
Behavior Research Methods (2024) 56:7005–7025
https://doi.org/10.3758/s13428-024-02405-4

ORIG INAL MANUSCRIPT

Co-occurring dominance and ideal point processes: A general IRTree
framework for multidimensional item responding

Viola Merhof1 · Thorsten Meiser1

Accepted: 13 March 2024 / Published online: 16 April 2024
© The Author(s) 2024

Abstract
Responding to rating scale items is a multidimensional process, since not only the substantive trait being measured but also
additional personal characteristics can affect the respondents’ category choices. A flexible model class for analyzing such
multidimensional responses are IRTree models, in which rating responses are decomposed into a sequence of sub-decisions.
Different response processes can be involved in item responding both sequentially across those sub-decisions and as co-
occurring processes within sub-decisions. In the previous literature, modeling co-occurring processes has been exclusively
limited to dominance models, where higher trait levels are associated with higher expected scores. However, some response
processes may rather follow an ideal point rationale, where the expected score depends on the proximity of a person’s trait
level to the item’s location. Therefore, we propose a new multidimensional IRT model of co-occurring dominance and ideal
point processes (DI-MIRT model) as a flexible framework for parameterizing IRTree sub-decisions with multiple dominance
processes, multiple ideal point processes, and combinations of both. The DI-MIRT parameterization opens up new application
areas for the IRTreemodel class and allows the specification of a wide range of theoretical assumptions regarding the cognitive
processing of item responding.A simulation study shows that IRTreemodelswithDI-MIRTparameterization provide excellent
parameter recovery and accurately reflect co-occurring dominance and ideal point processes. In addition, a clear advantage
over traditional IRTree models with purely sequential processes is demonstrated. Two application examples from the field of
response style analysis highlight the benefits of the general IRTree framework under real-world conditions.

Keywords IRTree models · Ideal point models · Dominance models · Multidimensional IRT · Response styles

Likert-type rating scales are widely used to assess per-
sonality, attitudes, or beliefs via self-reports, and they are
omnipresent in research and applied fields of psychology
and social sciences. A popular item response theory (IRT)
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approach for analyzing such rating data are item response tree
(IRTree) models (Böckenholt, 2012; De Boeck & Partchev,
2012; Jeon &De Boeck, 2016; Böckenholt &Meiser, 2017),
which have been proven to be a broadly applicable model
class offering high flexibility with regard to investigating
response processes underlying respondents’ judgments and
decisions.

A key characteristic of IRTreemodels is their multidimen-
sional nature with the underlying assumption that multiple
response processes are sequentially1 involved in the selection
of response categories. This property arises from the decom-
position of the ordinal rating responses into a sequence of
pseudo-items, which represent the sub-decisions assumed to
be taken by the respondents during response selection. For
example, respondents may first decide onwhether to agree or

1 The term sequential in the context of IRTree models refers to the
logical sequence and conditionality of response processes, which does
not necessarily imply a temporal sequence.
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disagree with an item, and subsequently make fine-grained
decisions among the available agreement or disagreement
categories. Such sub-decisions are typically assumed to be
binary judgments, though the pseudo-items can likewise be
defined as ordinal judgments with three or more options
(see Meiser et al., 2019, and Fig. 1). The pseudo-items
are modeled by separate IRT models, and by assigning dif-
ferent latent traits to the sub-decision, their effects on the
response selection can be disentangled. Thus, IRTree mod-
els can capture multidimensional response processes, even
though making use of unidimensional IRT modeling for the
individual pseudo-items.

A typical aim of using IRTree models is to separate the
effects of substantive traits from those of response styles (RS)
– individual preferences for specific response categories of
rating scales irrespective of item content (for an overview,
see Van Vaerenbergh & Thomas, 2013). For instance, some
respondents may prefer categories located in the middle of
the response scale (midscale response style; MRS), whereas
others may rather prefer clear-cut responses and tend to
select the extreme categories (extreme response style; ERS).
Such different usages of the response scale can systemat-
ically distort the estimation of individual substantive trait
levels, group means, and correlations among multiple traits,
so that RS must be controlled for to obtain valid measure-
ments (Baumgartner & Steenkamp, 2001; Alwin, 2007).
Commonly used IRTree models for the analysis of RS define
agreement decisions as dependent on the substantive trait lev-
els of respondents, whereas more fine-grained decisions are
modeled to be based on individual RS, like the judgment to
give extreme versus non-extreme responses guided by ERS,
or the judgment to select the neutral middle category guided
byMRS (e.g., Böckenholt, 2017; Khorramdel & von Davier,
2014; Plieninger & Meiser, 2014; Thissen-Roe & Thissen,
2013). However, even though IRTree models are mostly used
for RS analysis, they are flexible to incorporate any kind
of person-specific influences on the selection of individual
response categories (e.g., socially desirable responding) by
defining the pseudo-items correspondingly.

In contrast to this flexibility of IRTree models with regard
to including various latent traits in the pseudo-items, lit-
tle attention has so far been devoted to their flexibility in
terms of modeling both monotonous and non-monotonous
effects of such traits on the response selection. This prop-
erty is described by the item response function (IRF), which
defines how each value of the latent trait continuum maps
to the expected score of an item. For ordinal item responses
Y ∈ {0, ..., K } on a rating scale withK+1 categories, the IRF
of trait θ is given by

IRF(θ) =
K∑

y=0

y · p(Y = y | θ). (1)

Thus, the IRF defines the expected value of Y for a given trait
level θ depending on the category-specific probabilities that
are specified by the IRT model (e.g., the generalized partial
credit model; GPCM; Muraki, 1992).

IRT models can be grouped into two classes based on
their IRFs: Dominance and ideal point models (Coombs,
1964). They go back to Likert (1932) and Thurstone (1928),
respectively, and both have a long history in the psychometric
literature. Typically, IRTree decision processes are assumed
to follow the dominance rationale, meaning that a higher trait
level is modeled to result in a higher expected score of the
respective pseudo-item (see Fig. 2A). As suggested by the
term dominance, respondents overcome an item if their trait
level values exceed the item’s level of difficulty. For instance,
the probability to agree with an item, which states that envi-
ronmental protection is an important issue, increases with
higher levels of environmental awareness of the respondents.
Dominance models have monotonically increasing IRFs and
frequently applied members of this class are the models of
the Rasch family; for example, the Rasch model (Rasch,
1960) or 2PL model (Birnbaum, 1968) for binary items, or
the GPCM for ordinal items. An alternative assumption is
captured by ideal point models, in which the relationship
between the expected score and the latent trait is unimodal

Fig. 1 Tree diagrams for decomposing responses to six-point rating
items into sub-decisions. A Decomposition into three sub-decisions
by five binary pseudo-items. Adapted from Böckenholt (2017).

B Decomposition into two sub-decisions by binary and ordinal (three-
step) pseudo-items. Adapted from Meiser et al. (2019)

123



Behavior Research Methods (2024) 56:7005–7025 7007

Fig. 2 Item response functions
under the dominance and ideal
point assumption

and non-monotonic (see Fig. 2B). The expected score is high-
est if a respondent’s trait level, which is called their ideal
point, matches the item’s location, and decreases with larger
distances. The more the trait levels deviate from the item
location in an upward or downward manner, the stronger
respondents will dismiss the item content from above or from
below, respectively. For example, respondents withmoderate
environmental awareness may agree with the statement that
the current environmental regulations are adequate, whereas
respondents who prefer either stricter or less strict regula-
tions disagree, though for different reasons. As the IRFs are
symmetrical about the item location, only the proximity of a
respondent and the item, not the direction of a deviation, is
relevant for the response selection. Several IRT models for
dichotomous and polytomous items have been developed for
the ideal point rationale, like the hyperbolic cosine model
(Andrich & Luo, 1993; Andrich, 1995) or the generalized
graded unfolding model (Roberts et al., 2000).

Although rating scale items are mostly constructed under
and analyzed by dominance approaches, there is compelling
evidence that ideal point models often better describe item
responding of non-cognitive constructs, and thus, should be
considered when analyzing self-reported data (e.g., Liu &
Wang, 2016; Roberts &Laughlin, 1996; van Schuur &Kiers,
1994; for an overview, see Drasgow et al., 2010). Neverthe-
less, compared to dominance IRT modeling, there is little
research on multidimensional response processes so far, and
most ideal point models treat item responses as solely depen-
dent on the substantive trait to be measured, while ignoring
possible other influences. This poses a threat to the valid-
ity of ideal point models whenever RS or other additional
response processes are involved in item responding (Liu &
Wang, 2019).

Multidimensional processes should, therefore, be inves-
tigated not only for dominance but also for ideal point
items. However, this can require integrating response pro-
cesses with different IRFs into multidimensional models, for
instance, if RS are to be considered. Such are by definition
dominance processes since higher RS levels reflect stronger
preferences for certain response categories. A straightfor-
ward way to include RS into the analysis of ideal point items

are IRTree models, as the pseudo-items are parameterized
independently of each other, and thus, processes of different
IRFs can be defined by existing unidimensional IRT mod-
els of the dominance and ideal point rationale. Indeed, Jin
et al. (2022) demonstrated the advantages of such an IRTree
model, in which an ideal point model was applied to a trait-
based sub-decision and a dominance model to an ERS-based
sub-decision. In twoapplication examples of attitudinal ques-
tionnaires, the authors showed that their model fit the data
better than both an ideal point model ignoring RS, and clas-
sical dominance IRTree models accounting for RS.

