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Keywords: User interaction (UI) logs are high-resolution event logs that record low-level activities performed by a user
Ullog during the execution of a task in an information system. Each event in such a log represents an interaction
Data “_1°d‘31 . between the user and the interface, such as clicking a button, ticking a checkbox, or typing into a text field.
Robotic process automation UI logs are used in many different application contexts for purposes such as usability analysis, task mining, or
Tas'k ning . robotic process automation (RPA). However, UI logs suffer from a lack of standardization. Each research study
Object-centric process mining B . . . . . .
and processing tool relies on a different conceptualization and implementation of the elements and attributes
of user interactions. This exacerbates or even prohibits the integration of UI logs from different sources or the
combination of UI data collection tools with downstream analytics or automation solutions. In this paper, our
objective is to address this issue and facilitate the exchange and analysis of UI logs in research and practice.
Therefore, we first review process-related Ul logs in scientific publications and industry tools to determine
commonalities and differences between them. Based on our findings, we propose a universally applicable
reference data model for process-related UI logs, which includes all core attributes but remains flexible
regarding the scope, level of abstraction, and case notion. Finally, we provide exemplary implementations
of the reference model in XES and OCED.

1. Introduction as sketched above. Data collected for a specific research study tends

to be narrowly scoped and customized to fit the proposed analysis

User interaction (UI) logs are high-resolution event logs that record
low-level, manual activities performed by a user during the execution
of a task in an information system [1]. Each event in a such UI log
represents a single interaction between the user and the graphical user
interface (GUI) of a software application. Examples for such events
include clicking a button, typing into a text field, swiping left on a
touchscreen, ticking a checkbox, or selecting an item from a drop-
down [2]. UI logs provide a data-driven, non-intrusive, and long-term
approach to studying the behavior of software users [3]. Therefore,
they are used in multiple recent research streams, for example to ana-
lyze usage patterns in software applications [4-6], to identify candidate
routines for robotic process automation (RPA) [2,7,8], or to derive
RPA automation and test scripts [9,10]. Furthermore, software vendors
such as Celonis and UiPath provide solutions designed to capture and
analyze Ul data, facilitating the examination and automation of specific
task executions within a process [11].

When dealing with multiple UI logs from different sources, re-
searchers and practitioners will eventually find that these logs differ
substantially from one another. This inherent lack of standardization
is, among other things, caused by the diverse applications of UI logs,
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technique or automation approach. This leads to considerable varia-
tion regarding the number, type, and granularity of recorded events
and corresponding attributes. Even when researchers record the same
attributes at a similar level of detail, there is no common definition
of UI log attributes to which they can adhere. Instead, they often rely
on ad-hoc conceptualizations of elementary notions like activities and
UI components. This lack of standardization also occurs in industry.
Each vendor has developed their own Ul log structure tailored to
the capabilities of their recording software [12,13]. In addition, some
vendors do not rely on commonly used log formats like CSV or XES,
but generate UI logs in proprietary data formats.

The lack of standardization in UI log structure and data format
causes multiple problems. First, it complicates the integration of UI
logs from different sources [2,14], which might be required for pur-
poses like cross-application automation or usability analysis. Second, it
poses a challenge for the interoperability of data collection and down-
stream processing tools: Logs recorded by a specific data collection
tool are typically only compatible with the corresponding analytics or
automation methods. Combining data collection and processing tools
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requires considerable preprocessing effort or is entirely infeasible if the
collection tool cannot record the required attributes [12]. From a re-
search perspective, the lack of interoperability also makes it difficult to
benchmark analysis and automation approaches on different datasets.

In this paper, our objective is to address the lack of standardization
of UI logs, in order to facilitate the exchange and analysis of UI logs
in research and practice. Therefore, we first review process-related UL
logs in scientific publications and industry tools to identify and analyze
commonalities and differences between them. Based on the results
of this analysis, we propose a universally applicable reference data
model for process-related Ul logs. This reference model provides a data
structure that others can reuse to conceptualize and capture UI logs in
a process context. It is designed such that it subsumes and integrates
the commonalities of existing logs but remains flexible with regard to
the their differences regarding the logs’ scope, level of abstraction, and
case notion. This ensures its widespread applicability. In addition, we
provide two implementations of the data model: First, we implement
it as an extension for eXtensible Event Stream (XES), the current event
log standard that is widely used in research. Second, we provide an
exemplary Ul log in two reference implementations of the Object-
Centric Event Data (OCED) standard [15]. This new paradigm for the
conceptualization of event logs allows to relate events with objects of
different types and does not require events to be assigned to a single
case [16]. As such, it fits well into the generic and flexible nature of
our reference model, offering a new option for the interchange of Ul
logs.

We follow a reuse-oriented conceptualization of reference models,
where the intended or factual reuse of a model is the only property that
designates it as a reference model [17,18]. Hence, our contribution is
three-fold:

1. The review of existing UI logs from research and practice iden-
tifies core components and design options of UI logs, which can
be referred to when capturing and analyzing those logs.

2. The reference data model provides a blueprint for the concep-
tualization of UI logs, which can be instantiated in different
application scenarios.

3. The exemplary implementations of the reference model in OCED
demonstrate how the object-centric conceptualization of event
logs can be applied to UI logs, which can help in defining a
standardized interchange format for those logs in the future.

This article is an extended and revised version of our original con-
ference publication [19]. In terms of novel content, our main extensions
are the conceptualization and implementation of the reference model
as object-centric event data and a critical discussion of the model’s
quality. In addition, we expanded the background section, repeated
and updated the literature and industry reviews to ensure that our
reference model captures the current state of the art, and expanded
their documentation.

The remainder of this paper is structured as follows. In Section 2,
we provide the necessary background information on UI logs and
event logs and report on related work. Our state-of-the-art analysis is
separated into two parts: First, we review existing UI logs from research
in Section 3. Second, we review existing industry solutions in Section 4.
Based on the commonalities and differences that we found in these
reviews, we design the reference data model in Section 5. We first
derive design principles, then present the model itself and its individual
components. Finally, we critically discuss our design choices and their
implications. In Section 6, we demonstrate how the data model can
be instantiated in practice by applying it in a real-life RPA scenario,
in which we record user interactions in a browser-based ERP system
in order to automate simple workflows. In Section 7, we first present
an implementation of the reference model as an XES extension and
discuss its limitations. Then, we elaborate on the applicability of the
object-centric paradigm to UI logs in general and to our data model
in particular, and present our new object-centric implementations.
Finally, we conclude the paper with a discussion in Section 8.
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2. Background and related work

In this section, we provide the necessary background information
and report on related work on event logs and exchange formats (Sec-
tion 2.1), Ul logs and their analysis (Section 2.2), as well as the use of
UI logs in other domains (Section 2.3).

2.1. Event logs and exchange formats

The goal of process mining is to extract information about business
processes through the analysis of event logs, i.e., collections of events
recorded in an information system [20]. An event denotes the execution
of a particular activity in a process, which is represented by the label of
the activity (e.g., “create invoice”). In addition, events can have other
attributes, such as the executing resource. In a conventional event log,
these events are grouped into different cases, each corresponding to one
process instance. A case then refers to a trace, i.e., a sequence of events
that occurred during the execution of the process instance. Cases can
also include additional attributes, such as the size of an order in an
order-to-cash process.

To facilitate the exchange of event data between different informa-
tion systems, the business process management (BPM) community has
developed standardized interchange formats that define the structure,
contents, and semantics of event logs. The current main format is XES,
which was introduced in 2010 to replace the older MXML format [21].
In 2016, XES was accepted as the official IEEE standard for event
data [22]. An updated version was released in 2023 [23].

In the XES standard, an event log consists of a three-level hierarchy
of log, trace, and event objects. The format is designed to be highly
generic, with a minimal set of explicitly defined attributes on each of
the three levels. Additional attributes, with a commonly understood
semantic meaning, can be introduced by XES extensions. For example,
the concept extension introduces the name attribute, which stores
names for event logs, traces, and events.

