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VII

Summary

Self-reported rating responses provide valuable information on the characteristics of a per-
son that cannot be observed directly, and numerous psychometric approaches are available
to derive individual trait estimates from the given item responses. However, the mapping
of latent trait levels and manifest answers may be biased if, in addition to trait-based
responding, trait-unrelated response processes such as response styles affect the category
selection. This bias may further be exacerbated by additional heterogeneity of the involved
response processes, such as when the relevance of latent characteristics for the respon-
dents’ judgments differs between measurement units. Heterogeneous response processes
may result in distorted trait measurements and misinterpretations of cognitive processes
underlying item responding whenever the complexity of the respondents’ behavior is not
adequately reflected in the analysis model.
In this thesis, I demonstrate how item response tree (IRTree) modeling can be used to

address the heterogeneity of response processes. In the first article, I focus on heterogene-
ity with regard to the person characteristics on which the response processes are based,
and I show how IRTree models can be specified to effectively disentangle the influences of
traits and response styles from each other. In the second article, I examine systematically
changing influences of response processes throughout a questionnaire, and I develop dy-
namic IRTree models that incorporate such changes. In the third article, I consider that
the involved response processes may adhere to heterogeneous item response functions,
and I propose a general IRTree framework that can incorporate the combined influences
of both dominance and ideal point response processes.
The conducted research highlights the importance of modeling heterogeneous response

processes to enhance the measurement of latent characteristics and to foster the inter-
pretability of model parameters. Thereby, the flexibility of the IRTree model class for
addressing heterogeneous response processes is illustrated and extended by new develop-
ments. Overall, this dissertation contributes to the field of psychometrics by providing a
tool to improve the measurement and the understanding of response process heterogeneity,
and thus, to increase the validity of assessments through rating scales.
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1 Introduction

“The numbers may vary, the ratings diverge,
But the truth lies within, waiting to emerge.”

— ChatGPT (OpenAI, 2023)

Rating scales are an essential tool in psychology and the social sciences. For more than 300
years,1 they have been used to assess a variety of person characteristics and are nowadays
indispensable in both research and applied fields (Heiser, 2023; McReynolds & Ludwig,
1987). The number of questionnaires measuring opinions, beliefs, preferences, attitudes,
and other subjective experiences is arguably difficult to count, but can be considered
quite substantial, and most definitely constantly growing. Therefore, it is no surprise
that searching Google Scholar for the term rating scale yields over 6 million entries and
entering the same into Google’s standard search engine even gives over 800 million results
(retrieved in November 2023).
The extensive use of rating scales can be attributed to the fact that they provide a

straightforward method to quantify a wide range of person-specific traits that cannot be
directly observed. Thereby, the fundamental premise is that the true latent trait levels are
reflected in the self-reported responses,2 and consequently, that respondents derive their
answers from subjective trait-related information. However, this mapping of substantive
traits and rating responses can be systematically biased if, in addition to the trait-based
response process, further processes influence the respondents’ category choices. A response
process is defined here as the cognitive processing of the item based on a specific latent
person characteristic, which then affects the selection of a response category. One example
of trait-unrelated response processes are response styles, which are individual preferences
for specific response categories of rating scales irrespective of item content (Paulhus, 1991;
Van Vaerenbergh & Thomas, 2013). Some respondents may, for instance, prefer extreme

1According to McReynolds and Ludwig (1987) and Ramul (1963), the first documentation of rating
assessments stems from the year 1692. The German philosopher and jurist Thomasius (1692a, 1692b)
assumed that every individual can be described mainly by four dimensions (rational love, sensuousness,
ambition, and acquisitiveness), and he measured these on a scale with 12 categories ranging from five
to 60 in steps of five. Notably, Thomasius even suggested comparing the scores of several raters (e.g.,
the person itself and other trained persons) in order to test the reliability of the ratings.

2This assumption is also evident in the above verses generated by ChatGPT, which resulted from a
prompt asking about the purpose of rating scales. Though ChatGPT should not be considered a
trustworthy source of information, I agree that rating responses can shed light on an unobservable
truth.
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to non-extreme categories (extreme response style; ERS), select the middle categories of
a scale (midscale response style), or tend to agree with the items (acquiescence response
style). Another example is socially desirable responding, which is the tendency to present
oneself in an overly positive light (Paulhus, 2002). As such response processes lead to
interindividual differences in the usages of rating scales that are unrelated to differences
in the trait of interest, they can distort the measurement and interpretation of the results.
In addition to the variation of response processes in terms of the latent person character-

istics on which they are based, other sources of heterogeneity can even further complicate
the measurement of substantive traits through rating scales: First, the importance of the
involved response processes for the response selection must not necessarily be homoge-
neous but may vary across measurement units. For instance, the items of a questionnaire
may differ in how susceptible they are to influences from trait-unrelated processes such
as response style-based responding. Second, heterogeneity may also exist with regard to
the effects the involved processes have on the selection of response categories. Such ef-
fects are reflected in differences in the item response functions (IRFs), which represent
the functional relation of the latent continuum and the response category selection. Some
response processes may follow a dominance principle, meaning that higher levels of the
latent person variable are associated with the selection of higher categories. Other pro-
cesses may rather follow an ideal point principle, in which the relationship between the
person variable and response probability is non-monotonic and depends on the proximity
of person and item characteristics.
The sources of variance in the item response process described above are examples of

what is referred to as heterogeneity of response processes in this thesis. More specifically,
response process heterogeneity is defined as qualitative differences in the nature or com-
position of response processes. From the perspective of item response theory (IRT), such
qualitative differences are represented by variations of structural item parameters within a
given model, such as different weightings of response process dimensions (e.g., the trait or
response styles) or in different parameterizations of response probabilities (e.g., through
dominance or ideal point modeling). Thereby, this heterogeneity of response processes
must be distinguished from the heterogeneity of respondents in terms of interindividual
differences in the latent characteristics, such as traits and response styles. Variance in a
person variable does not reflect qualitative differences in the item response process. In-
stead, it is inherent to IRT models per se and a prerequisite for item response modeling.
Heterogeneity of response processes, in contrast, threatens the validity of item response
models and conclusions drawn from the data if not considered in the analysis.
Therefore, modeling heterogeneity of response processes is a crucial goal in the field of

psychometrics and serves two purposes: (1) Models that are based on the assumption of
homogeneity may provide systematically biased estimates of the trait of interest whenever
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heterogeneity of response processes is present. As a result, incorporating heterogeneity fa-
cilitates accurate trait measurements. (2) Theory-driven models of heterogeneous response
processes allow for an in-depth investigation of the cognitive processes that underlie item
responding, and thereby help to better understand how respondents arrive at their judg-
ments and decisions. Importantly, these two goals are closely related: A good understand-
ing of the mechanisms behind response selections can inform the construction of analysis
models and hence improve trait measurements. Good measurement models that explain
the observed item response well, in turn, can give an indication of the underlying response
processes. In my dissertation, I address different types of response process heterogeneity
with a focus on these two goals.

The modeling framework in which the research presented here is primarily embedded in
are item response tree (IRTree) models (Böckenholt, 2012; Böckenholt & Meiser, 2017; De
Boeck & Partchev, 2012). The IRTree model class is based on IRT and targets multidimen-
sional item responding. The underlying assumption of such models is that the response
selection comprises several qualitatively distinct judgment steps, which are processed by
the respondents according to different latent person characteristics. Therefore, IRTree
models are well-suited for examining the influences of trait-based and trait-unrelated re-
sponse processes and for investigating the heterogeneity of such processes.
Formally, IRTree models decompose the ordinal rating responses into pseudo-items,

which represent the sub-decisions assumed to be made by the respondents during the
response selection. Figure 1 illustrates an exemplary tree structure and the definition
of pseudo-items for responses on a four-point rating scale, with a sub-decision of agree-
ment and another for extreme responding conditional on the agreement judgment. The
IRTree pseudo-items are parameterized by separate IRT models so that modeling choices
concerning the specified response processes can be freely made for each pseudo-item and
independently of the other pseudo-items. Thus, a broad spectrum of hypotheses regarding
the heterogeneity of response processes – both within and between the theoretically de-
fined processing steps – can be formulated and tested. This feature of the IRTree approach
provides an advantage over other model classes tailored to multidimensional item respond-
ing, which likewise allow to control trait measurement for influences of trait-unrelated
response processes: For instance, frequently applied models are multidimensional exten-
sions of ordinal IRT models such as the multidimensional partial credit model or the
multidimensional nominal response model (e.g., Bolt & Johnson, 2009; Falk & Cai, 2016;
Henninger & Meiser, 2020; Wetzel & Carstensen, 2017). However, these models assume
that the response selection for each item contains only one type of selection process along
the latent continuum so that more fine-grained hypotheses about sub-processes cannot be
specified. Further, as the definition of response processes in IRTree models relies strongly
on theoretical considerations, this model class facilitates simultaneously targeting both of
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Figure 1

Tree Diagram and Definition of Pseudo-Items for Responses to Four-Point Rating Items

1001

Agreement

0 1 

0 1 2 3

ExtremeExtreme

X1vi (Agreement) 0 0 1 1

X2vi (Extreme | agree) – – 0 1

X3vi (Extreme | disagree) 1 0 – –

Note. Pseudo-items missing by design are marked with ’–’. Adapted from "Separation
of traits and extreme response style in IRTree models: The role of mimicry effects for
the meaningful interpretation of estimates" by V. Merhof, C. M. Böhm, and T. Meiser,
2023, Educational and Psychological Measurement, advance online publication, page 6,
https://doi.org/10.1177/00131644231213319, CC BY 4.0.

