
The Journal of Systems and Software 215 (2024) 112065

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Code search engines for the next generation✩

Marcus Kessel ∗, Colin Atkinson
University of Mannheim, 68159 Mannheim, Germany

A R T I C L E I N F O

Keywords:
Software reuse
Code search
Big data
Big code
Behavior
Dynamic
Semantics

A B S T R A C T

Given the abundance of software in open source repositories, code search engines are increasingly turning
to ‘‘big data’’ technologies such as natural language processing and machine learning, to deliver more useful
search results. However, like the syntax-based approaches traditionally used to analyze and compare code in
the first generation of code search engines, big data technologies are essentially static analysis processes. When
dynamic properties of software, such as run-time behavior (i.e., semantics) and performance, are among the
search criteria, the exclusive use of static algorithms has a significant negative impact on the precision and
recall of the search results as well as other key usability factors such as ranking quality. Therefore, to address
these weaknesses and provide a more reliable and usable service, the next generation of code search engines
needs to complement static code analysis techniques with equally large-scale, dynamic analysis techniques
based on its execution and observation. In this paper we describe a new software platform specifically
developed to achieve this by simplifying and largely automating the dynamic analysis (i.e., observation) of code
at a large scale. We show how this platform can combine dynamically observed properties of code modules
with static properties to improve the quality and usability of code search results.
1. Introduction

There are many different forms of software reuse, with many differ-
ent goals, but one of the most canonical forms is the incorporation of
pre-existing, self-contained software components in new applications to
reduce the amount of code that has to be rewritten from scratch (Mili
et al., 1995, 1998). The key enabling platform for this form of reuse is
the Code Search Engine (CSE), inspired by mainstream Internet search
engines. While the goal of mainstream search engines is to find rele-
vant Internet artifacts, CSEs focus on retrieving relevant code artifacts
represented in a formal programming language.

General-purpose Internet search engines only started to become
useful and attract serious interest once the number of available In-
ternet artifacts reached a certain critical mass about the turn of the
millennium.1 In the same way, CSEs only started to become truly useful
and attract significant research interest (about 10 years later) when the
number of code artifacts retrievable over the Internet reached a critical
mass thanks to the rise of the open source movement (Lerner and Tirole,
2001) and supporting repositories (Hummel and Atkinson, 2006). Since
then, the number of papers on CSEs has expanded rapidly, with over
80% of the 100 or so papers published on CSEs having been written
since 2008 (Grazia and Pradel, 2022).

✩ Editor: Laurence Duchien.
∗ Corresponding author.
E-mail addresses: marcus.kessel@uni-mannheim.de (M. Kessel), colin.atkinson@uni-mannheim.de (C. Atkinson).

1 The original paper by the Google founders was published in 1998 (Brin and Page, 1998).

While the main problem faced by the first generation of CSEs was
populating their databases with meaningful numbers of code artifacts,
the current generation of CSEs has the opposite problem — coping
with the vast, and rapidly exploding, number of code artifacts stored in
modern Internet repositories. For example, more than 85 million new
projects were created on GitHub in 2022 alone (GitHub, 2022), and
this is only one of several large software hosting sites. This explosion in
reusable source code means that many newly-written software compo-
nents today are similar, or identical to, code that already exists (Yang
et al., 1999; Inoue et al., 2020; Rahman et al., 2018). Managing and
efficiently leveraging this huge number of open source code artifacts is
a natural big data problem. Indeed, most of the current research into
CSEs aims to find novel ways of applying recent results from data sci-
ence to improve their performance and utility. This makes a lot of sense
because source code is in essence text and is thus inherently amenable
to data science techniques. Natural-Language Processing (NLP) and
semi-structured data analysis techniques are particularly applicable,
since they can be used to analyze and exploit the meaning of the
identifiers (i.e., names) chosen by programmers. Given that program-
mers usually try to pick names for identifiers collectively, in systematic
ways, the naturalness hypothesis (Allamanis et al., 2018) also assumes
that code even exhibits some of the patterns and features of natural
vailable online 6 May 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2024.112065
Received 6 December 2022; Received in revised form 28 February 2024; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

12 April 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:marcus.kessel@uni-mannheim.de
mailto:colin.atkinson@uni-mannheim.de
https://doi.org/10.1016/j.jss.2024.112065
https://doi.org/10.1016/j.jss.2024.112065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112065&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
languages documents, which makes it even more amenable to NLP
pattern matching techniques.

Unlike purely natural language documents, however, software ar-
tifacts have two additional properties that make their comprehensive
analysis especially challenging. The first is that they are represented
in languages with formally defined grammars, which allows them to
be parsed into concrete, well-defined data structures such as abstract
syntactic trees (ASTs). This makes it possible to analyze and compare
the syntactic structure of code artifacts using a range of formal and
algorithmic methods such as feature vectors, graph and solver-based
matching algorithms as well as data science techniques such as machine
learning (e.g., classification). Since the formal structural properties of
software are so important, dedicated platforms have been developed to
support the syntax-based analysis of code at ‘‘big data’’ scales, such as
Boa (for the ultra-large scale analysis of ASTs) (Dyer et al., 2015), and
SourcererCC (for detecting code clones at a large scale) (Sajnani et al.,
2016).

The second fundamental property of software artifacts that makes
their comprehensive analysis especially challenging is their dynamic
behavior (a.k.a., semantics) when executed on a suitable computing
platform. Full and precise analysis of a software’s dynamic (i.e., run-
time) behavior lies beyond the reach of the logico-deductive and data
science based approaches used on syntactic structures due to Rice’s the-
orem. This is a fundamental theorem of computer science which states
that all non-trivial semantic properties of programs, including their
behavioral semantics, are undecidable, which means that no general
algorithm for deciding whether a software component truly implements
a particular piece of functionality can exist (Rice, 1953). Statistical
techniques such as NLP are not subject to Rice’s theorem, of course,
but rely on programmers using accurate and explanatory identifiers in
their code. Since programmers can just as easily choose inaccurate or
misleading identifiers as good ones, they are notoriously unreliable at
predicting behavior (cf. vocabulary mismatch problem Furnas et al.,
1987). Furthermore, the resulting lack of a reliable link between the
claimed semantics of code (as implied by its identifiers) and its true run-
time semantics has a direct, negative impact on the precision and recall
of traditional CSEs, since they rely on these static analysis techniques. It
reduces the precision of code searches because it increases the number
of false positives in the result set (i.e., it includes code components
whose identifiers falsely imply they have the desired semantics), and it
reduces the recall of code searches because it decreases the number of
true positives in the result set (i.e., it fails to include code components
whose identifiers falsely imply that they do not have the desired
semantics).

Since the only practical way of gaining insights into the true seman-
tics (i.e., run-time behavior) of code components is to run them, several
early generation CSEs such as Sourcerer (CodeGenie) (Lazzarini Lemos
et al., 2007; Bajracharya et al., 2014), S6 (Reiss, 2009) and Merobase
(CodeConjurer) (Hummel, 2008; Hummel et al., 2008), attempted to
address this weakness by including dynamic (i.e., execution-based)
observation of behavior into the software search process. Technically,
this applies an approach that was first referred to as behavioral sam-
pling (Podgurski and Pierce, 1992), but CSEs that employ it are usu-
ally referred to as ‘‘test-driven’’ or ‘‘test-case driven’’ CSEs (Sim and
Gallardo-Valencia, 2015; Robillard et al., 2014). In this paper we use
the term ‘‘test-driven search engines’’ and the acronym TDS engine. Al-
though these early test-driven search engines were able to demonstrate
some limited success in increasing code search precision, they suffered
from several major weaknesses —

1. Small corpora: Since the curation of corpora of executable soft-
ware systems was (and still largely is) performed by hand
(e.g., Dietrich et al. (2017), Palsberg and Lopes (2018), Martins
et al. (2018a) and Fraser and Arcuri (2014)), the number of
software artifacts available to CSEs was very small by today’s
2

standards. Automating as many of the corpus curation tasks
as possible, including build automation, is key to obtaining
large-scale collections of executable systems from today’s online
software repositories.

2. Poor scalability and performance: Since early TDS engines were
invariably built on the monolithic computing platforms available
at the time, they took a long time to generate search results.
Efficiently executing software systems at an ultra-large scale
requires fully-blown clustering technology supporting the verti-
cal and horizontal scaling of workloads that takes advantage of
today’s big data technologies and hardware.

3. Declarative query languages: The only practical way to realize test-
driven code searches on a large body of code is to first perform
a ‘‘standard’’ text-based search and then apply the defined tests
to each of the returned candidate code artifacts. The approach
is therefore inherently complex and involves multiple steps. The
first generation of CSEs hid this complexity by only supporting
searches defined in declarative query languages. To request a
search, users had to define the desired properties of the sought
after software artifacts, but had little if any opportunity to
influence how the search results were produced.

4. Platform-specific test description language: Since tests represent one
of the inputs to the test-driven code search process, the way they
are defined has a significant impact on the usability of CSEs.
The first generation of CSEs only accepted tests written in main-
stream, code-based test definition technologies like JUnit (JUnit,
2022), which can be extremely verbose, and are difficult to
combine with the text elements of the core search query. They
also tangle the test inputs (i.e, stimuli) with the expected outputs
(i.e., software responses).

5. Limited adaptation technology : Since it is rare for two distinct
implementations of a given piece of functionality to use exactly
the same interface (e.g., in terms of method and class names,
parameter types and orders etc.), many code components that
actually deliver the desired functionality will be missed unless
an appropriate adapter is created to adapt them to the interface
expected by the tests. The first generation of TDS engines had
very primitive adaptation capabilities.

6. Simplistic Ranking Approaches: The ranking criteria used to or-
der search results is a key factor in the perceived usefulness
of all search engines, since research shows that users rarely
look beyond the first 10 returned results (Wang et al., 2009;
Joachims et al., 2017). However, because they do not execute
the code, the current generation of CSEs are unable to consider
anything other than statically-deduced metrics when comparing
the retrieved candidates for ranking (e.g., vectors comparison
etc.). This means that the true values of some of the most
potentially interesting metrics (e.g., true behavior, execution
speed, resource usage etc.) cannot be used as ranking criteria.

7. Lack of dynamic metrics about the result set : The perceived us-
ability of search engines is also influenced by the amount of
information they provide about the candidates in the result set,
enabling users to manually analyze the top ranked candidates.
Again, CSEs that do not actually execute the code components
in the result can only create statically-inferred estimates of
dynamic properties of the components rather than measure their
true values.

This paper is based on the premise that to significantly improve
the usability, precision and recall of code search services, the next
generation of CSEs needs to address these weaknesses. Moreover, they
need to do so at a scale and efficiency commensurate with the static
analysis techniques supported by data science and platforms like Boa.
In this paper, we show how this is possible by using a new platform
designed to support the large-scale observation and analysis of soft-
ware. This platform, known as the Large-Scale Software Observatorium,
or LASSO for short (Kessel, 2023), was not specifically designed as a

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

2

t

search engine but rather as a generic software observatorium. How-
ever, because efficient code retrieval, systematic testing and workflow
customization on a large scale are fundamental requirements for such
a software observatorium, it provides advanced solutions to all the
aforementioned problems.

The goal of this paper is to demonstrate how a software observato-
rium like LASSO can support a new generation of code search use cases
and significantly increase the quality of the results. It does this in four
main ways —

1. it shows how the current functionality offered by LASSO signif-
icantly enhances the range, power and customizability of code
search use cases that can be supported (Section 3),

2. it explains how LASSO’s implementation of these services, to-
gether with LASSO’s underlying corpus of executable software,
provides novel solutions to the weaknesses defined above (Sec-
tion 4),

3. it demonstrates how LASSO’s scripting language and functional-
ity can be used to concisely, efficiently and scalably implement
a ‘‘classic’’ TDS engine as a user-facing service, which we refer
to as LASSO TDS (Section 5),

4. it presents a study showing how LASSO TDS, and thus the
technology it is built on, significantly increases code search
recall and precision relative to first-generation TDS engines (Sec-
tion 6).

LASSO TDS is included for two reasons. First, it represents the state-
of-the-art in ‘‘classic’’ CSEs, where users initiate searches by means of
declarative query languages, which is still a highly sought after service.
Second, it provides a functionality reference point against which the
advantages of the large-scale observation technology offered by LASSO
can be gauged. Although the first generation TDS engines are no longer
publicly available, the principles by which they were realized are well
known and can serve as a baseline for comparison.

The LASSO platform has been described before in previous publi-
cations. The most comprehensive and detailed description is the PhD
dissertation of the first author of the paper (Kessel, 2023). This also
includes an introduction to LASSO’s search service and an overview of
its realization. Other papers that have used LASSO in test-driven soft-
ware experiments (Kessel and Atkinson, 2024) or the implementation
of other new services have also provided high-level overviews of its
features and implementations (e.g., Kessel and Atkinson (2019b,a) and
Kessel and Atkinson (2022)). The unique features of the current paper
are a comprehensive overview of LASSO from the perspective of reuse-
oriented code search, a more detailed description of how it overcomes
the seven weaknesses above, and a new study based on 20 real-world
examples that presents concrete evidence of the benefits these advances
bring to the state-of-the-art in TDS engines.

The rest of the paper is structured as follows. The next section
describes the context to the work, discusses the history and background
of CSEs, and discusses related work. Section 3 then presents LASSO
and its various CSE-related capabilities from the perspective of users
(i.e., a black box perspective), including an overview of the languages
and data structures that the platform offers. Section 4 continues with
a white-box perspective of LASSO, providing a detailed description
of the underlying structures, services and data sources that support
the previously described capabilities. Section 5 then turn to LASSO
TDS, describing both its user-facing services and GUI as well as its
implementation using LASSO’s scripting language and data structures.
With LASSO TDS having been presented, Section 6 presents a study that
shows how the realization strategy and underlying technology used to
build the service provides clear benefits over traditional TDS engine
implementations. Section 7 presents a discussion of the insights that can
be gained from the presented experiment, before Section 8 concludes
the paper with a summary of the presented work, an appraisal of its
potential significance and some remarks about how it could be built on
3

in the future.
. Background

In order to provide the context for the rest of the paper and explain
he contributions the LASSO platform can make to code search and soft-

ware reuse, in this section we describe relevant background material
and related work. Another goal is to establish consistent terminology.
Note that a recent survey on techniques for searching for code can be
found in Grazia and Pradel (2022).

2.1. Code search and software recommendation

In general, any technique or activity that exploits existing software
in the development of new applications can be regarded as a form
of software reuse (Krueger, 1992; Frakes and Kyo Kang, 2005). This
ranges from the use of exemplary snippets of software from forums
such as Stack Overflow (Abdalkareem et al., 2017) and the mining
of successful patterns from repositories, to the testing of tools and
hypotheses using large software data sets (Dyer et al., 2015). However,
the canonical form of reuse is the incorporation of pre-existing, self-
contained software components within new applications to reduce the
amount of code that has to be rewritten from scratch. A lot of research
was done on this form of reuse in the 1980s and 1990s (Mili et al., 1995,
1998), but its impact was limited by the small software data sets that
could be obtained at that time. The field received a new lease of life in
mid 2000, when open source software repositories started to become
accessible on the Internet and efficient, full-text search tools such as
Lucene (The Apache Software Foundation, 2022c) became available to
index and analyze their contents as textual documents. These advances
gave rise to a range of tools, referred to as code search engines (CSEs) or
code recommendation systems (CRSs), which aimed to tackle the core
problem of implementation-saving reuse — finding existing software
entities that match the needs of a new application or use case.

CSEs (Sim and Gallardo-Valencia, 2015) and CRSs (Robillard et al.,
2014) often go hand in hand and basically only differ in the way users
interact with the search technology. CSEs essentially require users to
perform a proactive search by creating some kind of explicit query,
whereas code recommendation systems typically do not require users
to perform explicit code searches, but suggest potentially useful reuse
candidates to them by observing their current development work. CRSs
usually depend on CSEs to carry out searches over large populations
of code units, but generate the queries automatically based on the
code the software engineer appears to be developing. Well known
examples of such dependencies include the CodeGenie recommendation
tool (Lemos et al., 2007) driven by the Sourcerer (Bajracharya et al.,
2014) search engine and the CodeConjurer (Hummel et al., 2008)
recommendation tool driven by the Merobase (Hummel, 2008) code
search engine. Since this paper is focused primarily on the code search
side of the technology, we do not mention recommendation tools in the
rest of the paper.

Interface-driven code search (IDS)
Since code is a form of semi-structured, text-based data, the majority

of dedicated CSEs is essentially based on full-text search. However,
the query languages of most CSEs assign a special meaning to the
core components of source code such as methods, classes etc. This can
extend to the level of allowing users to specify the interfaces of the
software abstractions they are looking for in terms of one or more
method signatures (Zaremski and Wing, 1995; Hummel, 2008; De Paula
et al., 2016). The goal of such interface-driven queries is to find all
code models that implement the specified interface. Since this can range
from a single method to a large collection of classes and other source
code components, the term software component is often used as an all
embracing term for the entities returned. We also use this term in this
paper. We regard a software component as any self-contained collection
of components that collectively appear to implement the desired inter-
face. For clarity, we refer to the interface and logical behavior of the
software component being sought in a search, as a functional abstraction
and any particular collection of components that realizes that interface

and behavior as an implementation of that functional abstraction.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

t
a
h
v

Test-driven code search (TDS)
The term ‘‘appear to’’ in the previous paragraph is important, since

it reveals one of the main weaknesses of contemporary CSEs — the need
to infer the semantics (i.e., run-time behavior) of software components
from the identifiers used to name classes, methods and parameters, and
if available, the comments that accompany the formal code statements.
Although these inference techniques have become quite sophisticated
through the use of advanced NLP techniques like word stemming,
word embeddings (e.g., code2vec Alon et al., 2019), query expan-
sion (Nie et al., 2016) and topic modeling coupled with AI-based
language models and neural networks (Gu et al., 2018), they can
never fully overcome the idiosyncratic choices of software engineers
when selecting identifiers. As mentioned previously, the problem of
establishing whether two software components implement the same
functional abstraction (i.e., the same behavior) is formally undecidable
(cf. Rice’s theorem (Rice, 1953)) so that no general purpose algorithmic
solution is possible.

The only practical way of removing the influence of identifier
choices in assessing the functional equivalence of software systems is
therefore to compare their responses to a sample set of stimuli from
their input spaces. This approach, first proposed under the name of
behavior sampling in the early 90s (Podgurski and Pierce, 1992), has
been shown to be effective provided that the set of stimuli is of suffi-
cient size and quality (Podgurski and Pierce, 1993; Kessel and Atkinson,
2019b). In an effort to support true semantic searches alongside text-
based searches, several CSEs such as CodeGenie (Lemos et al., 2007),
S6 (Reiss, 2009), Hunter (Wang et al., 2016) and Merobase (Hum-
mel, 2008) therefore incorporated some form of behavior sampling
capability under the name of test-driven or test-case-driven search.
In particular, S6 and Merobase seamlessly added semantic (i.e., test-
driven) searches on top of interface-driven searches. For the rest of
this paper, we use the term test-driven search to refer to behavioral-
sampling that enhances traditional search processes with the sampling
of input/output mappings. The precise way this sampling is performed
can vary, however. For example, Satsy (Stolee et al., 2014) is a CSE
that samples input/output mappings by so-called static execution —
that is, static program analysis in terms of symbolic execution and
constraint solving. Even though this approach is promising, the current
limitations of constraint solving restrict its applicability to tiny code
snippets. Moreover, no measurable engineering goals based on run-time
characteristics can be supported by this technique.