This example nicely illustrates that the decomposition of
multidimensional item responses into unidimensional deci-
sion processes with different kinds of IRFs provides high
flexibility while keeping the modeling complexity low. Still,
this advantage comes at the cost of the simplistic assumption
that each cognitive processing step during response selection
is based on one response process at a time (e.g., either the sub-
stantive trait or a RS). However, multiple response processes
may not only contribute to item responding sequentially, but
may also occur simultaneously on the level of sub-decisions.
Such co-occurring processes can likewise be integrated into
IRTree models by replacing the traditionally used unidi-
mensional pseudo-items with multidimensional IRT (MIRT)
models (von Davier & Khorramdel, 2013; see Jeon & De
Boeck, 2016; Meiser et al., 2019). In RS analysis, for exam-
ple, Meiser et al. (2019) showed that the selection of more or
less extreme response categories was not only dependent on
the individual ERS, but further influenced by the substantive
trait levels of respondents. Such multidimensional parame-
terizations of pseudo-items allow the investigation of more
complex and presumablymore realistic hypotheses about the
cognitive processing during item responding, and they were
shown to be preferable over unidimensional ones with regard
to psychometric properties (Merhof & Meiser, 2023).

Nevertheless, multidimensional pseudo-items have so far
been exclusively applied to combinations of dominance
processes. Dominance MIRT models can be derived from
unidimensional ones by extending a single latent trait to a
linear combination of multiple traits, and thus reflect the
assumption that several processes contribute to the response
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selection in a cumulative, additive way (e.g., Bolt & Johnson,
2009; Bolt & Newton, 2011; Falk & Cai, 2016; Henninger
& Meiser, 2020; Jin & Wang, 2014). Ideal point processes,
in contrast, must not be considered additive to other pro-
cesses, as this would counteract the proximity concept.2

Therefore, modeling co-occurring response processes under
the ideal point assumption is less straightforward and there
exist only fewmodels that address this challenge, all ofwhich
focus on modeling RS in addition to trait-based responding to
ideal point items. For instance, the approaches byLuo (1998);
Wang et al. (2013) implicitly account for RS in ideal point
items by defining random category thresholds which vary
across persons. Javaras and Ripley (2007) and Liu andWang
(2019) also use random thresholds, though specify such
explicitly as a linear combination of different RS. However,
none of the models treats RS as independent, stand-alone
response processes, but all rather assume that they can only
occur in the presence of another trait-based process, as they
are defined as person-specific shifts of trait-based responding.
In contrast, our understanding of item responding in the
framework of IRTree models is that trait-based and RS-
based responding are distinct processes,which canmakeboth
individual and combined contributions to the sub-decisions
duringresponseselection.Further, themodelsareonlyadapted to
the co-occurrence of an ideal point trait and dominance RS,
and do not generalize to other types of response processes
with any IRF. None of the models provides a general formu-
lation that consistently connects multiple response processes
independent of dominance and ideal point assumptions.

Therefore, the aimof the present article is to provide a gen-
eral IRTree framework which is independent of the choice
of dominance or ideal point modeling, and in which mul-
tiple response processes can be involved in the response
selection (a) sequentially across pseudo-items, and (b) as
co-occurring processes within pseudo-items. While sequen-
tial multidimensionality can be implemented using existing
IRT modeling, we propose a new approach for co-occurring
response processes, in which multiple dominance processes,
multiple ideal point processes, as well as a combination of
both are modeled in a consistent manner. The new MIRT
model of co-occurring dominance and ideal point processes
(DI-MIRT) is based on the divide-by-total framework for

2 Nevertheless, the assumption of cumulative effects can also be reason-
able in ideal point modeling under certain circumstances: For instance,
Cui (2008) proposed a multidimensional model for repeated measure-
ments, in which the person-specific latent trait at a given time point
t was modeled as the sum of the trait at the baseline time point plus
the change from baseline to time t. Since both of the trait factors are
on the same latent scale, their contributions to the response selection
can be considered to be additive. In contrast, the present article rather
addresses scenarios of multidimensional item responding in which dif-
ferent response processes relate to different constructs, so that their
contributions cannot be aggregated in a cumulative way.

ordinal item responses (see Thissen & Steinberg, 1986). It
can be used independently of IRTree models, though in this
article we focus on that model class and demonstrate that
a DI-MIRT parameterization can specifically benefit IRTree
pseudo-items: The newDI-MIRTmodel can not only be used
for modeling multidimensional response processes in ideal
point items (see section “Response style analysis in ideal
point items”), but also for including ideal point processes
into dominance items (e.g., when modeling the selection of
midscale response categories; see section “Middle categories
in dominance items”).

Furthermore, this article highlights the flexibility of the
proposed general IRTree framework, which can be consid-
ered a modular system with three independent components
that can be combined as desired. One component of IRTree
models is the psychological theory concerning the decom-
position of ordinal rating responses into sub-decisions. By
specifying the number and structure of the sub-decisions,
theory-driven hypotheses on the logical sequence of cogni-
tive processing stages can be defined (see Fig. 1). A second
component is the definition of the response processes that
contribute to the individual sub-decisions. Since various pro-
cesses can be assigned to the pseudo-items separately from
each other, personal characteristics may be involved in one
or more pseudo-items, and pseudo-items may depend on one
or more processes. Using the new DI-MIRT model, it is now
possible to define a third IRTree component independently of
the other two, which is the choice of process-specific IRFs.
The individual response processes can be parameterized by
dominance or ideal pointmodels, and they can be freely com-
bined both within and between pseudo-items.

In the remainder of this article, we will illustrate this mod-
ular system and present exemplary IRTree models that differ
in terms of the selection and combination of the three com-
ponents. To this end, we firstly derive the new DI-MIRT
model of co-occurring processes from existing models of the
divide-by-total framework. Secondly, we introduce IRTree
models in which dominance and ideal point processes co-
occur within sub-decisions. Thirdly, a simulation study on
parameter recovery and model selection is presented. Then,
the utility of the new approach is illustrated by two empir-
ical examples, the first one focusing on the investigation of
the relative importance of co-occurring processes in IRTree
sub-decisions, and the second one using response time data
to provide a construct validation of the parameter estimates.
We conclude with a discussion of the results.

Existing dominance and ideal point
divide-by-total models

The divide-by-total framework contains both dominance and
ideal point models. For both of them holds that the category
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probabilities of ordinal responses Y ∈ {0, ..., K } are defined
as the ratio of category-specific components divided by the
sum of the K + 1 components of all available categories,
so that the probabilities across categories sum up to 1. For
modeling item responses of person v = 1, ..., N to item
i = 1, ..., I under the dominance assumption (D), divide-
by-total models can take the form

p(D)(Yvi = yvi ) = ωviy

K∑
j=0

ωvi j

= exp(ηviy)

K∑
j=0

exp(ηvi j )

, (2)

where ηviy is a linear combination of person and item param-
eters.

A prominent member of dominance divide-by-total mod-
els is the generalized partial credit model (GPCM; Muraki,
1992), which is given by

p(D)(Yvi = yvi | s, θ ,α,β) =
exp

[
αi

(
syθv −

y∑
k=0

βik

)]

K∑
j=0

exp

[
αi

(
s jθv −

j∑
k=0

βik

)] , (3)

with βi0 := 0 and sy = y. θv denotes the person-specific
trait level, αi the item-specific discrimination parameter, and
βik the item- and category-specific thresholds (or difficul-
ties). The threshold parameters can be rewritten as βik =
βi + ζik , where βi denotes the item location and is defined
as

∑K
k=1 βik/K and ζik denotes the category-specific devi-

ations. If the thresholds βik are ordered across the ordinal
categories, each category has a section on the latent trait con-
tinuum for which the probability to be chosen is higher than
the probabilities of all other categories. The scoringweights s
define the relation between trait and response categories and
are fixed to sy = y in the GPCM, reflecting that the response

categories are ordered and that higher trait levels are associ-
ated with higher categories. However, they can be set to any
other values depending on the theoretical assumptions, or can
be estimated like in the nominal response model for categor-
ical responses (Bock, 1972; Thissen et al., 2010). Note that
the choice of scoring weights depends on the assumption of
how the trait influences the selection of categories, but does
not change the underlying dominance assumption. Figure 3A
shows exemplary category probability curves for an item on
a four-point scale under the GPCM.

For modeling item responses under the ideal point
assumption (I), divide-by-total models can take the form

p(I )(Yvi = yvi ) = ωviy

K∑
j=0

ωvi j

= exp(η1viy) + exp(η2viy)
K∑
j=0

(
exp(η1vi j ) + exp(η2vi j )

) , (4)

where η1viy and η2viy are linear combinations of person
and item parameters. The category-specific componentsωviy

are defined as the sum of two exponential terms since it is
assumed that each response category of a rating scale is com-
posed of two unobservable, latent categories. Each of the two
associated latent categories reflects the perspectives from
above and from below the item location, respectively. For
instance, the observable categories “agree” and “disagree” of
a dichotomous item correspond to the latent categories “dis-
agree from below”, “agree from below”, “agree from above”,
and “disagree from above”. Thus, ideal point divide-by-total
models account for two different reasons for which respon-
dents can select a specific category, such as disagreement
being chosen because of having a much higher or a much
lower ideal point compared to the item location. By adding
up the probabilities of selecting a category from below and
from above, probabilities of the observable categories are
obtained.

Fig. 3 Category Probability curves for responding to four-point rating
items. Category probabilities under the dominance assumption of the
GPCM (A) and under the ideal point assumption of the GGUM (B).