the aforementioned goals of psychometrics – aiming not only to accurately measure latent
constructs but also to gain insight into the cognitive processes that drive the respondents’
judgments.
In this thesis, I evaluate the IRTree framework and propose further developments with

the aim of improving the measurement and understanding of response process heterogene-
ity. The first article addresses heterogeneity with regard to the person characteristics on
which the response processes are based. The focus lies on investigating the separability
of the influences of multiple latent person variables, which is the prerequisite for analyz-
ing further types of heterogeneity. I demonstrate that the separation of trait-based and
trait-unrelated responding in IRTree models is at risk of being compromised under certain
circumstances, and I illustrate how to detect and counteract this potential lack of validity.
The second article considers heterogeneity in terms of systematically changing influences
of response processes on responding to the items over the course of a questionnaire. I
develop dynamic IRTree models that account for such variations of process involvements
and quantify trajectories of the respondents’ strategies over time. The third article is
concerned with the heterogeneity of how the response processes influence the selection of
rating categories, that is, the type of their IRF. I propose a multidimensional IRT (MIRT)
model, with which the combined effects of both dominance and ideal point processes can
be accommodated. Further, I demonstrate how the scope of IRTree modeling is broadened

https://doi.org/10.1177/00131644231213319
https://creativecommons.org/licenses/by/4.0/
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by using the new model for the parameterization of pseudo-items.
Throughout this thesis and the included articles, several examples from the field of

response style modeling are presented. These illustrations were chosen to account for the
fact that a large body of research on analyzing trait-unrelated response processes focuses
on response styles. This is not surprising since response styles jeopardize the reliability
and validity of both individual assessments and group comparisons, and thereby may ulti-
mately compromise the utility of all kinds of measurements through rating scales (Baum-
gartner & Steenkamp, 2001; Cheung & Rensvold, 2000; Morren et al., 2012). However, it
is important to note that other types of response processes can distort trait measurement
as well and are likewise the target of model-based approaches in the literature. Socially
desirable responding, for instance, is a great concern mainly of high-stakes assessments
and has been investigated in numerous studies (e.g., LaHuis & Copeland, 2009; Leng et
al., 2020; Sun et al., 2022; Ziegler & Buehner, 2009). In addition, there exist various other
models that address item responding in specific measurement contexts and consider, for
example, preference for fast versus accurate responding (in the sense of the speed-accuracy
trade-off) or the propensity to omit items (e.g., Maris & van der Maas, 2012; Ulitzsch et
al., 2020; van Rijn & Ali, 2018). The modeling approaches presented here are therefore
intended to illustrate how heterogeneous response processes can be studied in the context
of response style modeling, and may provide starting points for further generalizations.
The next chapter gives an overview of IRTree parameterizations for different response

processes as well as their heterogeneity, and addresses the issue of separating multiple
processes relating to different person characteristics. Then, two forms of response process
heterogeneity are discussed in more detail, and IRTree model extensions are proposed to
account for such. An empirical application demonstrates how the presented approaches
can be used to improve the measurement of response process heterogeneity in practice
and to gain new insights into the cognitive processing of items. Lastly, the implications of
the presented research are discussed, limitations are identified, and directions for future
research are derived.
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2 IRTree Modeling

IRTree models assume that responding to rating items gives rise to multiple cognitive
processing steps. This theoretical concept is implemented in the models by the decom-
position of the ordinal rating responses Yvi ∈ {0, ...,K} of person v = 1, ...,N to item
i = 1, ..., I into a sequence of pseudo-item responses Xhvi. The probability of an ordinal
response is then obtained by the product of the probabilities of responses to the respective
pseudo-items. Importantly, the defined sequence of such pseudo-items refers to a logical
conditionality of judgment steps and does not necessarily imply a temporal sequence.
For instance, the exemplary IRTree model depicted in Figure 1 consists of two sub-

decisions, one reflecting agreement and another one reflecting extreme responding con-
ditional on the agreement judgment. Therefore, the probability of the ordinal responses
Yvi ∈ {0, ..., 3} is derived from the pseudo-item responses Xhvi ∈ {0, 1} by

p(Yvi = yvi) = p(X1vi = x1vi)× p(X2vi = x2vi)
x1vi × p(X3vi = x3vi)

(1−x1vi), (2.1)

where X1vi denotes the agreement pseudo-item response (h = 1) and X2vi and X3vi

denote the responses to the two extreme pseudo-items conditional on agreement and
disagreement, respectively (h = 2 and h = 3).
In applications to response style modeling, a commonly made assumption is that agree-

ment judgments relate to a trait-based response process, whereas all other judgments
reflect responding based on response styles. For the IRTree structure described above,
this rationale can be translated into applying a unidimensional IRT model of the substan-
tive trait θ to the agreement pseudo-item and unidimensional models of the ERS factor
η to the two extreme pseudo-items. Under a Rasch parameterization, the probabilities of
the pseudo-item responses can then be obtained by:

p(X1vi = x1vi) =
exp(x1vi(θv − βi1))
1 + exp(θv − βi1)

, (2.2)

p(X2vi = x2vi) =
exp(x2vi(ηv − βi2))
1 + exp(ηv − βi2)

, (2.3)

p(X3vi = x3vi) =
exp(x3vi(ηv − βi3))
1 + exp(ηv − βi3)

, (2.4)
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where βih denotes the difficulty of pseudo-item h of item i.
This parameterization implies a rather simplistic way of item processing and can be

considered one of the most basic forms of an IRTree model. Such a model assumes a high
degree of response process homogeneity (e.g., the influences of trait and ERS are assumed
to be constant across items) and allows to examine heterogeneous response processes to a
very limited extent (e.g., whether the pseudo-item difficulty differs for extreme responding
conditional on agreement and disagreement). The IRTree model class can, however, be
implemented with more complex parameterizations and can incorporate manifold types of
heterogeneity. The following section elaborates on how different forms of heterogeneity can
be included and gives a systematic overview of modeling choices in the IRTree framework.

2.1 Parameterizations of Response Processes and their
Heterogeneity

IRTree models specify the involvement and heterogeneity of response processes on the level
of a priori defined processing stages. Thereby, they can be regarded as a modular system,
in which different modeling components can be freely combined: The first component
is the psychological theory about the sub-decisions involved in the selection of ordinal
categories and the conditionality of the cognitive judgment steps. The second component
is the assignment of the response processes to the individual pseudo-items, which represent
such sub-decisions. The third component is the parameterization of the pseudo-items as a
function of the assigned response processes. Each of these components allows to integrate
various assumptions on the response processes, and thus, to formalize and study different
forms of heterogeneity.
The first component, the partitioning of the ordinal responses into sub-decisions, defines

the hypothesized level of granularity of the judgments. Typically, IRTree models consist of
binary sub-decisions only, though they can likewise include judgments with three or more
options (see Meiser et al., 2019). However, the fewer qualitatively distinct sub-decisions are
defined, the lower the assumed complexity of the item response process, and the lower the
capability of the model to accommodate heterogeneous response processes. Furthermore,
the partitioning of the ordinal responses also determines whether the tree structure is
symmetrical or asymmetrical. In symmetrical models, the same sequence of sub-decisions
is assumed to underlie the selection of corresponding categories on both sides of the
rating scale (i.e., categories 0 and K, 1 and K − 1, and so on). In contrast, asymmetrical
structures reflect the assumption that the selection of corresponding categories is driven by
different sequences of sub-decisions (for an overview of different kinds of IRTree structures,
see Jeon & De Boeck, 2016). Nonetheless, asymmetrical models do not necessarily imply a
higher complexity of the response selection: Sequential models, for instance, presume that
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respondents decide in successive steps whether to select either a specific category or one of
the higher categories, so that the response options are evaluated in ascending order (Tutz,
1990; Verhelst et al., 1997). Such models are asymmetrical in structure but could still be
homogeneous in the sense that the entire selection process is a unidimensional trait-based
one. The degree of heterogeneity incorporated in an IRTree model is consequently affected
but not inherently predetermined by the definition of the tree structure.

The second IRTree component, the assignment of response processes to the pseudo-
items, specifies which person characteristics are assumed to be involved in each processing
stage. In simple structure IRTree models, all pseudo-items are defined to be dependent on
one response process each, so the multidimensionality arises only between pseudo-items.
More complex, multidimensional definitions of pseudo-items reflect the hypothesis that
a sub-decision depends on multiple response processes simultaneously (Böckenholt, 2019;
Jeon & De Boeck, 2016; Meiser et al., 2019).3 The choice of the pseudo-item dimension-
ality and the flexible assignment of response processes, therefore, facilitates incorporating
heterogeneity with regard to the type of underlying person characteristic both within and
between pseudo-items.
The third component, the IRT models used to parameterize the pseudo-items, defines

how each of the response processes influences the response selection. Depending on how
many options are assigned to the respective pseudo-item, various models for binary or
ordinal data are available, and depending on how many response processes are assigned,
unidimensional or multidimensional models can be selected accordingly. Heterogeneity
of response processes can thereby be integrated in many different ways: For example,
models with item-specific discrimination parameters allow for varying impacts of the re-
spective person characteristics throughout a questionnaire. Commonly used models are
the 2PL model (Birnbaum, 1968), the generalized partial credit model (Muraki, 1992),
or the graded response model (Samejima, 1969). In contrast, models with fixed item dis-
crimination reflect the assumption of a constant impact across items, such as the Rasch
model (Rasch, 1960), the one-parameter probit model (Birnbaum, 1968), or the partial
credit model (Masters, 1982). More recently, IRTree pseudo-items have been parameter-
ized by ideal point models, which differ from the aforementioned models belonging to the
group of dominance models in how the levels of latent person characteristics are mapped
to the item scores. Examples of ideal point models are the (generalized) graded unfolding
model (Roberts et al., 2000; Roberts & Laughlin, 1996) or the (generalized) hyperbolic
cosine model (Andrich, 1996; Andrich & Luo, 1993). The choice of the IRT model used

