
Information Systems 124 (2024) 102404

A
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Recognizing task-level events from user interaction data
Adrian Rebmann a,∗, Han van der Aa b

a Data and Web Science Group, University of Mannheim, B6 26, 68159 Mannheim, Germany
b Faculty of Computer Science, University of Vienna, Währinger Str. 29, 1090 Vienna, Austria

A R T I C L E I N F O

Keywords:
User interaction data
Event abstraction
Process mining
Streaming process mining

A B S T R A C T

User interaction data comprises events that capture individual actions that a user performs on their computer.
Such events provide detailed records about how users carry out their tasks in a process, even when this
involves different applications. Although the comprehensiveness of such data provides a promising basis for
process mining, user interaction events cannot be used directly for this purpose, because they do not meet
two essential requirements. In particular, they neither indicate their relation to a process-level activity nor
their relation to a specific process execution. Therefore, user interaction data needs to be transformed so that
it meets these requirements before process mining techniques can be applied. This transformation problem
comprises identifying tasks and their types and determining the relation between tasks and process executions.
While some existing approaches tackle parts of this problem, none address it comprehensively. Therefore, we
propose an unsupervised approach for recognizing task-level events from user interaction data that addresses
it in full. It segments user interaction data to identify tasks, categorizes these according to their type, and
relates tasks to each other via object instances it extracts from the user interaction events. In this manner,
our approach creates task-level events that meet the requirements of process mining settings. Our evaluation
demonstrates the approach’s efficacy and shows that its combined consideration of control-flow, data, and
semantic information allows it to outperform baseline approaches in both online and offline settings.
1. Introduction

User interaction data consists of events that capture a user’s actions
when performing tasks in a process at a fine-granular level. Each
user interaction event corresponds to a single interaction between the
user and the user interface of a software application, such as clicking
a button, entering a text into a field, or ticking a checkbox [1,2].
In the context of process mining, a field concerned with the data-
driven analysis of organizational processes [3], user interaction data
provides a lot of potential, since it records events across applications,
at a detailed level, and without the need to extract or integrate data
from heterogeneous systems. Compared to traditional event data used
in process mining, which typically comprises events recorded by a
single information system, user interaction data can provide a more
complete picture of the tasks performed by a user. Specifically, because
user interaction data captures task executions that involve multiple
applications, e.g., email, spreadsheets, and web applications, it plays a
crucial role in addressing gaps within the process coverage provided by
traditional event data. This extended process coverage, in turn, enables
organizations to obtain insights that more accurately show how their
process is really executed, e.g., through more comprehensive models
after applying process discovery techniques [3].

∗ Corresponding author.
E-mail addresses: rebmann@uni-mannheim.de (A. Rebmann), han.van.der.aa@univie.ac.at (H. van der Aa).

However, user interaction events are unsuitable to be directly used
for process mining, because they do not meet two essential require-
ments of event data in such settings. First, user interaction events do
not indicate their relation to a process-level activity. Consequently,
when analyzing a process using such events, obtained insights will
show how a user interacted with their applications, rather than show
how the process was executed. For instance, in the context of an
order-handling process, applying process mining to user interaction
events would result in insights such as input text is commonly followed
by click button, instead of insights such as create order is commonly
followed by update order. Second, user interaction events do not relate
to specific process executions, which means that the relation between
different process steps is not captured. For example, having identified
a number of process steps involving the handling of orders, it is crucial
to understand which of these steps relate to the same customer order
and which to different ones. Therefore, to enable process mining on
the basis of user interaction data, the data must be transformed so
that it meets the requirements of events in process mining settings
(which we refer to as task-level events). This transformation problem
involves identifying (1) which events jointly form tasks of certain types
(e.g., creating an order or updating an order quantity) and (2) which of
vailable online 15 May 2024
306-4379/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.is.2024.102404
Received 23 October 2023; Received in revised form 26 April 2024; Accepted 12 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ay 2024

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
mailto:rebmann@uni-mannheim.de
mailto:han.van.der.aa@univie.ac.at
https://doi.org/10.1016/j.is.2024.102404
https://doi.org/10.1016/j.is.2024.102404
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2024.102404&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

[
i
p
t
i
8
b
a
r
b
w
R
p
t

v
p
t
e
I
r
a
p

e
s
i
b
a
e
e
m
i
i
t
i

i
i
p
t
c

2

r
l
R
i
o
r
w
f
I
p
i
a
o
I

these identified tasks relate to the same process execution (e.g., that a
particular order is created, after which its order quantity was updated).

This problem is partially addressed in robotic process mining (RPM)
2], where the main purpose is to identify automatable tasks in user
nteraction data. To this end, several supervised and unsupervised ap-
roaches have been recently proposed. Supervised approaches require
ask models as input [4,5] or labeled user interaction data for train-
ng [6] in order to identify tasks, whereas unsupervised approaches [7,
] avoid such requirements. In particular, the unsupervised approach
y Leno et al. [7] segments user interaction data to identify tasks
nd subsequently groups frequent tasks into so-called routines. These
outines can be seen as different types of tasks. Similarly, the approach
y Urabe et al. [8] first segments user interaction data into tasks,
hich it then clusters into types. However, these existing works on
PM neither recognize a task’s process-level type nor its relation to a
rocess execution. Therefore, they only partially solve part (1) of the
ransformation problem and do not address part (2) at all.

Against this background, we use this paper to propose an unsuper-
ised approach for recognizing task-level events that addresses both
arts of the problem. It segments user interaction data to identify
asks, categorizes these according to their type, and relates tasks to
ach other via object instances it extracts from the low-level events.
n this manner, our approach creates task-level events that meet the
equirements of process mining settings. In addition to being the first
pproach that provides an end-to-end solution to this transformation
roblem, it has two further benefits over existing approaches:

• Works in online settings: Unlike the existing approaches, which
target offline analysis based on stored user interaction logs, our
approach can also deal with online streams of user interaction
events. This has several benefits. First, our approach emits task-
level events, which can directly be used as input for streaming
process mining techniques [9]. These, in turn, can provide a
timely understanding of current process behavior and enable
process monitoring as well as predictions on-the-fly. Second,
online processing allows our approach to handle unseen data
without having to retrain its components from scratch. For in-
stance, if a new task is introduced into a process, our approach
can recognize this without the need to retrain it on historic data.
Third, online processing avoids the need to store large amounts
of low-level events that are not relevant from a process analysis
perspective, such as a user logging into an SAP system, or that
contain personal information, such as visits to news websites or
private communication.

• Improved accuracy: Our approach can more accurately identify
and categorize tasks in user interaction data in comparison to
the existing approaches, because it considers a combination
of control-flow, data, and semantic information, whereas the
existing approaches only consider control-flow information. Our
experiments demonstrate that these accuracy benefits apply to
both online and offline settings. Therefore, our approach tackles
the data transformation problem in a more comprehensive and
more accurate manner than existing works.

Note that this paper is an extended and revised version of our
arlier work on recognizing task-level events from user interaction
treams [10]. The work presented here extends its previous version
n three main ways: First, we broadened the scope of our approach
y adding a component that extracts object-instance information that
llows it to relate identified tasks and, thus, task-level events to process
xecutions. Second, we improved the accuracy of our approach by
xpanding our task-identification component with an additional seg-
entation check, which allows it to better identify groups of related

nteraction events. Finally, we conducted additional evaluation exper-
ments to assess the aforementioned extensions of our approach and
o also demonstrate its applicability and accuracy in offline settings,
2

.e., when user interaction logs rather than streams are available.
The remainder of this paper is structured as follows. Section 2
llustrates the challenges of recognizing task-level events from user
nteraction data and Section 3 defines necessary concepts. Section 4
resents our approach, which we evaluate in Section 5. Finally, Sec-
ion 6 summarizes related work and Section 7 discusses limitations and
oncludes.

. Problem illustration

In this section, we first describe the two main parts involved in
ecognizing task-level events from user interaction data, before high-
ighting the additional challenges of doing this in a streaming setting.
ecognizing task-level events. To illustrate the problem of recogniz-

ng task-level events in an unsupervised manner, consider the excerpt
f event data in Table 1, where the events record how a user handles
equests related to orders. Although the user interaction events show
hat a user does at a detailed level (e.g., which buttons are clicked), it

ails to give clear information about the actual process that is executed.
n particular, the user interaction events neither make their relation to
rocess-relevant tasks nor to specific process executions explicit. For
nstance, they do not indicate that u1–u8 correspond to the execution of
particular task, i.e., creating order O007501, and u9–u16 to a different
ne, i.e., updating order O008102 after a change request was made.
dentifying these relations involves the following two parts:

1. Identify tasks and their types.The first part involves identifying
groups of user interaction events that jointly form tasks and their
types. This is typically done in a two-step manner:
(1) We need to find sequences of user interaction events that
together form individual tasks, referred to as segmentation in
the context of robotic process mining [2,8]. Working under the
assumption that a user performs one task before moving to the
next, this involves the identification of points in the data where
one task completes and the next one starts. In the given example,
this is the case after events u8 and u16, which denote the com-
pletion of two higher-level tasks. The difficulty here is that such
end points are not explicitly indicated in the data. For instance,
although u8 ends the first task by the press of a Save order button,
event u13 involves such a button as well, even though it occurs
only halfway through the execution of the second task. As such,
this requires identifying when execution has moved to the next
task, based on clues from the context and attributes of events.
(2) Having identified individual tasks, we aim to recognize which
tasks correspond to the same type (e.g., creating an order), and
which to different ones. However, variability makes this difficult,
since the same process-level task may be executed by performing
different sequences of user interaction events. For instance, the
create order task (u1–u8) could also be executed without first
logging in (u2–u4) or by having to search multiple times (u6) until
the right customer is found.

2. Identify task relations. The second part is to identify the relations
of tasks to process executions. To identify such relations, process-
relevant object instances, such as specific orders and customers,
provide valuable information. For example, by identifying object
instances in the events of the running example, we can recognize
that the events comprising the first task (u1–u8) do not relate
to those comprising the subsequent one (u19–u16), since they,
respectively, relate to orders O007501 and O008102. However,
extracting such information is challenging, because user interac-
tion events generally record object instances only implicitly. In
particular, there are typically no dedicated attributes associated
with user interactions that capture information about process-
related object instances. Instead, these are spread across attributes
that describe user interface elements and their values, such as but-
ton labels or input values. For example, event u5 does not make
its relation to order O007501 explicit. Instead, the object type,
order, is contained in its Label and the identifier (O007501) in

its Value attribute.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

3

U
m
o
L
r
w
u
𝑢
u
d
f
{
E
i

Table 1
An excerpt of a user interaction data recording the execution of two tasks.
ID Action Application Timestamp Element Label Value

. .
u1 click Mail 15:41:32 list Order –
u2 input Chrome 15:42:10 field Login –
u3 input Chrome 15:42:26 field Password –
u4 click Chrome 15:42:31 button ok –
u5 click Chrome 15:43:01 button Create order O007501
u6 input Chrome 15:43:29 field Search Pete Miller
u7 input Chrome 15:43:43 field Customer C0075
u8 click Chrome 15:43:58 button Save order O007501
u9 click Mail 15:44:32 list Change request –
u10 input Chrome 15:44:41 field Customer C0081
u11 click Chrome 15:45:39 button Edit order O008102
u12 input Chrome 15:45:48 field Quantity 4
u13 click Chrome 15:46:05 button Save order O008102
u14 click Chrome 15:46:39 button Edit order O008102
u15 input Chrome 15:46:48 field Quantity 5
u16 click Chrome 15:46:55 button Save order O008102
. .
g

𝑆

4

c
n
c
w
i
t
F
e

Challenges of the streaming setting. As indicated in Section 1, our
work (also) targets online settings, in which user interaction events
arrive in a stream. Recognizing task-level events from a stream is more
complex than doing it in an offline manner using an event log, due
to the general constraints of streaming settings [11]. Specifically, we
have to identify tasks, recognize their type, and extract objects to infer
their relations as they are observed, using just a limited buffer to
temporarily store a relatively small number of events. This leads to two
main difficulties:

1. Single-pass processing. In an offline setting, approaches can do mul-
tiple passes over an entire collection of events, allowing them to
use global information, such as overall co-occurrence counts [8],
when making decisions. However, in a streaming setting, events
can only be accessed for a limited duration and relevant context
information for an observed event may not yet be available. [9].
Therefore, decisions have to be made on the basis of potentially
incomplete information, e.g., the co-occurrence counts observed
up to the latest event in the stream.