Discrimination parameters α and λ are set to 1; the thresholds are set
as follows: β1 = −3; β2 = −1; β3 = 1; ξ1 = −3.5; ξ2 = −2.1;
ξ3 = −0.6
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The generalized graded unfolding model (GGUM; Roberts
et al., 2000) belongs to the class of ideal point divide-by-total
models and is given by

p(I )(Yvi = yvi | s, θ ,λ, δ, ξ) =
exp

[
λi

(
sy(θv − δi ) −

y∑
k=0

ξik

)]
+ exp

[
λi

(
(M − sy)(θv − δi ) −

y∑
k=0

ξik

)]

K∑
j=0

{
exp

[
λi

(
s j (θv − δi ) −

j∑
k=0

ξik

)]
+ exp

[
λi

(
(M − s j )(θv − δi ) −

j∑
k=0

ξik

)]} (5)

with ξi0 := 0, M = 2K + 1 and sy = y. θv denotes the
person’s trait level (ideal point), δi the item location, λi
the discrimination parameter, and ξik the category-specific
threshold. If the thresholds ξik are < 0 and ordered across
the ordinal categories, all observable categories have sections
on the latent trait continuum for which the probability to be
chosen is higher than for the other categories. Note that the
parameterization of each exponential termhas high similarity
to the GPCM, which in fact causes the category probability
curves of the M + 1 latent categories to take the form of
a GPCM. The first exponential term in the numerator and
denominator of the GGUM corresponds to latent response
categories from below, whereas the second term corresponds
to latent categories from above. Each two associated latent
categories differ only in their scoring weights of the person-
item proximity (θv −δi ), which are defined as y and (M− y),
respectively. Thus, the scoring weights of latent categories
from below increase across categories (0, ..., K ), whereas
they decrease to the same extent for latent categories from
above (M, ..., K +1). The observable category probabilities
are symmetrical about the point (θv −δi ) = 0, which implies
that selecting response category y is equally likely for a pos-
itive or negative deviation of a respondent’s trait level from
the item location. As is the case for dominance models, the
scoring weights of ideal point divide-by-total models can be
fixed to any values, which would reflect different hypotheses
on the relation between trait and categories, without chang-
ing the ideal point rationale. Figure 3B shows exemplary
category probability curves for an item on a four-point scale
under the GGUM.

Co-occurring dominance and ideal point
processes

The novel DI-MIRT model of co-occurring processes is a
multi-process generalization of dominance and ideal point
divide-by-total models and includes both of them as special
cases. In order to combine response processes described by
those two models, the definitions of dominance and ideal

point approaches must be brought into the same format. As
described above, ideal point divide-by-total models consist
of the sum of two exponential terms, which correspond to

the two underlying latent categories together defining the
probability distribution of observable categories. For dom-
inance models, in contrast, the probability distribution of
observable categories can be modeled directly. Nonetheless,
such models can likewise be displayed in the form of two
added components, by applying the single linear parame-
ter combination of a dominance model (which is ηviy in
Eq. 2) to both exponential terms in the ideal point formulation
(η1viy and η2viy in Eq. 4). Consequently, all category-specific
components ωviy are simply doubled both in the numerator
and denominator, which does not affect the probability dis-
tribution across categories, so an equivalent model results.
Metaphorically speaking, each observable response category
is artificially divided into two latent categories, which are
selected with equal probability. Thereby, ideal point and
dominancemodels can be expressed in the same form and are
represented by two added components. If several response
processes r ∈ {1, ..., R}, no matter if dominance or ideal
point processes, are to be aggregated to a common probabil-
ity distribution, the respective linear parameter combinations
can simplybe addedwithin eachof the twoexponential terms.
The resulting DI-MIRT model is given by

p(Yvi = yvi ) =
exp

(
R∑

r=1
η1viyr

)
+ exp

(
R∑

r=1
η2viyr

)

K∑
j=0

[
exp

(
R∑

r=1
η1vi jr

)
+ exp

(
R∑

r=1
η2vi jr

)] . (6)

With this general formulation, the co-occurrence of sev-
eral dominance processes, several ideal point processes, or
a combination of both can be modeled in a consistent way.
Note that the two linear parameter combinations do not differ
for dominance response processes (η1vi jr = η2vi jr ), whereas
the parameterizations for ideal point processes differ in their
scoring weights (see Eq. 5). In the further course of the arti-
cle,weuse theGPCMformodeling dominance processes and
theGGUMfor ideal point processes. However, the individual
processes can be defined by any unidimensional dominance
or ideal point IRT model which can be represented in the
form of divide-by-total models (as defined in Eqs. 2 and 4).
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Figure 4 illustrates the co-occurrence of one dominance and
one ideal point process for an exemplary binary item. The
higher a person’s dominance trait level (θ(D)

1 ) and the higher
the proximity of a person’s ideal point to the item location
(|θ(I )

2 − δ|), the higher the probability of endorsing the item.

Identification

The DI-MIRT model is a suitable theoretical model of how
co-occurring processes jointly determine item responding,
though it is highly parameterized and not identified without
certain constraints, whenever two ormore processes are to be
considered. Given that the linear parameter combinations of
the co-occurring processes (η1viyr and η2viyr ) each consist of
a person-specific trait and item-specific category thresholds,
some restriction may arise with respect to estimating those
two kinds of parameters.

Firstly, the threshold parameters of several processes can-
not be separated, so only one common threshold per category
can be estimated. This common threshold, which we call
category intercept, is a weighted linear combination of the
threshold parameters of the co-occurring processes. It is,
therefore, not possible to examine the individual contribu-
tions of the involved processes to the size of each category
intercept, that is, to why specific response categories are
selected more or less frequently. For instance, for dominance
processes modeled by the GPCM and ideal point processes
modeled by the GGUM, the linear parameter combinations
are defined as

R∑

r=1

η1viyr =
R∑

r=1

[
(αir syrθvr )

mr

+(
λir syr (θvr − δir )

)(1−mr )
]

−
y∑

k=0

τik (7)

and

R∑

r=1

η2viyr =
R∑

r=1

[
(αir syrθvr )

mr + (
λir (M − syr )

(θvr − δir )
)(1−mr )

]
−

y∑

k=0

τik, (8)

where mr = 1 if process r is a dominance process andmr =
0 if it is an ideal point process. τik is the category intercept
of the R processes and is given by

τik =
R∑

r=1

(αirβikr )
mr + (λirξikr )

(1−mr ), (9)

where τi0 = 0 as a consequence of the previous definitions.
Note that this constraint of only the common category inter-
cept of several processes being estimated applies to existing
MIRTmodels as well (such as the multidimensional nominal
response model; Bolt & Johnson, 2009), though it is implic-
itly captured in the model formulations by defining only one
threshold in the first place.

The second constraint of the DI-MIRT model is that the
respondents’ trait levels can only be separated from each
other if the scoring weights differ in at least one of the two
exponential terms. Therefore, two (or more) dominance pro-
cesses or two (or more) ideal point processes must be defined
to affect the response categories in different ways. Again,
this also applies to other MIRT models. For instance, in
multidimensional models for the analysis of ERS, the ERS-
based process typically gets assigned the scoring weights
(1, 0, ..., 0, 1), reflecting the assumption that only the outer-
most two categories are affected, and thus can be separated
from the ordinal influence of a trait with scoring weights
(0, ..., K ).

Fig. 4 Probability curves for endorsing a binary item under the DI-
MIRTmodel. One response process follows the dominance assumption
parameterized by the GPCM (θ(D)

1 ) and the other process follows the

ideal point assumption parameterized by the GGUM (θ(I )
2 ). A Prob-

ability curves for fixed |θ(I )
2 − δ| of .5 (dotted line), 1.5 (solid line),

and 2.5 (dashed line). B Probability curves for fixed θ
(D)
1 of 1 (dotted

line), 0 (solid line), and -1 (dashed line). The other parameters are set
as follows: α = 1, λ = 1, β1 = 0, ξ1 = −1, s(D) = (0, 1), and
s(I ) = (0, 1)
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In addition to the above remarks, it should be noted that the
scale of the latent continuum is not per se identified in the DI-
MIRT model – as is the case for any other IRT model. When
estimating the DI-MIRT model, the location, the variability,
and the orientation of the continuum have to be fixed. The
identification of the location is required in all IRT models
and is typically done by setting the mean of the latent trait
distribution to zero. Models with discrimination parameters,
such as the GPCM, additionally require fixing the variability,
which is often done by setting the variance of the trait distri-
bution to one. In ideal point models, such as the GGUM, the
orientation (or sign) of the continuum is unknown and there-
fore has to be fixed. The non-identified orientation is due to
the fact that the estimation of the trait levels and item loca-
tions in ideal point models is based on their proximity, that
is, the pairwise distances on the common latent continuum.
Thus, two sets of parameters result in the same likelihood,
whereby the two parameter solutions only differ in the signs
of the person-specific trait levels and item-specific loca-
tions. Importantly, both solutions are equally correct; only
the meaning of the latent continuum changes, so it is up to
the researcher to decide which of the two parameter sets cor-
responds to the interpretation of the latent continuum that is
more intuitive. The practical specification of the continuum
orientation is described below in the context of the simulation
study (see “Estimation and Analysis”).

Probability-based formulation

The DI-MIRT formulation as divide-by-total model given
by Eq. 6 can be rewritten as a model which aggregates pro-
cesses at the level of process-specific category probabilities.
Let p(r)(Yvi = yvi ) denote the vector of probabilities for
responding to each of the K + 1 categories of an item for
response process r . The joint probability for R co-occurring
processes can then be obtained by passing the process-
specific probabilities to a probability-aggregating function
σ , which is defined as

p(Yvi = yvi ) = σy

[
p(1)(Yvi = yvi ), ..., p(R)(Yvi = yvi )

]

= softmax

[
R∑

r=1

log
(
p(r)(Yvi = yvi )

)]

(y+1)

, (10)

with softmax being a normalized exponential function trans-
forming a Z -dimensional vector x into a vector of probabil-
ities summing up to 1. Position z of this probability vector is
given by

softmax[x]z = exp(xz)
Z∑

w=1
exp(xw)

for z = 1, ..., Z . (11)

This formulation of the DI-MIRT model with aggregation
of response processes on the level of category probabili-
ties is equivalent to the aggregation on the level of linear
parameter combinations derived above. Thus, even though
these two formulations seem to differ regarding their the-
oretical assumptions (the aggregation at the level of linear
parameter combinations suggests that multiple response
processes are simultaneously active; the probability-based
approach suggests separate cognitive processing and subse-
quent aggregation), they cannot be distinguished statistically.