Code-driven code search (CDS)
Instead of requiring a classic interface-driven search query and a

set of test cases to define a test-driven search, it is possible for a CSE to
perform a test-driven search with only a single implementation of the
desired functionality as input. In such a code-driven search (or code-to-
code search) scenario, the CSE first has to extract the desired interface
from the input code and then automatically generate a set of tests with
which to execute retrieved candidates. Although this use case may at
first seem counter-intuitive, because by definition an implementation
of the desired functionality already has to exist, it may be a low
quality or untrustworthy one. Reusing mature, tried-and-tested open
source implementations of the same functionality may therefore have
advantages. Obviously, in this CDS scenario, the input implementation
is used as the oracle to determine the functional equivalence of can-
didate alternative implementations when executed. The FaCoY search
engine was developed to support precisely this CDS use case (Kim
et al., 2018), but uses a static analysis approach of the kind mentioned
above, and so is limited by the intractability of establishing functional
equivalence statically. However, observation-based TDS technology can
be extended to support code-driven searches as long as effective test
inputs can be generated automatically. The main limitation in classic,
execution-based implementations of CDS, therefore, is the quality of the
4

automatically generated tests. a
2.2. Clone detection

A field of software engineering research that overlaps with, and is
relevant to, CSE research is code clone detection (Roy et al., 2009).
Clone detection research is interested in detecting many more forms of
similarity between code components, and does not necessarily require
them to be functionally equivalent. Code clones are usually classified
into four different categories (Koschke, 2007) depending on what kinds
of similarity the code components exhibit —

• type-1: textual similarity (the code components are identical,
except for non-meaningful elements such as white spaces, carriage
returns and comments),

• type-2: lexical similarity (the code components have exactly
the same structure, except for systematically adjusted identifier
names and literal values),

• type-3: syntactic similarity (the code components are quite similar
syntactically, but differ in some way at the statement level),

• type-4: semantic similarity, the code components have similar
semantics, but may differ syntactically (e.g., the code components
may be implemented completely differently but have similar
semantics in terms of run-time behavior).

This terminology, however, does not clearly define what clones are
and what the employed similarity measures look like. Several authors
have therefore proposed additional subtypes of clones such as exact
clones for type-1, renamed and parameterized clones for type-2, near-
miss clones for type-3 and semantic clones for type-4 (Svajlenko and
Roy, 2016).

Although the code clone research field has different concrete goals
to the CSE field, its results are very relevant. In particular, CSEs usually
employ type-1 and type-2 clone detection algorithms to improve the
diversity of their results. Software engineers are usually interested in
‘‘different’’ implementations of the functionality they are searching for
rather than implementations that differ only in some trivial way such
as type 1 and 2 clones. TDS engines could therefore be characterized
as semantic clone detection engines, but we avoid this terminology in
this paper, since it seems counter-intuitive to refer to two algorithmi-
cally different implementations of a functional abstraction as clones.
Instead, we only refer to type-1 and type-2 clones, according to the
aforementioned taxonomy, as clones.

2.3. Large-scale software analysis platforms

Ensuring that the components returned in a code search implement
the sought after functionality is obviously a critical evaluation criterion
for practitioners. Nonetheless, numerous other factors can impact the
relevance of search outcomes. These range from straightforward, size-
oriented code metrics like cyclomatic complexity (e.g., McCabe (1976))
to more intricate measures such as the similarity of code duplicates.
As these metrics can be fairly hard to measure, a CSE must be able to
execute advanced analytical algorithms on a massive scale, akin to the
realm of big data. Furthermore, users should be empowered to specify
new relevance criteria by describing novel analytical algorithms in an
abstract manner, without the need for significant manual coding effort.
The current generation of CSEs only provides limited support for high-
level relevance criteria and does not give users the ability to define
new metrics in an abstract fashion. However, platforms in the emerging
field of large-scale software analysis, such as the Boa platform described
in Dyer et al. (2015), focus on delivering this capability.

The central objective of the Boa platform is to assemble an ex-
ensive, ultra-large repository of software components and make them
nalyzable in an abstract (i.e., syntax-based) manner using a dedicated,
igh-level, domain-specific language. While Boa was not explicitly de-
eloped to support interface-based and test-driven code search, it does

llow for keyword-based queries based on the abstract syntax of code

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

e
f

s
t
l
(

3

o
s
F
L
v
o
s
2
A
e
o
2
a
d
l

b
c
t
g
f

c
h
I
a
r
o
t
p
t
p
d
i
s
t

L
i
b

n
l
o
s
(
t
c
a
c
a
t
p
f
i
c
a
s

r
a
s
‘
t
a
r
r
(
d
i

3

c
2
c
s
l
a
e
n
n
T
2

b
F
M
p
c

L
o
2
s
m
c
a

3

w
f
L
g

elements. Furthermore, as demonstrated by QualBoa in Diamantopoulos
t al. (2016), the platform’s analytical capabilities can be harnessed to
ormulate advanced, reuse-oriented relevance ranking schemas.

Similarly, SourcererCC, an extension of the Sourcerer platform de-
cribed in Sajnani et al. (2016), facilitates syntactic code clone de-
ection on a massive scale. Nevertheless, a notable drawback of these
arge-scale analysis engines is their inability to accommodate dynamic
i.e., execution-based) algorithms and metrics.

. LASSO — User perspective

This section provides a new user-oriented (i.e., black box) overview
f the Large-Scale Software Observatorium (LASSO) which has been
pecifically designed to address the limitations discussed in Section 1.
urther details about the LASSO platform can be found in Kessel (2023).
ASSO offers a wide range of (automated) general-purpose analysis ser-
ices to support two primary objectives: (a) the development of novel,
r enhanced, solutions to specific software engineering challenges,
uch as diversity-driven test generation (Kessel and Atkinson, 2019,
022), and automated curation of executable live data sets (Kessel and
tkinson, 2019a), and (b) the performance of behavior-based, software
ngineering experiments (Kessel and Atkinson, 2024), such as studies
n functional equivalence in behavior sampling (Kessel and Atkinson,
019b). What sets LASSO apart from other (ultra) large-scale software
nalysis platforms like Boa (Dyer et al., 2013, 2015) is its unification of
ynamic analysis services with static, syntax-based services at an (ultra)
arge scale.
LASSO’s ability to select and compare software through large-scale

ehavior sampling means that it has the basic mechanisms needed for
lassic TDS. However, the languages and data structures supported by
he platform can also support a much richer set of code search use cases
eared toward software component reuse. In this regard, the three main
eatures of LASSO are —

• Executable Corpus: reuse candidates can be harvested from
LASSO’s single, underlying, executable corpus that offers a sys-
tematic repository model to incorporate a variety of data sources,

• Component Processing Pipelines: customized code search strategies
supporting rich combinations of reuse criteria can be defined
as pipeline scripts that serve as executable code search descrip-
tions as well as reusable templates to analyze and measure reuse
candidates,

• Software Analytics: LASSO’s specialized data structures can be
used to support offline software analytics that can guide the
decision-making process in reuse (i.e., to apply and enforce reuse
criteria).

In all search use cases, a search engine’s job is to find and return
oncrete items of a particular kind that the user (usually) does not yet
ave, but is able to imagine and describe. In the case of mainstream
nternet search engines, when users are searching for information about

certain topic, they imagine the perfect document with exactly the
ight information they are looking for, and provide ‘‘a brief description’’
f that document in the form of a textual query. The search engine
hen finds and returns concrete documents that match the imagined
erfect document, ranking them according to how well they match. In
he case of a CSE, when users are searching for a certain ‘‘concrete
iece of software’’, they imagine the ‘‘perfect piece of software’’ that
elivers exactly the right behavior and provide a ‘‘brief description’’
n a certain form. The CSE then finds and returns ‘‘concrete pieces of
oftware’’ that match the imagined ‘‘perfect piece of software’’, ranking
hem according to how well they match.

In order to provide intuitive ways of referring to these concepts,
ASSO uses the following terminology. A ‘‘concrete piece of software’’
s referred to as a ‘‘software component’’, or just component for short,
ecause the vast majority of code searches focus on parts of a system,
5

ot fully fledged systems in their own right. In Java, which is the
anguage currently supported by LASSO, components are composed of
ne or more interfaces and/or classes. The imagined ‘‘perfect piece of
oftware’’, on the other hand, is referred to as a ‘‘functional abstraction’’
loosely similar to a ‘‘coding problem’’ Chen et al., 2021) in order
o emphasize that it is abstract and not necessarily incarnated in a
oncrete form. Since LASSO aims to be aware of true behavior as well
s syntactic form, conceptually a functional abstraction is not only
haracterized by its name and its interface (i.e., method signatures),
s is the case in syntax-based CSEs, but also by its ‘‘behavior’’. Concep-
ually, the behavior of a functional abstraction is characterized by all
ossible ‘‘actuations’’ (i.e., stimulus–response pairs) through which the
unctional abstraction can be invoked. Finally, the ‘‘brief description’’
n the context of a behavior-aware CSE has to encompass a syntactic
haracterization of the functional abstraction’s interface as well as
semantic characterization of its behavior – that is, a ‘‘behavioral

ample’’ in the form of a set of test cases.
Using this terminology, the job of a CSE can be characterized as

eturning a set of software components that ‘‘implement’’ the functional
bstraction sought after by the user, described as a syntactic interface
pecification and a set of test cases. A software component is said to
‘implement’’ a functional abstraction if its behavior (i.e., set of actua-
ions) subsumes the behavior (i.e., set of actuations) of the functional
bstraction. In practice, LASSO supports functional abstractions that
ange from a single (often stateless) method, as in coding problems that
equire utility/auxiliary functionality (Lazzarini Lemos et al., 2009)
e.g., a method sorting an array), to stateful abstractions (e.g., a queue
ata structure realized as a class comprising methods characteristic for
ts behavior).

.1. Executable software corpus

The creation and maintenance (i.e., curation) of executable software
orpora has traditionally been performed by hand (Allamanis et al.,
018; Palsberg and Lopes, 2018) which is tedious and extremely time-
onsuming. This has historically been the ‘‘Achilles’ heel’’ of behavior
ampling approaches, since it impedes their practical application at a
arge scale. To reduce this impediment, therefore, it is necessary to
utomate the creation of executable software corpora to the greatest
xtent possible. Ideally, an executable corpus should contain a large
umber of diverse, non-trivial, up-to-date, real-world software compo-
ents to boost reuse opportunities (Do et al., 2005; Wohlin et al., 2012;
erra et al., 2013; Barr et al., 2015; Dietrich et al., 2017; Martins et al.,
018a).
LASSO addresses this problem by taking advantage of the modern

uild automation ecosystem provided by Maven (The Apache Software
oundation, 2022b) which is widely used by industry practitioners.
ore specifically, it automatically synthesizes build scripts for software

rojects to increase the likelihood that the software components in a
orpus will be executable.

The corpus can be constructed from a variety of data sources.
ASSO’s current corpus has been constructed from a vast assortment
f Java software components obtained from Maven Central (Sonatype,
022) and various other prominent software engineering repositories
uch as SF110 (Fraser and Arcuri, 2014). The underlying repository
odel allows for the integration of additional repositories, including

ommercial ones, to leverage reuse opportunities in as many contexts
s possible.

.2. Component processing pipelines

LASSO gives users control of search pipelines by enabling them to
rite scripts to access, manipulate and analyze software components

rom the aforementioned executable corpus. This is achieved using the
ASSO Scripting Language (LSL). LSL allows adaptable search strate-
ies and reuse criteria to be defined as component pipelines which

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
Fig. 1. LASSO - High-level overview of concepts.

serve as templates that can be reused. Using LSL, users can create
comprehensive analysis pipelines that incorporate multiple actions to
effectively analyze software components extracted from LASSO’s corpus
as demonstrated in Fig. 1. Typical pipeline elements involve actions to
—

1. retrieve software component candidates that exhibit certain syn-
tactic characteristics from the corpus (LASSO Query Language),

2. specify tests to stimulate the selected component candidates us-
ing a specially designed language (Sequence Sheet Notation),

3. execute the specified tests on the selected component candidates
in an ‘‘arena’’, and store the resulting actuations in a specially
tailored data structure (Stimulus Response Matrices),

4. enrich the data structure with additional software metrics for
filtering and analysis purposes (Software Measurement and
Analysis),

5. process the collected data in a multidimensional data structure
using mainstream data analytics platforms (Software Analyt-
ics).

We give an overview of each of these elements in the subsequent
subsections.

3.2.1. LASSO Query Language (LQL)
To be efficient, TDS approaches usually retrieve an initial set of

component candidates using a low precision, but fast algorithm to keep
the number of components to be tested manageable. To this end, LASSO
supports the NLP-based, ‘‘full-text’’ selection of software components
through keyword, phrase and filter queries. Basic keyword searches
and filtering techniques are applied in this preliminary step to retrieve
software components from LASSO’s corpus that appear to have the
desired behavior based on their static properties such as identifier
names and comments.

An advanced form of full-text search, which also takes the interfaces
of functional abstractions into account, is IDS (cf. Section 2.1). This
exploits the fact that functional abstractions with similar functional
behavior often have similar interfaces (De Paula et al., 2016; Kessel
and Atkinson, 2019b). In LASSO, interface-based queries are defined
using the LASSO Query Language, LQL, which offers a simple, UML-
like syntax inspired by Hummel’s MQL (Hummel, 2008) to describe the
6

interface of a functional abstraction by its name and method signatures,
including input and output parameters. For example, in LQL, a query
for a method implementing the Base64 url-safe encoding abstraction2

would have the form —

Base64 {
encodeUrlSafe(byte[])->String

}

Likewise, the interface of a FIFO queue data abstraction may be
specified as follows —

Queue {
enqueue(Object)->boolean
dequeue()->Object
peek()->Object
size()->int

}

Interface descriptions in LQL can be augmented with additional
filters to limit the number of software components of interest. These
filters cover a range of diverse filtering criteria including metrics and
API-related criteria (e.g., a queue has to implement the java.util.
Collection interface).

3.2.2. Sequence sheets
There are two key steps involved in the dynamic analysis of software

components based on their run-time behavior — creating executable
descriptions of how to stimulate (i.e., test) the components and record-
ing how the components respond to these stimuli. Together, these
constitute recorded actuations of the components.

As previously discussed in Section 1, current approaches for test
definition often struggle to effectively link these two aspects. Many test
definition methods rely on annotating code with assertions that specify
the expected return values of software components at specific points in
the code (e.g., unit testing frameworks such as JUnit (2022)). However,
because test methods can leverage the full flexibility of structured
programming, the exact sequence of component method invocations
during testing is often unknown until run-time. Furthermore, the actual
responses of the components to the stimuli are typically not recorded
unless an assertion fails and an informative feedback message or report
is generated, indicating a discrepancy between the expected and actual
response. Testers can usually only obtain information about the actual
responses of the system under test through manual debugging activities,
for example using an IDE’s debugger or monitoring code execution.

These approaches, therefore, significantly limit the analyzability of
the behavior of software components in reuse tasks. Moreover, given
the frequent ‘‘many-objective’’ goals of practitioners (e.g., code quality
attributes and functional sufficiency Kessel and Atkinson, 2016), they
often miss interesting software component candidates. In general, hav-
ing full actuation records available allows practitioners to make more
informed decisions.

To tackle this issue, LASSO introduces a unified approach for spec-
ifying sequences of stimuli for software components and documenting
their corresponding responses, in the form of a new Sequence Sheet
Notation (SSN). Unlike fully-fledged programming languages such as
Java, SSN does not include control flow constructs such as loops or
conditional statements, which means that it is not Turing-complete.
However, this limitation is typically not an issue when writing tests
(cf. Ammann and Offutt (2016)), as each potential (reachable) test path
written in a Turing-complete programming language like Java can be
expressed as an individual uni-path test in SSN. This approach offers
the benefit that the precise method invocation sequences are known in

2 A binary-to-text encoding schema (Josefsson, 2006).

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

a
o
u
o
p
s
w

s
a

t
s
r
o
t
c
t
i
a

Fig. 2. Example stimulus and actuation sequence sheets for 𝑄𝑢𝑒𝑢𝑒 abstraction.
t
t
p
s
l

s
i
c
e
i
i
k
l
t

s
c
t
h

3

t
c
c
c
S
a
s
a
a
a
F
b

t
E

advance, and allows for the recording of responses alongside the stimuli
that triggered them.

Like normal methods in object-oriented programming languages,
sequence sheets have two essential parts, and can thus be viewed
from two perspectives: (1) the body (or white-box perspective) contains
the individual invocations of the subject software component(s) that
occur when the sheet is executed, and (2) the signature (or black-
box perspective) comprises the test sheet’s name and any required
parameters or returned values that are passed when it is executed.

There are two types of sequence sheets: stimulus sequence sheets and
ctuation sequence sheets. The difference is that stimulus sequence sheets
nly define the invocations to be made on the software component
nder test when the sheet is executed (i.e., they specify a sequence
f statements ready for execution), while actuation sequence sheets
rovide full information about the stimuli and responses. Actuation
heets therefore augment the invocation details in a stimulus sheets
ith response records.

Fig. 2 shows an example of both kinds of sheets, displayed in
preadsheet form, for the FIFO 𝑄𝑢𝑒𝑢𝑒 example. The left-hand side shows
stimulus sequence sheet that can be applied to a 𝑄𝑢𝑒𝑢𝑒, identified as

a formal input parameter. The right-hand side shows a corresponding
actuation sequence sheet which is generated by executing the stimulus
sheet on a concrete 𝑄𝑢𝑒𝑢𝑒 which is passed as the actual parameter of an
invocation of the sequence sheet. The signature of the actuation sheet
shows that, in this case, the concrete implementation is 𝑄𝑢𝑒𝑢𝑒𝐼𝑚𝑝.

In greater detail, the top left-hand side of the figure identifies the
name of the abstraction, 𝑄𝑢𝑒𝑢𝑒, as well its signature represented in LQL
notation. The bottom left-hand side of the figure shows the signature
and body of the parameterized stimulus sequence sheet for exercis-
ing a queue’s methods. The signature gives the name of the sheet,
testQueueElements, and indicates that it receives one parameter,
𝑝1 which is a 𝑄𝑢𝑒𝑢𝑒 (i.e., the component under test).

The rows of a sequence sheet represent invocations of methods of
he component under test, including the input parameters. Actuation
heets also show the executed component’s response (i.e., output pa-
ameters). One of the columns of a sequence sheet identifies the name
f the method that is called in each invocation, in the case of Fig. 2
his is column 𝐵. The columns to the right of column 𝐵 (i.e., 𝐶 and 𝐷)
ontain the input parameters to each invocation, while the column to
he left of 𝐵 (i.e., 𝐴) shows the output parameters or responses from the
nvoked component. In the case of the stimulus sheet on the left, there
7

re no output values shown, while in the case of the actuation sheet on s
he right, the actual responses from the executed queue class implemen-
ation are shown. In general, there is no limit to the number of output
arameters a sequence sheet can handle. However, when dealing with
oftware components written in mainstream object-oriented languages
ike Java, only one output column is required.3

The input parameter of the first invocation in a sequence sheet
erves to pass the component under test to the sequence sheet, as
ndicated by the cell reference in the sequence sheet (i.e., 𝐴1). The
reate method is a special ‘‘pseudo’’ method whose execution gen-
rates an instance of the component under test. This abstract approach
s employed to initialize the subject component, since obtaining an
nstance of a class in the conventional manner (e.g., using the new
eyword in Java) is not always feasible, especially when dealing with a
arge set of diverse components that necessitate the creation of adapters
o overcome interface mismatches (see Section 4.2.3).