2. Adapting to changes over time. An associated issue is that when
dealing with streams, decisions have to be made without knowing
what kind of events and objects will arrive in the future. For
example, while offline approaches can be certain that all types
of tasks they need to identify are already available, this is not
the case in a streaming setting. At any point in time, events
corresponding to new kinds of applications, actions, objects, or
task types may be observed. For instance, for the running exam-
ple, events u9–u16 must be properly analyzed, even if no such
update order task has been seen before, which requires on-the-fly
updating of the recognition mechanisms.

. Preliminaries

ser interactions and user interaction events. A user interaction is a
anual action performed on a user interface, such as clicking a button

r entering a value into a text field [12]. In line with the definitions of
eno et al. [7], we denote a user interaction event (simply event in the
emainder) 𝑢 = (𝑢𝑖𝑑, 𝑡𝑠, 𝑃 , 𝑉) as a tuple that records a user interaction,
ith the universe of all user interaction events. Each event has a
nique identifier 𝑢.𝑢𝑖𝑑, a timestamp 𝑢.𝑡𝑠, a set of context attribute values
.𝑃 , capturing the interaction type and information about the affected
ser interface element, and a set of data attribute values 𝑢.𝑉 , capturing
ata associated with an interaction, e.g., what the user typed into a
ield. For instance, u6=(u6, 15:43:29, {input, Chrome, field, Search},
Pete Miller}).
vent classes. Given an event, we let its context attributes values,

.e., 𝑢.𝑃 , define its event class. For instance, the event class of u6 is
3

iven as {input, Chrome, field, Search}. We use the shorthand 𝑋.𝑃 to
refer to the set of event classes of all events in a collection 𝑋, with
𝑋 ⊂ .
User interaction streams. A user interaction stream 𝑆𝑈 is a potentially
infinite sequence of events recorded during task execution, i.e., 𝑆𝑈 ∈
 ∗∀1≤𝑖<𝑗≤|𝑆𝑈 |

𝑆𝑈 (𝑖) ≠ 𝑆𝑈 (𝑗).
Object instances. An object instance 𝑜 is a pair (𝑜𝑖, 𝑜𝑡𝑦𝑝𝑒) with 𝑜.𝑜𝑖
its identifier and 𝑜.𝑜𝑡𝑦𝑝𝑒 its object type. For example, the specific order
that u5 creates is given by 𝑜 = (𝑂007501, 𝑜𝑟𝑑𝑒𝑟).
Tasks and task-level events. A task is a single unit of work that is
part of an organizational process. A task-level event 𝑡𝑒 = (𝑡𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑡𝑠, 𝐷,
𝑜𝑏𝑗𝑒𝑐𝑡𝑠) is a tuple that corresponds to the execution of a task, with
 the universe of all task-level events. Each task-level event has an
identifier 𝑡𝑒.𝑡𝑖𝑑 that uniquely identifies the task that 𝑡𝑒 refers to, relates
to a task type 𝑡𝑒.𝑡𝑦𝑝𝑒, has a timestamp 𝑡𝑒.𝑡𝑠, and has optional informa-
tion captured in its set of attribute–value pairs𝑡𝑒.𝐷, such as life cycle
information that, e.g., indicates whether the event corresponds to the
start or completion of a task. Furthermore, a task-level event has a set
𝑡𝑒.𝑜𝑏𝑗𝑒𝑐𝑡𝑠 of process-related object instances. For example, the start of
the task that corresponds to u9–u16, is given by 𝑡𝑒1 =(1, Edit order,
15:44:32, {(𝚕𝚒𝚏𝚎𝚌𝚢𝚌𝚕𝚎, 𝑠𝑡𝑎𝑟𝑡)}, {(𝐶0075, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟), (𝑂007501, 𝑜𝑟𝑑𝑒𝑟)}).
Task-level event stream. A task-level event stream 𝑆𝑇 is a potentially
infinite sequence of task-level events, i.e., 𝑆𝑇 ∈ ∗∀1≤𝑖<𝑗≤|𝑆𝑇 |

𝑆𝑇 (𝑖) ≠
𝑇 (𝑗).

. Approach

Fig. 1 provides a high-level overview of our approach, which we
omplement with a formalization in Algorithm 1. As depicted, it recog-
izes task-level events from a user interaction stream 𝑆𝑈 based on three
omponents: the object-instance-identification component determines to
hich object instances events relate, the task-identification component

dentifies sequences of events that correspond to individual tasks, and
he task-categorization component assigns a type to an identified task.
or each recognized task, our approach emits a start and a completion
vent to a task-level event stream 𝑆𝑇 , consisting of a task’s identifier,

its type, its object instances, a timestamp, and lifecycle information that
indicates whether it corresponds to the start or completion of the task.

While object-instance identification is applied to each event as soon
as it arrives, the task-identification and categorization components
operate on the basis of an event buffer 𝐵. In this work, we assume
that 𝐵 is large enough to store the events comprising a single task
instance. In online settings, our approach applies task categorization
as soon as it identified a task based on the events in the buffer. In
offline settings, it first applies task identification to an entire event log
and only then continues with task categorization. Also note that, as
mentioned in Section 2, we assume that a user performs one task before
moving to the next.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

𝑢
o
f

4

Fig. 1. Overview of our approach.
Algorithm 1 Recognizing task-level events from user interaction data
Input 𝑆𝑈 : User interaction stream, b: Maximum buffer size
Output 𝑆𝑇 : Task-level event stream

⊳ Initialize buffer 𝐵, clustering model 𝑀, chunk list 𝐶, and object instance set 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
1: 𝐵 ← new FIFOQueue(𝑏), 𝑀 ← new ClusteringModel(), 𝐶 ← [], 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 ← ∅
2: loop forever
3: u ← 𝑆𝑈 .observeEvent() ⊳ A new event is consumed from the stream

⊳ Object-instance identification
4: 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 ← 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 ∪ {(𝑢.𝑢𝑖𝑑,identifyObject(𝑢))} ⊳ Identify object instance

⊳ Add the event to the buffer
5: 𝐵.insert(𝑢)

⊳ Task identification
6: if completesChunk(𝑢) then
7: 𝐶.add(𝐵.getEventsSinceLastChunk(𝐶)) ⊳ Create and store new chunk
8: if |𝐶| ≥ 2 then ⊳ Check if enough chunks available
9: 𝑐𝑖, 𝑐𝑖+1 ← 𝐶[−2], 𝐶[−1] ⊳ Get chunks to be checked

10: if endsTask(𝐵, 𝐶, 𝑐𝑖, 𝑐𝑖+1, 𝑜𝑏𝑗𝑒𝑐𝑡𝑠) then ⊳ Check if 𝑐𝑖 completes a task
11: 𝑡𝑎𝑠𝑘𝐸𝑣𝑒𝑛𝑡𝑠 ← (𝐵.dequeueUpThrough(𝑐𝑖)) ⊳ De-queue events that comprise the task
12: 𝐶 ← 𝐶.removeRange(𝐶[0], 𝑐𝑖) ⊳ Remove chunks that are part of new task

⊳ Task categorization
13: 𝑣 ← vectorize(𝑡𝑎𝑠𝑘𝐸𝑣𝑒𝑛𝑡𝑠, 𝑜𝑏𝑗𝑒𝑐𝑡𝑠) ⊳ Create a feature vector of the task
14: 𝑀 .update(𝑣) ⊳ Update the clustering model
15: 𝑡𝑦𝑝𝑒 ← 𝑀 .categorizeTask(𝑣) ⊳ Assign a type to the task
16: 𝑙𝑎𝑏𝑒𝑙 ← label, getDefiningTerms(𝑡𝑎𝑠𝑘𝐸𝑣𝑒𝑛𝑡𝑠) ⊳ Assign a label to the task

⊳ Emit task-level events
17: 𝑡𝑖𝑑 ← newID() ⊳ Assign an ID to the task
18: 𝑡𝑎𝑠𝑘𝑂𝑏𝑗𝑒𝑐𝑡𝑠 ← {𝑜𝑏𝑗 ∣ (𝑒𝑣𝑒𝑛𝑡, 𝑜𝑏𝑗) ∈ 𝑜𝑏𝑗𝑒𝑐𝑡𝑠}
19: 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 ← ∅ ⊳ Empty the objects set for the next task
20: emit(𝑆𝑇 , (𝑡𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑡𝑎𝑠𝑘𝐸𝑣𝑒𝑛𝑡𝑠[0].𝑡𝑠, {(lifecycle, start),(label, 𝑙𝑎𝑏𝑒𝑙)}, 𝑡𝑎𝑠𝑘𝑂𝑏𝑗𝑒𝑐𝑡𝑠))
21: emit(𝑆𝑇 , (𝑡𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑡𝑎𝑠𝑘𝐸𝑣𝑒𝑛𝑡𝑠[−1].𝑡𝑠, {(lifecycle, complete),(label, 𝑙𝑎𝑏𝑒𝑙)}, 𝑡𝑎𝑠𝑘𝑂𝑏𝑗𝑒𝑐𝑡𝑠)})
4.1. Object-instance identification

First, our approach identifies object instances in the events, which
(1) it uses in the subsequent components and (2) which indicate if
and how recognized task-level events relate to each other through
shared object instances (line 4). As shown in Fig. 2, the object-instance-
identification component consists of two parts that are applied for each
event 𝑢: First, type extraction aims to extract an object type 𝑜𝑡 from
. Then, instance recognition detects if 𝑢 indeed refers to an instance
f 𝑜𝑡 and—if so—adds it to the current task’s object instances. In the
ollowing, we explain these parts in detail.

.1.1. Type extraction
The first part of this component extracts an object type 𝑜𝑡 from a

given event 𝑢. For instance, it aims to detect that u1, u5, and u8 each
refer to an order, while u7 refers to a customer. This involves noun
identification and UI-object removal, which we describe next.
Noun identification. We recognize that object type information is
often contained in context attribute values, e.g., in button labels such
as Save order. Therefore, noun identification establishes a set of nouns
𝑁𝑢 from the context attribute values 𝑃 of event 𝑢.

To establish 𝑁𝑢, we employ a part-of-speech (POS) tagger provided
by standard NLP tools (e.g., spaCy [13]). Given a context-attribute
value 𝑝, e.g., Create order (see u5), a POS-tagger assigns linguistic roles
to individual words in 𝑝, e.g., it assigns Verb to Create and Noun to
4

order. Using such a tagger, we instantiate a function nouns that, given
a value 𝑝 ∈ 𝑢.𝑃 returns the set of nouns in 𝑝. For instance, nouns(Create
order) = {𝑜𝑟𝑑𝑒𝑟}. Noun identification applies nouns to all 𝑝 ∈ 𝑢.𝑃 ,
which results in a set 𝑁𝑢 =

⋃

𝑝∈𝑢.𝑃 𝚗𝚘𝚞𝚗𝚜(𝑝) that may contain process-
related nouns. However, this set likely also contains nouns that rather
relate to the user interface itself, which are removed next.
UI-object removal. Having identified a set of nouns 𝑁𝑢, UI-object
removal discards any nouns that pertain to user interface elements
(e.g., textfield or excel) rather than process-related objects, as these
cannot be used to establish meaningful relations between tasks.