Note, however, that the probability-based model is more
general and not restricted to divide-by-total models, since the
category-specific probabilities of a process could result from
anykindof IRTmodel (e.g., differencemodels like the graded
response model; Samejima, 1969). Nonetheless, depend-
ing on the choice of process-specific models, the estimated
parameters might have unintuitive interpretations (e.g., the
threshold parameters in a co-occurring model including one
process defined by a difference model and another process
defined by a divide-by-total model) and different constraints
might be necessary in order to identify the models. In this
article, we will therefore only refer to processes defined
by divide-by-total models, for which both formulations are
equivalent.

IRTreemodels of co-occurring processes

IRTree models allow to separate the influences of multiple
latent traits, which can be involved in the response selection
both sequentially across sub-decisions and as co-occurring
processes within sub-decisions. The modular system of
IRTree models offers high flexibility for the specification of
theoretical assumptionswith respect to three components: (a)
the decomposition of ordinal response into sub-decisions,
(b) the response processes involved in such sub-decisions,
and (c) the IRFs of the individual processes of each pseudo-
item. In this article, we introduce two exemplary IRTree
models from the field of RS modeling in which these three
components are combined in different ways, and in which
dominance and ideal point processes co-occur in at least one
pseudo-item. The first model addresses the influences of RS
on responding to ideal point items; the second one addresses
the selection of middle response categories in dominance
items. The twomodels are formally outlined in the following
two sections (“Response style analysis in ideal point items”
and “Middle categories in dominance items”, respectively)
and applied to empirical data sets in the section “Empir-
ical Applications”. Even though these exemplary models
cover only a part of all conceivable IRTree configurations
that arise from the DI-MIRT framework, they illustrate the
advantages of the new parameterization for IRTree pseudo-
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items. Our proposed approach is a rather general one and
can be easily adapted to differently structured trees and
response processes outside RS modeling. Further, we will
only refer to pseudo-items with a maximum of two response
processes, although the new approach would allow model-
ing any number of co-occurring response processes. Within
IRTree models, however, we consider this as a reasonable
restriction since different processes, like MRS and ERS, are
assumed to be sequentially involved in item responding and
do not affect the same sub-decisions.

Response style analysis in ideal point items

The first application concerns IRTree models for the analysis
of ideal point items while controlling for RS. Assuming that
some sub-decisions within the response selection depend on
both the trait (i.e., an ideal point process) and a RS (i.e.,
a dominance process), the model of co-occurring processes
is necessary for modeling the respective pseudo-items. We
illustrate the analysis of this kind of item response data by
an IRTree model of six-point rating scale items, which are
decomposed into two sub-decisions of agreement and inten-
sity, as depicted in Fig. 5. The probability of an ordinal
response Yvi ∈ {0, ..., 5} of person v = 1, ..., N to item
i = 1, ..., I is the product of the probabilities of responses
to the pseudo-items Xhvi , where one pseudo-item reflects an
agreement decision (h = 1) and two pseudo-items reflect the
decisions regarding the intensity of responses conditional on
the agreement judgment (h = 2 and h = 3):

p(Yvi = yvi ) = p(X1vi = x1vi ) × p(X2vi = x2vi )
x1vi

×p(X3vi = x3vi )
(1−x1vi ). (12)

Under the assumption that all sub-decisions are dependent
on the substantive trait θ , and that the intensity judgments are
additionally affected by the ERS η, the probabilities of the
three pseudo-items can be specified as follows:

p(X1vi = x1vi ) = p(I )
(
x1vi | s = (0, 1), θv, λ1i , δi , ξ1i

)

p(X2vi = x2vi ) = σx

[
p(D)

(
x2vi | s = (0, 1, 2), ηv, αi ,β1i

)
, p(I )

(
x2vi | s = (0, 1, 2), θv, λ2i , δi , ξ2i

)]

p(X3vi = x3vi ) = σx

[
p(D)

(
x3vi | s = (0, 1, 2), ηv, αi ,β2i

)
, p(I )

(
x3vi | s = (2, 1, 0), θv, λ2i , δi , ξ3i

)]
, (13)

where p(D) denotes response probabilities under the GPCM
as given in Eq. 3, p(I ) denotes probabilities under theGGUM
as given in Eq. 5, and σ denotes the probability-aggregating
function given in Eq. 10. As the sub-decision of agreement
depends on a trait-based ideal point process and the intensity
decision comprises co-occurring trait andERSprocesses, this
IRTree structure is abbreviated as Iθ–DηIθ in the following.

The scoring weights s of the trait-based ideal point pro-
cess differ between the two intensity pseudo-items to account
for the fact that high proximity of a respondent’s ideal point
and the item’s location (i.e., a small difference of θv and δi )
increases the probability of intense agreement but reduces
the probability of intense disagreement. As such intensity
scoring weights relate to the definition of the pseudo-items
in Eq. 5 from inner to outer ordinal categories of the scale,
the respective first weights refer to the least intense ordinal
categories (3 and 2 for agreement and disagreement, respec-
tively), followed by theweights formoderately intense (4 and
1) and themost intense (5 and 0) categories. Further, the ordi-
nal definition of the ERS-based dominance process implies
that a preference for the extreme categories and a preference
for the midscale categories are opposite poles of a common
trait. Thus, positive ERS levels increase the probability to
select extreme categories and decrease the probability of
midscale categories, while it is the other way around for
negative ERS levels. Also note that the thresholds of the co-
occurring processes within the intensity pseudo-items cannot
be separated, meaning that only one category intercept can
be estimated. Such category intercepts τ are defined as given
in Eq. 9: For pseudo-item X1vi , only one response process
is defined, so that the intercept τ1i is simply given by λ1iξ1i .
For pseudo-item X2vi , the intercept is τ 2i = αiβ1i +λ2iξ2i ,
and for pseudo-item X3vi , it is τ 3i = αiβ2i + λ2iξ3i .

Middle categories in dominance items

The second application relates to IRTree sub-decisions of mid-
scale versus non-midscale responding in dominance items.
There is an ongoing discussion in the literature on whether
middle categories are used as part of the ordinal scale and
reflect a neutral attitude of respondents, or whether they are
rather considered as a non-response option and selected to

avoid providing personal information (e.g., Kalton et al.,
1980; Nowlis et al., 2002; Sturgis et al., 2014; Tijmstra &
Bolsinova, in press; Tijmstra et al., 2018). The first interpre-
tation implies a trait-based response selection; the latter one
indicates that such decisions are based on another trait, which
could be referred to as MRS. Thus, it seems reasonable to
consider both kinds of response processes in a co-occurring
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Fig. 5 Tree diagram and
definition of pseudo-items for
responses to six-point rating
items. Pseudo-items that are
missing by design are marked
with ’–’

model in order to examine their relative importance for the
selection of middle categories.

For such sub-decisions of midscale responding, the sub-
stantive trait behaves like an ideal point process, despite
the fact the item generally follows the dominance rationale.
Therefore, trait-based agreement is modeled as a dominance
process, whereas trait-based midscale responding as an ideal
point process. This unintuitive property is due to the fact
that only respondents who have moderately high substantive
trait levels in relation to the item location are assumed to
select middle categories as an expression of a neutral opin-
ion. In contrast, respondents having a very high or very low
trait level are unlikely to select neutral response categories,
because they are assumed to have a clear-cut opinion regard-
ing the item content. Accordingly, if such a trait-based ideal
point process is to bemodeled to co-occur with aMRS-based
dominance process, the DI-MIRT model is required.

This use case of the DI-MIRT model is illustrated by an
IRTree model of items on a five-point rating scale with the
three sub-decisions of midscale responding, agreement, and
extreme responding, as depicted in Fig. 6. The probability
of an ordinal response Yvi ∈ {0, ..., 4} is the product of the
conditional pseudo-item probabilities Xhvi and is given by:

p(Yvi = yvi ) = p(X1vi = x1vi ) ×
[
p(X2vi = x2vi )

×p(X3vi = x3vi )
x2vi

×p(X4vi = x4vi )
(1−x2vi )

](1−x1vi )

, (14)

Assuming that the decision of midscale responding
depends on the substantive trait θ and the MRS η1, that
agreement is solely trait-based, and that extreme respond-

Fig. 6 Tree diagram and
definition of pseudo-items for
responses to five-point rating
items. Pseudo-items that are
missing by design are marked
with ’–’
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ing depends on the trait and the ERS η2, the pseudo-item
probabilities can be defined as follows:

p(X1vi = x1vi ) =σx

[
p(D)

(
x1vi | s = (0, 1), η1v, α1i , β1i

)
, p(I )

(
x1vi | s = (0, 1), θv, λi , δi = β2i , ξi

)]

p(X2vi = x2vi ) = p(D)
(
x2vi | s = (0, 1), θv, α2i , β2i

)

p(X3vi = x3vi ) =σx

[
p(D)

(
x3vi | s = (0, 1), η2v, α3i , β3i

)
, p(D)

(
x3vi | s = (0, 1), θv, α4i , β4i

)]

p(X4vi = x4vi ) =σx

[
p(D)

(
x4vi | s = (0, 1), η2v, α3i , β5i

)
, p(D)

(
x4vi | s = (1, 0), θv, α4i , β6i

)]
, (15)

where p(D) denotes the GPCM, p(I ) the GGUM, and σ

the probability-aggregating function. Note that the DI-MIRT
parameterization is used in two ways, once for modeling the
co-occurrence of a dominance and an ideal point process in
themidscale pseudo-item, and once tomodel two dominance
processes in the extreme pseudo-items. This IRTree structure
is abbreviated Dη1 Iθ–Dθ–Dη2Dθ .

