be only two different colors to mark

participants as either involved in a conflict (e.g., red) or not (e.g., blue), or a continuous

graduation from black to light gray may indicate the recency of a conflict with an aging

effect (see Section 3.5.1). However, these graphical representations also require that the

user acquaints himself with the respective meanings, which is increasingly demanding with a

rising number of information categories. As an alternative, information can also be encoded

as textual descriptions, which are easy to understand but might require more time to take

in. In addition to static visualizations, animations are effective in demonstrating complex

circumstances and in catching the user’s attention. Aside from animating single pieces of

information (e.g., operations or participants), the operation history itself can be animated,

which allows the user to review the (complete or partial) course of action of a certain time

span.

Third, information can be displayed automatically or on the explicit request of the user, which

is a tradeoff between effort and distraction. And fourth, the data might be visible permanently

or only for a short period of time. While a temporary visualization releases screen space, vital

information might disappear too quickly.

When designing a visualization mechanism, some general issues have to be considered: First,

the mechanism should be easy to use without imposing too much overhead since participants

would switch to other information retrieval strategies otherwise, e.g., explicit audio com-

munication. Second, while all necessary information should be displayed, an information

overload where the amount of information has a negative impact on the performance has to

be prevented [182]. Since this issue depends on the user, the mechanism should be adaptable

to the user’s expertise by setting the level of detail (beginner vs. expert). In this context, the

tradeoff between displaying fine-grained information about the individual operations on the

one hand and about the general context on the other hand is especially challenging. Third, the

information should be available when the user wants to access it, including the possibility to

review conflicts that occurred at some time earlier. Finally, a user should be able to analyze

information and explore alternative states locally without disturbing remote participants.
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5.4 Related Work

Providing the users of a distributed interactive application with awareness information about

simultaneous and possibly conflicting state changes has been identified as a vital aspect,

which determines the success of such an application [51, 59, 91]. However, most existing

work focuses on general awareness information about past and present changes and does not

address the specific effects of consistency control mechanisms. In the following, we discuss

some existing approaches, which serve as a basis for the mechanisms presented in the next

sections.

The concept of visualizing the operation history was first introduced for single-user applica-

tions where it proved to be effective and easy to use. For instance, Chimera [143] illustrates

the evolution of the application’s state in a separate window by a series of state snapshots,

each displayed as a small thumbnail. In Interlocus [109], such a snapshot history is the inter-

face to the undo functionality so that the user can select the state to be restored.

The explicit visualization of the operation history is also a promising technique for distributed

interactive applications. A first approach was presented by Beaudouin-Lafon and Karsenty

in [11] where the user is provided with a VCR-like interface. In [87], the history itself is

represented as a timeline, which is enriched with meta-information next to those events that

are of particular interest to the user. For instance, leaving and joining participants are marked

by specific icons on the timeline. Thus, the potentially large history of a session becomes

searchable so that the user has quick access to important information. Such indexing can be

realized with different levels of detail and different types of meta-information (e.g., explicitly

created vs. derived from other data) [82].

Different methods to display past state changes of a shared drawing area in general are in-

vestigated by McCaffrey in [163]: A change index describes the operation history textually

(e.g., “Alice creates an oval”), a trailing function shows the path of moved objects, and a

replay mechanism repeats the course of action during a certain time span. The aim of these

methods is to provide information about how the current state came to be in case the user

did not keep track of the joint editing process or wants to review it. This is also known as

change awareness[244]. McCaffrey finds the replay mechanism to be most successful when

controlled via the change index [163]. However, the index might become obscure when the

history is large. In [244], Tam uses a combination of techniques to visualize changes in a

shared drawing area, including a thumbnail overview, which is always visible in a separate

window, color codings and textual descriptions within the shared workspace, and a replay

mode. Information is given concerning the changed object, the operation, and the author.

The system allows the user to investigate changes in various levels of detail, e.g., in the

thumbnail overview all modified objects are marked, and during replay minor changes can
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be omitted. Since the replay always starts at the beginning and does not offer a fast-forward

mode, it might take a long time to analyze a certain history.

A mechanism to manage multiple, alternative operation histories is presented by Edwards

in [56]: Instead of automatically merging the operations of multiple users into a single, linear

operation history by serialization, the operations form a directed graph with different paths,

which may split and join anytime. Each node of this operation graph reflects a different

application state, and the path from the initial state to a certain node represents the history

of that particular state. The graph itself is displayed so that the user can navigate on it and

explore the different versions of the state. The current position in the graph determines the

state that is shown in the main application window. Thus, the user has direct access not

only to past states but also to alternative versions, similar to the object duplication approach

discussed in Section 4.3. Moreover, the user is allowed to change the operation graph at

arbitrary positions by issuing new operations. Depending on the editing mode, the graph is

split such that one branch reflects the modified state and the other preserves the old state.

The inserting mode keeps the number of paths and integrates the change into all subsequent

parts of the graph. Semantically, this means a direct manipulation of the past. Alternatively,

different paths might be joined in order to create a common state reflecting the changes of

multiple users. When new operations are issued, the operation graph is analyzed with respect

to possible conflicts [55]. For instance, a delete operation that is inserted somewhere in the

graph might cause conflicts with subsequent operations targeting the deleted object. Edwards

discusses strategies to handle these conflicts by discarding the conflicting operation or by

splitting the affected path [55].

While this approach is very flexible and allows to explore and preserve different versions of

the shared state, the operation graph becomes rather complex after a few operations of dif-

ferent users. Keeping track of these multiple “realities” is difficult, especially since users can

work on different parts of the graph (i.e., different points in time) simultaneously. Inserting

operations at earlier positions of the history graph is likely to introduce additional conflicts in-

stead of resolving them. Finally, the system lacks specific aids to merge conflicting paths into

a single and non-conflicting shared state, which should be the ultimate goal of a distributed

interactive application.

5.5 Visualization of Conflicting Operations

The goal of this chapter is to introduce a visualization mechanism that helps the user to

understand how the shared state of a distributed interactive application evolved, especially in

cases where operations of different participants conflict or where an operation is received so

late that a timewarp is required. Such a visualization might support the user in changing the
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Figure 5.2: mlb with visualized operation history

content of the shared workspace to the semantically desired state and in coordinating future

actions with other session members.

For the timewarp algorithm, each application instance needs to store at least recent parts of

the operation history (see Section 4.5). As discussed above, the history contains important

awareness information: An explicit visualization of the history is an effective way to show

the course of action of the respective participants and the correlation among their operations.

We therefore propose to provide the information discussed in Section 5.3, i.e., who changed

which object by which operation conflicting with which other operations, by means of a

graphical representation of the operation history, which the user can access and analyze if

needed. Since this information is already available at each site, such a mechanism causes

only little overhead for the application.

A prototype for the visualization of the operation history was designed in the course of this

thesis and was integrated into the mlb. While the mlb is a discrete application, most of

the presented mechanisms are also applicable to the continuous domain. As depicted in

Figure 5.2, the history is visible below the shared workspace of the mlb. The interface offers

rich information about operations, objects, and participants, provides a replay function, and

allows the user to explore past actions and alternative states. In the following, these features

are discussed in detail.
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Figure 5.3: Visualization of the operation history

5.5.1 Representing the Operation History

The history is represented as a timeline, which holds an icon for each operation (see Fig-

ure 5.3). The operations are displayed in the order of their execution times: The most recent

operation is shown on the right, and when a new operation is executed, it is appended to the

timeline. An operation icon encodes different information depending on its shape, color, and

background: Operations issued by the local user have an outgoing arrow (1), while all remote

operations show an incoming arrow (2). Operations that are part of a conflict sequence are

marked by a dot that is either red (3) or orange (4) in order to distinguish among different

conflict sequences. In (3), one remote and one local operation conflict semantically. In case

the application detects such a conflict, the visualization of the history is updated immediately,

allowing the user to keep track of all changes. In addition, conflicts are also indicated within

the shared workspace by attaching a tool-tip window, which contains the names of the con-

flicting participants next to the concerned object (compare Figure 3.7). Moreover, the names

of the involved session members are highlighted in red in the mlb’s participant list, degrading

back to light gray (compare Figure 3.8). As discussed in Section 5.2, all conflicts are visual-

ized for operations whose execution times lie within a certain time span. By default the most

recent conflict is displayed, but the user can also choose to see all conflicts (5) or a conflict

that occurred at a certain time (see Figure 5.4 (1)).

When selecting an operation icon that is part of a certain conflict sequence, the entire se-

quence is marked so that the history can be examined by the user. Also, the corresponding

object is highlighted in the shared workspace so that the user can explore which object be-

longs to which event (see Figure 5.2). Vice versa, all icons targeting a certain object are

highlighted by a white background when the object is selected.

5.5.2 Exploring Past States

Our visualization scheme includes a replay function for reviewing the past course of action.

It is controlled with a VCR-like interface (see Figure 5.3): After pressing play (6), operations

are replayed in the order given by the history, and the appropriate state is displayed in the
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workspace window. The replay can run either in the original time lapse or in a fast-forward

mode (7). The skip buttons (8) change the current position in the history. The start time for a

replay is limited by the oldest operation that is held by an application instance. The operation

that was executed last is marked by a green background (4 left). Moreover, the target object

of the last operation executed is highlighted in the shared workspace, and the participant that

issued this operation is named in a tool-tip window next to that object (this feature can be

disabled since it might be distracting). All events not yet executed are displayed with gray

icons (10), instead of black ones (2).

The user can also browse through the history by means of a slider (9). The slider’s position

marks the last operation executed. When the slider is moved, the content of the workspace

is updated accordingly. In preliminary experiments, the slider-controlled history browsing

was found to be very effective and allows a fast access to past states and other awareness

information.

Exploring the operation history has only effects on the local view and does not disturb remote

users. While a past state is displayed, objects cannot be created or modified. All remote

operations received in the meantime are appended to the history, but their effect is not visible

until the replay reaches their scheduled execution time. An operation is marked as new (11)

until it is executed for the first time so that the local user is aware of remote users’ actions.

After the latest operation was executed, the local user is able to modify the state again.

The application can realize the replay mechanism either by the timewarp algorithm or by the

undo functionality. In the first case, a timewarp is executed when a state that is older than

the current one is to be displayed (e.g., when moving the slider to the left or when jumping

to the history’s beginning). When moving forwards in time, the respective next state can be

calculated by applying the next operation to the current state at the correct execution time.

This execution time is determined on the basis of the current time and the offset between the

execution times of the current and the next operation (divided by the fast forward factor if

necessary). The advantages of the timewarp-based approach are that it is easy to implement

since the required algorithms are already available, and that it is applicable to all applications.

However, executing a timewarp is costly in terms of processing power, which might be critical

when browsing through the history.

For the mlb, it was therefore decided to implement the replay with the undo and redo func-

tionality described in Section 4.8.4: When moving backward in time, the last operation ex-

ecuted is undone by applying the appropriate undo operation, and when moving forward in

time, operations are redone. Jumping to a position (e.g., to the end of the history) is realized

by executing an entire sequence of (undo) operations. While this approach requires that the

application is able to undo all operations (as it is the case for the mlb), it achieves a very
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Figure 5.4: Exploring alternative states

good performance resulting in smooth state updates even when skimming quickly through

the history.

5.5.3 Exploring Alternative States and Changing the Current State

A user might not only be interested in how the current state came to be but also in alternative

states. For instance, when several users issue concurrent and conflicting operations, it is

useful to understand the intentions of a certain user. For this purpose, a dominating user

can be selected as depicted in Figure 5.4 (2). This disables the operations of all other users,

starting from the operation executed last. In the situation shown in Figure 5.4, some remote

operations are disabled, indicated by a flat icon (3) while enabled operations are sunken.

Starting the replay or browsing the history will now apply enabled operations only to the

workspace. Thus, the workspace shows the evolution of an alternative state. Similarly, the

evolution of certain objects selected in the workspace can be tracked while all other objects

remain unchanged.

Moreover, single operations can be disabled or enabled by switching to the change mode

(4) and clicking on the icons. In case the execution time of a disabled operation lies before

the time of the current state, the workspace is updated immediately to reflect the modified

history. As described above, this can be realized either by executing a timewarp on the basis

of the changed history or, as in the case of the mlb, by undoing the concerned operations. In

some cases, it might also be necessary to disable subsequent operations together with the one

disabled by the user. For instance, when disabling a create operation, all other operations for

the same object need to be disabled as well.

Disabling certain operations affects only the local view, i.e., the current shared state is not

affected. But it might happen that the user creates a state that she actually prefers. For

instance, she might not have issued a certain event if she had known about the modifications

of another user, e.g., in the situation given in Figure 4.1, she might not have changed the

object’s color. Or perhaps operations were issued on the basis of a state that suffered from

a short-term inconsistency (see Section 4.4). For such cases, a convenient way to alter the

shared state is provided: The state displayed in the user’s local view can be finalized by
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pressing the apply button (5). Then, the local state becomes the new shared state for all users

and is propagated to all sites.

Again, this mechanism is realized using the undo functionality of the application: For each

disabled operation, the corresponding semantic undo operation is created and distributed to

all session members (see Section 4.8). Thus, the original operation history is not modified but

new operations are appended to the history, become visible in the representation, and can be

analyzed and undone if desired. As for undo, only disabled local operations can be finalized.

In other words, selective local undo is realized via the visualization of the operation history.

While being straightforward for discrete applications, this mechanism might be rather diffi-

cult (or even impossible) to realize in the continuous domain. Implementing the propagation

of a modified state via timewarp instead would require to notify all remote sites about the

events to be undone so that these can execute a timewarp on the changed history. This is

considerably more complex than the semantic undo approach and has the severe drawback

that all sites need to store the same parts of the event history. And in order to redo undone

events at a later point in time, undone events cannot be removed from the operation history.

5.5.4 Summary of Visualization Techniques

Summing up, icons indicate whether an event is local or remote, conflicting or not, is exe-

cuted or not, is the last event executed, is enabled or not, and is selected or not. Although

it would be possible to encode even more information into an icon such as the operation’s

type (e.g., create, move, etc.) or the responsible user, this would increase the complexity of

the representation. Instead, detailed textual descriptions for each operation are provided via

a tool-tip window (see Figure 5.4 (8)).

Besides giving an overview, the operation history allows to replay past actions and to explore

alternative states as described above. The information contained in the history can be an-

alyzed in a time-based, object-based, or participant-based fashion. When the user interacts

with the representation of the history, the (local) content of the workspace is updated immedi-

ately. This connection between the history window and the workspace window is intensified

by highlighting the corresponding parts when an object or an operation icon is selected.

5.5.5 Lessons Learned and Discussion

The properties of the visualization scheme devised in this thesis were evaluated in preliminary

experiments with two participants. The users’ task in these experiments was to furnish a small

apartment by placing furniture from a given set (see Figure 5.2). In this setting, it is likely

that the participants move the same piece of furniture concurrently and raise a conflict. By
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introducing artificial network delays, conflicts could be triggered explicitly. The experiments

indicate that the visualization mechanisms provide sufficient information for the users to

notice and analyze conflicts. Especially the slider-based browsing of the operation history

together with the possibility to review the operations of a certain participant proved to be

very efficient. In this context, we also plan a feature that allows to save different versions of

the application’s state so that the user can quickly compare alternative states.

However, some shortcomings were discovered as well. First, the user has to acquaint himself

with the different visualizations. In an earlier prototype, the history was displayed only when

a conflict occurred or when requested by the user. But we discovered that a permanent view

of the history together with immediate updates and tool-tip descriptions of icons accelerated

the user’s learning process.

When the remote users continue to issue operations, analyzing the history might be too slow

so that the local user permanently lags behind. An analysis might also be difficult when

multiple operations conflict. Furthermore, changing the shared state by disabling operations

is problematic when several users do this at the same time. In such situations, it is likely

that new conflicts emerge, and that the resulting state violates the users’ intentions once

more. In order to lower the probability for repeated conflicts, it is not allowed to disable

remote operations when finalizing a state. The risk for new conflicts might also be reduced

by indicating which users are currently reviewing the history so that users can coordinate.

In sessions with many members and a high activity, the operation history might become rather

large, making its visualization difficult to analyze2. While the size of the operation history

can be reduced significantly by replacing longer operation sequences as described in Sec-

tion 4.5.4, it might still be too large. Thus, we provide an overview mode (see Figure 5.4 (6))

where homogeneous operation sequences are subsumed and displayed as a single icon (7).

A sequence is homogeneous when all operations target the same object, do not conflict, and

originate all either from the local user or from remote participants. For instance, subsequent

move operations to place an object are combined into a single icon.

5.6 Conclusions

We believe that the success of a consistency control mechanism for distributed interactive

applications depends on both technical and human factors: Besides satisfying the formal

consistency and correctness criteria, being scalable and easy to implement, the resulting be-

havior of the application as well as the calculated shared state must meet the expectations of

2By maintaining separate histories for each page, the mlb lessens this problem (see Section 4.7.1).
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the user. In this chapter, we therefore discussed semantic conflicts in the actions of different

session members. In order to provide awareness information about operations, objects, par-

ticipants, and about the effects of the consistency control algorithm, a visualization scheme

for the operation history was devised. This graphical representation also allows to replay

past actions and to explore alternative states. With this information, the user can detect and

analyze past conflicts, and may be able to prevent future ones. This approach is independent

of a specific application and can be implemented as a generic service.

The visualization of conflicting operations led us into a novel research area: The semantic

analysis of the data streams of distributed interactive applications. The meta-information

extracted from such data streams could also be used to identify interaction patterns among

users (e.g., who interacted with whom for how long), to create general session statistics (e.g.,

number of members and duration), and to index and access recorded sessions (e.g., search for

the modifications of a certain participant), which is mostly time-based up to date [115] (see

Section 7.4.3).

In the future, we plan to conduct a more thorough evaluation of different conflict scenarios

in order to address the shortcomings of our approach as discussed above. Such user studies

could also help to quantify the benefits of the visualization mechanisms with parameters such

as task completion time, success, user behavior, and user satisfaction [102]. Moreover, it

would be interesting to employ our visualization techniques for other distributed interactive

applications. Besides continuous applications, applications that support asynchronous collab-

oration might benefit in particular since conflicts are much more likely when the propagation

delay of operations is not close to real-time (see Sections 2.4.3 and 4.7.2). This aspect is also

discussed in the next chapter where algorithms to update application instances that missed

parts of the operation history are presented.



Chapter 6

Support for Late-Joining Session

Members

Distributed interactive applications often support dynamic groups where users may join and

leave at any time (see Section 2.3.1). But a participant joining an ongoing session has missed

the data that has previously been exchanged by the other session members. It is therefore

necessary to initialize the application instance of the late-comer with the current shared state.

Only thereafter the user is able to participate in the session. For example, a user late-joining

an mlb session did not receive the actions that lead to the creation of the document page cur-

rently displayed, and the application instance of the late-joining member needs to be provided

with the current state of that page. An initialization is also required for recovery purposes in

case of hardware or software failures (e.g., temporary network outages).

The late-join problem is challenging in particular if the state of a distributed interactive ap-

plication is large and complex. Most existing distributed interactive applications implement

some form of support for late-comers without further investigation of alternatives and conse-

quences. As we shall show, this may lead to high network and application loads as well as to

consistency problems, which could be prevented with an appropriate late-join mechanism.

In the following, the late-join problem for distributed interactive applications is investigated

in detail. A generic solution which is scalable, robust, and flexible is proposed: Scalability

and robustness are reached by a distributed algorithm in combination with group communica-

tion. In order to be flexible, a policy model allows a late-joining site to structure and optimize

the initialization process according to its specific needs. Our late join algorithm is applicable

to discrete and continuous interactive applications; as in the previous chapters, these differ

mainly with respect to their consistency requirements.
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The remainder of this chapter is structured as follows: First, the design space for late-join

algorithms is discussed by means of a general classification scheme devised in this thesis.

In Section 6.2, existing work is outlined. Following, a novel late-join algorithm is proposed

in Section 6.3. Possibilities to ensure the consistency of the shared state in late-join situa-

tions are examined in Section 6.4. The properties of this algorithm in comparison to design

alternatives are evaluated in simulation studies in Section 6.5. How the late-join algorithm

can be used by different applications is demonstrated in Section 6.6. In Section 6.7, the late-

join algorithm is extended to applications that allow synchronous as well as asynchronous

collaboration. The discussion of late-join algorithms is concluded in Section 6.8.

6.1 Design Space of Late-Join Algorithms

The task of a late-join algorithm is to initialize the application instance of a late-joining

participant with an appropriate amount of data. For easier discussion, we denote the late-

joining participant aslate-join clientand any site providing information to the late-join client

as late-join server[84]. The role of a late-join server may be assigned dynamically by the

late-join algorithm, and an application instance might be both late-join client and server for

different parts of the shared state.

More specifically, a late-join algorithm needs to address the following questions: Who pro-

vides information to the late-join client, what type and amount of data is used for the ini-

tialization, when does the transmission of information take place, and how is that data dis-

tributed? After identifying important criteria that should be observed, these questions are

investigated in detail.

6.1.1 Design Criteria

A late-join should lead to aconsistent stateat the late-joining site as defined in Section 4.1.

This state should enable the late-join client to actively participate in the ongoing session.

Although a distributed interactive application has to employ a consistency control mecha-

nism in any case, it might be necessary to include some supplemental algorithms for late-join

situations. Furthermore, the algorithm should berobustagainst possible failures in the ini-

tialization process.

For a late-coming participant, it is desirable that the time span between joining a session and

being able to interact with the application is short. An optimization of theinitialization delay

is particularly important if the state of the application is complex.
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The transmission of data due to a late-join causes additional network traffic. Therefore an-

other design goal is to minimize thenetwork loadduring an initialization. This is particu-

larly important for sessions with many members where in general only a small fraction of

all members will actually need the transmitted information. Finally, the late-join algorithm

itself should cause a lowapplication loadin terms of memory and processing power, espe-

cially for those application instances acting neither as late-join client nor as server. As some

of these design goals might be contradictory, a late-join algorithm has to find appropriate

compromises.

6.1.2 The Source of Late-Join Data

Distributed interactive applications employ a peer-to-peer architecture where each application

instance stores sufficient information about the application’s shared state (see Section 2.1).

For the initialization of a late-join client this implies that data in general could be provided

by a number of session members. Thus, a late-join algorithm needs to specify the set of late-

join servers, and, should there be more than one possible server, determine the server that is

responsible for a certain initialization process. The set of potential late-join servers can either

be predefined or determined on demand during the session.

A straightforward approach would be to select a single site as late-join server that is well-

known to all participants of a session. This late-join server could either be a regular appli-

cation instance (e.g., the participant that initiated a session) or a specialized site that is part

of a supporting infrastructure. The main advantages of this approach are that the server does

not have to be selected in the ongoing session, meaning also that there is no additional delay

for selecting a server, and that the application and network load for the other sites remain

unaffected. However, a single server has the typical drawbacks of centralized systems (e.g.,

potential performance bottleneck, single point of failure, see Section 2.1) and also increases

the initialization delay for late-join clients with a high end-to-end delay to that server.

An alternative approach is that multiple late-join servers share the responsibility for delivering

data to late-join clients. Possible servers could either be all sites holding a certain piece of

information or a subset thereof, and severs could either be a regular site or a specialized

instance. Such a distributed algorithm is able to spread the network and application load for

the initialization of late-join clients and is more robust against failures. However, the late-

join algorithm now has to determine the site(s) that handle(s) a certain initialization process.

Also, the initialization delay for the late-join client might increase depending on the selection

mechanism.



98 Chapter 6 – Support for Late-Joining Session Members

6.1.3 The Extent of Late-Join Data

The task of a late-join algorithm is to provide a late-comer with sufficient information about

the current shared state of the application so that the concerned user is able to participate

in the ongoing session. One possibility is that the late-join client receives all data that is

necessary to calculate the complete state. This keeps the late-join process simple. But in

case the application’s state is large, the resulting initialization delay as well as network and

application load for client and server might be high. These could be reduced considerably

when the late-join client is initialized only with those parts of the shared state currently visible

to the user. For example, a late-joining participant of a shared whiteboard session would be

supplied only with the active page. When employing such a partial initialization, the late-

join algorithm has to determine whether any remaining parts of the shared state need to be

delivered, and, if so, in which order and when. In the shared whiteboard example, the late-join

client would need additional data when a page is activated that was created before he joined

the session. Depending on the application and the session, it can also occur that a late-join

client never needs a complete copy of the shared state. In order to allow such decisions for a

late-join algorithm, objects need to be classified with respect to their priority and content. In

the following, we denote the decision when to provide the late-join client with which parts of

the application’s state aslate-join policy[261].

In addition to determining which parts of the application’s shared state are necessary for an

initialization, a late-join algorithm also needs to specify in which form that data is to be

provided. The different possibilities are depicted in Figure 6.1: Initialization information

can be transferred either by a replay of the operation history, by a copy full state, or by a

combination of state transmission and a short list of subsequent operations.

A replay of the operation history would require the late-join client to calculate the current

state from the original sequence of operations, starting either from an empty or a well-known

initial state (see Figure 6.1 (i)). The main advantage of this approach is that it can easily be

implemented in an application-independent way since a replay does not require any specific

knowledge about the operation sequence (see also Sections 6.2, 7.4.3, and 4.5). However,

a replay of the operation history also has several drawbacks: First, it is inefficient since a

large part of the transmitted information may no longer be relevant for the current state. For

example, an image on a shared whiteboard page that has been deleted later is not relevant

anymore. In general, it is more efficient to transfer state information than to transmit all

operations that have lead to that state. When editing a text it makes sense to transmit the

state of the text instead of all insert and delete operations that lead to the current state. This

becomes even more important when the overhead for packet headers is taken into account.
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Figure 6.1: Different types of late-join data

Second, the application either has to be able to reconstruct every operation that has ever

been transmitted since the beginning of the session, or all operations need to be buffered

indefinitely. This is clearly not acceptable for a large number of applications.

Third, for continuous applications the state may not be reconstructible from a simple replay

of operations since operations are only valid at their given execution time. Thus, the appli-

cation would need an algorithm such as timewarp in order to reconstruct the state of such an

application from outdated operations. This is not the case for all continuous applications.

Under these considerations, a replay of the operation history for initialization purposes is

only appropriate in cases where the application needs a complete history to fulfill other tasks

as well, such as a local replay functionality.

Initializing the late-join client with a copy of the current stateSTC
is in general the most

efficient way with respect to the transmission delay of the data, the network load, and the

application load of the client (see Figure 6.1 (ii)). The biggest challenge of this approach lies

in ensuring that the initializing state is consistent (see Section 6.4).

The last alternative is a mixture of state transmission and a replay of a small part of the

operation history (see Figure 6.1 (iii)): Instead of the current state, an older stateST is used

as a starting point, followed by a sequence of operations that were issued between the time

ST was valid and the current timeTC . This approach can be used to improve a late-join

algorithm with respect to consistency issues and will be discussed in detail in Section 6.4.

In the following, we denote any initialization information that is provided to the late-join

client aslate-join data, and the request for such information aslate-join request.
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6.1.4 Distribution of Late-Join Data

The exchange of data between late-join client and server can either be realized via a direct

point-to-point connection or by means of group communication [84]. A unicast connection

ensures that no other session member is involved in the late-join process, thus minimizing

the overall network and application load. On the other hand, unicast connections limit the

number of clients a single application instance can serve at a certain point in time. In a

worst case scenario, clients would have to wait for a free connection, which increases the

initialization delay. In the case of failures, a unicast connection might also be blocked for

a certain amount of time before it is available for other clients. Moreover, unicast prevents

that more than one late-join client can profit from a particular transmission of late-join data.

Finally, the maintenance of a unicast connection generates an overhead that is significant if

the amount of data to be transferred is small.

These drawbacks can be avoided or reduced when distributing late-join data via group com-

munication (see Section 2.3.3). At the same time, group communication implies that data is

received by all or a subset of all session members, including sites that are not interested in

that data. To limit the overall network and application load, it might therefore be necessary

to restrict the number of receivers of late-join data by introducing additional communication

groups. This aspect will be discussed in Section 6.3.3.

6.2 Related Work

One possibility to realize late-join functionality is to reuse the loss recovery mechanism of

the application’s reliable transport service: From the protocol’s perspective, a late-joining ap-

plication instance has missed all data packets since the beginning of a session. Repairing this

“loss” then provides the late-join client with a replay of the entire application-level operation

history, which allows to reconstruct the complete shared state. For instance, the reliable mul-

ticast protocol SRM (see Section 2.3.3) supports transport-level late-joins [67]. SRM uses a

timer-based feedback mechanism to select a site that is responsible for the transmission of a

certain packet [68] so that all session members holding a certain piece of information can act

as late-join server. A main advantage of this approach is its robustness: As long as one site

has the required information, a late-comer will be able to join the session. Furthermore, the

approach is application-independent, and an existing implementation can be used for differ-

ent applications. For instance, the shared whiteboard MediaBoard [249] integrates SRM (see

Section 3.1). However, providing late-join data by transport protocol functionality has some

severe drawbacks as pointed out above: It leads to a high initialization delay as well as high
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network and application loads. Also, the entire packet history must be kept until the end of

the session.