To this end, we use a set 𝐾𝑈 of user-interface-specific terms, which
consists of names of different UI elements, such as button, field, and
link, common application names, such as names of browsers, spread-
sheet applications, text-processing software, productivity tools, and
application-specific objects, such as workbook, sheet, and cell in case
of MS Excel.1 If a noun 𝑛 ∈ 𝑁𝑢 corresponds to a term in 𝐾𝑈 , it is
not process-related and thus removed from 𝑁𝑢. In this manner, our
approach establishes a set of process-related nouns 𝑁𝑜𝑡

𝑢 = 𝑁𝑢 ⧵𝐾𝑈 .
Output. If 𝑁𝑜𝑡

𝑢 still contains nouns after this removal step, i.e., 𝑁𝑜𝑡
𝑢 ≠ ∅,

our approach concatenates these to represent the object type 𝑜𝑡 of 𝑢. For
instance, 𝑁𝑜𝑡

𝑢 = {𝑜𝑟𝑑𝑒𝑟} becomes 𝑜𝑡 = 𝑜𝑟𝑑𝑒𝑟, while 𝑁𝑜𝑡
𝑢 = {𝑜𝑟𝑑𝑒𝑟, 𝑙𝑖𝑛𝑒}

becomes 𝑜𝑡 = 𝑜𝑟𝑑𝑒𝑟 𝑙𝑖𝑛𝑒 before it continues with instance recognition

1 For the full set 𝐾 of terms we refer to our repository linked in Section 5.
𝑈

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa
Fig. 2. Object-instance-identification component.
for 𝑢. If no nouns remain, it continues with type extraction for the next
event.

4.1.2. Instance recognition
Having extracted an object type 𝑜𝑡 from 𝑢, the object-instance

identification component next aims to recognize if 𝑢 indeed refers to
a specific instance of 𝑜𝑡. For example, it recognizes that the O007501
Value of event u5 represents the identifier of the specific order that
was created by u5.

To this end, instance recognition establishes a set of identifying
values 𝐼𝑜𝑖𝑢 that jointly represent an object identifier 𝑜𝑖 based on 𝑢’s
value attributes 𝑉 . We recognize that, in the context of user interaction
events, such identifying values are typically alphanumeric IDs, URLs,
email addresses, and names of people, organizations, and places. There-
fore, our approach adds any value 𝑣 ∈ 𝑢.𝑉 to 𝐼𝑜𝑖𝑢 that (partially) consists
of digits, corresponds to a URL or email address, or refers to a named
entity such as Pete Miller (see u6). Note that digits, URLs, and email
addresses can be straightforwardly detected using regular expressions,
whereas named entities, i.e., persons, organizations, countries, cities,
etc., can be detected using named-entity-recognition capabilities of
standard NLP-tools [13].

Instance recognition then concatenates any identifying values in the
same manner as done for nouns in type extraction to represent the
object identifier 𝑜𝑖.

Provided that the object-instance-identification component extracts
an object type and recognizes a corresponding identifier in 𝑢, it estab-
lishes an object instance 𝑜 = (𝑜𝑖, 𝑜𝑡) and adds it to the set of current
object instances (line 4). Regardless of whether an object instance was
added or not, the component then continues with the next event.

4.2. Task identification

The task-identification component identifies sequences of events
from the stream that correspond to individual tasks. It consists of
two main operations, as visualized in Fig. 3. Here, chunking identifies
sequences of observed events that represent sub-tasks, such as filling
in a form or sending an e-mail, whereas segmenting determines if
consecutive sub-tasks corresponds to the same process-level task or
rather to different ones. Once such a transition from one task to the
next has been detected, we forward the segment that corresponds to
the completed task to our task-categorization component.

4.2.1. Chunking
We recognize sub-tasks by looking for common keywords in user

interaction data that indicate the conclusion of an interaction sequence,
achieved through the completesChunk function in Algorithm 1 (line
6). To operationalize this function, we established a set of completion
actions 𝐾𝐴, which consists of 20 keywords stemming from design
guidelines for user interfaces by IBM [14], covering typical terms that
5

indicate the conclusion of a smaller part in a process, such as ok (to go
to the next step in a user interface), submit (for a form), send (e-mail),
or save (changes).2

For an event 𝑢, completesChunk(𝑢) returns true if 𝑢’s event class
contains a mention of an action in 𝐾𝐴. Based on the events stored
in 𝐵, a sub-task is formed by the events that occurred since the last
completed chunk in 𝐶 (line 7). For instance, for the running example,
u4, u8, u13, and u16 complete chunks (due to their ok and save labels),
which results in u1–u4, u5–u8, u9–u13, and u14–u16 as chunks.

4.2.2. Segmenting
The segmenting operation aims to decide whether a chunk 𝑐𝑖 cor-

responds to the end of a task or if it continues with the next chunk,
𝑐𝑖+1 (function endsTask in line 10). Specifically, as shown in Fig. 3,
endsTask identifies 𝑐𝑖 as finalizing a task if: (1) the chunks are
contextually unrelated to each other, (2) the chunks have no overlap
in data values, (3) 𝑐𝑖 does not represent an overhead activity, and (4)
the control-flow after 𝑐𝑖 is non-deterministic. Otherwise, 𝑐𝑖 and 𝑐𝑖+1 are
considered to belong to the same task.
(1) Assessing contextual relatedness. Our approach first checks if 𝑐𝑖
and 𝑐𝑖+1 are contextually related or not. We do this by lifting the notion
of contextual relatedness proposed by Urabe et al. [8], which targets
offline segmentation, to our setting. The idea is to check if the event
classes contained in 𝑐𝑖 and 𝑐𝑖+1 commonly co-occurred so far (indicating
a shared context) or not (suggesting that the chunks belong to different
tasks).

As illustrated in Fig. 4, contextual relatedness is quantified on the
basis of a global co-occurrence matrix, which tracks how often pairs of
event classes have been observed to be part of the same chunk. Based
on the global counts, we obtain the co-occurrence vectors of the event
classes per chunk (i.e., rows in the co-occurrence matrix) and compute
their centroid. Then, we compute the similarity score 𝚜𝚒𝚖(𝑐𝑖, 𝑐𝑖+1) as the
cosine similarity between the centroids of 𝑐𝑖 and 𝑐𝑖+1. Given a similarity
threshold 𝑡 ∈ [0, 1],3 we consider the two chunks contextually unrelated
if 𝚜𝚒𝚖(𝑐𝑖, 𝑐𝑖+1) < 𝑡.

In this manner, given the four chunks identified in the previous
operation, we would determine that the transitions from u1–u4 (logging
in) to u5–u8 (creating an order), and from u5–u8 (creating an order)
to u9–u13 (updating a quantity) are both clear changes in context. By
contrast, the transition from u9–u13 to u14–u16 occurs within the same
context (updating and fixing an order quantity), due to the chunks’
strongly related event classes.
(2) Checking for data value overlap. Next, we recognize that sub-
tasks may be part of the same task, even when they relate to different

2 We refer to our repository for the full list of keywords, though 𝐾𝐴 can
naturally be extended with, e.g., self-defined keywords or other languages.

3 𝑡 is configurable and we set it to 0.3 by default.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa
Fig. 3. Task-identification component.
Fig. 4. Contextual-relatedness approach inspired by Urabe et al. [8].

contexts, such as opening a request sent by a customer per e-mail and
subsequently updating one of their orders in a system. Therefore, we
check if events belonging to chunks 𝑐𝑖 and 𝑐𝑖+1 share particular attribute
values, including IDs of identified object instances, such as customer
names or order numbers. Specifically, we check the last two events of
𝑐𝑖 and the first two of 𝑐𝑖+1 for exact matches in their attribute sets 𝑉 ,
and, if such matches are present, determine that there should be no
segmentation between 𝑐𝑖 and 𝑐𝑖+1.

In this manner, we would, for instance, recognize that chunks u9–
u13 and u14–u16 also relate to each other in terms of their data values,
because events u13 and u14 both refer to order O008102, thus avoiding
segmentation here.
(3) Checking for overhead sub-tasks. Then, we check if 𝑐𝑖 actually
corresponds to a sub-task performed for a particular process instance or
that it, rather, corresponds to overhead being performed. Common ex-
amples of this include logging into a system, launching an application,
or visiting non-work related websites. If 𝑐𝑖 represents such an overhead
sub-task, we do not want to treat this chunk as a distinct task on a
process level, which is why we would not segment after 𝑐𝑖 (even though
contextual relatedness or shared data values between 𝑐𝑖 and 𝑐𝑖+1 are
unlikely).

To operationalize this check, we established a set 𝐾𝑂 of overhead
keywords based on the guidelines [14] we also use for chunking,
including log in, sign up, reload, and open. Using this set, we check if
a member of the last two event classes of 𝑐𝑖 is contained in 𝐾𝑂 and,
if so, avoid segmentation. In this manner, we, e.g., recognize that the
first sub-task in our running example (u1–u4), which corresponds to a
user logging into a web app, belongs to the same task as the next chunk
u5–u8, where the same app is used to create an order.

Note that if one wants to specifically investigate the occurrence of
overhead actions in a process, one can simply disable this check in our
approach, which will result in such chunks being treated as separate
tasks.
(4) Checking for control-flow determinism. Finally, we check if
chunks that consist of 𝑐𝑖’s event classes have always been followed by
the same behavior so far. Such control-flow determinism suggests that
𝑐𝑖 does not complete a task because it is always necessary to perform
the exact same steps after it.

To be able to check for control-flow determinism, we count how
often sets of event classes directly follow each other throughout the
stream and compare it to the number of times the set of 𝑐 ’s event
6

𝑖

classes, 𝑐𝑖.𝑃 , formed a chunk so far. If these counts are the same,
i.e., count(𝑐𝑖.𝑃) = countDF((𝑐𝑖.𝑃 , 𝑐𝑖+1.𝑃))4, the chunk’s subsequent
control-flow is considered to be deterministic.5 This suggests that their
corresponding sub-tasks belong to the same task and we avoid segmen-
tation after 𝑐𝑖. These counts can be stored efficiently by identifying
event classes through their index in the co-occurrence matrix used in
the first check, thus, only storing sets of indices and their counts instead
of storing sets of entire event classes.

Note that the checks based on contextual relatedness and control-
flow determinism may benefit from a warm-up phase, during which we
populate the co-occurrence matrix and control-flow counts for a certain
number of events before making the first segmentation decision based
on them.

4.2.3. Post processing
When our approach has detected that 𝑐𝑖 represents the final chunk

of a task (line 10), this means that all events currently in the buffer, up
to and including the final event of 𝑐𝑖, together form a task. The events
that comprise the task are then forwarded to the task-categorization
component and removed from buffer 𝐵 as well as chunk list 𝐶 (lines
11–12), so that the first event in 𝐵 is the first event of the next task.

4.3. Task categorization

The task-categorization component assigns a type to identified tasks.
Given that we cannot store identified tasks in a streaming setting,
we categorize them directly after task identification. This is complex,
though, because it means we may not yet have observed all possible
task types.

To deal with this challenge, we perform task categorization on the
basis of an online clustering model 𝑀 , which is incrementally updated
as new task instances arrive. As shown in Fig. 5, this involves the
transformation of a task into a feature vector, updating the model 𝑀 ,
then using it to assign a cluster to the task, and—finally—providing a
textual label for the task.

4.3.1. Establishing feature vectors of tasks
Given an identified task, we first transform its contents into a

feature vector that can be used for clustering (line 13). We use a vector
encoding that accounts for variability in the executions of tasks of
the same type, such as tasks that consist of slightly different sets of
event classes or that are performed in a different order. Therefore,
we capture the number of unique event classes (as an indicator of
a task’s complexity), and the frequency of each event class (to cap-
ture its contents) as features, with a fixed position for each event

4 DF stands for directly-follows.
5 Note that we only apply this check if count(𝑐𝑖.𝑃)≥ 3, to avoid using it

for new sets of event classes.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa
Fig. 5. Task-categorization component.
class.6 For instance, the task u1–u8 in our running example consists
of eight event classes that are all performed once, resulting in a vector
⟨8, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,… , 0⟩. Here, the zeros at the end
are used to ensure that vectors remain of the same size 𝑠𝑣 throughout
the stream,7 accounting for a number of event classes not seen so far.
In offline settings, the vector size can be set to the number of unique
event classes in the entire input log plus one (to account for the number
of unique event classes in the task).

4.3.2. Clustering tasks
We use an online clustering model 𝑀 to recognize tasks that are of

the same type, based on their vector representation. Specifically, we use
DenStream [15], a density-based online clustering technique building
on the DBSCAN algorithm [16]. It dynamically creates, updates, and
deletes so-called micro-clusters in the online feature space it maintains.
This technique has two key benefits. First, the technique is highly
memory efficient, since it only stores summaries of vector sets (the
micro-clusters), rather than the vectors themselves. Second, unlike
many other clustering techniques, it does not depend on a user-defined
number of desired clusters.