Although XES is an IEEE standard, which is widely used in research
and is supported by many process mining tools, it has major limitations.
One of them is the assumption that there always exists a single case
identifier that can be used to group events into clearly separated
process instances. Events captured in real-life information systems often
relate to multiple entities, such as orders, items, or resources [16].
Thus, there are multiple potential case identifiers and accordingly
multiple perspectives that one can take on a single collection of events.
To store this process data in a XES log, it needs to be flattened by
selecting one of the case identifier candidates. This flattening can lead
to quality issues like divergence and convergence in the log [16,24],
which, for example, distort the results of automated process discovery
techniques [25].

To overcome these limitations in the XES standard, the community
is currently focusing on object centricity as a new paradigm for concep-
tualizing and capturing event data [26]. Object-centric event logs do
not require a single case notion. Instead, they explicitly capture the en-
tities (or objects) that an event relates to [16]. To eventually provide an
object-centric alternative to XES, a working group within the IEEE Task-
force on Process Mining is currently developing conceptual foundations
for Object-Centric Event Data (OCED) [26]. A preliminary OCED meta-
model, shown in Fig. 1, was circulated in the community and presented
at the International Conference on Process Mining’s XES symposium in
November 2022 [15]. Initial reference implementations [27,28] were
presented the following year at the same conference. There is not yet a
consensus about how exactly to implement the meta-model and which
of its parts should be included in an eventual OCED standard. As a
result, the reference implementations share core concepts, but differ
slightly in terms of their operationalization.

In the OCED format, an event log is a collection of events and objects,
which can either be physical objects, like a product, or more abstract
entities, like a task or department. Both events and objects are labeled
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Fig. 1. The full OCED meta-model, as introduced in [15].

with a type and can have additional attributes. Object relations define
how objects are related to each other. The interactions between events
and objects, and their attributes and relations can be further described
through qualifiers.

2.2. UI logs and user behavior mining

Ul logs are a particular type of event log, in which events represent
low-level interactions between a user of a software system and the
system’s GUL. For a given software system, there are two general
approaches for recording Ul logs. External logging relies on dedicated
logging tools, which combine screen capture and OCR technology with
a hardware input recorder [9]. It is common in industry tools. Internal
logging draws on capabilities within the software applications, which
allows recording any available internal information, but requires access
the applications’ source code [29]. Hence, it is more prevalent in
research tools. As a hybrid between external and internal logging,
application-specific plug-ins present another alternative. These plug-
ins only have limited access to internal information, but can be used
without source code access.

UI logs capture high-resolution data on interactions between users
and software systems, which can be analyzed to generate insights into
how users behave while they are engaged with an application [1,30].
The goal of such an analysis is to gain knowledge about and eventually
improve the interactions between humans and IT systems. We refer
to this analysis of UI logs as user behavior mining (UBM). UBM can
serve different purposes, such as identifying different software usage
patterns [31] or increasing employee efficiency through improving the
usability of a UI [32]. As such, it is closely related to several current
research topics in the BPM domain.

By relating lower-level UI logs with higher-level event logs, UBM
can enhance traditional process mining by providing insights into
how individual process steps are executed. Process-related event data,
captured for example from ERP systems like SAP or Oracle, typically
records what was done in a process, such as the creation of an order.
However, they do not specify how employees actually conducted these
tasks. This information can be provided by recording and analyzing a
corresponding UI log. This analysis of low-level process task executions
is referred to as task mining [20] or desktop activity mining [33]. It
can give organizations more specific insights into their processes than
traditional process mining alone. It can also help software vendors to
improve their products, for example, by identifying common usability
issues.

Task-specific user interactions captured in a UI logs can serve as
the basis for automating these tasks and the processes they belong
to. For this purpose, software robots are constructed to mimic the

recorded human behavior when interacting with the UL This approach
to automation is called robotic process automation (RPA) [29] and has
lately received considerable attention in research and practice. Within
RPA, UI logs are used for robotic process mining [2], which for example
encompasses the identification of suitable tasks for automation or the
segmentation of unstructured UI logs [34]. UI logs can also be used
directly as an input to automation scripts, which obviates the necessity
to manually configure a bot’s routine.

2.3. UI logs in other domains

In addition to the research areas mentioned above, logs of interac-
tions between users and software systems have been used as a source
of data-driven insights into user behavior in several other domains.
A rather prominent one is web usage mining [35], i.e., the analysis of
clickstream user data recorded during interactions with websites. Web
usage mining is often process-agnostic, meaning that it is not aware
of the logic of a potential underlying (business) process. Instead, its
main purpose is to improve the usability of websites, for example, by
adapting their content and structure to users’ browsing behavior [36,
37]. The primary data source for web usage mining are server logs
that are generated in a standardized logging format like the Extended
Log Format [38] and have a fixed set of attributes. These attributes
include the URL of the current and previous page request, the resource
accessed, timestamps, identifying data like the user’s IP address, and
technical data about the user’s web browser and operating system. The
data recorded in these logs is limited to information transmitted from
the client to the server, although it can afterwards be complemented
with data from a secondary source, e.g., demographic information from
a user database.

Other fields that rely on UI logs for investigating user behavior are
human-computer-interaction [39-41], information retrieval [42,43],
software usability [44,45], and visualization [46,47]. Logs in these
domains can take various forms, but they generally record user inter-
actions at a much lower level of detail than the process-related UI logs
that are the focus of this paper.

3. Literature review

The first goal of this paper is to review the state of the art of
process-related UI logs. The findings of this review will serve as the
basis for designing the reference data model, which should subsume
and integrate the commonalities between existing logs, but stay flexible
with regard to their differences. In this section, we review UI logs from
scientific literature to identify these commonalities and differences.
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Fig. 2. The number of publications found in different stages of the literature review.

3.1. Research method

For identifying UI logs from scientific literature, we conducted a

structured literature review [48] in three stages: database search, tar-
geted search in conference proceedings, and forward-backward search.
An overview of the number of publications found in each stage is shown
in Fig. 2.
Database search. As we expected the relevant UI logs to mainly occur
in technical papers, we selected Springer Link, ACM Digital Library,
and IEEE Xplore as databases. As search terms, we used the word “log”,
combined with multiple other terms:

(1) “user interact*” and “user interface”, as typical terms used to
denote UI logs,

(2) “task mining” and “desktop activity mining”, as common terms
for high-resolution process mining, and

(3) “robotic process automation” and “robotic process mining”, as
important application fields of UI logs in a process context.

Because we want to focus on the current state of the art, we limited
our search to papers that were written in English and published after
2015. To ensure a certain quality, we considered only peer-reviewed
journal articles and conference papers. Other than these filter criteria,
we applied the default search parameters of the respective database.

This keyword search returned a set of initial results. The relevance
of the papers in this set was assessed based on their title and abstract.
Note that some search terms returned an excessive number of initial
results; in this case, we only looked at the first 100 papers, sorting
by relevance in the search interface of the respective database. This
initial relevance assessment yielded a second set of potentially relevant
papers. To ascertain the relevance of those papers, we scanned their
full text for passages on UI logs or recording approaches for them.
Papers were considered as relevant if (1) they had some relation to the
Business Process Management domain and (2) they either contained a
concrete UI log or described the UI log collection process in enough
detail to infer the captured attributes. We excluded papers that utilize
Ul logs from industry tools, because these are covered in the industry
review in Section 4. In the end, 14 publications were found to be
relevant. The results of this initial review are summarized in Table 1.
A list of all papers that we deemed potentially relevant is included in
our Gitlab repository.'

1 https://gitlab.uni-mannheim.de/jpmac/ui-log-data-model/-/blob/main/
journal version/Literature_Review.xlsx

Table 1
Database search summary.