Alternatively, a late-join algorithm can reside on the application level. Here, the distinct

advantage is that application knowledge can be used to optimize the late-join process.

Application-level approaches can be classified into centralized and distributed. A centralized

late-join algorithms requires that a single site exists that is able to act as late-join server for

the entire shared state. A late-joining instance may contact this server, which will in turn de-

liver the relevant state information. Examples where a centralized server is used for late-join

purposes are the Notification Service Transport Protocol (NSTP) [191] and the JASMINE

system [222].

NSTP provides a generic client-server infrastructure for distributed applications and operates

on an abstract data model of states and events [191]: Each participant connects to the central

notification server managing the shared state. State changes are sent to the server, which

determines a global order among concurrent events and updates all clients. The state of

the application can be partitioned into several sets of objects, the so-called places. A client

receives only events for those places it has registered for. For the notification server, an

object is an abstract attribute-value pair. An event changing the state of an object contains

the new value for a certain attribute. Thus, the server can manage the state of an application

using the information exposed in the abstract data model, without needing any application-

specific knowledge. A late-joining participant has to decide which places it is interested in

and receives the state of all corresponding objects from the server. Thus, when compared to

the transport-level approach from above, the knowledge about the application’s data model

improves the performance of the late-join algorithm significantly.

JASMINE is a generic framework for collaborative Java applets and also employs a client-

server architecture [222, 221]. Besides collaborative services such as session management,

the server provides event distribution similar to NSTP. But unlike NSTP, the server interprets

events and maintains the state of the applets, i.e., the server implements the full application-

level logic. As a consequence, the server can initialize late-joining participants with the

current state by handing over serialized Java objects. The late-join client has to wait until the

initialization is completed before it can participate in the session. Depending on the size of

the shared state, the resulting initialization delay might be high.

The main advantage of a centralized solution at the application level is its simplicity with

respect to the handling of consistency-related issues. At the same time, a single state server

results in the typical disadvantages of all centralized solutions (see Section 2.1): Main prob-

lems are the existence of a single-point-of-failure (lack of robustness), and the high applica-

tion load for the server, which might become a bottleneck. Moreover, for applications with a
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replicated architecture, it seems to be inappropriate to introduce a centralized server just for

late-join purposes.

Alternatively, multiple sites are assigned the role of a late-join server for different sub-sets

of objects. This is done by the collaborative virtual environment MASSIVE-3 [92], which

employs a peer-to-peer architecture. In MASSIVE-3, a virtual world is structured into interest

regions, and an application instance traces only the objects of the regions it participates in.

Each interest region is managed by a unique and well-known application instance. This so-

calledmasterprocess designates a global order to all operations changing the state of the

region of interest it manages. Other sites that issue an operation either have to distribute the

operation via the master process or become master for the corresponding region of interest

themselves. A late-join client contacts the master process of each region of interest it wants

to participate in. Thus, the initialization is limited to parts of the application’s state that

are relevant for the client. Since the master is well-known, a mechanism to select a late-

join server is not necessary. The late-join server creates an initializing operation sequence

composed of state and event information.

Partitioning the application’s state into regions of interest and assigning a master for each

region reduces the danger that a single late-join server becomes a bottleneck. However, it

does not increase robustness since a late-join server may still fail or become overloaded if

multiple late-joining participants are interested in the same objects at the same time. Thus,

we believe that a solution to the late-join problem should not rely on dedicated late-join

servers at all.

In distributed late-join approaches, many sites are able to take the role of a late-join server for

a given piece of the shared state. Thus, the failure of single instances does not compromise the

initialization of late-comers. An example is the Network Text Editor (NTE) [106]. In NTE,

text documents are subdivided into lines. If a line is changed (e.g., a character is inserted), the

complete state of the line is transmitted via unreliable multicast to all participants. Due to the

included redundancy, it is likely that packet loss is repaired via the next state transmission, and

a retransmission of a lost state is not necessary. But in some cases, this redundancy approach

is not sufficient to guarantee the eventual delivery of all events, for instance, if the last change

to a line is lost. In these cases, periodic session messages including information about the

current state are used to detect and request lost data. This packet loss repair mechanism is

also used to handle a late-join situation: Since state changes concerning the active objects

(lines) are distributed via state transmissions, late-comers are supplied with the active text

areas very fast. The client detects other lines by analyzing the periodic session messages and

requests them in analogy to the loss scenario.
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But the transmission of an object’s state after a state change can only be justified if the net-

work connection suffers from a high loss rate and if the state itself is rather small. Otherwise,

the resulting overhead would place a high burden on both the network and the application

instances. On the other hand, multicast transmission of states means that a single state is able

to repair more than one packet loss, and it can initialize more than one late-join client at the

same time.

The main benefits of distributed late-join approaches at the application level are robustness

and scalability as well as the usage of application-level knowledge to avoid the drawbacks of

the transport-level approaches. One problem, though, is the lack of reusability. For example,

it would be quite difficult to tailor the late-join functionality implemented for NTE for the use

with a virtual 3D world or for a distributed Java applet. In the following section, we present

our distributed, application-level late-join algorithm that is based on the data model presented

in Section 2.2 and therefore can be used by all distributed interactive applications.

6.3 The Late-Join Algorithm

The analysis of existing work leads to interesting insights: To be efficient, a late-join algo-

rithm must make use of application-level knowledge. A replay of all transmitted operations

is generally not an acceptable solution. In order to be robust and scalable, the late-join algo-

rithm should not contain any centralized elements. Finally, the implementation of a late-join

algorithm should be flexible so that it can easily be used with different applications.

From the perspective of a late-join client, a distributed late-join algorithm is usually com-

posed of the following three steps: (1) The first task for a late-join client is to determine the

point in time at which the late-join data of a given object should be requested. If certain ob-

jects are more important than others, the client should be able to prioritize them accordingly.

(2) In the second step, a late-join server needs to be selected for each late-join request. (3)

Finally, the late-join data must be distributed to the late-join client(s).

For the realization of this algorithm, we solve the following four key problems: Selection of

sites, use of late-join policies, distribution of late-join data, and consistency control.

6.3.1 Selection of Application Instances

The late-join algorithm operates in a distributed fashion without dedicated late-join servers.

Late-join data can therefore be provided by any session member holding a consistent copy.

Since it is likely that several session members qualify for being late-join servers, a certain site
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has to be selected. Similarly, multiple late-comers may wish to request the same late-join data

at the same time. This too should be coordinated so that request implosions are prevented.

Scalable selection of at least one session member from a potentially large group is a common

problem in group communication and is known as scalable multicast feedback [183] (see

Section 4.6). A feedback algorithm must guarantee that at least one participant is selected.

The number of participants selected should be low - ideally it would be exactly one. Finally,

the algorithm should be scalable in terms of group size, and introduce only a small delay.

Here, the exponential feedback raise algorithm of Fuhrmann and Widmer [74] is used for the

selection of application instances in late-join situations. The selection process is triggered by

sending a message via multicast to all candidates (e.g., a late-join request for the selection of a

server). Upon reception of that message, each candidatei picks a random numberx ∈ [0; 1).

Now two cases are distinguished: (1) Ifx < 1
N

, whereN is the number of candidates,i is

selected and acts immediately. (2) Ifx ≥ 1
N

, an exponentially distributed back-off timer is

set with running timet = Tmax(1+logN x) whereTmax is the maximum desired latency until

at least one member must be selected. If a back-off timer expires, the respective member has

been selected. In both cases, a selected site transmits a reply packet to the group. All sites

receiving this information cancel their own back-off timers. In the ideal case, only one reply

is sent. As the analysis of Fuhrmann and Widmer in [74] shows, the exponential feedback

raise algorithm has a good behavior with respect to the expected number of selections and the

expected selection latency. This was also verified in our own simulations (see Section 6.5).

6.3.2 Late-Join Policies

In general, it is not necessary for an application instance to be initialized with the entire

shared state. A prerequisite for such a partial initialization is that the application’s state is

partitioned into independent objects (see Section 2.2). For each object, a late-join client can

then decide when the data for that object should be requested, using its application-specific

knowledge. The use of such policies ensures that the generic late-join service can be easily

adapted to the needs of the application. Existing late-join approaches lack this ability.

For instance, in a shared whiteboard session a late-coming site typically needs all active

objects immediately (i.e., objects belonging to the page currently displayed). In contrast, the

state of all passive objects (i.e., objects belonging to currently invisible pages) are usually

required only when they become active again. Having this knowledge, an application could

decide to request the late-join data of active objects only and postpone the requesting of

passive pages to a later point in time. One major advantage of this approach is that the

amount of data transmitted immediately is limited, which also minimizes the initialization
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delay. Furthermore, an initialization process is spread over a longer period of time, which

also spreads the network and application load.

In order to select different policies for individual objects, a site has to explore the name

space of objects when joining a session. Besides information about which objects exist,

some application-level knowledge about each object is needed to decide about an appropriate

policy, i.e., if an object is active or passive and which part of the shared state it represents.

For example, the RTP/I protocol presented in Chapter 7 provides such meta data.

For our late-join service, a number of policies are defined for requesting objects [261]:No

late-join, immediate late-join, event-triggered late-join, andnetwork-capacity-oriented late-

join. Policies can be predefined or selected dynamically during a session on different levels

of granularity: individually for each object or for object types, and for all or for individual

application instances. They may also be changed during a session, depending on the situation.

1. Late-join policy: No late-join

The no late-joinpolicy is chosen by a site to indicate that it is not interested in a certain

object. In a distributed virtual environment, it could be used for objects that the user will

never be able to see. This policy reduces the overall amount of information that is required

for an initialization.

2. Late-join policy: Immediate late-join

A site may choose theimmediate late-joinpolicy for objects that are currently active. Late-

join data for these objects is then requested immediately. The likelihood that several clients

may profit from a single transmission of late-join data is rather low with this policy.

3. Late-join policy: Event-triggered late-join

For a number of scenarios, it might be reasonable to request an object only if it is the target of

an event. As illustrated above, a shared whiteboard might request pages with the immediate

late-join policy if they are currently active. Other objects could be requested at the time they

become the target of an “activate page” event. This request strategy is implemented in the

event-triggered late-joinpolicy. Besides deferring requests until the data is actually needed,

this policy also significantly increases the likelihood that multiple late-comers benefit from a

single transmission (if multicast is used for data distribution) since all clients will encounter

the triggering event at the same time. Thus, all sites who join a session between two suc-

cessive events for a certain object will benefit from a single transmission of the initialization

information.

Figure 6.2 shows the finite state machine for the event-triggered late-join policy. When the

late-join service learns about the existence of an objectobj, the machine is in its initial

stateobject discovered . At the time a policy is chosen, the late-join state changes to



106 Chapter 6 – Support for Late-Joining Session Members

timer expired /

and set timer
send late join request

event received / 
set timer

   Event

     Wait for 

timer expired /

and set timer

late join data received /
inform application

  Needed

Object

timer expired /
failed

Object

Discovered

Object

 Requested

 Complete

Object

application: SetPolicy(EVENT)

late join data received /
late join data received /

and inform application
cancel timer

cancel timer
and inform application

send late join request 
event received /

and set timer

send late join request

Figure 6.2: Event-triggered late-join

wait for event . While in this state, the late-join service checks all incoming operations

whether they targetobj. In case sufficient information for the initialization ofobj is received,

it is delivered to the application, and the late-join state becomesobject complete .

When an event forobj is received while in thewait for event state, a site is selected

to send a request by means of the exponential feedback raise algorithm. This is necessary

since there might be more than one client requiring late-join data forobj, in particular when

using the event-triggered policy. Based on the results of the selection process, a client either

sends the request at once (object requested ) or sets a back-off timer and makes the

transition toobject needed . If the late-join data forobj is received while the timer is

running, a transition toobject complete is performed. Otherwise, when the timer ex-

pires, a request is transmitted, another timer is set, and the late-join state changes toobject

requested . The additional timer is for reliability purposes and protects the transfer of data

in case the application does not use a reliable transport protocol. When repeated late-join

requests for state information fail, the application is informed.

4. Late-join policy: Network-capacity-oriented late-join

For objects where late-join data is not immediately required, thenetwork-capacity-oriented

late-joinpolicy may be chosen. With this policy, the late-join service monitors the incoming

and outgoing network traffic. Only if this traffic falls below a threshold set by the application,

late-join data is requested. Similar to the event-triggered late-join, requests of several late-
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join clients can be clustered so that a single transmission of initialization data may serve

multiple clients.

Other policies are conceivable and can be integrated easily into our late-join service. Nat-

urally, all late-join policies delaying the transmission of initialization information increase

the probability that the last participant that possesses that data leaves the session. Most dis-

tributed interactive applications discussed earlier apply the immediate late-join policy. The

MediaBoard additionally orders all requests according to their priority for the user [249].

6.3.3 Distribution of Late-Join Data

After a late-join request is issued and an appropriate server is selected, the late-join data needs

to be transmitted to the late-join client(s). As discussed above, this data should be distributed

by means of group communication (i.e., application-level or IP multicast). In the following,

we investigate the implications when using either one, two, or three multicast groups for the

exchange of late-join requests and data [262].

6.3.3.1 Variant 1: One Multicast Group

The easiest solution is to transmit late-join data to the same multicast group (the so-called

base group) as the regular session data. All applications presented in Chapter 6.2 choose this

approach. Its main benefit is its low complexity. But at the same time, all sites and not only

late-join clients will receive late-join data. This may result in large amounts of data being

delivered to application instances that do not need it.

6.3.3.2 Variant 2: Two Multicast Groups

Alternatively, a separate late-join multicast group for the transmission of late-join information

can be established [76, 84]. This group is denoted asclient group, and all late-join clients are

members. Requests still have to be distributed via the base group in order to find a late-join

server. But the late-join data is then sent to the client group only.

As soon as a client does not expect to receive further late-join information, it should leave

the client group. However, preliminary simulations have shown that depending on the ap-

plication, the late-join policy model, and the user behavior it is very unlikely that a late-join

client will ever complete the late-join process for all objects. For example, consider a shared

whiteboard session where a set of slides is presented. Even if the lecturer jumps back to an

older slide every once in a while, it is unlikely that all slides are presented more than once

in a session. Therefore, a client should leave the client group when it has not requested or

received any late-join information for a certain period of time. Should the client discover at
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a later point in time that it needs the late-join data of an object (e.g., an older slide has been

reactivated), it simply rejoins the client group.

Restricting the receivers of late-join information to application instances that probably need

the data is expected to reduce both network and application load for the entire group. How-

ever, it introduces additional costs for the management of the client group.

6.3.3.3 Variant 3: Three Multicast Groups

Distributing late-join state requests over the base group as described above has two draw-

backs: First, requests are received and processed by each session member. This places a

burden on both the network and the end-systems. Second, if a large number of sites receive

a request, there is a higher probability that the selection process will pick more than one ap-

plication instance as a late-join server, even with the exponential feedback raise algorithm.

Because a transmission of late-join data is costly for the application (e.g., it must extract

the current state of an object) and the network, a major goal for a late-join algorithm is to

minimize the number of duplicate server selections.

Distribution of requests can be restricted by using a third multicast group: If a limited number

of potential late-join servers form an additional multicast group, requests can be transmitted

directly to thisserver group. If a server has been selected for a certain request, he sends an

acknowledgment to the server group in order to suppress other selections and transmits the

requested late-join data to the client group. Provided that the participants of the server group

are chosen well, they can provide all late-comers with the desired data while the majority

of application instances is not involved in the server selection process. Because fewer sites

receive a request, it is to be expected that network and application load due to requests and

duplicate data can be reduced.

This approach raises two questions: First, who should be a member of the server group? And

second, what happens if a request fails because no server for the requested object is present

in the server group? The latter problem can be solved by a second request round: If no server

can be found in the server group, the same request is forwarded to the base group. While this

introduces an extra initialization delay, it guarantees that requests are eventually answered.

The first question is more complex, and there are a number of criteria, which need to be

considered for an algorithm that decides upon the membership in the late-join server group:

(1) Ideally, each object for which information is likely to be requested should have a server

in the late-join server group. This reduces the initialization delay for late-join clients. (2)

The sizeNSG of the server group should be as small as possible. The smallerNSG, the less

network traffic is generated, and the fewer sites are involved in late-join management. A

smallNSG also decreases the likelihood that more than one late-join server will reply to a
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request. (3) The number of join and leave operations should be small for the server group

since each of these operations is associated with overhead at the network layer (e.g., multicast

routing). (4) The burden to act as a late-join server should be shared by all sites. (5) And the

algorithm should cause only little computation and communication overhead.

In the following, three different approaches are considered to decide which sites should par-

ticipate in the late-join server group: Distributed, isolated, and application-controlled.

Distributed membership management

In distributed membership management, all sites exchange information about their capabil-

ities to act as a late-join server so that an optimal set of servers can be determined. For

instance, sites that are able to provide late-join server functionality for many objects should

be preferred as members of the server group. The main drawback of the distributed mem-

bership management is its complexity: Application instances need to exchange and process

supplemental information, which may lead to a significant overhead, especially for large ses-

sions. For this reason, distributed membership management is not taken into account for our

late-join service.

Isolated membership management

Isolated membership management seeks to avoid additional messages and processing over-

head by using local information: Each site decides on its own whether it should join or leave

the late-join server group. A site leaves the server group if it has not answered any requests

for a certain amount of timetl1:

tl = Tm(γ
Op

O
+ (1 − γ)

Ra

R
) (6.1)

whereTm is the average group membership time (provided by the application), andOp de-

notes the number of objects the site can provide as a late-join server.Op is set in relation to

the total number of objectsO present in the session. The intention is that sites that are able

to serve a large percentage of all objects should stay longer in the server group.Ra is the

number of late-join requests that actually have been answered by the server. This number is

set in relation to the number of requestsR that could have been answered. The lower this

percentage, the less important is the server. Finally,γ ∈ (0; 1) trades the importance of the

number of available objects against the number of answered requests.

This approach seeks to build a late-join server group with a small number of “powerful”

servers. But it cannot guarantee that a server is found for each request. Thus, there must

also be a way to let sites (re-)join the server group. If a request remains unanswered in the

1Please note that an application instance also leaves the server group when the user leaves the session.
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server group, the late-join client initiates a second request round in the base group. All sites

that are able to become a late-join server for the requested object use a feedback mechanism

to decide who will actually join the server group: In order to select a preferably powerful

server, thebiasedexponential feedback raise algorithm of Widmer and Fuhrmann [270] is

used that extends the feedback mechanism discussed in Section 6.3.1. In addition to the

random valuex ∈ [0; 1), the back-off timert now also depends on the number of objects a

candidate possesses:

t = Tmax(γ(1 − Op

O
) + (1 − γ)(1 + logN x)). (6.2)

Thus, the more objects a sitei can serve the shorter ist. As Widmer and Fuhrmann show

in [270], this increases the probability that a powerful server is selected significantly. More-

over, the selection latency is reduced when compared to unbiased feedback. The selected

server then transmits an acknowledgment to the base group, enters the server group, and

sends the requested late-join data.

If a second round for a certain late-join request is necessary, the initialization delay for the

late-join client increases. For distributed interactive applications where a low initialization

delay is crucial, the application can also define a minimum group sizeNSG
min for the late-join

server group, i.e., servers are allowed to leave only as long as the current group sizeNSG is

higher thanNSG
min. This results in a higher probability that a request can be answered without

a second round.

Application-controlled membership management

In some cases, the application may want to decide explicitly who should join the server group

rather than leaving this decision to the late-join algorithm. For example, when the application

employs a floor control mechanism, only the floor holder may be selected to transmit the

late-join data for an object. Since there is only one candidate for joining the server group, the

late-join service allows to specify a site that should immediately enter the server group if a

request targets a certain object. In this case, the site would leave the server group as soon as

it looses all floors.

6.4 Consistency Control

The late-join algorithm has to ensure that the state of a late-join client is consistent after the

initialization. Depending on the consistency control mechanism that the application uses for

the exchange of “regular” operations (see Chapter 4), additional measures might be necessary

to ensure consistency in late-join situations.
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Figure 6.3: Inconsistency in a late-join situation

One option for a distributed interactive application is to employ a pessimistic consistency

control mechanism such as floor control. In this case, there exists a dedicated application

instance for each object, which controls user-initiated state changes and determines a global

order for the operation sequence. Thus, an obvious approach is to select the controlling site

as the late-join server for a specific object. If a late-join server delivers after the late-join data

all operations that have been issued during the initialization and that were not covered yet,

no supplemental consistency mechanisms are necessary, independent of how late-join data is

distributed2.

In the following, we focus on applications that repair inconsistencies on the basis of local

information (e.g., with operational transformation or timewarp), and that allow concurrent

operations. But as discussed in Section 4.6, a site is not able to guarantee the consistency

of its local state. Consider the example of a discrete application with three sites as shown in

Figure 6.3: At the beginning, only sites 0 and 1 are members of the session, and both have the

same state specified by the state vector notation〈(0, 3), (1, 4)〉, i.e., the current sequence num-

bers of sites 0 and 1 are 3 and 4, respectively (see Section 4.1). Then site 0 issues an operation

with the state vector〈(0, 4), (1, 4)〉. Before that operation is received, site 1 also changes the

state (〈(0, 3), (1, 5)〉), and site 2 joins the session. The late-join request of site 2 is answered

by site 1 even before the operation〈(0, 4), (1, 4)〉 is received. In this example, late-join data

is provided in the form of a state. The late-join client now holds the state〈(0, 3), (1, 5)〉, and

even when he discovers and/or receives the missing operation〈(0, 4), (1, 4)〉, the inconsis-

tency cannot be repaired since the client lacks the required information to do so.

2In the continuous domain, it could happen that the late-join client receives an event too late. But since this
can happen for regular events also, the application has to implement a repair mechanism (such as the timewarp
algorithm presented in Section 4.5) for this occasion anyway.
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A late-join algorithm must therefore provide a mechanism to discover this problem and guar-

antee a consistent initial state. After such a state has been established at the client, the regular

consistency control mechanism will take over, using this state as its starting point. In the fol-

lowing, mechanisms to establish consistency are devised for the different options to deliver

late-join data as described in Section 6.1.3.

6.4.1 Initialization by Replay of the Operation History

In case a late-join client is initialized by replaying the operation history, the application needs

to calculate the consistent state from that operation sequence in a fast forward mode (see

Figure 6.1 (i)). A first condition is a complete replay. The late-join client can detect and

request missing operations, e.g., by the sequence numbers of operations.

For discrete applications, the correct order in which operations have to be executed must be

observed to reach a consistent state. Should the client receive operations out of order either

because the underlying transport protocol does not ensure a source order of packets or because

the late-join server did not have a consistent history, the correct order of that sequence needs

to be restored, e.g., by serialization.

In the continuous domain, operations are only valid at a certain point in time. Thus, the appli-

cation has to reconstruct the state from outdated operations. For instance, with the timewarp

algorithm the application jumps to the execution time of each operation before processing

it. As long as outdated operations can be handled, no additional measures are necessary for

late-join situations.

When initializing a late-join client with a replay of the operation history, the method of data

distribution (i.e., using one, two, or three multicast groups) has no effect on eventual consis-

tency.

6.4.2 Initialization by State Transmission

With respect to the initialization delay for the late-join client as well as to the network and

application load, the most efficient way to provide initialization information are object states

(see Figure 6.1 (ii)). But since a late-join server cannot guarantee that his local state copies are

consistent, additional measures are mandatory, depending on the method of data distribution3.

3If we assume that under normal conditions a high percentage of all instances holds a consistent state and
that sites that suffer from a known inconsistency (e.g., repeated packet loss) do not answer to state requests, one
would expect only few cases where such measures are actually necessary.



113

6.4.2.1 Iterative State Transmissions

When distributing late-join states via the base group (as in the first variant proposed in Sec-

tion 6.3.3), inconsistent states can be discovered if all sites check the states they receive

against their local state copies. This can either be done by comparing the states themselves

or by using supplemental meta data identifying which operations are included in that state,

e.g., state vectors as defined in Section 4.1. This comparison can lead to the same results as

with the iterative state transmission described in Section 4.6: In case a site receives a state

that differs from its own, it either adopts the received state or sends its own. After a limited

number of iterations this will result in all participants (including the late-join client) having a

consistent state.

The main benefit of the iterative state transmission scheme is that inconsistencies can be

repaired in a short period of time, and that after execution of the algorithm all sites hold a

consistent copy of the application’s state. On the other hand, each session member has to

compare its local state to each received state, which might be costly on processing power.

And iterative state transmission may result in a high network load.

6.4.2.2 Iterative State Requests

In case late-join states are transmitted via a special multicast group in which only late-join

clients participate (as in variants two and three described in Section 6.3.3), the iterative state

transmission would fail since states are received exclusively by late-join clients. Even if there

exist some clients that already hold parts of the shared state, consistency of the application can

be guaranteed only if all sites perform the state comparison. Thus, the iterative state request

mechanism described in Section 4.6 is used where the late-join client is responsible to check

whether or not a received state is consistent. For this purpose, each initial state has to carry

meta-data about all operations included, e.g., a state vector. The late-join client compares

this meta-data with the information given in session messages, which are sent periodically to

the base group by all participants. If this check indicates that the late-join client has received

an inconsistent state, then that state is discarded and requested again. If necessary, this is

repeated until the check is successful.

Compared to the iterative state transmission approach, discovery of inconsistencies by peri-

odic session messages and iterative state requests might take longer until an inconsistency is

discovered and repaired.
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6.4.3 Initialization by State and Operation Sequence

One major advantage of consistency control mechanisms such as operational transformation

and timewarp is that they allow a participant to repair inconsistencies on the basis of local

information and do not require additional communication. As a prerequisite, each site has

to store a certain amount of data in the form of an operation history. In order to enable a

late-join client to repair possible inconsistencies locally, this information would have to be

transferred to the client. But as pointed out in Section 6.1.3, a replay of the complete operation

history is highly inefficient for most applications. On the other hand, providing a copy of the

current state means that the late-join client will not be able to repair inconsistencies locally in

situations like the one depicted in Figure 6.3. Instead, the client relies on receiving data from

other sites until the extent of information that he stores locally is sufficient for the regular

consistency control mechanism to take over. In the case of timewarp, this point is reached

when the client does not receive any operations with an execution time that lies before the

earliest state stored in the operation history.

The probability that a late-join client is able to repair inconsistencies locally can be increased

by combining the approaches of operation history replay and state transmission: Instead of

transmitting the current state, the server initializes the client with an older stateST whereT

lies before the current timeTC , and a sequence of operations{Ot|t ≥ T} (see Figure 6.1

(iii)). This provides the late-join client with a basis for the consistency control mechanism.

The smallerT is, the higher is the probability that a client is able to repair inconsistencies

locally, and additional state transmissions are not necessary. But at the same time, a small

T also increases the initialization delay as well as the network load. However, under regular

network conditions with a low packet loss rate, remote operations are usually received in a

very small time span. Thus, it is likely that this approach will reduce the number of iterative

state transmissions even when the differenceTC − T is small.

Even situations like the one shown in Figure 6.3 can now be repaired by the late-join client

without an additional state transmission ifSVST
< 〈(0, 3), (1, 4)〉: The client discovers that

there is a gap in the sequence numbers, e.g., by periodic session messages or by a subsequent

operation of the same sender. To repair the inconsistency, it is now sufficient to request the

missing operation and to restore the correct order of operations.

6.5 Simulation Results

The generic late-join service described above is implemented in C++ (see Section 7.4.2)

and realizes the dynamic source model where each site may be a late-join server. Late-

join data is currently provided in the form of states, but that could easily be changed to the
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other data distribution strategies. Requests for late-join data are managed via the flexible

late-join policy model. For deciding on an appropriate policy, meta-data as described in

Section 6.3.2 is exchanged periodically among all sites. For the delivery of late-join data, all

three variants with either one, two, or three multicast groups for the communication between

clients and servers are implemented. The composition of the server group for the third variant

is determined by the isolated membership management together with the adaptive server

timeout.