As shown in Fig. 5 and Algorithm 1, we update the clustering model
𝑀 with the vector 𝑣 that corresponds to an identified task (line 14),
before using it to assign the task to a cluster (line 15). For instance,
due to the distinct features of the two tasks in our running example,
these are assigned to different clusters (e.g., types A and B).

To improve the performance of task categorization, it can also be
beneficial to introduce a warm-up phase, which postpones assignment
of task types to a point in time when the clustering model has already
been updated with a number of identified tasks, and thus is more
mature than it is with a cold start. Note that, in offline settings, such
a warm-up phase effectively spans the entire event log, since we can
then establish a clustering model based on all identified tasks, before
assigning categories to them.

4.3.3. Task labeling
After using clustering to recognize the type of a task, we provide the

task with a textual label that indicates what its type actually means.
We automatically generate a suitable label for a given task, by

considering the terms that are distinctive to the event classes for tasks

6 Note that the encoding could also capture the types of object instances
identified in the events that comprise a task, but in our experiments this did
not lead to performance improvements.

7 Given that, in online settings, the final number of event classes is
unknown, 𝑠𝑣 should be set sufficiently large. We set 1000 as the default for
𝑠𝑣, which already covers more than 6 times the total number of event classes
in our evaluation data.
7

in its assigned cluster. For this, we use the well-known term frequency–
inverse document frequency (tf-idf) score. Specifically, we use a term
dictionary to keep track of the frequency of terms used in the event
classes within tasks of a specific type, i.e., cluster. Using 𝑀.𝑡𝑦𝑝𝑒𝑠 to
refer to the types currently recognized by the clustering model 𝑀 , we
write 𝚝𝚏 − 𝚒𝚍𝚏(𝑥, 𝑡𝑦𝑝𝑒) as the score for a term 𝑥 and a type 𝑡𝑦𝑝𝑒 ∈
𝑀.𝑡𝑦𝑝𝑒𝑠.

Then, we set the label of type as the term 𝑥 with the highest
𝚝𝚏 − 𝚒𝚍𝚏(𝑥, 𝑡𝑦𝑝𝑒), e.g., Create order for type A. If multiple types are
assigned the same label (e.g., if Quantity is the most distinctive term
for types B and C), we add the term with the next highest tf-idf
score to each label, until they are all unique. For example, after basic
post-processing (term re-ordering and removing capitalization), B may
get the label Edit order, while C gets Confirm quantity.

4.4. Output

The output of our approach is a stream of task-level events based
on the identified and categorized tasks as well as the object instances
identified in the events that comprise the tasks. For each task, we emit
a start event with the timestamp of its first user interaction event and a
completion event with the last timestamp (lines 20–21). Both task-level
events are assigned a task identifier (created in line 17), the task’s type,
its label, and its object instances. For example, for u1–u8, we emit:

𝑡𝑒1 = {1, 𝐴, 15∶41∶32, {(𝚕𝚒𝚏𝚎𝚌𝚢𝚌𝚕𝚎, 𝑠𝑡𝑎𝑟𝑡), (𝚕𝚊𝚋𝚎𝚕, 𝐶𝑟𝑒𝑎𝑡𝑒 𝑜𝑟𝑑𝑒𝑟)},

{(𝑂007501, 𝑜𝑟𝑑𝑒𝑟), (𝐶0075, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟)}}

𝑡𝑒2 = {1, 𝐴, 15∶43∶58, {(𝚕𝚒𝚏𝚎𝚌𝚢𝚌𝚕𝚎, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒), (𝚕𝚊𝚋𝚎𝚕, 𝐶𝑟𝑒𝑎𝑡𝑒 𝑜𝑟𝑑𝑒𝑟)},

{(𝑂007501, 𝑜𝑟𝑑𝑒𝑟), (𝐶0075, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟)}}

and for u9–u16 we emit:

𝑡𝑒3 = {2, 𝐵, 15∶44∶32, {(𝚕𝚒𝚏𝚎𝚌𝚢𝚌𝚕𝚎, 𝑠𝑡𝑎𝑟𝑡), (𝚕𝚊𝚋𝚎𝚕, {𝐸𝑑𝑖𝑡 𝑜𝑟𝑑𝑒𝑟})},

{(𝑂008102, 𝑜𝑟𝑑𝑒𝑟), (𝐶0081, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟)}}

𝑡𝑒4 = {2, 𝐵, 15∶46∶55, {(𝚕𝚒𝚏𝚎𝚌𝚢𝚌𝚕𝚎, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒), (𝚕𝚊𝚋𝚎𝚕, {𝐸𝑑𝑖𝑡 𝑜𝑟𝑑𝑒𝑟})},

{(𝑂008102, 𝑜𝑟𝑑𝑒𝑟), (𝐶0081, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟)}}

Compared to the user interaction events in our running example,
our approach thus emits events that fulfill the requirements of process
mining settings because they relate to a process-level activity and to a
process execution.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

u

T
i
t
g

Table 2
Characteristics of the task logs used in our experiments.

Task Log Source Description #Tasks Avg.len. #Var. #Events #Classes

1 [7] Copy address data 100 14.5 7 1462 15
2 [7] Enter reimbursement details 50 62.3 1 3113 32
3 [7] Enter student record 50 30.8 2 1539 23
4 [17] Fill in travel request 40 73.5 2 2940 48

5 [1] Create structural unit 30 10.9 30 331 9
6 [1] Create chapter 30 10.1 30 425 12
7 [1] Create organizational unit 30 14.2 30 304 8
8 [1] Create specification 30 11.0 30 326 9
u
l
a

b
o
t
F
a
c
a
t

5. Evaluation

In this section, we describe the evaluation experiments we con-
ducted. We describe the data collection used in our experiments in
Section 5.1 and the setup in Section 5.2. In Section 5.3 we present the
evaluation results showing our approach’s capability to automatically
recognize task-level events from user interaction data in comparison to
baseline approaches. The implementation, data collection, evaluation
pipeline, and raw results can be found in our repository.8

5.1. Data collection

We aim to show that our approach is capable of recognizing task-
level events of varying types. However, there are no publicly available
event logs (let alone streams) that contain interaction data related to
different task types that are associated with a necessary gold standard.
Therefore, we follow the idea of Urabe et al. [8] and take available task
logs, each recording various instances of the same type, and combine
these into three evaluation logs, which thus cover multiple task types,
in various orders. We use these event logs as input in offline settings
and as a basis to simulate event streams in online settings.

5.1.1. Task logs
As shown in Table 2, we have eight task logs from three sources

available, which include gold-standard task instances (though con-
tained task IDs) and associated types (through their description in the
source).9

The types of tasks that these logs cover can be divided into two
groups:

1. Task logs 1–4 involve copying address data from spreadsheets to
web forms, entering reimbursement details, entering student records
into a web-based app, and filling in travel requests. Logs 1–3 were
all published by Leno et al. [7], whereas log 4 stems from a
tutorial given by Agostinelli et al. [17]. Note that task log 1
originally contained substantially more instances (1000 versus
50) and events (14,582 versus 1,539–3,113) than the others.
Therefore, we use a sample of its tasks, so that we maintain a
more balanced distribution among types as well events per log.
To this end, we randomly select 100 instances using stratified
sampling with respect to the different execution variants.

2. Task logs 5–8 all relate to the creation of informational objects,
such as organizational units, in an SAP system and are provided
by Abb and Rehse [1].

8 https://gitlab.uni-mannheim.de/processanalytics/task-recognition-from-
ser-interaction-data

9 Note that these logs do not include a gold standard for object instances.
o establish that gold standard, both authors of this manuscript annotated user

nteraction events with correct object instances independently. Afterwards,
hese were compared and any discrepancies were settled in a discussion. The
8

old standards are available in our repository.
Four out of these eight task logs (1–4) contain overhead tasks such
as logging into a system, starting an application, or opening a file. As
shown in the table, the logs also differ considerably in their variation
and task lengths. Note that we also unified the data structure across
the task logs as much as possible before combining them, such that
attribute names are the same for all task types.

5.1.2. User interaction logs
We established three evaluation logs (𝐿𝑈1–𝐿𝑈3) by combining the

tasks from individual task logs:
𝑳𝑼𝟏: 𝐿𝑈1 consists of instances from task logs 1–3 (which are also

sed by Urabe et al. [8] in their evaluation). We start from an empty
og 𝐿𝑈1 and (1) randomly select a task log and an instance from it, (2)
dd this instance to 𝐿𝑈1, and (3) remove it from the task log, until all

instances have been added to 𝐿𝑈1. The resulting user interaction log
𝐿𝑈1 consists of 200 tasks and has a total of 6114 events.

𝑳𝑼𝟐: We established 𝐿𝑈2 from task logs 1–4, in the same manner
as 𝐿𝑈1. The resulting user interaction log 𝐿𝑈2 consists of 240 tasks and
contains 9054 events.

𝑳𝑼𝟑: 𝐿𝑈3 is based on task logs 5–8. We use these task logs separately
from the other ones, since their event attributes, and thus event classes,
differ considerably. In particular, none of the event classes that logs 5–
8 contain, occur in logs 1–4. Combining them into one evaluation log
would, thus, considerably simplify the identification of transition points
between tasks. We combined logs 5–8 in the same way as done for 𝐿𝑈1
and 𝐿𝑈2, so that the resulting user interaction log 𝐿𝑈3 consists of 120
tasks and contains 1,386 events.

We provide all logs (task logs 1–8 and 𝐿𝑈1–𝐿𝑈3) in our repository10

alongside the implementation. When performing experiments for online
settings, we use 𝐿𝑈1–𝐿𝑈3 to simulate event streams (𝑆𝑈1–𝑆𝑈3).

5.2. Setup

This section describes the environment, configurations, baselines,
and measures used in our experiments.

5.2.1. Environment
We implemented our approach in Python and ran our experiments

single-threaded on a laptop with a 2 GHz Intel Core i5 processor and
16 GB of memory.

5.2.2. Configurations
Our approach requires a buffer size 𝑏 that can store all events

elonging to a single task. We report on the results using a buffer size
f 250 events (also for the streaming baselines), which covers three
imes the number of events of the longest task in our data collection.
urthermore, we consider that parts of our approach are initialized
t the beginning of a stream and populated over time: the global
o-occurrence matrix and control-flow-counts for task identification
nd the online clustering model for task categorization. Given that
he accuracy of these components may improve as more events are

10 https://gitlab.uni-mannheim.de/processanalytics/task-recognition-from-
user-interaction-data

https://gitlab.uni-mannheim.de/processanalytics/task-recognition-from-user-interaction-data
https://gitlab.uni-mannheim.de/processanalytics/task-recognition-from-user-interaction-data
https://gitlab.uni-mannheim.de/processanalytics/task-recognition-from-user-interaction-data
https://gitlab.uni-mannheim.de/processanalytics/task-recognition-from-user-interaction-data

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

p
t
a
o
l

5

l
w
i
p
S
i
t
c
a
t
t
c
s
o

O
w

5

O
i
𝐹
f
s
o
t

T
c
g

T
m
t
C

5

a
(
(
e
a
w
b
o
i
i
c

5

o
t
o
O
r
b
s
g
i
o
r

observed, we test the value of a warm-up phase, where our approach
opulates the matrix, control-flow counts, and clustering model using
he first 0, 100, 250, 500, or 1000 events, before starting identification
nd categorization on them. Note that, in offline settings, the number
f warm-up events corresponds to the number of events in the input
og.

.2.3. Baselines
We compare against three streaming baselines and two offline base-

ines with respect to task identification and categorization. Note that
e cannot compare against any baseline with respect to object-instance

dentification, because none of the existing works considers that as a
art of recognizing tasks.
treaming baselines. We compare our approach to three baselines
n a streaming setting. Aside from our previous work [10], we es-
ablished two baselines by adapting existing works, since there are
urrently no other techniques capable of recognizing tasks based on
stream of user interactions. The task-identification component of the

wo additional baselines consists of an existing, offline identification
echnique, lifted to an online setting (as described below). Their task-
ategorization components, by contrast, are operationalized with the
ame technique used in our approach. This is necessary because existing
ffline categorization techniques cannot be lifted to an online setting.