3IRTree models are sometimes described as multi-process models, where a process is then conceptualized
as a judgment step during the response selection (e.g., the process of deciding on whether to agree
or disagree). This definition is to be distinguished from the definition of a response process used
here, which refers to making a judgment on the basis of a person characteristic. Though the two
conceptualizations overlap in simple structure IRTree models, they do not necessarily do so in models
with multidimensional pseudo-items.
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to parameterize the IRTree pseudo-items (e.g., dominance versus ideal point IRF; with
versus without discrimination parameters) thus determines the degree of heterogeneity
within each single processing step.
However, despite the great flexibility of the IRTree framework in all three components,

it is important to note that the higher the heterogeneity built into the model, the more
complex the estimation becomes, and the higher the risk of identifiability problems. Re-
searchers should, therefore, avoid applying highly parameterized models solely for the sake
of improving model fit and instead specify their models based on theoretical considera-
tions. Thereby, it may be reasonable (or even necessary) to impose parameter constraints
that reduce the model’s complexity while still reflecting the hypotheses on the item pro-
cessing as closely as possible. For instance, a typical assumption in the literature is that
two corresponding pseudo-items, which refer to the same theoretical sub-decision (e.g.,
extreme responding conditional on agreement and disagreement), are parameterized by
the same set of person parameters. Often, an even stronger invariance assumption is made
(called directional invariance, see Jeon & De Boeck, 2019), in which the thresholds and/or
discrimination parameters of such pseudo-items are set equal (e.g., Böckenholt, 2017; Jin
et al., 2022; Kim & Bolt, 2021; Plieninger, 2020). These and other modeling choices should
be thoroughly considered and adapted in a way that they balance the practical aspects
of the model estimation on the one hand, and the capability to account for the potential
heterogeneity of response processes on the other.
An IRTree parameterization that is frequently referred to in the articles and in this

thesis is an extension of the model defined above (Equation 2.2 to 2.4) by multidimensional
extreme pseudo-items. The judgments of extreme responding are assumed to not only be
driven by the ERS η but additionally by the substantive trait θ. Given that high trait levels
can be expected to increase the probability of choosing high categories, trait-based extreme
responding is assigned a positive influence conditional on agreement and a negative one
conditional on disagreement. One possible implementation of these assumptions yields the
following parameterization:

p(X1vi = x1vi) =
exp(x1vi(θv − βi1))
1 + exp(θv − βi1)

, (2.5)

p(X2vi = x2vi) =
exp(x2vi(ηv + αθv − βi2))
1 + exp(ηv + αθv − βi2)

, (2.6)

p(X3vi = x3vi) =
exp(x3vi(ηv − αθv − βi3))
1 + exp(ηv − αθv − βi3)

, (2.7)

with α ≥ 0. In the articles of this thesis, different modified versions of this parameteri-
zation were used, among others, by including item-specific influences of trait and ERS or
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by specifying ideal point response processes.

2.2 Separation of Response Processes

Merhof, V., Böhm, C. M., & Meiser, T. (2023). Separation of traits and extreme response
style in IRTree models: The role of mimicry effects for the meaningful interpre-
tation of estimates. Educational and Psychological Measurement. Advance online
publication. https://doi.org/10.1177/00131644231213319

In order to investigate and account for response process heterogeneity in IRTree models,
the influences of such processes on the respondents’ category selection must be separated
from each other. Importantly, both the statistical and the meaningful separation of pro-
cesses have to be ensured. The first one is given if the model and the person variables
are identified. The second one additionally requires that the substantive meanings of the
response processes are distinct and do not overlap, which is the case if the specified effects
of the person parameters on the selection of ordinal categories cannot be linearly trans-
formed into each other. In the IRTree framework, however, the meaningful separation of
response processes based on the trait and the ERS may be compromised by a so-called
mimicry effect: The response style factor then mimics part of the substantive trait and
captures variance in item responding induced by a trait-based response process. The simu-
lation studies presented in the first article of this thesis demonstrated that mimicry effects
result in inflated estimates of the ERS variance and a biased estimation of the covariance
between response style and trait. Accordingly, false conclusions may be drawn regarding
the impact of the ERS on the respondents’ judgments as well as the relationship between
individual category preferences and the levels of the measured construct.
Notably, the simulation studies also revealed that mimicry effects can only occur if

two conditions are given: First, the ordinal item responses have to be asymmetrically
distributed across the categories of the rating scale. Such an asymmetry can be caused,
for instance, by a distribution of the respondents’ trait levels which is skewed or shifted
in relation to the distribution of items.4 Thereby, the higher the asymmetry of ordinal
responses, the more trait-induced variance can be captured by the ERS factor, and the
stronger the mimicry effect becomes. Second, mimicry effects only arise if an IRTree model
is misspecified in a way that the influence of the response style is overstated while the
influence of the trait is understated. This is the case, for example, if judgments of extreme
responding are modeled to be dependent on the ERS, when respondents actually derived
their answers (additionally or exclusively) by a trait-based process. As a consequence,

4Note that the less balanced positively and negatively keyed items are in a questionnaire, the stronger
the asymmetry of responses evoked by shifted or skewed trait distributions.

https://doi.org/10.1177/00131644231213319
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simple structure IRTree models with unidimensional pseudo-items were shown to carry a
high risk of mimicry effects, as the assumption that only one response process each affects
the respondents’ sub-decisions is likely a simplification of the true data-generating process
in real-world applications. In one of the empirical examples presented in the article, for
instance, an indication for a substantial mimicry effect in a simple structure model was
found, as the results suggested that the ERS variance as well as the correlation between
trait and ERS were considerably overestimated (the model’s estimates for the variance and
correlation were 5.74 and 0.41, respectively; another analysis indicated that the variance
and correlation actually were 4.02 and 0.19, respectively; see Table 7 on page 21 of the
first article of this thesis). Model specifications with multidimensional pseudo-items, in
contrast, cover a wider range of plausible ways of item response processing. Such models
were found to be less susceptible to mimicry effects and better suited to separate trait and
response style factors irrespective of the distribution of ordinal responses. Furthermore,
it was revealed that even if pseudo-items were overparameterized and contained response
processes that were actually not relevant for the response selection, the models reliably
reflected the absence of such a process.
In light of these findings, traditional IRTree models with unidimensional pseudo-items

should be applied with caution, and researchers should be aware of the possibility that
the estimated parameters may not have the substantial meaning assigned to them when
specifying the model. However, it was also shown that the estimation of the substan-
tive trait levels was barely impaired by mimicry effects, as the rank order of respondents
could be very well recovered even by misspecified IRTree models. This demonstrates that
the potential misattribution of variance components is a more or less severe problem for
IRTree analyses depending on which of the two aforementioned purposes of psychometric
modeling is pursued: While the aim of accurate trait measurements is hardly affected
by mimicry effects, the investigation of underlying cognitive processes may be severely
compromised. Accordingly, simple structure IRTree models may be sufficient for certain
practical applications, for example, if potential response styles are treated as nuisance
factors that are included solely for the sake of unbiasing trait estimates. Nevertheless, it
seems worth considering IRTree models with more complex parameterizations whenever
the response styles themselves or the cognitive response strategies are of interest. In ad-
dition, it is not clear to what extent such misspecified IRTree models may distort the
trait estimation under other circumstances not covered by the simulation studies. It thus
seems advisable to rather take additional processes into account, even though they may
potentially be irrelevant, instead of running the risk of neglecting one.
This suggestion applies all the more since the impaired separability of response processes

may not only distort our understanding of the respondents’ behavior in empirical applica-
tions – it also poses a threat to the validity of simulation studies aiming to systematically
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investigate specific properties of IRTree models. A common procedure for generating item
response data in simulation studies is to sample person-specific trait levels and item dif-
ficulty parameters from symmetrical distributions that have the same mean structure
(such as normal or uniform distributions centered around zero, e.g., Kim & Bolt, 2021;
Leventhal, 2019). The data generated in this way precludes the occurrence of mimicry
effects, as the resulting ordinal response distributions are largely symmetrical (with small
variations due to random sampling). It is, therefore, unclear to what extent the results
of the simulation studies also hold in the presence of asymmetrical distributions, which
potentially give rise to mimicry effects, or whether such would change the conclusions
drawn from the studies.

Further research is also needed to examine the generalizability of the findings on mimicry
effects obtained from the simulation studies beyond the specific conditions covered in the
article. For instance, it should be clarified how the mimicry effect addressed there, in which
the ERS factor mimics the trait, can be transferred to other response processes (e.g., based
on midscale or acquiescence response style). Although logical considerations suggest that
mimicry effects should have similar consequences and remedies for other response styles, it
is unclear how they would manifest if multiple response styles simultaneously affected the
category selection or if other trait-unrelated processes such as socially desirable respond-
ing were present. In addition, though multidimensional pseudo-items have been shown to
counteract mimicry effects under certain kinds of data-generating procedures (e.g., unidi-
mensional data without response style influence), they may still be misspecified and lead
to mimicry effects under other conditions – for instance, if further response processes are
involved in the data generation but are not considered in the analysis.
Despite this critical view on the validity of some IRTree model specifications, however,

it should be emphasized that the question of meaningful model parameters is not unique
to IRTree modeling: Mimicry effects are likely to also occur in other IRT model classes
designed to control for response style effects, such as the multidimensional nominal re-
sponse model (e.g., Bolt et al., 2014; Falk & Cai, 2016; T. R. Johnson & Bolt, 2010).
Moreover, the potential lack of separability of factors addressed here has some parallels to
estimation issues and interpretability problems in confirmatory factor analysis. In G-factor
models (such as the bifactor model), for example, it is recognized that the interpretation
of the variance components assigned to the general factor and to the specific factors can
be difficult (Eid et al., 2017). Likewise, multitrait-multimethod models are prone to in-
terpretation issues, in particular when the factors are correlated (Eid, 2000; Eid et al.,
2003). This shows that the challenge of separating response processes is neither specific
to IRTree nor IRT analyses, and that the substantive meaning of model parameters is
a general concern of psychometrics, which should be paid more attention to in future
research.
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3 Modeling Heterogeneity of Response
Processes

The previous section introduced the arguably most fundamental and most frequently
investigated form of response process heterogeneity, which is the heterogeneity in terms of
the person characteristics the processes depend on. There exists a wide range of modeling
approaches within and outside the IRTree class that address such heterogeneity by not only
considering the substantive trait, but additionally incorporating trait-unrelated influences
such as response styles (e.g., Debeer et al., 2017; Falk & Cai, 2016; Khorramdel et al.,
2019; Leng et al., 2020; Plieninger & Heck, 2018; Thissen-Roe & Thissen, 2013; Wetzel
et al., 2013). However, various other manifestations of heterogeneous response processes
may arise, two types of which are elaborated in the following: In the first part, dynamic
within-person heterogeneity is discussed, in which the importance of the involved response
processes varies over the course of the questionnaire. In the second part, heterogeneity
with respect to the IRFs of multiple processes is taken into account.
Importantly, the occurrence of these forms of heterogeneity can be expected to depend

on the measurement instrument and situation. Relevant factors may be, among others,
the measured construct, the wording of the items, the arrangement of items in the ques-
tionnaire, or whether the assessment is high or low stakes. Consequently, the resulting
response process heterogeneity must be distinguished from heterogeneity that is not due
to the context: For example, respondents may generally differ in what kind of response
processes they use to what extent when generating item responses, causing between-person
heterogeneity. Likewise, the items of a questionnaire may differ in how respondents per-
ceive and process them, resulting in between-item heterogeneity. Investigating such is
beyond the scope of this dissertation, though the modeling approaches introduced here
could potentially be extended to incorporate these types of heterogeneity as well, as will
be discussed in later sections.
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3.1 Dynamic Within-Person Heterogeneity of Response
Process Involvement