Based on this implementation, we developed a simulation toolkit that allows us to analyze

different scenarios with respect to the design criteria discussed in Section 6.1.1 [262]. In the

following, a shared whiteboard session and an online game scenario are simulated. In order to

base the simulations on realistic end-to-end delays, network topologies are generated with the

Georgia Tech Internetwork Topology Models (GT-ITM) [22] toolkit. The topologies use the

transit-stub method, which defines a two-level network with transit domains as the network’s

backbone and stub domains that host the end-systems. Edges between nodes are placed by the

random model, and the generator’s option to introduce extra transit-stub or stub-stub edges is

disabled. All application instances are located on the edge of the network, and all inner nodes

act as routers. Data packets are routed according to the Dijkstra algorithm [46] on the basis

of the end-to-end delays. All packets are transmitted reliably4.

The simulations are event-based, and each site periodically generates an action from the set

{join session, leave session, create new object, send operation, activate object, deactivate

object, do nothing} with predefined probabilities. The time span between two actions of the

same site is randomized. Depending on the action, data is exchanged with the appropriate

end-to-end delays, and late-join situations might occur. In order to reduce uncertainties that

influence the outcome of a certain simulation setting, actions are generated only once for

each scenario and stored in a file, so that each run can use the same sequence of actions as

input. The results for a certain scenario that are discussed below represent the average of ten

simulation runs with the same action file.

First, the impact of the distribution model on the design criteria is analyzed for the shared

whiteboard and the online game scenario. Following, the effects of late-join policies are

studied. The last set of simulations examines how different sets of parameters for the compo-

sition of the late-join server group in the third variant of late-join data distribution influences

the simulation results.

4In case the application does not use a reliable transport protocol, the late-join algorithm can repair packet
loss by repeating the server selection process (see above). This will increase the initialization delay.



116 Chapter 6 – Support for Late-Joining Session Members

6.5.1 Distribution of Late-Join Data

6.5.1.1 Shared Whiteboard Scenario

For the simulation, a shared whiteboard session is set up with a maximum of 100 partici-

pants. The network topology is chosen such that the end-to-end delays are distributed evenly

between 3 ms and 480 ms, with an average delay of 230 ms. This allows us to select a max-

imum running timeTmax of 500 ms for the exponential feedback timers (see Sections 6.3.1

and 6.3.3.3).

The model of a shared whiteboard is based on the experience gained with the mlb. The

application’s state is structured hierarchically (see Section 3.3). At a certain point in time,

the same page is visible to all users. Thus, only a small subset of all objects is actually active

at any given time. Operations can be issued only for those active objects. A good strategy

for a late-join client in this scenario is to request the state of the current page (i.e., all active

objects) with the immediate late-join policy. All other objects are not requested unless they

become active.

Periodically, each application instance generates an action as described above with predefined

probabilities. The time span between two actions of the same site is randomized between 1.5 s

and 4.0 s. The probabilities for the individual actions are chosen such that a realistic session

with a high user activity is reproduced. The probability to create a new page is set to 0.0005

and the probability to create a new graphical object to 0.018. During the simulated time

of 15 minutes, this leads to 14 pages created, and a total of 572 graphical objects. On 11

occasions, an older page is reactivated (corresponding to a probability of 0.0002), and 3,300

times the state of an object is modified (corresponding to a probability of 0.12).

Typically, a shared whiteboard group is relatively stable during the presentation, with only a

few members joining or leaving. Therefore, the simulated session starts with 80 members,

which is also the minimum group size throughout the session (i.e., an instance is only allowed

to leave if there are more than 80 session members remaining). After initiation, there is a dy-

namic phase while additional participants join with a relatively high probability; towards the

end, members leave more frequently. This behavior was reflected by exponentially decreasing

the join probability (starting with 0.02), and by exponentially increasing the leave probability

(ending with 0.001). During the simulation, 20 participants join the ongoing session and 16

leave the session early. Almost all joins happen in the first 4 minutes of the session, but one

occurs at 6.5 minutes, and two more after approximately 10 minutes.

For the third variant, the minimum size of the server groupNSG
min is set to 3. The meaning of

this setting is discussed in Section 6.5.3.
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During the simulation, a total of 1,055 situations occur where a late-join client needs the

initialization data of a certain object (see Figure 6.4(a)). Since the feedback mechanism de-

scribed in Section 6.3.1 reduces the number of duplicate late-join requests, only 791 requests

are actually transmitted for the third variant with three multicast groups for data distribution5.

As depicted in Figure 6.4(b), these requests lead to a total of 80,690 received requests for

the first, 68,530 for the second, and 14,270 for the third variant. These numbers include the

requests used for the processes of server and client selection. When comparing variants one

and two, the total number of received late-join requests is higher for the first variant since

the feedback mechanism selects more clients to send a request when employing only one

multicast group (not shown in Figure 6.4(a)): As an estimation forN (see Section 6.3.1), the

current size of the base groupNBG is used for the first variant whereas the size of the client

groupNCG is used in case of the second variant. SinceNBG > NCG, the running times

of the feedback timers are higher for the first variant, which decreases the probability that a

client is selected early and suppresses other requests. In case of the third variant, the total

number of received requests is much lower since requests are transmitted to the much smaller

server group (at the first attempt).

Consequently, the total number of initializing states sent in response to the received requests

is much smaller for the third variant (800, see Figure 6.4(c)) when compared to variants one

(2,260) and two (2,063). The dramatic effect when introducing a multicast group for late-join

clients becomes visible when analyzing the total number of late-join states received by all

sites (see Figure 6.4(d)): While the first variant leads to 201,750 received states, only 22,230

and 7,750 states are received in case of the second and third variant, respectively. Since

states might be large and their handling costly in terms of processing power, the number of

transmitted and received states has a significant impact on the performance of the late-join

algorithm. Summing up, together with the number of received late-join requests, the overall

network load due to late-joins is by far the smallest for the variant with three multicast groups.

Figure 6.4(e) shows the distribution of the average initialization delay for a late-join client,

which is measured as the time span between discovering that late-join data is needed for

an object and receiving that data. The initialization delay is mostly caused by the double

selection process via the feedback algorithms described above: First, a late-join client is

selected to send a request, then a server is selected to send the initialization data. The time

to extract and transmit the data are equal for all variants and therefore not considered. As

pointed out earlier, the feedback timers run slightly longer for the first variant than for the

variant with two groups. Thus, the resulting average initialization delays are 780 ms for the

5This number does not include the requests of a second round, which might be necessary because no server
was found at the first attempt.
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(a) States needed vs. late-join requests sent
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(c) Late-join states sent
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(d) Late-join states received
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Figure 6.4: Simulation results for the shared whiteboard scenario
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first variant compared to 693 ms for the second variant. The third variant causes a higher

average delay of 865 ms since it is possible that no appropriate server is found in the server

group and an additional request round becomes necessary. After the (initially empty) server

group is formed, the average initialization delay of the third variant is comparable to the

one of the first variant. Only when a participant joins after 6.5 minutes, appropriate servers

cannot be found within the server group at the first attempt since our timeout mechanism led

to a small server group. Thus, additional request rounds are necessary to find a server, which

increases the average initialization delay, as depicted in Figure 6.4(e). That new sites join the

server group due to the second request round can also be seen in Figure 6.4(f).

The composition of the groups for late-join clients and servers is depicted in Figure 6.4(f):

Late-join activity is high at the beginning of a session. At first, many participants join in

a short period of time, and late-join requests cause some members to join the server group

as well. Since in this early phase of the session there are only few objects, and all of them

are active, the first wave of clients soon has received the complete application’s state and

leaves the client group. Later on, sporadic late-joins occur so that the size of the client group

increases slowly. Late-joins and switching of the active page (which may trigger sites to

join the client group in this scenario) on the one hand and client timeouts as well as clients

leaving the session on the other hand balance one another, so that the client group is relatively

stable now. The size of the server group fluctuates around the predefined minimum of three

members, which indicates that many requests can be answered by the current group members.

The application load induced by the late-join algorithm is mostly caused by four tasks. (1)

Process incoming late-join requests (i.e., select a site): As already discussed, the third variant

results in the smallest number of received requests and therefore in the smallest application

load due to request processing. (2) Extract and send the late-join data for a certain object

if selected as the server: Again, the third variant causes the lowest number of object states

sent. (3) Discard unneeded packets: As shown above, with the third variant by far the lowest

number of states are received in total. (4) Manage additional communication groups: The

application load caused by the management of multicast groups can be approximated by the

total number of join and leave operations. The base group has to be managed in all variants

and is not considered. During the simulation, there are a total of 188 joins and leaves for the

client group, and 805 joins and leaves for the server group (one third occurring in the first

two minutes of the simulation). The overall application load depends highly on the specific

application. But when considering the significant reduction of received late-join traffic, it can

be expected that the additional cost for group management is negligible and that the third

variant results in the smallest total load.

To conclude, using separate multicast groups for the transmission of late-join requests and

the distribution of late-join data results in a significant reduction of the total network load.
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Depending on the processing costs for the handling of requests and responses, these variants

also have a smaller application load despite the overhead for group management. But at

the same time, the initialization delay for late-join clients increases slightly when a separate

server group is used.

6.5.1.2 Online Game Scenario

In the second scenario, an online game is simulated with a maximum of 150 participants.

Here the underlying network topology results in end-to-end delays between 2 ms and 436 ms

with an average of 197 ms. As in the last scenario,Tmax is set to 500 ms. In our model

of an online game, each participant has an individual view of the application’s state, with

a set of active objects that may be different for each participant. Thus, a site may receive

events for passive objects. A late-join client requests all objects that are active for itself by

the immediate late-join policy and all other objects by the event-triggered policy.

The activity in an online game is expected to be much higher than in a shared whiteboard

scenario, and the time span between two successive actions of an application instance is

randomized between 100 ms and 800 ms. The probability to create a new object is set to

0.005, which leads to a total number of 228 objects created during the simulated time of

180 s. The probability to change the state of an object is set to 0.15, resulting in 6,930 events.

One main characteristic of the online game scenario is that the composition of a session

is much more dynamic than in the shared whiteboard scenario, with a continuous late-join

activity and a large variance in the number of session members. The minimum number of

session members is therefore set to 75, while the join probability of 0.005 and the leave

probability of 0.0005 remain constant throughout the simulation. This leads to 154 joins (i.e,

79 joins after the simulation started) and 27 leaves during the simulated time.

These settings cause a total of 4,550 situations where a late-join client needs the initialization

data for a certain object (see Figure 6.5(a)). Due to the suppression of duplicate requests as

described in Section 6.3.1, only 3,400 late-join requests are issued.

As in the first scenario, the average initialization delay for the late-join client is larger for the

first variant (906 ms) than for the second (695 ms, see Figure 6.5(e)). For approximately 50

percent of all requests, the third variant does not find an appropriate server in the server group,

making a second round necessary. As a consequence, the average initialization delay for the

third variant is 994 ms. These initialization delays seem to be rather high, especially for a

continuous interactive application, but can be explained by the high end-to-end delays of our

simulated network topology, which lengthen the selection process (see above). Moreover, the

rate of successful requests in the server group is lower than in the first scenario because each

participant is interested in a different set of objects, and because there is a high rate of joining
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Figure 6.5: Simulation results for the online game scenario
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and leaving sites. In a real world setting of a typical online game, we expect much lower end-

to-end delays and therefore lower initialization delays. The dynamic group compositions of

the server and the client group can also be seen in Figure 6.5(f). In contrast to the whiteboard

scenario, the client group is never empty, and the server group is rather instable.

The total network load due to late-join activities is measured by the total numbers of received

states and requests. Since the first variant distributes all late-join data via the base group,

it produces a high network load with a total of 1.77 million states received by all sites (see

Figure 6.5(d)) and 0.43 million requests received (see Figure 6.5(b)). Variants two and three

transmit states over a client group; they reduce the number of received states to 79,300 and

64,660 respectively. The server group of the third variant cuts the number of received late-join

requests to 78,200. These numbers show that the total network traffic related to the support

of late-joining participants can be dramatically reduced by additional multicast groups.

Concerning the application load, with variant one a total number of 14,700 states are transmit-

ted, and variant two leads to 15,050 transmissions whereas only 6,790 states are transmitted

with the third variant (see Figure 6.5(c)). The management of the client group has to handle

3,980 join and 3,970 leave operations in versions two and three. The dynamics of the server

group of the third variant was evident with 3,509 join and 3,487 leave operations. It can be

concluded that depending on the application the third variant is expected to produce the low-

est overall load, even though the proportion of the group management costs are higher than

in the whiteboard scenario.

To sum up, introducing additional multicast groups for late-join clients and servers saves a

significant amount of application and network load. These savings are lower for applications

with higher join and leave rates of session members like in the gaming scenario. The higher

initialization delay for late-join clients might be inacceptable for some continuous applica-

tions but are acceptable for applications with lesser demands. In our experience, users tolerate

a higher initialization delay if the initialization takes place when joining a session for the first

time (up to 2-3 seconds including the data transmission time). During a session, much lower

delays are required in order to prevent consistency-related artifacts (up to 300 ms, see Sec-

tion 4.4). Variant 2 with a separate client group but without an additional server group could

therefore be a good fit for continuous interactive applications.

6.5.2 Late-Join Policies

The flexible late-join policy model allows a client to request only those parts of the shared

state that are necessary to immediately participate in an ongoing session. In order to analyze

the effects of this policy model, we compare the effects of the event-triggered and the im-

mediate late-join policy in a simulated whiteboard scenario where only the variant with three
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(d) Late-join states received

Figure 6.6: Simulation results for different late-join policies

multicast groups for data distribution was considered6. The network topology is the same

as in Section 6.5.1.1. During the simulated time span of 10 min, 34 pages and 210 graphi-

cal objects are created, and 1,002 events are issued. The performance of the event-triggered

late-join policy depends highly on the probability that passive objects are reactivated. Here,

a relatively high rate is selected with eight occasions on which an older page becomes active

again. For continued late-join activity, the whiteboard session starts with 50 members, and

46 participants join during the simulation. Members are not permitted to leave.

In the first scenario, a late-join client imitates the behavior of many existing approaches and

requests the state of all objects immediately (see Section 6.2). As depicted in Figure 6.6(a),

a total of 4,545 requests are issued (including all cases where a second request round is

executed). In the second scenario, only the active objects are requested immediately and all

others on demand by the event-triggered policy. This reduces the total number of requests

6Our simulation toolkit uses a simple network model that does not take link bandwidths into account. Sim-
ulating the network-capacity-oriented late-join policy was therefore not possible.
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significantly to 445. Consequently, the network load due to the reception of requests is much

higher for the first policy: A total number of 68,760 requests are received by all sites (see

Figure 6.6(b)). With the event-triggered policy, only 4,470 requests are received. Even more

important with respect to the network load is the dramatic reduction in the number of states

sent and received: From 2,817 to 95 states sent (see Figure 6.6(c)), and from 8,753 to 529

states received (see Figure 6.6(d)).

The event-triggered late-join policy also helps to limit the application load caused by man-

aging the groups for late-join clients and servers. When using the immediate late-join policy

only, 2,322 join/leave operations for the client group and 2,369 join/leave operations for the

server group occur. For the event-triggered late-join policy, these numbers decrease to 142

joins/leaves for the client group and 246 joins/leaves for the server group.

The presented simulation results show that the policy model is capable to significantly re-

duce both the network traffic and the application load caused by the initialization of late-join

clients. Even in scenarios where a higher percentage of the shared state is active or where

objects are reactivated more frequently, we expect substantial savings. At the same time,

the average initialization delay increases only by 12% for the event-triggered policy in this

scenario. Similar results were obtained when simulating the different policies for the online

game scenario.

6.5.3 Composition of the Late-Join Server Group

The composition of the late-join server group has a direct influence on the performance of the

late-join algorithm that uses three multicast groups for data distribution. One important factor

is the minimum size of the server groupNSG
min (see Section 6.3.3): In case the server group

has many members due to a highNSG
min, the probability for finding an appropriate late-join

server in the first request round is relatively high. This limits both the initialization delay and

the number of requests sent. But at the same time, a larger server group possibly increases

the network load caused by the number of received requests and the number of sent and

received states due to duplicate server selections. To investigate this correlation, the shared

whiteboard scenario of Section 6.5.1.1 was simulated for differentNSG
min. Figure 6.7(c) shows

that the average initialization delay indeed decreases with an increasing group size: From

933 ms forNSG
min = 0 to 865 ms forNSG

min = 3, and to 731 ms forNSG
min = 10.

The total number of requests received is by approximately 2,260 requests higher forNSG
min = 0

(see Figure 6.7(a)) since a second request round is more likely. But as depicted in Fig-

ure 6.7(b), a lower value forNSG
min also decreases the total number of received states from

8,970 to 7,750. And the number of received states is the main factor determining the total

network load of the late-join algorithm.
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(d) Server Group Membership

Figure 6.7: Simulation results for different minimum server group sizes

With respect to the application load, a small value forNSG
min leads to a rather instable server

group with frequent joins and leaves of group members. Figure 6.7(d) demonstrates that the

fluctuation is much higher when setting theNSG
min to 0 or 3 when compared toNSG

min = 10.

Summing up, for continuous applications that require a low initialization delay for late-join

clients, it is appropriate to define a minimum size between 10 and 20 percent of all partici-

pants for the late-join server group. For all other applications, a small minimum size greater

than zero is sufficient. In the scenario presented here, settingNSG
min to 3 seems to be the best

choice.

Another component determining the composition of the server group and therefore influenc-

ing the performance of the late-join algorithm is the adaptive server timeout as defined by

Equation 6.1. The goal of this timeout is that sites that can serve a great portion of the ap-

plication’s state and that have frequently acted as late-join server remain in the server group

longer than others that are less important. In order to evaluate the efficiency of this approach,

another simulation study for our standard whiteboard scenario is conducted withNSG
min = 3.



126 Chapter 6 – Support for Late-Joining Session Members

In this study, the adaptive timeout approach is compared to one that uses a random timeout

value within the same range of values. While the initialization delays are almost identical,

the network load caused by the number of received requests increases by 500 for the random

timeout approach because no appropriate late-join server can be found at the first attempt.

This also increases the number of received states significantly by 1,050. These numbers in-

dicate that the adaptive server timeout mechanism is able to improve the overall performance

of the late-join algorithm.

6.6 Using the Late-Join Algorithm in Sample Applications

The generic late-join service was implemented as a library on the basis of the RTP/I protocol

and can easily be integrated into distributed interactive applications (see Section 7.4.2). The

service realizes the flexible policy model for initializing late-join clients by object states. For

the exchange of late-join requests and states, either two or three multicast groups can be

chosen. In the following, it is discussed how the late-join service can be used by different

applications.

The application state of the 3D collaboration tool TeCo3D is modeled as one single object that

is requested by the immediate late-join policy. In order to minimize the initialization delay,

only one additional communication group for the late-join clients is used. Since TeCo3D uses

a strict floor control mechanism to serialize operations [156], the dynamic server selection

scheme is not used but the current floor holder is picked as late-join server [261].

The mlb structures its application state hierarchically where a page holds a set of graphical

objects, and pages are arranged into chapters and documents. For the user, exactly one page

is visible at a certain point in time; the hierarchy of pages is also shown in a separate window

(see Figure 3.1). A late-join client requests the active objects of the current page by the

immediate late-join policy, and all other objects when they become the target of an event.

The periodic session messages of RTP/I carry enough meta-data for the client to infer the

page hierarchy (see Section 7.3.2). The page hierarchy allows late-joining users to change

the active page before its state is actually available. The late-join communication is realized

over three multicast groups since the initialization delay is not crucial here. Late-join servers

are selected dynamically, and we propose to set the minimum size of the server group to one

for small sessions (up to ten session members) and to three for bigger sessions. Late-join data

is provided in the form of an older state and an operation sequence.

The collaborative tools integrated into the user interface of the mlb (telepointer, voting, feed-

back, hand raising, chat, and application launch) are all similar in that their state is rather

small, and that all objects are active. For telepointers, no late-join mechanism is employed
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since each telepointer action starts with a state transmission so that late-join clients are up-

dated implicitly (see Sections 3.5.2 and 4.2). All other tools use the service and employ the

immediate late-join policy only. In cases where the application state is composed of only one

object (i.e., hand raising and chat), the request process can be started as soon as a participant

enters a session. All tools use three multicast groups for the transmission of late-join data.

6.7 Support for Late-Joiners in Instant Collaboration

The previous sections focused on synchronous collaboration where all participants are con-

nected at the same time via a network, and operations are distributed immediately among all

sites. Under regular conditions without network or software failures, late-joins occur only

when a user enters a session for the first time, and the corresponding application instance is

in its initial state.

In contrast, distributed interactive applications that also supportasynchronouscollaboration

allow a user to change the application’s state independent from others, even when some par-

ticipants are disconnected. In this case, operations need to be exchanged when the concerned

sites are online again at a later point in time. Instant Collaboration is an example for such an

application, which was introduced in Section 2.4.3. In Instant Collaboration, objects of the

shared state are persistent even when all users are offline [79].

In a scenario where sessions have no predefined end, potential late-join situations occur

when a user switches from asynchronous to synchronous collaboration: The user might have

changed the application’s state while working offline, or he might have missed operations

from other participants. Depending on the application and the user behavior, the local state

copies held by the participating sites may always diverge to a certain degree, and late-joins

may happen frequently. The biggest challenge for a late-join algorithm in such an environ-

ment is that information might be available only at a small percentage of all session members,

in the extreme only at the originator of that information, and during a limited time span.

In the following, a robust late-join algorithm is proposed for distributed interactive applica-

tions allowing both synchronous and asynchronous collaboration. Again, we concentrate on

applications where access to the shared state is unrestricted and users are allowed to issue op-

erations any time. This novel algorithm is integrated into the Instant Collaboration prototype

and tested in simulated long-term sessions.

One peculiarity of Instant Collaboration is that its communication model is based on point-

to-point connections, not multicast. Thus, we decided to distribute late-join information via

unicast as well. We are aware that this introduces a performance penalty and does not scale

well with the number of application instances (see Section 6.1.4). However, a recent user
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study by Muller et al. showed that most sessions with Instant Collaboration have only few

members, with typical averages between three and twelve [177], so that the overhead is ac-

ceptable. A promising alternative would be to distribute data via application-level multicast

as described in Chapter 8.

6.7.1 Late-Join Algorithm

For distributed interactive applications that allow synchronous as well as asynchronous col-

laboration, the late-join algorithm plays a central role and needs to be designed carefully. We

will now examine the design options presented in Sections 6.1 and 6.3 specifically for such

applications and discuss the decisions made for Instant Collaboration.

The first design option concerns the extent of late-join data and determines at what time a

late-join client should be provided with what parts of the shared state, and in which form

that data is to be delivered. As in the synchronous domain, active objects should be delivered

with the highest priority so that a late-join client is able to participate in an ongoing session as

quickly as possible. If participants switch frequently between synchronous and asynchronous

collaboration, and the number of participants working synchronously is rather small, it is

advisable to employ the immediate late-join policy with a lower priority for all other objects,

too. The goal of this approach, which we use for Instant Collaboration [83], is to minimize

the extent to which the local state copies differ on average. The performance penalty in

terms of network and application loads when using the immediate late-join policy instead

of the event-triggered policy in the Instant Collaboration scenario is significantly lower than

for the multicast settings described in Section 6.5.2 because the unicast distribution model

here prevents that a single transmission of late-join data can be utilized by several late-join

clients. Thus, clients need to be initialized individually anyway. Unicast also prevents that

data is received by sites that are not interested, and eliminates the need for feedback raise

mechanisms to select application instances (possibly lowering the initialization delay).

The most efficient way to provide late-join data to others are object states. However, in the

dynamic environment encountered here, it is likely that the local state of a site that is selected

as a late-join server is not up to date. Thus, several state transmissions might be necessary

until a late-join client reaches a consistent state (see Section 6.4). Better suited is therefore

a replay of the operation history, which enables a client to repair possible inconsistencies

locally with an appropriate consistency control mechanism. Under the condition that all

missing operations will be delivered eventually to the late-join client, this approach is very

robust. Since in many late-join situations the client already holds a large part of the operation

history, only the missing operations need to be exchanged, which reduces the initialization

delay as well as the network and application load. For Instant Collaboration, the missing
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parts of the operation history can be identified by comparing the state vectors of the late-join

client and the server. The client then integrates these operations into its operation history by

applying the timewarp algorithm (see Section 4.7.2).

Late-join clients that join a session for the first time have an empty initial state. Instead of

replaying the complete operation history to those clients, the initialization can be started with

an old stateST and a subsequent replay of later operations{Ot|t ≥ T} (see Section 6.4.3).

The starting stateST should be correct and complete (see Section 4.1) so that the combination

of state and operation replay is sufficient for the client to reach a correct state. Whether a state

ST from the operation history of the serverj qualifies as a starting point can be determined

by comparing its state vectorSVST
with the vectorsSVi of all other sitesi: If SVST

[k] ≤
SVi[k] ∀k, i 6= j, ST contains the effects of all operations scheduled beforeT and is a valid

starting point. In practice, this implies thatTC − T might be large.

When a user of Instant Collaboration joins a session (i.e., accesses one of the activities he is

participating in), the late-join client contacts all sites with whom it collaborates one by one

and sends them the current state vectors of the shared objects belonging to that session. Com-

paring those state vectors with its own, an application instance can decide which operations

from its history need to be sent to the late-join client and vice versa (if any). Thus, the late-

join client can obtain missed operations from any instance participating in a shared object,

not only from the original source of an operation. This is especially useful when that source

is offline at the time the late-join client connects. Additionally, it increases the robustness of

the system and distributes the burden of initializing clients over all sites.

Instead of contacting only a single site, the late-join client contacts all sites with whom it col-

laborates in order to quickly discover operations missing in the client’s history. This lowers

the time span until a consistent state is established and increases the robustness of the system.

To further increase the probability that all missed operations are received, information about

the current state of objects is also exchanged whenever a user joins an activity. Both tech-

niques also increase the application and network loads, but do not pose a severe scalability

problem since the number of session members per activity is typically small (see above).

In Instant Collaboration, a whole set of sessions (activities) is managed, and each session has

a distinct set of members (see Section 2.4.3). Thus, there exist situations where a late-join

client is not able to trigger the initialization process: Consider the case that a new activity is

created (or the client is invited to join an existing activity), and either the user creating that

activity or the user being invited is offline. So when reconnecting, the late-join client does

not know about the new activity and can therefore not ask for the transmission of missed

operations. Even worse, it can occur that the client does not know the other members of

this activity if they did not collaborate before. Thus, in case a user misses the creation of an
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activity or the invitation to an existing activity, the responsibility for the initialization must be

with the originator of that action (i.e., the late-join server). Should client and server connect

for the transmission of any other data, the missed operations can be delivered. The late-join

server also tries to contact the client periodically (depending on the current application and

network load).

The probability for quickly updating a late-join client can be increased by placing the re-

sponsibility not solely on the original source but on all members of an activity. The more

members an activity has, the higher is the likelihood that a site possessing the concerned data

is working synchronously with the late-join client. For this purpose, the user who created an

activity or invited new members informs all available sites that the relevant operations could

not be delivered to one or more sites. All application instances are then assigned the task to

transmit the operations to the late-join client either by making regular contact or by probing

periodically. They stop as soon as they receive a state vector from the client that indicates that

it possesses the required information. In case the late-join client receives the same operations

more than once, it simply ignores them.

6.7.2 Simulation Results

For the Instant Collaboration prototype, we implemented the distributed caching algorithm

for the exchange of late-join data as described above [83]. In order to evaluate its perfor-

mance, different scenarios for the synchronous and asynchronous collaboration of three users

were simulated. In each scenario, the activities of a typical work week with five days are

reproduced randomly. During one simulated workday, the following actions take place: A

total of three activities are created, each user views the data of an activity fifteen times (i.e.,

opens and closes the view window of an activity fifteen times), and each user modifies the

state of an activity ten times. The simulated scenarios differ with respect to the time span

that each user is spending online or offline. For easier handling, each workday is simulated

in 60 seconds. Because of the limited number of operations in the scenarios, we insert a state

snapshot every five operations into the history (see Section 4.5).

While a user is working offline, operations originating from or targeting that application

instance cannot be delivered immediately. Instead, the algorithms described above transmit

the missed operations when the user reconnects. Figure 6.8(a) shows the times users are

collaborating synchronously in a scenario where the three users spend 80% of the simulation

online. The number of operations that actually need to be cached because the receivers are

unreachable is depicted in Figure 6.8(b). The late-join algorithm manages to update sites

as soon as they are online again. The curves include those operations that are cached by

all instances that were online at the time they were issued. On average, site 1 stores 5.3
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Figure 6.8: Simulation results for interleaved synchronous and asynchronous collaboration

operations (site 2: 7.2, site 3: 5.3) for the other instances, and it takes about 3.9 s (site 2:

4.4 s, site 3: 4.0 s) between generating and delivering a certain operation. These numbers

increase considerably for a scenario where users are online for 50% of the simulation time:

Site 1 caches on average 25.4 operations (site 2: 15.3, site 3: 22.5) and missed operations are

transmitted 22.7 s (site 2: 13.5 s, site 3: 20.5 s) after they were issued. In a last scenario, users

are online for only 20% of the simulation time, and the first users meets the others only rarely.