• 𝐵𝐿𝑐𝑎𝑖𝑠𝑒: Our previous approach. In our previous work [10], we
proposed the first approach for recognizing task-level events
from user interaction streams, which we use to investigate the
value of our extended task-identification component.

• 𝐵𝐿𝑑𝑓𝑔 : Back-edge-based identification. Leno et al. [7] proposed
a log segmentation technique based on back-edges identified
from a directly-follows graph (DFG). We adapted the technique
to build the DFG incrementally using the same event classes
as available to our approach and apply the authors’ back-edge
detection method periodically, after every 𝑏 events (i.e., each
time the buffer is full).

• 𝐵𝐿𝑐𝑜−𝑜𝑐 : Co-occurrence-based identification. The segmentation ap-
proach by Urabe et al. [8], which also inspired parts of our work,
leverages co-occurring event classes in fixed windows to segment
a log. We adapted it to count co-occurrence incrementally and
compute similarities on a buffer of events. We use the same
parameter configurations as reported in the original paper.

ffline baselines. When evaluating our approach in offline settings,
e compare it against two baselines:

• 𝐵𝐿𝑙𝑒𝑛𝑜: Back-edge-based identification. The original approach by
Leno et al. [7] serves as the first offline baseline. As described
for 𝐵𝐿𝑑𝑓𝑔 , it constructs a DFG based on event classes that
immediately follow each other in a given log. Then, it detects
back-edges in the graph, which it uses to segment the log into
tasks. As such, this baseline only covers task identification.

• 𝐵𝐿𝑢𝑟𝑎𝑏𝑒: Co-occurrence-based identification and subsequent clus-
tering. The original approach by Urabe et al. [8] consists of
two phases: task identification and task clustering. First, it seg-
ments the complete input log using co-occurring event classes
(as explained above), before applying agglomerative hierarchi-
cal clustering to categorize tasks. As such, it covers both task
identification and task categorization.

.2.4. Measures
We use the following measures to assess quality in our experiments.

bject-instance-identification quality. We assess object-instance-
dentification quality through the well-known precision, recall, and
1-measures by comparing the object instances our approach identified
rom a stream/log to the object instances in the manually created gold
tandard. Using 𝐴 to denote the set of object instances identified by
ur approach and 𝐺 for the set of object instances in the gold standard
9

hese measures are defined as follows: t
• Precision (Pre.). Precision is the fraction of object instances that
are actually correct (|𝐴∩𝐺|∕|𝐴|).

• Recall (Rec.). Recall is the fraction of object instances in the
gold standard that were also correctly identified by our approach
(|𝐴∩𝐺|∕|𝐺|).

• 𝐹1-score (𝐹1). The 𝐹1-score is the harmonic mean of precision
and recall.

ask-identification quality. We assess task-identification quality by
omparing the identified task segments to those of the corresponding
old standard, for which we use two measures:

• #tasks. To assess if an approach makes the right amount of
segmentation decisions, we compare the numbers of identified
and gold-standard tasks.

• Normalized edit distance (n.ED). To quantify how similar the iden-
tified tasks are in comparison to the gold standard, we calculate
the average normalized edit distance between identified tasks
and their closest task in the gold standard.

ask-categorization quality. We assess categorization quality through
easures for cluster quality, by comparing the tasks that are assigned

o the same category in the gold standard (i.e., task types).
luster quality.

• Rand index (R). We compute the Rand index, which considers
the fraction of pairs (tasks at macro level, events at micro
level) that are correctly assigned to the same or to different
categories, i.e., (𝑇𝑃+𝑇𝑁)∕(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁), where a true positive
(TP) indicates that two tasks/events are correctly assigned to the
same category.

• Jaccard index (J). We also compute the weighted average Jac-
card index to quantify the similarity between identified clusters
and the gold-standard clusters, which is given as 𝐴∩𝐺∕𝐴∪𝐺 per
cluster, with 𝐴 a cluster’s contents identified by our approach
and 𝐺 its gold-standard contents (i.e., tasks at the macro level,
events at the micro level).

.3. Results

In this section, we first present the overall results of our approach
pplied in an online setting in comparison to the streaming baselines
Section 5.3.1), before examining the impact of a warm-up phase
Section 5.3.2). Following this, we discuss the importance of consid-
ring various types of information in task identification through an
blation study (Section 5.3.3). Shifting our focus to offline settings,
e report on our approach’s performance in comparison to the offline
aselines (Section 5.3.4), followed by a discussion on performance
nline versus offline settings (Section 5.3.5). Subsequently, we provide
nsights into the results from our approach and baselines applied on the
ndividual task logs (Section 5.3.6) and conclude with a discussion on
omputational efficiency (Section 5.3.7).

.3.1. Online results
Table 3 shows the results obtained using our approach applied in an

nline setting, the three streaming baselines, and a perfect identifica-
ion strategy (to show the quality of task categorization independently
f task-identification quality), all with a warm-up phase of 250 events.
bject-instance-identification results. Our approach achieves accu-

ate results in terms of object-instance identification for 𝑆𝑈1 and 𝑆𝑈2,
oth with an 𝐹1-score of 0.9 or higher. The similar precision and recall
cores (0.91 resp. 0.88 for 𝑆𝑈1 and 0.95 and 0.93 for 𝑆𝑈2) further sug-
est that the object-instance-identification component is both accurate
n identifying actual object instances and effective in identifying most
f these object instances. Note that for 𝑆𝑈3, we could not obtain any
esults, because there is simply no object instance information available
o be identified. Furthermore, recall that none of the baselines considers

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

c

a
c

o
t
0
o
e
t
t
o

r
b
t
𝐵
(
y
c
f
a
n
s
(

Table 3
Results of our approach and the baselines (warm-up of 250 events). Perf. ident. shows task-categorization results
in case of perfect task identification. ↑ and ↓ indicate the desired direction per measure.

Stream Approach Obj. ident. Task ident. Task categorization
Pre.↑ Rec.↑ F1 ↑ #tasks n.ED↓ R(mi)↑ R(ma)↑ J(mi)↑ J(ma)↑

𝑺𝑼𝟏

Ours 0.91 0.88 0.90 202 0.04 0.96 0.97 0.92 0.95
𝐵𝐿𝑐𝑎𝑖𝑠𝑒 – – – 198 0.04 0.94 0.95 0.92 0.92
𝐵𝐿𝑑𝑓𝑔 – – – 202 0.83 0.58 0.82 0.38 0.89
𝐵𝐿𝑐𝑜−𝑜𝑐 – – – 159 0.33 0.74 0.80 0.64 0.71
Perf. ident. – – – 200 0.00 1.00 1.00 1.00 1.00

𝑺𝑼𝟐

Ours 0.95 0.93 0.94 241 0.05 0.96 0.97 0.92 0.95
𝐵𝐿𝑐𝑎𝑖𝑠𝑒 – – – 231 0.06 0.89 0.95 0.82 0.89
𝐵𝐿𝑑𝑓𝑔 – – – 99 0.32 0.42 0.80 0.24 0.56
𝐵𝐿𝑐𝑜−𝑜𝑐 – – – 198 0.33 0.69 0.71 0.50 0.51
Perf. ident. – – – 240 0.00 0.97 0.97 0.95 0.95

𝑺𝑼𝟑

Ours – – – 132 0.17 0.97 0.99 0.93 0.99
𝐵𝐿𝑐𝑎𝑖𝑠𝑒 – – – 138 0.23 0.87 0.88 0.76 0.76
𝐵𝐿𝑑𝑓𝑔 – – – 29 0.58 0.34 0.49 0.16 0.35
𝐵𝐿𝑐𝑜−𝑜𝑐 – – – 58 0.37 0.45 0.57 0.31 0.46
Perf. ident. – – – 120 0.00 1.00 1.00 1.00 1.00
w
p
c

t
p
t
u
T
a
f
s
m
h
l
p
c

object-instance identification, thus, we could not obtain respective
results for those either.

Looking at the results in detail reveals that our approach is capa-
ble of correctly identifying objects of various types. For instance, it
correctly extracts objects of the type bank account, identified by an
account number, and of type tax code, identified by a respective code.
However, there are also cases where our approach fails, in particular
because object types were not recognized correctly. Type recognition
relies on the accurate identification of nouns; hence, failing to correctly
identify nouns hinders the recognition of object instances. For instance,
noun identification failed to recognize that address is a noun, as it
can also function as a verb, which leads to relevant instances being
missed. Similarly, it does not recognize types that are not represented
by actual words, e.g., countycode (which misses white space between
ounty and code). Conversely, although discarding UI-specific objects

(such as button or text field) generally avoids false positives well, our
pproach identified some instances that do not have gold standard
ounterparts. For instance, it identified objects of type personal data,

associating these with an identifier. However, such objects are not
informative and their identification should, thus, be avoided.

Overall, the results still show that our approach is capable of
accurately identifying object instances from user interaction streams,
allowing it to relate tasks to each other.
Task-identification results. Our approach achieves highly accurate
results for 𝑆𝑈1 and 𝑆𝑈2, identifying approximately the same numbers
f tasks as in the gold standard (202 vs 200 and 241 vs 240), to which
hey are very close in terms of contents, yielding edit distances of just
.04 and 0.05. However, stream 𝑆𝑈3 is more challenging. Our approach
verestimates the total number of tasks (132 versus 120), achieving an
dit distance of 0.17. Taking an in-depth look into the results, we find
hat it occasionally fails to recognize that certain sub-tasks belong to
he same gold-standard task, since they lack contextual relatedness and
verlapping data values.

Compared to the baselines, our approach consistently obtains better
esults in terms of edit distances. This indicates that the tasks that the
aselines identify differ more from their gold-standard counterparts
han the ones identified by our approach. Our previous approach,
𝐿𝑐𝑎𝑖𝑠𝑒, performs similarly well as our approach for 𝑆𝑈1 and 𝑆𝑈2

with 0.007 improvement for 𝑆𝑈1 and 0.01 improvement for 𝑆𝑈2),
et considerably better for 𝑆𝑈3 (improved by 0.06). This improvement
an be attributed to the additional check for deterministic control-
low that our approach employs, which 𝐵𝐿𝑐𝑎𝑖𝑠𝑒 does not do. 𝐵𝐿𝑑𝑓𝑔
nd 𝐵𝐿𝑐𝑜−𝑜𝑐 often miss segmentation points, resulting in much lower
umbers of identified tasks than contained in the gold standard. 𝐵𝐿𝑑𝑓𝑔 ,
pecifically, only finds 99 tasks for 𝑆𝑈2 (out of 240) and 29 for 𝑆𝑈3
out of 120). Although 𝐵𝐿 generally performs better than 𝐵𝐿 ,
10

𝑐𝑜−𝑜𝑐 𝑑𝑓𝑔
e find that its results are heavily dependent on the selection of two
arameter values, with the edit distances differing by up to 0.5 across
onfigurations.11

Overall, these results indicate that our approach, which considers
he semantic and data perspectives in addition to the control-flow
erspective considered by 𝐵𝐿𝑑𝑓𝑔 and 𝐵𝐿𝑐𝑜−𝑜𝑐 , leads to more accurate
ask identification. Furthermore, our approach does not depend on
ser-defined parameters (unlike 𝐵𝐿𝑐𝑜−𝑜𝑐).
ask-categorization results. As for task categorization, our approach
chieves high macro Rand scores of 0.97 for 𝑆𝑈1 and 𝑆𝑈2 and 0.99
or 𝑆𝑈3, which shows that it accurately assigns pairs of tasks to the
ame category as their gold-standard counterparts. The comparable
icro-level scores show that this categorization quality generally also
olds for pairs of events, which thus accounts for tasks of different
engths. The Jaccard index, which provides insights into the quality
er cluster, rather than per task (or event) pair, confirms the accurate
ategorization quality, achieving macro scores of 0.95 for 𝑆𝑈1 and 𝑆𝑈2

and 1.00 for 𝑆𝑈3 and the comparable scores on the micro level (0.92,
0.92, and 0.97).