As before, the thresholds of co-occurring response pro-
cesses within one pseudo-item cannot be separated so that
common category intercepts are defined for all pseudo-items.
For pseudo-item X1vi , the intercept is τ1i = α1iβ1i + λiξi ,
for pseudo-item X2vi it is τ2i = α2iβ2i , for pseudo-item X3vi

it is τ3i = α3iβ3i + α4iβ4i , and for pseudo-item X4vi it is
τ4i = α3iβ5i + α4iβ6i . Importantly, the item location of the
trait-based process ofmidscale responding δi is not estimated
independently, but set equal to the threshold of agreement
β2i . This equality constraint implies that respondents whose
trait levels are equal to the agreement difficulty parameter
(a) have maximal ambiguity regarding the decision to agree
or disagree (see pseudo-item X2vi ), and (b) have maximal
probability for a trait-based selection of the middle category
(see pseudo-item X1vi ). The larger the distance of the respon-
dents’ trait levels to the item difficulty, the more clear-cut the
agreement decisions and the less likely midscale responses
are.

Simulation study

A simulation study was conducted to evaluate the param-
eter recovery and model fit of IRTree pseudo-items of
co-occurring processesmodeled by theDI-MIRTmodel. The
study was based on the Iθ–DηIθ IRTree model described in
the section “Response style analysis in ideal point items”,
which analyzes ideal point items on a six-point rating scale
while incorporating an ERS influence in the intensity sub-
decisions. We choose this model for the simulations since

all six response categories were influenced by co-occurring
dominance and ideal point processes. Thismodel of co-occu-

rring response processes was compared to two models of
sequential processes, in which the intensity pseudo-items
were unidimensional and dependent on only one of the
two processes, that is, either ERS-based (trait-ERS model
of sequential processes; Iθ–Dη) or trait-based (trait-trait
model of sequential processes; Iθ–Iθ ). We evaluated how the
co-occurring model performed when it was the true data-
generating model, and when it was over-parameterized and
fitted to data generated under the models of sequential pro-
cesses, which are both nested within it. Further, we evaluated
how the models of sequential processes performed when fit-
ted to data generated by the co-occurring model, meaning
that one of the two intensity processes was ignored in the
analysis.

Data generation

Item response data were generated for each of the three
models, which are described by Eqs. 12 and 13 (Iθ–DηIθ
model of co-occurring processes), or by special cases with
unidimensional pseudo-items (Iθ–Dη trait-ERS model and
Iθ–Iθ trait-trait model of sequential processes). One hun-
dred replications were conducted for each of two sample
sizes N , set to 500 and 1000, and two questionnaire lengths
I , set to 10 and 20. The person-specific trait levels θv

and ERS levels ηv were sampled from independent stan-
dard normal distributions. The discrimination parameters
αi , λ1i , and λ2i were drawn from LogN (0, 0.25). The
item locations δi were drawn from a uniform distribution
U (−3, 3). The thresholds of ideal point processes were
sampled from the distributions N (−2.2, 0.2), N (−1.3, 0.2),
N (−1, 0.2), N (−0.8, 0.2), and N (−0.2, 0.2). The means
of these threshold distributions were ordered across ordi-
nal response categories, so that the first two correspond to
the thresholds of intense disagreement (ξ3i ), the third to the
threshold of the agreement pseudo-item (ξ1i ), and the last two
to the two thresholds of intense agreement (ξ2i ). For dom-
inance processes, the thresholds β1i and β2i were defined
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as the sum of item-specific locations βi , which were gen-
erated from U (−1, 1), and the category-specific deviations
ζik , which were drawn from N (−0.5, 0.2) and N (0.5, 0.2).
Item responseswere sampled according to themodel-implied
probabilities.3

Estimation and analysis

All analyses were conducted in R (R Core Team, 2023).
Bayesian parameter estimation was performed since the
proposed IRTree models with DI-MIRT parameterization
are comparably complex and their estimation would prob-
ably not be possible within the frequentist framework. We
used the software program Stan (Stan Development Team,
2023) and the R package CmdStanR (Gabry et al., 2023).
For each generated data set, the three models (Iθ–DηIθ ,
Iθ–Dη, and Iθ–Iθ ) were fitted. Priors were set as follows:
α ∼ Gamma(1.5, 1.5), λ ∼ Gamma(1.5, 1.5), and τ ∼
N (0, 5). The parameters δ were given a hierarchical prior
with a N (0, 5) hyperprior for the mean and nonnegative
N (0, 5) for the standard deviation. The distributions of θ

and η were set to N (0, 1) for identifying the models.
Furthermore, we set initial values for the Markov chain

Monte Carlo (MCMC) chains in all models. Firstly, this was
important to avoidMCMC chains getting stuck in local max-
ima. The same applies to the GGUM, for which Roberts et
al., (2000) proposed to fit a constrained model first, and to
use the estimates of this model as initial values for the full
model. We followed this procedure and defined three con-
strained models (corresponding to the three full models), in
which the discrimination parameters (α and λ) and category
intercepts (τ ) were set equal across items. Secondly, setting
initial values also allowed to specify the orientation of the
latent continuum, which otherwise would not be identified.
To this end, the initial values of the item locations were set in
accordance with one of the two possible scale orientations.
Thereby, the chains only explore that part of the posterior
distribution that aligns with this parameter solution and do
not jump to the alternative parameter set. As suggested by
Liu and Wang (2016), the signs of the item locations were
treated as known, which is why such parameters were ini-
tialized with values 1 or -1, depending on the signs of the
respective generated data set (for empirical data, the signs
of the item locations are obviously not known, so content
knowledge can inform the selection of one of the two possible
scale orientations; a slightly different procedure for setting
the initial values is then used as described in the “Empirical
applications”). For the constrained models, one chain with
500 warmup iterations and 500 post-warmup iterations was
run to derive approximate estimates for the model param-

3 The R code for generating data sets can be found in the OSF project;
https://osf.io/yu4gx/.

Table 1 Recovery of person parameters by MAB

Generation Analysis Trait θ ERS η

I10 I20 I10 I20

Iθ–DηIθ Iθ–DηIθ 0.346 0.249 0.395 0.296

Iθ–Dη 0.496 0.375 0.434 0.352

Iθ–Iθ 0.377 0.286

Iθ–Dη Iθ–Dη 0.497 0.377 0.351 0.264

Iθ–DηIθ 0.502 0.379 0.352 0.265

Iθ–Iθ Iθ–Iθ 0.309 0.221

Iθ–DηIθ 0.309 0.221

eters. The expected a posteriori (EAP) estimates were then
used to create initial values for fitting the full model.

For the full model, four chains with 500warmup iterations
and 1000 post-warmup iterations were run. To ensure model
convergence and enough independent posterior samples for
the estimation of each parameter, the Gelman–Rubin statis-
tic R̂ and the effective sample size were evaluated (for more
information on these diagnostics, see Vehtari et al., 2021). If
at least onemodel parameter had an R̂ value greater than 1.05
or either the bulk or tail effective sample sizewas smaller than
100, more samples were drawn (in steps of 500, up to 3000
post-warmup iterations). By this procedure, convergencewas
achieved for all models while keeping the computation time
reasonable for models which provided good diagnostic val-
ues after fewer samples.4

It is important to note that despite the careful choice of ini-
tial values and the interim step of fitting a constrained model,
by chance, some MCMC chains may move to either a local
maximum or to the area of the posterior distribution which
corresponds to the solution with inverted scale orientation.
This becomes apparent in that the model does not converge
or that the signs of estimated item locations are inverted com-
pared to the initial values. Since this only occurs in very few
instances, the model can simply be re-fitted with a different
seed. In the simulation study, we ensured that all models con-
verged to the solution of the scale orientation corresponding
to that of the data generation to ensure sensible results for
the parameter recovery.

The fitted models (i.e., the co-occurring model and the
two models of sequential processes) were compared regard-
ing their parameter recovery by mean absolute bias (MAB)
of the EAP point estimates. Further, out-of-sample model fit
was compared by an approximation of leave-one-out cross-
validation based on Pareto smoothed importance sampling
(LOO; Vehtari at al., 2017), where small values indicate bet-
ter fit. The LOO information criterion has been shown to

4 The Stan model code and an R script illustrating the estimation pro-
cedure can be found in the OSF project. The R script also shows how
traceplots can be used as an additional check of model convergence.
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Table 2 Recovery of item parameters by MAB

Gen. Analysis τ δ λ1 (Agree. Iθ ) α1 (Int. Dη) λ2 (Int. Iθ )

N500 N1000 N500 N1000 N500 N1000 N500 N1000 N500 N1000

Iθ–DηIθ Iθ–DηIθ 0.320 0.257 0.260 0.209 0.133 0.094 0.108 0.081 0.126 0.095

Iθ–Dη 1.260 1.230 0.738 0.568 0.188 0.132 0.166 0.163

Iθ–Iθ 0.505 0.470 0.426 0.353 0.149 0.109 0.252 0.241

Iθ–Dη Iθ–Dη 0.275 0.206 0.719 0.584 0.192 0.135 0.101 0.070

Iθ–DηIθ 0.286 0.200 0.490 0.412 0.191 0.134 0.104 0.070

Iθ–Iθ Iθ–Iθ 0.290 0.227 0.233 0.184 0.126 0.089 0.113 0.082

Iθ–DηIθ 0.300 0.232 0.225 0.180 0.126 0.089 0.119 0.085

be superior to other commonly used methods of IRT model
comparisons such as theAIC orDIC (Fujimoto&Falk, 2023;
Luo & Al-Harbi, 2017).5

Results

The comparison of the co-occurring model (Iθ–DηIθ ) with
the trait-ERS (Iθ–Dη) and trait-trait (Iθ–Iθ )models of sequen-
tial processes in terms of recovering person and item parame-
ters is summarized in Tables 1 and 2, respectively. In general,
if the co-occurring model was used to generate the data, the
model itself provided considerably lowerMABs of estimated
parameters than both unidimensional models of sequential
processes. In contrast, if one of the models of sequential pro-
cesses was used to generate the data, the co-occurring model
yielded MABs of almost equal size. Thus, the co-occurring
model successfully adapted to data sets generated by models
of sequential processes nested within it, whereas applying
such to co-occurring data led to poor parameter recovery.