Note that method invocations in a sequence sheet are not restricted
olely to the component(s) being tested. They can also include invo-
ations to methods of other objects. This allows for more intricate
est scenarios, such as those involving complex test data providers and
elper functionality, which are commonly used in unit testing practices.

.2.3. Stimulus Responses Matrices (SRMs)
Sequence sheets are primarily designed for describing individual

ests conducted on individual software components. To extend this
apability to encompass the description of multiple tests on multiple
omponents (i.e., to automate the mass testing of software component
andidates), LASSO introduces a new data structure known as the
timulus Response Matrix (SRM). Essentially, an SRM contains multiple
ctuation sheets, each corresponding to the invocation of multiple
timulation sheets targeting various implementations of the functional
bstraction under investigation. In typical code search scenarios, it is
ssumed that all tests (i.e., stimulation sheets) and all implementations
dhere to, or support, the same functional abstraction. As illustrated in
ig. 3, the columns within the SRM represent the different components
eing tested, while the rows represent the different tests.

This illustration highlights the fact that SRMs can be viewed from
wo perspectives – a black box perspective and a white box perspective.
ach cell, row 𝑇𝑗 and column 𝑄𝑗 for instance, corresponds to the

3 Note that some other popular programming languages like Python do
upport multiple output parameters.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
Fig. 3. A stimulus/response matrix (SRM).
application of the stimulation sheet for test instance 𝑇𝑗 to the com-
ponent implementation for column 𝑄𝑗 . In the black box perspective,
only the signatures of each invocation are displayed, whereas in the
white box perspective the whole actuation sheet is shown. An SRM
thus offers an organized and cohesive data structure for archiving and
navigating all stimuli, responses, and measurements related to multiple
tests of multiple component implementations, enabling comparisons
of their behaviors. Furthermore, this structure can also accommodate
additional types of data (i.e., observational records) beyond those
pertaining to functional behavior (e.g., dynamic metrics).

The distinction between stimulus and actuation sequence sheets
is also reflected in the two types of matrices associated with these
sheets – Stimulation Matrices (SMs) for stimulus sequence sheets, and
Stimulus Response Matrices for actuation sequence sheets. In essence, as
illustrated in Fig. 3, SRMs are systematically organized collections of
actuation sheets, and thus may also be referred to as actuation matri-
ces. Similarly, Stimulation Matrices (SMs) are systematically organized
ensembles of stimulus sheets that define what stimulations must be
applied to the alternative component implementations.

The so-called arena is the actual test-driver that populates SMs in
LASSO (see Fig. 1) and applies the stimulations to the implementations
to obtain an SRM. Users can then explore and navigate SRMs to analyze
and compare the observed behaviors of the components.

3.2.4. LASSO Scripting Language (LSL)
The glue that allows all the aforementioned ingredients to be simply

and effectively used together is the LASSO Scripting Language (LSL).
LSL is a domain-specific extension of the Groovy programming lan-
guage (The Apache Software Foundation, 2022d) running on the Java
Virtual Machine, and allows users to have a unified view of an entire
data collection and analysis pipeline in LASSO. This is achieved by
means of reusable and composable actions that represent high-level, ab-
stract steps in an analysis pipeline. As well as the basic data structures
supported by Groovy, LSL actions can create and manipulate the set of
data structures which include SMs, SRMs and sequence sheets described
in the previous subsections.

Given that LSL analysis pipelines draw inspiration from the data-
flow programming paradigm (Johnston et al., 2004), an LSL script
illustrates the progression of data (i.e., data is held by functional
abstraction data containers) as a sequence of actions. In our context,
8

data moving from one action to the next is typically represented in the
format of SRMs. Each action functions as an analytical step capable
of manipulating the data in the flow, but creates data that cannot be
altered by subsequent actions (i.e., immutable). Copies of this data are
provided to other actions, allowing pipelines to safely pause and re-
sume their processing without interference from previous or concurrent
tasks. Additionally, this enables future scripts to access and utilize the
generated information at each step.

Although there is no strict classification system for action types
within LSL, they generally fall into two categories: (1) those that
focus on creating stimulation matrices for input to the arena, usually
involving code retrieval and filtering steps, and (2) actions that are
concerned with generating, augmenting and analyzing SRMs. Actions
can be combined and nested in any way, and may either create or
consume data structures.The Records data abstraction provides an ab-
stract representation of the kinds of information stored by LASSO when
an SRM is generated, such as responses, execution traces, dynamic
metrics etc. As can be seen in the diagram, an SRM contains multiple
Records, one associated with each cell. The Environment and Scope
data structures essentially store information about the conditions under
which the software components are executed (i.e., execution profile)
and criteria used to determine what code is part of the code units of
the component and what code is external for the purpose of calculating
metrics.

Listing 1 shows a simple TDS example of an LSL script that defines
a pipeline for selecting and analyzing implementations of the 𝑄𝑢𝑒𝑢𝑒
abstraction introduced above. Approximately the first two thirds of the
script (up to and including Line 33) are concerned with preparing the
ingredients for submission to the arena as an SM (through the text-
based selection of components in the select action and the definition of
the stimulus sheet in the filter action), while the final third is responsi-
ble for executing the SM and conducting a script-driven analysis of the
results stored in the output SRM returned by the arena.

The first line of the script identifies the executable corpus from
which the candidates should be retrieved (here a recent snapshot of
the Maven Central repository). The second line then uses LQL to define
the text-based search query for an interface-driven code search of the
kind defined previously. The next line then declares a study block that
represents the pipeline of analysis steps in terms of actions. To begin,
the first action select (starting at Line 8) conducts an interface-driven

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2

2
2
3
3
3

3

3
3
3

3
3
3
4

4
4
4
4
4

o
a
w

a

1 dataSource ’mavenCentral2023’
2 def interfaceSpec = ’’’Queue {
3 enqueue(Object)->boolean
4 enqueue()->Object
5 peek()->Object
6 size()->int }’’’
7 study(name:’Queue-TDS’) {
8 action(name:’select’, type:’Select’) {
9 abstraction(’Queue’) { // interface-driven code search
0 queryForClasses interfaceSpec
1 rows = 10
2 excludeClassesByKeywords([’private’, ’abstract’])
3 excludeTestClasses()
4 excludeInternalPkgs()
5 }
6 }
7 action(name:’filter’,type:’ArenaExecute’) {
8 sequences = [// stimulus sheet incl. oracle values
9 ’testQueueElements’: sheet(p1: ’Queue’, p2: 1,

p3: 2) {↪

0 row ’’, ’create’, ’?p1’
1 row true, ’enqueue’, ’A1’, ’?p2’
2 row true, ’enqueue’, ’A1’, ’?p3’
3 row ’?p2’, ’peek’, ’A1’
4 row 2, ’size’, ’A1’
5 row ’?p2’, ’dequeue’, ’A1’
6 row 1, ’size’, ’A1’ }]
7 features = [’cc’] // additional code coverage

measurements↪

8 dependsOn ’select’
9 includeAbstractions ’Queue’
0 profile(’jdk17profile’) {
1 scope(’class’) { type = ’class’ }
2 environment(’jdk17’) { image =

’maven:3.6.3-openjdk-17’ }↪

3 }

4 whenAbstractionsReady() {
5 def queue = abstractions[’Queue’]
6 def expectedBehaviour = toOracle(srm(abstraction:

queue).sequences)↪

7 // returns a filtered SRM
8 def matchesSrm = srm(abstraction: queue)
9 .systems // select all systems
0 .equalTo(expectedBehaviour) //

functionally equivalent↪

1 // continue pipeline with matched systems only
2 queue.systems = matchesSrm.systems
3 }
4 }
5 }

Listing 1: Simple LSL pipeline script - test-driven selection for 𝑄𝑢𝑒𝑢𝑒
implementations

Table 1
LASSO’s Maven Central corpus statistics (snapshot January 2023).

Unit Total Unique

Artifacts 184,464 184,464
Compilation units 8,884,430 6,947,672
Classes (non-abstract) 6,682,724 5,281,170
Classes (abstract) 531,732 397,691
Constructors 10,700,527 4,064,347
Methods (non-abstract) 75,335,199 28,916,079

code search to return at most 10 candidates (here Java classes), based
n the given 𝑄𝑢𝑒𝑢𝑒 interface specification in LQL notation, and defines
number of filters to exclude undesired candidates (i.e., candidates
ith undesired visibility restrictions or origin).

The candidates returned are then stored and passed to the second
ction ‘‘filter’’ (starting at Line 17) which dependsOn on the former

action and registers for the data structure created in the former action.
This action actually defines a new SM based on the definition of a
(parameterized) stimulus sheet (similar to the one introduced before,
9

but two distinct values are passed as parameters ?p2 and ?p3). Note
that stimulus sheets can contain oracle information (i.e., expected
outputs) in the response columns (here the first column).

The SM is then passed to the arena to be processed. This is con-
figured in Line 30 to have the desired execution profile. Users have
the possibility to define the actual sandbox environment including the
desired run-time version (i.e., execution profile, here Java’s JVM is
set to OpenJDK 17). This is realized using modern containerization
technology. Since the arena also supports additional measurements
such as obtaining dynamic metrics, scopes for measurements can be
defined as well. Finally, the output SRM from the arena (starting at
Line 35) is analyzed using script-driven analysis to establish functional
equivalence with the given oracle information in the first column of the
stimulus sheet.

3.3. Advanced software analytics

In general, LSL pipelines of the kind discussed above describe
the actions performed at execution (i.e., observation) time, while the
dynamic and static data is being collected. LSL provides a range of
actions that can be used to analyze the data online during the pipeline’s
execution, which we refer to as script-driven analysis.

The key difference to existing test definition approaches, however,
is that SRMs populated by the arena not only contain all the records
necessary to conduct complex comparisons of component behaviors,
they can also be serialized and analyzed in a sophisticated data-driven
manner. This opens up the possibility of shifting from the traditional
online, run-time analysis and comparison of software components per-
formed by unit testing frameworks to offline analysis and comparison
processes. This allows for more flexible decision-making in the reuse
process, since judgments about functional equivalence or similarity can
be postponed to a later phase (even outside the platform’s context).
Existing test-driven code search engines, in contrast, typically apply
strict matching criteria (i.e., all tests need to pass) and have a non-
transparent matching process which gives users no feedback about their
responses and hence no control over the applied matching criteria.

LASSO allows the recorded SRM data to be exported in popular data
formats like data frames (i.e., tabular representations) for deeper, offline
analysis using the full power of mainstream data analytics platforms.
Since observational records are stored centrally in a database, they
persist the results obtained by LSL script executions. Users can then
connect to the database in the range of ways commonly available today
(e.g., JDBC access), or export CSV files and other common storage
formats like Parquet.

4. LASSO - Architecture and implementation perspective

This section delves deeper into how the concepts and features in-
troduced in the previous section are implemented with a focus on how
they facilitate search and analysis capabilities. It therefore provides a
white-box perspective on the LASSO platform with a new focus on how
it implements the aforementioned LASSO TDS service.

Fig. 1 gives an overview of the platform’s distributed architecture
and its core components. The platform was developed using Java and
utilizes Apache Ignite’s clustering solution (The Apache Software Foun-
dation, 2022a) to provide a distributed database management system
and computations for high-performance computing.

4.1. Curating a corpus of executable software

LASSO is designed to facilitate the mass retrieval, execution and
observation of Java software components. The classes and interfaces
comprising the components are obtained from various data sources and
integrated into the executable corpus through a systematic curation
process. This process is supported by a practical repository layout
and storage model inspired by the Maven ecosystem. Internally, the
platform utilizes Maven’s ‘‘Project Object Model’’ (known as POM) to

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
Fig. 4. LASSO platform overview — distributed architecture (Kessel, 2023).
generate build scripts for the acquired Java compilation units, with
the goal of rendering them executable. This approach allows Java
projects containing diverse types and structures to be transformed into
the platform’s supported format. Additionally, when new data sources
are incorporated into the executable corpus, the Java modules they
contain undergo static analysis to construct a searchable, full-text index
of the code components. This index facilitates text-based code searches,
including interface-driven searches, using Solr/Lucene (The Apache
Software Foundation, 2022c).

Table 1 presents some basic statistics about the primary source of
executable data for LASSO which is Maven Central.

At present, this corpus encompasses a total of 184,464 indexed
Maven artifacts, 8, 884, 430 indexed Java compilation units (stored as
class documents), and 75, 335, 199 indexed Java methods (specifically,
non-abstract methods stored as method documents). These statistics
distinguish between the overall count and the number of unique en-
tities stored in the index. The uniqueness criterion is determined by
a straightforward comparison of string hashes (MD5 hashes) of class
and method bodies. The (physical) size of the index of this data source
is about 440 GB. It is important to note that in large repositories
like Maven Central, identical code clones are common occurrences
(cf. Lopes et al. (2017)). They often result from historical copy-and-
paste reuse (Sim and Gallardo-Valencia, 2015), the creation of compre-
hensive artifacts that integrate third-party dependencies, or multiple
releases and variations.

4.2. Interface-driven code search

An essential part of any TDS technology is the pre-retrieval of a
preliminary set of implementation candidates that appear to exhibit the
desired behavior, otherwise the execution overhead would be unman-
ageable (i.e., testing the entire corpus in the worst case). This can be
achieved through various NLP-based textual retrieval methods, but the
most effective method is to retrieve candidates based on their exposed
10
interface(s) using IDS. However, the effectiveness of IDS searches is
often limited due to signature mismatches caused by variations in
naming choices made by developers or differences in the position
and types used for parameters. This issue, partially related to the
vocabulary mismatch problem (Furnas et al., 1987), can lead to low
recall. To address this challenge and improve signature matches, LASSO
employs several optimization techniques such as fuzzy matching, word
similarity and type expansions techniques. These strategies help to
identify similar signatures despite variations in naming conventions or
parameter types used by developers.

As explained in the previous section, an interface signature in LQL
comprises identifier and type information. Therefore, IDS utilizes one
or both of these elements for matching purposes. The primary objective
is to prioritize matches that meet both identifier and type criteria first,
followed by further relaxing the restrictions on identifiers and types.
This is based on the assumption that components closely matching the
identifiers are more likely to deliver the desired functionality. In con-
trast, pure behavior sampling methods do not rely on specific identifiers
but rather focus on type information. As such, they remain unbiased
by exact identifiers and only consider types. This essentially leads to a
reformulation of the interface mismatch problem to a prioritization (or
optimization) problem where the candidates that ‘‘appear to’’ exhibit
the desired behavior are placed earlier in the result list, and hence are
tested first in behavior sampling (i.e., test execution) step.

We address this problem by applying the following optimization
techniques to prioritize components with interface signatures that ap-
pear to closely match the desired behavior —

• tokenizing identifiers and types (i.e., word stemming etc.),
• maintaining different combinations of signature representations

(cf. Hummel (2008)),
• expanding signature identifiers with similar identifiers,
• expanding signature type information based on type hierarchy

and relaxation.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

s
l
i
f

4

i
s
a
t
t
a
t
s

a
t
(
i
t
s
m
q
n
b

a
o
c

The first two optimization techniques can only be applied when the
index is first created, but the second two can be applied both at index
creation time and during the execution of a specific search (i.e., at
query time). The last optimization technique seeks to (a) establish
compatible types using type hierarchy analysis, and (b) if feasible,
convert types to compatible ones (for instance, changing int to long).

4.2.1. Interface representation
The initial step involves tokenizing the interface signatures obtained

from components during the indexing process and from functional
abstractions (i.e., interfaces represented in LQL) during query pro-
cessing. This tokenization process includes breaking down identifiers
and types in accordance with the standard naming conventions of the
programming language, which involve using upper and lower camel
case for class and method names, respectively.

There are two reasons for keeping various variations of signature
representations. The first is rooted in the concept of addressing com-
mon signature mismatches using a set of rules or guidelines. These
rules encompass scenarios related to parameter order, how type names
are represented (whether fully-qualified like java.lang.String or
impler like String), and also include representations with differing
evels of detail (for example, excluding identifiers). The second reason
s to provide a range of query options and capabilities to design a
allback strategy to further improve recall.

.2.2. Query formulation and expansion
Recall that LQL is used to query the corpus’ index in an IDS. LQL

s based on an ANTLR4 grammar that is used to parse the interface
ignature into a tree structure which is then used for translation into
ppropriate Solr subqueries. Several subqueries are constructed which
arget different variants of the signature as defined by the representa-
ions discussed before. Basically, all those signature-related subqueries
re weighted according to their importance, from complete and exact,
o incomplete and similar, and are combined in order to form a fallback
trategy that aims to improve the recall of components.

We apply two additional query expansion techniques (Carpineto
nd Romano, 2012) to further improve recall in IDSs by augmenting
he constructed query with additional subqueries of lower importance
i.e., lower weight). Firstly, we expand the search space of method
dentifiers by taking advantage of word embeddings, an NLP technique
hat represents words as number vectors and allows their semantic and
yntactic properties to be identified including their co-occurrence to
easure word similarity. We take advantage of word embeddings by

uerying the code2vec model trained by Alon et al. (2019) for method
ames. Note that in this case we obtain similar words for an identifier
ased on the entire method identifier (no splitting).

Secondly, we allow for the expansion of signature types by including
ny compatible or convertible types found in their hierarchical (object-
riented) structure (i.e., super types) or through a predetermined list of
onvertible types (e.g., String to byte[]). Overall, with regard to

query construction, the objective is to exactly match signature types
first, then to relax the matching strictness while allowing for some
flexibility with identifier matching.

4.2.3. Adapter synthesis
Using the previously described method, the goal is to maximize the

inclusion of components by loosening the criteria for matching inter-
face signatures. It is crucial to emphasize that this approach identifies
components whose interface signatures are theoretically compatible
but require additional work to make them callable by the stimulus
sheets that assume the concrete interface signature of the functional
abstraction being sought. To make the initial set of textually retrieved
components callable by the sequence sheets, it is necessary to synthe-
size adapters that effectively delegate the stimuli to the actual interface
11

of the component being tested.
Tackling the problem of interface mismatches through automated
adapter synthesis is a challenging endeavor. The run-time adaptation
of components is performed in the arena test-driver, which executes
SMs and produces SRMs, using Java’s meta-programming reflection fea-
ture (Li et al., 2019; Lilis and Savidis, 2019). The adaptation mechanism
employed in the arena follows a similar idea to the aforementioned
technique for retrieving components textually. Since the adaptation
problem essentially suffers from a combinatorial explosion of its search
space, it has to be treated as an optimization problem. The search space
of possible adaptations is mostly influenced by the number of methods
possessed by a component, their input parameters as well as their type
compatibility. When attempting to match a certain configuration of
methods to a functional abstraction, many different permutations of
methods and their parameters often need to be tried to find a perfect
match. Early approaches such as the brute-force approach used in
Merobase (Hummel, 2008) are highly inefficient, since they simply test
all combinations until a match is found.

We apply a more systematic and goal-oriented strategy to prior-
itize combinations of methods that are likely to yield a match. The
prioritization scheme is based on the idea of improving adaptation
performance by selecting method permutations to execute using the
following information —

• type hierarchy of each method parameter (input/output) by walk-
ing up the inheritance hierarchy of a type to find assignable types
up to the root type,

• primitive (wrapper) type casting and relaxation,
• switching parameter type positions,
• looking up inherited methods of matched classes (overridden

methods in subtypes are favored),
• ranking method permutations based on a prioritization schema

that weights matches based on closeness.