Merhof, V., & Meiser, T. (2023). Dynamic response strategies: Accounting for response
process heterogeneity in IRTree decision nodes. Psychometrika, 88 (4), 1354-1380.
https://doi.org/10.1007/s11336-023-09901-0

A within-person heterogeneity of the response process involvement is present when the
influences of such processes on the respondents’ category selection vary across items. If
this variability exhibits a systematic change throughout a questionnaire, it is referred to
as dynamic heterogeneity. Such a dynamic response strategy may occur, for example, if
the respondents’ motivation decreases over time, so that heuristic response processes like
response style-based responding may gain influence.
In order to account for systematic trajectories of the involvement of trait-based and re-

sponse style-based processes, dynamic IRTree models were developed in the second article
of this thesis. Such models define item position-dependent loadings of the corresponding
person variables.5 A continuous version of the dynamic models constrains the loadings by
a continuous linear or curvilinear trajectory and thereby captures the underlying trend
of the response strategy in a parsimonious way. A second, more flexible version of the
dynamic IRTree approach allows for additional random fluctuations of the loadings and
can reveal item-specific effects beyond the item position (see Figure 2 for an illustration
of the two model versions).

In both the continuous and the flexible model, dynamic changes can be incorporated
in unidimensional and multidimensional pseudo-items, whereby the trajectories are spec-
ified for each of the processes separately. Simulation studies showed that dynamic IRTree
models accurately quantify systematically changing influences of response processes across
the items of a questionnaire. Further, they also detect the absence of dynamics, that is,
response processes that have a constant influence across items. Thus, dynamic models
are well suited to analyze the respondents’ behavior and are a valuable contribution with
regard to the goal of deepening our understanding of the cognitive processes underlying
item responding.
The empirical example in the article indeed demonstrated that new insights into the

item response process can be gained by dynamic modeling: For the analyzed data set, the
sub-decisions differed in the degree to which systematic changes occurred, and trait-based
and response style-based responding differed in the amount of unsystematic variation of

5The term loading is used here to describe the weight of a person variable and therefore differs from the
definition of a discrimination parameter, which weights the difference between the person variable and
the item difficulty.

https://doi.org/10.1007/s11336-023-09901-0
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Figure 2

Exemplary Dynamic Trajectories and Item-Specific Loadings Under the Continuous

Dynamic Model and the Flexible Dynamic Model
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Note. Adapted from "Dynamic response strategies: Accounting for response process het-
erogeneity in IRTree decision nodes" by V. Merhof and T. Meiser, 2023, Psychometrika,
88 (4), page 1370, https://doi.org/10.1007/s11336-023-09901-0, CC BY 4.0.

the loadings. This suggests that the hypothesized judgment steps evoked qualitatively
different ways of cognitive processing. Building on these preliminary findings, future re-
search could investigate whether such heterogeneity of response processes is a general
phenomenon and can be found in other empirical data sets as well.
In addition, models of heterogeneous response processes provide a means to put theoret-

ical expectations of homogeneity to the test, by analyzing the effects of certain parameter
constraints. For example, constraints on dynamic trait trajectories could be imposed in or-
der to explore whether the involvement of trait-based processes followed similar patterns
across sub-decisions (e.g., for agreement and extreme responding). Another reasonable
constraint of dynamic models could be that trajectories of trait-based and response style-
based processes are defined as mutually dependent with opposite directions. This would
allow examining whether a decreasing influence of the substantive trait was accompanied
by a correspondingly greater impact of response style-based processes, as one might expect
if respondents became fatigued or impatient over time.
It is important to keep in mind, however, that when investigating dynamic response

strategies in such an exploratory way, only monotonous changes can be detected. As a
result, more complex assumptions, such as U-shaped trajectories, cannot be tested by the
dynamic IRTree models as proposed in the article. Though the monotonous function used
to define the process loadings could, in principle, be replaced by any other function, the
estimation of non-monotonous trajectories may be challenging. Another limitation with

https://doi.org/10.1007/s11336-023-09901-0
https://creativecommons.org/licenses/by/4.0/
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regard to the modeling of trajectories is that the dynamic changes are assumed to apply
equally to all respondents. It is, however, very likely that the causes of dynamic strategies,
such as changes in test-taking effort, additionally vary across respondents (e.g., if respon-
dents differ in their interest in the measured construct or if they experience different levels
of time pressure while participating in the survey). It thus seems reasonable to further
extend the dynamic IRTree models in a way that between-person heterogeneity can be
accounted for. Therefore, the dynamic IRTree approach was combined with mixture mod-
eling for an analysis presented at the International Meeting of the Psychometric Society
2022 (Merhof & Meiser, 2022). The application to an empirical data set demonstrated
that, indeed, respondents may show different patterns of dynamic response behaviors: In
the exemplary data set, a decrease in trait-based responding accompanied by an increase
in response style-based responding was found for one latent class of respondents, whereas
another class rather used a constant response strategy (see Figure 3 for the trait loading
trajectories estimated by the continuous dynamic IRTree model extended by a person-
mixture). Knowledge about such groups of respondents with different response strategies
can inform test construction and thereby potentially improve the data quality.
Despite the advantages and promising further developments of the dynamic approach for

investigating the respondents’ behavior, however, the findings from the simulation studies
reported in the article revealed that dynamic modeling only slightly benefits the trait
estimation: The recovery of latent trait levels was hardly affected if the response process
involvement systematically varied in the data but was ignored by an analysis model that
assumed constant influences of all processes. As was already discussed above in the context
of the mimicry effect, misspecified IRTree models seem to be of less concern if the sole
purpose of an analysis is the trait measurement without intending to draw conclusions on
the cognitive processes underlying the responses.
Still, the simulation studies also suggested that not all types of misspecifications lead

to equally accurate parameter estimates (of person and of item parameters) under all
circumstances. More specifically, it was relevant only to a limited extent whether the in-
fluences of the response processes were correctly defined for all items, that is, whether
dynamic trajectories or constant loadings were modeled. Instead, it appeared to be of
higher importance that all processes involved in the category selection were actually in-
cluded in the parameterization of the corresponding pseudo-items. Accordingly, simple
structure IRTree models in particular were found to be at risk of providing inaccurate
estimates whenever the true data-generating process differed from the model-implied one.
IRTree models with multidimensional pseudo-items, in contrast, produced accurate es-
timates even if they were overparameterized and incorporated processes that were not
actually involved in the judgments. These findings corroborate the previous recommen-
dation that in case of uncertainty about the complexity of the item response process,
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Figure 3

Person-Mixture of Dynamic Trait Loading Trajectories in Empirical Data
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Note. The two trajectories represent the trait loadings of the extreme pseudo-items esti-
mated by the continuous dynamic IRTree model extended by a person-mixture. 39% of
the respondents are estimated to belong to class 1 and 61% to class 2. The analyzed data
set stems from J. A. Johnson (2014) and consists of item responses to the IPIP-NEO-120
personality inventory with 120 items. More information on the data set and the data
preparation can be found in the second article of this thesis, in which the same data set
was used as an empirical application example.

researchers should rather include additional processes into IRTree pseudo-items instead
of being at risk of missing one.

3.2 Heterogeneity of Item Response Functions

Merhof, V., & Meiser, T. (2023). Co-occurring dominance and ideal point response pro-
cesses: A general IRTree framework for multidimensional item responding. Revision
invited by Behavior Research Methods.

The response processes involved in item responding can be further heterogeneous in the
sense that they adhere to different item response functions (IRFs). An IRF defines how
the values of the respective latent person variable are mapped to the expected score
of an item. IRTree pseudo-items are traditionally and most frequently parameterized by
dominance models, such as the Rasch or 2PL model. Dominance IRFs are monotonous and
reflect the assumption that higher levels of a person characteristic correspond to higher
expected scores (see Figure 4, left panel). More recently, IRTree pseudo-items have been
parameterized by ideal point models (also called unfolding models), which assume that
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Figure 4

Item Response Functions Under the Dominance and Ideal Point Assumption
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Note. The parameter θ denotes the substantive trait, and δ denotes the item location
under the ideal point model. Adapted from "Co-occurring dominance and ideal point
response processes: A general IRTree framework for multidimensional item responding"
by V. Merhof and T. Meiser, 2023, page 6.

the relationship between the latent characteristic and the expected score is unimodal and
non-monotonic (see Figure 4, right panel). The expected score is highest if the person’s
level of the latent characteristic (i.e., their ideal point) matches the location of an item
and decreases with greater distances. The more a person’s ideal point deviates from the
item location in an upward or downward manner, the more likely he or she disagrees
with the item, referred to as disagreement from above and below, respectively. The ideal
point rationale was found to often better describe self-reported responses to attitudinal
items and other non-cognitive constructs (for overviews, see Drasgow et al., 2010; Tay &
Ng, 2018). Given that IRTree models are usually applied to this kind of data, it seems
reasonable to make use of ideal point parameterizations more frequently.
By using existing IRT models, however, ideal point response processes can only be imple-

mented for unidimensional pseudo-items, while multidimensional pseudo-items are limited
to dominance models. Therefore, in the third article of this thesis, a general MIRT model
of co-occurring processes was developed, which facilitates accounting for the combined
involvement of all kinds of processes within a single pseudo-item (e.g., if an ideal point
trait and a dominance response style are both assumed to affect a sub-decision). IRTree
pseudo-items can be parameterized by the new MIRT model in a consistent way, and mul-
tiple dominance and ideal point processes can be modeled to affect the response selection
both sequentially across pseudo-items and as co-occurring processes within pseudo-items.
Two application examples confirmed that dominance and ideal point processes may be

simultaneously involved in the respondents’ judgments in real data. One example demon-
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strated the effectiveness of the new IRTree parameterization for controlling trait mea-
surements through ideal point items (i.e., trait-based responding followed the ideal point
assumption) for ERS. As response style-based responding by definition is a dominance
process, modeling trait and ERS influences by traditional IRTree parameterizations was
restricted to unidimensional pseudo-items. In contrast, the proposed MIRT model al-
lowed the inclusion of simultaneous effects of both processes in multidimensional pseudo-
items – which, in fact, turned out to be advantageous for the given data set. A second
empirical example showed that co-occurring dominance and ideal point possesses can also
be beneficial for analyzing items that follow the dominance assumption, namely when
modeling sub-decisions of midscale versus non-midscale responding: Since respondents
with rather extreme trait levels in relation to the item location can be assumed to have
a clear-cut opinion on the item content, and only respondents with moderate trait levels
relative to the item location are expected to select middle categories as an expression of
a neutral opinion, unimodal ideal point IRFs are well suited for describing trait-based
midscale responding. If in addition to such an ideal point process, also the respondents’
midscale response style (i.e., a dominance response process) is to be considered in midscale
sub-decisions, a dominance and an ideal point process co-occur. The empirical example
in the article did not only provide evidence that such a modeling approach fits the data
better than alternative ones: By analyzing item-level response time data in addition to
the item responses, support for the construct validation for parameters of the new IRTree
parameterization was found.