The evaluation of the out-of-samplemodel fit (see Table 3)
supports these findings: If the data were generated under
the co-occurring model, this was superior to the models
of sequential processes and was selected as the best-fitting
model in all replications. The average LOO values of the
models of sequential processeswere considerably larger (i.e.,
indicating worse fit), also when the uncertainty of the LOO
estimates is taken into account. In contrast, the differences
in the model fit for sequential data were rather small: The
respective true model was still selected as the best-fitting
model in a large proportion of replications, though in some
replications, the co-occurring model provided a better fit.
Further, the average LOO values of the co-occurring model
were only slightly larger than the values of the respective
true model, and such differences were small compared to the
standard errors of the LOO estimates. This suggests that the

5 Additional analyses are provided in the OSF project, including recov-
ery by rootmean square error and correlation of generated and estimated
parameters as well as model fit by the widely applicable information
criterion (WAIC; Watanabe, 2010).

co-occurring model adapted comparably well to the data of
sequential processes and successfully captured the restric-
tions of models nested within it.

Altogether, the simulation study showed that the new
DI-MIRT parameterization of IRTree pseudo-items is ben-
eficial for the analysis of item response data and should be
preferred over traditional IRTree models of sequential pro-
cesses.Analyzing datawith co-occurring processes under the
assumption of sequential processing, that is, ignoring one
of two processes, led to poorer model fit and larger errors
of estimated parameters. In contrast, there were hardly any
negative effects of applying the co-occurring model to data
generated bymore parsimonious sequential ones. Thehigher-
parameterized co-occurringmodel entailed greater flexibility
and was better able to compensate for possible misspecifica-
tion.

Empirical applications

To illustrate the benefits of the general IRTree framework
withDI-MIRTparameterization under real-world conditions,
two empirical applications of co-occurring dominance and
ideal point processes are presented. They relate to the two
models described in section “IRTree models of co-occurring
processes”.6

Response style analysis in ideal point items

In the first application example, the co-occurring IRTree
model of RS analysis in ideal point items was applied to
a data set consisting of item responses of N = 1505 par-
ticipants to I = 15 items measuring attitudes toward sexual
practices by a subscale of the National Health and Social Life
Survey (Laumann et al., 1992)7. The items were rated on a
four-point scale, with categories “not at all appealing”, “not

6 The Stan code of such models can be found in the OSF project.
7 The data are provided here: https://www.icpsr.umich.edu/web/
HMCA/studies/6647
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Table 3 Model comparison by LOO

Gen. Analysis N500, I10 N500, I20 N1000, I10 N1000, I20

LOO SE Prop. LOO SE Prop. LOO SE Prop. LOO SE Prop.

Iθ–DηIθ Iθ–DηIθ 14321 99 1.00 27743 144 1.00 28517 139 1.00 54889 205 1.00

Iθ–Dη 15093 94 0.00 29503 140 0.00 30131 132 0.00 58416 199 0.00

Iθ–Iθ 15304 90 0.00 30134 131 0.00 30502 127 0.00 59561 187 0.00

Iθ–Dη Iθ–Dη 15146 93 0.95 29597 137 1.00 30158 131 0.98 58812 194 0.99

Iθ–DηIθ 15164 93 0.05 29623 138 0.00 30174 132 0.02 58837 194 0.01

Iθ–Iθ Iθ–Iθ 14924 91 0.86 29127 134 0.99 29690 128 0.90 58141 188 1.00

Iθ–DηIθ 14934 92 0.14 29156 135 0.01 29702 129 0.10 58170 189 0.00

Note. LOO = Average LOO value across replications. SE = Average standard error of LOO estimate across replications. Prop. = Proportion of
replications with smallest LOO

appealing”, “somewhat appealing”, and “very appealing”.
The ordinal categories Yvi ∈ {0, ..., 3} were decomposed
into two sub-decisions of agreement and intensity as defined
in Table 4.With the exception that the intensity pseudo-items
had two instead of three options, the co-occurring model as
described in the section “Response Style Analysis in Ideal
Point Items” was applied.

The data set was previously used as an application exam-
ple by Jin et al. (2022; using a subset of the data with 1498
respondents), and the authors showed that a trait-ERS model
of sequential processes (Iθ–Dη) fitted the data better than
an ordinal ideal point model ignoring RS, and than IRTree
models under the dominance assumption. Here we analyze
the data further and examine whether the co-occurringmodel
(Iθ–DηIθ ) fits the data even better, which would indicate that
the decisions about the intensity of responses were addition-
ally influenced by the ideal point trait.

We used the same analysis scheme as described in the sim-
ulation study. The initial values for identifying the orientation
of the latent continuum were set on the basis of the estimates
reported by Jin et al. (2022). To this end, constrained models
without setting initial values were fitted each. If the order of
estimated item locationswas inverted compared to the results
of the previous study, the initial values of item locations and
substantive trait levels were set as minus one times the esti-
mates of the constrained model (this was the case for the
co-occurring model). Otherwise, the estimates of the con-
strained model were directly used as the initial values (this

Table 4 Definition of pseudo-items for responses to four-point rating
items

Pseudo-item Ordinal category

0 1 2 3

X1vi (Agreement) 0 0 1 1

X2vi (Intensity | agree) – – 0 1

X3vi (Intensity | disagree) 1 0 – –

was the case for the model of sequential processes). Both
models converged with R̂ < 1.05.

Model comparisons clearly showed that indeed, the new
co-occurring model fitted the data well, since the LOO
information criterion of this model (LOO = 33726) was sub-
stantially smaller than the one of the model of sequential
processes (LOO=36537). Thus, both a trait-based ideal point
process and an ERS-based dominance process were involved
in the respondents’ decisions regarding the intensity of their
responses. This result provides empirical support for multi-
dimensional sub-decisions and underlines the importance of
modeling co-occurring processes in IRTree pseudo-items in
addition to sequential ones.

In light of this finding, we further analyzed the discrim-
ination parameters of the co-occurring model (see Table 5),
as these provide information about the relative importance
of each of the processes for the two sub-decisions. Overall,
the estimates of the co-occurring model were consistent with
previous studies on co-occurring dominance processes (e.g.,
Meiser et al., 2019; Merhof &Meiser, 2023): Firstly, the dis-
criminating power of trait-based agreement was larger than
that of trait-based intensity judgments, suggesting higher
importance of the trait for global agreement compared to
fine-grained decisions among agreement or disagreement
categories. In addition, trait-based and ERS-based pro-
cesses appear to have similar impacts on intensity decisions,
as indicated by discrimination parameters of comparable
size. Moreover, the item-specific discrimination parameters

Table 5 Estimated discrimination parameters of the co-occurring Iθ–
DηIθ model fitted to empirical data

Parameter Mean Min Max Correlation
αi λ2i

λ1i (Agreement Iθ ) 1.553 0.913 2.756 −0.015 0.548

αi (Intensity Dη) 1.338 0.480 2.909 0.383

λ2i (Intensity Iθ ) 1.119 0.764 1.517

123



Behavior Research Methods (2024) 56:7005–7025 7019

Table 6 Estimated
discrimination parameters of the
co-occurring Dη1 Iθ–Dθ–Dη2Dθ

model fitted to empirical data

Parameter Identity leadership Social identification

Mean Min Max Mean Min Max

α1i (Midscale Dη1 ) 0.936 0.646 1.210 0.694 0.527 0.921

λi (Midscale Iθ ) 1.819 0.691 2.527 1.373 1.178 1.747

α2i (Agreement Dθ ) 3.076 1.739 4.898 1.982 1.074 2.830

α3i (Extreme Dη2 ) 1.642 1.076 2.086 0.879 0.642 1.097

α4i (Extreme Dθ ) 1.351 0.661 2.205 1.398 0.663 2.233

of trait-based agreement correlated positively with those
of trait-based intensity, but not with those of ERS-based
intensity judgments. This correlation pattern also seems rea-
sonable since decisionsmade on the basis of one and the same
personal characteristic, in this case the substantive trait, can
be assumed to be interrelated within a single item, whereas
trait-based and ERS-based decisions are considered indepen-
dent processes. This interpretation is supported by the fact
that the person variables (i.e., the trait and ERS factors) were
only weakly correlated (r̂(θ, η) = −.16).