Springer Link ACM DL IEEE Xplore

Initial Results

log AND “user interact*” 5685 50 32
log AND “user interface” 23539 5184 117
log AND “task mining” 35 13 3
log AND “desktop activity mining” 6 5 0
log AND “robotic process automation” 218 43 7
log AND “robotic process mining” 18 2 2
Potentially Relevant

log AND “user interact*” 7 0 1
log AND “user interface” 3 0 0
log AND “task mining” 7 1 0
log AND “desktop activity mining” 3 2 0
log AND “robotic process automation” 21 1 5
log AND “robotic process mining” 6 0 2

Final Selection [2,7-9,11,29,49-53] [10,54] [34]

Proceedings search. Next, to supplement the database search, we
searched for relevant papers directly in the proceedings of the two
main process science conferences: the International Conference on
Business Process Management (BPM) and the International Conference
on Process Mining (ICPM). Both searches included the proceedings
of workshops and associated forums, in addition to the conference
proceedings themselves. In this search, we also applied the previously
described exclusion and relevance criteria. This yielded another two
results, one for BPM [55] and ICPM [56] respectively.
Forward-backward search. Finally, we performed a forward-
backward-search on the 16 previously found papers to also cover
publications that our search terms might have missed or that were
published in other venues. Therefore, we checked the reference section
of each paper (backward) and their respective citations using Google
Scholar (forward). If any of those papers appeared relevant based on
title and abstract, it was deemed potentially relevant and the full text
was analyzed according to the relevance criteria listed above. This
forward-backward search returned another 10 relevant publications.
Although we did not explicitly search for web usage mining logs,
our search returned papers about server-side and also client-side web
usage mining (recording web activities by adding tracking software
to a browser), but none of these met the above-listed criteria. In our
review, we therefore only included one exemplary clickstream log
from a process mining context: the BPI Challenge 2016 [57], in which
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Table 2

UI log attributes as found in the literature review.
Source Action type Target element UI hierarchy Application Input value Timestamp
[9,11,49,52,53,55,58] . . . . . .
[6] . . single . .
[59] . . . . . .
[60] . . single .
[57] . . single . .
[4] . single .
611 . . . . .
[10,29,50,511 . . . .
[2,7,12,34,62] . . . . . .
[5] . . . single .
[33,54] . . . .
181 . . . . :
[56] . . .

the Dutch Employee Insurance Agency recorded eight months of user
activities on their website.

Our final result was hence a set of 27 relevant publications. Com-
pared to the original conference paper, this review yielded seven
additional publications [50-56].

3.2. Results

The 27 relevant publications were then analyzed to identify com-
monalities and differences between them. A considerable number of
publications covered the same use case and data collection approach
and were therefore treated as duplicates, resulting in 13 unique ap-
proaches. The majority of papers (19) cover RPA or robotic process
mining [2,7-12,29,34,49-53,55,58,59,61,62]. Four publications [4-6,
60] focus on software process mining [63]. The remaining four are
general approaches for the analysis of user interactions in broader
applications [33,54,56,57].

3.2.1. Commonalities
Although the reviewed UI logs were fairly heterogeneous, we found
a set of six core attributes that were recorded in more than half of them.

(1) An action type that describes the action a user takes. This is
recorded in almost all logs. Actions are most often divided into
mouse and keyboard inputs, but some logs further distinguish
between different mouse buttons and between string inputs and
hotkeys. There are three notable exceptions that do not distin-
guish action types: the BPIC 2016 clickstream log [57], Urabe
et al. [8], and Beerepoot et al. [56].

The atomic target UI element that the user action is executed
on, for example, a button or a text field. This attribute is also
recorded in all but three UI logs. One exception is the approach
by Dev et al. [4], who only record the usage of specific tools
(e.g., Crop) in a graphics editor application. Jimenez-Ramirez
et al. [10,29] record click coordinates and screenshots, but only
use them to match similar user actions and do not map them
to target elements. Finally, Beerepoot et al. [56] record user
interactions at a higher abstraction level than the other ap-
proaches, focusing on application windows rather than singular
UI elements.

One or multiple attributes that contain further information about
the location of the target element in the user interface hierarchy
of an application. An example is an Excel cell as the target
element which is embedded in a worksheet (hierarchy level 1)
that belongs to a workbook (hierarchy level 2) [12]. About half
of the UI logs in our literature review include attributes that
specify the location of the target element in the UI hierarchy.
The software application that the user is interacting with, e.g., a
web browser, ERP system, office application, etc. This attribute
is always recorded when a study tracks user actions across more
than one application. Some approaches, however, only record
capture actions in a single application and therefore do not
record it (marked as “single” in Table 2).

(2)

3

4

(5) The input value that the user writes into a text field. Input values
are included in about half of the publications.

(6) A timestamp that makes it possible to establish an event order.
This is recorded in all publications.

Table 2 indicates which of the 13 approaches include which at-
tributes («). We can conclude that the core set of attributes is fairly
standardized among UI logs and should therefore be contained in a
reference data model. Next, we focus on the differences between the
individual logs.

3.2.2. Differences

Most authors characterize user interactions through an action type,
i.e., what the user does, and a target element, i.e., where they do it.
However, the set of possible values for the action type, and hence
the level of detail at which actions are recorded, differs considerably.
For example, Agostinelli et al. [9] record aggregated action types ab-
stracted from raw hardware input (e.g., clickButton and clickTextField),
whereas Jimenez-Ramirez et al. [29] make the low-level differentiation
between left, right, and middle mouse clicks. Which other attributes are
included in a Ul log also differs between approaches: whereas times-
tamps and the application in focus (where applicable) are recorded in
all logs, only about half of them include input values and information
on the location of a target element within the application’s UI hierar-
chy. Examples for other, less common attributes that are only recorded
in few approaches include the current value of a text field [11,12,59],
user IDs [8,11,12,60], other resources involved [6,57], and associations
to higher-level process steps [33,61]. An illustration of two UI logs with
different attribute sets is shown in Fig. 3.

Another interesting finding was that most of the reviewed UI logs
are initially unlabeled, i.e., they do not have a concrete case no-
tion [64]. In some publications, events in unlabeled logs are later
grouped into cases based on different attributes. These attributes in-
clude external session IDs created automatically by a system [57] or
manually by users [5,9,12], user IDs [60], or case IDs from associated
higher-level event logs [61].

To conclude, our review of Ul logs from scientific literature has
found that virtually all existing UI logs rely on a set of core components
that represent user interactions. At the same time, the logs differ
considerably with regard to the level of detail, attribute scope, and case
notion. In the next section, we study whether these findings also apply
to UI logs from industry solutions.

4. Review of industry solutions

To ensure broad applicability of our reference data model, we also
review the state of the art of process-related UI logs in industry to
identify the commonalities and differences between them and see how
they relate to the scientific logs. This additional review is presented
in this section. Because those approaches are core to the industry
solutions’ functionality and business secrets, the available material
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Row Ul ul Payload

Timestamp Type P, P, P3 Py
2019-03-03T19:02:18 Click button (Web) https://unimelb.edu.au New Record

newRecord button

1

2 2019-03-03T19:02:20 Select cell (Excel)  StudentRecords Sheet1 A 2

3 2019-03-03T19:02:23 Copy cell (Excel) StudentRecords Sheet1 A 2

4 2019-03-03T19:02:25 Select field (Web)  https://unimelb.edu.au  Full Name name

5 2019-03-03T19:02:26 Paste (Web) https://unimelb.edu.au Full Name name

6 2019-03-03T19:02:28 Edit field (Web) https://unimelb.edu.au  Full Name name text
7 2019-03-03T19:02:33  Select cell (Excel)  StudentRecords Sheet1 B 2

8 2019-03-03T19:02:35 Copy cell (Excel) StudentRecords Sheet1 B 2

9 2019-03-03T19:02:42 Select field (Web)  https://unimelb.edu.au Full Name name Albert
10 2019-03-03T19:02:46 Paste (Web) https://unimelb.edu.au Full Name name Albert

Timestamp Caseld Activityld MorKeyb Coordenates Textinput NameApp Screenshot

12312313 1A MOUSE 123,32 " Mail client image0001.png
12312314 1B MOUSE 32,43 " Mail client image0003.png
12312315 iL{g MOUSE 44,12 " Mail client image0004.png
12312316 1D KEYBOARD 234,367 "28362233)" CRM image0005.png
12312317 1D MOUSE 23,55 " CRM image0007.png
12312318 2A MOUSE 123,32 " Mail client image0008.png
12312319 2B MOUSE 32,43 " Mail client image0010.png
12312320 2.C MOUSE 44,12 " Mail client image0011.png

Fig. 3. Excerpts of two UI logs from scientific publications [50,62] with different attribute sets.

for this review may be less specific than scientific papers. Therefore,
we conduct the industry review in this section as an addition to the
literature review, meant to confirm and complement the established
findings.