Consequently, site 1 stores on average 107.4 operations for 60.6 s (site 2: 80.4 operations for

22.8 s, site 3: 66.4 for 27.6 s).

These numbers show that local state copies might diverge to a considerable degree when users

are working offline for a long period of time. The algorithm for the distributed caching of

missed operations most likely will alleviate this problem if the number of members of a shared

object increases. However, its performance also depends on the work patterns of the activity

members. In the worst case, local states of a shared object might diverge for a very long time,

e.g., if two users are alternating between being offline and online: Each user works on a state

that is incomplete and then, after eventually merging the operation history, they might see

an unexpected result. This reflects a major problem of this approach: While the state is now

correct for both users, the algorithm cannot guess what their actual intention was when they

were independently modifying the shared objects. The algorithm only makes sure that both

can see the same result. However, for the user it is difficult to understand how this state came

to be. We therefore believe that it is crucial to provide conflict visualization mechanisms

such as the ones described in Chapter 5 to assist the user in this task. For example, the

application could animate parts of the history to visualize the sequence of operations that led

to the current state.
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There are also two technical solutions that might alleviate the aforementioned problem:

Adding additional background servers, which cache operations and update late-join clients,

would help to decrease the time between the resynchronization of states. When sites are

connected to the system, they can send operations to the caching server if the collaborating

users are currently offline. When the other sites connect, they first contact the caching server

to collect missing operations. The drawback of this approach is that it requires additional

infrastructure that needs to be maintained. Another technical approach could be to put more

semantics into the consistency algorithm itself: The ordering of operations by state vectors

is based on sequence numbers, i.e., when people work offline for long periods of time, the

system only looks at the sequence numbers to restore a correct state. But the sequence num-

bers do not reflect when operations actually took place. If two users work offline at different

times, the order of operations could be prioritized by the recency of the state change, which

would probably help users to better understand the resulting state after merging the operation

histories. This could be achieved either by using globally synchronized clocks as a means

for sorting (which again requires infrastructure) or, more elegantly, by using a modified state

vector scheme that incorporates local time into the numbering.

6.8 Conclusions

Distributed interactive applications often support dynamic groups where users may join and

leave at any time. But a participant joining an ongoing session has missed all data previously

exchanged by the other session members. Thus, the application needs to employ a late-join

algorithm that initializes the late-joining site with the current state. In this chapter, various

possibilities for the design of late-join algorithms were discussed. While most existing dis-

tributed interactive applications integrate some kind of late-join mechanism, it was shown that

a carelessly designed algorithm may cause high initialization delays for the late-join client,

leads to high application and network loads, and might also raise inconsistencies.

Thus, a novel late-join algorithm was proposed, which is scalable and robust due to its repli-

cated approach and group communication. The algorithm was realized as a reusable service

by employing a generic model for distributed interactive applications in combination with

flexible late-join policies. However, the basic concepts presented here can also be used as

a basis for application-specific solutions to the late-join problem. Moreover, it was thor-

oughly analyzed how consistency of the shared application state can be reached in late-join

situations.

By simulating different scenarios, it was shown that a carefully designed late-join algorithm

significantly reduces the application and network load. Furthermore, the simulation provided

insights on how to best distribute late-join data to the clients. It was demonstrated that appli-
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cations with a stable group membership such as shared whiteboards will benefit considerably

from two additional multicast groups: One for the transmission of state information to late-

join clients and one for the transmission of state requests to the potential servers. In contrast,

very dynamic and time critical applications (i.e., networked computer games) are likely to

best use only one additional multicast group for the transmission of late-join data.

The late-join algorithm was integrated into existing applications. For TeCo3D, only one

additional multicast group is used in order to minimize the initialization delay. For the mlb,

the variant with a client and a server group is chosen. Both applications use the policy model

to request late-join data for active objects at once and data for all other objects when receiving

events.

For distributed interactive applications facilitating synchronous and asynchronous collabo-

ration on the shared state, late-join situations occur frequently, and the local copies of the

shared state held by the participating sites might diverge to a considerable degree. A novel

late-join algorithm was devised for such applications and was integrated into Instant Collab-

oration. Simulation studies indicate that the distributed caching of temporarily undeliverable

operations is well-suited to handle late-join situations. Besides achieving consistency in such

a dynamic environment, one important issue for a late-join algorithm is to give sufficient

feedback to the user when updating states.





Chapter 7

RTP/I - An Application-Level Protocol

for Distributed Interactive Applications

Distributed interactive applications have a common data model: They have a shared state,

which might be structured into a hierarchy of objects and can be changed by operations or

by the passage of time. This model allows us to discuss and design algorithms for problems

common to many distributed interactive applications independent from a specific application,

e.g., consistency control (see Chapter 4) and support for late-joining session members (see

Chapter 6). These algorithms can also be implemented in an application-independent way

if the information required for their realization is separated from the other application data

and exposed such that it can be accessed from outside the application. For instance, a late-

join algorithm would only need information such as the type of an operation (e.g., state or

event) and its target object, but not the actual meaning of the application’s state (e.g., shared

whiteboard pages) or certain operations (e.g., change color of a circle).

A standardized network protocol is well-suited for exposing such universal information [38,

219, 225]. We therefore propose the application-level protocol RTP/I for distributed interac-

tive applications [158, 159]. RTP/I is based on the common data model, and its main goal

is to convey information about the application, the exchanged operations, and the ongoing

session. This information can be used to implement common algorithms for distributed inter-

active applications in the form of generic services. The same late-join service could then be

employed by a networked computer game and a shared whiteboard. Thus, applications can

reuse these services instead of implementing the same functionality over and over again, as

it is currently the case for distributed interactive applications.
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Another design goal for RTP/I is to provide basic protocol functionality to the application,

such as fragmenting data packets and informing the application about the participants present

in a session.

The design of RTP/I was strongly influenced by a variety of applications [80, 142, 154] and

generic services [115, 260, 261] developed at the University of Mannheim. In particular,

the mlb with its complex application state and demands on consistency control, support for

late-joining session members, and recording functionality had a great impact on RTP/I.

In the next section, existing approaches for the standardized transmission of application data

are examined. In Section 7.2, design options for a generic protocol for distributed interactive

applications are analyzed, and it is discussed which functionality should be included in such

a protocol. The RTP/I protocol is then presented in Section 7.3. In Section 7.4, it is demon-

strated how generic services can be realized with the information provided by RTP/I. The

integration of RTP/I into an application is discussed in Section 7.5. Section 7.6 concludes

this chapter.

7.1 Related Work

The basis for RTP/I is the Real-Time Transport Protocol (RTP) [219]. RTP is a generic proto-

col framework for distributednon-interactiveapplications, i.e., applications that do not allow

user interactions such as tools for transmitting videos in real-time [164]. RTP consists of two

parts: A data protocol and a control protocol (RTCP). The data protocol is used for the distri-

bution of application packets (e.g., a video stream), which are framed with the standardized

RTP header. This packet header holds information that is common to all streaming applica-

tions such as an identifier for the sender of a data packet, a sequence number to order the

packets of a source and to identify lost packets, and a timestamp denoting when the encoded

data was sampled.

The control protocol RTCP maintains important meta-data using a soft state approach (see

Section 4.2). Besides announcing information about the participants (e.g., names and email

addresses), its main task is to monitor the quality of data reception at the individual receivers

with different parameters (e.g., loss rate), and to report the current measurements back to

the sender. According to this data, the application might adapt the encoding of the media

stream. The bandwidth available for these RTCP reports is limited to a certain percentage of

all session traffic so that RTP scales well with respect to the number of session members. At

the same time, this might result in a high lag until important information is delivered.

The information encoded in the RTP header and the meta-data provided by RTCP is sufficient

to realize generic services such as a recorder for video conferences [119].
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Many video-conferencing programs [164, 212] and applications for streaming audio and

video [202, 210] base their media communication on RTP. In order to adapt RTP to different

applications, profiles and payload types can be defined. Aprofilecaptures common aspects of

a whole class of applications. For instance, the profile for audio and video conferences gives

general recommendations for the encoding of audio and video streams (e.g., packet send rate)

and defines values for some RTP header fields [218]. The encoding of a certain media type is

specified in apayload typedefinition, e.g., for the transmission of MPEG-4 audio and video

streams [137].

Despite the fact that RTP is very flexible, it is not well-suited for distributedinteractiveappli-

cations, since the data models for interactive and non-interactive applications differ substan-

tially. A major difference is that a non-interactive application continuously substitutes the

current state with a new one since the application is not able to calculate subsequent states by

itself as time goes by, as it is the case in the interactive domain. In addition, the data of a non-

interactive application is not structured into independent objects, and there is only a single

data source per media stream. Other arguments against RTP include that not many interac-

tive applications would need the RTCP quality measurements and that RTP allows collisions

of participant identifiers (even though there is a recovery scheme). Perkins and Crowcroft

discuss the usage of RTP with distributed interactive applications more thoroughly in [195].

The Reliable Multicast Framing Protocol (RMFP) [38] and the Reliable Multicast Framework

(RMF) [40] are both protocol frameworks for reliable multicast, and they can be adapted to

the specific reliability requirements of an application. Moreover, RMFP and RMF contain

some protocol functionality that is in general useful for distributed interactive applications,

e.g., RMFP supports structured shared states [38]. However, they are not well-suited as a

generic protocol since they do not address some important aspects such as the classification

of operations, information for consistency control mechanisms, or timing of operations.

The Simple Object Access Protocol (SOAP) [225] is a generic and flexible protocol for the

exchange of structured messages (i.e., packets with application data) in various distributed

environments ranging from electronic commerce to multi-user conferencing. SOAP defines

the format of messages [226], the encoding of data types [227], message exchange patterns

such as request-response and Remote Procedure Call (RPC) [227, 228], as well as processing

rules for the message handling at the application instances [226]. The message format is

based on the Extensible Markup Language (XML) [64], and SOAP concentrates on the syntax

of messages and leaves the particular semantics to the applications. Even though SOAP is

not specifically designed for a certain underlying protocol, it is mostly run over HTTP/TCP

or SMTP/TCP [225].
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SOAP messages contain a header and a body for the application payload. This splitting allows

the development of generic services that are located at so-called “intermediate nodes” [225]

on the path of a message from the sender to the receiver. Intermediate nodes process the

header only, execute their service (e.g., encrypt or log the message), and then forward the

(possibly modified) message to the next intermediate node or to the final receiver.

SOAP includes several interesting design principles and could be used to define a protocol

framework for distributed interactive applications. However, it has some major drawbacks:

First, XML is text-based, and messages need to be parsed before they can be decoded. This

results in a large overhead with respect to packet size and processing costs when compared

to a binary protocol. Additional overhead is introduced by information about XML syntax

specifications that is included in the packets.

To conclude, existing protocol frameworks are not well-suited for distributed interactive ap-

plications. At the same time, they provide an insight into design principles and help to identify

important features that a generic protocol for distributed interactive applications should have.

In the next section, these design considerations are examined in more detail.

7.2 Design Considerations for a Protocol Framework

A generic protocol for distributed interactive applications should capture the common aspects

of these applications and reveal sufficient information for the development of generic ser-

vices. At the same time, it should follow a minimalistic approach and provide only such pro-

tocol functionality that is useful to all applications. In case one or more applications require

additional features, the protocol needs to be adaptable and extendable, e.g., by means of pro-

files and payload type definitions as in RTP [219] or by extension headers as in SOAP [226].

This flexibility requires that the protocol is designed as an open framework. In the follow-

ing, the core functionality of a protocol framework for distributed interactive applications is

discussed, and it is investigated which information should be exposed by this framework.

7.2.1 Architecture and ADU-Related Information

A protocol framework for distributed interactive applications should operate on the basis of

ADUs as they are the smallest piece of information that can be interpreted by the applica-

tion [33] (see Section 2.3.3).

The generic protocol should be independent of the underlying transport and network pro-

tocols that an application might employ. In particular, different types ofreliability should

be supported: The first possibility is that the application chooses a strict layering approach
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where the reliability mechanism is provided transparently by a separate protocol, e.g., TCP.

The main advantage of this approach is a structured design of the application’s communica-

tion system and the possibility to reuse existing reliability protocols. However, stand-alone

protocols for reliable data transport also establish a source order on all packets originating

from the same sender. This ordering is too strict for applications with a state that is structured

into independent objects and might cause unnecessary delays when an operation is missing

from a sequence targeting different objects. Such artificial delays could even result in incon-

sistencies for continuous applications.

Alternatively, the reliability mechanism can be combined with other application-level func-

tionality following the concepts of ILP and ALF (see Section 2.3.3 and [33]). In this case,

the reliability mechanism can use the same header fields that are also needed for other func-

tions (e.g., sequence numbers, identifiers for objects and participants, etc.). Besides this

efficiency gain, the main advantage of the ILP approach is that application-level knowledge

can be used to adapt the reliability mechanism to the nature of the application data that is to

be transmitted as described by Mauve and Hilt in [157]. For instance, operations should be

transferred quickly and with a high level of reliability by protecting their transmission with a

FEC scheme. In contrast, application-data units (ADUs) that are not state-changing could be

distributed unreliably. Moreover, application-level knowledge can be applied to the ordering

of ADUs.

Another important aspect for distributed interactive applications isconsistency control(see

Chapter 4). The protocol framework should allow an application to employ any pessimistic

or optimistic consistency control mechanism but also provide information that is needed by

those mechanisms, e.g., information about the order of operations. In case the application

employs a pessimistic consistency control algorithm (e.g., locking), sequence numbers can

be used to establish a (partial) order of operations per sender and per object. If the application

uses an optimistic algorithm, concurrent operations originating from different sources are

possible, and a single sequence number is not sufficient. Instead, operations could be ordered

by state vectors. For continuous applications, the execution time of operations has to be

considered additionally by a consistency control algorithm. Thus, ADUs should carry timing

information in the form of physical clock readings. These timestamps can also be used for

inter-stream synchronization when the distributed interactive application is combined with

other (interactive or non-interactive) applications, e.g., in a video conference scenario.

Many issues that need to be addressed for distributed interactive applications require to re-

quest (parts of) the shared state in a structured way. For instance, the consistency control

mechanism proposed in Chapter 4 usesstate requestsas a fallback solution in case the local

operation history is not sufficient to repair a short-term inconsistency. Moreover, the late-join

algorithm proposed in Chapter 6 initializes a late-joining application instance by request-
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ing appropriate state information. Thus, the protocol framework should offer a standardized

ADU for requesting the state of certain objects. This allows generic services to request state

information or to answer state requests without needing to interpret the actual application

data. Since requests differ with respect to their urgency (e.g., a state request for resynchro-

nization is more important than the request of an archiving service), it should be possible to

assign appropriate priorities to state requests.

The native data units of a protocol framework for distributed interactive applications are

ADUs. Depending on the application and the ADU type, these might be rather large. For

instance, the state of an image that is located on a shared whiteboard page might have several

hundred kbytes. But the links of a network are only able to handle packets that do not exceed

a certain size, the Maximum Transmission Unit (MTU). In case a packet exceeds the MTU

of a link on the way from the sender to the receiver, it is split into smaller units. Such

fragmentation of a large ADU on the network layer has the negative effect that the loss

of a single fragment means that the whole ADU is discarded by the transport layer [135].

Thus, the protocol framework should fragment large ADUs on the application-layer so that

the employed reliability mechanism can manage the loss of missing ADU fragments. The

size of the smallest MTU supported over an end-to-end connection can be determined by

ICMP packets [172].

In order to relate ADUs unambiguously to their sender and to their target object, unique

identifiers are required (see Section 3.3.1). RTP uses random numbers to identify partici-

pants [219], which is not a suitable solution for distributed interactive applications since such

identifiers may collide, and changing the identifier in case of an collision as in RTP might

raise severe difficulties, e.g., for the consistency control mechanism. A straight-forward ap-

proach for generating unique identifiers is to use the network layer or physical layer address

of a site as a basis. However, this results in large identifiers and packet headers. Alternatively,

identifiers can be assigned by a well-known server that coordinates the identifier namespace

and prevents collisions. The server can be responsible for multiple sessions where each has

several independent namespaces, e.g., one for participants and one for objects. The scalabil-

ity of this approach can be improved when application instances request identifiers in ranges,

and when there exist several servers where each is responsible for a different area of the hier-

archically structured identifier namespace. A prototype for such a service was developed in

the mlb project.

Summing up, a generic protocol for distributed interactive applications should frame ADUs

with a header that contains sufficient information for the core functionality of the protocol

and for the development of generic services: A classifier for the ADU type, a sequence

number for ordering and fragmenting ADUs, a counter for ordering fragments, identifiers

for the ADU’s source and the target object, a timestamp for ordering and timing ADUs,
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a state vector for consistency control, a priority for ranking ADUs, and reliability-related

information if necessary.

7.2.2 Session-Related Information

Aside from this ADU-specific data, the protocol framework should also provide informa-

tion that is related to the session (so-called “meta-data” [158]). There are two categories of

session-related information that are useful to many distributed interactive applications and

generic services and that should be included in the protocol framework: Information about

participants of a session and information about the application’s shared state.

In order to facilitate collaboration, distributed interactive applications seek to establish a cer-

tain degree of awareness among the users (see Sections 2.3.1 and 3.5). For instance, users

should be aware of other session members, their status, and their actions. Therefore, the

protocol framework should realize a light-weight session control such as the one proposed

for RTP [219] to announce joining or leaving session members and to provide the names,

email addresses and locations of users. More complex information such as statistics about

a participant’s activities or different access rights of participants should not be included in

the basic protocol framework but be managed by separate generic services, e.g., by a floor

control service [156].

The other important category of meta-data concerns the shared state of the application itself:

For many generic services it is vital to know which objects are present in a session without

depending on the reception of ADUs targeting these objects. For instance, the generic late-

join service needs to learn about all objects present when joining an ongoing session. Besides

the pure existence of an object, further information might be necessary that describes the

object’s properties. For example, this information can be used by the application to determine

an appropriate late-join policy (see Section 6.3.2). More precisely, it should be announced

whether a certain object is active or not, i.e., whether it is currently displayed by one or more

application instances (see Section 2.2). Moreover, some description concerning the type of

the object and its role in the application’s state is needed, e.g., whether the object is a shared

whiteboard page or a graphical object, and on which page this graphical object is located.

This application-level namedepends on the application and might not be mandatory in all

cases, e.g., when similar information can also be derived from the object’s identifier.

Both types of session-related information comply with our data model for distributed interac-

tive applications that was introduced in Section 2.2: They have a replicated state (e.g., the list

of objects that are currently active), and this state might change in the course of the session

(e.g., a formerly passive object is activated). Thus, mechanisms for the propagation of states
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and state changes for meta-data are necessary. Moreover, a consistency control algorithm is

required that synchronizes all local copies of the meta-data.

As discussed in Section 4.2, consistency control mechanisms either seek to establish consis-

tency with ahard stateor a soft stateapproach. In the first case, consistency of the shared

state is enforced, which includes that state changes are announced immediately and reliably.

The main benefits of the hard state approach are that the propagation delay for operations

is low, and that the sender of a state or a state update knows when all participants received

this operation. However, it is also very complex and requires that explicit measures be taken

to prevent and repair inconsistencies, e.g., in case a late-join occurs. Alternatively, consis-

tency can be reached with a soft state approach where periodic state (re-)transmissions are

used to distribute state changes and to substitute possibly inconsistent data. This approach

is very simple and robust and requires no explicit error recovery mechanisms. For instance,

late-joining participants are updated by means of the next state transmission. However, the

propagation delay of operations might be rather large depending on the packet loss rate, the

probability for concurrent actions, and the retransmission frequency. It also consumes more

bandwidth than the hard state approach, even though the shared state for meta-data is fairly

limited in size.

Considering the low complexity of the soft state approach and the small and rather stable

shared state, we propose to employ the soft state approach for session-related information. It

can be improved in two ways: First, the propagation delay for state changes can be decreased

by shortening the report interval that lies between two successive state transmissions for the

updated state. Second, the bandwidth used for the distribution of meta-data can be limited to

a certain percentage of the total bandwidth available as proposed in [219] for RTP.

7.3 The RTP/I Protocol

The Real-Time Protocol for distributed Interactive applications (RTP/I) is based on the design

considerations of the last section [111, 156, 158, 159]. Following the design principle of RTP,

it consists of two parts: A data protocol for the transmission of ADUs and a control protocol

(RTCP/I) for the exchange of session-related information. Both parts are run over separate

channels. The application is free to choose the actual transport protocol (e.g., UDP over IP

multicast).

RTP/I was developed at the University of Mannheim, based on a joint project of Mauve [156]

and Hilt [111]. A first version was published by Mauve et al. in [158]. In this section, the

latest version of RTP/I is described, which was thoroughly modified to address the challenges
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Figure 7.1: Structure of RTP/I ADUs

discovered when designing the mlb, the generic late-join service, and the consistency control

service.

7.3.1 The RTP/I Data Transfer Protocol

The task of the RTP/I data transfer protocol is to frame application data units and to fragment

large ADUs if necessary. As given by the data model for distributed interactive applications

(see Section 2.2), five different ADU types are distinguished: States, delta states, events, cues,

and state requests. Each type contains specific information that is to be exposed by RTP/I. Be-

cause ADUs might be fragmented, this information is arranged into two independent headers:

An RTP/I packet header for each fragment containing all data necessary for the fragmentation

process, and an RTP/I ADU header carrying all information that is analyzed once an ADU

is complete. This two-level structure was devised in the course of this thesis. Figure 7.1(a)

depicts an ADU that is transported in two fragments. In case an application-level reliabil-

ity mechanism is employed that needs additional information, a reliability extension header

follows each RTP/I packet header (since reliability has to be established on the basis of frag-

ments). The design of an appropriate reliability mechanism was discussed by Mauve and Hilt

in [157], and its realization is an issue for future work.

An application might also generate subsequent ADUs that are very small, e.g., when a user

changes the position of a graphical object in a series of mouse events. In this case, it is more

efficient to aggregate some ADUs into an RTP/I composite packet, which is transported en

bloc to the receivers. As shown in Figure 7.1(b), there is only one reliability extension header

per composite packet.

7.3.1.1 Packet Header

The RTP/I packet header is identical for all ADU types and contains the information depicted

in Figure 7.2. The first two bits define the versionV of the RTP/I protocol. The type field
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0|E|X| type |P| RT | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| participant identifier (PID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| object identifier (OBJID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sequence number | fragment count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7.2: RTP/I packet header

classifies the ADU type. The used reliability mechanism is identified by the reliability type

RT field, and theX bit indicates whether the packet header is followed by an reliability ex-

tension header. The length field gives the size of an ADU in bytes (excluding the 20 byte

packet header) and allows to split composite packets. In case the packets need to be aligned

to certain block sizes (e.g., for an encryption algorithm), an appropriate amount of padding

bytes can be attached at the end. Then, the padding bitP has to be set, and the last padding

byte added holds the total number of padding bytes.

The ADUs have separate sequence number namespaces per sender, per target object and

per ADU type so that these four header fields are necessary to associate a fragment to its

respective ADU. Individual fragments are numbered by the fragment count (starting with 0),

and the last fragment is recognized by the end bitE.

The participant identifierPID belongs to the ADU’s sender, and the object identifierOBJID

determines the target object1. Both identifiers have to be unique and persistent in a session

and might be generated by an identifier service as described in Section 7.2.1.

7.3.1.2 States

A state ADU contains all data that is necessary for the application to create a certain object. It

is used when a new object is introduced, when an inconsistency needs to be repaired, or when

a late-joining participant needs to be initialized. Some applications might also announce

state changes by transmitting the updated state of an object if states are small or a soft state

approach is chosen (see Sections 2.2 and 4.2).

The common header for RTP/I state ADUs is depicted in Figure 7.3. The payload type

field PT defines how the attached payload is encoded by the application. In case a profile

needs to include additional information, it can use the optional profile information fieldPI .

The priorityPRI indicates how receivers have to react: A state with a priority of 3 must be

adopted by all receivers (i.e., an existing local state is discarded) and is used for newly created

objects and for resynchronizations. States with a priority of 0 can be ignored. For example,

1Objects are denoted assub-componentsin RTP/I [158].
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PT | PI | SVL |H| reserved|PRI|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PID (0) (if SVL>0) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PID (SVL-1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sequence number (0) | sequence number (2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sequence number (SVL-1) | padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| peer OBJID (if H=1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7.3: RTP/I state ADU header

late-join data has a priority of 0 since it is only relevant to late-join clients. The timestamp

denotes the physical time at which the state was extracted by the sender.

When the application employs an optimistic consistency control mechanism and allows con-

current operations, an application instance cannot guarantee that the extracted state of an

object is consistent (also see Sections 4.6 and 6.4). For instance, there might be one or more

operations that should have been executed before this operation according to their timestamp

but that were not incorporated into the sender’s operation history yet. In order to discover

such conditions, the state header was extended to include a state vector as defined in Sec-

tion 4.1. State vectors must not be encoded in the ADU’s payload since sequence numbers

are set by RTP/I and need to be generally accessible by generic services (see Section 7.4).

The length of the state vector that is included in a state header is given by theSVL field.

Similar to the mlb, many distributed interactive applications have a complex shared state

that is structured into a hierarchy of objects. These relationships among objects need to be

established by the application when executing a state ADU. Thus, state ADUs have to carry

information about object relationships, which can be represented by the identifiers of the

concerned objects. Since RTP/I identifiers must not be encoded in the payload of ADUs, the

state header offers the possibility to include the identifier of a single peer object (indicated

by the hierarchy bitH). For instance, an object hierarchy can be encoded by specifying each

object’s parent.

7.3.1.3 Delta States

Delta states encode all changes to the state of an object that have been issued since a certain

state snapshotST was taken. The state of an object that is reflected by a delta state can be

derived by applying the delta state toST . A delta state header therefore carries a PID and a

sequence number to identifyST and is otherwise identical to a state header.
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7.3.1.4 Events

Events change the current state of the application and therefore have an ADU header that

is identical to the state header except that there is no need for priorities (see Figure 7.3).

The timestamp is interpreted differently and denotes the event’s execution time. In case

the application employs the local lag approach as described in Section 4.4, the timestamp

includes the local lag value. The peer object identifier is needed only for events changing an

object’s relationship, e.g., when the pages of a shared whiteboard are resorted.

The state vector might be used to order operations and to check whether the event is causally

ready for execution (see Section 4.1), e.g., whether the target object of a move event already

exists. Alternatively, events can be ordered by their timestamp, their participant identifier and

sequence number. And the application might check semantically whether an event is causally

ready, e.g., whether the target object already exists before executing an event.

7.3.1.5 Cues

Cues are user actions that have no effect (or only a temporary effect) on the application’s

shared state but that should be propagated nevertheless in order to increase the user’s aware-

ness about each other’s actions and to increase the application’s presentation quality (see

Section 2.2). The two most important cue categories are informal messages and intermediate

state changes. An example for the first category are temporary awareness hints that notify

a user about the actions of remote participants, e.g., “W. Effelsberg is idling for ten min-

utes”. Such messages do not change the application’s state and are propagated as cues. In

the second category, a series of actions changes the application’s state continuously until a

final state is reached. For instance, moving a graphical object within a 3D world generates a

sequence of intermediate object positions until the user places the object at its final position

(see Section 3.3.3). In order to keep the application’s shared state consistent, only this last

position would need to be propagated as event. But transmitting the intermediate positions as

cues additionally visualizes the object’s path to remote users.

The header of a cue ADU is identical to the event ADU header. The main motivation to

distinguish between events and cues is that these can be handled differently. For instance,

cues do not need to be transmitted reliably while a lost event would endanger the application’s

consistency. Cues that change the application’s state must therefore be followed by an event

defining the final state change.

7.3.1.6 State Requests

State request ADUs offer a standardized way to request the state of a certain object. The

RTP/I state request ADU is depicted in Figure 7.4, i.e., there is no application-specific pay-
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PT | reserved |PRI|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7.4: RTP/I state request ADU

load. The priority indicates how urgent the request is: A priority of 3 is used for requests that

need to be answered immediately (e.g., to repair an inconsistency), 2 is for requests where

short delays can be tolerated (e.g., in a late-join situation), 1 is for requests where an answer

is not vital (e.g., for passive objects), and requests with a priority of 0 can be ignored when

the network or application load does not allow an answer. Which application instance should

answer to a state request is not defined by RTP/I but has to be determined by the application,

e.g., by a feedback mechanism as described in Section 6.3.1.