A simulation study further revealed that IRTree models with the proposed param-
eterization can recover person and item parameters well and successfully capture the
co-occurrence of an ideal point trait and a dominance response style. In contrast, if one
of the co-occurring response processes was ignored and an IRTree model with unidimen-
sional pseudo-items was falsely applied, larger estimation errors resulted. Moreover, it
was shown that model fit comparisons were well suited to determine whether the data-
generating process incorporated both a dominance and an ideal point process or whether
one of the processes was actually not involved. Thus, using the MIRT parameteriza-
tion of co-occurring processes was found to serve both psychometric purposes; the trait
measurement as well as the investigation of IRFs of response processes, which in turn
provides information about the cognitive processes involved in item responding. Thereby,
the conducted work contributes to an ongoing discussion in the psychometric literature
on whether non-cognitive constructs are generally better described by ideal point models,
and under which conditions dominance models are appropriate (e.g., Chernyshenko et al.,
2007; Drasgow et al., 2010; Stark et al., 2006; Tay & Ng, 2018). With the new approach,
these questions can be addressed while taking the distorting influences of response styles
into account.
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Beyond that, further applications outside of response style modeling are straightforward:
In an empirical application conducted for a poster presentation (Merhof & Meiser, 2023),
it was shown that item omissions could be well described by a MIRT parameterization
in which the respondents’ omission propensity and the substantive trait co-occurred.6

Figure 5 illustrates the prediction of item omissions under such a MIRT model of co-
occurring processes. Similar to modeling middle categories in dominance items, the trait
was assumed to behave like an ideal point process despite the fact that the items of the
questionnaire followed the dominance rationale: Respondents with very high or very low
trait levels in relation to an item’s location were expected to have a clear-cut opinion on
the item content and, therefore, to have a low propensity to omit this item. Respondents
with moderate trait levels relative to the item location, in contrast, were expected to be
rather undecided and more likely to skip the item. Indeed, trait-based responding was
found to follow the ideal point rationale in the analyzed data set, and an IRTree model of
co-occurring processes (of the ideal point trait and the dominance omission propensity)
captured the response behavior well.
Another conceivable further development of the new IRTree approach is the combination

with mixture modeling. On the one hand, including a person-mixture seems promising,
as respondents may differ in how they interpret the items and whether their trait-based
response selection followed the dominance or ideal point rationale. On the other hand,
there might also be a mixture of items within a questionnaire, where part of the items
could evoke either dominance or ideal point responding (e.g., due to differences in item
wording; also see Weekers & Meijer, 2008). However, future research would be needed to
examine whether such an additional level of modeling complexity still can be realized in
practice and whether sufficiently accurate parameter estimates can be obtained.
New directions for future research may also arise from linking ideal point IRFs with

the modeling approaches presented in the other two articles: For example, it could be
reasonable to assume that dynamically changing influences, as presented in the second
article of this thesis, also apply to ideal point processes. Since the MIRT parameterization
of co-occurring processes allows to estimate item-specific loadings for each of the processes,
a constraint of such to continuous trajectories should be straightforward and easy to
implement.
Also in relation to the first article concerning the separation of trait and extreme re-

sponse style factors, more research on ideal point response processes might provide in-
teresting insights. An unpublished small simulation study suggested that mimicry effects
likewise occur if trait-based responding followed an ideal point instead of dominance IRF.
Interestingly, however, the characteristics and consequences of the mimicry effects differ:

6The analyzed data was a subset of the data collected in the Trends in Mathematics and Science Study
from the year 2019. Item responses of eighth-grade students to part of the student context questionnaire
were used.
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Figure 5

Probability of Item Omissions Under a MIRT Model of Co-Occurring Dominance

Omission Propensity and Ideal Point Trait
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Under the dominance assumption, a trait distribution that is shifted toward high trait
levels in relation to the item distribution results in an overestimation of the relationship
between trait and ERS, while this relationship is underestimated for shifts toward low trait
levels. For ideal point traits, it is the other way around, so that shifts toward high and
low trait levels relative to the distribution of item locations lead to underestimating and
overestimating the relationship, respectively. In addition, and in contrast to dominance
traits, both directions of trait shifts result in an asymmetrical distribution of ordinal item
responses toward lower categories of the scale (as a result of disagreement from below
and from above). Thus, it is not possible to infer from the observed response distribution
whether a mimicry effect would rather be reflected in an over- or underestimation of the
relationship between trait and ERS, so mimicry effects are probably even more difficult
to detect when applying ideal point modeling. Nonetheless, mimicry effects can be ex-
pected to be overcome by multidimensional pseudo-items also for ideal point traits, which
underlines the benefits of the new parameterization of co-occurring processes.
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4 Illustrative Application

This chapter provides an empirical application example and demonstrates how the het-
erogeneity of response processes can be studied by using the IRTree models presented in
the articles included in this dissertation. The analyzed data set stems from the Trends
in Mathematics and Science Study (TIMSS) from the year 2019. Item responses of 2,503
German fourth-grade students to a scale of the context questionnaire were used. The
scale measures the students’ attitude toward learning mathematics by nine items on a
four-point rating scale.
Appendix A gives more information on the data set and the data preparation. In ad-

dition, the Bayesian model estimation and the model comparison by an approximation of
leave-one-out cross-validation (LOO) are described there. Further, the parameterization
of pseudo-items as well as prior choices for the applied IRTree models are reported. All
models are based on the tree structure depicted in Figure 1.

4.1 Separation of Trait and Extreme Response Style

The first analysis focused on the separation of the measured substantive trait (i.e., the
students’ attitude) and ERS. To this end, two IRTree models were fitted to the data set:
the simple structure model with unidimensional pseudo items (trait-based agreement and
ERS-based extreme responding; see Equation 2.2 to 2.4) and an extended model with mul-
tidimensional extreme pseudo-items (dependent on both trait and ERS; see Equation 2.5
to 2.7). The results are summarized in Table 1.
The comparison of these models by the LOO information criterion (LOO IC) demon-

strated that the respondents’ judgments of extreme responding were not only influenced
by an ERS-based response process but additionally by a trait-based one. This, in turn,
indicates that applying the model with unidimensional pseudo-items potentially entails
the risk of a mimicry effect, since the influences of the response style and the trait are
likely to be overstated and understated by the model, respectively. Indeed, indications of
a pronounced mimicry effect were found, as the estimated correlation between ERS and
trait was of substantial size for the model with unidimensional pseudo-items but negli-
gible for the model with multidimensional ones. Furthermore, the large difference in the
estimated ERS variance between the models likewise revealed a strong effect. The results,
therefore, provide evidence for impaired separability of response processes by the model
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Table 1

Mimicry Effect in TIMSS 2019 Data

Extreme responding LOO IC Correlation & variances of ERS η and trait θ

Ĉor(η, θ) V̂ar(η) V̂ar(θ)

Unidimensional 37,806 0.38 [0.33, 0.42] 5.44 [4.96, 5.93] 8.75 [7.93, 9.63]
Multidimensional 36,510 0.08 [0.00, 0.16] 2.97 [2.65, 3.32] 9.15 [8.27, 10.05]

Note. 95% credible intervals in brackets.

with unidimensional pseudo-items and suggest that multidimensional pseudo-items should
be used for drawing substantive conclusions from the data.
Accordingly, also the heterogeneity of response processes was evaluated based on the

estimates of the model with multidimensional pseudo-items: First, the response processes
involved in the respondents’ judgments were heterogeneous in the sense that they were
based on two different person characteristics, which are the trait and the ERS. If the data-
generating process had been a unidimensional one without any response style influence,
the model would have captured this by estimating the ERS variance to be close to zero
(as was shown in the first article of this thesis; see Table 3 on page 16 of the article). How-
ever, even though the response selection was thus affected by content-unrelated category
preferences, trait-based responding had a considerably higher impact, which is reflected in
the several times higher variance. Furthermore, the importance of the trait-based process
was found to be heterogeneous across the two sub-decisions, as its loading was larger for
agreement (fixed to 1.00, see Equation 2.5) compared to extreme responding (estimated
to be 0.70, see parameter α in Equation 2.6 and 2.7). Trait-based responding neverthe-
less clearly dominated all sub-decisions, which suggests that respondents endeavored to
provide accurate answers.

4.2 Dynamic Response Process Involvement

To examine whether the involvement of trait and ERS systematically varied across items,
the data was further analyzed by dynamic IRTree modeling. Two dynamic models were
applied, both of which included multidimensional extreme pseudo-items and comprised
the three dynamic response processes of trait-based agreement, trait-based extreme re-
sponding, and ERS-based extreme responding. One of the dynamic models constrained
the item-specific loadings of the person parameters by continuous functions, whereas the
second, more flexible dynamic model allowed for additional random fluctuations of the
loadings. The dynamic models were compared with a model assuming a static effect of
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Table 2

Dynamic Loading Trajectories in TIMSS 2019 Data

Loading constraint LOO IC Trajectory estimates

Process Slope SD unsyst. variation

Static 36,510 Trait agree 0 0
Trait extreme 0 0
ERS extreme 0 0

Continuous dynamic 36,289 Trait agree 1.80 [1.41, 2.20] 0
Trait extreme 1.18 [0.85, 1.52] 0
ERS extreme 0.09 [-0.20, 0.37] 0

Flexible dynamic 34,758 Trait agree 1.29 [-4.75, 6.21] 2.70 [1.45, 5.01]
Trait extreme 0.85 [-3.66, 4.54] 2.20 [1.23, 3.97]
ERS extreme 0.08 [-1.53, 1.68] 0.77 [0.40, 1.51]

Note. The slope describes the difference between the endpoint and the start value of the
trajectory. 95% credible intervals in brackets.

all processes, which corresponds to the model of multidimensional extreme responding
described in the previous section. The results can be found in Table 2.