4.1. Research method

An initial analysis indicated that RPA tools are presently the only
industry solutions that collect UI logs on a large scale. Some vendors
also advertise task mining capabilities, but their primary focus is on
recording UI logs for the automation of routines. Because the RPA
market is highly fractured and fast-moving, we could not conduct a
complete review. Instead, we opted to analyze a sample of compa-
nies that can be seen as representative for the market. Therefore, we
selected the companies that the 2022 Gartner Magic Quadrant RPA
report” attributes with a “high ability to execute” and/or a “high com-
pleteness of vision”: UiPath, Automation Anywhere, Microsoft Power
Automate, Blue Prism, NICE, WorkFusion, Pegasystems, Appian, SAP
Process Automation, and Salesforce MuleSoft. We have selected those
tools because, based on their ranking by Gartner, they evidently have
achieved a certain level of conceptual and/or technical maturity. We
therefore assumed that the underlying data models were sufficiently
mature, comprehensive, and stable to warrant their consideration in a
state-of-the-art analysis and, eventually, their inclusion in the design
of a universally applicable reference model. In addition to those tools,
we also included Celonis Task Mining, which is the only major product
that uses Ul logs primarily for low-level process mining.

In analyzing those eleven tools, we focused on finding the com-
monalities and differences between the industry logs and the scientific
logs. Specifically, we wanted to know whether the industry logs capture
the same set of six core attributes found in the scientific logs (com-
monalities) and whether the industry logs capture any other attributes
that could be relevant for a widely applicable reference data model
(differences). To answer those questions, we collected freely avail-
able material about the tools.® This included trial or demo versions,
documentations, and promotional material, such as videos showcasing

2 https://www.gartner.com/en/documents/4016876

3 A full list of the material that we analyzed can be found at
https://gitlab.uni-mannheim.de/jpmac/ui-log-data-model/- /blob/main/
journal_version/industry_review_sources_journal.pdf

the recording process. After collecting the material, we had to ex-
clude Pegasystems from our list because we could not obtain sufficient
information on the functionalities of their recording software.

4.2. Results

Based on the collected materials, the remaining ten tools were
analyzed to identify commonalities and differences between them and
the scientific logs from Section 3. In doing so, we used the results from
the previous section as a guideline.

4.2.1. Commonalities

For each industry solution, we analyzed whether it also records
the six core attributes found in the literature review. The results are
summarized in Table 3.

All reviewed tools record action types, target elements, input values,
applications, and timestamps. Similar to what we found in the literature
review, the recordable action types differ between tools, and in addi-
tion, separate tools often use different names for the same user action.
These two aspects are illustrated in the comparison of mouse-related
action types in Automation Anywhere* and Celonis Task Mining® in
Table 4: both solutions support recording (single) left, right, and double
clicks, but use slightly different names. Automation Anywhere does
not support the recording of mouse wheel scrolling actions, whereas
Celonis Task Mining does. Automation Anywhere’s recorder also fea-
tures an additional generic Click action type, which is intended to make
recording more reliable through redundancy.

Additionally, the action types have considerable variation in ab-
straction level, even within a single tool. One tool where this phe-
nomenon occurs is Microsoft Power Automate, as shown in Fig. 4.°
Among the four recorded activities, the first and fourth action types
are low-level hardware inputs (“click” and “populate”), enriched with
information about the action’s target (“element in window” and “text
field in webpage”). The second and third, however, are abstracted
from a series of such inputs and refer to higher-level activities, such
as “launch web browser”.

4 https://docs.automationanywhere.com/bundle/enterprise-v2019/page/
enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-recorder-
object-controls-and-actions.html

5 https://docs.celonis.com/en/schema-documentation.html

6 Taken from https://learn.microsoft.com/en-us/power-automate/desktop-
flows/automation-web.
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Table 3
Ul log attributes as found in the industry review.
Tool Action type Target element UI hierarchy Appli-cation Input value Time-stamp
UiPath . . screenshots . . .
MS Power Automate . . . . . .
Automation Anywhere . . . . . .
Celonis . . screenshots . . .
SS&C Blue Prism . . screenshots . . .
WorkFusion . . screenshots . . .
SAP Process Automation . . . . . .
NICE . . screenshots . . .
Appian . . screenshots . . .
MuleSoft . . screenshots . . .

Table 4
Mouse-related action types in Automation Anywhere (Universal

Recorder) and Celonis Task Mining.

Automation Anywhere

Click -

Left Click Left-click

Right Click Right-click

Double Click Left double click

- Mouse wheel

- Mouse wheel (up)

- Mouse wheel (down)

Celonis Task Mining

Recorded actions

Click element in window @

Double click on Contoso Invoicing on Desktop lcons

Get details of element in window [E]

Get owntext of Edit ‘TextBox' on Window 'Contoso Invoicing’

and store value in  AttributeValue {X}

Launch web browser Uﬂ]

Launch Microsoft Edge and navigate to:

§ ://invoice-generator, #/1

Populate text field in web page @]

Populate Text area '... ng-touched' on
Web Page 'https://invoice-generator.com/#/1' with

{x} Variable v  AttributeValue {X}

Fig. 4. Examples of recorded actions with varying abstraction levels in Microsoft Power
Automate.

4.2.2. Differences

We also examined whether, in comparison to the scientific logs, the
industry solutions systematically record any additional attributes, but
we did not find any. However, we did find a significant difference be-
tween industry logs and scientific logs in how they capture information
on the location of elements within the UI hierarchy. In research, this
information is explicitly recorded in UI log attributes. Most industry

tools instead store hierarchy information as screenshots outside of the
log. Some tools also use the UI hierarchy to construct selectors that
uniquely identify an element within an application’s GUI, similar to file
paths.

Another difference between industry logs and scientific logs con-
cerns the case notion. In the industry solutions, the case ID is always
a task or process label that is manually added to the log. Additional
business context attributes also need to be added by users and are not
recorded by the tool.

To conclude, our review of industry solutions has found that all ex-
isting solutions also record the set of core components that we found in
the scientific logs. At the same time, there are considerable differences
between the tools regarding the level of detail, set of action types, and
recording of Ul hierarchy information. In the next section, we build on
these findings to design a reference model for process-related UI logs.

5. Reference data model

In this section, we introduce our reference data model for process-
related user interaction logs. We consider a reference model to be
a conceptual model that serves to be reused for the design of other
conceptual models [18]. Under such a reuse-oriented conceptualiza-
tion, (universal) applicability of the model is not a defining property.
However, maximizing the model’s application scope increases its reuse
potential and therefore its value to the community. Therefore, we
designed the model in an inductive or bottom-up fashion [18]: based
on the commonalities and differences between existing UI logs that we
found in the literature and industry reviews, we constructed a model
that subsumes those commonalities, but remains flexible with regard to
their differences.