7.3.2 The RTP/I Control Protocol (RTCP/I)

The RTP/I Control protocol (RTCP/I) manages the exchange of meta-data about the partici-

pants and the application’s state in a session. As proposed in Section 7.2.2, RTCP/I follows

the soft state approach where meta-data is updated periodically. Similar to RTCP, the band-

width consumed by RTCP/I is limited to approximately 5% of the bandwidth available for

RTP/I by applying the following algorithm: Each application instance periodically reports

its own meta-data, and the time span between two reports, the so-calledreport interval, is

inversely proportional to the number of session members and the average report size, i.e., the

larger the session and the meta-data, the less frequent a report is sent. Ideally, the report in-

terval calculated at each participant is the same. The resulting network load is spread evenly

by randomizing the individual send times as described by Floyd and Jacobson in [66].

In order to limit the propagation delay for important state changes (e.g., when a new mem-

ber joins the session), Raman and McCanne propose to shorten the report interval for such

updates so that they are transmitted with a higher priority [203]. At the same time, the next

report for older information is delayed, so that the overall bandwidth consumed remains con-

stant. In case some meta-data is not reported for several report intervals (e.g., 5 intervals), it

is first marked as timed out and later deleted.

7.3.2.1 Participant Information

Each participant reports certain information about himself by sending a so-called RTCP/I

source description ADU. As shown in Figure 7.5, the header of the source description ADU

has a fixed size of 8 bytes and contains the protocol version, the type of the RTCP/I ADU,

the length of the ADU in bytes (including any padding bytes, see Section 7.3.1.1), and the
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0|r| count |P| type | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| participant identifier (PID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| source description items |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7.5: RTCP/I source description ADU

sender’s participant identifier. The header is followed by a list of source description items

where each item holds a certain piece of information such as the user’s name, phone number,

and email address [159]. The number of items is given by the count field, and each item starts

with one byte denoting its size.

The so-called “canonical name” (cname) of a participant is the most important source de-

scription item: The cname can be used to identify the same participant in case he attends

several RTP/I (and RTP) sessions at the same time. While the participant identifier is

unique in a session, the cname should be unique across sessions. Typically, a cname has

the syntax “user@host” where the host could be the end-system’s IP address or name (e.g.,

jvogel@pi4.informatik.uni-mannheim.de).

A joining participant immediately sends a source description ADU containing the cname in

order to propagate this state change quickly. Members that leave a session send an explicit

“bye” ADU. In case the “bye” ADU is lost, the participant information times out after several

report intervals.

7.3.2.2 Application State Information

The second category of session-related information that is exchanged periodically among

all session members describes the shared state of a distributed interactive application: The

RTCP/I object report ADU contains a list of all objects that are known to the reporting ap-

plication instance. This information allows to explore the application’s state without relying

on the individual object states, which are usually significantly larger than the meta-data. The

header of an object report ADU is identical to the source description header (see Figure 7.6).

For each object, the sender indicates whether it is active locally (A), and whether the peer

object identifier is included (H). The optional application-level name together with the peer

object identifier can be used by the application to specify the role of the object in the shared

state. For instance, the mlb uses the object type (page, rectangle, ...) as the application-level

name.

In order to save bandwidth, a participant does not report objects that were announced previ-

ously by other session members and that have the same properties of activeness, application-
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0|r| count |P| type | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| participant identifier (PID) |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|A|H| reserved | name length 0 | application-level name 0 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| object identifier 0 (OBJID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| peer identifier 0 (OBJID) |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
: ... :
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|A|H| reserved |length(count-1)| name (count-1) ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| object identifier (count-1) (OBJID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| peer identifier (count-1) (OBJID) |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

Figure 7.6: RTCP/I object report ADU

level name, and peer object as its local object copy. Thus, if an object is active for at least one

participant, it is also reported as active in each interval. In the ideal case, each object will be

reported only once per interval. As proposed above, changes to an object’s properties will be

reported with a higher priority.

7.4 Generic Services

The information exposed by the RTP/I protocol framework can be used to implement algo-

rithms for distributed interactive applications as generic services. Thus, complex functional-

ity needs to be developed only once and can be integrated with little effort into any application

that bases its communication system on RTP/I.

A generic service can be designed at different levels of abstraction: If it uses only information

of the core RTP/I protocol, it is valid for all applications. Alternatively, generic services can

also be devised specifically for a profile or for certain payload types. In this thesis, generic

services for consistency control and for the support of late-joining participants were devised.

Moreover, a service for the recording of sessions was developed by Hilt [115]. These services

are independent of a specific profile or payload. Other examples that can be realized for RTP/I

are floor and session control, encryption, and data mining in archived sessions. In Section 7.5,

it is discussed how the communication system of a distributed interactive application can be

based on RTP/I.

Like all distributed interactive applications, a generic service has a shared state that might

change in the course of a session. As a consequence, generic services need to exchange state

updates and follow either a soft state or a hard state approach for achieving consistency. For

instance, a generic floor control service needs to announce access rights, a recording service
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Functions of classRTPI ConsistencyControl :

void InsertRtpiAdu(RTPI ADU adu)
void SetInsertStateFrequency(Time interval)
void SetStorageTime(Time time)

Functions of interfaceRTPI ConsistencyControlFeedback :

void ExecuteRtpiAdus(RTPI ADUList adus)

RtpiAdu GetObjectState(ObjId object)

boolean Conflict(RTPI ADU adu1, RTPI ADU adu2)

boolean Overwrite(RTPI ADU adu1, RTPI ADU adu2)

Figure 7.7: Consistency control library API

needs to signal the playback speed [111], and a late-join service needs to select application

instances to join the late-join server group (see Section 6.3.3). We propose to use a separate

communication channel for generic services, which is more flexible than integrating those

messages into either RTP/I or RTCP/I since it does not impose any specific reliability or

consistency control mechanism on the services [261]. A more detailed discussion on this

topic is conducted by Hilt [111] and Walling [266].

7.4.1 Generic Consistency Control Service

In Chapter 4, a consistency control mechanism for distributed interactive applications was

presented, which is based on local lag, timewarp, and state request. The information provided

by RTP/I allows to realize this mechanism as a generic service [260], which is optimized for

discrete applications. It is implemented in C++ and was successfully integrated into the mlb.

The generic consistency control service manages one operation history per object and orders

operations according to their state vector or timestamp. As depicted in Figure 7.7, the appli-

cation hands over all local and remote ADUs to the classRTPI ConsistencyControl

without executing them. Before an ADU is inserted into the history, the service checks

whether the ADU is causally ready or not. This check can be performed on the basis of

an ADU’s state vector or, if events do not carry state vectors, with application-level seman-

tics. If an ADU is not causally ready, it is delayed until the ADUs it depends on have arrived.

Otherwise, it is integrated into the operation history.

When the execution time of an ADU lies in the future due to local lag, the service can make

use of the time gained and reorder the operation history if necessary. Once their execution

time is reached, ADUs are delivered to the application via the functionExecuteRtpiAdus

of the RTPI ConsistencyControlFeedback interface. In case an ADU is received

out of order or too late and the checks for conflicting and overwriting ADUs described in
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Section 4.5.3 lead to the result that a timewarp is necessary, the service calculates the appro-

priate operation sequence that will repair the inconsistency, and delivers this sequence to the

application. Cues doe not trigger a timewarp but are discarded in such a case. In order to

limit the size of the operation sequences that restore the consistent state, the service periodi-

cally asks the application for state snapshots where the insertion frequency is determined by

the application. The application also restricts the size of the operation histories by defining

a time limit for storing ADUs. In case a timewarp cannot be executed due to this limitation,

the generic service initiates the state request mechanism described in Section 4.6 where the

state request has the highest priority of 3. The state received in return also has a priority of 3

and is handed over to the application viaExecuteRtpiAdus .

7.4.2 Generic Late-Join Service

The late-join algorithm presented in Section 6.3 is another example for an RTP/I-based

generic service. The late-join service is implemented as a library in both Java [261] and

C++ [262], and it is integrated into the applications TeCo3D [156] and mlb.

In addition to the application group with three channels for RTP/I, RTCP/I, and the generic

services, the late-join service introduces either one extra group for the late-join clients or two

extra groups for clients and servers (each with one channel for RTP/I and RTCP/I). All RTP/I

and RTCP/I ADUs that are received by a participant via the application group are analyzed by

the late-join service. For instance, a received event might start the state request mechanism

for an object if the event-triggered late-join policy was selected for this object. Received

RTCP/I object reports are used to explore the application’s shared state, and the application

might select an appropriate late-join policy for an object by its application-level name and

peer object identifier. In case an application instance has to be selected to enter the late-join

server group, both selection request and acknowledgment are sent via the generic services

channel. The number of session members that are needed to calculate the feedback timers are

estimated from the RTCP/I participant reports.

The late-join data to initialize the clients is transmitted via the RTP/I channel of the client

group (depending on the consistency control mechanism, in the form of a single state ADU

or, like for the mlb, as a sequence of state and event ADUs). For the second variant of

the late-join algorithm (see Section 6.3.3), state requests are sent directly through the RTP/I

channel of the application group, and for the third variant requests are distributed via the

RTP/I channel of the late-join server group. Late-join state requests have a priority of 2, and

states sent in response with the lowest priority (0) since they are only relevant for late-join

clients and can be ignored by others.
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Functions of classRTPI LateJoin :

void ReceiveRtpiAdu(ADU adu)
void ReceiveRtcpiAdu(ADU adu)
void SetPolicy(ObjId object, LJ Policy policy)
void setResponsibility(ObjId object, bool responsible)

Functions of interfaceRTPI LateJoinFeedback :

RTPI ADUList GetLateJoinData(ObjId object)

LJ Policy GetPolicy(ObjId object, ObjId peer, string name)

void LateJoinFailed(ObjId object)

void ReceiveLateJoinData(ObjId object, RTPI ADUList adus)

Figure 7.8: Late-join library API

Figure 7.8 depicts the interfaces between application and late-join service. The application

provides all incoming traffic of the application group via the functionsReceiveRtpiAdu

andReceiveRtcpiAdu of the classRTPI LateJoin to the late-join service. This class

also offers the possibility to set the late-join policy for an object and to select the application-

controlled group membership for an object (see Section 6.3.3). The application has to imple-

ment theRTPI LateJoinFeedback interface. In case an application instance is selected

as the server for a certain object, the late-join service retrieves the appropriate initialization

information from the application via the functionGetLateJoinData . The application is

also informed when a new object is discovered, a late-join request failed after several at-

tempts, and when late-join data is received.

In Section 6.7, a late-join algorithm for distributed interactive applications was presented that

facilitates asynchronous collaboration. It was implemented for the Instant Collaboration sys-

tem, but it could just as well be implemented as generic service for RTP/I: The operation

history and the distributed caching of operations that could not be delivered to their destina-

tions can be managed on the basis of the object-specific state vectors that are included in the

state and event headers. In order to identify and request operations that are missing in its local

history, an application instance needs to notify other session members about its local state.

For this purpose, participants have to announce their local state vectors. These announce-

ments could either be reported via the generic services channel, be integrated into the RTCP/I

participant reports, or be included in RTP/I state request ADUs. The last two possibilities

could be realized in an RTP/I profile for asynchronous applications.

7.4.3 Generic Recording Service

A third generic service on the basis of the RTP/I protocol framework was developed by Hilt

for the recording and playback of RTP/I sessions [111, 115, 116]. The basic idea is that the
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recorder attends an RTP/I session and stores the operation history created from the received

ADUs together with the session-related information gathered from RTCP/I. During replay,

the recorder then generates an appropriate operation sequence from the stored history by

adjusting the timestamps to the current physical time. The recorder also exchanges the object

and participant identifiers from the original ADUs so that they will not collide with identifiers

present in the session. Such collisions would happen in case the recorded stream were played

back with the original identifiers to the same session it was captured from, or in case the

same sequence is played back several times to a session. The application instances receiving

the played back operation sequence handle these ADUs just like regular data. Like the other

generic services, the recorder is able to operate on RTP/I information only and does not need

to interpret the ADUs’ payloads [115].

The major challenge when designing such a recording service is random access during play-

back [111], i.e., when a start time for the playback is requested that lies after the session start

time. Before an application instance is able to decode a playback sequence, it needs to be

initialized with appropriate states for all objects that are present in the sequence: In general,

the recorder cannot assume that the objects are in such a state that the operation sequence

can be directly applied to them or that they even exist already. Thus, the playback sequence

has to include an initializing state for all objects that are active or become active during the

playback. The initializing state of an object can be retrieved from the recorded operation

history and preferably has a timestamp close to the requested playback time. It is followed by

a complete sequence of delta states and events. By adding states into the operation history,

fine-grained random access can be accomplished so that the part of the playback sequence

that lies before the actual playback time is small. Thus, the recorder periodically issues state

requests with a priority of 0.

Figure 7.9 gives an example for such a random access [111]. The topmost sequence shows

parts of the original operation history. The play time of the random access is denoted asTp.

At that time, the two objectsO1 andO3 are active. Thus, the recorder has to generate an

initialization sequence for these two objects before the actual playback starts. For discrete

applications, only the order of operations needs to be considered and not their timing. The

initialization sequences forO1 andO3 can therefore be replayed in a fast forward mode (see

Figure 7.9 (i)). Afterwards, the recorder plays back the remaining parts of the operation

history in real-time. This approach is not possible for continuous applications since here the

execution time of operations in relation to the timeline has to be considered. As depicted in

Figure 7.9 (ii), the recorder has to start the real-time playback with the earliest state of the

active objects (here withS1).

The generic recording service was designed and implemented by Hilt for the Interactive Me-

dia on Demand (IMoD) system [112, 116]. With IMoD, several RTP/I and RTP sessions can
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Figure 7.9: Random access for discrete and continuous applications

be recorded (played back) in parallel. The IMoD system was successfully tested with the mlb,

TeCo3D, and the Spaceshooter game. At the University of Mannheim, it is used to record

lectures and to produce Computer Based Training (CBT) units for e-learning [25, 117, 217].

The CBT includes the original mlb presentation slides with annotations as well as recorded

audio and video streams.

7.5 Transport of Application Data with RTP/I

After discussing generic services, now the RTP/I C++ library itself is presented. It was devel-

oped in the scope of this thesis in cooperation with the IMoD project [111]. Furthermore, the

payload type definition for shared whiteboards is presented. Aside from the mlb, three other

distributed interactive applications use RTP/I: TeCo3D [154], the Spaceshooter game [161],

and the Java Remote Control tool for sharing Java animations [142]. These three applica-

tions are based on the Java library of RTP/I [156], which is fully interoperable with our C++

library.

7.5.1 The RTP/I Protocol Library

The main functions of the RTP/I C++ library are given in Figure 7.10. In order to be in-

dependent of the other protocols that the application might employ, incoming and outgoing

data are forwarded explicitly to the library via the classRTPI Rtpi . In case the appli-
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Functions of classRTPI Rtpi :

RTPI Buffer List CreateRtpiPackets(RTPI ADUList adus)
RTPI ADUList HandleReceivedRtpiData(RTPI Buffer buffer)
void HandleReceivedRtcpiData(RTPI Buffer buffer)
RTPI Participant List GetParticipantList()
RTPI Object List GetObjectList()
void AddObject(RTPI Object object)
void DeleteObject(ObjId object)
void SetObjectActiveness(boolean active)

Functions of interfaceRTPI Feedback :

void SendRtcpiData(RTPI Buffer buffer)

void ParticipantChanged(RTPI Participant)

void ObjectChanged(RTPI Object)

Figure 7.10: RTP/I library API

cation wants to send data, it provides the functionCreateRtpiPackets with a list of

ADUs after defining application-level header fields such as the object identifiers. The li-

brary fills in the other header fields, fragments or compounds the ADUs and returns a list

of ready-to-send bit strings. Data received via the RTP/I channel is rebuilt into ADUs by

the HandleReceivedRtpiData function. Incoming RTCP/I traffic is analyzed by the

library, which notifies the application via theRTPI Feedback interface in case either the

participant- or the session-related meta-data has changed. This information can also be ac-

cessed anytime by the application via the classRTPI Rtpi , and can also be changed (e.g.,

when an object is created or deleted).

7.5.2 Payload Type Definition for Shared Whiteboards

The RTP/I payload type definition for shared whiteboards was developed for the mlb but is

also valid for other whiteboards. A detailed specification can be found in [257].

The state of a shared whiteboard is usually structured into a hierarchy of objects, i.e., a

shared whiteboard document consists of chapters containing pages, and pages containing

graphical objects. In order to allow a fine-grained handling, the objects of the application state

are modeled as independent RTP/I objects. The tree hierarchy of objects is represented by

referencing each object’s parent container via the peer object field of RTP/I ADUs. Moreover,

the ordering of objects within their container has to be considered since chapters and pages

are listed in a certain order, and graphical objects have a display order (see Section 3.3). This

object order is encoded in the payload of RTP/I ADUs.
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0|v|f| res | object type | res |w|h|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| display order |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| x | y |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| width | height |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| line color | line style |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| fill color | line width |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7.11: Rectangle state ADU

New objects are created by transmitting an RTP/I state ADU with priority 3 to all session

members. Figure 7.11 depicts the payload for the state of a rectangle with object type 4.

The first two bits denote the version of the payload type definition. The visibility bitv

indicates whether the object is currently visible. For instance, mlb presentation animations

are controlled via the visibility bit. The rectangle is defined by the (x,y)-coordinates of its

upper left corner and its width and height in pixels. Thew andh bits are set in case width

or height are negative. Other attributes define the line color, the fill color (if the rectangle is

filled as indicated by thef bit), the line style and the line width. The payload also includes

the display order of objects.

Aside from rectangles, the following objects are defined [257]: session, chapter, page, and

group as containers, and oval, line, polyline, polygon, text, and image as graphical objects.

Single state changes are transmitted as RTP/I events, and a series of connected actions is sent

as a sequence of cues with one closing event, e.g., when a graphical object is moved to a new

position. In order to limit the application and network load for such sequences, the user can

define the frequency of cue transmissions. In our experience, a cue rate where every third

mouse movement causes a transmission results in a very smooth illustration, and transmitting

every tenth value is still sufficient. Figure 7.12 depicts the payload for a move operation

where (x,y) define the new coordinates of the moved object. Aside from move operations, the

following state-changing actions are defined in [257] (depending on the object type): delete,

change visibility, change size, change line width, change line style, change line color, change

fill color, move point, add point, close polygon, change type, change font, insert characters,

delete characters, change name, set active, raise, lower, and change parent.

The mlb uses the participant information provided by RTCP/I to display a list of session

members and to indicate the originator of an operation (see Section 3.5). State-related infor-

mation is used to define the set of active objects, i.e., the page that is currently displayed and

all graphical objects placed on that page. The application-level name is set to the object’s

type. For chapters and pages, the application-level name also holds their name and order



157

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0| res | object type | operation type| res |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| x | y |
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Figure 7.12: Move event or cue ADU

number. This data allows late-join clients to display the complete table of contents so that a

late-joining user can select a page that was not recovered yet.

As discussed in Section 3.3.4, the mlb transmits RTP/I ADUs via the reliable multicast pro-

tocol SMP, i.e., the reliability mechanism is not integrated into RTP/I as proposed in Sec-

tion 7.2, which is an issue for future work.

In addition to the specification for shared whiteboards, payload types are defined for tele-

pointers [258], for hand-raising tools [256], for voting and feedback tools [255], for chat

tools [254], and for application launch tools [253]. In the case of the mlb, all these tools are

integrated into one common user interface, but their shared state is managed independently

via separate RTP/I sessions.

7.6 Conclusions

In this chapter, the application-level protocol framework RTP/I was presented that is based

on the data model for distributed interactive applications. RTP/I exposes the common aspects

of these applications and therefore allows the development of generic services. Such services

can then be used easily by any application that bases its communication on RTP/I.

RTP/I consists of two parts. The data transfer protocol frames application data into states,

delta states, events, cues, and state requests, and provides access to important information

such as sender, target object, and state vector. Large ADUs are fragmented if necessary.

The second part is the RTP/I control protocol, RTCP/I, which maintains meta-data about the

participants of a session and the shared state of the application itself.

RTP/I is an open framework, which can be adapted to the specific needs of an application.

It does not force the application to use a certain transport protocol, reliability mechanism or

consistency control algorithm but supports the realization of such mechanisms. If needed,

additional functionality might be added to the RTP/I framework, either by means of an ex-

tension header or by a profile definition.

Moreover, three generic services for RTP/I were presented, a consistency control service, a

late-join service, and a recording service. The first two services were developed in the con-
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text of this thesis and were successfully integrated into the mlb. The recording service was

developed in a parallel PhD project. Finally, the RTP/I C++ library and the payload type def-

inition for shared whiteboards were discussed. Even though the payload type definition was

developed for the mlb, it represents a common basis on which different shared whiteboard

tools could implement their interoperation.



Chapter 8

Application-Level Multicast for

Distributed Interactive Applications

Distributed interactive applications have a replicated architecture, and all messages need to

be transported from their originating site to all other application instances by some form of

group communication. With respect to this message exchange, applications often have spe-

cific demands. For instance, many synchronization algorithms require data to be transmitted

reliably so that some mechanism to repair packet loss is needed. Another factor are band-

width requirements: For instance, the data stream emitted in an mlb session is typically about

1 kbyte/s per site. Finally, the propagation delay among the sender and the receivers is es-

pecially important for distributed interactive applications. For continuous applications, an

operationOi is only valid at a certain point in time so thatOi should be delivered by then.

And a low delay means that it is less likely that concurrent operations occur that could lead to

a short-term inconsistency (see Section 4.4), and that users can collaborate in a natural way.

Distributed interactive applications aredelay-sensitive.

In the Internet, two techniques exist for group communication:IP multicastandApplication-

Level Multicast(ALM). The properties of both alternatives are discussed in Section 8.1, and

it is shown that IP multicast suffers from various difficulties, which prevents it from being

widely deployed. ALM is a promising alternative. In Section 8.2, the requirements for an

ALM routing algorithm are analyzed, and fundamental issues of multicast routing are dis-

cussed in Section 8.3. Existing ALM approaches are presented in Section 8.4. Following,

a novel ALM routing algorithm is proposed, which optimizes the propagation delays on the

basis of application-level priorities and network characteristics, which qualifies this approach

especially for delay-sensitive applications (see Section 8.5). Then, the performance of this

routing algorithm is demonstrated in simulation studies in Section 8.6. An operational routing

protocol is introduced in Section 8.7. Section 8.8 concludes the chapter.
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8.1 Group Communication

Let us consider the sample session shown in Figure 8.1(a) with four application instances on

four end-systemsi, which are connected via a network of three routersri. Note that Fig-

ure 8.1(a) depicts only those nodes that are relevant in our sample and that they represent

only a small part of the entire network. The first possibility to realize group communication

in this setting is to use multiple unicast connections: As shown in Figure 8.1(b), the sender

1 is connected directly to each receiver and has to transmit three copies of a certain piece of

information. While being simple, this causes a high network load due to the duplicate pack-

ets, and it also burdens the sender with the maintenance of multiple network connections.

Depending on the group size, the resources available might not be sufficient, i.e., when par-

ticipants have only a limited capacity for outgoing and incoming network traffic. Thus, group

communication on the basis of point-to-point connections among all senders and receivers is

not a viable solution. Alternatives are IP multicast and application-level multicast.

8.1.1 IP Multicast

IP multicast provides efficient group communication in the Internet. First, a short introduction

to the basic architecture of IP multicast is given. Subsequently, the current situation of IP

multicast and the difficulties of the architecture are discussed.

8.1.1.1 The Architecture of IP Multicast

IP multicast offers group communication functionality at the IP layer. A certain communi-

cation group, ormulticast group, is identified by a class D IP address. Each participant of

such a group maintains only one network connection to the group and does not need to know

about the other members. Moreover, sites may join or leave a multicast group at any time.

An end-systemi communicates over the Internet Group Management Protocol (IGMP) [20]

with the multicast edge router ofi’s LAN about the membership ofi in a certain multicast

group.

All messages sent to the IP group address are distributed within the network via amulticast

tree as illustrated in Figure 8.1(c): A packet is duplicated at those routersri that represent

the last possible branchings on the paths from the sender to the receivers, e.g.,r1 andr2 in

Figure 8.1(c). In the ideal case, packets traverse the same physical link only once. Like all IP

traffic, delivery of multicast packets is unreliable and best-effort.

Each IP multicast router needs to determine all outgoing links for an incoming multicast

packet. In contrast to unicast IP, this decision cannot be made on the basis of the IP address

alone since an IP multicast address is not tied to a certain set of receivers. Thus, routers that
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Figure 8.1: Group communication

are nodes of a multicast distribution tree are required to manage some state information about

the members of each multicast group.

Currently, there exist a number of routing protocols for the realization of IP multicast. Differ-

ent protocols are used forintra-domain routingand for inter-domain routing. Intra-domain

routing can be classified into two types according to their tree building approach. Protocols of

the first type construct a distribution tree for each sender of a multicast group. Thesesender-

specific treescan be calculated such that the network load and the end-to-end delays for the

receivers are optimal. But a severe drawback is that routers have to manage a large amount

of membership information for groups with many senders (as is the case for most distributed

interactive applications). Examples of protocols with sender-specific distribution trees are the

Distance Vector Multicast Routing Protocol (DVMRP) [265], Multicast Open Shortest Path

First (MOSPF) [174], and Protocol Independent Multicast-Dense Mode (PIM-DM) [5].

Intra-domain multicast routing protocols of the second class lessen the management overhead

for the routers significantly by constructing a singleshared treeper multicast group. How-

ever, the resulting end-to-end delays and the network load might be higher than for sender-

specific trees. Representatives of this protocol class are Protocol Independent Multicast-

Sparse Mode (PIM-SM) [62] and Core-Based Trees (CBT) [10].
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For multicast traffic crossing domain borders, inter-domain routing protocols such as the

Multicast Source Discovery Protocol (MSDP) [65] or the Border Gateway Multicast Proto-

col (BGMP) [247] are used. They allow the interoperability between different intra-domain

protocols. In addition, they limit the negative effects of some intra-domain routing protocols

such as the periodic flooding of the network by DVMRP and PIM-DM.

The protocols described so far make IP multicast a best-effort service where data packets

are delivered as well as the current network conditions allow. For applications requiring

guarantees about delivery parameters such as packet loss rate, bandwidth, and end-to-end

delays [274],Quality of Service(QoS) infrastructures were proposed: IntServ (Integrated

Services) [15] and DiffServ (Differentiated Services) [13] are two examples. IntServ realizes

QoS by reserving resources individually for each data stream [16, 43], which requires state

information and a complex logic in all routers. DiffServ is less complicated and does not

allow the explicit reservation of resources. Instead, a data stream is assigned one of three

service levels, and routers prioritize data packets that have a higher level. Thus, DiffServ

facilitates only relative QoS.

8.1.1.2 Discussion

Despite the fact that the work on IP multicast started almost 20 years ago [41], it is not yet

deployed on a large-scale, and its architecture suffers from various problems. One fundamen-

tal issue is that multicast routers have to maintain state information for each group. This is

contrary to the end-to-end design principle of unicast IP where routers are kept as simple as

possible in order to achieve high performance and to keep the cost for the network infrastruc-

ture low. In contrast, IP multicast requires “smart” routers. Moreover, the state management

restricts the architecture’s scalability with respect to the number of multicast sessions that can

be handled simultaneously.

Another structural problem is the addressing scheme used by IP multicast: Group addresses

can be chosen individually by the multicast group (i.e., by the user or by the application)

so that address collisions are possible. To prevent this, there is a number of proposals for

the allocation of unique addresses: The session directory SDR [105] maintains a global list

of existing multicast sessions and their addresses. With GLOP [166], blocks of multicast

addresses are allocated statically. And the Multicast Address Allocation Architecture (MAL-

LOC) [248] facilitates a dynamic selection of addresses. None of these schemes has gained

unanimous acceptance. As long as multicast address allocation is not handled exclusively by

a single mechanism, the duplicate selection of addresses cannot be excluded.

The concept of open multicast groups implies that a sender cannot control who receives

the data. Similarly, it is not possible to prevent malicious senders from interfering with a
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multicast session, e.g., by flooding the session in a denial-of-service attack. These problems

together with the addressing issues can be solved with Source-Specific Multicast (SSM) as

first proposed by Holbrook and Cheriton in [118]. Here, a multicast session is bound to

the single sender, and the sender’s IP address is part of the session address. Thus, session

addresses are unique. A receiver joins the session by subscribing to the session address. On

the basis of this address, the path from the receiver to the sender can be determined easily so

that a distribution tree is constructed by reverse path forwarding. In addition, the sender can

control who is attached to the distribution tree. Other senders are not permitted by definition.