Model comparisons by the LOO IC demonstrated that the dynamic models fitted the
data better than the static model, indicating that dynamic heterogeneity of the response
process involvement was present. To investigate the extent to which systematic changes
occurred, the estimates by the continuous dynamic model were analyzed since this model
was shown to provide more precise trajectory estimates than the flexible one (see simula-
tion results of the second article on page 1370 and Table A3 in the online supplement). The
estimated slopes of process trajectories revealed that the influences of both trait-based
agreement and trait-based extreme responding increased throughout the questionnaire.
In contrast, ERS-based extreme responding was found to have a rather constant influ-
ence. These findings suggest a warm-up effect, meaning that the respondents increasingly
answered on the basis of the substantive trait as they became more familiar with the
construct being measured. It is important to note, however, that this is a post-hoc in-
terpretation and contradicts the findings of the empirical application presented in the
second article of this thesis (see section 3.1), which instead suggested a decreasing trait-
involvement. Furthermore, the interpretability is limited by the fact that the nine analyzed
items were part of a longer survey, so additional changes in the response process involve-
ment could have occurred across multiple scales (e.g., there may be a fatigue effect across
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Table 3

Suitability of Dominance and Ideal Point IRFs

in TIMSS 2019 Data

Trait IRF Extreme responding LOO IC

Dominance Unidimensional 37,806
Multidimensional 36,510

Ideal point Unidimensional 43,771
Multidimensional 40,349

the survey, but warm-up effects within individual scales).
The comparison with the flexible dynamic model showed that in addition to the sys-

tematic trajectories across items, there was further variability in the process loadings. The
estimates of the flexible dynamic model revealed that the loadings of the trait scattered
more strongly around the respective trajectory than the loadings of the ERS. In accor-
dance with the findings of the application in the second article, this pattern corroborates
the hypothesis that trait-based judgments generally are stronger affected by item char-
acteristics than responding based on response styles. This interpretation is well in line
with the definition of response styles as content-independent preferences, which should
naturally imply a low item-specific variability. Even though this preliminary conclusion is
based on few empirical data examples, it supports the construct validation of the ERS.

4.3 Dominance and Ideal Point Item Response Functions

A further analysis was conducted to investigate whether trait-based responding followed
the dominance rationale – as assumed in the above analyses – or whether the ideal point
rationale was more appropriate (i.e., whether the individual trait level per se or its distance
to the item location was crucial for the response selection). Therefore, two additional
models were fitted to the data, both of which assumed an ideal point IRF of the trait-
based response processes. Responding based on the ERS was consistently modeled as
a dominance process. The first model was a simple structure IRTree model with trait-
based agreement and ERS-based extreme responding, whereas the second one included
multidimensional pseudo-items of extreme responding (depending on the dominance ERS
and the ideal point trait). These models were compared with the corresponding models
under the assumption of trait-based responding following dominance IRFs, which are
equivalent to the two models used in the first analysis. The results are given in Table 3.
The LOO model comparisons suggested that a dominance IRF better captured respond-
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ing based on the substantive trait. Although ideal point models were often shown to be
more appropriate for describing attitudinal ratings in many applications (see Tay & Ng,
2018), this does not seem to be the case for the given data. Notably, multidimensional
extreme pseudo-items improved the model fit compared to unidimensional ones not only
under the assumption of a dominance trait (as was already discussed in a previous section)
but also for the models with ideal point IRFs. Further, the choice of the trait IRF was
found to have a stronger negative effect on model fit compared to the specification of uni-
dimensional instead of multidimensional pseudo-items, though it remains to be clarified
whether this is specific to the given data set or a general phenomenon.

In summary, the analyses conducted in this chapter illustrated how IRTree modeling
can be used to study heterogeneous response processes in empirical data and how the
findings can provide indications of the underlying cognitive processes as well as appropriate
analysis models.
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5 General Discussion

The measurement of latent characteristics through self-reported rating items is based on
the assumption that respondents rely on trait-related information when providing their
answers. However, additional response processes that are unrelated to the trait of interest
may likewise influence the response selection, and thus, threaten the validity of the assess-
ment. Moreover, the involved response processes may not only be associated with different
person characteristics but may exhibit additional types of heterogeneity, which can dis-
tort the trait measurement even further. In this dissertation, I addressed multidimensional
item responding with the aim of improving the measurement and understanding of re-
sponse process heterogeneity. I realized this research within the framework of the IRTree
models, which are particularly well suited to analyze different forms of response process
heterogeneity in a theory-driven way. In the three articles presented in this thesis, I eval-
uated the IRTree model class with regard to its capability to account for heterogeneous
response processes, and I proposed further developments tailored to specific forms of het-
erogeneity. Thereby, I sought to contribute to the psychometric literature with a focus
on two objectives: On the one hand, I investigated how modeling heterogeneous response
processes can facilitate accurate measurement of latent traits. On the other hand, I ex-
plored how IRTree models can be used to gain new insights into the cognitive processes
underlying item responding. The implications following from this research are discussed
in the following and refer to the measurement and understanding of response process
heterogeneity as well as to the IRTree model class in general.

5.1 Measurement and Understanding of Response Process
Heterogeneity by IRTree Modeling

The response processes involved in item responding can be heterogeneous in manifold
ways. The specific types of heterogeneity addressed in the three articles were the hetero-
geneity in terms of the person characteristics they depend on (e.g., the substantive trait or
response styles), the systematically changing involvement of the processes across the items
of a questionnaire (e.g., increasing impact of trait-based responding), and heterogeneity of
IRFs (e.g., dominance or ideal point IRFs). Various empirical examples in the articles and
the illustrative application of this thesis corroborated that these types of heterogeneity
occur in real-world data and, accordingly, that disregarding such may compromise the
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validity of the analysis method.
Therefore, one aim of this dissertation was to identify potential consequences of ne-

glected response process heterogeneity and to investigate how IRTree modeling can be
used to counteract such. To this end, comprehensive simulation studies were conducted to
systematically evaluate the suitability of various IRTree model parameterizations under
different conditions. The results demonstrated that in case the response processes indeed
revealed some sort of heterogeneity, models that assumed homogeneity were at risk of pro-
viding biased estimates and misleading conclusions. In contrast, the parameter estimates
of the models adapted to the specific types of heterogeneity were shown to consistently
and accurately reflect the true data-generating processes. Interestingly, however, it was
also found that slight model misspecifications that ignored part of the heterogeneity did
not necessarily compromise the measurement of the substantive trait, which is often the
primary goal of item response modeling in practice. The usefulness of different IRTree
parameterizations thus depends not only on the type of response process heterogeneity
present in the data but also on the objective of the application.
An important question arising from this finding is how researchers should approach the

definition of IRTree models (i.e., the partitioning of ordinal responses into sub-decisions,
the assignment of response processes to the pseudo-items, and the parameterization of
the pseudo-items) and how they can decide on how sophisticated the model must be, or
how parsimonious it can be. Traditional simple structure models, for instance, were shown
to often provide acceptable trait estimates even if they were partly misspecified (e.g., if
trait-based responding was ignored in sub-decisions of extreme responding). Therefore,
despite the fact that the assumption of unidimensional pseudo-items does not hold in
many real-world data sets (as is evident from the empirical examples in the articles as
well as from other studies, e.g., Alagöz & Meiser, 2023; Jeon & De Boeck, 2016; Meiser et
al., 2019), such models are probably sufficiently accurate for many practical applications,
and certainly preferable to not controlling for response styles at all. On the other hand,
even small errors in trait measurements can result in misleading conclusions and unfair
decisions, so this risk should be minimized whenever possible. Moreover, there is neither
a way to determine how severe a potential misspecification actually would be in empirical
data, nor to verify that estimation biases are kept within the acceptable boundaries.
Consequently, it is recommended to use unidimensional pseudo-items only if there is a
theoretical or practical reason to do so and instead to consider multidimensional pseudo-
items more frequently. This suggestion is particularly sensible since the erroneous inclusion
of an additional response process was found to be insofar unproblematic as the estimated
model parameters correctly reflected the absence of this process if it was not part of the
data-generating model. Further, there exist several user-friendly R packages that allow
for a straightforward implementation of multidimensional pseudo-items (e.g., see the OSF
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supplement of the first article for the implementation in the mirt package by Chalmers,
2012), so such can be applied with little additional effort.
If researchers seek not only to improve the measurement of traits but also the under-

standing of the underlying processes, using even more elaborated IRTree models with a
high degree of heterogeneity may be worthwhile. However, such models are more difficult
to implement and may require Bayesian modeling, which limits their practical applicabil-
ity. In addition, the introduction of the IRTree framework as a flexible modular system
facilitates the definition of numerous different, potentially very complex models, which
may provide a good fit to the data but at the cost of the interpretability of model pa-
rameters. Heavily parameterized pseudo-items should thus not be specified in a purely
data-driven way, and the key criterion for defining IRTree models should generally be the
theoretical foundation.
Overall, the literature suggests that IRTree modeling is appreciated and applied because

of its simplicity rather than its wide-ranging scope. Therefore, the benefits of this model
class could probably be better exploited if researchers made greater use of its flexibility
by considering more diverse types of pseudo-item definitions than has been done so far.
In this dissertation, I illustrated the advantages of such parameterizations that go beyond
the traditional model specifications – in the hope that this will encourage applications
and further developments of IRTree models for heterogeneous response processes.