In the following, we first elaborate on the principles that guided our
design process in Section 5.1. The reference model and its individual
components are presented in detail in Section 5.2. Finally, we critically
discuss our design choices and their implications in Section 5.3.

5.1. Design principles

In the literature and industry reviews, we found that the main com-
monality between existing UI logs are the six core attributes. The main
differences between them concerned the scope, the level of abstraction,
and the case notion. Based on these findings, our data model follows
four fundamental design principles:

(1) Minimal set of core components: The essential characteristics
of user interactions, as found in the reviews, are modeled as the
components and standard attributes of the data model. Because
the model is intended to be non-specific and universally appli-
cable, we include no other elements, thus keeping the number
of components and standard attributes to a minimum.

(2) Flexible scope: To ensure flexibility in scope, the data model
can be extended with any number of additional components
and all components can have an arbitrary number of attributes.
Also, nearly all components and standard attributes are optional.
The only non-optional component and attribute that ensure the
existence of a Ul log are the activity and its name.



L. Abb and J.-R. Rehse

Task | User
0.* 1
performs
1.%
associated \ 4
with Action
1 Action type
Activity 1.
Activity name  |--eeemiiea ]
Input value executed on
Timestamp
Ul hierarchy 1V
System Target object

Appliiation ﬂl ﬁx

?

Ij Ul group
¢

Ul element

Current state

Fig. 5. User interaction log data model.

(3) Flexible level of abstraction: To enable user interactions to be
modeled in various application contexts and at various levels
of abstraction, the domain of the standard attributes in the
data model, such as the action type, is left unspecified and
can be determined at the point of instantiation. Furthermore,
all components are modeled as classes and can be subclassed.
Explicit subclasses are only defined for the target object, because
they are inherent to the structure of user interfaces and the way
they are embedded in information systems.

(4) No explicit case notion: Whereas the case notion of a business
process is tied to its instances, Ul logs are not inherently struc-
tured along any data dimension. The reviews have shown that
they can have many possible case identifiers. The data model
therefore does not include an explicit case notion. Instead, the
case notion needs to be defined at the point of instantiation.

5.2. Reference model components

We designed the reference data model as a UML diagram, depicted
in Fig. 5. It consists of nine components, modeled as classes, and
their interrelations, modeled as associations. Each class has an ID and
can have any number of attributes. Some components have standard
attributes that have a particular significance for user interactions. In
the following, we define and explain the individual components.

5.2.1. Components that define the user interaction

In our model, user interactions consist of two parts. The first part
is the action component with its action type standard attribute that
describes what the user does. Common action types, as observed in
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the reviews, correspond to the functionalities of standard peripheral
input devices, such as left or right mouse clicks, single keystrokes,
or keystroke combinations for shortcuts. Higher-level distinctions are
also possible. For example, when collecting data in an ERP system,
actions can be divided into input actions, which make changes to a
business object, and navigation actions, which only serve to navigate
the GUI [1]. We therefore do not specify any default values for the
action type attribute.

The second part of a user interaction is the target object on which
the action is executed. It is instantiated as one of four object types in
the UI hierarchy, as explained below. The action type and target object
together determine the central model component: the user activity. An
activity has three standard attributes: the activity name, which acts
as the event label, like in a traditional event log, an optional input
value that denotes, e.g., the string that is entered into a text field,
and a timestamp to indicate its execution time. The activity name is
determined as a function of the action type of the corresponding action
and the identifier of the corresponding target object, for example, a
concatenation.

The timestamp is a very common attribute in traditional event logs
as well as UI logs. It can be used to calculate the duration of user
interactions as well as waiting times between them. In addition, many
Ul logs rely on timestamps to establish an order between the individual
events. However, as we wanted to keep the data model as flexible
as possible and there are alternative ways to introduce a notion of
order into an event log [65], we did not make timestamps a mandatory
attribute of activities. In the absence of a timestamp, we would require
at least one other attribute that can serve as an ordering criterion.

5.2.2. Components that define the UI hierarchy

In our reviews, we found that the target object of user interactions
was logged at different levels of granularity. To incorporate them, we
specified the target object in terms of a UI hierarchy, which integrates
the various types of UI element context data into a general structure.
It consists of four components, which form a tree-shaped composition
hierarchy: Ul element, UI group, application, and system. The UI ele-
ment and UI group levels mirror the hierarchical structure of virtually
all GUIs (e.g., the document object model of a website). The application
and system levels go beyond the actual GUI and position it within an
information system, which makes it possible to record application- and
system-level user interactions and allows the UI log to be compatible
with cross-application and even cross-system Ul tracking.

Most actions are executed on atomic UI elements, which form the
lowest level. Examples include buttons, text boxes, dropdowns, check-
boxes, or sliders. Elements can be stateful, such as a non-empty text box
or a greyed-out button. Capturing this state is necessary, for example,
to track the effects of copy/paste actions or to differentiate between
activity outcomes. The state of a Ul element is therefore recorded in its
current state standard attribute.

Ul elements are combined into UI groups, which can be nested
within other UI groups. In many cases, these Ul groups are explicit
design elements of the user interface, but our model does not impose
grouping criteria and allows UI groups to be formed from arbitrary sets
of UI elements. A simple example that we saw in the literature review
is an Excel cell (UI element), which is part of a worksheet (UI group),
which is again part of a workbook (UI group). Modeling UI groups has
two main advantages. First, it allows to uniquely identify functionally
identical UI elements. For the example above, recording information
about UI groups allows us to distinguish between the cell Al in separate
Excel worksheets. This idea is used in many industry solutions to
generate element selectors from screen captures. Second, Ul groups
can be useful for event abstraction, i.e., mapping user interactions to
higher-level conceptual tasks, if these tasks are closely tied to particular
UI groups. For example, all interactions with elements in a login mask
(enter username, enter password, click login) can directly be abstracted
to the “login” task.
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UI elements and Ul groups belong to an application, i.e., a single
program instance. Some actions are directly executed on the appli-
cation and are not tied to lower-level elements, such as “undo” or
application-specific hotkeys.

The root node of the UI hierarchy is the system, on which the
applications run and actions are recorded. Similar to application-level
actions, it is also possible to capture system-level actions, such as the
Ctrl-Alt-Del key combination to open the Task Manager on a Windows
system.

5.2.3. Components that define the context

Finally, the data model includes two components that put Uls in a
conceptual (process) context: user and task. These exist in some form
for all UI logs, which is why they are included in the model. In contrast,
other potential context components, such as organizational or resource
attributes, are use-case-specific and can be considered by extending the
model.

The user is the entity that initiates any interaction. Each action is
associated with a single user. Because user IDs and attributes depend on
the data collection environment (e.g., device IDs in mobile applications
or IP addresses on websites), the model does not specify any attributes
for users. This also means that the user component is not necessarily
restricted to humans and can model computer-initiated interactions, for
example when recording partially automated processes.

The task component models a specific unit of work that is part of
a larger process. It is used to associate the recorded user interactions
with conceptual tasks or routines, which makes it possible to map low-
level GUI interactions to higher-level user activities. This abstraction is
an essential prerequisite for being able to perform meaningful analysis
on Ul logs or to use them for automation. It is, however, also possible
to record user interactions that do not belong to any task defined on
a conceptual or business level; for example, an employee interacting
with a social media application in between performing tasks in an ERP
system.

5.3. Critical discussion of model quality

In this section, we want to briefly discuss our model’s design with re-
spect to the six quality criteria for data models proposed by Moody and
Shanks [66,67]: completeness, flexibility, simplicity, understandability,
integration, and implementability.