However, SSM is only applicable for applications with exactly one sender and is therefore not

well-suited for distributed interactive applications. Moreover, routers still have to maintain

state information.

The number of routing and address allocation protocols for IP multicast as listed above shows

how complex the architecture is. Together with the demand that the different protocols must

be interoperable, the administration of IP multicast is very difficult. Furthermore, not all

routers are multicast-enabled. These routers can be traversed by multicast traffic only via

tunnels encapsulating multicast data within unicast packets. These tunnels need to be con-

figured manually, which increases the administrative overhead even more. This situation is

expected to improve only when IPv4 will be replaced with IPv6, which offers native mul-

ticast support and integrates IGMP into ICMP [42, 34]. In the current Internet, the MBone

(Multicast Backbone) is an overlay network of multicast-capable routers [61].

Aside from routers that are not multicast-capable, multicast deployment is also hindered at

the network’s edge: Dial-in connections with modems, ISDN, or DSL do not support multi-

cast. Also, many firewalls prohibit multicast traffic and therefore prevent end-systems from

participating in multicast sessions. To overcome these limitations, a tunnel between the end-

systems and a multicast-enabled gateway is necessary (e.g., the dial-in gateway proposed by

Kuhmünch in [141]).

From the perspective of the Internet Service Providers (ISPs), IP multicast poses economic

questions in addition to the technical challenges. The high administrative effort required

for IP multicast also results in high deployment costs for an ISP. In addition, billing users

or neighbor ISPs for traversing multicast traffic is complicated since the network resources

consumed by in- and outgoing traffic are not the same. Diot et al. discuss management issues

with IP multicast in detail in [48].

IP multicast provides best-effort delivery of data to an arbitrary number of receivers. But

many applications also need additional transport layer functionality such as reliability, source

ordering, restricted access to multicast sessions (i.e., session control), as well as flow and

congestion control for group communication. Since this functionality is considerably more
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complicated to realize than for unicast, solutions are still under investigation. It also seems

that the demands of different applications are too diverse for a single generic multicast trans-

port protocol.

To conclude, IP multicast suffers from a vicious circle, which is difficult to break: The cur-

rent multicast architecture in the Internet has various technical and administrative problems

preventing a faultless flow of multicast traffic. As a consequence, only few users and applica-

tions actually employ multicast. But as long as there are no “killer applications” with a high

number of users, there is no pressure to improve and deploy multicast on a large scale.

8.1.2 Application-Level Multicast

A promising alternative to IP multicast is Application-Level Multicast (ALM) [30]: The

key idea is to use the end-systems as nodes in a multicast distribution tree. As depicted

in Figure 8.1(d), the end-systems are interconnected via unicast, and packets are duplicated

at the application layer when necessary:2 copies all incoming traffic from1 to the outgoing

links to3 and4. The construction and the maintenance of the distribution tree are also handled

at the application level without any support from the network.

8.1.2.1 Discussion

ALM eliminates several key problems of IP multicast: From the router’s perspective, ALM

is equivalent to unicast. Thus, it is not necessary for a router to maintain additional state in-

formation for group communication, and they remain very efficient for point-to-point traffic.

While routers are kept simple, the logic for multicast is pushed to the network’s edge which

complies with a fundamental design principle that was vital for the success of today’s Inter-

net. Furthermore, ALM can be deployed immediately without any changes to the existing

network infrastructure and without any extra administrative overhead.

The membership in an ALM session can be managed by the application. In Instant Collabo-

ration, only application instances that were invited previously are allowed to join a multicast

session [83]. Similarly, it is possible to explicitly define the rights to send or receive data.

An address collision can be prevented easier than with IP multicast since sites are attached

explicitly to the distribution tree and are identified by their unicast address. The namespace

of the group addresses themselves is determined by the application (or the ALM protocol)

and can be significantly larger than the one given by class D IP addresses (32 bit in IPv4).

Also addresses might be unique by definition, e.g., by including the sender’s IP address as in

SSM [118].
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In general, dial-in connections such as ISDN or DSL are able to handle ALM traffic as well

as regular unicast traffic. Firewalls might be problematic when certain port numbers are

disabled, or when UDP is used as transport protocol, which is often not allowed to pass

firewalls.

But ALM also has some major drawbacks when compared to IP multicast: An ALM distribu-

tion tree consumes more network resources than the one that would be built by IP multicast.

In Figure 8.1(d), the physical link between2 andr2 is used three times. Moreover, when

receivers are not connected directly to the sender, packets are transmitted over more physical

links than with IP multicast, increasing the end-to-end delay. Inner nodes of the ALM tree

need to process and forward packets so that the application load of these sites becomes higher.

And the time consumed for processing packets at the end-systems increases the propagation

delays even more. At the same time, ALM is more efficient than group communication with

direct unicast connections from the sender to each receiver since several physical links are

traversed only once. In other words, ALM is somewhere in the middle between IP multicast

andn point-to-point connections.

An ALM protocol for the communication of a distributed interactive application needs to

take care of various aspects: Besides the core functionality for building and maintaining

the distribution tree (i.e., routing), reliable and ordered transport of data [127], flow and

congestion control [250], as well as membership management [70] have to be considered.

For all these aspects, generic solutions are desirable so that distributed interactive applications

can choose an appropriate ALM protocol without having to design and implement the same

functionality repeatedly. In the following, we concentrate on the routing functionality of

ALM protocols.

8.2 ALM Routing for Distributed Interactive Applications

Existing approaches for ALM routing focus on network characteristics (e.g., latency) to con-

struct the multicast distribution tree. Their aim is to limit the impairment of this tree when

compared to the optimal tree that would be realized by IP multicast. As long as those net-

work characteristics remain constant and no changes in the set of session members occur, all

packets from a sender will take the same paths towards the destinations. This approach is

well-suited when all packets have to be delivered to all receivers with the same priority, e.g.,

in a multi-destination file transfer.

However, a number of applications exist where the priority of a packet may be different for

the individual receivers. For instance, in a multi-player game the actions of a player are

important for competing players close by, and these players should receive operations with
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a very low delay. Other players may be able to tolerate a higher delay. Low end-to-end

delays are also essential for concurrency control mechanisms (see Section 4.4): The lower

the delay, the lower is the probability for concurrent operations for short-term inconsistencies.

Here, low delays are particularly important for sites interacting with each other directly (e.g.,

modifying the properties of the same object on a shared whiteboard page). Furthermore, a

packet’s priority may change over time for some or all receivers. For example, if sensor

data is transmitted by a sender, this data may typically have a low priority for all receivers

unless an extreme sensor reading occurs, which requires the transmission of a packet with

very low latency to some receivers. Traditional tree routing algorithms are unable to handle

such situations, they do not take application-level priorities into account.

Thus, a novel routing algorithm is designed in this thesis, which combines application-level

priorities and network characteristics when building a multicast distribution tree [263]. Since

multicast routing is handled at the application level, integrating application knowledge into

the routing decision is straightforward and introduces little overhead. The general idea of this

approach is to allow the sending application to assign a priority to each pair of packet and

receiver. The higher the priority, the more direct will the path be that the packet takes towards

its destination. But as we will see later, the cost for reduced latency is higher consumption of

network resources. Thus, the key challenge is to find an algorithm that also takes this tradeoff

into account.

In Section 8.3, basic algorithms for building distribution trees are discussed, and metrics to

determine the quality of a given tree are presented. Then, existing ALM approaches are

outlined in Section 8.4. The algorithm for the construction of multicast distribution trees that

take application-level semantics into account is described in Section 8.5. Section 8.6 contains

an evaluation of the presented algorithm by means of simulation. Last, an ALM protocol is

introduced, which is based on this routing algorithm in Section 8.7.

8.3 Distribution Trees and Metrics

Given that the underlying network is not partitioned, each participant of a session is able to

connect to all other members via unicast. From the application-layer’s perspective, the graph

of participants and unicast connections is fully connected. Figure 8.2(b) depicts this graph

for the sample session of Figure 8.2(a). Note that Figure 8.2 shows only those end-systems

and routers that participate in the sample multicast session; the entire network might be much

larger. For easier discussion, we use the term “graph” for the application-level network of

unicast connections among end-systems and the term “network” for the underlying physical

network (of end-systems and routers).
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Figure 8.2: Distribution trees

Moreover, the following notations are used: LetG = (V ; E) be a fully connected, directed,

and weighted graph whereV = {i} denotes the set of nodes andE = {eij} the set of edges.

V contains only those end-systems that participate in the considered multicast session. We

define the nodes ∈ V as source (root) and the remaining nodesR = V \ {s} as receivers.

The directed edgeeij connects the end-systemi with j. Each edge has a certain weight

w(eij) > 0. Depending on the application, different properties of an edge can be used as

weights (e.g., bandwidth, latency, loss rate, etc). For distributed interactive applications, the

end-to-end delays are especially important so that we concentrate on these as weights (see

discussion in Section 4.4). For instance, in Figure 8.2(c), the weight of the edgee12 is 4.

The task for an ALM routing algorithm is then to select a sufficient subset ofE for a multicast

distribution treeT so that a sender can reach all receivers, i.e.,T connects all application

instances inV . In the following, we focus on source-specific trees. A distribution treeT

is therefore given byT ⊂ E with (1) ∀ j ∈R ∃ eij ∈T and (2)T does not contain any

cycles. This tree should be constructed such that the resulting end-to-end delays and the

network resources consumed are optimized. In the remainder of this section, we discuss

metrics measuring the quality ofT and also present basic tree-building algorithms.
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8.3.1 Tree Height and Fanout

Basic characteristics of a distribution tree are height and fanout. Theheight of a tree is

defined as the maximum number of nodes that are traversed on the path from the sender to a

receiver. For the tree depicted in Figure 8.2(c), the height is 2. A high tree might result in high

end-to-end delays for receivers lower in the tree. Thefanout of a nodei denotes the number

of outgoing links. For2 in Figure 8.2(c), the fanout is 2. Increasing the average fanout for

T decreases its height when the number of nodes remains constant. The maximum possible

fanout forT depends on the application and on the available resources (e.g., bandwidth for

outgoing network traffic).

8.3.2 Resource Usage and Minimum Spanning Tree

The link stress measures how many copies of a specific packet are transmitted over the

same physical link of the network. For instance, the link stress of1, r1 in Figure 8.2(d) is

3. Usually, the maximum and the average link stress over all physical links used byT are

examined. Since a higher link stress implies that more network resources are consumed, both

maximum and average link stress should be as low as possible forT .

The links stress alone does not capture how many network resources are actually absorbed

by T . Thus, we define theresource usageCR as the product of link stress and link weight,

summed over all physical links of the network used forT . This sum is equivalent to the sum

of the weights of all edges inT since the weight of a physical link is implicitly contained in

the weight of all edges using this link. For instance, in Figure 8.2(c) the resource usage ofT in

the underlying network isw(1, r1)+w(r1, r3)+3w(r2, 2)+w(r2, 3)+w(r2, r3)+w(r3, r4) =

9 = w(e12) + w(e23) + w(e24). CR is therefore given by:

CR(T ) =
∑

eij∈T

w(eij). (8.1)

When minimizingCR, the distribution treeT is aMinimum Spanning Tree(MST). An MST

for our application-level graph of four end-systems with1 as sender is depicted in Fig-

ure 8.2(c). If the graphG is undirected, the MST can be calculated with the well-known

algorithms of Kruskal [140] and Prim [201]. For those graphs, the MST is well-suited as a

shared distribution tree since an MST algorithm selects the same set of edges forT indepen-

dent of the sender. An algorithm for directed graphs is proposed by Edmonds [54].
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8.3.3 End-to-End Delays and Shortest Path Tree

Before a packet reaches a receivert ∈ R, it traverses the pathqt from the senders to t as

defined by the distribution treeT : qt = 〈esj1, . . . , ejn−1jn, ejnt〉 with eij ∈ T . This path

determines the end-to-end delayd(t) experienced byt:

d(t) =
∑

eij∈qt

w(eij). (8.2)

The total delay for the distribution of a packet from the source to all receivers is measured by

thecumulative end-to-end delayCD:

CD(T ) =
∑

t∈R

d(t). (8.3)

Optimization (i.e., minimization) ofCD leads to a distribution treeT that is aShortest Path

Tree(SPT). The SPT can be calculated with the algorithm of Dijkstra [46]. SinceG is a fully

connected graph, the SPT is a tree where all receivers are linked directly to the senders.

Figure 8.2(d) shows the application-level SPT for the example with1 as sender. Commonly,

this would be regarded as “normal” unicast rather than application-level multicast. With

respect toCD, the SPT is optimal:CD = 11 in Figure 8.2(d), as opposed toCD = 17 for the

MST in Figure 8.2(c). But at the same time, it causes a very high consumption of network

resources:CR = 14 in Figure 8.2(d) compared toCR = 9 in Figure 8.2(c). Furthermore,

building an SPT is not possible when the sender’s bandwidth is not sufficient to serve all

receivers simultaneously1.

Another measure that evaluates the end-to-end delay experienced by a receivert is theRela-

tive Delay PenaltyRDP :

RDP (t) =
d(t)

w(est)
. (8.4)

RDP (t) compares the end-to-end delay that is achieved fort to the smallest possible delay,

which is equal to the unicast delay froms to t. RDP (t) therefore assesses the optimality

of the pathqt whereRDP (t) = 1 is the optimum. For the MST distribution tree depicted

in Figure 8.2(c), theRDP for the receiver3 is 1.5. By definition, for SPT distribution trees

RDP (t) = 1 ∀ t ∈ R.

1This could also be the case for some inner nodes of an MST but is less likely.
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8.4 Related Work

We will now examine existing application-level multicast protocols and discuss whether their

algorithm to construct a distribution tree is applicable in the scenario where a delay-sensitive

application wants to define receiver-specific priorities on a per-packet basis. In Section 8.6.5,

simulation results are compared. Typically, ALM distribution trees are built on the basis

of path characteristics such as end-to-end delays, available bandwidth and packet loss rates.

Besides building a stable and robust tree, the main goal is to minimize the additional routing

overhead compared to native IP multicast.

Yoid [70] manages two independent topologies for the exchange of data. Control messages

and other data that needs to be delivered with high reliability are transmitted over a mesh, i.e.,

nodes might receive duplicates. For the distribution of regular application data, Yoid creates

a shared multicast tree: Each nodei selects another nodej as parent, preferably such that the

delay betweeni andj is low. Receivers gather the set of possible parents by periodic control

messages and explicit queries. An initial list can be obtained from a so-called rendezvous

host during the bootstrap phase. Aside from the network delays, the maximum fanout of a

potential parent is considered in the choice of a parent node. Because the initial list of possible

parents is usually incomplete and the fanout of nodes is constrained, the resulting distribution

tree may be suboptimal. As a consequence, nodes periodically ping other session members

in order to find a better parent and to ultimately approximate an MST. In case a node changes

its parent, special care has to be taken in order to prevent cycles that would partition the tree.

An alternative method to select a parent node in Yoid is provided for the transfer of large

data files: Nodes connect to the parent that caches the largest amount of data. This algorithm

makes use of application-level knowledge but completely neglects network characteristics.

Other examples of tree-building ALM protocols are the Application-Level Multicast Infras-

tructure (ALMI) protocol [194], the Host Multicast Tree Protocol (HMTP) [276], the Banana

Tree Protocol (BTP) [110], and Overcast [127]. In ALMI, a session control server centrally

calculates and maintains the distribution tree that is an MST on the basis of end-to-end de-

lays. In order to allow reconfigurations of the tree during an ongoing session and to absorb

short-time partitions, each node of the tree caches the most recent data packets for a certain

amount of time. All other tree-building approaches mentioned above form self-organizing

distribution trees where nodes select an appropriate parent, and they all implement mecha-

nisms for integrating new members, detecting loops and partitioning, and for optimizing the

tree by rearrangement. Unlike the other protocols, Overcast builds sender-specific trees in-

stead of a single shared tree. The main criterion for the distribution tree in Overcast is to

maximize throughput for each receiver, which qualifies Overcast mainly for the transfer of

bulk data.
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The main advantage when constructing the distribution tree by parent selection is the low

complexity of the local optimization process. Thus, such a routing protocol scales well with

the number of participating nodes. However, in many cases local optimization is not able to

determine the optimal tree with respect to end-to-end delays or consumed network resources.

In [110], Helder and Jamin therefore present several mechanisms to improve the parent-

selection scheme. Depending on a cost function that defines whether a node should switch

its current parent, the resulting distribution tree approximates either an MST or an SPT. For

example, switching to a parent with a low cost path to the source will converge to an SPT.

Since it might take a long time until the approximation converges to the optimum tree, this

mechanism seems not to be suitable for a highly dynamic environment where priorities might

change on a per-packet basis.

Another approach to build distribution trees is the Topology Aware Grouping (TAG) algo-

rithm [144]. Here a node selects its parent such that both share a large portion of their path to

the sender on the underlying network. A new node traverses the tree starting from the sender

until an appropriate parent is found. The topology of the underlying network is inferred ei-

ther by tools such as traceroute or by topology servers [71]. The ALM tree built by TAG is

source-specific, and data originating from other session members is distributed via the root of

the tree. This introduces a severe performance penalty for distributed interactive applications

where most of all session members send data.

With TMesh [267], Wang et al. propose to add additional links to an ALM tree. These

shortcuts reduce the number of hops on the way from a sender to the receivers, and TMesh

seeks to optimize the average end-to-end delays for the whole group and builds a rather stable

tree. Thus, TMesh seems to be not flexible and fast enough to facilitate delay optimization

for certain receivers in an environment where priorities change dynamically.

Instead of constructing a tree directly, Narada [30] employs a two-step process: First, a mesh

is built among the participating end-systems. Then, Narada runs a distance vector protocol

with latency and bandwidth [29] as the routing metrics on top of the mesh. The resulting tree

is a sender-specific SPT based on the underlying mesh. Thus, the routing protocol of Narada

does not facilitate priority-based routing. As in Yoid, the mesh increases the robustness of

Narada against failures of network or nodes. The mesh is also used to manage the otherwise

independent source-specific distribution trees. But the crucial factor in this approach is the

quality of the mesh that must balance the number and the characteristics of the used unicast

links. If there are too many links in the mesh, the resulting distribution topology will resemble

a star of unicast connections from the sender to all receivers. As in Yoid, joining end-systems

obtain a list of current session members by a bootstrap mechanism and connect to one or

more listed nodes. Then, members periodically add links to the mesh that improve the overall

routing performance and remove links that are rarely utilized by a distribution tree.
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Like Narada, Gossamer [26] also employs the tree-over-mesh approach where the mesh is

constructed in order to minimize latencies of the distribution tree. The number of connections

a node can maintain at a certain point in time is explicitly restricted with Gossamer in order

to take bandwidth limitations into account.

Approaches where application-level semantics are used for routing can be found in the area of

content delivery networks: The common idea of Bayeux [277], Chord [232], and Content Ad-

dressable Networks (CAN) [205] is to realize a scalable lookup service for objects (e.g., files,

end-systems, etc.) where the responsibility for managing the object space is shared equally

among a network of peer nodes. The multi-hop lookup path for a target object (e.g., the re-

ceiver of a message) is determined on the basis of certain properties of the (hash-generated)

destination address. Thus, the application-level semantics can be applied when assigning an

object’s key, i.e., the semantics are rather static. For example, in Bayeux the current node

uses thei-th digit of an object’s key to resolve the next hop towards the destination. In

contrast to the previously discussed ALM routing protocols, these content delivery networks

base their routing decisions (almost) exclusively on application semantics. Consequently, the

resulting distribution tree may be very inefficient with respect to end-to-end delays and link

stress [277, 206]. In [207], Ratnasamy et al. therefore improve the CAN algorithm by in-

corporating some knowledge about the underlying network topology: Each node determines

its geographical area by measuring its round-trip time to some well-known nodes (so-called

“landmarks”). The address space is then allocated such that the latency of the next hop is low

when routing along the lookup path. Assuming that the end-to-end delay between two nodes

sharing a certain prefix of their IP addresses is low, [75] takes this concept one step further

and selects the node with the IP address closest to the hashed object key as the next hop.

Summing up, existing approaches for ALM routing do not offer the desired functionality

of data delivery with dynamic per-packet and per-node priorities. But they successfully ad-

dress other important aspects of an ALM protocol such as scalability, interoperability with

IP multicast, reliability and robustness, bootstrapping, and data naming. In the next section,

we therefore concentrate on an appropriate routing algorithm for the scenario with delay-

sensitive applications.

8.5 Priority-Based Application-Level Multicast Routing

An ALM routing algorithm builds a distribution tree by connecting the end-systems with uni-

cast links. The resulting tree should use the resources of the underlying network efficiently,

which requires some knowledge about the network topology. Since on the application level

there is no direct access to topology information, observable parameters (e.g., latency) may

be used to deduce a certain amount of knowledge (see Figure 8.3): When node1 has a high
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Figure 8.3: Joint path to distant receivers

delay to both nodes2 and3, and2 has a low delay to3, it is likely that the edgee12 shares

a significant portion of the physical link with the routee13. Other, more sophisticated pos-

sibilities to deduce the network’s topology from the application level include tools such as

traceroute, landmark routers with well-known locations [207, 71, 220], and methods analyz-

ing one or several network parameters that can be measured at the end-systems (e.g., loss

patterns [148, 208]). In the following, we concentrate on unicast latencies as the network

parameter determining the ALM tree2.

In this context, we consider the Minimum Spanning Tree (MST) and the Shortest Path Tree

(SPT) (see Section 8.3). The MST optimizes the resource usageCR of the multicast tree but

the path length is not taken into account and can cause very long end-to-end delays. Hence,

using an MST is only reasonable when end-to-end delays are not an issue (e.g., for non-

interactive data dissemination). When building an SPT from the unicast delays, the distribu-

tion tree will consist of separate unicast connections from the sender to each receiver. With

respect to the end-to-end delaysCD, the SPT is optimal but causes a very high consump-

tion of network resources. Furthermore, building an SPT is not possible when the sender’s

bandwidth is not sufficient to serve all receivers simultaneously.

8.5.1 Introducing Application-Level Semantics

The aim of this chapter therefore is to construct application-aware distribution trees that bal-

ance the characteristics of MST and SPT: For each packet-receiver pair, the application may

provide a priority. Depending on this priority, the forwarding path of the packet should grad-

ually change from the MST path to the SPT path so that the end-to-end delays for receivers

with a high priority are optimized at the cost of a higher consumption of network resources.

For nodes with a lower priority, the delay is less important so that paths can be used that

consume less resources.

2We will ignore that unicast routing protocols may give suboptimal routes and assume that the underlying
unicast routing algorithm causes direct paths to a node to be shorter than any indirect path over intermediate
nodes.



174 Chapter 8 – Application-Level Multicast

In order to find an algorithm with this property, first the two metrics of resource usageCR

and cumulative end-to-end delayCD as defined in Equations 8.1 and 8.3 are combined by

using one common application priority for the entire distribution tree. The optimization of the

combined metric allows the gradual transition from MST paths to SPT paths as the application

priority increases. In a second step, we generalize the metric such that one priority may be

given for each destination. Its optimization leads to a tree where every path from the sender

to a destination changes from the MST path to the SPT path. Finally, an efficient algorithm

is presented, which provides a very good approximation for the optimal distribution tree with

respect to the last metric.

Let p ∈ [0; 1] be the application’s priority with which it wants to deliver data:1 means that

the end-to-end delay for all receivers should be as low as possible,0 denotes no special delay

requirements. A balancing cost functionC can then be defined as follows:

C(T ) = (1 − p) CR(T ) + p CD(T ). (8.5)

Figure 8.4 visualizes the effect ofp when building the optimum distribution tree according

to C for a sample ALM session. The participants of the session are numbered from1 to

6, while intermediate routers of the underlying network appear as unmarked nodes. The

corresponding table contains the pairwise end-to-end delays. Let node2 be the sender. The

resulting distribution trees that are optimal with respect toC are depicted in Figure 8.5. When

p is increased, nodes further away move up in the tree, reducing the end-to-end delays to the

sender, until forp = 1.0 a star-like SPT is reached. As can be seen from the graphs, the

number of possible trees for a small overlay network with only 6 nodes is very limited.

Following, the cost functionC is generalized for the case of individual per-receiver priorities

where information may be of high importance to some receivers (and should therefore be

delivered on a direct path) and of lower importance to other receivers. Letp : V → [0; 1] be

the per-node priorities for a senders. They can easily be integrated intoCD, defining the cost

functionCp
D:

Cp
D(T ) =

∑

t∈R

p(t) d(t). (8.6)

Integrating the per-node priorities intoCR is more difficult since the costs are calculated over

the edges of the tree and not per receiver. However, in an MST, the relevant cost for a receiver

is the weight of the edge over which it is connected to the rest of the tree. Consequently, the

priority of a node can be assigned to this edge. This leads to the cost functionCp
R:

Cp
R(T ) =

∑

eij∈T

(1 − p(j))w(eij). (8.7)
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The total costsC are then defined as

C(T ) = Cp
R(T ) + Cp

D(T ). (8.8)

Note thatC specializes toCD if ∀v p(v) = 1, and toCR if ∀v p(v) = 0. This means that the

node priorities determine the structure of the minimum cost tree with the extremes SPT and

MST.

8.5.2 The Priority-Based MST Algorithm

Direct optimization of this cost function is computationally complex so that an algorithm that

constructs a distribution treeT according toC would not be well-suited for an ALM protocol.

However, it is possible to approximateC such that the tree that is optimal with respect to the

approximation can be calculated by an MST algorithm. For this purpose, the cost function

needs to be based solely on the tree’s edge weights, and not on complete paths to individual

receivers.

Therefore,Cp
D must be approximated: The general idea is to split the complete pathqt from

the senders to a receivert into the last edge of the patheit and the path of all previous edges

〈esj1, ej1j2, . . . , ejni〉. Now, the cost of the path froms to i is approximated with the cost of

the direct edgeesi so thatw(esi) is a lower bound for the actual path costs (see Figure 8.6).

This leads to a simplified approximate formulation for the global costsC:

C(T ) =
∑

eij∈T

(1 − p(j))w(eij) +
∑

t∈R

p(t)
∑

eij∈qt

w(eij)

≈
∑

eij∈T

(1 − p(j))w(eij) +
∑

t∈R,i∈V :eit∈T

p(t)
(
w(esi) + w(eit)

)

=
∑

eij∈T

w(eij) + p(j)w(esi).

The last equality follows from the property that a spanning tree of a graph has the same num-

ber of edges as there are target nodes in the graph. Consequently, both sums are calculated

over the same set of edges. In order to minimize the approximated costsC, an MST algorithm
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can be applied to the graphG with modified weights. The new weightsw′ are set to

w′(eij) = w(eij) + p(j) w(esi). (8.9)

The calculation ofw′(eij) is illustrated in Figure 8.7. With increasingp(j), indirect linkseij

to the target nodej will become more expensive, and eventually such links will be removed

from the distribution tree and be exchanged against more direct paths.

We denote the approximating cost function asC̃:

C̃(T ) =
∑

eij∈T

w′(eij). (8.10)

In order to calculate the optimum distribution tree forC̃, a directed MST algorithm has to be

applied as it is not a priori known in which direction data is distributed over the edge, and the

costs for the two directions may differ. Algorithms to construct MSTs in directed graphs have

been described in [31, 54]. We call the combination of modified edge weights and directed

MST computationPriority-based directed minimum Spanning Tree(PST) algorithm [263].

Pseudo-code for the PST algorithm is presented in the next section.

8.5.3 Pseudo-Code for the PST Algorithm

Figure 8.8 gives the pseudo-code to compute the PST on a graphG = (V ; E) for a senders

with priority functionp. First, the weightsw′(eij) of the directed graph are calculated as given

by Equation 8.9. Second, the directed minimum spanning tree is determined according to the

algorithm published by Edmonds [54]. This algorithm was originally designed to construct

a branchingT with maximum total costs̃C on the basis ofG: A branchingis a directed

graph without cycle where each node has at most one incoming edge, i.e., a branching is not

necessarily connected. Thus, to build an MST, we define all weightsw′ to be negative and

ensure that the branchingT contains|V | − 1 edges (maximizing̃C with negative weights is

equal to minimizingC̃ with positive weights).

