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ABSTRACT
For multi-agent reinforcement learning (MARL) systems, the prob-
lem task often involves massive problem-specific reward engineer-
ing effort. This effort is usually not directly transferable to other
problems; worse, this problem is further exacerbated for sparse
reward scenarios. We propose GOVerned Reward Engineering
Kernels (GOV-REK), which dynamically assign reward distribu-
tions to agents in MARLs during the learning stage. We also intro-
duce governance kernels, which exploit the underlying structure in
either state or joint action space for assigning meaningful agent re-
wards. We demonstrate, using a Hyperband-like problem-agnostic
algorithm, that this approach successfully learns to solve different
MARL problems by iteratively exploring multiple reward models.
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1 INTRODUCTION
The interactions formulated in MARLs are intricate to learn at
larger scales, and this problem is further aggravated for sparse
problem scenarios [10, 13, 19, 25]. Previously, many approaches
have explored designing reward model problems in single-agent
and multi-agent settings, but these efforts are problem-specific
and often not generalizable to other MARLS [4–6, 15, 20, 27]. Past
approaches have also improved sample efficiency by using novelties
like attention [28], curiosity [1, 7], and experience sharing [8], but
they have not directly influenced agent motivations. Therefore,
building effective and robust reward models for agents in MARL
tasks in an automated and problem-agnostic manner to improve
baselines is still a challenging problem [30].
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Figure 1: The reward model exploration and superposition
mechanisms with increasing training timestep budgets.

Previously, reward shaping approaches that incorporate novel
mechanisms, like learning ethical human behavior demonstrations
[27], multi-objective reward shaping (MORS) [6], additional re-
wards for sub-goal completion [17], and context-sensitive rewards
for agents [4], have shown further improvements. However, reward
shaping is often susceptible to falling under continuous positive
reward cycle traps, especially for sparse environments. For finding
optimal policies, a multitude of systems like Autonomic Electronic
Institutions (AEI) [3], Normative Multi-Agent Systems (NorMAS)
[22], and Governed Multi-Agent Systems (GMAS) [24] have demon-
strated their efficacy, where agents are provided with governing
information for learning [9, 16, 26]. Our approach also proposes
an intermediary governance layer between agents and environ-
ment, which directly incentivizes agents with additional rewards
selected in an automated and problem-agnostic manner to improve
the baseline MARL algorithms. Further, we define governance ker-
nels for each agent, which are the reward distribution signals that
generate similar additional rewards for similar states or joint ac-
tions depending on the MARL problem. Similar to problem-agnostic
hyperparameter optimization algorithms like Successive Halving
(SH) and Hyperband [18], the GOV-REK framework finds suitable
reward models for agents by iteratively searching over different
governance kernel configurations [2, 29]. Figure 1 demonstrates
the execution of multiple SH rounds alongside the superposition of
sample governance kernel configurations across these rounds.

We demonstrate the efficacy of this dynamic reward-based in-
ductive bias to explore topologically similar state or joint-action
spaces which incentivizes better cooperation amongst agents in
MARLs.
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Figure 2: a. The additional sample radial governance kernels in the package delivery cooperativeMARL problem are represented,
where the kernels encourage higher local exploration to promote cooperation. b. The topological trend in the flattened joint-
action space for the non-spatial social dilemma problem is exploited to define increasing periodic governance kernels that
incentivize cooperation. c. The experiment demonstrates approach efficacy in four aspects: i.) robustness against the blocker
objects, ii.) scalability with reward decays usage for the already explored states, iii.) better performance against manually
defined MORS rewards, iv.) extensibility with higher average reward accumulation for the social dilemma problem.

2 APPROACH FORMULATION
We assume that the underlying learning algorithm is highly curi-
ous to select diverse actions, where all the relevant solution tra-
jectories between the state-action transition pairs are explored,
and define this as the exploration expectation assumption. Hence,
we take an expectation with respect to the explored actions from
the solution trajectories to define our reward models only as a
function of state similarity, which is mathematically denoted by
𝐸𝑎 [𝑅(𝑠, 𝑎, 𝑠′)] → 𝑅′ (𝑠, 𝑠′), and we extend our results to joint-action
spaces as well. This allows us to define governance kernels inde-
pendent of agent transitions, and this is expressed by the relations
𝑟 ′
𝑖
= 𝑟𝑖 + 𝑔𝑟,𝑖 and 𝑅′ = 𝑅 +𝐺𝑟 for agent-specific and agent-agnostic

kernels respectively. In its generalized mathematical form, we ex-
press our governance kernels as 𝑔𝑖 (𝑠𝑎𝑖 ) = 𝜎2𝜅 (𝑠𝑎𝑖 , 𝑠′𝑎𝑖 ) + 𝜉 in agent-
specific and𝐺 (𝑠) = 𝜎2𝜅 (𝑠, 𝑠′) + 𝜉 in agent-agnostic non-parametric
variations respectively, while staying compliant with a Potential
Based Reward Shaping (PBRS) constraint for policy invariance
[11, 12, 23]. Here, the kernel function is represented by 𝜅, while 𝜎
upscales or downscales function values much similar to Gaussian
kernels in Gaussian processes [14, 21], (𝑠𝑎𝑖 , 𝑠′𝑎𝑖 ) or (𝑠, 𝑠

′) quantifies
the magnitude variation between agent-specific or agent-agnostic
states, and 𝜉 represents the uniform noise in the kernel function.
The GOV-REK framework uses repeated Hyperband executions

and iteratively manipulates governance kernel configurations to
find suitable agent reward models1.

3 EXPERIMENTS
We evaluate the GOV-REK framework in CTCE and CTDE set-
tings for a two-agent sparse cooperative package delivery problem
and a sixteen-agent heterogeneous social dilemma problem. Figure 2
summarizes the experimental results quantifying robustness, scala-
bility, performance and extensibility criteria with average expected
reward returns for MARL tasks. Notably, we also observed a perfor-
mance detriment at larger scales and asymmetric agent contribution
problem in the CTCE setting experimentation.

4 CONCLUSION AND FUTUREWORK
We demonstrate that our proposed GOV-REK framework which
defines simplistic reward models based on state or joint-action
topological similarities helps agents to learn different MARL tasks
effectively. Building upon this result, exploring a paradigm that
trades between our rigid and simplistic reward exploration method
against wholly fluid and complex state similarity learning methods
is part of our future research effort [1, 28].
1The complete manuscript and experiment implementations are available at the repos-
itory: github.com/arana-initiatives/gov-rek-marls
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