5.2 Limitations and Future Directions

The articles included in this thesis integrated different types of response process hetero-
geneity in the IRTree framework, though there are certainly some limitations that should
be addressed in future research. A main shortcoming of the conducted research is that
only a subset of the hypothesized types of response process heterogeneity was covered,
so it remains to be clarified to what extent the findings and modeling approaches can
be generalized beyond the specific conditions: First, response style-based responding was
the only type of trait-unrelated response processes considered, despite the fact that other
processes may likewise affect the selection of rating categories. For example, high-stakes
assessments can trigger socially desirable responding, and careless and random respond-
ing may occur in low-stakes surveys. Although such are rarely investigated by means of
IRTree modeling, it may be possible to modify the models presented here to account for
these additional response processes and their heterogeneity as well. However, while all
trait-unrelated processes have in common that they can distort the measurement, their
manifestations in the usage of the rating scale can strongly differ (e.g., socially desirable
categories vary across items; careless responding can lead to various response patterns), so
future research would be needed to develop an effective implementation within the IRTree
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class.
A further limitation of the scope of this dissertation is that response styles were pri-

marily incorporated by means of one specific example, the ERS. Though ERS is one of
the most prevalent and most studied response styles in the literature, midscale and ac-
quiescence response styles have been shown to frequently occur in empirical data as well
(Bolt & Newton, 2011; Van Vaerenbergh & Thomas, 2013; Wetzel et al., 2016). Midscale
response style is conceptually similar to ERS (they are sometimes even regarded as op-
posite poles of the same continuum) and can be easily included in IRTree models, as has
already been illustrated in application examples in the second and the third article of this
thesis. Acquiescence response style, on the other hand, is somewhat intertwined with trait-
based responding in IRTree models, as both relate primarily to agreement sub-decisions.
It is, therefore, more difficult to separate these two factors, especially if few reverse-keyed
items are used (Park & Wu, 2019; Plieninger & Heck, 2018), so the integration of the
acquiescence response style into complex models with a high degree of response process
heterogeneity may be challenging.
In addition, this dissertation only targeted response process heterogeneity that is spe-

cific to the context of the measurement and can be expected to equally apply to all
respondents. However, as pointed out before, it seems likely that the cognitive processing
of items varies across respondents, so between-person heterogeneity should be addressed
in future research. One possible approach would be the extension of the IRTree framework
by mixture modeling, which has already been realized in the literature with the aim of
identifying latent classes of respondents who differ in whether and which response styles
they use (e.g., Alagöz & Meiser, 2023; Khorramdel et al., 2019; Kim & Bolt, 2021). Also
for the dynamic IRTree models presented in the second article, it was shown that it is
worth considering a person-mixture of response strategies (Merhof & Meiser, 2022). Fur-
ther investigations regarding a potential mixture of dominance and ideal point responding
likewise seem reasonable and may provide interesting new insights into how respondents
differ in their interpretation of the items and the response scale. Besides mixture modeling,
there exist alternative approaches that can even take gradual differences between respon-
dents into account. Nevertheless, the group-specific estimation of parameters might be
more feasible in practice, especially if the pseudo-items are parameterized by comparably
complex IRT models.
Lastly, it should be mentioned that although response process heterogeneity can be

particularly well addressed by IRTree modeling, several other approaches are available to
increase the validity of trait measurements. On the one hand, various IRT models have
been proposed to incorporate response styles or other trait-unrelated influences in the
analysis (e.g., Falk & Cai, 2016; Henninger & Meiser, 2020; Leng et al., 2020; Scherbaum
et al., 2013; Ulitzsch et al., 2022). On the other hand, there is a growing body of litera-
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ture on the usage of process data collected in online assessments, such as response times,
mouse movements, clickstream data, or even geological locations and physical activity.
Such data can provide an indication of how respondents engage with the items and help
validate the measurement through rating scales (e.g., Keusch & Conrad, 2022; Lindner &
Greiff, 2023). Further, instead of increasing the quality of analysis methods or the richness
of rating data in order to improve trait measurements, other approaches were designed to
prevent trait-unrelated responding in the first place. For instance, the multidimensional
forced-choice format is an alternative to the rating scale and was shown to counteract
socially desirable responding and response styles (Brown & Maydeu-Olivares, 2011; Wet-
zel et al., 2020). Other alternatives are implicit methods, such as the implicit association
test (Greenwald et al., 1998), or indirect survey methods, such as randomized response
techniques (e.g., Reiber et al., 2023; Warner, 1965). While these alternatives offer ad-
vantages for certain research questions and can mitigate or even prevent biases through
trait-unrelated processes, the test construction, assessment, and evaluation can be con-
siderably more complex and time-consuming compared to rating items. It is, therefore,
not surprising that the vast majority of self-reported assessments relies on rating scales,
and that much research is devoted to the question of how these can be constructed and
analyzed in the best possible way (e.g., DeCastellarnau, 2018; Saris & Gallhofer, 2007;
Wetzel & Greiff, 2018).

5.3 Conclusion

Rating scales are an integral part of psychology and the social sciences since they offer
a straightforward method to measure characteristics of individuals that cannot be ob-
served directly. IRTree modeling provides a tool for analyzing rating data as well as for
investigating the involved response processes in a theory-driven way. In this dissertation,
I demonstrated that response processes can exhibit various types of heterogeneity, and
I improved the measurement and understanding of such by IRTree modeling. Although
additional research is needed to better understand how heterogeneous response processes
arise, what consequences they might have, and how they can be integrated into analysis
models, the conducted research lays the foundation for further enhancements in the field
of psychometric measurements.
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A Data Set, Analysis, and Model
Specifications of Illustrative
Application

This appendix provides further information on the illustrative application (chapter 4),
including information on the empirical data set, the conducted analyses, and the IRTree
models fitted to the data.

A.1 Data Set

The data set used here is a subset of the German sample of fourth-grade students of the
Trends in Mathematics and Science Study (TIMSS) from the year 2019. The analyzed
scale measures the students’ attitude toward learning mathematics with nine items on a
four-point scale with labels "agree a lot," "agree a little," "disagree a little," and "disagree
a lot." Two items (items 2 and 3) were reverse-keyed and therefore recoded. All cases
with missing responses to one of the items were excluded. The raw data as well as the
questionnaire can be retrieved here: https://timss2019.org/international-database.
From the ordinal responses, binary pseudo-item responses were derived according to

the IRTree model depicted in Figure 1. The three pseudo-items are agreement (X1vi),
extreme responding conditional on agreement (X2vi), and extreme responding conditional
on disagreement (X3vi). The parameterization of such pseudo-items under various IRTree
models is detailed below.

A.2 Analysis

To ensure comparability of results across models introduced in different articles, the anal-
ysis scheme was standardized and may therefore differ from the ones presented in the
respective articles. All models were estimated in Stan (Carpenter et al., 2017), which per-
forms Bayesian Markov chain Monte Carlo parameter estimation. Four chains were run,
each with 1,000 warmup and 1,000 post-warmup iterations. All models reached conver-
gence, as indicated by the Gelman-Rubin statistic R̂ of less than 1.05.
The reported point estimates are expected a posteriori estimates. The models were

https://timss2019.org/international-database
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compared by out-of-sample prediction accuracy using an approximation of leave-one-out
cross-validation (LOO; Vehtari et al., 2017). LOO is a fully Bayesian information criterion
with good performance in IRT model selection (Luo & Al-Harbi, 2017). Small values of
the LOO information criterion (LOO IC) indicate a better fit.

A.3 Models Related to Article I

A.3.1 Simple Structure Model with Unidimensional Pseudo-Items

Parameterization of pseudo-items:

p(X1vi = x1vi) =
exp(x1vi(θv − βi1))
1 + exp(θv − βi1)

(A.1)

p(X2vi = x2vi) =
exp(x2vi(ηv − βi2))
1 + exp(ηv − βi2)

(A.2)

p(X3vi = x3vi) =
exp(x3vi(ηv − βi3))
1 + exp(ηv − βi3)

(A.3)

Priors: [
θ
η

]
∼MVN

([
0
0

]
, Σ

)
where Σ = diag(τ )×Φ× diag(τ ),

with τ ∼ N(0, 5) and Φ ∼ LKJCorr(1)

(A.4)

β ∼ N(µβ,σβ)

with µβ ∼ N(0, 5) and σβ ∼ N(0, 5)
(A.5)

A.3.2 Model with Multidimensional Extreme Responding

Parameterization of pseudo-items:

p(X1vi = x1vi) =
exp(x1vi(θv − βi1))
1 + exp(θv − βi1)

(A.6)

p(X2vi = x2vi) =
exp(x2vi(ηv + αθv − βi2))
1 + exp(ηv + αθv − βi2)

(A.7)

p(X3vi = x3vi) =
exp(x3vi(ηv − αθv − βi3))
1 + exp(ηv − αθv − βi3)

(A.8)

with α ≥ 0
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Priors: [
θ
η

]
∼MVN

([
0
0

]
, Σ

)
where Σ = diag(τ )×Φ× diag(τ ),

with τ ∼ N(0, 5) and Φ ∼ LKJCorr(1)

(A.9)

β ∼ N(µβ,σβ)

with µβ ∼ N(0, 5) and σβ ∼ N(0, 5)
(A.10)

α ∼ LogN(0, 1) (A.11)

A.4 Models Related to Article II

A.4.1 Continuous Dynamic Model

Parameterization of pseudo-items:

p(X1vi = x1vi) =
exp(x1vi(α

(θ)
i1 θv − βi1))

1 + exp(α(θ)
i1 θv − βi1)

(A.12)

p(X2vi = x2vi) =
exp(x2vi(α

(η)
i ηv + α

(θ)
i2 θv − βi2))

1 + exp(α(η)
i ηv + α

(θ)
i2 θv − βi2)

(A.13)

p(X3vi = x3vi) =
exp(x3vi(α

(η)
i ηv − α

(θ)
i2 θv − βi3))

1 + exp(α(η)
i ηv − α

(θ)
i2 θv − βi3)

(A.14)

where for each of the three processes p (trait-based agreement, trait-based extreme re-
sponding, ERS-based extreme responding), the loadings (α(θ)

i1 , α(θ)
i2 , and α

(η)
i ) are given

by:

α
(p)
i = (γ

(p)
1 − γ(p)I )

(
1−

(
i− 1
I − 1

)λ(p))
+ γ

(p)
I (A.15)

with γ(p)1 ≥ 0, γ(p)I ≥ 0, and λ(p) ≥ 0
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Priors:

θ ∼ N(0, 1) (A.16)

η ∼ N(0, 1) (A.17)

β ∼ N(µβ,σβ)

with µβ ∼ N(0, 5) and σβ ∼ N(0, 5)
(A.18)