The basic idea of Edmond’s algorithm is to calculate an initial graphT by selecting for each

nodei ∈ R the incoming edge with maximum costs. In caseT contains a cycleZ, it is

broken up by exchanging an edge withinZ with an appropriate edge from outsideZ. Once
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(1) Compute weightsw′(eij) for all edges inE:
• ∀i, j, i 6= j : w′(eij) = −(w(eij) + p(j)w(esi))

(2) Compute the directed minimum spanning tree with sources onG:
• Discard all edgeseis ∈ E that target the source nodes.
• ∀ nodesi ∈ V, i 6= s: select the edgeeji ∈ E with maximum weightw′(eji). Let E ′

be the set of selected edges.
• While T := (V ; E ′) contains a cycleZ := (W ; F ), W ⊂ V, F ⊂ E ′ do

– Find the edgeekl ∈ F with minimum weightw′(ekl).
– Modify the weightw′ of each edgeeij ∈ {eij |i ∈ V \ W, j ∈ W}:

w′(eij) := w′(eij) + w′(ekl) − w′(eh(j)j),
with h(j) ∈ W being the predecessor node with edgeeh(j)j ∈ F .

– Select the edgeemn ∈ {eij|i ∈ V \ W, j ∈ W} with maximum weight
w′(emn), and setE ′ := E ′ ∪ {emn} \ {eh(n)n}.

– Build a new graphT by contracting all nodesi ∈ W into a pseudo-nodeϕ:
V := V \ W ∪ {ϕ}. Modify E andE ′ by replacing all edgeseij with tail node
i ∈ W or head nodej ∈ W by eϕj or eiϕ, and delete edges{eij |i, j ∈ W}.
Create new weightsw′ accordingly.

• Replace all pseudo-nodesϕ ∈ V and the corresponding edges inE ′ by the original
nodes and edges.T represents the directed MST with roots.

Figure 8.8: Pseudo-code for the computation of the PST

Z is broken up, the nodes that were part ofZ are replaced by a so-called “pseudo-node”ϕ

in order to prevent that the edges withinϕ are exchanged in future computational steps. The

process of exchanging edges is repeated until there are no more cycles inT .

As proven by Camerini, the complexity of Edmond’s algorithm isO(n2) wheren is the

number of nodes inV [23]. Theoretically, there existnn−2 different distribution trees onG

per sender [24], i.e., when all nodes send data there arenn−1 trees in total. However, the

simulations and the experimental results indicate that the actual number of trees in a certain

scenario is fairly limited [8, 263]. In Section 8.7.4, mechanisms are discussed to limit the

number of trees required in a session.

Figure 8.9 shows two sample PSTs for the ALM scenario with four session members. In

Figure 8.9(a), the sender1 assigns a high priority to node4 and low priorities to2 and3. The

initial graph calculated by the PST algorithm is a branching with edges{e32, e23, e14} that

includes the cycle{e32, e23}. In the next step,e42 is determined to be the edge with maximum

weight targeting the cycle. Thus,e32 is replaced withe42, and the algorithm terminates since

T does not contain any more cycles. Note that only node4 with the highest priority has

a direct connection to the sender. As the sender’s priority for2 increases to0.4, 2 is also

connected directly to1 (see Figure 8.9(b)).
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Figure 8.9: Priority-based distribution trees

8.5.4 Considering Constraints for Distribution Trees

In case end-systems have a network connection with limited bandwidth (e.g., modem or

ISDN), the PST algorithm might calculate distribution trees that are not an applicable so-

lution because one or more nodes would not be able to handle the induced traffic. This could

also happen when the application has strict demands on the end-to-end delays, and packets

that are delivered with a delay exceeding a certain threshold are invalid for the application.

An algorithm that takes such restrictions into account does not only have to find a distribution

treeT onG such that the cost functionC as defined in Equation 8.8 is optimized. It also needs

to observe constraints such as (1)d(t) ≤ dmax ∀t ∈ R in case of an maximum allowable de-

lay dmax for a certain scenario, or (2)b · |{eij ∈ T | i = k∨ j = k}| ≤ bmax(k) ∀k ∈ V when

b denotes the bandwidth consumed for one incoming or outgoing connection, andbmax(k) is

the maximum bandwidth available at nodek.

One possible solution to this novel optimization problem is to approximate the cost func-

tion C with C̃ as defined in Equation 8.10 by applying the modified weight function to the

original graph (see Section 8.5.2), and by computing the directed MST under consideration

of the constraints. Calculating such a constrained minimum cost tree is also known as the

Constrained Steiner Minimum Tree (CSMT) problem [86]. Since the CSMT problem is

NP-complete [132], a number of heuristics were proposed to approximate the CSMT in poly-

nomial time [139, 204, 214, 242]. Designing and evaluating such an algorithm in order to

construct a PST so that restrictions of the available bandwidth or of the maximum allowable

delay are taken into account is an issue for future work. For the remainder of this chapter, we

concentrate on the unrestricted PST algorithm as described above.

In the next section, simulation results for the PST algorithm are discussed and compared to

results of existing approaches. Thereafter, an ALM protocol on the basis of the PST algorithm

is presented and analyzed in Internet experiments.
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8.6 Simulation Results

The performance of the PST algorithm is evaluated with a basic network simulator, which

was developed for this purpose in the course of this thesis. The simulator is event-based and

allows packet-level data distribution on arbitrary network topologies. A network topology

is characterized by a set of nodes connected via edges with a certain delay. Other factors

such as bandwidth, router load, and packet loss are not considered. All network topologies

are generated with the Georgia Tech Internetwork Topology Models (GT-ITM) [22] toolkit.

The topologies use the transit-stub method, which defines a two-level network with tran-

sit domains as the network’s backbone and stub domains hosting the end-systems. Edges

between nodes are placed using the random model, and the generator’s option to introduce

extra transit-stub or stub-stub edges is disabled. All end-systems are located on the edge of

the network, and all inner nodes act as routers. Unicast connections among end-systems are

determined by the shortest path algorithm of Dijkstra [46].

In the following, the characteristics of the PST algorithm are compared to the delay-based

MST and SPT approaches on the basis of a realistic application scenario. Comparing the

results of PST and MST is especially interesting since many existing approaches seek to

construct ALM distribution trees in the shape of MSTs (see Section 8.4).

8.6.1 Simulation Setup

Realistic event patterns to determine application priorities for the simulations are generated

by tracing the multi-player game presented in Section 2.4.2. All user actions (e.g., acceler-

ating, turning, shooting, etc.) together with timestamps and information about the current

game state are recorded for game sessions with six and eighteen players. In the simulation,

each action leads to one packet, which needs to be distributed from the source to the other

application instances.

The application-level prioritiesp(i) ∈ [0; 1] used for the PST algorithm are based on the rela-

tive positions between the spaceships and their orientations (see Figure 2.2). If the spaceship

i of a player is in shooting range of another player’s ships, the end-systems of s setsp(i)

to 1. We define thati is in shooting range ofs if the distance betweeni ands is less than

the maximum range of the laser beam ands is oriented in such a way that it can hiti after

conducting at most one turn operation. For playersj outside the shooting range ofs, p is

calculated depending on their geographic distanced(s, j) on the game field:p(j) = 1− d(s,j)
dmax

wheredmax is the maximum distance possible.

A typical distribution of priorities for a game session with six players is depicted in Fig-

ure 8.10. Priorities close to1 are common because the objective is to score points by shooting
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Figure 8.10: Distribution of application priorities

at other players so that players will cluster together instead of spreading out evenly on the

game field.

8.6.2 Simulation Results for Six End-Systems

The first simulation scenario is based on a game session with six players. The session lasted

for 140 seconds, and during that time span a total of 2,630 events were issued. The priority

distribution is depicted in Figure 8.10. Figure 8.4 shows the underlying network topology

with end-to-end delays between 5 ms and 166 ms and an average of 100 ms.

At first, the fanout and the height of the distribution trees built by the SPT, MST, and PST

algorithms, respectively, are analyzed. Since an SPT connects all receivers directly to the

sender, the fanout is 5 for the sender, and the height of all trees is 1. For the MSTs, the

maximum fanout is 3 with an average of 1.4 for the inner nodes of the tree (leaf nodes have a

fanout of 0 and are not considered here). The average height of the trees is 2.1. The maximum

fanout of PSTs is 5 (i.e., the PST is an SPT), and the average fanout for inner nodes of the

trees is 1.6, which is only slightly larger than the fanout of MSTs. The average height of

PSTs is 1.7.

The delay properties of a specific distribution tree can be measured using the costsCp
D as de-

fined by Equation 8.6. Figure 8.11(a) depicts the Cumulative Distribution Function (CDF) of

Cp
D for the SPT, the MST, and the PST, respectively. By definition, the SPT routing algorithm

results in the best distribution ofCp
D, with 90% of all trees having aCp

D of less than 440 ms.

However, the difference between SPT and PST is comparatively small (12 ms at 90%), mean-

ing that the end-to-end delays in the distribution trees constructed with the PST algorithm are

on the average only marginally higher for high-priority receivers than the delay on the direct

paths. In comparison, MSTs have significantly higher values forCp
D. The receiver-specific

end-to-end delaysd(t) (see Equation 8.8) resulted in the following 99% confidence intervals



182 Chapter 8 – Application-Level Multicast

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800

C
D

F

cumulative weighted end-to-end delays [ms]

SPT
MST
PST

(a) Distribution ofCp
D

1

1.05

1.1

1.15

1.2

1.25

[0.0;0.1) [0.1;0.5) [0.5;0.9) [0.9;1.0]

re
la

tiv
e 

de
la

y 
pe

na
lty

priority classes

SPT
MST
PST

(b) Average RDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 300 350 400 450 500 550 600 650 700

C
D

F

resource usage [ms]

SPT
MST
PST

(c) Distribution ofCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

C
D

F

link stress

SPT
MST
PST

(d) Link stress distribution

Figure 8.11: Simulation results for 6 end-systems

for this simulation scenario: SPT[98.8; 101.2], MST [118.1; 121.3], and PST[103.9; 106.4].

This also shows that the PST realizes end-to-end delays that come close to the optimum.

The relative delay penaltyRDP as defined by Equation 8.4 is a measure for the optimality of

the end-to-end delay and compares the actual end-to-end delay of a receivert to the smallest

possible delay (i.e., the unicast delay froms to t). Figure 8.11(b) shows the averageRDP

values for different priority classes. By definition, for the SPT distribution trees,RDP is

1 for all receivers. The variation of theRDP for MSTs is random. In case of the PST

algorithm, theRDP decreases continuously with increasing application-level priorities from

1.16 for receiverst with p(t) ∈ [0.0; 0.1) to 1.002 fort with p(t) ∈ [0.9; 1.0]. Thus, a delay

close to the unicast latency can be achieved for nodes with a high priority. The maximum

range of the averageRDP is relatively small (0.16) since only six end-systems participated

in this simulation scenario, and the distribution trees have paths with at most three hops.

The network load caused by a certain tree can be measured using the resource usage metric

CR as defined by Equation 8.1.CR takes into account that more than one copy of a packet
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Figure 8.12: Distribution of application priorities

may be sent over the same physical link. The distribution ofCR for the simulation scenario is

depicted in Figure 8.11(c). The MST algorithm always selects the same set of edgeseij for its

trees, independent of the source node. Thus,CR is constant at 286 ms, which is at the same

time the lower bound forCR. 70% of all distribution trees built by the PST algorithm have a

CR between 286 ms and 307 ms, which is close to the optimum and far better than the values

obtained by SPT. Thus, the optimization of end-to-end delays for certain application instances

by PSTs causes only a slight increase in the resource usage when compared to MSTs.

Link stress is another indicator for the network overhead caused by an ALM tree. MSTs

result in the lowest link stress with 77% of all distribution trees having a link stress of 1 and

a maximum link stress of 2, as shown in Figure 8.11(d). Distribution trees constructed by the

PST algorithm come close to these values with the only difference that 1.7% of the trees have

a link stress of 3. The link stress for the star-shaped SPT topologies lies between 1 and 5, and

only 60% of the trees have a link stress of 1.

8.6.3 Simulation Results for Eighteen End-Systems

For the second simulation scenario, a more complex network topology was created with 42

routers, 80 links, and 18 end-systems participating in a virtual game session. The delays

among end-systems lie between 16 ms and 268 ms with an average value of 145.5 ms. During

the session’s duration of 104 seconds, a total of 6,564 events were issued by all players. With

18 players, the spaceships are spread out more evenly over the game field, which results in

the application priorities shown in Figure 8.12.

All distribution trees built by the SPT algorithm have a fanout of 17 at the sender and a height

of 1. The maximum fanout of all MSTs is 4 with an average value of 2.0, and the average

height of all trees is 3.6. For PSTs, the maximum fanout is 12, and the average fanout of

all inner nodes is identical to the one of the MSTs with 2.0. This means that on average the
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Figure 8.13: Simulation results for 18 end-systems

bandwidth consumed for outgoing network traffic is approximately the same for MSTs and

PSTs. This is also indicated by the average height of 3.0 for all PSTs.

The distributions forCp
D are depicted in Figure 8.13(a). Because of the increased complexity

of the ALM trees (with up to 8 hops on paths of the PST), the difference inCp
D between SPT

and PST is larger (1,721 ms to 1,906 ms at 90%). However, the PST achieves a good opti-

mization of the latency from the source node to receivers with a high priority when compared

to the values ofCp
D for the MST algorithm (3,496 ms at 90%). The receiver-specific end-

to-end delays resulted in the following 99% confidence intervals: SPT[148.4; 149.2], MST

[281.5; 283.8], and PST[175.2; 176.5]. Again, the PST algorithm comes close to the optimum

values of SPTs. The optimization of end-to-end delays becomes also visible in the average

RDP values for nodes with different priority classes (see Figure 8.13(b)): For the PST al-

gorithm, theRDP decreases from 1.35 to 1.002, which is close to the optimum. This is a

significant improvement when compared to MSTs, even for receivers in the lowest priority

class.
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At the same time, priority-based minimum spanning trees cause a higher network load than

MSTs as can be seen in Figure 8.13(c). It shows the resource usage distributions for the three

tree-building algorithms: 90% of all PSTs have a resource usage that is up to 50% higher

thanCR of the MSTs. But shortest path trees have a resource usage that is by far larger.

As in the first simulation scenario, the MST algorithm generates the lowest link stress, with

90% of all distribution trees having a link stress of at most 2 and a maximum stress of 4

(see Figure 8.13(d)). The values for the PST algorithm are only slightly larger with 90%

of all multicast trees having a link stress of at most 3 and a maximum link stress of 12. In

comparison, the link stress of the SPT trees has a value of 9 at 90%, and the maximum link

stress is 17.

Summing up, the simulation results show that the PST algorithm optimizes the end-to-end

delay for receivers for which the sender has a high application-level priority. Even delays for

end-systems with a lower priority are better in most cases than those achieved with multicast

trees built by the MST algorithm. At the same time, the increase in network load is kept at a

tolerable level.

8.6.4 Introducing Uncertainty

All simulation results discussed above are calculated under the condition that the application

always has full knowledge about the actual end-to-end delays. In a real network, delays fluc-

tuate (depending on router load), and measurements give approximations only. Thus, simu-

lations for the PST algorithm were also conducted when the measured delays differ from the

real values up to a certain percentageδ: For the calculation ofw′(eij) as defined in Equa-

tion 8.9 a random value forw(eij) is picked from[w(eij) − δw(eij), w(eij) + δw(eij)]. The

simulation setup is identical to the one for 18 end-systems, as described above. The simula-

tion results presented in the following are determined for the SPT, MST and PST algorithms

under the condition that the real delays are known, and for the PST algorithm whenδ is either

0.2 or 0.5.

For δ = 0.2, the cumulative end-to-end delay of the PST algorithmCp
D degrades only by

128 ms at 90% when compared to the value forδ = 0, and by 637 ms forδ = 0.5 (see

Figure 8.14(a)). Even for this high level of uncertainty, theCp
D of the PST algorithm is still

superior to the one of the MST algorithm. The relative delay penaltyRDP is also mostly

unaffected by smaller measurement errors and increases only slightly from 1.002 to 1.04 for

δ = 0.2 in the highest priority class. A maximum error of 0.5 has more effect on RDP, which

rises to 1.23.
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Figure 8.14: Simulation results for scenario with uncertain delays

As depicted in Figure 8.14(b), the resource usage distribution forδ = 0.2 is almost identical

to the one forδ = 0. For δ = 0.5, CR degrades only slightly. These simulation results

indicate that the PST algorithm is fairly robust against inaccurate knowledge of delays.

8.6.5 Comparison of Simulation Results

In the following, the simulation results of the PST algorithm are compared with the results

of some of the ALM routing protocols discussed in Section 8.4. Even though the respective

simulation scenarios differ with respect to the underlying network topologies, the physical

link latencies, the number of routers and end-systems, and the application data distributed via

the ALM trees, the simulation results allow a coarse assessment.

Narada is a representative of the tree-over-mesh approaches, and simulation results are given

in [30]. Chu et al. measure the relative delay penalty in the form of a90-percentile value

RDP90. RDP90 is defined as that value ofRDP where the cumulative distribution function

CDF reaches 90% (i.e., 90% of all measured values forRDP are lower thanRDP90). For

a group of 18 end-systems and depending on the simulation’s setting,RDP90 of Narada

lies between 2.1 and 2.5 [30]. This is almost identical toRDP90 for the MST algorithm

determined above. In comparison,RDP90 for the PST algorithm is much smaller with a

value of 1.5 (not shown in Figure 8.13(b)). When considering application priorities, the

advantage of the PST algorithm becomes even clearer (see Figure 8.13(b)). The simulation

results for link stress and resource usage of Narada are also similar to the results for the MST

algorithm as discussed above.

HMTP builds a shared distribution tree by parent selection, and in [276] Zhang et al. give

simulation results for different scenarios. For a small multicast session with approximately
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20 end-systems, the value ofRDP90 is 3.5, which is much higher than for Narada or the

PST algorithm. The link stress is given only for a group of 100 members and is therefore not

comparable to the other simulation results.

TAG constructs sender-specific trees on the basis of information about the network topology.

For small multicast groups, this results in an averageRDP of 1.25 [144]. In comparison,

the averageRDP achieved by the PST algorithm is slightly lower with 1.16. For application

instances with a high priority, anRDP close to the optimum of 1 can be realized with PSTs.

The main goal of routing algorithms for large-scale content distribution networks such as

Bayeux and CAN is to limit the application’s management overhead and to achieve high

scalability with respect to the number of participating nodes. TheRDP90 for a group of

4,096 is 4.25 for Bayeux, while the high link stress induced is comparable to the one of an

SPT [277]. Combining such a scheme with some information about the network topology as

proposed in [207] cuts the averageRDP to 2.1 for groups with 100 members and to 3.2 for

4,096 members.

Analyzing the simulation results of existing approaches shows that the PST routing algorithm

is able to achieve a good performance for all session members in terms of end-to-end delays

and usage of network resources. For receivers with a high application-level priority, end-to-

end delays close to the optimum can be realized.

8.7 The PST Protocol

The simulation analysis indicates that the PST routing algorithm is well-suited for delay-

sensitive applications where priorities are important. In the following, the PST Protocol

(PSTP) is presented, which is based on the PST algorithm. PSTP was developed in the course

of this thesis, and an early version was described in [8]. Again, we concentrate on the routing

aspects when designing PSTP. The protocol has to handle the following tasks: (1) Determine

the distribution trees according to the PST algorithm, (2) transport application data along

those trees, (3) gather the information necessary for building PSTs, and (4) integrate joining

session members and manage leaving members.

Aside from routing, there exist a number of functions that could be integrated into PSTP and

that would be useful for distributed interactive applications. In particular, the transport of data

is unreliable, and there is no specific ordering of packets. Furthermore, the protocol does not

have any mechanisms for flow or congestion control. These functions could also be designed

to take application-level priorities into account. For example, the reliable delivery of data

packets with a high priority could be ensured by FEC (also see Section 7.2.1). And data with

a low priority could be dropped first in case a node does not have sufficient bandwidth or
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Functions of classPSTPSocket :

void join(IPAddress member, int port)
void leave()
void send(byte[] data)
void send(byte[] data, IPAddress receiver)
void setPriority(IPAddress member, double priority)
MemberList getMembers()

Functions of interfacePSTPFeedback :

void sessionStatus(int status)

void receive(byte[] data, IPAddress sender)

void memberJoin(IPAddress member)

void memberLeave(IPAddress member)

Figure 8.15: PST protocol library API

when the network is congested. The realization of such functionality remains an issue for

future work.

8.7.1 Application Interface

The PST protocol is implemented as a Java library [8]. The classPSTP Socket depicted

in Figure 8.15 provides a socket-like interface to the protocol’s functionality and can be used

easily by any distributed interactive application. An application instance joins a certain ALM

session by providing the unicast IP address and port number of a bootstrap node that already

is a session member. How such an address can be obtained is not considered here. One

possibility are well-known nodes that maintain a session directory with a (partial) list of

current members [89, 131].

Data can be sent either to the whole multicast group or to a single session member that

is identified by its IP address. The application-level priority for a certain receiver can be

changed by the application anytime. In case the application does not assign a priority for

one or more members, a default priority of 0 is used in order to save network resources.

By calling thegetMembers function, the application is provided with information about

all members of the multicast group (e.g., current priority, end-to-end delays for unicast and

for current PST, etc.). Data received by a session member is provided to the application via

thePSTP Feedback interface shown in Figure 8.15. The application is also notified when

errors occur (e.g., the bootstrap node is unreachable), or when members join or leave the

session.

Selecting appropriate prioritiesp(i) for the different receivers depends on the number of users

and their behavior, on the available resources, and on the application itself. If resources are
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limited or if the multicast group is rather large, the priority distribution should be determined

such that low priorities are much more likely than high priorities. In this case, the resource

usage of the priority-based distribution tree is expected to approximate the usage of an MST.

For the multi-player game presented in Section 2.4.2, priorities are selected depending on

the proximity of players on the field and the range of the laser beam (see Section 8.6.1). In

case of the mlb, a similar approach could be used so that high priorities are assigned between

group members currently interacting with each other or working on the same area of a slide.

Alternatively, the consistency control mechanism of the application could be supported by

choosing priorities accordingly. If the application employs local lag to reduce the probability

for short-term inconsistencies, receivers with a unicast delay close to the local lag could be

assigned high priorities, while the delay optimization for receivers with a larger difference

between unicast delay local lag is less important. In the case of Instant Collaboration, high

priorities could be assigned to receivers that actively modify the content of an activity, mid-

range priorities to participants that observe the activity’s content passively, and low priorities

to session members that have not joined the activity.

It would also be possible to use different priorities on the basis of ADU types: States and

events are delivered with a high priority since they change the application’s shared state,

while cues are sent with a low priority (see Sections 2.2 and 7.3.1). This distinction could

be fine-grained and depend on the type of event (e.g., high priority for delete events) or the

targeted object (e.g., high priority for events targeting an mlb page itself).

8.7.2 Basic Protocol Functionality

In the following, basic functions of the PST protocol are presented, and it is discussed which

transport protocol to employ, how members join or leave a session, and how the end-to-end

delaysw(eij) between end-systems are determined.

PSTP establishes unicast connections between two nodes with UDP [196]. While this implies

that either PSTP or some other application-level protocol has to implement mechanisms for

reliable data delivery, source ordering and flow and congestion control, it also allows PSTP

to quickly set up and terminate connections. A low overhead for connection management is

particularly important since a distribution tree might change on a per-packet basis. Thus, TCP

with its three-way handshake and its four-way close [198] is not well-suited in this scenario.

In addition, using UDP as a transport protocol would allow PSTP to distribute data with IP

multicast when that is available (e.g., in a LAN). Employing scoped IP multicast is common

practice with ALM protocols [70, 27, 276]. Its integration into PSTP remains an issue for

future work.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0| reserved | type | length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sequence number | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 8.16: PSTP packet for types join, leave, and ping

All nodes participating in a PSTP session are identified by their IP address and port number.

This increases the robustness of the protocol when compared to the alternative of using a

separate and smaller participant identifier, which would require an address mapping mecha-

nism. However, it comes at the cost of consuming more memory space and bandwidth. We

denote the tuple of IP address and port number asnode identifier. In a network environment

where NAT (Network Address Translation [230]) or DHCP (Dynamic Host Configuration

Protocol [52]) may manipulate the IP address of end-systems, the uniqueness of the PSTP

node identifier cannot be guaranteed. This remains an issue for further investigation.

To join a session, a noden sends the join packet shown in Figure 8.16 directly to the bootstrap

memberb. The IP addresses and the individual port numbers ofn andb are encoded in the

IP and UDP headers respectively. The sequence number of the packet is used to detect out-

of-bound packets, and the length field holds the total length of the packet in bytes. As a

response,b sends a list of all known membersi. This list contains the identifiers and the

end-to-end delaysw(ebi) of these nodesi. The new membern then iteratively contacts each

nodei it discovers with a join packet. All gathered end-to-end delays form the delay matrix

needed for the PST algorithm. In case a node leaves the session, a leave packet is sent to all

other members. Again, an SPT is used for the distribution to ensure a quick update of the

ALM group.

Besides the application-level prioritiesp(i), the unicast delaysw(eij) ∀i, j ∈ V need to be

determined in order to calculate PST distribution trees. These delays are measured by the

periodic exchange of ping messages among all nodes: The senderi of a ping packet (see

Figure 8.16) locally stores the current timestamp inTping(j), together with the address of the

recipientj and the sequence number of the ping packet.j replies instantaneously with a pong

packet containing the sequence number of the corresponding ping packet (see Figure 8.17).

As soon asi receives this reply,w(eij) can be calculated asTC−Tping(j)

2
whereTC denotes

the current time. Since delays may fluctuate, the measurements forw(eij) are smoothed

exponentially.

All members exchange lists of their local delay measurements periodically so that each node

can maintain the global delay matrix. This soft state approach increases the robustness of the

protocol and is also more efficient than explicit notifications when a value changes (also see

Section 7.3.2). In order to save network resources, the delay lists are distributed via an MST.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0| reserved | type = pong | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sequence number | ping sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 8.17: PSTP pong packet

In addition to the periodic exchange, delay lists are also provided to new session members in

reply to their join message. The packet used for the delay exchange is depicted in Figure 8.19

and will be explained in the next section after discussing the routing process.

The periodic ping messages also allow to detect members that left the session due to node or

network failures. In case a node did not react to a ping message for several times, it is marked

as dead, and after a few more unsuccessful pings it is removed from the list of members.

8.7.3 Efficient Topology Distribution

The PST routing algorithm can be implemented either in a centralized or a distributed fashion.

In the latter case, each node decides independently on which links a received packet should

be forwarded. But this requires that each node maintains the matrix of all application-level

priorities in addition to the matrix of the end-to-end delays. Since those priorities might

change quickly, this might not be a viable solution. And each node would have to calculate

the sender-specific PST for each incoming packet.

Alternatively, the routing is centralized, and a sender distributes the locally calculated PST to

the other nodes. Now each node has to keep track of its local priorities and the delay matrix

only, and packets are forwarded on the basis of information provided by their source. While

this approach generates additional network traffic for the distribution of the ALM trees, it

reduces the overhead for information management and tree calculation considerably and also

saves the network traffic that would be necessary to exchange the priorities. Furthermore,

inconsistent information will not result in routing loops. But in comparison to a fully dis-

tributed algorithm such as the parent selection approaches presented in Section 8.4, PSTP is

less scalable with respect to the number of nodes and is therefore not well-suited for scenarios

with a large number of participants.

In PSTP, the sender encodes a distribution tree in the data packets itself. As depicted in Fig-

ure 8.18, a data packet contains additional fields for the sender’s identifier since the headers

of UDP and IP refer to the node of the last hop only. The subsequent field gives the total num-

ber of receiversr. Thereafter comes a list of all receiversi ∈ R: For eachi, the identifier and

the position of the node’s parentp are given. The parent position is an integer ranging from 0

(for the root) tor and points to the position ofp in the node list. This information allows to
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0| reserved | type = data | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sequence number | tree identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sender IP address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sender port | number of receivers r |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| receiver IP address (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver port (1) | position of parent node (1) |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
: ... :
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| receiver IP address (r) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver port (r) | position of parent node (r) |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| payload |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: ... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 8.18: PSTP data packet

rebuild the tree: The list itself is sorted such that nodes higher up in the tree are encoded first.

In this way, a node can remember its own position when traversing the list and determine

which of the following nodes point to this position. These are the node’s children to whom

the packet needs to be forwarded. The encoding with a list of nodes and their parents is the

most efficient way to represent arbitrary tree structures [35].

When forwarding a data packet, a nodei can create a new, smaller packet header by omitting

all nodes listed beforei since nodes do not need to know the complete tree. However, the first

list entry (with position 0) denotes the original source of the packet and needs to be encoded

in all packets.