A data model is complete if it is able to meet all functional require-
ments. In our case, this means that the model should be able to capture
any process-related UI log. Because our model was developed based on
the set of UI logs that we found in our literature and industry reviews,
it can capture all of them by design. Of course, we cannot rule out
that there may be other, future UI logs that will not be completely
or appropriately captured by the data model. However, at least with
respect to existing logs, it can be considered as complete.

The flexibility of a data model denotes its ability to be adapted
to differing requirements. This was one of our main priorities when
developing the model and is reflected in the design principles in Sec-
tion 5.1. It is important to note that this flexibility presents a trade-off:
whereas adaptability is advantageous for a data model, its role as a
reference model could be compromised due to the potential for varying
implementations. Our model aims to facilitate the standardization of
Ul logs and to ensure their unification into a common format. This
objective may not be fully realized if the implementations vary too
widely. If, for example, two UI logs each contain a large number of ad-
ditional attributes that extend the data model in different ways, or if the
discrepancy in the level of abstraction among the action types becomes
too significant, they would again require considerable harmonization
effort before they can be compared or integrated effectively.

Simplicity of the model was another aspect that we prioritized in the
design. It is achieved by including only a minimal set of components
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Fig. 6. Execution plan for the validation of the “Create Keyword” workflow.
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and attributes and manifests itself in a relatively low number of ele-
ments (entities and relationships) in the model. The understandability
of a data model is closely linked to its simplicity. While we cannot
conclusively evaluate this without a user study, we argue that the
low complexity of the model, and its intended audience of technically
proficient researchers and BPM professionals, serve as arguments in
favor of its understandability.

The integration of a data model is achieved if it is consistent with
other data, e.g., in an organizational context. For our model, it is partic-
ularly important to be consistent with other process data, e.g., higher-
level events logs or process models. This is facilitated by the inclusion of
the task component, which bridges the abstraction level between user
interactions and process-level activities, and by the generic nature of
the other components such as User, UI element or Application, which
are independent of the environment in which the UI log is recorded
and used. Beyond that, we argue that effective integration is impossible
to ensure in a reference model and primarily hinges on appropriate
instantiations in application-specific data models.

Finally, a good data model should be easy to implement. In analogy
to the above discussion on completeness, our model’s foundations in ex-
isting UI logs also supports its implementability, since each of these logs
can be considered as an instantiation of the reference model. However,
this does not inherently demonstrate its ease of implementation from
the ground up. To address this, we provide a working example of an
implementation of our data model in the following Section 6.

It is important to note that this discussion primarily concerns the
quality of our model as a data model. Its utility as a reference model
according to the reuse-oriented conceptualization of the term can be
shown only through the extent of future adoption by others.

6. Working example

In this section, we aim to demonstrate the practical utility of the
data model by describing how we instantiated it to design the data
collection process in an RPA project that we are currently conducting
in cooperation with an ERP system vendor [68]. The project is set
in the medical technology industry, where companies are required
to regularly validate their information systems to ensure that they
are in compliance with external quality regulations. The validation
of an information system involves manually executing a number of
predefined workflows step-by-step according to a rigid execution plan,
checking the result of each step against a set of acceptance criteria, and
documenting the result.

A validation project currently involves high manual effort. The
goal of our case study is to automate validation for a wide range
of workflows using RPA technology. We record how process experts
interact with the user interface of the ERP system during validation
and then train bots to emulate these interactions. To record interaction
data, we modified the source code for the application’s web-based
front-end by adding various event handler methods to atomic and
container elements (i.e., Ul elements and UI groups). This allows us
to capture user interactions at a high level of detail and to implement
the components and standard attributes from the data model.

In the following, we use the example of a keyword creation work-
flow to show how an artificial UI log that captures one execution of this
workflow may instantiate the data model. A high-level BPMN diagram
of the five consecutive steps in the keyword creation workflow is shown
in Fig. 6. These steps are executed on the GUI parts shown in Fig. 7.
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Fig. 7. The user interface of the application described in the example.

The user (1) logs in (Fig. 7(a)), (2) selects the right client and profile
(Fig. 7(b)), (3) navigates through the dashboard (Fig. 7(c)) to reach
the explorer tree (Fig. 7(d), left), (4) creates a new keyword (Fig. 7(d),
right), and (5) logs out. The main acceptance criterion is that the newly
created keyword shows up in the explorer tree after refreshing.

Table 5 shows an excerpt of the Ul log for one case, i.e., one
execution of the keyword creation workflow. It includes the action type,
target UI element, and one level of UI groups, plus input value and
current state where applicable. The captured action types in this log
are left and right clicks, text input, selected keyboard shortcuts, and
none. The activity label of an event (in most cases) consists of the
concatenated action type and target object identifier.

The first two events in the log do not correspond to single user
interactions, but instead take advantage of the UI group concept to
directly abstract to higher-level tasks. Instead of recording each event
in the login and client selection masks separately, the task is tracked
only at completion. For these abstracted activities (marked with an “A_”
prefix), the action type is “none”; they are defined only through the
target UI group, independent of the performed actions. This approach
can be used for simple tasks with the same execution pattern in all
workflows. One upside of this approach is that it makes it possible to
not record input values when desired. Whereas in the client selection
mask, the content of the text fields is read out when the user presses
the “Set Profile” button, input values are never read in the login mask
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to avoid recording the user’s login credentials. Another advantage of
this abstraction is that it reduces noise, which is a common problem
in UI logs [2]. In our scenario, activities like initially entering a wrong
username do not affect the outcome of the workflow and are therefore
not relevant for automating it. By abstracting during data collection,
those activities are automatically disregarded.

For effective automation, various user inputs need to be tracked.
Therefore, the instantiation of the input value attribute in the log is
flexible and depends on the action type and target object: When a user
writes into a textbox, the input value is the entered string. When an
item is selected from a dropdown, the input value records the label
of that item. For abstracted activities, the input value captures the
string values of all relevant UI group elements as a map. Most state
information, however, is not required for automation. Therefore, the
current state attribute only records the values that can be selected from
list and dropdown elements, which is needed for some more complex
workflows in the validation process. For example, if a documents needs
to be approved, the validation must verify that a document’s author
cannot be selected as approving manager.

This simple example demonstrates how some of the core compo-
nents of the reference model can be instantiated in a real-life scenario,
and how the flexibility in abstraction level can be leveraged to record
attributes in a way that matches the requirements of a particular use
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Table 5
UI log for one execution of the keyword creation workflow.
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Activity Action type UI element UI group Input value Current state
A _Login none login mask

A_Profile Selection none user select client {client: base, profile: author}

click content left click content dashboard ov

click masterdata left click masterdata explorer tree

click masterdata node expand left click masterdata node expand explorer tree

click keywords node expand left click keywords node expand explorer tree

rclick keywords right click keywords explorer tree

click ppanel new left click ppanel new explorer tree

click new information object left click new information object explorer tree

click name left click name fpanel keyword

input name input name fpanel keyword MyKeyword

click dd type left click dd type fpanel keyword [keyword, keywords folder]
click dd type left click dd type fpanel keyword keyword [keyword, keywords folder]
click dd links left click dd linksto fpanel keyword [linksto]
click dd links left click dd linksto fpanel keyword linksto [linksto]
click confirm left click confirm fpanel keyword

click keywords node expand left click keywords node expand explorer tree

KEY_F5 explorer tree KEY_F5 explorer tree

click logout left click logout explorer tree

click confirm left click confirm dialog logout

case. It also shows that, in practice, components that are not relevant
for a use case can simply be left out. The main advantage of using the
reference model here is that, unlike with an ad-hoc model tailored to
the use case, the attributes captured in the UI log follow a general con-
vention that also applies to other user interfaces. This makes recording
UI logs in the same format straightforward even in other applications,
and makes it possible to develop automation or task mining solutions
that are independent of the recording approach used.