Our priority scheme for prioritizing method permutations is based
on type closeness, location of the matched method in the inheritance
hierarchy of the current class and, optionally, naming conventions.
We use a loose weighting approach to compute the ranks of method
permutations similar to that used by Wang et al. (2016). The adap-
tation technique employed also offers the possibility of defining new
adaptation operators which are basically categorized into producer and
method operators. While producer operators have the responsibility
of obtaining an instance of a Java class (e.g., constructors or factory
methods), method operators realize more advanced strategies to adapt
and invoke methods (e.g., converting types like string into byte array).
For space reasons, in this paper it is not possible to provide a complete
list of the operators provided by the platform. A complete list can be
found in Kessel (2023).

4.3. Workflow engine

The core of the platform is the workflow engine which oversees
the management of script pipelines and the delegation of tasks to
other platform components (see Fig. 4). The scripting engine plays a
crucial role in parsing and interpreting LSL scripts, while the workspace
manager handles the provisioning and loading of work spaces for
script executions. The data source manager serves as both the point
of integration for new data sources for the executable corpus and the
manager for data sources configured in LSL script executions.

Similarly, the action manager serves as a repository for the available
reusable actions and manages their status. These actions are designed to
interface with external tools and research techniques, allowing them to
be employed within LSL scripts for specific analyses and comparisons.
Consequently, users and integrators have the ability to develop and

share custom actions tailored to their specific tools and techniques.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
4.3.1. Script execution
LSL scripts are executed in a distributed manner. When an LSL

script is submitted to LASSO, the manager node employs a partitioning
strategy with the objective of establishing a distributed execution plan.
This plan assigns actions and selected components to a group of avail-
able worker nodes within the cluster, based on directed acyclic graphs
(DAGs) which are extracted from LSL pipelines. Currently, the default
partitioning strategy generates blocks of components in a round-robin
fashion, and these buckets are subsequently allocated to worker nodes.
Each worker node then carries out the entire LSL action on one of these
blocks of components. The manager node ensures consistency by con-
solidating the results and state once all worker nodes have completed
their actions. This is achieved through shared state management via an
in-memory data grid and a distributed file system.

4.3.2. Arena execution and observation
Software components are primarily executed in the arena compo-

nent of the platform. The primary function of the arena is to create
instances of the stimulus sheets from the input SMs on the compo-
nents and then run them in order to produce SRMs. It handles all
the heavy lifting by retrieving all the necessary (Maven) artifacts for
the components, loading required classes using a dedicated, isolated
(Java) ‘‘Classloader’’ that can be instrumented for additional analyses
(e.g., dynamic metrics such as code coverage measurement), and even-
tually attempting to execute the adapted variants of the components
(cf. Section 4.2.3).

Once all tests have been executed on all computed adapters (i.e.,
based on a certain setting), the results are directly written into the dis-
tributed database of the platform. The observational records obtained
(i.e., observed responses and additional measurement records) can be
analyzed further either in a script-driven or data-driven, offline way.

The execution of SMs is split into manageable batches that are dis-
tributed among computing nodes in the cluster, allowing both vertical
and horizontal scaling. Each computing node runs an instance of the
arena test-driver, enabling multi-threading to run multiple components
in parallel.

4.3.3. Sandboxing and extensibility
Running foreign software components from large repositories on

local machines can be risky and may have undesired consequences,
including malicious behavior (e.g., Fraser and Arcuri (2014)). To pre-
vent this, LASSO isolates the execution of actions and components
within secure sandbox environments which are realized using docker
containerization. These not only provide fine-grained control over re-
source allocation and permissions, but also allow users to specify their
target (reuse) execution environments (e.g., specific Java version).

Containerization also serves as an extension point for the platform.
It enables third parties to create custom environments that contain
certain tools and techniques to be used for specialized kinds of analysis.
More generally, since LASSO is designed as a general-purpose platform
that allows the creation of new and customized analysis services, new
tools and techniques can be integrated via its action model (i.e. using
the LASSO Action API). Note that the platform already integrates a
couple of actions to offer various code analysis options as demonstrated
by LASSO’s TDS service in the next section.

5. LASSO TDS

As discussed above, the biggest user feature distinguishing LASSO
from first generation CSEs is LSL which allows users to (a) quickly and
concisely write their own code search algorithms (and algorithms for
many other applications as well), and (b) customize basically every
aspect of the search process, including the (data) source of the com-
ponents, the clone removal criteria, the syntactic matching criteria and
the behavioral (a.k.a., semantic) matching criteria. From this perspec-
tive, we believe that LASSO can be regarded as a second generation
12

CSE (among other things).
However, for users who want to customize the details of their search
processes, learning how to use LSL and write effective workflow scripts
is a non-trivial task. There is therefore still a big call for ‘‘traditional’’
query-based search services that allow users to define the functional
abstractions they are looking for in a much simpler, declarative way.
Although LASSO incorporates all traditional CSE capabilities as LSL
actions for the purpose of defining new services, these can only be
invoked using LSL. Therefore, in this section we show how LSL can be
used to efficiently implement a ‘‘classic’’ test-driven search service, with
a corresponding ‘‘classic’’ web interface, but with the extra precision,
recall and performance afforded by LASSO’s technology. This service,
which we refer to as LASSO TDS, has three main purposes —

• to demonstrate the flexibility and power of LSL as a language for
defining new services on top of LASSO’s built-in features,

• to create an online, state-of-the-art TDS service that not only goes
beyond the capabilities of the first generation of TDS engines,
but also beyond the TDS capabilities currently built into LASSO.
This is because it includes a sophisticated way of ‘‘relaxing’’ the
matching criteria to increase recall, as explained below.

• it allows the advantages of LASSO to be compared to a known
‘‘comparison point’’ for CSEs which is the traditional implemen-
tation of classic TDS services. Although, at the time of writing,
all the first generation TDS engines have been deprecated and are
no longer accessible, their fundamental implementation strategies
are well known and can be used for comparison. LASSO TDS
therefore provides the basis for the study in Section 6.

5.1. Strict test-driven search

Listing 2 (Appendix) demonstrates how LSL can be used as a dy-
namic query language to design a strict TDS service using the queue
abstraction as a running example. While this pipeline shares simi-
larities with Listing 1 (i.e., using IDS for text-based selection and
behavior-based filtering based on functional equivalence to make the
final selection), it also includes two additional actions to filter out com-
ponent candidates based on the presence of code duplicates and to rank
candidates according to their relevance to user-supplied preferences.

First, a set of component candidates is textually retrieved using IDS
(cf. Section 4.2). The first block demonstrates an additional filter that
rejects candidates that have a cyclomatic complexity less than 2. The
next action, rejectClones, then rejects type-2 code clones using
the Nicad code clone detection tool that is integrated into the plat-
form (Cordy and Roy, 2011). The rejection of clones serves to increase
the diversity of the set of component candidates returned by IDS, and
thus demonstrates how such a custom reuse criterion frequently desired
by users can be explicitly enforced in LSL. The state after each action
is also saved to further increase the overall transparency of the search
process (i.e., to explore which candidates were rejected).

As explained earlier, the arena test filter goes one step further
by allowing users to specify stimulus sheets to improve the precision
(i.e., relevance) of the candidate set based on their exhibited behaviors.
This version of the TDS service is referred to as ‘‘strict’’ because if
a response provided by a candidate does not match the expected
response (i.e., output values), according to Java type matching rules, it
is rejected. Each analysis step in the pipeline may produce aggregated
measures (i.e., observational records as part of SRMs) that can be used
to rank the accepted components based on user preferences. An ideal
ranking places the components that best match the requirements at
the top. Ranking in this example is demonstrated by the integration
of the SOCORA approach (Kessel and Atkinson, 2016) which provides
non-dominated sorting based on multiple criteria and can be used as
an alternative to simple LSL actions that involve imperative sorting on
certain attributes. Note that by default candidates are sorted by their

IDS relevance.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

m
t
c

c
a
a
r
i
h
a
f
a
r
u
t
t
a

p
s
t
f
a
r
m
a
p
t
c
r
r
(
C
m
m

i
o
c
b

a
h
e
p
A
u
b

d
c

I
t
u
(
s
r
g
i

T
d
s
p
e

6

L
e
a
d
a

b
p
a
A
p
t
t
r
r
e

q
r
r
i
a

t
o
o
T
e
F
t
t

5.2. Relaxed test-driven search

While classic TDS processes attain a high level of precision by
utilizing test filtering (which means rejecting all candidates that do
not return the expected outputs), their strict rejection criteria usually
reduce recall. To further improve recall over the previously described
strict variant of LASSO TDS as well as LASSO’s built-in TDS capabilities
accessible via LSL, LASSO TDS includes an advanced behavior-based

atching algorithm. This uses LASSO’s actuation analysis capabilities
o generalize the matching criteria, thereby increasing recall without
ompromising precision.

The concept of relaxed TDS is rooted in the idea that, beyond the
andidates identified by the strict matching criteria of strict TDS, there
re also variations of expected outputs that users would probably view
s functionally equivalent. In a strict TDS engine, users are generally
equired to assume that there is only one correct set of outputs, making
t nearly impossible to consider alternatives. Consider, for example,
ow a method signals errors when given an invalid input value, such as
null reference. Over time, developers have devised various methods

or handling invalid inputs. For example, one developer might return
negative integer to indicate an error (e.g., −1), while others might

eturn a null value or raise an exception of a specific type. If a
ser expects only one of these three as the correct output, although
he remaining outputs still make sense semantically, the user is likely
o overlook interesting software components that only differ in their
pproach to error handling.

The queue abstraction example provides another illustration of the
otential advantages of broadening the matching criteria. In real-world
cenarios, there are certain variations in how (Java) queue implementa-
ions handle their return values, and these variations may slightly differ
rom what a reuser might expect in terms of both method signatures
nd expected outputs. For instance, some queue implementations may
eturn nothing (i.e., void type) when the enqueue or dequeue
ethod is invoked, while others may return a boolean type or the

ctual enqueued or dequeued element. If the reuser is willing to ex-
and the matching criteria to encompass outputs that do not alter
he overall desired behavior, a wider range of matching components
an be returned. Other examples include the specific formatting of
eturn string values (e.g., new line or space characters may be ir-
elevant to the reuser), or additional features that were unexpected
e.g., the representation of a hash value in some encoding scheme).
onsequently, tailoring the behavioral matching criteria to include
ore components can potentially provide increased recall while still
aintaining precision.

The specific matching criteria are naturally determined by each
ndividual reuser (i.e., the arbiter), and as such, they may vary from
ne situation to another. Overall, since the reuser is the arbiter in this
ase, the range of possible generalizations (i.e., allowed outputs) may
e huge depending on the underlying functional abstraction.

SRMs empower reusers to create tailored matching criteria by en-
bling them to cluster components according to their equivalent be-
aviors (in terms of equivalent outputs). These clusterings can be
xploited systematically to automatically recommend clusters of com-
onents with behaviors closely aligned to those defined by the reuser.
lternatively, the reuser can explore these clusters to gain a deeper
nderstanding of the different recorded behaviors related to the desired
ehavior.

As previously noted, it is worth highlighting the fact that the
etermination of functional equivalence among software components
an also be achieved offline, independently of LASSO TDS, using some

external data analysis tool that examines the exported SRMs and the
13

observational records (i.e., outputs) they contain. s
5.3. Templating and frontends

As mentioned previously, once stable, LSL pipelines can be used to
realize a variety of packaged code search services that can be consumed
by other applications or search frontends. One way of achieving this is
to prepare script templates that are instantiated with a subset of query
information collected from the user (similar to popular templating
engines or code templating). This script templating capability is used
to deliver LASSO TDS in the form of two user-facing applications — an
IDE plugin for IntelliJ (see Kessel (2023) for details) and a web-based
UI that provides the classic CSE interface and offers several views to
hide the details of the pipeline construction process as illustrated in
Figs. 5(a) and 5(b).

Fig. 5(a) illustrates how a classic TDS query is defined using the
web user interface of LASSO TDS (displayed on the right-hand side).
n this interface, users are presented with (1) an editor for specifying
he interface of a functional abstraction, such as the queue abstraction,
sing LQL, and (2) an editor for creating one or more stimulus sheets
i.e., for test-driven filtering). Additionally, users can configure various
ettings, including extra filters, certain actions and general search and
anking parameters (e.g., rows, etc.). To provide a visual example, the
enerated LSL script pipeline is displayed on the right-hand side (which
s hidden from the user in the UI).

Fig. 5(b) presents a sample excerpt of the results obtained from a
DS for a 𝑄𝑢𝑒𝑢𝑒 abstraction. Each row in the result provides additional
etails about the matched component, including its actual interface
ignature, source code, observational records from the SRM, and sup-
lementary reports generated by the platform as part of the actions
xecuted (e.g., statistics).

. Demonstration and evaluation

Having introduced the concepts and approach behind LASSO, and
ASSO TDS in particular, in this section we provide initial experimental
vidence of the effectiveness of LASSO TDS as a strict (i.e., traditional)
s well as a relaxed TDS engine to support code search use cases. The
ata and materials used in this study are publicly available at Kessel
nd Atkinson (2023).

It is important to stress that it is not possible to perform a full
enchmarking experiment that compares the performance of our ap-
roach to existing approaches for two reasons. The first is that there
re currently no other TDS engines to compare our prototype to.
s mentioned previously, the first generation of TDS engines were
rimarily developed in the late 2000s in research projects and at the
ime of writing have all been discontinued. It is therefore not possible
o make any quantitative statements about our prototype’s performance
elative to other technologies in terms of size, speed, precision and
ecall, since there are no other test-driven CSEs currently available for
xecution.

The second reason is that a comparison of the precision and recall
uality metrics with standard, static, analysis-based approaches would
equire a common baseline or benchmark. In other words, it would
equire the underlying repositories of the search engines to be fully
ncorporated into LASSO’s repository to allow our algorithms to be
pplied to the same search space.

At present, achieving this goal is made difficult by a mix of concep-
ual and practical obstacles. One such obstacle is that the repositories
f other CSEs are seldom shared with importability in mind, or thor-
ughly described, especially in terms of achieving code executability.
ypically, these repositories do not prioritize or even consider code
xecutability, making it challenging to use them for benchmarking TDS.
urthermore, individual code units may not be ideally suited for the
ask at hand (e.g., loose code snippets missing contextual information
hat hinders executability), adding to the complexity of the process.

To provide evidence that the new features and mechanisms de-

cribed above do provide value and advance the state of the art, we

The Journal of Systems & Software 215 (2024) 112065

14

M. Kessel and C. Atkinson

Fig. 5. LASSO TDS - Web UI based on Templating.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

c
t
p
s
r
L
s
c
t
t
r
p

c
C
t
s
a
o
u
a
b
o
a
w
a
i
f

p
t
(
o

6

s
2
r
M
r
a
a
a
d

t
T
a
a
o
s

6
T
s
t
b
a
P
b

p
a

i
a
c
J

C
v
w
d
c
I
t
r
I
f

A
L
t
t
p
t

c
e
n
p
b
(
s
d

S
a
m
o
e
(
h
t
t

m
o
r
c

6

t
a
s
p
a
f
i
f
a
i
c

adopted an alternative study design involving 20 non-trivial, real-world
ode search problems related to reuse. The goal of the study was
wofold. The first subgoal was to demonstrate the uniqueness of the
resented technology and provide evidence that the test-driven filtering
tep and adaptation technology improve the precision of the search
esults, relative to the initial text-based search (i.e., IDS). In this case,
ASSO TDS is used as a strict TDS engine as described in the previous
ection. We refer to this approach, with strict behavioral matching
riteria, as S-TDS in the remainder of this section. The second subgoal of
he study was to demonstrate how the relaxed TDS approach, referred
o as R-TDS in the remainder of this section, improves the levels of
ecall that can be achieved relative to S-TDS without compromising
recision.

To this end, we attempted to match and characterize diverse, Java
lass implementation candidates from a recent snapshot of Maven
entral (January 2023) based on several advanced criteria. In contrast
o the obsolete first-generation TDS engines, the goal was to demon-
trate how various features of LASSO, including IDS, stimulus sheets,
daptation and SRMs, can be used to uncover Java implementations
f the chosen functional abstractions. To accomplish this, we made
se of LASSO’s SRM data structure in two ways to identify function-
lly equivalent implementations. For S-TDS, we automatically applied
ehavioral matching criteria (i.e., script-driven), since the expected
utputs were provided in the stimulus sheets for the search problems. In
ddition to the expected responses specified in S-TDS, to realize R-TDS,
e analyzed LASSO’s SRM records offline, employing an external data
nalytics tool to manually identify groups of responses from potential
mplementations that align with the expected responses for our studied
unctional abstractions.

Finally, to gain a deeper understanding of these matched class im-
lementations, we also measured them using dynamic metrics related
o their size, specifically line and cyclomatic complexity (cf. McCabe
1976)) coverage. In the following subsections, we present the specifics
f our study design.

.1. Design

The 20 selected functional abstractions were all analyzed using the
ame LSL study pipeline script template similar to the one in Listing

(except the ranking action). Thus, the given LSL pipeline design
ealizing S-TDS applies the same basic reuse criteria for all abstractions.
oreover, it is important to stress that even though it prepares a final

esult set of candidates from a pipeline perspective, it also collects
nd retains all the SRM-related records in order to realize R-TDS in
data-driven manner (i.e., enable behavioral clustering analysis). In
nutshell, it combines static, textual selection based on IDS with

ynamic observations about Java classes using stimulus sheets.
The search pipeline design follows a strict test-driven approach

o select matching implementations for each functional abstraction.
he same reuse criteria are applied consistently across all functional
bstractions, with each abstraction’s interface represented using LQL
nd tests represented using stimulus sheets (including the expected
utputs). In the following subsection, we explain the purpose and
ignificance of each action and its crucial configuration parameters.

.1.1. Actions
extual selection. The first action, Select, performs a textual IDS
earch, which is explained in detail in Section 4.2. This process iden-
ifies Java class candidates that match the interface of the abstraction
eing analyzed. The top 𝑁 Java class candidates for each functional
bstraction are then returned, ranked by their textual similarity scores.
arameter 𝑁 was set to 1000, a value which we empirically determined
ased on the data source used for the study.

To further refine the set of relevant Java class candidates (i.e., ex-
ress more reuse criteria), we defined additional filters to exclude those
ssumed to be less important for reuse purposes. These excluded classes
15

p

nclude other private classes (based on their visibility concept in Java),
bstract classes that may not represent a concrete implementation, and
lasses belonging to testing facilities or internal packages (e.g., Java
DK).

ode clone detection. Since class code duplicates are usually of little
alue for reuse tasks, after obtaining the initial set of textual candidates,
e took steps to enhance their diversity using Nicad’s code clone
etection tool (version 6.2) to identify and reject any type-2 syntactic
lones (i.e., clones with identical source code). Given the order in which
DS search returns class candidates, we then used this information
o identify clusters of potential clone candidates. Subsequently, we
emoved all class clones except the one with the highest textual score.
n cases where multiple candidate scores were equal, we retained the
irst candidate returned by the textual selection step.

rena execution. The final action utilizes the arena test driver of the
ASSO platform. This step focuses on observing and analyzing the run-
ime behavior of the diverse set of Java class candidates collected
hrough the IDS step and extensive filtering as explained before. The
urpose is to make these class candidates testable in order to execute
he stimulus sheets on them.

In the arena action, we limited the number of software adapters
omputed for each class candidate to a maximum of 100 (a value
mpirically determined based on the complexity of the interface sig-
atures used in the study). These adapters were then executed on the
rovided set of stimulus sheets. It is important to note that there may
e multiple adapters for a single class candidate that exhibit the same
desired) behavior. Developers often provide various methods with
imilar functionality but different parameter types, or methods that
elegate to other methods, for instance.