As shown by the results obtained when using our task-categorization
component on perfectly identified tasks (gray row in Table 3), the
categorization itself is highly accurate, achieving perfect scores for
𝑆𝑈1 and 𝑆𝑈3, and near-perfect ones (≥0.95) for 𝑆𝑈2. The improved
task-categorization performance on 𝑆𝑈3 compared to 𝐵𝐿𝑐𝑎𝑖𝑠𝑒 can, there-
fore, be attributed to our improved task-identification component. The
subpar results of 𝐵𝐿𝑑𝑓𝑔 and 𝐵𝐿𝑐𝑜−𝑜𝑐 , which use the same catego-
rization technique as our approach, also clearly indicate that lower
identification quality leads to lesser categorization results.

5.3.2. Impact of the warm-up phase
Table 4 shows the results of our approach for warm-up phases of

0, 100, 250, 500, and 1000 events. The results indicate that the warm-
up phase does not have any impact on task-identification quality. For
task-categorization quality, the benefit of a warm-up phase becomes
clear, though.12 A closer look at the streams suggests that this benefit
relates to whether the warm-up phase covers each task type at least
once. For 𝑆𝑈1, this coverage occurs within the first 250 events but not
within the first 100 events. Between these two warm-up phases we see
a clear performance boost. While for up to 100 warm-up events, we
achieve a macro Rand score of 0.84 and Jaccard score of 0.78 for 𝑆𝑈1,
setting the warm-up phase to 250 events increases the scores by 0.13

11 See our repository for detailed experiments regarding 𝐵𝐿𝑐𝑜−𝑜𝑐 ’s parameter
configurations.

12 Note that warm-up phases do not apply for object-instance identification
as this is done per event.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

w
m
C
c
c
w
a
v

Table 4
Results of our approach with warm-up phases of 0, 100, 250, 500, and 1000 events. ↑ and ↓ indicate the desired direction per measure.

Stream #Events Obj. Ident. Task ident. Task categorization

Pre.↑ Rec.↑ F1 ↑ #tasks n.ED↓ R(mi)↑ R(ma)↑ J(mi)↑ J(ma)↑

𝑺𝑼𝟏

0 0.91 0.88 0.90 202 0.04 0.89 0.84 0.84 0.78
100 ‘’ ‘’ ‘’ ‘’ ‘’ 0.89 0.84 0.84 0.78
250 ‘’ ‘’ ‘’ ‘’ ‘’ 0.96 0.97 0.92 0.95
500 ‘’ ‘’ ‘’ ‘’ ‘’ 0.98 0.99 0.97 0.98

1000 ‘’ ‘’ ‘’ ‘’ ‘’ 0.98 0.99 0.97 0.98

𝑺𝑼𝟐

0 0.95 0.93 0.94 241 0.05 0.96 0.97 0.92 0.95
100 ‘’ ‘’ ‘’ ‘’ ‘’ 0.96 0.97 0.92 0.95
250 ‘’ ‘’ ‘’ ‘’ ‘’ 0.96 0.97 0.92 0.95
500 ‘’ ‘’ ‘’ ‘’ ‘’ 0.96 0.97 0.92 0.95

1000 ‘’ ‘’ ‘’ ‘’ ‘’ 0.98 0.99 0.97 0.99

𝑺𝑼𝟑

0 – – – 132 0.17 0.90 0.93 0.81 0.87
100 – – – ‘’ ‘’ 0.91 0.94 0.84 0.88
250 – – – ‘’ ‘’ 0.97 0.99 0.93 0.99
500 – – – ‘’ ‘’ 0.97 0.99 0.93 0.99

1000 – – – ‘’ ‘’ 0.97 0.99 0.93 0.99
Table 5
Task-identification results of the ablation study. ↑ and ↓ indicate the desired direction per measure.

Stream 𝑆𝑈1 𝑆𝑈2 𝑆𝑈3

Considered perspectives #tasks n.ED↓ #tasks n.ED↓ #tasks n.ED↓

Full approach (control-flow, semantic, & data) 202 0.04 241 0.05 132 0.17
Control-flow & semantic 202 0.04 241 0.05 150 0.27
Control-flow & data 302 0.35 338 0.33 132 0.17
Control-flow only 336 0.42 372 0.38 150 0.27
s
e
p

5

s
t
o
l

b
a
s
𝐿
𝐵
t
𝐵
w
0
i
i
b

c
t
c
q
e
n
m
p
f
f

i
l
l

resp. 0.17. A further extension of the warm-up to 500 still improves the
results, yet, less substantially (by 0.02–0.03). For 𝑆𝑈3, where all task
types are covered by the first 100 events, performance improves as well.
However, this improvement is not as considerable as observed for 𝑆𝑈1
(macro scores increase by only 0.01). Notably, increasing the warm-up
phase to 250 events has a more significant impact on categorization
quality for 𝑆𝑈3 (macro scores increase by 0.05–0.11). This may be
attributed to the coverage of additional execution variants per task
type, of which 𝑆𝑈3 has significantly more compared to other streams
(30 versus at most 7). Interestingly, for 𝑆𝑈2, performance remains
consistently high regardless of whether all task types are seen during
the warm-up phase or not. This suggests that, in some cases, it is not
necessary to have observed all task types before starting categorization
to achieve good quality.

Overall, these results show that a warm-up phase is not necessary
for task-identification, but that it can be beneficial for task categoriza-
tion, if an application context allows for it. However, even without
any warm-up phase our approach achieves good categorization results
across streams.

5.3.3. Ablation study
Our task-identification component uses various types of information

associated with events to decide whether a task completes or continues
(cf. Section 4.2). In order to understand the value of taking information
beyond the control-flow into account, we conducted an ablation study.
This involves, in turn, removing those task-identification strategies that
consider data values (including object instances), semantic information
(specifically overhead actions), and both of these.

We present the results of the ablation study in Table 5. It shows
that we achieve the same identification performance on 𝑆𝑈1 and 𝑆𝑈2

hen removing the data values from consideration, whereas the perfor-
ance on 𝐿𝑈3 decreases (the edit distance worsens from 0.17 to 0.27).
onversely, when not considering the semantic perspective, we obtain
onsiderably worse results 𝑆𝑈1 and 𝑆𝑈2 (the edit distance worsens by
a. 0.3 for both streams), while achieving the same performance as
hen considering all perspectives on 𝑆𝑈3. Finally, the subpar results
chieved when only considering control-flow information highlight the
alue of taking additional perspectives into account.
11
Overall, the results indicate that the consideration of specific per-
pectives is important for some streams and not for others. How-
ver, only when considering all perspectives can the overall good
erformance of our approach across streams be achieved.

.3.4. Offline results
Table 6 shows the results of our approach applied in an offline

etting compared to 𝐵𝐿𝑙𝑒𝑛𝑜 and 𝐵𝐿𝑢𝑟𝑎𝑏𝑒. For 𝐵𝐿𝑢𝑟𝑎𝑏𝑒, the table shows
he average results across the configurations that were evaluated in the
riginal paper [8] as well as the results of the best configuration per
og.

The results show that our approach also outperforms the offline
aselines by a large margin. When it comes to task identification, it
chieves an edit distance of just 0.04 for 𝐿𝑈1, while the baselines fall
hort; 𝐵𝐿𝑢𝑟𝑎𝑏𝑒 achieves only 0.28 at best and 𝐵𝐿𝑙𝑒𝑛𝑜 achieves 0.35. For
𝑈2, 𝐵𝐿𝑢𝑟𝑎𝑏𝑒 achieves an edit distance of 0.28 in the best case and
𝐿𝑙𝑒𝑛𝑜 achieves 0.26, while our approach achieves 0.05; a substan-

ial improvement of 0.23 compared to 𝐵𝐿𝑢𝑟𝑎𝑏𝑒 and 0.21 compared to
𝐿𝑙𝑒𝑛𝑜. The performance gains are even more considerable for 𝐿𝑈3,
here we observe an improvement of 0.49 compared to 𝐵𝐿𝑢𝑟𝑎𝑏𝑒 and
.31 compared to 𝐵𝐿𝑙𝑒𝑛𝑜. This again highlights the efficacy of our task-
dentification strategy that considers control-flow, semantic, and data
nformation, instead of solely relying on control-flow as done by the
aselines.

Interestingly, 𝐵𝐿𝑢𝑟𝑎𝑏𝑒 achieves good macro-level results for task
ategorization on 𝐿𝑈1 and 𝐿𝑈2 (0.97–0.99) considering the subpar
ask-identification results. This indicates that the baseline’s post-hoc
ategorization generally works well, despite poor task-identification
uality. For 𝐿𝑈3, for which the tasks are more similar in terms of their
vent classes across types, the baseline’s poor identification quality can-
ot be compensated by its good categorization performance, yielding
acro Rand and Jaccard scores of 0.52 at best. In contrast, our ap-
roach achieves high macro (0.99–1.00) and micro (0.93–0.99) scores
or all three logs. Note that 𝐵𝐿𝑙𝑒𝑛𝑜 does not cover task categorization,
or which we could, thus, not compute results.

Overall, both good task-identification and task-categorization qual-
ty are required to accurately abstract a user-interaction log to a task-
evel event log, which our approach provides across the evaluation
ogs.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa
Table 6
Results of our approach applied in an offline setting and the offline baselines, 𝐵𝐿𝑙𝑒𝑛𝑜 and 𝐵𝐿𝑢𝑟𝑎𝑏𝑒. Note that 𝐵𝐿𝑙𝑒𝑛𝑜
only provides task identification and that, for 𝐵𝐿𝑢𝑟𝑎𝑏𝑒, we show average results across the configurations used in
the original paper [8] and the results from the best configuration per log. Perf. ident. shows task-categorization
results in case of perfect task identification. ↑ and ↓ indicate the desired direction per measure.

Log Approach Obj. ident. Task ident. Task categorization
Pre.↑ Rec.↑ F1 ↑ #tasks n.ED↓ R(mi)↑ R(ma)↑ J(mi)↑ J(ma)↑

𝑳𝑼𝟏

Ours 0.91 0.88 0.90 202 0.04 0.98 0.99 0.97 0.99
𝐵𝐿𝑙𝑒𝑛𝑜 – – – 50 0.35 - – – –
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (avg.) – – – 163 0.56 0.72 0.78 0.59 0.64
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (best) – – – 131 0.28 0.90 0.98 0.85 0.97
Perf. ident. – – – 200 0.00 1.00 1.00 1.00 1.00

𝑳𝑼𝟐

Ours 0.95 0.93 0.94 241 0.05 0.98 0.99 0.97 0.99
𝐵𝐿𝑙𝑒𝑛𝑜 – – – 101 0.26 – – – –
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (avg.) – – – 190 0.54 0.69 0.72 0.48 0.53
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (best) – – – 161 0.28 0.89 0.99 0.80 0.99
Perf. ident. – – – 240 0.00 1.00 1.00 1.00 1.00

𝑳𝑼𝟑

Our approach – – – 132 0.17 0.97 1.00 0.93 1.00
𝐵𝐿𝑙𝑒𝑛𝑜 – – – 90 0.48 – – - –
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (avg.) – – – 25 0.67 0.26 0.36 0.11 0.28
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (best) – – – 18 0.66 0.26 0.54 0.11 0.52
Perf. ident. – – – 120 0.00 1.00 1.00 1.00 1.00
5.3.5. Performance in online versus offline settings
As shown in the previous sections, our approach achieves consis-

tently high results in both online and offline settings. Object-instance
identification achieves the same performance in online and offline
settings because this component of our approach does not involve any
training on historical data. Although our task-identification component
uses training for its control-flow-based segmentation checks, our exper-
imental results reveal that these are already accurate after having seen
a limited amount of historical data or are compensated by the other
checks in this component (see our ablation study in Section 5.3.3).
By contrast, we do observe a slight decrease in task-categorization
performance when applied in online settings, since this component uses
historical data to train its clustering model.