Middle categories in dominance items

The second empirical example of the DI-MIRT parameteri-
zation for co-occurring processes relates to modeling middle
categories in dominance items.Response time (RT) datawere
included in the analysis of item responses in order to put the
construct validity of estimated IRTree model parameters to
the test. To this end,we examinedwhether RTswere sensitive
to the psychological processes reflected by specific parame-
ters of the IRTreemodel and changed as hypothesized, which
would corroborate reasonable substantive interpretations of
the IRTestimates and ameaningfulmodel.Weused an empir-
ical data set collected by Henninger and Plieninger (2020)
and Fladerer et al. (2021), consisting of item responses and
corresponding RTs of N = 786 participants to two ques-
tionnaires, the Identity Leadership Inventory (I = 14) and a
scale of Social Identification (I = 6)8. The items were rated
on a five-point rating scale, and the ordinal categories were
decomposed into three sub-decisions of midscale respond-
ing, agreement, and extreme responding as defined in Fig. 6.

In an initial analysis, for which only the item response
data were used, the LOO model fit of a co-occurring model
described in the section “Middle categories in dominance
items” (Dη1 Iθ–Dθ–Dη2Dθ )was assessed.Themodel assumes
that the sub-decisions of midscale and extreme responding
depend on the substantive trait plus theMRS or ERS, respec-
tively.Note that although the items are considered dominance
items, the substantive trait is modeled as an ideal point pro-
cess in themidscale sub-decision, as non-midscale categories

8 The data are made available by the original authors here: https://osf.
io/gqb4y/

are expected to be more likely for respondents whose trait
levels are more strongly deviating from the item in either
an upward or downward direction. Thus, a dominance and
an ideal point process co-occur in the midscale pseudo-item,
whereas two dominance processes co-occur in the pseudo-
items of extreme responding. In order to test our assumption
of trait-based responding being an ideal point process in
the midscale pseudo-item, we compared this model with an
alternative model in which all processes were considered
dominance processes (Dη1Dθ–Dθ–Dη2Dθ ). In a second alter-
nativemodel of sequential processes (Dη1–Dθ–Dη2 ), only the
agreement sub-decisionwas defined as dependent on the trait,
so midscale and extreme responding were parameterized by
unidimensional models of the respective RS.

All three models converged with R̂ < 1.05. Note that
even though an ideal point process was modeled in the co-
occurring model, it was not necessary to set initial values for
identifying the orientation of the latent continuum. This is
because the item locations were set equal to the item-specific
thresholds of agreement (see Eq. 15), which in turn are inher-
ently identified by the dominance modeling.

The model comparisons revealed that the proposed model
of co-occurring processes yielded a considerably better fit
(LOO = 30656) than the alternative model with dominance
processes (LOO = 31923), demonstrating that trait-based
midscale respondingwas indeed better described by the ideal
point rationale. Further, the model also provided a better fit
than the model of sequential processes (LOO = 32333), indi-
cating that respondents used both the trait and a RS for the
decisions ofmidscale and extreme responding. The estimated
discrimination parameters of the co-occurring model sup-
ported this assumption, as they were of substantial size for
all processes in all sub-decisions (see Table 6).

A subsequent analysis targeted at the construct valida-
tion of the co-occurring model addressed not only the item
response data, but additionally the item-level RTs, and both
kinds of data were included in a joint model. The item
responses were modeled by the co-occurring Dη1 Iθ–Dθ–
Dη2Dθ IRTree model. The RTs were log-transformed and
analyzed by linear mixed modeling, whereby the predictor
variables included IRTree model parameters. Such a joint
model allowed to test whether the RTs were sensitive to
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specific IRTree parameters and changed according to theory-
driven hypotheses, which in turn would suggest that the
model produced reasonable estimates.

Our hypotheses on how the parameters of the co-occurring
IRTreemodel should affect the RTs were twofold: Firstly, we
assumed that the more the item responses were based on the
respondents’ individual RS levels, the faster they should be
given. The literature suggests that fast responses are associ-
ated with low motivation, low data quality, and insufficient
effort responding (Callegaro et al., 2009; Bowling et al.,
2021; Zhang&Conrad, 2014). Since RS-based responding is
a heuristic process requiring less cognitive effort than accu-
rate trait-based responding (Podsakoff et al., 2012; Krosnick,
1991), selecting response categories that match the individ-
ual RS should correspond to short RTs. This hypothesis
was also investigated by Henninger and Plieninger (2020)
in their original work using the data we reanalyzed, and
indeed, they found that responses which matched the person-
specific RS were given faster. However, they used a two-step
approach and obtained estimates of RS levels by an aggre-
gation procedure of dichotomous responses style indicators
(i.e., the respondents’ ERS and MRS levels were computed
based on the information on whether the given responses
were extreme versus non-extreme and midscale versus non-
midscale, respectively). Here in contrast, we analyzed the
data by the jointmodel, inwhich theRS levelswere estimated
by the co-occurring IRTree model in a one-step approach.
Nonetheless, we expected to find similar effects, namely
shorter RTs for responses that matched the preferred cate-
gories.

Most importantly, our second assumption concerned the
ideal point modeling of trait-based midscale responding, and
we expected that large distances between the respondents’
trait levels and the items’ locations would result in fast
responses. This reasoning relates to a hypothesis that has
been frequently described in the literature under terms such
as speed-distance or distance-difficulty hypothesis (e.g., Fer-
rando&Lorenzo-Seva, 2007;McIntyre, 2011;Ulitzsch et al.,
2022). It states that a large person-item distance on the latent
trait continuum evokes high certainty, which in turn, should
be reflected in clear-cut (compared to moderate) responses
and shorter RTs.

Part of this hypothesis was also already tested and sup-
ported by Henninger and Plieninger (2020), as they found
that selecting themiddle category was associated with longer
RTs, indicating that such responses were related to uncer-
tainty. However, we further analyzed whether RTs were not
only dependent on the selected rating category per se (e.g.,
whether an extreme or midscale category was selected), but
additionally affected by the distance of latent person and item
locations. We defined the respondents’ locations as the esti-
mated substantive trait levels obtained by the IRTree model

and the items’ locations as estimated difficulty parameters of
the agreement sub-decision.

The agreement difficulty parameter was used, as it deter-
mines for which trait levels the general attitude toward the
item statement is rather positive or negative, and thus marks
the point of maximal uncertainty. Note that this person-item
distance is also part of the IRTree pseudo-item of midscale
responding: In this pseudo-item, the substantive trait levels
represent the ideal points of the respondents with respect to
themidscale sub-decision, and the item locations are set equal
to the agreement difficulty parameters (see X1vi in Eq. 15).
Therefore, the person-item distance is assumed to affect both
the RTs (a higher distance should result in shorter RTs) and
the probability of a trait-based selection of middle categories
(a higher distance should be associated with a lower proba-
bility).

The linearmixedmodel for predicting the log-transformed
RTs of a response r given by person v to item i is defined by

log(RTrvi ) =γ000 + γ1v0 × X1vi + γ2v0 × X3vi + γ2v0 × X4vi

+ γ011 × |θv − β2i | + u0v0 + u00i + εrvi (16)

with

γ1v0 = γ100 + γ110 × η1v,

γ2v0 = γ200 + γ220 × η2v. (17)

The predictors Xhvi refer to the IRTree pseudo-items as
defined in Fig. 6 and indicate whether a given response was
the middle category (X1vi ) or one of the extreme categories
(X3vi or X4vi ). As those predictors are manifest observa-
tions, they do not relate to the IRTree model and were merely
included as control variables. In addition, random person
and item effects (u0v0 and u00i , respectively) were included
to account for the fact that some respondents are generally
faster than others and that some items are faster to respond
to than others. Predictors resulting from the IRTree model
and referring to the substantial hypotheses were the MRS
levels η1v , the ERS levels η2v , and the person-item distances
|θv −β2i |. The effect of RS levels matching a given response
(hypothesis 1) was captured by γ110 and γ220. The effect of
the person-itemdistance (hypothesis 2)was captured by γ011.

The results of our analysis using the joint model corrob-
orated both hypotheses (see Table 7): Firstly, we found that
heuristic, RS-based responding was related to short RTs.
Both for midscale and extreme responding, a match of indi-
vidual preferences with the selected category reduced the
predicted RT in the mixed model (Person x Response level).
Further, selecting the middle category was associated with
on average longer RTs and extreme responses with shorter
RTs (Response level). Thus, the closer the selected category
was to the middle of the scale, the more time respondents
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Table 7 Estimated coefficients
of the linear mixed model
predicting log-transformed RTs

Level Predictor Coefficient Estimate 95 %-credible interval

Response Middle category γ100 0.041 [0.016; 0.067]

Extreme category γ200 −0.068 [−0.093; −0.042]

Person x Response MRS level x middle cat. γ110 −0.116 [−0.152; −0.079]

ERS level x extreme cat. γ220 −0.127 [−0.155; −0.098]

Person x Item Person-item distance γ011 −0.086 [−0.105; −0.067]

needed, which indicates that such decisions were related
to higher uncertainty. Importantly, a larger person-item dis-
tance was associated with shorter RTs in addition to this
effect of the selected category (Person x Item level). There-
fore, the speed-distance hypothesis was supported not only
at the level of manifest response categories, but also at the
level of latent locations estimated by the IRTree model. This
result is original evidence that the absolute person-item dis-
tance, regardless of the direction, influenced both the time it
took respondents to choose a category and the probability of
selecting themiddle category (see estimates of λi in Table 6).
The direction of this distance, however, affected the proba-
bility to agree or disagree with the item (see estimates of α2i

in Table 6).
Altogether, the estimates produced by the co-occurring

IRTreemodel affected theRTs in accordancewith our theory-
driven hypotheses. This suggests that the new DI-MIRT
model appropriately captured the co-occurring response pro-
cesses, and corroborates the construct validity of the applied
IRTree model.