The primary objective in the context of the study was to gather
RMs for every adapter implementation so that they could also be
nalyzed later in an external data analytics tool as well as in the auto-
ated pipeline script. To achieve this, we collected two essential types

f observational data. Firstly, we recorded the responses generated by
ach adapted implementation in response to the provided stimuli sheets
i.e., inputs). This allowed us to evaluate and match their exhibited be-
avior. Secondly, we utilized the arena’s internal measurement facility
o gather information on the size of matching implementations after
he adaptation process. To accomplish this, we employed JaCoCo’s code

coverage measurement facility to obtain dynamic metrics related to line
and branch coverage for each adapted implementation using class-level
measurement scope. This provided additional information about the
candidates that behaviorally match the desired functional abstraction.

LASSO’s grid execution environment was configured to utilize the
ost up-to-date (long-time support) version of OpenJDK 17 available

n docker hub. This ensured that all worker machines in LASSO’s grid
an the candidates in the same controlled environment, to guarantee
omparable measurements (i.e., validity of the measurements).

.1.2. Search problems
The experiment was conducted on 20 non-trivial, real-world func-

ional abstractions sourced from a variety of coding platforms. These
bstractions were selected manually to cover various abstract data
tructures, mathematical operations and auxiliary functions, including
opular representations of character sequences (e.g., Base64, JSON,
nd hashes). We defined each functional abstraction’s ‘‘typical’’ inter-
ace in LQL and created one or more stimulus sheets to characterize
ts functionality. Due to space constraints, only a summary of these 20
unctional abstractions is provided in Table 2 – each abstraction’s name,
brief description of its functionality, the number of methods in its LQL

nterface, and an overview of the tests (i.e., stimulus sheets) defined to
haracterize its behavior.

Note that to streamline the study design, we applied the same ap-
roach to all 20 abstractions without attempting to incorporate custom

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
Table 2
Search problems.

Name Description # Method Sigs. Test(s)

Queue Queue data type 4 First in, first out (FIFO)
FromJson Parse a Map from a String representing a JSON document 1 Deserialize a Map (key–value pair)
ToJson Generate a JSON document string from a Map 1 Serialize a Map to JSON representation
B64Encode Encode characters to Base64 alphabet (require padding of

characters)
1 Encode strings including/excluding padding

B64Decode Decode characters from Base64 alphabet (requires
padding of characters)

1 Decode strings including/excluding padding

Fraction A fraction (math) with numerator, denominator and
decimal representation. Simplification allowed.

4 Get numerator, denominator, decimal representation
(simplification allowed)

Sha256 SHA256 1 Require string in hexadecimal representation
Matrix A Matrix data structure 4 Setting/getting values, summing matrices
HtmlSanitizer Clean untrusted HTML fragments 1 Clean JavaScript alert
MultiMap A map data structure that holds key-list value pairs. 3 Require values represented as Collection type
Bag A Bag data structure 5 Add elements and get counts
NGramDist Distance measure based on ngram (bi-gram) 2 Test for bi-gram distance
NGramGen Generate word-based bi-grams 1 Test for generating word-based bi-grams
FilenameExt Extract extension from absolute path 1 Test for extracting extension from absolute file path
DAG A directed acyclic graph 3 Test for outgoing edges
MinHeap A min-heap (binary tree) data structure 4 Test for minimum value
MovingAverage Moving (rolling) average (statistics) 3 Test for change in average when new values are added
Cosine Cosine similarity of two vectors (from strings) 1 Test similarity measure of two strings
TreeNode A node in a tree 4 Test for children
Stack Stack data type (size and empty check) 5 Last in, first out (LIFO)
𝑅

R

a
C
S
p
i
c
t
T
S

r

𝑅

𝐶
q

w
t

6

e
i
p
t

reuse criteria for each. In practice, however, there are numerous possi-
ble variations, such as requiring data types (e.g., Stack) to be subtypes
of a specific interface in Java (e.g., java.util.Collection). Ad-
ditionally, one may choose to filter textual candidates based on their
size-based complexity or enforce other filtering steps during the study
design process. These filters can either be added as part of the select
action (pre-processing of candidates) or queried within the analysis of
SRM records (post-processing of candidates).

6.1.3. Software analytics
Because of LASSO’s flexibility, users do not necessarily need to

specify an oracle as part of their tests (i.e., predefine values in the
output column of stimulus sheets) for Java classes. Instead, they can
establish functional equivalence relative to a reference implementation
later on. In our case, to realize R-TDS, we used the external analytics
tool R to load the SRM records containing the behaviors exhibited
by class/adapter combinations from LASSO’s database and calculate
descriptive statistics about their complexity obtained using JaCoCo.
More specifically, we clustered the actuation sheets’ responses from
class candidates for each functional abstraction’s stimulus sheets. By
manually inspecting these response clusters, we relaxed our matching
criteria and identified one or more response clusters that matched the
desired behavior in terms of the equivalence of the returned outputs.

6.1.4. Relative improvements
For the reasons mentioned above, it was not possible to calculate

absolute precision and recall values for the search results due to the
intractability of establishing a large, comprehensive ‘‘ground truth’’
dataset of executable software components.

To address this challenge, we instead estimated the precision and
recall of the S-TDS and R-TDS implementations relative to each other
and the first IDS step. Firstly, in order to obtain useful insights into
precision, we calculated the relative improvements in the precision of
S-TDS over the initial clone-free, textual result set obtained by IDS.
Here we assume the clone-free set obtained through IDS contains true
as well as false positives. Further, since S-TDS applies strict test filtering
criteria, we assume that the set of true positives is approximated by
the result set obtained through S-TDS. Of course, the result set of S-
TDS may not match the real ‘‘ground truth’’ of true positives, but it is
arguably a good estimator of how many candidates actually exhibit the
desired behavior.
16

p

When we consider the equation for precision (where 𝑇𝑃 = true
positives and 𝐹𝑃 = false positives) —

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

for both search approaches and remove common terms, we arrive at
the following equation to indicate the relative improvement in precision
(RIP) of S-TDS over IDS —

𝐼𝑃 =
𝐶𝐼𝐷𝑆

𝐶𝑆−𝑇𝐷𝑆
(2)

where 𝐶𝐼𝐷𝑆 denotes the set of clone-free candidates matched by IDS,
and 𝐶𝑆−𝑇𝐷𝑆 the set of candidates matched by S-TDS. In simpler terms,

IP quantifies how often S-TDS outperforms IDS in terms of precision.
Note that R-TDS cannot enhance precision beyond what S-TDS

chieves, because both of them filter out the same false positives.
onsequently, comparing the relative precision improvements between
-TDS and R-TDS would not be meaningful, as the assumed set of true
ositives would differ in our approximations of relative improvements
n precision. On the other hand, R-TDS can exclusively enhance recall
ompared to S-TDS, because it has the capability to accept candidates
hat were initially rejected or classified as false negatives (FN) by S-
DS. Put simply, R-TDS can always be viewed as an enhancement of
-TDS, either by matching the same candidate set or an expanded one.

Similar to RIP, the relative improvement in recall (RIR) of C-TDS
elative S-TDS can be estimated as follows —

𝐼𝑅 =
𝐶𝑅−𝑇𝐷𝑆
𝐶𝑆−𝑇𝐷𝑆

(3)

where 𝐶𝑆−𝑇𝐷𝑆 denotes the set of candidates matched by S-TDS and
𝑅−𝑇𝐷𝑆 the set of candidates matched by R-TDS. In simpler terms, RIR
uantifies how often R-TDS outperforms S-TDS in terms of recall.

To further strengthen the validity of our approximations and results,
e randomly sampled candidates from the result sets matched by the

hree CSE strategies and manually examined their behavior.

.2. Results

The findings of the study were obtained using a grid of 10 nodes,
ach equipped with Ubuntu Linux 22.04 LTS and uniform process-
ng capabilities, including a 12th Gen Intel(R) Core(TM) i9-12900
rocessor and a maximum memory capacity of 12 GB RAM. One of
hese nodes served as the manager node, responsible for executing the
ipeline script and allocating tasks, while the remaining nine nodes

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

f
m
T
w
b
a

m
e
l
s
a
d
p
r
(
s
o
p
t
e
b

r

Table 3
Results for 20 search problems (with max. textual = 1000, max. adapters = 100).

Qu
eu

e

Fr
om

Js
on

To
Js

on

B6
4E

nc
od

e

B6
4D

ec
od

e

Fr
ac

tio
n

Sh
a2

56

M
at

rix

Ht
m

lS
an

iti
ze

r

M
ul

tiM
ap

Ba
g

NG
ra

m
Di

st

NG
ra

m
Ge

n

Fi
le

na
m

eE
xt

DA
G

M
in

He
ap

M
ov

in
gA

ve
ra

ge

Co
sin

e

Tr
ee

No
de

St
ac

k

Duration

Search time (min) 17:42 01:33 01:37 01:12 01:06 03:21 01:27 01:47 01:47 01:55 03:10 03:06 05:30 01:43 01:49 11:12 01:59 07:58 05:15 04:30

Textual (IDS)

#classes 1 000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1 000.00 1 000.00 1000.00 1000.00 1000.00 1 000.00 1 000.00 1000.00 1000.00 1 000.00 1 000.00
#clones 525.00 239.00 292.00 556.00 497.00 540.00 424.00 415.00 393.00 558.00 553.00 386.00 365.00 469.00 475.00 n/a 400.00 332.00 219.00 517.00
#clone-free 475.00 761.00 708.00 444.00 503.00 460.00 576.00 585.00 607.00 442.00 447.00 614.00 635.00 531.00 525.00 n/a 600.00 668.00 781.00 483.00

Adaptable

#classes 192.00 349.00 498.00 438.00 485.00 445.00 266.00 258.00 421.00 392.00 288.00 50.00 95.00 79.00 229.00 760.00 548.00 381.00 719.00 372.00
#adapters 19 200.00 564.00 716.00 1801.00 2029.00 44 500.00 499.00 18 905.00 1021.00 16 410.00 27 010.00 191.00 166.00 127.00 12 337.00 66 075.00 8490.00 1312.00 60 300.00 37 200.00

Testable

#classes 192.00 275.00 485.00 438.00 485.00 121.00 240.00 28.00 398.00 88.00 277.00 28.00 70.00 61.00 139.00 690.00 388.00 301.00 428.00 369.00
#adapters 11 495.00 401.00 671.00 1573.00 1926.00 6161.00 445.00 1373.00 930.00 1 699.00 19 068.00 127.00 116.00 97.00 3 811.00 40 366.00 4768.00 989.00 10 994.00 23 506.00

Behavioral clusters

#response clusters 193.00 12.00 50.00 70.00 23.00 131.00 56.00 90.00 131.00 77.00 1 658.00 27.00 25.00 15.00 67.00 1 432.00 135.00 103.00 762.00 797.00
⌀ cluster size 59.56 33.42 13.42 22.47 83.74 47.03 7.95 15.26 7.10 22.06 11.50 4.70 4.64 6.47 56.88 28.19 35.32 9.60 14.43 29.49

Matches (S-TDS)

#matched classes 5.00 214.00 335.00 383.00 462.00 20.00 55.00 24.00 4.00 27.00 1.00 5.00 1.00 5.00 14.00 8.00 43.00 4.00 35.00 65.00
#matched adapters 5.00 271.00 418.00 747.00 1129.00 24.00 64.00 116.00 5.00 58.00 1.00 10.00 1.00 5.00 32.00 8.00 53.00 8.00 74.00 161.00
#failed classes 187.00 61.00 150.00 55.00 23.00 101.00 185.00 4.00 394.00 61.00 276.00 23.00 69.00 56.00 125.00 682.00 345.00 297.00 393.00 304.00
#failed adapters 11 196.00 91.00 206.00 193.00 71.00 5255.00 321.00 153.00 920.00 1 163.00 18 982.00 117.00 115.00 83.00 3 633.00 39 819.00 4131.00 981.00 9 819.00 19 304.00

Matches (R-TDS)

#matched classes 79.00 214.00 383.00 383.00 465.00 64.00 62.00 24.00 62.00 28.00 16.00 5.00 1.00 33.00 45.00 8.00 62.00 4.00 35.00 198.00
#matched adapters 187.00 271.00 492.00 747.00 1134.00 117.00 82.00 116.00 95.00 60.00 54.00 10.00 1.00 34.00 224.00 8.00 83.00 8.00 74.00 423.00
#failed classes 113.00 61.00 102.00 55.00 20.00 57.00 178.00 4.00 336.00 60.00 261.00 23.00 69.00 28.00 94.00 682.00 326.00 297.00 393.00 171.00
#failed adapters 6802.00 91.00 140.00 193.00 64.00 2044.00 304.00 153.00 722.00 1 147.00 17 720.00 117.00 115.00 32.00 1 835.00 39 819.00 3816.00 981.00 9 819.00 10 718.00

Rel. improvements

in precision 95.00 3.56 2.11 1.16 1.09 23.00 10.47 24.38 151.75 16.37 447.00 122.80 635.00 106.20 37.50 0.00 13.95 167.00 22.31 7.43
in recall 15.80 1.00 1.14 1.00 1.01 3.20 1.13 1.00 15.50 1.04 16.00 1.00 1.00 6.60 3.21 1.00 1.44 1.00 1.00 3.05

Characterization

Lines

min 8.00 1.00 1.00 1.00 1.00 4.00 1.00 15.00 1.00 1.00 1.00 40.00 14.00 2.00 2.00 19.00 1.00 3.00 4.00 2.00
q25 22.00 3.00 3.00 5.00 17.50 10.00 3.00 22.00 3.00 12.00 15.00 40.00 14.00 7.00 8.00 19.00 8.00 3.00 9.00 10.00
median 41.00 6.00 6.00 29.00 31.00 13.00 6.00 23.00 11.00 18.00 20.00 40.00 14.00 7.00 12.00 19.00 10.00 3.00 10.00 11.00
q75 60.00 11.00 11.00 52.00 52.00 22.00 10.75 28.25 17.75 18.00 22.00 40.00 14.00 8.75 19.00 19.75 14.50 3.00 14.75 14.00
max 78.00 97.00 55.00 106.00 200.00 35.00 18.00 46.00 140.00 18.00 33.00 40.00 14.00 22.00 48.00 41.00 48.00 3.00 22.00 28.00
mean 39.65 11.73 9.49 32.99 34.53 15.88 7.07 25.75 19.08 14.50 19.33 40.00 14.00 8.74 14.76 22.12 12.05 3.00 11.88 11.60
sd 19.52 15.49 10.20 27.37 25.51 7.26 4.74 8.67 29.25 4.94 8.32 0.00 5.11 9.54 7.70 8.34 0.00 5.09 4.66

Cycl. complexity

min 4.00 1.00 1.00 1.00 1.00 4.00 1.00 7.00 1.00 1.00 1.00 13.00 5.00 1.00 1.00 5.00 1.00 2.00 3.00 1.00
q25 7.00 2.00 2.00 3.00 5.00 4.00 2.00 8.00 2.00 5.00 6.00 13.00 5.00 2.00 3.00 5.00 3.00 2.00 5.00 4.00
median 9.00 3.00 3.00 7.00 8.00 4.00 3.00 9.00 2.00 6.00 6.00 13.00 5.00 2.00 4.00 5.00 4.00 2.00 6.00 6.00
q75 10.00 4.00 4.00 11.00 10.00 5.00 4.00 10.25 4.00 6.00 9.00 13.00 5.00 3.00 6.00 7.00 4.75 2.00 6.00 8.00
max 13.00 34.00 15.00 29.00 25.00 13.00 7.00 17.00 19.00 7.00 10.00 13.00 5.00 6.00 10.00 12.00 9.00 2.00 8.00 12.00
mean 8.46 4.13 3.28 8.20 8.67 4.78 3.01 9.79 3.84 5.40 6.74 13.00 5.00 2.74 4.37 6.38 3.85 2.00 5.76 6.06
sd 1.85 4.04 1.90 6.21 5.66 1.25 1.43 2.85 3.76 1.29 2.11 0.00 1.42 2.02 2.45 1.47 0.00 1.24 2.36
u
q

o
t
a
a
t
i
a
i
T
f

c

unctioned as worker nodes, dedicated to running the candidate imple-
entations (i.e., were responsible for the arena test driver execution).
he manager node assigned the arena workload evenly among the
orker nodes by partitioning the candidate implementations into nine
locks and distributing them in a round-robin manner. Table 3 provides
summary of the search time for each problem studied.

The average time taken for the search was 3 min and 59 s. Although
ost searches were completed in less than 5 min and 30 s, certain

xceptions were observed, with the 𝑄𝑢𝑒𝑢𝑒 search problem taking the
ongest time, followed by the 𝑀𝑖𝑛𝐻𝑒𝑎𝑝 search problem. Three ba-
ic factors contribute to extended search times: (1) the presence or
bsence of a candidate’s artifacts on the worker node, necessitating
ownloading from the corpus,4 (2) running into timeouts set by the
latform/arena during execution, which may arise from undesirable
un-time behavior due to the inputs and/or the tried adapter, and
3) the size of an abstraction’s interface, as determined by its method
ignatures and the number of parameters, leading to a greater number
f combinations (i.e., adapters) that need to be prioritized, and a
ossibly longer execution time due to longer test sequences. Note that
he timeouts giving rise to the second factor can also occur as part of the
xpected behavior. For example, a 𝑄𝑢𝑒𝑢𝑒 implementation that employs
locking may intentionally halt the execution of the enqueue method

4 Occasionally, transitive artifact dependencies present in third-party
epositories may be inaccessible, potentially leading to network timeouts.
17

p

ntil it is feasible to add another element, based on the capacity of the
ueue (i.e., a ‘‘blocking’’ queue).

As well as giving the search times, Table 3 summarizes the outcomes
f the matching processes for the 20 search problems. This includes
he results for each functional abstraction and three corresponding
nalysis findings. Each column within the summary table represents
functional abstraction and the corresponding classes processed by

he pipeline, while the rows in the top third of the table provide
nformation about the number of processed and matched classes by IDS
s well as adapters. The rows in the middle third of the table provide
nformation about the behavioral clusters and matches by S-TDS and R-
DS. Finally, the rows in the bottom third of the table characterize the
inal classes (and adapters) matched by R-TDS based on JaCoCo’s line-

and cyclomatic complexity measures for each functional abstraction.
To provide further insights into the kinds of software components

retrieved, we have also included a table displaying 25 randomly sam-
pled members of the set of class implementations retrieved for the
queue abstraction in Table 4. These results were taken from the overall
set of retrieved 𝑄𝑢𝑒𝑢𝑒 implementations.

6.2.1. Textual selection and code clones
For each functional abstraction under study, the prototype platform

successfully textually matched 𝑁 = 1000 class candidates using IDS.
From these matches, Nicad identified an average of approximately 430
lass clones across all abstractions, which were removed from further
rocessing in the pipeline. This left clone-free sets of classes containing

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

e
e

6

c
a
c
s
r

a
a

t

Table 4
25 randomly sampled implementations retrieved for 𝑄𝑢𝑒𝑢𝑒 (excerpt out of 79).