For the approach by Leno et al. [7], we observe a clear performance
drop when comparing the results of the adapted online version (𝐵𝐿𝑑𝑓𝑔)
to the original approach (𝐵𝐿𝑙𝑒𝑛𝑜), showing that it is more suitable for
offline task identification. However, we do not observe the same trend
for the approach by Urabe et al. [8], which also targets offline task
identification and categorization. Although its offline version (𝐵𝐿𝑢𝑟𝑎𝑏𝑒)
generally outperforms the adapted online version (𝐵𝐿𝑐𝑜−𝑜𝑐) in terms of
task categorization, it is noteworthy that its online versus, on average,
achieves better results for task identification.

Overall, the evaluation results highlight that, regardless of the spe-
cific setting, our approach achieves good performance in recognizing
task-level events from user interaction data. It consistently outperforms
the baselines in both online and offline settings and, unlike existing
works, allows to relate recognized events to each other.

5.3.6. Results on individual task logs
The approach by Leno et al. [7] was originally proposed for offline

segmentation of logs that record executions of a single task type. To also
assess our approach’s performance for this purpose, we applied it on
the original task logs individually. We report on the task-identification
results in comparison to the offline baselines in Table 7.

Our approach generally shows good performance in terms of task
identification on the individual task logs as well, achieving edit dis-
tances between 0.01 and 0.29. It outperforms the baseline by Leno
et al. (𝐵𝐿𝑙𝑒𝑛𝑜) on five out of the eight logs. However, 𝐵𝐿𝑙𝑒𝑛𝑜 outper-
forms our approach on specific logs, particularly 1, 5, and 6, where it
perfectly identifies gold-standard tasks, whereas our approach does not
identify some of them correctly. This highlights 𝐵𝐿𝑙𝑒𝑛𝑜’s capability of
identifying repetitive tasks well, which is its main goal in the context
of robotic process mining (cf. Section 6.2). In contrast, 𝐵𝐿𝑢𝑟𝑎𝑏𝑒 falls
short, identifying substantially fewer tasks than contained in the gold
12

standard. For logs 5–8, it did not identify any segmentation points,
even in its best configuration (leading to a single identified task per
log). This is to be expected because this baseline identifies tasks based
on contextual relatedness. As the logs at hand capture only one type
of task, context changes are often too subtle for 𝐵𝐿𝑢𝑟𝑎𝑏𝑒 to identify
segmentation points correctly.

5.3.7. Computational efficiency
Finally, we assessed the memory and response time efficiency of

our approach. To assess memory efficiency, we measure the maxi-
mum memory it requires, which is the sum of the largest buffer size
during runtime, the final size of the global co-occurrence matrix, the
directly-follows counts between event-class sets, and the final size of
the clustering model. As for response time, we measure how long it
takes our approach to perform object-instance identification and task
identification after an event arrives, as well as how long it takes to
categorize an identified task.

We find that our approach requires less than 1% of the mem-
ory that would be needed to store all events from the streams, thus
clearly demonstrating its memory efficiency. As for response time, our
approach requires between 1 and 107 ms, for object-instance identifi-
cation, between 2 and 4 ms for task identification, and between 40 to
150 ms for task categorization. Note that the latter is only executed
once per identified task. Therefore, the response time depends on a
task’s length, i.e., number of interaction events it consists of. Given
that the average time between user interactions is over 2.5 s in the
available data, this means that our approach can easily keep up in terms
of responses.

6. Related work

Our work primarily relates to research on the identification of tasks
from low-level event data (Section 6.1), robotic process mining (Sec-
tion 6.2), the identification of object-centric information from event
data (Section 6.3), and pre-processing techniques for stream-based
process mining (Section 6.4).

6.1. Identifying tasks from low-level event data

Various approaches have targeted the identification of tasks in low-
level event data. Focusing on user interaction events, various works [5,
18,19] take a supervised approach based on the computation of align-
ments between user interaction logs and task models that they require
as input. Tello et al. also approach task identification in a super-
vised manner by applying classical machine learning approaches [20],

whereas Pegoraro et al. train a neural network model to segment user

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa
Table 7
Task-identification results of our approach applied in an offline setting and the offline baselines, 𝐵𝐿𝑙𝑒𝑛𝑜 and 𝐵𝐿𝑢𝑟𝑎𝑏𝑒, on the original task logs
(cf. Table 2). The actual number of tasks per log is indicated in parentheses. Note that we use the original (non-sampled) task log 1 here. For
𝐵𝐿𝑢𝑟𝑎𝑏𝑒, we show average results across the configurations used in the original paper [8] and the results from the best configuration per log.
↑ and ↓ indicate the desired direction per measure.

Task Log 1 (1000 tasks) 2 (50 tasks) 3 (50 tasks) 4 (40 tasks)

Approach #tasks n.ED↓ #tasks n.ED↓ #tasks n.ED↓ #tasks n.ED↓

Ours 1000 0.01 50 0.02 50 0.02 40 0.05
𝐵𝐿𝑙𝑒𝑛𝑜 1000 0.00 50 0.04 51 0.16 80 0.50
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (avg.) 40 0.85 38 0.41 24 0.74 69 0.70
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (best) 76 0.79 29 0.33 14 0.60 39 0.49

Task Log 5 (30 tasks) 6 (30 tasks) 7 (30 tasks) 8 (30 tasks)
Approach #tasks n.ED↓ #tasks n.ED↓ #tasks n.ED↓ #tasks n.ED↓

Ours 30 0.20 42 0.29 30 0.14 26 0.07
𝐵𝐿𝑙𝑒𝑛𝑜 30 0.00 30 0.00 93 0.67 60 0.50
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (avg.) 1 0.96 1 0.96 1 0.96 1 0.96
𝐵𝐿𝑢𝑟𝑎𝑏𝑒 (best) 1 0.96 1 0.96 1 0.96 1 0.96
interaction logs [6,21]. Linn et al. [22] combine transactional data
recorded by information systems with user interaction logs, to integrate
interaction data with traditional process mining. Finally, our earlier
work [23] aims to recognize tasks through offline self-learning of multi-
perspective dependencies between low-level interactions, although this
currently requires expensive pre-training on large interaction logs.

Beyond user interaction events, related approaches aim to recognize
process-related tasks from so-called active-window-tracking data [24],
ambient or wearable sensors [25–27], network traffic data [28,29],
or low-level, server-side application logs [30]. However, due to the
low-level, abstract nature of the data used by these approaches, they
depend on supervised recognition strategies or even manual labeling,
as opposed to our unsupervised approach.

6.2. Robotic process mining

The core idea of robotic process mining (RPM) is to discover repet-
itive routines from user interaction logs, which are suitable for au-
tomation [31]. Leno et al. [2] propose an RPM-pipeline, which starts
from a raw user interaction log and eventually yields automatable
task scripts. The so-called segmentation stage of this pipeline identifies
which user interaction events jointly form individual tasks (yet, not
their types), thus only partially solving part (1) of the transforma-
tion problem that our approach addresses. We use the corresponding
approach by Leno et al. [7] as a baseline for task identification in
our evaluation. The candidate-routine-identification stage (also covered
by Leno et al. [7]) recognizes tasks that are executed in the same or
similar manner. In a sense, tasks are thus categorized into candidate
routines, which may be considered as types. However, this stage does
not assign labels to the tasks it identifies and only takes tasks into
account if they are performed frequently, thus neglecting infrequent
ones. Unlike candidate-routine identification, the approach by Urabe
et al. [8] categorizes all tasks that it previously identified through
segmentation, yet, does not assign task labels either, thus also only
partially addressing part (1) of the transformation problem (but not
part (2)). We lift the segmentation strategy of this approach to an online
setting and use it as a baseline in our evaluation.

Although our work and works on RPM (partially) address similar
sub-problems, their overarching goals are fundamentally different. RPM
aims to get in-depth insights into the execution of individual tasks
with the ultimate goal of automating suitable ones, whereas we aim
for a comprehensive transformation of low-level user interactions into
task-level events that are usable in process mining settings.

6.3. Identifying object-centric information in event data

Relating task-level events to each other by identifying to which case
they belong has been addressed by several works [32]. The problem
of inferring missing object information from event data as well as the
13
conversion of classical event logs into object-centric logs have also been
investigated [33,34]. Berti et al. propose approaches to extract object-
centric event logs from SAP systems and relational databases [35].
Finally, the extraction of object-centric information from knowledge
graphs has been researched [36]. However, these techniques assume
that events are already on the task level and that they can operate
in an offline setting, whereas our approach overcomes both of these
assumptions.

6.4. Stream-based pre-processing of event data

Research on stream-based pre-processing in process mining mostly
focuses on cleaning noisy event streams. Van Zelst et al. [37] filter
a stream based on estimates of how likely new events belong to real
process behavior, whereas Hassani et al. [38] filter noise by extracting
frequent sequential patterns from an event stream before applying
streaming process discovery. Finally, Awad et al. [39] propose an
approach to resolve situations in which events arrive in an incorrect
order on a stream. However, these techniques assume arriving events
to be on the task level, even though, in practice, streaming data is
commonly at a lower-level of abstraction, such as taken into account
by our approach.

7. Conclusion

This section summarizes the results of our work (Section 7.1),
discusses its main limitations (Section 7.2), and provides an outlook
on future work (Section 7.3).

7.1. Summary

In this paper, we proposed an automated approach for recognizing
task-level events from user interaction data, which works in a fully
unsupervised manner. It segments user interaction data to identify
tasks, categorizes these according to their type, and relates tasks to
each other via object instances it extracts from the low-level events.
In this manner, our approach creates task-level events that meet the
requirements of process mining settings as they relate to a process-level
activity and to a process execution.

We demonstrated our approach’s efficacy in recognizing task-level
events from user interaction data through an experimental evaluation
and showed that it outperforms three streaming baselines and two
offline RPM approaches on this task. Furthermore, we found that, in
most cases, our approach also outperforms these RPM approaches in
solving the task-identification problem they target. This shows the ben-
efit of the semantic and data perspectives considered by our approach,
which go beyond the control-flow perspective exclusively used by these
existing works.

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa

o
w
f
d
r
n
d

C

n
t
W

D

c
i

7.2. Limitations

Our work is subject to certain limitations, which relate to the
approach itself and its evaluation.

As for our approach, a key limitation is that it assumes that tasks
are executed sequentially, i.e., one task must be completed before
another one is started. This is naturally a limiting assumption as it is
well-imaginable that users switch between tasks in their daily work.
Especially knowledge workers in office settings commonly work on sev-
eral tasks in an interleaving manner [24]. However, it is important to
remark that this limitation so far applies to all unsupervised approaches
that recognize tasks from user interaction data, because it is highly
challenging and may impose additional data requirements to be solved
properly.

As for our evaluation, we acknowledge that the considered user
interaction data may impact generalizability of the results. Although
this data covers a variety of task types, was obtained from different
sources, and goes beyond the evaluation data used in other work [8], it
does not capture a user’s real sequence of process-related and overhead
tasks conducted during a workday. Therefore, we plan to conduct
further experiments as soon as more suitable data becomes available.

Furthermore, the generalizability of the sets of completion actions
and keywords for overhead actions (used during task identification)
remains to some degree uncertain given the available data. While these
sets are generic, stem from established design guidelines, and occur
across different types of graphical user interfaces, we cannot guarantee
their completeness for any user interaction stream or log. Moreover,
as there is no comprehensive set of UI-objects, we created such a set
(used during object-instance identification). This creation may have
been biased through the knowledge of the evaluation data, yet, also
includes a broad range of objects beyond those that occur in this
data. However, all of these sets our approach employs can easily be
adjusted and extended so that they, for instance, cover domain-specific
applications and different languages.

7.3. Future work

We see several promising directions on how to improve our ap-
proach in future work. First, our approach currently does not consider
event timestamps that may help make correct segmentation decisions,
e.g., when there are large time differences between events [40]. There-
fore, we aim to incorporate a strategy based on time differences into our
task-identification component. Furthermore, while our object-instance-
identification component can accurately identify process-related object
instances, it cannot identify relations among their types. We plan to
recognize higher-level semantic relations between object types, such
as that an address belongs to a customer and that a customer places
rders, to further refine the relations between task-level events. Finally,
e aim to recognize task-level events from user interaction data when

acing interleaving task executions. This may be supported through the
etection of data values and object instances that allow us to infer inter-
elations between non-consecutive events, yet, due to its challenging
ature, solving this problem also requires entirely new conceptual
evelopments.