The full log from Table 5, which contains additional attributes, is
available as a CSV file in our repository. Note that we have replaced
the original identifiers for UI elements, groups, and application with
symbolic, human-readable ones. The main purpose of this CSV log is
to demonstrate the data collected in our working example. In the next
section, we provide exemplary implementations of that log in the XES
and OCED formats.

7. Implementation

To increase the applicability and reuse potential of our reference
data model, we also require an implementation in a common event log
format. Such an implementation can be reused for the interchange of
Ul log data and may be the first step towards defining a standardized
interchange format in event logs. Because of the current paradigm shift
in the process mining community from single-case event logs towards
object-centric ones, this section describes two types of implementations
of our data model: a conventional, XES-based one in Section 7.1 and
two object-centric, OCED-based ones in Section 7.2.

7.1. XES extension

For the first implementation of the reference model, we relied on
XES as the still the de-facto interchange standard for event logs. As
described above, the XES standard for event logs allows for domain-
specific extensions to describe additional event log attributes. Hence,
we implemented the UILog extension for XES, which provides a
standardized exchange format for UI logs as a supplement to the data
model. The XML specification for this extension is shown in Fig. 8.

The implementation considers the activity equivalent to the event
label. It does not include the activity name or timestamp standard
attributes because those are already provided by the concept and
time extensions. The other components and standard attributes are

7 The extension is also available at https://gitlab.uni-mannheim.de/jpmac/
ui-log-data-model/-/raw/main/UILog_extension.
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defined at event level, i.e., as attributes of an activity instance. The
generic target object is not directly implemented, but can instead be
specified through attributes that correspond to its four UI hierarchy
subclasses: the target object is the lowest-level UI hierarchy component
that exists for this event. For example, for an event with a UI element
attribute, the target object is always this Ul element, whereas for an
event with no UI element or UI group attributes, the target object is
the application.

An exemplary XES version of the log described in Section 6 that
implements this extension is available in our repository.

7.2. OCED implementation

As already described in Section 2, XES has multiple limitations,
which play a prominent role in the implementation of UI logs. We
discuss these limitations in more detail in the following subsection and
explain why an object-centric implementation is well-suited for our
reference data model. We then provide implementations of the UI log
from Section 6 in two object-centric formats: OCEL 2.0 [27] and an
OCED semantic header [28]. Of the four reference implementations of
the current iteration of the OCED meta-model [15] presented at the
OCED symposium at ICPM 2023, these two were the only stand-alone
reference implementations. Hence, they were the only two formats that
could serve our intended purpose.

7.2.1. Suitability of object-centricity for UI logs

Although it is the current event log standard, XES is not particularly
well-suited for UI logs. This has two major reasons. First, XES does
not support explicitly defining the relations between attributes, so all
components of the UI hierarchy have to be implemented at event level.
Therefore, even if many events involve the same target object, the
Ul group, application, system, and their respective attributes need to
be included each time, causing considerable redundancy. Second, XES
assumes a single case notion, contrary to the flexible case notion that
we intend for the data model. To retain this flexibility, case notion can-
didates like the user and task context components are also implemented
at event level, even though they would be case-level attributes in many
UI logs.

As an alternative to XES, an object-centric exchange format could
addresses these shortcomings. In an object-centric event log, all entities
or objects are defined in their own right, along with their relations and
attributes. An event can be related to any number of objects, eschewing
redundant attribute storage. A flexible case notion is inherent to object-
centric event logs, because they can be “flattened” and thus viewed
from the perspective of any object type. The (full) OCED meta-model
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encoding="UTF-8’7>

2 <xesextension name="UIlog" prefix="ui" uri="https://gitlab.
uni-mannheim.de/jpmac/ui-log-data-model/-/raw/main/

UILog_extension">

<alias mapping="EN" name="Action, type"/>

name="UI element"/>

3 <event>

4 <string key="actionType">
5

6 </string>

7 <string key="uiElement">
8 <alias mapping="EN"

9 </string>

10 <list key="currentState">

11 <alias mapping="EN"

name="Listof attribute

values that determine_ the current_ stategof_a,
stateful yUI Element"/>

12 </list>

13 <list key="uiGroups">

14 <alias mapping="EN" name="UI,groups"/>
15 </list>

18 </string>
19
20
21 </string>
22
23
24 </string>
25 <string key="user">
26
uevent"/>
</string>

<string key="task">

27
28
29

<string key="system">
<alias mapping="EN" name="System"/>

<alias mapping="EN"

<alias mapping="EN"

<string key="application">
<alias mapping="EN" name="Application"/>

<string key="inputValue">
<alias mapping="EN" name="Input,value"/>

name="The_user initiating, the

name="The conceptual tasky

thatthe event belongs to"/>

30 </string>
31 </event>
32 </xesextension>

Fig. 8. XML specification for the UlLog extension.

is shown in Fig. 1. The left side of the model describes events, their
associated attributes, and the time construct, which are found in a sim-
ilar form in XES. The right side describes objects and their attributes,
as well as typed relations between objects. In the center, these two
clusters are connected through qualified associations. Note that there
also exists a “base” version of the meta-model, which is missing the
associations between event and object relation and between event and
object attribute value [69].

Our reference data model lends itself very well to an object-centric
implementation, since almost all of its components can be concep-
tualized as objects and it already defines object-to-object relations,
e.g., in the UI hierarchy, and object-to-event relations, e.g., between
action and target object. Hence, the mapping of our components to the
OCED meta-model is relatively straightforward. The Activity component
in our reference model corresponds to the event in the OCED meta-
model. The attributes of the Action and Activity components are event
attributes. The Activity name and Timestamp standard attributes of the
Activity component are equivalent to the event type and time concepts
in OCED. The four components of the UI hierarchy (UI element, UI group,
Application, and System), as well as the User and Task components,
are object types. Their concrete instances in a Ul log are objects. All
attributes of these components are therefore object attributes. Finally,
the aggregation/composition associations within the UI hierarchy are
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translated to object relations. For the basic version of the reference
model, these are the only object relations, as the only other potential
objects are Task and User, which are only indirectly connected with
other objects.

If the reference model is extended with components that are specific
to the domain or the use case, this may of course introduce additional
object types and object relations. For example, the full version of the
UI log from Section 6 features six attributes not shown in Table 5: (1)
a timestamp, (2) the name of the validation test case that is being
recorded (Keyword Creation in the working example), (3) the step
within the test case and (4) its position, which together instantiate the
Task component of the reference model (e.g., Login is the first step to
be performed), (5) the HTML tag of the targeted UI element (where
applicable), and (6) the application (browser in the working example).
In this log, the test case and step attributes can be conceptualized as
objects with a hierarchical relation (multiple steps within one test case).
The position of the step within the test case is then an attribute of the
step object. Likewise, the HTML tag is an attribute of the UI element
object.

7.2.2. Implementation in OCEL 2.0
OCEL 2.0 [27] is a revision of the first object-centric event log
standard proposed in 2021 [24]. It supports SQLite, XML and JSON
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object 1 * object

type has attrib, attribute
1 1
has type has name
* *
1 * object
object attribute
for object
e value
% * *
from to

related

has timestamp

time

has timestamp

Fig. 9. The adapted version of the OCED meta-model employed in OCEL 2.0 [27].

exchange formats. OCEL 2.0 implements a slightly adapted version of
the OCED meta-model, as shown in Fig. 9. In this version, event—object
relationships are simplified by removing the direct associations be-
tween event and object attribute value respectively object relation. This
means that the implementation does not provide a possibility to specify
how an event is related to an object attribute or a relation between
objects. Instead, events can only be directly related to object instances.
In this sense, the implementation is closer to the above-mentioned base
OCED meta-model than to the full one in Fig. 1.

In addition, object attribute values in OCEL 2.0 have a direct link
to the time concept, which allows for the specification of attribute
value time series independent of observed events. This makes it possible
to transitively re-establish the association between events and object
attribute values through the timestamp of an event, its relation to an
object instance, and the timestamps of that object’s attribute values.