Class Package Project (Maven URI)

1 SinglyLinkedList edu.columbia.cs.psl.phosphor.struct io.rivulet:embedded-server:1.0.0
2 Queue org.eclipse.core.internal.jobs org.jibx.config.3rdparty.org.eclipse:org.eclipse.core.

jobs:3.5.100
3 ArrayBlockingQueue jadex.commons.collection org.activecomponents.jadex:jadex-commons:3.0.117
4 Queue edu.princeton.cs.introcs com.github.fracpete:princeton-java-examples:1.0.2
5 ResizableCapabilityLinkedBlockingQueue com.github.seaframework.core.queue com.github.seaframework:sea-core-basic:1.0.0
6 GrowableArrayBlockingQueue org.apache.pulsar...util.collections io.streamnative.connectors:managed-ledger-

shaded:2.7.6
7 ObjectHeapPriorityQueue it.unimi.dsi.fastutil.objects co.datadome:fastutil-core:8.5.11.1
8 BlockingQueueImpl org.kaazing.net.impl.util org.kaazing:gateway.client.java.internal:5.0.0.17
9 FastQueue org.apache.phoenix.shaded.org.antlr.runtime.misc org.apache.phoenix:phoenix-client-hbase-2.4:5.1.3

10 ClosableBlockingQueue org.apache.flink.streaming.connectors.dis.internals com.huaweicloud.dis:huaweicloud-dis-flink-
connector_2.11:2.0.1

11 GrowableArrayBlockingQueue org.apache.pulsar.common.util.collections org.apache.pulsar:pulsar-common:2.11.0
12 ObjectHeapPriorityQueue it.unimi.dsi.fastutil.objects org.apache.hivemall:hivemall-all:0.6.0-incubating
13 ArrayFIFO toools.collections io.github.lhogie:toools:0.0.7
14 HashedQueue io.pivotal.arca.threading io.pivotal:arca-threading:1.0-beta.3
15 ObjectArrayPriorityQueue it.unimi.dsi.fastutil.objects co.datadome:fastutil-core:8.5.11.1
16 PriorityQueueImpl org.tinygroup.queue.impl org.tinygroup:org.tinygroup.queue:3.4.9
17 FastQueue infinispan.org.antlr.runtime.misc org.infinispan:infinispan-embedded-query:9.1.7.Final
18 RingArrayBlockingQueue com.serialpundit.core.util org.bidib.com.serialpundit:sp-core:1.0.4
19 ObjectQueue net.oschina.dajiangnan.cmppclient.util.waitqueue net.oschina.dajiangnan:cmppclient:1.0.0
20 ArrayQueue org.eclipse.jetty.util org.testatoo.container:testatoo-container-jetty-full:1.0-

rc5
21 GrowableArrayBlockingQueue com.yahoo.pulsar.common.util.collections com.yahoo.pulsar:pulsar-common:1.18
22 Queue org.apache.tomcat.util.collections tomcat:tomcat-util:5.5.4
23 BoundedPriorityQueue com.gemstone.org.jgroups.oswego.concurrent io.snappydata:gemfire-jgroups:2.0-BETA
24 Queue org.apache.phoenix.shaded.org.apache.jasper.util org.apache.phoenix:presto-phoenix-client-shaded:4.14.1
25 LinkedTransferQueue com.google.code.yanf4j.util com.googlecode.xmemcached:xmemcached:2.4.7
b
T
o

c
a
t
i
c
a
e
T
d

h
p
A
i

v
a
f
T

an average of 570 class candidates for each functional abstraction,
xcluding the MinHeap abstraction since Nicad encountered parsing
rrors when processing a subset of the class candidates retrieved.5

.2.2. Adaptation and matches
During the arena analysis step, the adaptation engine managed to

ompute adapters for an average of 363 classes, with an average of
pproximately 15,942 adapters. For each class, the number of testable
lasses (i.e., those that could be executed using the given stimulus
heets) varied significantly, averaging around 275 testable classes (or
oughly 6525 testable adapters on average).

In addition to these findings, for S-TDS we identified an average of
pproximately 89 functionally-equivalent class implementations across
ll abstractions (averaging about 167 matching adapters). In contrast

to S-TDS, R-TDS obtained roughly 113 functionally-equivalent class
implementations across all abstractions (totaling about 221 matching
adapters on average).

These results for both variants of TDS indicate that a substantial
number of classes were able to provide the desired functionality based
on our interface specifications and stimulus sheets.

For each functional abstraction, we successfully matched a non-
trivial number of class implementations, except for the 𝑁𝐺𝑟𝑎𝑚𝐺𝑒𝑛
abstraction where we only found one matching implementation in the
corpus. Upon manual inspection of the SRM records, we discovered that
bi-gram functionality existed in more classes, but not in the way we
had specified (i.e., as word-level bi-grams while other classes delivered
token-level bi-grams). The number of response clusters varied signifi-
cantly among functional abstractions and testable classes. Even when
dealing with large numbers of response clusters, identifying matching

5 Presumably, the most recent Nicad version that we used had issues with
he most recent Java language syntax.
18

R

clusters was relatively straightforward in R-TDS since we could first
match a subsequence of returned outputs to narrow down the set of
relevant clusters.

6.3. Relative improvement in precision and recall

To evaluate whether incorporating a test-driven filtering step en-
hances the precision of IDS, we first compared the class matches of
S-TDS and R-TDS with the textual ranks as determined by IDS’s text-
ased search. The ranking is based on scores returned as part of IDS.
o exclude code duplicates, we recalculated the ranks using the scores
f the clone-free matches.

Fig. 6 illustrates how many classes where matched based on the
lone-free IDS set by either of the studied TDS approaches. While the 𝑥-
xis represents the textual ranks determined by IDS’s text-based search,
he red line signifies the highest number of candidates remaining
n IDS’s result set after clone removal. On the 𝑦-axis, we have the
umulative sum of matches up to a specific rank for both S-TDS (shown
s the orange line) and R-TDS (represented by the green line). It is
vident that for a considerable number of functional abstractions, R-
DS consistently outperformed S-TDS in terms of candidate matches,
emonstrating its superior recall capabilities.

An analysis of the overall trend of the cumulative sums of be-
avioral matches for most abstractions shows that growth tends to
lateau at a certain point, resulting in an asymptotic curve shape.
lthough there are some abstractions with only a small set of matched

mplementations, they also seem to follow the same growth trend.
To assess improvements in precision and recall, we utilized the pre-

iously introduced metrics of RIP (Relative Improvement in Precision)
nd RIR (Relative Improvement in Recall). The improvements for each
unctional abstraction are shown in the ‘‘Rel. Improvements’’ row of
able 3. On average, across all functional abstractions, both S-TDS and
-TDS surpassed IDS in terms of precision by a factor of approximately

The Journal of Systems & Software 215 (2024) 112065

19

M. Kessel and C. Atkinson

Fig. 6. Trend of behavioral matches — rank of textual matches (x-axis) (as returned by IDS after code clone removal) vs. class implementation matches (y-axis) - S-TDS (orange)
and R-TDS (green). The dashed black line indicates the number present after clone removal.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

m
b

99.37. On the other hand, R-TDS showed a recall improvement factor
relative to S-TDS of approximately 4.

In summary, while S-TDS exhibited a substantial relative improve-
ent in precision compared to IDS, R-TDS demonstrated a significant

oost in recall over S-TDS by accepting candidates that S-TDS had
rejected.

6.3.1. Characterization of software components
The third part of Table 3 presents an overview of the behavioral

matches obtained by R-TDS over all matching class implementations
in terms of their implementation size (measured by line-count and
complexity at run-time when stimulus sheets were executed). The vari-
ability in size-based measures is considerable across different functional
abstractions. Typically, a line count of 1 represents a delegate method
invocation.

In conjunction with Table 4, which contains a random sample
of queue class implementations, we can appreciate the diversity of
results obtained from our analysis. This suggests that LSL is a powerful
dynamic query language for achieving component diversity, allowing
users to choose from a wealth of diverse candidates.

7. Discussion

In this section, we discuss the overall lessons that can be learned
from the presented study and consider the validity of the results, in-
cluding the approach’s limitations. We then look at the extent to which
the presented platform addresses the weaknesses of the first generation
of CSEs identified in Section 1, before discussing the technology’s
potential impact on the quality and usability of code search results.

7.1. Lessons learned

Our study shows that LASSO TDS is indeed capable of retrieving a
large number of diverse (adapted) implementations from LASSO’s code
repository for a set of 20 functional abstractions. During the course of
our analysis, we also made several intriguing observations that could
potentially help enhance the technology by making it more tolerant
of varying responses and able to accommodate potential differences in
interface signatures.

For instance, when examining functional abstractions such as
Queue (along with related data structures like Stack), we discovered
implementations exhibiting a wide range of behavior despite having
high levels of similarity. In the case of the enqueue method for the
Queue abstraction, we identified three distinct response clusters that
matched the desired functionality, even though the method signature
and its return type varied significantly. Similarly, when analyzing
the ToJson abstraction, multiple relevant response clusters were
discovered, with differences in how the final JSON representation
was represented as a string (e.g., some returned pretty-printed strings
while others produced single-line strings). LASSO TDS’s strict variant
simply rejects all these alternatives, whereas its relaxed variant has the
potential to recognize and accommodate them.

7.2. Limitations and threats

Although all first generation TDS engines have been deprecated
and are no longer available as benchmarks for comparison, we were
nevertheless able to show that LASSO TDS is able to improve on the
precision and recall of ‘‘classic’’ CSEs based on their well known imple-
mentation strategies. As well as providing evidence for the feasibility of
the approach presented in this paper, the study also shows the power
and flexibility of LASSO’s dynamic scripting language, LSL, for defining
customized search pipelines and services.

Even though the study was performed using a large dataset of open
source Java software components sourced from Maven Central, which
is widely utilized in both open source and industrial development, the
20
generalizability of our findings are limited by the small scale of our
study. Conducting a larger-scale study is essential to attain more reli-
able results. Furthermore, it is important to note that LASSO currently
focuses exclusively on Java software components, and therefore, we
cannot make any assertions about its applicability to other program-
ming languages like Python. The asymptotic curves identified in our
study also warrant further investigation. To pinpoint the true plateaus
where behavioral matches reach saturation, an analysis of larger result
sets obtained through IDS is necessary.

There are several potential threats to the design of our study.
Firstly, the functional equivalence of the retrieved implementations
was primarily achieved through the comparison of quantitative values
(i.e., output values). To increase our confidence that this worked as
expected, we randomly selected a subset of implementation matches
from the search problems and manually reviewed their code. Secondly,
the sequence sheets used to characterize the desired functionality may
not be entirely representative. Given that exhaustive software testing
is rarely practical (Ammann and Offutt, 2016), a limited set of tests
may not fully capture the actual behavior of candidates during test-
driven filterings in LASSO TDS. To address this concern, we endeavored
to create tests that accurately reflect the fundamental concept of the
functionality being evaluated.

A related concern stems from the measurement of relative im-
provements in recall for R-TDS compared to S-TDS. This requires a
ground truth to evaluate alternative, acceptable outputs for R-TDS that
are deemed equivalent. In order to mitigate this risk, we manually
examined all the alternative outputs for the functionality in question
and carefully assessed whether the implementations effectively deliver
the desired functionality. However, it is important to acknowledge that
other human examiners may form different judgments based on their
individual experiences or varying interpretations of the functionality.

Our approach has other inherent limitations that require further
exploration and research. Firstly, software adaptation is still a signif-
icant challenge, particularly when dealing with class implementations
that rely on, or involve complex, custom (i.e., developer-defined) types.
The problem is that potential class implementations may be missed
by the approach, even though a potential adapter could be developed
(i.e., from a developer’s perspective). This has a negative impact on the
recall of the approach.

Secondly, even though the process of establishing functional equiv-
alence of class implementations in an offline, data-driven manner dis-
connects the matching process from run-time observations and com-
parisons, our current serialization technique for matching outputs rep-
resented as strings of Java objects is limited. This could represent
a potential risk in cases where string-based equivalence varies from
object-based equivalence. To mitigate this risk, we employ two strate-
gies: (1) utilizing established methods for object serialization via JSON,
and (2) making it possible for users to examine SRM records more
closely (e.g., examining behavioral clusters for spotting discrepancies).

Finally, executability, and thus the ability to actually test and un-
cover the behavior of software components, is still an issue that needs
further research. Although components may compile without issues,
their execution is not guaranteed. This is partly due to potential late-
time binding problems with class dependencies or dependencies on
external services. In the worst-case scenario, a component’s behavior
may not be observable (e.g., visibility issues in Java) or even testable
at all (cf. testing limitations Ammann and Offutt, 2016).

The potential impact of the improvements outlined above is signifi-
cant, especially in terms of enhancing recall by exploring alternative
potential outputs to those envisaged by the developer. This insight
underscores the need for the further development of adaptation and

similarity techniques for matching outputs.

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
7.3. Addressing weaknesses of CSEs

In this subsection, to complement our quantitative results, we dis-
cuss how well our proposed platform resolves the shortcomings of
existing CSEs outlined in Section 1.

1. Small corpora: As explained in Section 3, the LASSO platform
has a large index of executable software components extracted
primarily from Maven Central, augmented by a steadily growing
corpus of ‘‘mavenized’’ code harvested from other platforms.
Once the ‘‘mavenization’’ mapping has been defined for a par-
ticular repository’s build information format, the process of har-
vesting new code is automatic and performed on an ongoing
basis. To the best of our knowledge, at the time of writing,
the LASSO corpus is the largest repository of automatically ex-
ecutable software available. In order to compare the magnitude
of our corpus with that of other corpora, we use ‘‘artifacts’’ (cf.
Table 1) as our fundamental unit of measurement. Given that
an executable artifact is typically generated from a software
project (i.e., its source code in terms of compilation units), which
usually encompasses an executable Java program (i.e., compiled
code), we can compare the number of executable artifacts in
LASSO’s corpus to the number of executable Java programs
reported for other corpora published in the literature. Our corpus
contains 184,464 executable artifacts sourced from Maven Cen-
tral, which is equivalent to approximately 85k (i.e., 85%) more
executable Java programs than the next biggest corpus we are
aware of, NJR corpus (Palsberg and Lopes, 2018), and roughly
135k (i.e., 270%) more than the 50k-C (Martins et al., 2018b),
which is the third biggest. Other popular corpora primarily used
for benchmarking tasks are much smaller (e.g., 𝑆𝐹110 contains
110 executable Java programs (Fraser and Arcuri, 2014), while
XCorpus contains 76 (Dietrich et al., 2017)).

2. Poor scalability and performance: As explained in Section 4,
LASSO’s distributed architecture and its execution environment
is powered by Apache Ignite (The Apache Software Foundation,
2022a) which is a fully-blown clustering technology supporting
vertical and horizontal scaling of workloads, including both
the building and execution of software components as well as
the collection and storing of observational records. It supports
scalable build automation and build script synthesis using Maven
as the build tool ecosystem. This not only dramatically increases
the speed at which search results can be processed, it also
allows the platform to be easily scaled up with more computing
resources. The findings of our study suggest that the search time,
which is approximately 4 min on average for 1000 candidates,
underscores the platform’s practical utility. This is particularly
relevant when taking advantage of pre-existing computing re-
sources, such as continuous integration systems. Since the secure
sandbox environment for executing actions and components is
based on docker containerization at the operating system level,
it supports the specification of controllable, reusable and isolated
run-time environments (e.g., in terms the operating system,
Java version etc.) and enables fine-grained control over resource
allocation and permissions (Boettiger, 2015).

3. Declarative query languages: As mentioned by Grazia and Pradel
(2022), existing CSEs exclusively support declarative query lan-
guages that basically allow users to describe the properties
they want the desired code to have. However, this approach
is problematic for test-driven search engines because (a) the
desired properties include the specification of desired semantics
expressed as tests, and (b) in practice, the search process is at
least a dual-phase process in which a dynamic-observation step
is built on top of a traditional text-based search step. Expressing
this combination in a declarative query language would be
complex and counterintuitive. LASSO’s rich, but nevertheless
21
abstract, scripting language allows static and dynamic analysis
steps (including search steps) to be combined into imperative
process pipelines. These scripts are not incompatible with, or
intended to completely replace, traditional code search query
languages, but can be used to realize them as shown by LSL.
This approach of complementing traditional, declarative query
languages with an imperative, but abstract, scripting language
provides users with a range of ways to use the platform for code
searches and analyses.

4. Platform-specific test description language: In first generation TDS
engines, users could only define and input the tests describing
their sought-after functionality using mainstream programming
languages such as JUnit test classes/methods. This not only
meant that users had to expend significant effort in coding up
a compilable and executable test, they had to use fully-blown
programming languages which obscure the core input/output
mappings characterizing the desired functionality (e.g., within
the assertion statements). The sequence sheet notion offered
by LASSO, supported in LSL, provides a much more compact
(yet executable) representation of tests that can be more easily
incorporated into declarative queries.

5. Limited adaptation technology : A key feature of LASSO’s auto-
mated execution technology is the inclusion of a range of adapta-
tion heuristics that attempt to adapt the interfaces of candidate
code modules to the interfaces assumed in the sequence sheet
test specifications. This can significantly increase the recall of
the search process by allowing candidates to be assessed that
otherwise would not match the interface.

6. Simplistic ranking approaches: The current generation of CSEs
use statically-derived metrics to rank the members of a result
set since they are unaware of their true run-time behavior.
Test-driven search engines, which execute the candidate code
modules, can supplement the static metrics with easily measured
dynamic properties such as execution time and resource usage.
If all candidate code components are executed under the same
conditions, such metrics are meaningful because by definition
they involve the same tests. However, defining ranking algo-
rithms that take the dynamic behavior of the components into
account is much more challenging because it requires similarity
metrics based on a full record of each component’s responses to
each test. For example, software components could be ranked
according to how many of the tests they pass. As explained in
Section 3, LASSO supports such complex behavior comparisons
by storing all execution information (i.e., observational records)
in SRMs and allowing them to be exported for analysis using
state-of-the-art data analysis tools.

7. Lack of dynamic metrics about the result set : Finally, a natural
consequence of the previously discussed feature is that LASSO
can significantly enhance the value of the returned component
descriptions by augmenting traditional static metrics (e.g., LOC,
cyclomatic complexity) with dynamic metrics (e.g., execution
speed, resource usage, functional similarity etc.).

7.4. Additional benefits and impact

Overall, the presented search scripts indicate that only a small set of
straightforward, recurring actions are necessary to realize customized,
behavior-aware search processes. Despite being formatted in an easily
readable manner, the size of the LSL scripts used to implement LASSO
TDS is relatively small, demonstrating the power and efficiency of LSL
as a dynamic querying language. This compactness gives users more
flexibility to develop new search strategies by either modifying existing
actions or adding additional ones that incorporate custom reuse criteria
or unique search techniques.

We believe that even novice users can quickly grasp the supplied

search scripts and adapt them to their unique functional/non-functional

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

7

i
t
t
b
i

t
s
l
(

T
a
c
o
t
s
r
a
a
a
m
a
i
o
t
T
i
a
p
b

b
c
a
c
s
r
o
u

requirements in a particular reuse scenario. As with any other program-
ming language, LSL scripts can be decomposed into smaller subscripts
(e.g., divide-and-conquer) thanks to the flexibility of Groovy/Java.
Even if users prefer not to use LSL as their query language, they
still have access to simpler, classic CSE’s through the LASSO TDS
service, which can be utilized via a web front end or through plug-in
integration.

To the best of our knowledge, no existing CSE provides a dynamic
query language that integrates observational services with cutting-edge
analysis tools. Even though Boa (Dyer et al., 2013) is not a CSE, it does
provide a DSL to answer questions at the code repository level. The
drawback of Boa, however, is that it does not combine its static analysis
capabilities with dynamic analysis like our platform. It therefore lacks
behavior-aware selection capabilities (i.e., behavior sampling).