Providing the distribution tree in every packet increases the routing’s robustness but is not

very efficient because each node consumes 8 bytes in the packet header. It is therefore pro-

posed to assign an identifier to each tree on the first occasion it is used (see Figure 8.18). All

nodes receiving a packet with an encoded tree store their list of children together with the

identifiers for the root and the tree. For subsequent packets, the sender provides the identifier

of the appropriate tree only, and the receivers act on the basis of their cached routing informa-

tion. In case a node receives a packet with an unknown tree identifier, it notifies the sender.

The missing tree is then provided with the next data packet to be distributed over that tree.

A certain tree might need to be replaced with a new version when the end-to-end delays,

the application-level priorities or the set of group members change. The replacement is per-

formed by including the updated tree in the next data packet. Since the number of trees for

a certain sender is limited by the identifier’s namespace, it may also happen that there is no

identifier left to encode a new tree. In this case, the identifier of an existing tree is overwrit-
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=0| reserved | type = delay | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sequence number | tree identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sender IP address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sender port | number of receivers r |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver IP address (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver port (1) | position of parent node (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| delay (1) | delay (2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver IP address (2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver port (2) | position of parent node (2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: ... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver IP address (r) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| receiver port (r) | position of parent node (r) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| delay (r) | padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 8.19: PSTP delay packet

ten, preferably one that is rarely used. In order to restrict the amount of memory that nodes

need for storing topology information, the current version of PSTP allows a maximum of 256

different trees per sender.

Besides data packets, delay packets used for the exchange of the measured unicast delays

carry topology information (see last section). As depicted in Figure 8.19, the delay fields are

interleaved with the topology list in order to simplify the decoding. The distribution tree used

for delay packets is always an MST, and shortening the node list as described above is not

employed.

8.7.4 Maintenance of the Distribution Tree

The change of end-to-end delays and in particular the change of application-level priorities

require that new PSTs are calculated and distributed continuously. Calculating a PST is costly

in terms of processing time for the sender, and distributing a tree consumes a considerable

amount of bandwidth and memory space at the inner nodes. Thus, ways to limit the overall

number of distribution trees for a session need to be considered.
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Two cases where an update of a PST might be omitted can be distinguished3: First, the

alterations in priorities or delays have no effect on the distribution tree at all, and the newly

calculated treeT ′ is identical to the former treeT . Ideally, this can be discovered without

having to computeT ′ completely and comparingT ′ with T . Second, the changes result in

a new distribution tree but the improvements in terms of the cost function defined above are

marginal. In this case, the overhead that would be generated does not justify an update.

The first case is now investigated in more detail. A PSTT does not change in the following

cases: (1) When the costw(eij) of a link that is not inT increases, (2) when the priorityp(j)

for a receiverj connected directly to the sender increases, and (3) when the priorityp(j) for a

receiverj that is a leaf node decreases. Furthermore, a change in receiver priorities or unicast

delays may be too small to cause a tree change. An increase in link delay on a direct link

between sender and receiver may cause the receiver to be connected through an indirect link

(corresponding to a priority decrease). An increase in the delay of an indirect link may cause

a node to be connected directly (corresponding to a priority increase). Similar considerations

hold for a delay decrease on direct or indirect links. When computing a directed MST, it

is possible to record for each step of the algorithm by how much the cost of a link has to

increase before it is excluded from the distribution tree, or by how much the cost of a link has

to decrease before it will be included in the tree. With these considerations, rebuilding the

tree can be limited to the cases where the tree structure will change.

When a number of unicast delays or priorities are modified simultaneously, recomputing the

whole tree is reasonable. But if only a single parameter changes, adjusting the existing tree

may be less costly. Let us assume that the cost of a single link increases sufficiently to cause

a change in the distribution tree. Two cases have to be distinguished: (1)w(eij) increases for

a i ∈ R, and (2)w(esj) increases for the senders. In the first case,w′(eij) is updated andj

is connected to the rest of the tree via a less expensive link. However, the link costs for all

nodes in the tree belowj as well as the tree structure remain unaffected. Because links are

asymmetric, it may be the case that it is now less expensive to connecti via eji, and so on.

Hence, the direction of links on the path fromj to s has to be reversed as long as the costs

w′ in the direction towards the sender are less expensive than the link costs in the opposite

direction.

In the second case, when the cost of a linkesj from the sender increases, this modification

will also increase the costs ofw′(ejk) ∀k ∈ R \ {j}. For allk with ejk ∈ T , it is necessary to

check whether the node can be connected to the rest of the tree via a less costly link (i.e., the

3Note that some of the improvements discussed in this section are only possible because the overlay graph
is fully connected and because the relative weight increase on the last hop of an indirect path is based on the
weight of the link from the sender to the start of the last hop link and not on the complete path to the receiver.
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Oslo UM1 UM2 UM3 Berkeley ADSL
Oslo - 19 18 18 98 50
UM1 19 - 1 0 85 40
UM2 18 1 - 0 84 40
UM3 18 0 0 - 84 45

Berkeley 98 85 84 84 - 95
ADSL 50 40 40 45 95 -

Table 8.1: Matrix of measured end-to-end delays [ms]

rest of the tree may grow “into” the region with the increased link costs). The tree parts below

k will not be affected. Thus, in both cases only very limited parts of the tree will change.

The same calculations can be applied when link costs decrease. Moreover, priority changes

affect the costs of all incoming links of a node but since only one of these links can be in the

current distribution tree, the above statements are even valid for altered priorities.

Even when the changes of end-to-end delays or application-level priorities result in an new

distribution treeT ′, the improvement ofT ′ with respect to the metrics and cost functions

discussed in Sections 8.3 and 8.5 might be marginal when compared to the original treeT .

Considering the overhead associated with the introduction ofT ′, it might therefore be more

efficient to continue distributing data packets viaT althoughT is no longer optimal.

In order to evaluate the potential of such an approach, a simple heuristic was defined and

applied to the simulation scenario of the online game with 18 participants (see Section 8.6.3):

A new PST is generated only when at least one priorityp(i) changes by more than a certain

thresholdγp when compared to the value ofp(i) that was valid the last time a new tree was

introduced. Changes in the end-to-end delays are not considered here since the delays are

constant in the simulation scenario. Forγp = 0.01, only 0.5% of all tree calculations can

be saved with this heuristic (compared toγp = 0), while γp = 0.05 andγp = 0.1 lead to

substantial savings of 14.6% and 32.4% respectively. At the same time, the effect of the

heuristic on theRDP distribution is negligible, even forγp = 0.1 [8]. This indicates that

the number of distribution trees that are actually needed in a certain scenario can be reduced

significantly by an appropriate heuristic, without causing any severe performance penalties.

Another heuristic that could be employed for this purpose is based on the cost functionC, as

defined in Equation 8.8: The sender replacesT with the new treeT ′ only if C(T ′)
C(T )

lies below a

certain thresholdγC < 1. However, this requires the sender to calculateT ′ in any case while

the first heuristic can be applied before the PST algorithm is executed.
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Oslo 0.64 0.32 0.04 0.00 0.00
UM1 0.56 0.31 0.13 0.01 0.00
UM2 0.50 0.22 0.25 0.04 0.00
UM3 0.19 0.35 0.24 0.14 0.08

Berkeley 0.64 0.35 0.01 0.00 0.00
ADSL 0.26 0.68 0.07 0.00 0.00

Figure 8.20: Experimental results for RDP Table 8.2: PST fanout distribution

8.7.5 Experimental Results

Based on the online game scenario with six players (see Section 8.6.2), the performance of

the fully implemented PST protocol was measured in an Internet environment [8]: Three

nodes UM1, UM2, and UM3 are located in the same LAN at the University of Mannheim,

another node is also placed in Mannheim but accesses the Internet via ADSL (which usually

causes high end-to-end delays), one node joins the session from the University of Oslo in

Norway, and the last node is located at the University of California in Berkeley, USA. This

setting resulted in the matrix of average end-to-end delaysw(eij) that is shown in Table 8.1.

The exchange of application data and the application-level prioritiesp(i) are determined by

the same event file as in the simulations.

Figure 8.20 depicts the measured values forRDP (i) depending onp(i) for all packets orig-

inating at the ADSL node. As expected from the simulation results discussed above, the

averageRDP (i) decreases with increasingp(i) and is approximately 1 for the highest priori-

ties. Single readings ofRDP (i) below 1 can be explained by minor fluctuations in the delays

measured for the LAN end-systems: Delays among UM1, UM2 and UM3 are very small

(see Table 8.1) so that slight variations of the latency’s absolute value have a major impact

on relative metrics such asRDP . The same explanation holds true for the high readings of

RDP for high priorities as shown in Figure 8.20.

The experimental results for the fanout distribution are listed in Table 8.2. While the PSTs of

the end-systems that are located within the LAN have a fanout of up to 5 (i.e., the PST is an

SPT), in 99% the PSTs rooted at Berkeley have a fanout of no more than 2 since its links to

the other nodes are rather costly. This proves that the PST algorithm is able to limit the usage

of network resources in the experiment.

All application instances together emitted a total of 2,630 packets with application data in this

scenario, which lead to an overall of 13,150 packets received by the members. The packet
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headers and control messages of PSTP add up to a total of 224 kbytes received. Thus, the

protocol overhead is about 17% when assuming that data packets carry 100 bytes of payload

on the average. In case the average payload size is 300 bytes, this overhead is reduced to 6%.

For the experiment, the simple heuristic to reduce the number of distribution trees is em-

ployed: A new tree is calculated only when at least one valuep(i) changes byγp = 0.1, or

when a delay changes by at least 5 ms (see Section 8.7.4). This heuristic saves up to 80% of

all tree calculations at each member and results in an average of 20 different trees per sender,

which is by far less than the theoretical maximum of64 trees.

8.7.6 PSTP and RTP/I

The application-level protocol framework RTP/I for distributed interactive applications was

introduced in Chapter 7. By exposing generic information about the exchanged data and the

ongoing session (e.g., whether a packet is a state or an event), RTP/I allows the implementa-

tion and reuse of application-independent services such as the late-join service presented in

Chapter 6. In addition, RTP/I provides basic protocol functionality such as packet fragmen-

tation and light-weight session control to the application. The design of RTP/I is basically

independent of the underlying transport and routing protocols. Currently, all applications

based on RTP/I employ UDP and IP multicast [142, 154, 161, 259]. However, RTP/I could

also be combined with an ALM protocol such as PSTP.

Even though RTP/I and PSTP could be operated separately following a strict layering ap-

proach, there exist quite a few interesting relationships between both protocols so that a col-

laboration according to the ILP/ALF approach [33] might increase the overall efficiency of

the application’s communication system. In the following, possibilities for the interoperation

of RTP/I and PSTP and their design implications are discussed.

As can be seen from the packet definitions given in Figures 7.2 and 8.18, the packet headers

of RTP/I and PSTP each include some fields with similar tasks. The sequence number field

is identical for both protocols, and using a common field would save 16 bits for each packet.

Note that the sequence number is also needed for other purposes such as source ordering,

reliability, flow and congestion control. Other fields with the same function are the ones for

identifying the source of a packet. While PSTP uses a tuple of IP address and port number

with a total of 48 bits as a node identifier, a unique 32 bit participant identifier is employed by

RTP/I. Both types of identifiers have their advantages and disadvantages. The node identifier

is larger but does not need any additional mapping as with the participant identifier. However,

IP address and port number might not be unique in a network environment with NAT or

DHCP. In any case, using a common header field for identifying session members would

save either 32 or 48 bit per packet. Aside from the saved network bandwidth, combining the
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packet headers of PSTP and RTP/I could reduce the costs for packet processing due to saved

copy operations.

RTP/I integrates a mechanism for fragmenting ADUs that do not fit into a single transport

packet in order to prevent IP-level fragmentation (see Section 7.3.1). Since a PSTP header

might be rather large because of an included distribution tree, either the fragmentation mech-

anism of RTP/I should take this into account and adjust the fragment size accordingly, or

packets could be fragmented by PSTP instead. Alternatively, the topology information of

PSTP could be distributed in separate packets, preferably with RTCP/I.

One important issue that a transport protocol for distributed interactive applications needs

to address is the reliable delivery of data. An appropriate reliability mechanism could make

use of the knowledge gained from both RTP/I and PSTP. A reliable multicast protocol could

offer different levels of reliability depending on the type of data (e.g., state or cue) and the

application-level priority. High-priority packets could then be sent with a FEC scheme while

the loss of low-priority packets would be repaired by ARQ. Furthermore, the tree structure

of PSTP could facilitate a reliable transport protocol. For instance, inner nodes of the dis-

tribution tree could cache packets for a certain amount of time so that nodes suffering from

packet loss could contact their parent nodes first. In order to have a stable topology, it seems

to be reasonable to use MSTs in such a design. Levine and Garcia-Luna-Aceves give an

introduction to tree-based reliable multicast protocols in [147].

In case the application employs synchronized clocks, the end-to-end delays needed for the

PST algorithm could be measured using the timestamp fields of RTP/I data packets. Such

delay measurements could also support other protocol functions and generic services. For

instance, the consistency control service presented in Chapter 4 could determine an appro-

priate value for the local lag depending on the maximum end-to-end delay that occurs in a

session. Furthermore, the ping and delay exchange mechanisms of PSTP as described in Sec-

tion 8.7.2 might be integrated into RTCP/I that already maintains important session data (see

Section 7.3.1). However, the integration of the delay measurements into RTP/I would require

RTP/I to be aware of the reliability mechanism employed by the application, which might

influence the measurements (e.g., when using packet retransmissions). RTCP/I could also be

solely responsible for the management of session members and implement the functionality

of PSTP for joining and leaving members.

As already mentioned in Section 8.7.1, the application-level priorities determining the PST

distribution trees might be influenced by RTP/I: First, RTP/I data packets that change the

application’s shared state such as events and states as well as high-priority state requests

should be distributed with a high priority in order to minimize the propagation delays. In

contrast, cues and low-priority states and state requests would be assigned a low application-
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level priority in order to save network resources. Second, soft state information transmitted

periodically by RTCP/I is preferably distributed via MSTs only. One-time announcement

packets (e.g., member join) might be assigned a higher priority.

8.8 Conclusions

Distributed interactive applications allow a group of users to collaboratively change the

shared state of the application. Because of their replicated architecture, all operations origi-

nating at a certain application instance need to be transported from their source to all other in-

stances by means of an efficient group communication protocol. In the Internet, IP multicast

realizes group communication with direct support from the network routers. By installing

a source-specific distribution tree among the end-systems with the routers as inner nodes,

the lowest possible end-to-end delays and a minimum usage of network resources can be

achieved. However, the overall architecture of IP multicast is very complex, with a multitude

of protocols and several administrative and technical design flaws. Thus, IP multicast is not

widely deployed.

A promising alternative to IP multicast is application-level multicast where a distribution tree

is constructed via unicast connections among end-systems. Router support is therefore not

needed. Like IP multicast, existing ALM routing protocols seek to built distribution trees

such that the propagation delay perceived by the receivers as well as the network load is

minimized. However, they focus on an optimization with respect to the whole distribution

tree, This might result in very high delays for some of the receivers. But there are distributed

interactive applications where the fast delivery of data is more important for some session

members than for others. For example, when two users are manipulating the same part of the

application’s state they should receive each other’s operations as quickly as possible.

Thus, a novel, priority-based routing algorithm for ALM was developed in the course of this

thesis. Its main contribution is that it allows an application to influence the path that a packet

takes from the sender to a receiver by specifying apriority for each packet-receiver pair: As

the priority is increased, the routing tree changes gradually from an MST to an SPT. The PST

algorithm for building such a distribution tree was realized by approximating the optimal tree

for a cost function that combines end-to-end delays, network resource usage and application-

level priorities. Thus, the PST algorithm is a generalized tree-building algorithm that includes

MSTs and SPTs as its extremes. The simulation results for a realistic online game scenario

indicate that the PST algorithm constructs multicast trees with end-to-end delays that are

close to the optimum for receivers with a high priority while the total network load increases

only slightly when compared to an MST. It was also discussed how the PST algorithm can
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be adapted so that constraints (e.g., maximum bandwidth available at the nodes) can be taken

into account.

On the basis of this novel routing algorithm, the PSTP protocol was implemented, which can

be employed easily by any distributed interactive application. Its main tasks are the delay

measurements needed for the PST algorithm, and the distribution of data packets according

to the distribution trees that are calculated at the packets’ sources. An efficient encoding of

PSTs was proposed where identical trees are referenced in the packet header rather than in-

cluding the complete tree in each packet. The protocol overhead of PSTP was also lowered

by limiting the number of trees used in a session and by limiting the number of tree calcula-

tions at the senders. PSTP was successfully tested in the Internet, confirming the simulation

results. Open issues are further efficiency optimizations, the consideration of constraints, the

interoperation of PSTP and RTP/I, the integration of other transport protocol functionality,

and tests with other distributed interactive applications (e.g., Instant Collaboration).



Chapter 9

Conclusions and Future Work

9.1 Conclusions

The Internet has a significant impact on human-human communication and allows users that

are situated at different locations to collaborate independent from space and time. On the ba-

sis of the Internet, distributed interactive applications provide a rich communication platform

by letting multiple users share and modify multimedia content. Even though the variety of

distributed interactive applications is large and ranges from distributed virtual environments

for synchronous communication to software engineering groupware for asynchronous col-

laboration, these applications comprise common design principles and challenges: Each user

runs a local instance of the application, and each instance maintains a copy of the shared

application state. This state may change by events and with the passage of time. Events need

to be distributed from their source to all other instances in order to keep all local state copies

synchronized.

This basic data model allows us to address important issues of distributed interactive applica-

tions such as collaboration management, consistency control and the communication model

in an application-independent way. Since most distributed interactive applications are con-

siderably more complex than single-user applications, generic solutions for these issues are

especially important in order to simplify their design, implementation, and verification.

Shared whiteboards are a prominent example for distributed interactive applications and are

used for presenting and editing documents in electronic meeting scenarios. A major goal of

this thesis was the development of the shared whiteboard mlb. In addition to its presentation

functionality, the mlb integrates several tools to support collaboration and awareness among

multiple users and can also be employed together with handheld devices. The mlb was the
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first application with a hierarchical state to verify the generic data model, the RTP/I protocol,

and the algorithms for consistency control, late-join, and session recording.

Since each instance of a distributed interactive application maintains a local copy of the

shared state, synchronization mechanisms are required to keep these copies equal to a certain

extent. First, it might happen that operations are received in different orders or after their

scheduled execution time. In this case, a consistency control algorithm is needed, which

enforces the formal criteria of causality, convergence, or correctness. Second, late-joining

application instances need to be initialized with the current shared state. In this thesis, algo-

rithms were devised that address both issues.

A generic consistency control service for discrete and continuous applications was presented,

which combines the three algorithms of local lag, timewarp, and state request to achieve

correctness. The processing costs of the basic timewarp algorithm were reduced by means

of a round-based execution and a filtering approach for discrete applications. Moreover,

it was discussed how the memory space for storing the operation history can be limited.

The feasibility and the good performance of the generic consistency control service were

demonstrated using the mlb, the Spaceshooter game and Instant Collaboration as examples.

To undo or redo an operation is an important feature for distributed interactive applications,

which allows to cancel unintentional actions and to explore alternative states. Because of

possible side-effects and dependencies within the operation history, an undo algorithm has

to consider consistency issues. A straightforward undo scheme was proposed, which meets

the expectations of the local participant and is based on semantically encoded undo and redo

operations. This approach is compatible with our consistency control service. It was success-

fully implemented for the mlb.

Local lag and timewarp together establish a correct application state by serializing the oper-

ation history, and they assume that the operations executed last best reflect the state desired

by the users. However, this is not necessarily the case when users issue operations that affect

the same aspects of the state concurrently or in a short period of time. Here, the users might

not even be aware of each other’s actions, and the ordering of operations together with the

resulting state are more or less random. Since the application lacks the ability to resolve such

semantic conflicts, a novel visualization mechanism was introduced, which allows the users

to review the operation history and to analyze semantic conflicts in past operations. This

tool can also be used to explore alternative states so that the participants themselves may

resolve conflicts. A prototype was integrated into the mlb and showed promising results in

experiments.

Another synchronization mechanism is required when the application allows participants to

join an ongoing session at any time. The late-joining application instance then needs to be
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initialized with the current state. The late-join problem was thoroughly investigated, and

it was demonstrated that a carelessly designed algorithm results in a high initialization de-

lay for the late-join client, leads to high application and network loads, and might cause

inconsistencies. In contrast, the late-join algorithm designed in this thesis uses additional

communication groups and a flexible policy model to significantly reduce the application and

network loads. The efficiency was verified in simulation studies. The late-join algorithm was

also implemented as a generic service, and the different late-join policies allow to adapt the

service to the needs of a specific application. Moreover, it was discussed how consistency can

be achieved in late-join situations depending on the extent and distribution of initialization

information.

The synchronization problems of consistency control and late-join are especially challenging

for applications supporting synchronous and asynchronous collaboration, e.g., Instant Col-

laboration. Such applications allow to modify the state even when some session members

are offline. Thus, late-join situations occur frequently, and the state copies held by the in-

dividual application instances might diverge to a considerable degree before updates can be

exchanged. For this dynamic scenario, a synchronization algorithm was proposed, which

seeks to quickly complete the local operation histories of the individual sites by exchang-

ing missing operations. Consistency can then be established with the timewarp algorithm.

This synchronization mechanism was implemented for Instant Collaboration and analyzed in

simulation studies.

In order to implement generic services like the consistency control service or the late-join

service, basic information needs to be exposed so that it becomes generally accessible. For

this purpose, the application-level protocol RTP/I was introduced. RTP/I frames the network

traffic of a distributed interactive application with different operation types and provides in-

formation about the shared state as well as the participating users. The implementations of the

generic services presented in this thesis are based on RTP/I and can therefore be integrated

easily into different applications. This was demonstrated for the mlb.

All messages originating from a certain application instance need to be distributed to all other

sites by some means of group communication. Since IP multicast is not widely deployed in

the Internet due to technical and administrative flaws, application-level multicast is a promis-

ing alternative where the end-systems form a multicast distribution tree on the basis of multi-

ple unicast connections. In this thesis, a novel ALM routing algorithm was developed, which

incorporates application-level knowledge into the tree-building process. The PST algorithm

balances the properties of shortest path trees and minimum spanning trees by optimizing the

end-to-end delays for receivers with a high application-level priority under consideration of

the induced network load. These properties were demonstrated in simulation studies based

on a network game and in Internet experiments with the operational PST protocol.
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9.2 Scientific Contributions

The main scientific contributions of this thesis are as follows:

• The timewarp consistency control algorithm was improved significantly with a filtering

mechanism and techniques for reducing the size of the operation history [260, 83].

• Two algorithms for requesting a consistent full state from remote sites were de-

vised [260].

• The algorithms of local lag, timewarp, and state request were combined to a generic

consistency control service for distributed interactive applications [260, 161].

• The problem of undoing operations for distributed interactive applications was formal-

ized, and an undo mechanism for discrete applications was designed.

• A powerful visualization technique based on a timeline representation of the operation

history was developed, which for the first time gives the user detailed feedback about

conflicting actions and allows to review the evolution of the application’s shared state.

• The initialization of late-joining session members was identified as a major challenge

for distributed interactive applications, and a novel and generic late-join service was

proposed [261, 262]. As shown in extensive simulations, this late-join algorithm is a

major improvement when compared to existing approaches. Moreover, it was discussed

how eventual consistency can be achieved in late-join situations.

• Using the example of Instant Collaboration, the problems of consistency control

and late-join were investigated for applications with blended synchronous and asyn-

chronous collaboration, and a novel synchronization algorithm was designed to meet

the specific challenges in this domain [83].

• A multicast routing algorithm was proposed, which allows for the first time to incorpo-

rate application-level knowledge into the routing process and which is a generalization

of two well-known tree-building algorithms [263]. In simulation studies and in a pro-

tocol implementation, it was proven that this algorithm performs well.

• The development of the application-level protocol RTP/I was advanced in many re-

spects, including protocol design issues, generic services, and payload type defini-

tions [116, 159, 253, 254, 255, 256, 257, 258].

• The state-of-the-art shared whiteboard mlb was developed, which offers many inter-

esting features for collaborative environments [259]. Aside from Instant Collaboration
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and the Spaceshooter game, the mlb was the main testbed for the algorithms and pro-

tocols mentioned above.

The realization of the applications, algorithms, and protocols discussed in this thesis was

also challenging from a software engineering perspective. The implementation of distributed

algorithms, network protocols, user interfaces, application logic, and simulations comprise

a total of 114,000 lines of code. For the mlb, 92,000 lines of code were programmed in

C++, Tcl/Tk, and Java, including 5,000 lines for the pocket mlb, 5,000 lines for the consis-

tency control algorithms and the conflict visualization, 6,000 lines for the late-join library,

and 17,000 lines for the RTP/I library. The mlb has left the status of a research prototype and

is widely used in practice now. The complete program code of the mlb is available at [259]

as open source under the GNU General Public License [88]. The simulation studies of the

late-join algorithms were conducted in C++ and Tcl/Tk with 2,000 lines of code. The com-

munication and synchronization module of Instant Collaboration was developed in Java with

12,000 lines of code. Finally, the simulation studies of the PST routing algorithm and the

implementation of the PST protocol add to another 8,000 lines of code in C++ and Java. All

software developed is executable on Linux and Windows platforms.

9.3 Future Work

Even though many important aspects of distributed interactive applications were discussed in

this thesis, there remain several issues for future research.

The visualization of semantically conflicting operations as it was realized in this thesis has

some limitations that need to be addressed. While browsing the operation history is a power-

ful technique, it also interrupts the current task of a user. In addition to the tool-tip windows,

other real-time visualization mechanisms therefore need to be investigated. The visualized

operation history might also be difficult to analyze when multiple conflicts occur in a short

period of time, many participants are involved, or the history is large. The representation of

large operation histories could be improved with user-defined filters, e.g., to show only oper-

ations targeting a certain object. In order to allow a structured handling of conflicts, it might

be useful to integrate explicit mechanisms for resolving conflicts, e.g., by means of voting.

All techniques proposed need to be evaluated thoroughly for different scenarios and applica-

tions, including continuous and asynchronous. Moreover, the semantic analysis of operations

might also be useful for other tasks, e.g., for searching in archived sessions.

In the course of this thesis, consistency control and the handling of late-join situations proved

to be especially challenging for applications that combine synchronous and asynchronous

forms of collaboration. Since here the local state copies might diverge to a considerable
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degree before updates can be exchanged, and semantic conflicts are likely when merging

longer operation sequences, the resulting state might not meet the users’ expectations. This

problem could be alleviated by restricting the users’ ability to modify data while being offline,

by different update mechanisms (e.g., by an additional infrastructure for caching operations),

or by employing tools for visualizing and resolving conflicts.

Establishing awareness about the actions of remote users is an important feature for the mlb.

Aside from the awareness tools already integrated, the awareness about changes within the

shared workspace could be increased by drawing the user’s attention to important actions

such as deleting an object, e.g., by appropriate animations as proposed by Gutwin in [98]. As

a consequence, it would be less likely that such actions are overlooked. Moreover, actions

outside the shared workspace could be described textually (e.g., a status message could indi-

cate that a participant is working within a private workspace) or represented graphically (e.g.,

the local interaction with user interface widgets such as buttons and menus could be repre-

sented symbolically for remote participants [100]). While awareness information implicitly

improves the coordination and collaboration among users, explicit mechanisms such as floor

and session control would be required for sessions with many participants or in teleteaching

scenarios. These mechanisms could be realized as generic services.

The functionality of the pocket mlb could also be extended in several areas: Controlling

presentation animations and the ability to annotate slides would be useful features in face-

to-face scenarios. Text objects could be created with the handwriting recognition provided

by handheld devices. Furthermore, the human-computer interaction could be simplified by

gestures.

The RTP/I protocol plays a central role for implementing the algorithms developed in this

thesis in the form of generic and reusable services. Additional services on the basis of RTP/I

are conceivable, and new applications might require that RTP/I is modified or extended. Fur-

thermore, an adaptable reliability mechanism needs to be integrated. The ultimate goal is to

establish RTP/I as an Internet standard.

The focus when designing the ALM protocol PSTP was on the routing functionality. Other

functions that could be added under the consideration of application-level priorities are relia-

bility as well as flow and congestion control. Moreover, the selection of appropriate priorities

for different applications needs to be investigated. Another important issue is to further re-

duce the computational complexity and to improve scalability. One solution might be to clus-

ter adjacent (with respect to latencies and priorities) end-systems and to construct local PSTs.

Finally, it is planned to extend the PST routing algorithm so that restrictions with respect to

the available resources are taken into account when calculating a multicast distribution tree.
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