RediT authorship contribution statement

Adrian Rebmann: Writing – review & editing, Writing – origi-
al draft, Validation, Software, Resources, Methodology, Data cura-
ion, Conceptualization. Han van der Aa: Writing – review & editing,

riting – original draft, Supervision, Methodology, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
14

nfluence the work reported in this paper.
Data availability

The implementation, data collection, evaluation pipeline, and raw
results can be found through our repository linked in Section 5.

References

[1] L. Abb, J.-R. Rehse, A reference data model for process-related user interaction
logs, in: BPM, Springer, 2022, pp. 57–74.

[2] V. Leno, A. Polyvyanyy, M. Dumas, M. La Rosa, F.M. Maggi, Robotic process
mining: vision and challenges, Bus. Inf. Syst. Eng. 63 (3) (2021) 301–314.

[3] W.M.P. van der Aalst, Process Mining: Data Science in Action, Springer, 2016.
[4] S. Agostinelli, M. Lupia, A. Marrella, M. Mecella, Reactive synthesis of software

robots in RPA from user interface logs, Comput. Ind. 142 (2022) 103721.
[5] A. Marrella, T. Catarci, Measuring the learnability of interactive systems using

a Petri net based approach, in: Proceedings of the 2018 Designing Interactive
Systems Conference, 2018, pp. 1309–1319.

[6] M. Pegoraro, M.S. Uysal, T.-H. Hülsmann, W.M. van der Aalst, Uncertain case
identifiers in process mining: A user study of the event-case correlation problem
on click data, in: BPMDS, Springer, 2022, pp. 173–187.

[7] V. Leno, A. Augusto, M. Dumas, M. La Rosa, F.M. Maggi, A. Polyvyanyy,
Identifying candidate routines for robotic process automation from unsegmented
UI logs, in: ICPM, IEEE, 2020, pp. 153–160.

[8] Y. Urabe, S. Yagi, K. Tsuchikawa, H. Oishi, Task clustering method using user
interaction logs to plan RPA introduction, in: BPM, Springer, 2021, pp. 273–288.

[9] A. Burattin, Streaming process mining, in: Process Mining Handbook, Springer,
2022.

[10] A. Rebmann, H. van der Aa, Unsupervised task recognition from user inter-
action streams, in: International Conference on Advanced Information Systems
Engineering, Springer, 2023, pp. 141–157.

[11] A. Bifet, R. Gavalda, G. Holmes, B. Pfahringer, Machine learning for data streams:
with practical examples in MOA, MIT Press, 2018.

[12] L. Abb, C. Bormann, H. van der Aa, J.R. Rehse, Trace clustering for user behavior
mining, in: ECIS 2022 Research Papers. 34, 2022.

[13] M. Honnibal, I. Montani, S. van Landeghem, A. Boyd, Spacy: industrial-strength
natural language processing in python, 2020, https://spacy.io.

[14] IBM, Carbon Design System - Action Labels, 2022, URL https:
//carbondesignsystem.com/guidelines/content/action-labels/.

[15] F. Cao, M. Ester, W. Qian, A. Zhou, Density-based clustering over an evolving
data stream with noise, in: International Conference on Data Mining, SIAM, 2006,
pp. 328–339.

[16] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discov-
ering clusters in large spatial databases with noise, in: KDD, AAAI Press, 1996,
pp. 226–231.

[17] S. Agostinelli, A. Marrella, L. Abb, J. Rehse, Mastering robotic process automation
with process mining, in: Business Process Management - 20th International
Conference, BPM 2022, MÜNster, Germany, September 11-16, 2022, Proceedings,
in: Lecture Notes in Computer Science, vol. 13420, Springer, 2022, pp. 47–53.

[18] S. Agostinelli, A. Marrella, M. Mecella, Automated segmentation of user inter-
face logs, in: Robotic Process Automation, De Gruyter Oldenbourg, 2021, pp.
201–222.

[19] S. Agostinelli, Automated segmentation of user interface logs using trace
alignment techniques, in: ICPM Doctoral Consortium/Tools, 2020, pp. 13–14.

[20] G. Tello, G. Gianini, R. Mizouni, E. Damiani, Machine learning-based framework
for log-lifting in business process mining applications, in: BPM 2019, Vienna,
Austria, September 1–6, 2019, Proceedings 17, Springer, 2019, pp. 232–249.

[21] M. Pegoraro, M.S. Uysal, T.-H. Hülsmann, W.M. van der Aalst, Resolving
uncertain case identifiers in interaction logs: A user study, 2022, arXiv preprint
arXiv:2212.00009.

[22] C. Linn, P. Zimmermann, D. Werth, Desktop activity mining-a new level of
detail in mining business processes, in: WS der INFORMATIK 2018-Architekturen,
Prozesse, Sicherheit und Nachhaltigkeit, Köllen Druck+ Verlag GmbH, 2018, pp.
245–258.

[23] A. Rebmann, P. Pfeiffer, P. Fettke, H. van der Aa, Multi-perspective identification
of event groups for event abstraction, in: Process Mining Workshops. ICPM 2022,
Springer, 2023, pp. 31–43.

[24] I. Beerepoot, D. Barenholz, S. Beekhuis, J. Gulden, S. Lee, X. Lu, S. Overbeek, I.
van de Weerd, J.M. van der Werf, H.A. Reijers, A window of opportunity: Active
window tracking for mining work practices, in: ICPM, IEEE, 2023, pp. 57–64.

[25] L. Chen, J. Hoey, C.D. Nugent, D.J. Cook, Z. Yu, Sensor-based activity
recognition, IEEE Trans. Syst. Man Cybern. 42 (6) (2012) 790–808.

[26] A. Rebmann, A. Emrich, P. Fettke, Enabling the discovery of manual processes
using a multi-modal activity recognition approach, in: BPM Workshops, Springer,
2019, pp. 130–141.

[27] A. Rebmann, S. Knoch, A. Emrich, P. Fettke, P. Loos, A multi-sensor approach
for digital twins of manual assembly and commissioning, Procedia Manuf. 51
(2020) 549–556.

http://refhub.elsevier.com/S0306-4379(24)00062-0/sb1
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb1
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb1
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb2
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb2
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb2
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb3
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb4
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb4
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb4
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb5
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb5
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb5
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb5
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb5
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb6
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb6
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb6
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb6
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb6
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb7
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb7
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb7
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb7
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb7
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb8
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb8
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb8
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb9
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb9
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb9
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb10
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb10
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb10
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb10
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb10
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb11
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb11
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb11
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb12
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb12
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb12
https://spacy.io
https://carbondesignsystem.com/guidelines/content/action-labels/
https://carbondesignsystem.com/guidelines/content/action-labels/
https://carbondesignsystem.com/guidelines/content/action-labels/
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb15
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb15
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb15
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb15
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb15
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb16
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb16
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb16
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb16
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb16
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb17
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb17
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb17
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb17
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb17
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb17
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb17
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb18
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb18
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb18
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb18
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb18
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb19
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb19
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb19
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb20
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb20
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb20
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb20
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb20
http://arxiv.org/abs/2212.00009
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb22
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb22
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb22
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb22
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb22
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb22
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb22
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb23
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb23
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb23
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb23
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb23
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb24
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb24
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb24
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb24
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb24
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb25
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb25
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb25
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb26
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb26
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb26
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb26
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb26
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb27
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb27
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb27
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb27
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb27

Information Systems 124 (2024) 102404A. Rebmann and H. van der Aa
[28] G. Engelberg, M. Hadad, P. Soffer, From network traffic data to business
activities: A process mining driven conceptualization, in: BPMDS 2021, Springer,
2021, pp. 3–18.

[29] M. Hadad, G. Engelberg, P. Soffer, From network traffic data to a business-
level event log, in: International Conference on Business Process Modeling,
Development and Support, Springer, 2023, pp. 60–75.

[30] B. Fazzinga, S. Flesca, F. Furfaro, L. Pontieri, Process mining meets argu-
mentation: Explainable interpretations of low-level event logs via abstract
argumentation, Inf. Syst. 107 (2022) 101987.

[31] M. Dumas, M. La Rosa, V. Leno, A. Polyvyanyy, F.M. Maggi, Robotic process
mining, in: Process Mining Handbook, Springer International Publishing Cham,
2022, pp. 468–491.

[32] K. Diba, K. Batoulis, M. Weidlich, M. Weske, Extraction, correlation, and
abstraction of event data for process mining, Wiley Interdiscipl. Rev. 10 (3)
(2020) 1–31.

[33] A. Swevels, R. Dijkman, D. Fahland, Inferring missing entity identifiers from
context using event knowledge graphs, in: International Conference on Business
Process Management, Springer, 2023, pp. 180–197.
15
[34] A. Rebmann, J.-R. Rehse, H. van der Aa, Uncovering object-centric data in
classical event logs for the automated transformation from XES to OCEL, in:
BPM, 2022, pp. 11–16.

[35] A. Berti, G. Park, M. Rafiei, W.M. van der Aalst, A generic approach to extract
object-centric event data from databases supporting SAP ERP, J. Intell. Inf. Syst.
(2023) 1–23.

[36] J. Xiong, G. Xiao, T.E. Kalayci, M. Montali, Z. Gu, D. Calvanese, Extraction of
object-centric event logs through virtual knowledge graphs, in: 35th International
Workshop on Description Logics, DL 2022, Haifa, Israel, August 7-10, 2022,
2022.

[37] S. van Zelst, M. Fani Sani, A. Ostovar, R. Conforti, M.L. Rosa, Filtering spurious
events from event streams of business processes, in: CAiSE, Springer, 2018, pp.
35–52.

[38] M. Hassani, S. Siccha, F. Richter, T. Seidl, Efficient process discovery from event
streams using sequential pattern mining, in: SSCI, IEEE, 2015, pp. 1366–1373.

[39] A. Awad, M. Weidlich, S. Sakr, Process mining over unordered event streams,
in: ICPM, IEEE, 2020, pp. 81–88.

[40] G. Bernard, A. Senderovich, P. Andritsos, Cut to the trace! process-aware
partitioning of long-running cases in customer journey logs, in: CAiSE, Springer,
2021, pp. 519–535.

http://refhub.elsevier.com/S0306-4379(24)00062-0/sb28
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb28
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb28
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb28
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb28
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb29
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb29
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb29
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb29
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb29
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb30
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb30
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb30
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb30
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb30
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb31
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb31
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb31
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb31
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb31
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb32
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb32
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb32
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb32
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb32
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb33
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb33
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb33
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb33
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb33
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb34
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb34
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb34
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb34
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb34
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb35
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb35
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb35
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb35
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb35
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb36
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb36
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb36
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb36
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb36
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb36
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb36
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb37
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb37
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb37
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb37
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb37
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb38
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb38
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb38
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb39
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb39
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb39
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb40
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb40
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb40
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb40
http://refhub.elsevier.com/S0306-4379(24)00062-0/sb40

	Recognizing task-level events from user interaction data
	Introduction
	Problem Illustration
	Preliminaries
	Approach
	Object-instance Identification
	Type Extraction
	Instance Recognition

	Task Identification
	Chunking
	Segmenting
	Post Processing

	Task Categorization
	Establishing Feature Vectors of Tasks
	Clustering Tasks
	Task Labeling

	Output

	Evaluation
	Data Collection
	Task Logs
	User Interaction Logs

	Setup
	Environment
	Configurations
	Baselines
	Measures

	Results
	Online Results
	Impact of the Warm-up Phase
	Ablation Study
	Offline Results
	Performance in Online Versus Offline Settings
	Results on Individual Task Logs
	Computational Efficiency

	Related Work
	Identifying Tasks from Low-level Event Data
	Robotic Process Mining
	Identifying Object-centric Information in Event Data
	Stream-based Pre-processing of Event Data

	Conclusion
	Summary
	Limitations
	Future Work

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