7.4.1. Software measurement
Since LASSO supports the combination of static and dynamic code

analysis, SRMs can store virtually any kind of measurable data about
software components (even non-numerical data). Users can therefore
formulate and combine a large variety of analysis criteria based on a
wide range of measurable engineering goals. The collection of measure-
ments in SRMs serves multiple purposes —

• Quality-based reuse selection criteria: Measurements can be used
to identify the most suitable implementations for reuse based
on predefined quality attributes (Long, 2001; Bauer and Vetro’,
2016).

• Differences and comparisons: Measurements reveal discrepancies
between, and interesting observations about, different compo-
nents involved in the analysis process, helping users make in-
formed decisions about whether a particular candidate is suitable
for their purposes (e.g., estimating the potential reuse cost Barns
and Bollinger, 1991).

• Increased transparency : By gathering more information about
tested components, users can identify code clones or undesired
structural anti-patterns, leading to better decision-making and
increased code understanding.

• Dynamic metrics guidance: In cases where no true positives are
found, the gathered properties about components can be used to
redesign test sequences in TDS.

.4.2. Fine-grained filtering and sorting options
LASSO TDS offers multiple ways to filter candidates based on var-

ous properties including (1) text-based filters (applied at the level of
he executable corpus), (2) action filters and (3) behavior filters impera-
ively encoded in LSL actions (inside the whenAbstractionsReady
lock). These filtering options can be used independently or combined
nto a hybrid strategy for improving precision in the search process.

In addition, type-driven (or structural) queries can be used to re-
rieve classes based on their specific types (e.g., extending a certain
uper class or implementing an interface). This feature is particu-
arly useful for targeted searches within specific application domains
e.g., requiring queues to be subtypes of java.util.Collection).

LSL pipelines also provide flexibility in reformulating filtering-based
reuse criteria into ranking-based reuse criteria. Users have the option
to encode custom, relevance-based scoring methods within LASSO TDS,
allowing best matches to be identified and ranked based on their
relevance to specific reuse objectives (in contrast to the binary choice
of rejecting them).

7.4.3. Executability, testability and environments
While our ‘‘mavenization-based’’ corpus unification and curation

approach aims to improve the rate of success in obtaining executable
components, the automated build script synthesis capability provided
by Maven simplifies the incorporation of reusable components into Java
22

projects. Since users often need to make sensitive choices about actual l
target execution environments in which potential reuse candidates may
be executed, LASSO lets them leverage state-of-the-art containerization
technology to enable the automatic selection and creation of execu-
tion environments on-the-fly. This innovative approach streamlines the
process of defining and managing desired test execution environments.

As demonstrated in Listing 2 for LASSO TDS, users have the flexi-
bility to specify their target execution environments (here Java version
17). This allows them to assess whether potential reuse candidates meet
their requirements. Additionally, TDS pipelines can easily be modified
or extended to verify that systems execute consistently across multiple
environments (e.g., by comparing SRMs).

By offering these advanced features and maintaining a high degree
of flexibility, LASSO empowers users to more effectively leverage ex-
isting software components in their projects, ultimately enhancing the
overall quality and efficiency of their reuse and development efforts.

8. Conclusion

A significant weakness of the current generation of CSEs, as they
attempt to cope with the huge volumes of code being added to repos-
itories on a daily basis, is their almost exclusive reliance on statically-
derived properties of software to match code to queries. This means
that they can only make judgments about components’ semantics based
on unreliable inferences from the identifiers selected by the author in
the source code, which has direct negative consequences on their preci-
sion and recall. Since so-called ‘‘symbolic execution’’ approaches (Bal-
doni et al., 2018) are still only applicable to small snippets of code, the
only practical way of gaining information about the ‘‘‘true’’ run-time
behavior of code modules is to execute them. However, scaling such
‘‘test-driven search’’ approaches to significant levels, and making them
usable in practice, presents several challenges.

In this paper we have presented the LASSO platform,6 and LASSO
DS, a test-driven code search service built on top of that platform, that
ddresses these challenges by automating the execution and run-time
omparison of large numbers of software components. Moreover, based
n a study of 20 search problems we gained preliminary evidence that
hese capabilities can enhance several aspects of the classic TDS reuse
cenario. We demonstrated LASSO TDS’s performance in terms of (a)
elative precision improvements over IDS-based textual search as well
s in terms of relative recall improvements over traditional, strict TDS
pproaches. In particular, LASSO’s test-driven search capabilities are
ble to establish the functional relevance of candidate implementations
ore scalably and reliably than traditional static (i.e., text-based)

lgorithms, thereby increasing search precision. Moreover, LASSO’s
nterface adaptation and matching techniques can increase the number
f candidate software implementations that can be subject to testing,
hereby increasing recall. Furthermore, we demonstrated that relaxed
DS implementations can further improve recall, relative to strict TDS

mplementations, by generalizing the matching criteria (i.e., explicitly
llowing different, but semantically equivalent, outputs), without com-
romising precision. Currently, the LASSO platform only supports Java,
ut we are working on adding other languages such as Python.

Of course, the precision and recall of search algorithms can always
e optimized individually, so the challenge is to find techniques that
an raise one, or both, without affecting the other. LASSO’s dynamic
nalysis services can be used to generate deeper insights into the
lusterings of behaviorally-similar implementations in the search re-
ults, potentially leading to even further precision, and providing a
ange of useful dynamic metrics that better characterize the relevance
f candidate implementations. All this additional information can be
sed to increase the quality of the final ranking algorithm, and thus

6 Freely available at GitHub: https://github.com/SoftwareObservatorium/
asso.

https://github.com/SoftwareObservatorium/lasso
https://github.com/SoftwareObservatorium/lasso

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson

r
c
t

l
(
p
B
a
s
e

s
m
w
p
L
a

C

s
i
W
C
I
w
W

D

c
i

D

A

maximize the likelihood that the most suitable implementations will be
offered to the users first. Many of the example measures and services
are unique to LASSO, or are not available at the large scale offered by
LASSO.

We believe that LASSO has the potential to further enhance software
euse. As well as encoding custom search processes and rich reuse
riteria, the dynamic LSL query language can be used to support ‘‘con-
inuous reuse’’ (Kessel and Atkinson, 2018). Since LASSO is compatible

with modern continuous integration platforms, its dynamic analysis
capabilities can be exploited at opportune moments for continuous code
recommendation. For this, we envision integrating LASSO into con-
tinuous integration (CI) pipelines (Fowler, 2006) to allow developers
to receive recommendations in an unobtrusive manner based on text-
based TDS queries that are generated and submitted automatically. This
service can be used to identify reusable candidates when the CI system
is idling, and to provide fast feedback to developers if existing systems
already exist. This opens up the possibility for companies to discover
existing functionality they were unaware of in early phases of their
projects, thus making it possible to reduce overall development costs.

LASSO’s flexible pipeline design can also enable the benchmarking
of new and existing search strategies, or even the comparison to code
generation strategies such as offered by generative AI (Chen et al.,
2021). Since search strategies are encoded in LSL scripts, LASSO al-
ows them to be assessed with respect to important evaluation criteria
i.e., precision and recall). In particular, users can compare the SRMs
roduced by each search script using LASSO’s data analytics layer.
enchmarking can also be used to improve existing search strategies
nd to assess new ones. For example, the precision of interface-driven
earch can be assessed by looking at the number of false positives when
valuated in the arena based on a set of test sequences.

Although this paper has focused on the dynamic analysis and search
ervices of LASSO, since these are the most innovative and represent the
ain contribution of the platform, these are not intended to compete
ith, or replace the static analysis techniques employed by other
latforms. On the contrary, the long term goal is to seamlessly integrate
ASSO’s dynamic analysis capabilities with the large-scale syntactic
nalysis and machine learning capabilities of existing platforms.

RediT authorship contribution statement

Marcus Kessel: Conceptualization, Data curation, Formal analy-
is, Funding acquisition, Investigation, Methodology, Project admin-
stration, Resources, Software, Supervision, Validation, Visualization,

riting – original draft, Writing – review & editing. Colin Atkinson:
onceptualization, Data curation, Formal analysis, Funding acquisition,

nvestigation, Methodology, Project administration, Resources, Soft-
are, Supervision, Validation, Visualization, Writing – original draft,
riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Link is in article.

ppendix. LASSO TDS – LSL pipeline script
23
1 dataSource ’mavenCentral2023’
2 def interfaceSpec = ’’’Queue {
3 enqueue(Object)->Object
4 enqueue()->Object
5 peek()->Object
6 size()->int
7 }’’’
8 study(name:’Queue-TDS’) {
9 action(name:’select’, type:’Select’) {

10 abstraction(’Queue’) { // interface-driven code
search↪

11 queryForClasses interfaceSpec
12 rows = 10
13 excludeClassesByKeywords([’private’,

’abstract’])↪

14 excludeTestClasses()
15 excludeInternalPkgs()
16 filter ’complexity:[2 TO *]’
17 }
18 }
19 action(name: ’rejectClones’, type: ’Nicad6’) { //

reject code clones↪

20 cloneType = "type2"
21 collapseClones = true
22
23 dependsOn ’select’
24 includeAbstractions ’Queue’
25 }
26 action(name:’filter’,type:’ArenaExecute’) { // test

filter↪

27 sequences = [
28 ’testQueueElements’: sheet(p1: ’Queue’, p2:

1, p3: 2) {↪

29 row ’’, ’create’, ’?p1’
30 row true, ’enqueue’, ’A1’, ’?p2’
31 row true, ’enqueue’, ’A1’, ’?p3’
32 row ’?p2’, ’peek’, ’A1’
33 row 2, ’size’, ’A1’
34 row ’?p2’, ’dequeue’, ’A1’
35 row 1, ’size’, ’A1’
36 }
37]
38 maxAdaptations = 1 // how many adaptations to try
39 features = [’cc’] // code coverage measurement
40
41 dependsOn ’rejectClones’
42 includeAbstractions ’Queue’
43 profile(’myTdsProfile’) {
44 scope(’class’) { type = ’class’ }
45 environment(’jdk17’) { image =

’maven:3.6.3-openjdk-17’ }↪

46 }
47
48 whenAbstractionsReady() {
49 def queue = abstractions[’Queue’]
50 def expectedBehaviour =

toOracle(srm(abstraction: queue).sequences)↪

51 // returns a filtered SRM
52 def matchesSrm = srm(abstraction: queue)
53 .systems // select all systems
54 .equalTo(expectedBehaviour) //

functionally equivalent↪

55 // continue pipeline with matched systems only
56 queue.systems = matchesSrm.systems
57 }
58 }
59 action(name:’rank’, type:’Rank’) { // rank based on two

criteria↪

60 strategy = ’HDS_SMOOP’ // SOCORA ranking strategy
61 criteria =

[’IndexMeasurements.m_static_loc_td:MIN:1’,↪

62 ’cc.branch.total:MIN:2’]
63 dependsOn ’filter’
64 includeAbstractions ’*’
65 }
66 }

Listing 2: LASSO TDS - Strict test-driven search pipeline in LSL
including ranking preferences (last action)

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
References

Abdalkareem, R., Shihab, E., Rilling, J., 2017. On code reuse from StackOverflow: An
exploratory study on android apps. Inf. Softw. Technol. 88, 148–158. http://dx.
doi.org/10.1016/j.infsof.2017.04.005, URL: http://www.sciencedirect.com/science/
article/pii/S0950584917303610.

Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C., 2018. A survey of machine learning
for big code and naturalness. ACM Comput. Surv. 51 (4), http://dx.doi.org/10.
1145/3212695.

Alon, U., Zilberstein, M., Levy, O., Yahav, E., 2019. Code2vec: Learning distributed
representations of code. Proc. ACM Program. Lang. 3 (POPL), http://dx.doi.org/
10.1145/3290353.

Ammann, P., Offutt, J., 2016. Introduction to Software Testing. Cambridge University
Press.

Bajracharya, S., Ossher, J., Lopes, C., 2014. Sourcerer: An infrastructure for large-
scale collection and analysis of open-source code. Sci. Comput. Program.
79, 241–259. http://dx.doi.org/10.1016/j.scico.2012.04.008, URL: https://www.
sciencedirect.com/science/article/pii/S016764231200072X. Experimental Software
and Toolkits (EST 4): A special issue of the Workshop on Academic Software
Development Tools and Techniques (WASDeTT-3 2010).

Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I., 2018. A survey
of symbolic execution techniques. ACM Comput. Surv. 51 (3), 50:1–50:39. http:
//dx.doi.org/10.1145/3182657, URL: http://doi.acm.org/10.1145/3182657.

Barns, B., Bollinger, T., 1991. Making reuse cost-effective. IEEE Softw. 8 (1), 13–24.
http://dx.doi.org/10.1109/52.62928.

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S., 2015. The oracle problem
in software testing: A survey. IEEE Trans. Softw. Eng. 41 (5), 507–525. http:
//dx.doi.org/10.1109/TSE.2014.2372785.

Bauer, V., Vetro’, A., 2016. Comparing reuse practices in two large software-producing
companies. J. Syst. Softw. 117, 545–582. http://dx.doi.org/10.1016/j.jss.2016.03.
067, URL: http://www.sciencedirect.com/science/article/pii/S0164121216300176.

Boettiger, C., 2015. An introduction to docker for reproducible research. SIGOPS
Oper. Syst. Rev. 49 (1), 71–79. http://dx.doi.org/10.1145/2723872.2723882, URL:
http://doi.acm.org/10.1145/2723872.2723882.

Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual web search
engine. Comput. Netw. ISDN Syst. 30 (1), 107–117. http://dx.doi.org/10.1016/
S0169-7552(98)00110-X, URL: https://www.sciencedirect.com/science/article/pii/
S016975529800110X. Proceedings of the Seventh International World Wide Web
Conference.

Carpineto, C., Romano, G., 2012. A survey of automatic query expansion in information
retrieval. ACM Comput. Surv. 44 (1), http://dx.doi.org/10.1145/2071389.2071390.

Chen, M., Tworek, J., Jun, H., et al., 2021. Evaluating large language models trained
on code. arXiv:2107.03374.

Cordy, J.R., Roy, C.K., 2011. The NiCad clone detector. In: 2011 IEEE 19th International
Conference on Program Comprehension. pp. 219–220. http://dx.doi.org/10.1109/
ICPC.2011.26.

De Paula, A.C., Guerra, E., Lopes, C.V., Sajnani, H., Lazzarini Lemos, O.A., 2016.
An exploratory study of interface redundancy in code repositories. In: 2016 IEEE
16th International Working Conference on Source Code Analysis and Manipulation.
SCAM, pp. 107–116. http://dx.doi.org/10.1109/SCAM.2016.31.

Diamantopoulos, T., Thomopoulos, K., Symeonidis, A., 2016. QualBoa: Reusability-
aware recommendations of source code components. In: 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories. MSR, pp. 488–491.

Dietrich, J., Schole, H., Sui, L., Tempero, E., 2017. Xcorpus – an executable corpus of
java programs. J. Object Technol. 16 (4), 1:1–24. http://dx.doi.org/10.5381/jot.
2017.16.4.a1.

Do, H., Elbaum, S., Rothermel, G., 2005. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empir. Softw. Eng.
10 (4), 405–435. http://dx.doi.org/10.1007/s10664-005-3861-2.

Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N., 2013. Boa: A language and in-
frastructure for analyzing ultra-large-scale software repositories. In: 2013 35th
International Conference on Software Engineering. ICSE, pp. 422–431. http://dx.
doi.org/10.1109/ICSE.2013.6606588.

Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N., 2015. Boa: Ultra-large-scale software
repository and source-code mining. ACM Trans. Softw. Eng. Methodol. 25 (1),
http://dx.doi.org/10.1145/2803171.

Fowler, M., 2006. Continuous integration. URL: https://www.martinfowler.com/
articles/continuousIntegration.html.

Frakes, W.B., Kyo Kang, 2005. Software reuse research: status and future. IEEE Trans.
Softw. Eng. 31 (7), 529–536. http://dx.doi.org/10.1109/TSE.2005.85.

Fraser, G., Arcuri, A., 2014. A large-scale evaluation of automated unit test generation
using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24 (2), http://dx.doi.org/10.
1145/2685612.

Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T., 1987. The vocabulary problem
in human-system communication. Commun. ACM 30 (11), 964–971. http://dx.doi.
org/10.1145/32206.32212.

GitHub, 2022. Octoverse 2022. URL: https://octoverse.github.com/. (Accessed 01
December 2022).

Grazia, L.D., Pradel, M., 2022. Code search: A survey of techniques for finding code.
ACM Comput. Surv. http://dx.doi.org/10.1145/3565971.
24
Gu, X., Zhang, H., Kim, S., 2018. Deep code search. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering. ICSE, pp. 933–944. http://dx.
doi.org/10.1145/3180155.3180167.

Hummel, O., 2008. Semantic Component Retrieval in Software Engineering (Ph.D.
thesis). Universität Mannheim.

Hummel, O., Atkinson, C., 2006. Using the web as a reuse repository. In: Morisio, M.
(Ed.), Reuse of Off-the-Shelf Components. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 298–311.

Hummel, O., Janjic, W., Atkinson, C., 2008. Code conjurer: Pulling reusable software
out of thin air. IEEE Softw. 25 (5), 45–52. http://dx.doi.org/10.1109/MS.2008.110.

Inoue, K., Miyamoto, Y., German, D.M., Ishio, T., 2020. Code clone matching: A
practical and effective approach to find code snippets. http://dx.doi.org/10.48550/
ARXIV.2003.05615, URL: https://arxiv.org/abs/2003.05615.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G., 2017. Accurately interpreting
clickthrough data as implicit feedback. SIGIR Forum 51 (1), 4–11. http://dx.doi.
org/10.1145/3130332.3130334.

Johnston, W.M., Hanna, J.R.P., Millar, R.J., 2004. Advances in dataflow programming
languages. ACM Comput. Surv. 36 (1), 1–34. http://dx.doi.org/10.1145/1013208.
1013209.

Josefsson, S., 2006. The base16, base32, and base64 Data Encodings. RFC 4648, RFC
Editor.

JUnit, 2022. JUnit. URL: https://junit.org/.
Kessel, M., 2023. LASSO - an Observatorium for the Dynamic Selection, Analysis and

Comparison of Software (Ph.D. thesis). Mannheim, URL: https://madoc.bib.uni-
mannheim.de/64107/.

Kessel, M., Atkinson, C., 2016. Ranking software components for reuse based on non-
functional properties. Inf. Syst. Front. 18 (5), 825–853. http://dx.doi.org/10.1007/
s10796-016-9685-3.

Kessel, M., Atkinson, C., 2018. Integrating reuse into the rapid, continuous software
engineering cycle through test-driven search. In: 2018 IEEE/ACM 4th International
Workshop on Rapid Continuous Software Engineering. pp. 8–11.

Kessel, M., Atkinson, C., 2019. A platform for diversity-driven test amplification. In:
Proceedings of the 10th ACM SIGSOFT International Workshop on Automating
TEST Case Design, Selection, and Evaluation. In: A-TEST 2019, Association for
Computing Machinery, New York, NY, USA, pp. 35–41. http://dx.doi.org/10.1145/
3340433.3342825.

Kessel, M., Atkinson, C., 2019a. Automatically curated data sets. In: 2019 19th
International Working Conference on Source Code Analysis and Manipulation.
SCAM, pp. 56–61. http://dx.doi.org/10.1109/SCAM.2019.00015.

Kessel, M., Atkinson, C., 2019b. On the efficacy of dynamic behavior comparison for
judging functional equivalence. In: 2019 19th International Working Conference on
Source Code Analysis and Manipulation. SCAM, pp. 193–203. http://dx.doi.org/10.
1109/SCAM.2019.00030.