Conclusion

The present article introduced a general IRTree frame-
work for modeling multidimensional response processes
with dominance and ideal point item response functions
(IRFs). Such response processes (e.g., responding based on
the substantive trait or based on response styles; RS) can be
defined to be involved in item responding both sequentially
across sub-decisions and as co-occurring processes within
sub-decisions. Unlike sequential multidimensionality, which
can be implemented using existing IRT modeling (see Jin
et al., 2022), co-occurring response processes have previ-
ously been limited exclusively to dominance models (von
Davier & Khorramdel, 2013 e.g., Alagöz & Meiser, 2023;
Jeon & De Boeck, 2016; Meiser et al., 2019; Merhof &
Meiser, 2023). Therefore, we developed a new multidimen-
sional IRT model of co-occurring dominance and ideal point
processes (DI-MIRTmodel),withwhichmultiple dominance
processes, multiple ideal point processes, as well as a com-
bination of both can be included in IRTree pseudo-items in
a consistent way. The proposed DI-MIRT parameterization

expands the toolbox of IRTree models and thereby opens up
new application areas for this model class. A wide range of
theoretical assumptions about the cognitive processing dur-
ing item responding can be specified within the new general
IRTree framework, in which different components can be
flexibly combined in the sense of a modular system. Inde-
pendent choices can be made regarding the decomposition
of ordinal responses into sub-decisions, the assignment of
response processes to the sub-decisions, and the selection of
IRFs for the individual processes. Such components can be
freely defined and adapted to the research question and the
data at hand.

A simulation study demonstrated that the proposed IRTree
framework with DI-MIRT parameterization of pseudo-items
accurately captured co-occurring processes and recovered
the person and item parameters well. Furthermore, it also
showed good parameter recovery in the case of over-
parameterization, that is, when applied to data generated
under IRTree models in which multiple response processes
were only involved sequentially across pseudo-items. In
contrast, if one of the co-occurring processes was ignored
and a parsimonious IRTree model of sequential processes
was falsely applied, larger errors of estimated parameters
and poorer model fit resulted. These findings indicate that
multidimensional pseudo-items should be preferred over uni-
dimensional ones, wherever this seems reasonable from a
theoretical point of view. This recommendation is well in line
with previous research on IRTree models with dominance
parameterization, in which multidimensional pseudo-items
were likewise found to be better suited to capture diverse data
situations than unidimensional ones (Merhof et al., 2023).
The DI-MIRT model facilitates to include multidimensional
pseudo-items for both dominance and ideal point processes
and goes beyond previousMIRTmodels, which were limited
to specific kinds of processes (Bolt & Johnson, 2009; Bolt &
Newton, 2011; Falk & Cai, 2016; Jin &Wang, 2014; Javaras
& Ripley, 2007; Liu & Wang, 2019; Henninger & Meiser,
2020).

Two empirical examples further demonstrated the advan-
tage of the new IRTree parameterization under realistic
conditions. In the first example, a co-occurring model was
used to analyze the influence of ERS on responding to ideal
point items, in which trait-based responding was modeled
under the ideal point assumption and ERS-based responding
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under the dominance assumption. Both kinds of response
processes were considered for modeling the sub-decisions
of extreme versus non-extreme responding by using the DI-
MIRT parameterization, and the results showed that indeed
the trait and the ERS co-occurred in such decisions, which
is why ignoring one of the two processes led to a substan-
tially worse model fit. The exemplary IRTree model used
for analyzing this data set can be easily adapted to other
applications of co-occurring trait and RS effects with differ-
ently structured trees, different sub-decisions, or other RS.
Further extensions are also conceivable with respect to addi-
tional influences apart from RS, such as socially desirable
responding, which likewise follows the dominance rationale.
Thereby, the default assumption in the literature that traits
are dominance processes can be challenged and compared to
the alternative ideal point assumption, while taking further
response processes into account. Such investigations seem
promising, as the previous research has shown that even if
itemswere constructed as dominance items, ideal point mod-
els may better describe the response behavior of respondents
(Drasgow et al., 2010).

The second empirical example of this article made use
of the DI-MIRT parameterization for examining the respon-
dents’ use of middle categories. It was shown that the
substantive trait as well as the MRS influenced such deci-
sions, and that multidimensional pseudo-items fitted the data
better than the unidimensional ones. The additional anal-
ysis of response time data further supported the construct
validity of the estimated DI-MIRT parameters, as the rela-
tion of parameters and response times was in line with
the theory-driven hypotheses. Moreover, the model used in
this application demonstrated that response processes do
not necessarily adhere to fixed IRFs (i.e., are inherently
dominance or ideal point processes), but that it may be ben-
eficial to assign different IRFs to one and the same process
across IRTree pseudo-items: Although the items were con-
sidered dominance items,meaning that trait-based agreement
was modeled as dominance process, trait-based midscale
respondingwas defined as an ideal point process. This choice
of IRFs reflected our hypothesis that midscale responding
was unlikely for both very high and very low trait levels in
relation to the item location, which was indeed supported by
the data. Such a varying assignment of IRFs could also be
useful for other research questions. For instance, one could
assume that the respondents first decide on whether the item
generally fits their own attitude (i.e., trait-based agreement
follows the ideal point rationale), but subsequently respond
according to amore-is-better principle (i.e., fine-grained sub-
decisions are reflected by the dominance rationale).

Furthermore, co-occurring dominance and ideal point
response processes may exist outside self-reported rating
data, such as in the field of educational research and ability
measurement: For example, the performance in low-stakes

assessments might not exclusively be the result of a dom-
inance process with the probability of correct responding
being monotonously increasing with higher ability levels.
Instead, respondents with very high ability levels may not
feel sufficiently challenged and respond with a somewhat
lower effort than others, which may result in a lower-than-
expected performance. In such cases, a combination of ideal
point and dominance IRFs might be appropriate, resulting
a steep increase in expected performance from low to high
trait levels and a slight decrease for even higher levels. As
responding to performance items can usually not be decom-
posed into different sub-decisions, and as the responses to
such items are typically coded as correct or incorrect, the
DI-MIRT model could be used as an ordinal or dichotomous
modelwithout implementing it within the IRTree framework.
A similar dichotomous DI-MIRT model might be suitable
for investigating missing responses in performance tests,
where a higher-than-expected number of item omissions
could likewise occur for respondents who are not sufficiently
challenged.

In addition, a DI-MIRT parameterization of IRTree mod-
els could be used for modeling missing responses in Likert-
type rating data, for instance, as an extension of the missing
model introduced by Jeon and De Boeck (2016). The authors
proposed an IRTree model in which respondents first decide
on whether they wanted to omit the item based on their omis-
sion propensity, and then optionally answer the item and
chose one of the available categories based on the substan-
tive trait. As a further development to the original model,
the omission sub-decision could be given a two-dimensional
parameterization of both the omission propensity and the
trait.While the omission propensity can be considered a dom-
inance process, the ideal point assumption seems reasonable
for the trait-based response process:Mainly respondentswho
have moderately high trait levels in relation to the item are
expected to omit the response,whereas respondentswith very
high or low trait levels are unlikely to skip the item, as they
should have clear-cut opinions. Thus, the ideal point trait
could be combined with the dominance omission propen-
sity in the omission sub-decision using the DI-MIRT model,
similar to the modeling approach of middle categories in the
present article.

Another possible application of the proposed DI-MIRT
model (within or outside the IRTree framework) is the
co-occurrence of two ideal point response processes. For
instance, a bifactor model may reflect the factor structure of
a questionnaire with several interrelated sub-scales. If both
the general factor and the specific factors are assumed to fol-
low the ideal point rationale, multidimensional modeling of
several ideal point processes would be required, which can
be achieved by the DI-MIRT model.

A limitation of the proposed DI-MIRT approach is the
assumption that the same composition of response processes
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holds for all respondents.9 It seems likely that individuals
differ in what response processes they use to what extent in
empirical data, especially if the circumstances of the data
collection vary (e.g., because the respondents’ motivation or
perceived time pressure differ). As a result, some respondents
may derive their answers solely based on their substantive
trait, while others may additionally use RS. Further, respon-
dentsmay also differ in how they perceive the item statements
and the rating scale, which could lead to some respondents
applying trait-based responding in a dominance way, while
others may rather respond in an ideal point fashion. The
model proposed here cannot account for such heterogene-
ity between respondents and instead will reveal the average
group-level response behavior. More detailed insights about
the item response process would be obtained if interindivid-
ual differences were considered, for example, by extending
the DI-MIRT model by a person mixture. Though such an
approach appears very promising from the theoretical per-
spective, future studies would be needed to evaluate the
practical feasibility of estimating group-specific parameters
in the DI-MIRT framework.

A further limitation of the present work is that we inves-
tigated the co-occurrence of only two response processes at
most.We considered this as a plausible assumptionwithin the
IRTree framework since more than two processes neverthe-
less can contribute to item responding across sub-decisions.
Moreover, this ensured that the complexity of themodels was
kept at a reasonable level. Although the DI-MIRT approach
comprises a wide range of potentially very complex mod-
els, heavily parameterized models including many response
processes should be used with caution, as it may become
impossible to disentangle and interpret the defined processes.
Instead, researchers should specify theirmodels basedon the-
oretical considerations and compare models with increasing
complexity against each other in order to select a well-fitting
but interpretable model. Thereby, models should be defined
in accordancewith the research context, substantive question,
and data situation.While investigating suitable specifications
for certain applications goes beyond the scope of this article,
it represents a promising direction for future research. With
this in mind, the DI-MIRT model introduced here offers a
versatile approach for psychometricians in various fields of
research and practice.
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