An OCEL 2.0 JSON file that implements our working example
Ul log is included in our repository. This implementation maps the
attributes of the working example log to event attributes, objects, or
object attributes, as described in the previous subsection. Concretely,
we include activity, timestamp, action type, and input value as event
attributes and define five object types: test case, step, ui element, ui
group, and application. The step object type has the attribute position;
the ui element object type has the attributes current state and html
tag. The correlation between attribute values and object instances is
taken directly from the tabular source log that was produced by our
recording tool, i.e., a particular object has an attribute value (at a
certain time) if they are observed together in the same event. We assign
each attribute value the timestamp of the event that it is observed in,
because our recording tool does not include a mechanism to evaluate
object attributes independent of the user actions recorded.

There are two types of object relationships in our OCEL 2.0 im-
plementation: the hierarchy among test case and step, as well as the
hierarchy among ui element, ui group, and application. In line with the
OCEL schema, these are defined not at object type level, but individu-
ally for each object instance. For example, the object masterdata of type
ui element has a relationship to the object explorer tree of type ui group,
but there is no general relationship defined between ui elements and ui
groups. We chose to leave the optional qualifiers for event to object or
object to object relationships empty because they are purely descriptive
and not part of the actual user interaction data.

Regarding the limitations of OCEL 2.0 compared to the full OCED
meta-model (as described above), we argue that these are of little
consequence for UI logs that follow our reference model. For the first
limitation, even though there is no direct relation between events and
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object attribute values in OCEL either, dynamic object attributes and
their connection to events are realized through the relation between
object attribute values and time, so we do not consider this a limitation
of the format.

For the second limitation, the missing association between event
and object relation means that object relations must remain static and
cannot change throughout an event log. This is in line with the relations
between objects in the UI hierarchy, which are generally static: a
particular UI element, such as a button, will always remain part of
its UI group and will never suddenly move to a different application.
This limitation could become a problem if users and tasks are both
conceptualized as objects with a direct relation: in this case, it would
not be possible for a user to switch from executing one task to another.
However, in our reference model, there is no direct association between
these two components. Rather, they are indirectly connected through
the activity.

7.2.3. Semantic header implementation

The central idea of the semantic header reference implementa-
tion [28] is to keep the event log data in a format that can be
directly extracted from a source system, e.g., a collection of CSV exports
from a relational database. This data is then supplemented with an
additional semantic header that specifies how this raw data maps to
OCED concepts and how it can be transformed into an event knowledge
graph [70], a data structure that naturally model events, objects, and
their relations for process mining. Unlike OCEL 2.0, this reference
implementation operationalizes the original OCED meta-model without
modifications. In the presented implementation [28], the meta-model
is translated into a property graph (PG) schema, as shown in Fig. 10.
This schema can be instantiated in two JSON files: First, a dataset de-
scription file, which contains the name and data type of each attribute
and specifies to which column(s) in the underlying data the attribute
corresponds. Second, the actual semantic header file, which describes
how the raw records are transformed into the event knowledge graph,
i.e., which record attributes are used to construct event nodes, entity
nodes, and their properties. It also defines relations between entities,
i.e., object relations.

Although the semantic header is designed to handle collections of
records (as they would be created when exporting several tables from
a database), in our case, the UI recording tool only produced a single
CSV file, which contains all information. To implement the semantic
header, we therefore only define a single EventRecord and create the
dataset description file by simply defining one record attribute for each
column in the tabular UI log. We set those attributes that do not have
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Fig. 10. Implementation of the OCED meta-model as the semantic layer of a PG schema. The event data is stored separately, visualized as the record layer.

Source: Figure taken from [28].

a value for every event to be optional (e.g., the input value, which does
not exist for click actions). In the semantic header file, we define the
same four event attributes and five objects/entity nodes as in the OCEL
implementation: activity, timestamp, action type, and input value as well
as test case, step, ui element, ui group and application.

We also assign the same object attributes as in the OCEL implemen-
tation: position for the step object as well as current state and html tag for
the ui element object. Finally, we define the same three object relations:
step to test case, ui element to ui group, and ui group to application.
Unlike in OCEL, these are defined at the level of object types instead
of object instances. Which object instances are related to each other is
inferred from their co-occurrence in events in the underlying record.
We also specify in the header that all other edges in the resulting
event knowledge graph (such as the directly-follows relations between
events) should likewise be inferred from the raw data.

The dataset description and header JSON files for our working
example Ul log are also included in our repository.

8. Discussion and conclusion

In this paper, we address the lack of standardization of UI logs, in
order to facilitate the exchange and analysis of UI logs in research and
practice. Based on a review of the state of the art of process-related
UI logs in scientific literature and industry solutions, we propose a
reference data model for UI logs. This model consists of a set of core
components to capture essential characteristics of user interactions and
is flexible with regard to scope, abstraction level, and case notion.
We exemplarily show how the model can be instantiated in a real-life
RPA scenario and implement it in both a conventional and two object-
centric formats. This way, we demonstrate that the emerging paradigm
of object-centricity for event data is well suitable for being applied to
Ul logs.

To achieve our main objective, i.e., address the issues that arise from
the lack of standardization of UI logs, we prioritize the future reuse
of our reference model and accompanying implementations. Therefore,
we derive the model from existing Ul logs and show how it can be im-
plemented in multiple standardized data interchange formats. Most of
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the model components (activities, action types, UI elements, UI groups,
applications, timestamps, and input values) are directly adopted from
the core attributes identified in our literature and industry reviews. Our
contribution is their integration into a unified framework with well-
defined relations. For example, we propose a rigid interpretation of
an activity by defining it as a combination of an action and a target
element. We also expand on the location context of UI elements, which
is collected in various forms by most approaches, and explicitly define
four distinct types of target objects in an unambiguous hierarchy.

To this unified framework, we add additional, less frequently col-
lected components and standard attributes that are particularly relevant
for a complete model of user interactions. For instance, the current
state is an important property of stateful UI elements when the log is
intended to be used for automation. In the UI hierarchy, we add the
system on top of the commonly recorded application to model system-
level user interactions. We also introduce the user and task context
components to add (optional) generic business context to UI logs.

By providing a domain-specific event log in two reference imple-
mentations of the current OCED meta-model, we also make a contri-
bution to the ongoing development of the OCED standard. It can serve
as an example and starting point for other implementations, and our
discussion of the implementations design choices and limitations in the
context of UI logs will hopefully help shape the discussion about the
requirements that an object-centric exchange format needs to fulfill.

One limitation of our work concerns its grounding in existing Ul
logs. Despite following a methodical approach, we do not claim that
our reviews or the model are complete or exhaustive. There could be
unidentified UI logs or future UI logs in different use cases, which
are not well represented by the model. For instance, our data model
is only intended to model user interactions with graphical user inter-
faces, and we did not consider alternative input types, for example
from voice commands or eye-tracking devices. The model may also be
somewhat biased towards automation use cases because RPA solutions
are overrepresented in the two reviews that it is based on. However,
our literature review also included UI logs that are not created in an
automation context, for example, the ones used by Beerepoot et al.
which are used to understand people’s high-level work practices. Our
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goal was to scope the data model in a way that it is not limited to RPA
but pertains to all potential use cases of UI logs that we identified.

A second limitation is that our object-centric implementations are
based on a standard that is not yet finalized and are thus only prelim-
inary. It is possible that they will become outdated once the develop-
ment of OCED progresses further.

Our reference model can contribute to the field by providing a
common, application-independent conceptual framework for user in-
teractions. However, like any reference model, it needs to prove its
utility in practice. We therefore want to encourage researchers and
practitioners to adopt the model for capturing UI logs in their projects,
and to extend it both with regard to new use cases and with regard to
conceptual aspects, such as user privacy.
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