Kessel, M., Atkinson, C., 2022. Diversity-driven unit test generation. J. Syst. Softw.
193, http://dx.doi.org/10.1016/j.jss.2022.111442, URL: https://www.sciencedirect.
com/science/article/pii/S0164121222001406.

Kessel, M., Atkinson, C., 2023. Data set: Code search engines for the next generation.
http://dx.doi.org/10.5281/zenodo.8398748.

Kessel, M., Atkinson, C., 2024. Promoting open science in test-driven software exper-
iments. J. Syst. Softw. 212, 111971. http://dx.doi.org/10.1016/j.jss.2024.111971,
URL: https://www.sciencedirect.com/science/article/pii/S0164121224000141.

Kim, K., Kim, D., Bissyandé, T.F., Choi, E., Li, L., Klein, J., Traon, Y.L., 2018.
Facoy: A code-to-code search engine. In: Proceedings of the 40th International
Conference on Software Engineering. ICSE ’18, ACM, New York, NY, USA, pp.
946–957. http://dx.doi.org/10.1145/3180155.3180187, URL: http://doi.acm.org/
10.1145/3180155.3180187.

Koschke, R., 2007. Survey of research on software clones. In: Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Krueger, C.W., 1992. Software reuse. ACM Comput. Surv. 24 (2), 131–183. http:
//dx.doi.org/10.1145/130844.130856.

Lazzarini Lemos, O.A., Bajracharya, S.K., Ossher, J., 2007. CodeGenie: A tool for test-
driven source code search. In: Companion To the 22nd ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Applications Companion. OOPSLA
’07, Association for Computing Machinery, New York, NY, USA, pp. 917–918.
http://dx.doi.org/10.1145/1297846.1297944.

Lazzarini Lemos, O.A., Bajracharya, S., Ossher, J., Masiero, P.C., Lopes, C., 2009. Apply-
ing test-driven code search to the reuse of auxiliary functionality. In: Proceedings
of the 2009 ACM Symposium on Applied Computing. SAC ’09, Association for
Computing Machinery, New York, NY, USA, pp. 476–482. http://dx.doi.org/10.
1145/1529282.1529384.

Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Morla, R.S., Masiero, P.C., Baldi, P.,
Lopes, C.V., 2007. CodeGenie: Using test-cases to search and reuse source code.
In: Proceedings of the Twenty-Second IEEE/ACM International Conference on
Automated Software Engineering. ASE ’07, ACM, New York, NY, USA, pp.
525–526. http://dx.doi.org/10.1145/1321631.1321726, URL: http://doi.acm.org/
10.1145/1321631.1321726.

Lerner, J., Tirole, J., 2001. The open source movement: Key research questions. Eur.
Econ. Rev. 45 (4), 819–826. http://dx.doi.org/10.1016/S0014-2921(01)00124-
6, URL: https://www.sciencedirect.com/science/article/pii/S0014292101001246.
15th Annual Congress of the European Economic Association.

http://dx.doi.org/10.1016/j.infsof.2017.04.005
http://dx.doi.org/10.1016/j.infsof.2017.04.005
http://dx.doi.org/10.1016/j.infsof.2017.04.005
http://www.sciencedirect.com/science/article/pii/S0950584917303610
http://www.sciencedirect.com/science/article/pii/S0950584917303610
http://www.sciencedirect.com/science/article/pii/S0950584917303610
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1145/3290353
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb4
http://dx.doi.org/10.1016/j.scico.2012.04.008
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://www.sciencedirect.com/science/article/pii/S016764231200072X
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://doi.acm.org/10.1145/3182657
http://dx.doi.org/10.1109/52.62928
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1016/j.jss.2016.03.067
http://dx.doi.org/10.1016/j.jss.2016.03.067
http://dx.doi.org/10.1016/j.jss.2016.03.067
http://www.sciencedirect.com/science/article/pii/S0164121216300176
http://dx.doi.org/10.1145/2723872.2723882
http://doi.acm.org/10.1145/2723872.2723882
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
http://dx.doi.org/10.1145/2071389.2071390
http://arxiv.org/abs/2107.03374
http://dx.doi.org/10.1109/ICPC.2011.26
http://dx.doi.org/10.1109/ICPC.2011.26
http://dx.doi.org/10.1109/ICPC.2011.26
http://dx.doi.org/10.1109/SCAM.2016.31
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb16
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.1007/s10664-005-3861-2
http://dx.doi.org/10.1109/ICSE.2013.6606588
http://dx.doi.org/10.1109/ICSE.2013.6606588
http://dx.doi.org/10.1109/ICSE.2013.6606588
http://dx.doi.org/10.1145/2803171
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
http://dx.doi.org/10.1109/TSE.2005.85
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/32206.32212
http://dx.doi.org/10.1145/32206.32212
http://dx.doi.org/10.1145/32206.32212
https://octoverse.github.com/
http://dx.doi.org/10.1145/3565971
http://dx.doi.org/10.1145/3180155.3180167
http://dx.doi.org/10.1145/3180155.3180167
http://dx.doi.org/10.1145/3180155.3180167
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb29
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb29
http://dx.doi.org/10.1109/MS.2008.110
http://dx.doi.org/10.48550/ARXIV.2003.05615
http://dx.doi.org/10.48550/ARXIV.2003.05615
http://dx.doi.org/10.48550/ARXIV.2003.05615
https://arxiv.org/abs/2003.05615
http://dx.doi.org/10.1145/3130332.3130334
http://dx.doi.org/10.1145/3130332.3130334
http://dx.doi.org/10.1145/3130332.3130334
http://dx.doi.org/10.1145/1013208.1013209
http://dx.doi.org/10.1145/1013208.1013209
http://dx.doi.org/10.1145/1013208.1013209
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb34
https://junit.org/
https://madoc.bib.uni-mannheim.de/64107/
https://madoc.bib.uni-mannheim.de/64107/
https://madoc.bib.uni-mannheim.de/64107/
http://dx.doi.org/10.1007/s10796-016-9685-3
http://dx.doi.org/10.1007/s10796-016-9685-3
http://dx.doi.org/10.1007/s10796-016-9685-3
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb38
http://dx.doi.org/10.1145/3340433.3342825
http://dx.doi.org/10.1145/3340433.3342825
http://dx.doi.org/10.1145/3340433.3342825
http://dx.doi.org/10.1109/SCAM.2019.00015
http://dx.doi.org/10.1109/SCAM.2019.00030
http://dx.doi.org/10.1109/SCAM.2019.00030
http://dx.doi.org/10.1109/SCAM.2019.00030
http://dx.doi.org/10.1016/j.jss.2022.111442
https://www.sciencedirect.com/science/article/pii/S0164121222001406
https://www.sciencedirect.com/science/article/pii/S0164121222001406
https://www.sciencedirect.com/science/article/pii/S0164121222001406
http://dx.doi.org/10.5281/zenodo.8398748
http://dx.doi.org/10.1016/j.jss.2024.111971
https://www.sciencedirect.com/science/article/pii/S0164121224000141
http://dx.doi.org/10.1145/3180155.3180187
http://doi.acm.org/10.1145/3180155.3180187
http://doi.acm.org/10.1145/3180155.3180187
http://doi.acm.org/10.1145/3180155.3180187
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb46
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1145/1297846.1297944
http://dx.doi.org/10.1145/1529282.1529384
http://dx.doi.org/10.1145/1529282.1529384
http://dx.doi.org/10.1145/1529282.1529384
http://dx.doi.org/10.1145/1321631.1321726
http://doi.acm.org/10.1145/1321631.1321726
http://doi.acm.org/10.1145/1321631.1321726
http://doi.acm.org/10.1145/1321631.1321726
http://dx.doi.org/10.1016/S0014-2921(01)00124-6
http://dx.doi.org/10.1016/S0014-2921(01)00124-6
http://dx.doi.org/10.1016/S0014-2921(01)00124-6
https://www.sciencedirect.com/science/article/pii/S0014292101001246

The Journal of Systems & Software 215 (2024) 112065M. Kessel and C. Atkinson
Li, Y., Tan, T., Xue, J., 2019. Understanding and analyzing java reflection. ACM Trans.
Softw. Eng. Methodol. 28 (2), http://dx.doi.org/10.1145/3295739.

Lilis, Y., Savidis, A., 2019. A survey of metaprogramming languages. ACM Comput.
Surv. 52 (6), http://dx.doi.org/10.1145/3354584.

Long, J., 2001. Software reuse antipatterns. SIGSOFT Softw. Eng. Not. 26 (4), 68–76.
http://dx.doi.org/10.1145/505482.505492.

Lopes, C.V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny, J., Sajnani, H., Vitek, J.,
2017. Déjàvu: A map of code duplicates on GitHub. Proc. ACM Program. Lang. 1
(OOPSLA), http://dx.doi.org/10.1145/3133908.

Martins, P., Achar, R., Lopes, C.V., 2018a. 50K-C: A dataset of compilable, and
compiled, java projects. In: Proceedings of the 15th International Conference on
Mining Software Repositories. MSR ’18, ACM, New York, NY, USA, pp. 1–5.
http://dx.doi.org/10.1145/3196398.3196450, URL: http://doi.acm.org/10.1145/
3196398.3196450.

Martins, P., Achar, R., Lopes, C.V., 2018b. 50K-C: A dataset of compilable, and
compiled, java projects. In: Proceedings of the 15th International Conference on
Mining Software Repositories. MSR ’18, Association for Computing Machinery, New
York, NY, USA, pp. 1–5. http://dx.doi.org/10.1145/3196398.3196450.

McCabe, T.J., 1976. A complexity measure. IEEE Trans. Softw. Eng. SE-2 (4), 308–320.
http://dx.doi.org/10.1109/TSE.1976.233837.

Mili, H., Mili, F., Mili, A., 1995. Reusing software: issues and research directions. IEEE
Trans. Softw. Eng. 21 (6), 528–562. http://dx.doi.org/10.1109/32.391379.

Mili, A., Mili, R., Mittermeir, R., 1998. A survey of software reuse libraries. Ann. Softw.
Eng. 5 (1), 349–414. http://dx.doi.org/10.1023/A:1018964121953.

Nie, L., Jiang, H., Ren, Z., Sun, Z., Li, X., 2016. Query expansion based on crowd
knowledge for code search. IEEE Trans. Serv. Comput. 9 (5), 771–783. http:
//dx.doi.org/10.1109/TSC.2016.2560165.

Palsberg, J., Lopes, C.V., 2018. NJR: A normalized java resource. In: Companion
Proceedings for the ISSTA/ECOOP 2018 Workshops. ISSTA ’18, Association for
Computing Machinery, New York, NY, USA, pp. 100–106. http://dx.doi.org/10.
1145/3236454.3236501.

Podgurski, A., Pierce, L., 1992. Behavior sampling: A technique for automated retrieval
of reusable components. In: Proceedings of the 14th International Conference on
Software Engineering. ICSE ’92, ACM, New York, NY, USA, pp. 349–361. http:
//dx.doi.org/10.1145/143062.143152, URL: http://doi.acm.org/10.1145/143062.
143152.

Podgurski, A., Pierce, L., 1993. Retrieving reusable software by sampling behavior. ACM
Trans. Softw. Eng. Methodol. 2 (3), 286–303. http://dx.doi.org/10.1145/152388.
152392, URL: http://doi.acm.org/10.1145/152388.152392.

Rahman, M.M., Barson, J., Paul, S., Kayani, J., Lois, F.A., Quezada, S.F., Parnin, C.,
Stolee, K.T., Ray, B., 2018. Evaluating how developers use general-purpose web-
search for code retrieval. In: Proceedings of the 15th International Conference on
Mining Software Repositories. MSR ’18, Association for Computing Machinery, New
York, NY, USA, pp. 465–475. http://dx.doi.org/10.1145/3196398.3196425.

Reiss, S.P., 2009. Semantics-based code search. In: 2009 IEEE 31st International
Conference on Software Engineering. pp. 243–253. http://dx.doi.org/10.1109/ICSE.
2009.5070525.

Rice, H.G., 1953. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc. 74 (2), 358–366, URL: http://www.jstor.org/stable/
1990888.
25
Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T., 2014. Recommendation
Systems in Software Engineering. Springer.

Roy, C.K., Cordy, J.R., Koschke, R., 2009. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Sci. Comput. Program. 74
(7), 470–495. http://dx.doi.org/10.1016/j.scico.2009.02.007, URL: https://www.
sciencedirect.com/science/article/pii/S0167642309000367.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V., 2016. Sourcerercc:
Scaling code clone detection to big-code. In: Proceedings of the 38th International
Conference on Software Engineering. pp. 1157–1168.

Sim, S.E., Gallardo-Valencia, R.E., 2015. Finding Source Code on the Web for Remix
and Reuse. Springer Publishing Company, Incorporated.

Sonatype, 2022. Maven Central. URL: http://search.maven.org.
Stolee, K.T., Elbaum, S., Dobos, D., 2014. Solving the search for source code.

ACM Trans. Softw. Eng. Methodol. 23 (3), 26:1–26:45. http://dx.doi.org/10.1145/
2581377, URL: http://doi.acm.org/10.1145/2581377.

Svajlenko, J., Roy, C.K., 2016. BigCloneEval: A clone detection tool evaluation
framework with BigCloneBench. In: 2016 IEEE International Conference on Soft-
ware Maintenance and Evolution. ICSME, pp. 596–600. http://dx.doi.org/10.1109/
ICSME.2016.62.

Terra, R., Miranda, L.F., Valente, M.T., Bigonha, R.S., 2013. Qualitas.class cor-
pus: A compiled version of the qualitas corpus. SIGSOFT Softw. Eng. Not. 38
(5), 1–4. http://dx.doi.org/10.1145/2507288.2507314, URL: http://doi.acm.org/
10.1145/2507288.2507314.

The Apache Software Foundation, 2022a. Apache ignite. URL: https://ignite.apache.
org/.

The Apache Software Foundation, 2022b. Apache maven project. URL: https://maven.
apache.org.

The Apache Software Foundation, 2022c. Apache solr project. URL: https://solr.apache.
org/.

The Apache Software Foundation, 2022d. Groovy - domain-specific languages.
URL: http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-
specific-languages.html.

Wang, Y., Feng, Y., Martins, R., Kaushik, A., Dillig, I., Reiss, S.P., 2016. Hunter: Next-
generation code reuse for Java. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. In: FSE 2016,
ACM, New York, NY, USA, pp. 1028–1032. http://dx.doi.org/10.1145/2950290.
2983934, URL: http://doi.acm.org/10.1145/2950290.2983934.

Wang, K., Walker, T., Zheng, Z., 2009. PSkip: Estimating relevance ranking quality
from web search clickthrough data. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’09,
Association for Computing Machinery, New York, NY, USA, pp. 1355–1364. http:
//dx.doi.org/10.1145/1557019.1557164.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer Science & Business Media.

Yang, F., Mei, H., Li, K., 1999. Software reuse software component technology. Acta
Electron. Sin. 27, 68–75.

Zaremski, A.M., Wing, J.M., 1995. Signature matching: A tool for using software
libraries. ACM Trans. Softw. Eng. Methodol. 4 (2).

http://dx.doi.org/10.1145/3295739
http://dx.doi.org/10.1145/3354584
http://dx.doi.org/10.1145/505482.505492
http://dx.doi.org/10.1145/3133908
http://dx.doi.org/10.1145/3196398.3196450
http://doi.acm.org/10.1145/3196398.3196450
http://doi.acm.org/10.1145/3196398.3196450
http://doi.acm.org/10.1145/3196398.3196450
http://dx.doi.org/10.1145/3196398.3196450
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/32.391379
http://dx.doi.org/10.1023/A:1018964121953
http://dx.doi.org/10.1109/TSC.2016.2560165
http://dx.doi.org/10.1109/TSC.2016.2560165
http://dx.doi.org/10.1109/TSC.2016.2560165
http://dx.doi.org/10.1145/3236454.3236501
http://dx.doi.org/10.1145/3236454.3236501
http://dx.doi.org/10.1145/3236454.3236501
http://dx.doi.org/10.1145/143062.143152
http://dx.doi.org/10.1145/143062.143152
http://dx.doi.org/10.1145/143062.143152
http://doi.acm.org/10.1145/143062.143152
http://doi.acm.org/10.1145/143062.143152
http://doi.acm.org/10.1145/143062.143152
http://dx.doi.org/10.1145/152388.152392
http://dx.doi.org/10.1145/152388.152392
http://dx.doi.org/10.1145/152388.152392
http://doi.acm.org/10.1145/152388.152392
http://dx.doi.org/10.1145/3196398.3196425
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb68
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb68
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb68
http://dx.doi.org/10.1016/j.scico.2009.02.007
https://www.sciencedirect.com/science/article/pii/S0167642309000367
https://www.sciencedirect.com/science/article/pii/S0167642309000367
https://www.sciencedirect.com/science/article/pii/S0167642309000367
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb71
http://search.maven.org
http://dx.doi.org/10.1145/2581377
http://dx.doi.org/10.1145/2581377
http://dx.doi.org/10.1145/2581377
http://doi.acm.org/10.1145/2581377
http://dx.doi.org/10.1109/ICSME.2016.62
http://dx.doi.org/10.1109/ICSME.2016.62
http://dx.doi.org/10.1109/ICSME.2016.62
http://dx.doi.org/10.1145/2507288.2507314
http://doi.acm.org/10.1145/2507288.2507314
http://doi.acm.org/10.1145/2507288.2507314
http://doi.acm.org/10.1145/2507288.2507314
https://ignite.apache.org/
https://ignite.apache.org/
https://ignite.apache.org/
https://maven.apache.org
https://maven.apache.org
https://maven.apache.org
https://solr.apache.org/
https://solr.apache.org/
https://solr.apache.org/
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
http://dx.doi.org/10.1145/2950290.2983934
http://dx.doi.org/10.1145/2950290.2983934
http://dx.doi.org/10.1145/2950290.2983934
http://doi.acm.org/10.1145/2950290.2983934
http://dx.doi.org/10.1145/1557019.1557164
http://dx.doi.org/10.1145/1557019.1557164
http://dx.doi.org/10.1145/1557019.1557164
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb82
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb82
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb82
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb83
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb83
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb83
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb84
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb84
http://refhub.elsevier.com/S0164-1212(24)00110-9/sb84

	Code search engines for the next generation
	Introduction
	Background
	Code search and software recommendation
	Interface-driven code search (IDS)
	Test-driven code search (TDS)
	Code-driven code search (CDS)

	Clone detection
	Large-scale software analysis platforms

	LASSO — User perspective
	Executable software corpus
	Component processing pipelines
	LASSO Query Language (LQL)
	Sequence Sheets
	Stimulus Responses Matrices (SRMs)
	LASSO Scripting Language (LSL)

	Advanced software analytics

	LASSO - Architecture and implementation perspective
	Curating a corpus of executable software
	Interface-driven Code Search
	Interface representation
	Query formulation and expansion
	Adapter synthesis

	Workflow engine
	Script execution
	Arena execution and observation
	Sandboxing and extensibility

	LASSO TDS
	Strict Test-driven Search
	Relaxed Test-driven Search
	Templating and frontends

	Demonstration and evaluation
	Design
	Actions
	Search problems
	Software analytics
	Relative improvements

	Results
	Textual selection and code clones
	Adaptation and matches

	Relative Improvement in Precision and Recall
	Characterization of Software Components

	Discussion
	Lessons learned
	Limitations and threats
	Addressing weaknesses of CSEs
	Additional benefits and impact
	Software measurement
	Fine-Grained Filtering and Sorting Options
	Executability, Testability and Environments

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. LASSO TDS – LSL Pipeline Script
	References