γ
(p)
1 ∼ LogN(0, 1) (A.19)

γ
(p)
I ∼ LogN(0, 1) (A.20)

λ(p) ∼ LogN(−0.5, 1) (A.21)

A.4.2 Flexible Dynamic Model

Parameterization of pseudo-items:

See Equation A.12 - A.14. For each of the three processes p, the loadings are given by:

α
(p)
i ∼ Normal(µ

(p)
i ,σ(p)) (A.22)

µ
(p)
i = (γ

(p)
1 − γ(p)I )

(
1−

(
i− 1
I − 1

)λ(p))
+ γ

(p)
I (A.23)

σ(p) ∼ Cauchy(0, 5) (A.24)

with γ(p)1 ≥ 0, γ(p)I ≥ 0, and λ(p) ≥ 0

Priors:

See Equation A.16 - A.21
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A.5 Models Related to Article III

A.5.1 Simple Structure Ideal Point Model

Parameterization of pseudo-items:

p(X1vi = x1vi) =

exp
(
x1vi(θv − δi)−

x1vi∑
k=0

τik

)
+ exp

(
(3− x1vi)(θv − δi)−

x1vi∑
k=0

τik

)
1∑
j=0

{
exp

(
j(θv − δi)−

j∑
k=0

τik

)
+ exp

(
(3− j)(θv − δi)−

j∑
k=0

τik

)}
(A.25)

p(X2vi = x2vi) =
exp(x2vi(ηv − βi2))
1 + exp(ηv − βi2)

(A.26)

p(X3vi = x3vi) =
exp(x3vi(ηv − βi3))
1 + exp(ηv − βi3)

(A.27)

with τi0 := 0

Priors:

θ ∼ N(0, 1) (A.28)

η ∼ N(0, 1) (A.29)

β ∼ N(µβ,σβ)

with µβ ∼ N(0, 5) and σβ ∼ N(0, 5)
(A.30)

δ ∼ N(µδ,σδ)

with µδ ∼ N(0, 5) and σδ ∼ N(0, 5)
(A.31)

τ ∼ N(0, 5) (A.32)
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A.5.2 Ideal Point Model with Multidimensional Extreme Responding

Parameterization of pseudo-items:

p(X1vi = x1vi) =

exp
(
x1vi(θv − δi)−

x1vi∑
k=0

τ1ik

)
+ exp

(
(3− x1vi)(θv − δi)−

x1vi∑
k=0

τ1ik

)
1∑
j=0

{
exp

(
j(θv − δi)−

j∑
k=0

τ1ik

)
+ exp

(
(3− j)(θv − δi)−

j∑
k=0

τ1ik

)}
(A.33)

p(X2vi = x2vi) =

exp
(
x2vi α(θv − δi) + x2vi η−

x2vi∑
k=0

τ2ik

)
+ exp

(
(3− x2vi) α(θv − δi) + x2vi η−

x2vi∑
k=0

τ2ik

)
1∑
j=0

{
exp

(
j α(θv − δi) + j η−

j∑
k=0

τ2ik

)
+ exp

(
(3− j) α(θv − δi) + j η−

j∑
k=0

τ2ik

)}
(A.34)

p(X3vi = x3vi) =

exp
(
(1− x3vi) α(θv − δi) + x3vi η−

x3vi∑
k=0

τ3ik

)
+ exp

(
(2 + x3vi) α(θv − δi) + x3vi η−

x3vi∑
k=0

τ3ik

)
1∑
j=0

{
exp

(
(1− j) α(θv − δi) + j η−

j∑
k=0

τ3ik

)
+ exp

(
(2 + j) α(θv − δi) + j η−

j∑
k=0

τ3ik

)}
(A.35)

with τ1i0 := 0, τ2i0 := 0, and τ3i0 := 0

Priors:

θ ∼ N(0, 1) (A.36)

η ∼ N(0, 1) (A.37)

δ ∼ N(µδ,σδ)

with µδ ∼ N(0, 5) and σδ ∼ N(0, 5)
(A.38)

τ ∼ N(0, 5) (A.39)

α ∼ LogN(0, 1) (A.40)
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Abstract

Item response tree (IRTree) models are a flexible framework to control self-reported
trait measurements for response styles. To this end, IRTree models decompose the
responses to rating items into sub-decisions, which are assumed to be made on the
basis of either the trait being measured or a response style, whereby the effects of
such person parameters can be separated from each other. Here we investigate con-
ditions under which the substantive meanings of estimated extreme response style
parameters are potentially invalid and do not correspond to the meanings attributed
to them, that is, content-unrelated category preferences. Rather, the response style
factor may mimic the trait and capture part of the trait-induced variance in item
responding, thus impairing the meaningful separation of the person parameters. Such
a mimicry effect is manifested in a biased estimation of the covariance of response
style and trait, as well as in an overestimation of the response style variance. Both can
lead to severely misleading conclusions drawn from IRTree analyses. A series of simu-
lation studies reveals that mimicry effects depend on the distribution of observed
responses and that the estimation biases are stronger the more asymmetrically the
responses are distributed across the rating scale. It is further demonstrated that
extending the commonly used IRTree model with unidimensional sub-decisions by
multidimensional parameterizations counteracts mimicry effects and facilitates the
meaningful separation of parameters. An empirical example of the Program for
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International Student Assessment (PISA) background questionnaire illustrates the
threat of mimicry effects in real data. The implications of applying IRTree models for
empirical research questions are discussed.

Keywords

IRTree models, response styles, multidimensional item responding, meaningful model
parameters

Item response tree (IRTree) models are a popular class of multidimensional item

response theory (IRT) approaches for analyzing self-reported Likert-type rating data

(Böckenholt, 2012; De Boeck & Partchev, 2012). They rest on the assumption that

item responding comprises several qualitatively distinct judgment steps, which are

processed by respondents on the basis of different latent personal traits. A typical

aim of using IRTree models is to separate the effects of the substantive trait to be

measured from those of response styles, which are individual preferences for specific

response categories of rating scales irrespective of item content (for an overview, see

Van Vaerenbergh & Thomas, 2013). For instance, respondents may prefer extreme

over non-extreme categories (extreme response style; ERS) or they tend to choose

the middle categories of a scale (midscale response style; MRS). Since such different

ways of using the rating scale can systematically bias trait estimates, there is great

interest in both research and practice to apply methods that account for response

styles and thereby provide valid trait measurements (Baumgartner & Steenkamp,

2001).

IRTree models provide an easy-to-implement framework for specifying various

response styles in a theory-driven way. The ordinal responses to rating items are split

into meaningful sub-decisions, which are modeled to be made on the basis of either

the content-related trait or a response style. For example, respondents may first take

a trait-based decision on whether they generally agree or disagree with the item, and

subsequently select one of the available categories reflecting more or less intense

agreement or disagreement driven by their response styles. Such sub-decisions are

typically parameterized by unidimensional IRT models (e.g., the Rasch or 2PL

model), so that the multidimensionality of IRTree models arises only between the

sub-decisions, thus keeping the modeling complexity low and providing a straight-

forward interpretation of the parameters.

Several studies have demonstrated that IRTree models successfully capture multi-

dimensional item responding, and such models were used for controlling trait mea-

surements for response styles in various applications (e.g., Böckenholt & Meiser,

2017; Jeon & De Boeck, 2016; Khorramdel & von Davier, 2014; Kim & Bolt, 2021;

Plieninger & Meiser, 2014; Tijmstra et al., 2018). However, the previous research

solely focused on the assumption that response styles were actually involved in the

item response process, so it is unclear how IRTree models perform in the absence of
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any response style effect. Even though the assignment of response styles to certain

sub-decisions is theoretically founded, there may be circumstances in which respon-

dents nevertheless make all their judgments solely on the basis of the trait; for exam-

ple, if the respondents have a great interest in providing accurate information like in

high-stakes assessments (e.g., personality assessments in job interviews). Since

IRTree models are over-parameterized in such cases (i.e., they include several person

parameters for modeling unidimensional data), they might be prone to overfitting

and could carry the risk of estimating response style variance which is non-existent.

Therefore, it remains to be investigated under which conditions the estimates

obtained by IRTree modeling successfully reflect the substantive meaning assigned

to the parameters and under which conditions they do not. Answering this question is

of high relevance, as the potential lack of validity may compromise the key charac-

teristic of IRTree models, which is their ability to disentangle the influences of multi-

ple person parameters.

In addition, it is of particular concern that the estimated parameters labeled as

response styles in misspecified IRTree models not only absorb random variance but

may rather reflect trait-based responding and capture variance induced by the sub-

stantive trait. Since the response style factor then would mimic part of the trait, we

call this methodological artifact a mimicry effect. The occurrence of such implies that

the separability of traits and response styles is compromised, that is, the variance

components in item responding are partially misattributed to a factor that is not the

true source of the variance. Therefore, the mimicry effect is primarily manifested in

a biased estimation of the relationship between trait and response style (i.e., their

covariance and correlation). Furthermore, the variance of the response style factor is

overestimated, as it captures additional trait-induced variance.

As a result, the pitfalls of mimicry effects in IRTree models for drawing conclu-

sions from the data are twofold: First, the influences of content-unrelated category

preferences are overestimated. Accordingly, even the dimensionality of the response

process might be overestimated by an IRTree model if a response style was esti-

mated to vary across respondents, despite not being part of the actual data-generating

process. Second, the substantive meaning of the response style factor no longer cor-

responds to the meaning that was assigned to it, as the estimates at least partly reflect

trait-based responding. Although the meanings of response styles and traits then

overlap, they are considered distinct response processes given their associations with

qualitatively different sub-decisions. Moreover, one might even find reasonable theo-

retical justifications for correlations between traits and given response styles post

hoc (e.g., respondents with high levels of extraversion are likely to favor extreme

response categories because they are generally self-confident), so that no further

attention would be paid to an artificially induced covariance.

A likely scenario for an impaired separability of person parameters by IRTree

models arises when the distribution of the respondents’ trait levels differs from that

of the items of the questionnaire, such as when the trait follows a skewed or shifted

distribution. For instance, skewed or shifted distributions are to be expected if the
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questionnaire was originally generated for a different sub-population of respondents

with substantially higher or lower trait levels, or if a very rare or common trait is

being assessed. An example would be questionnaires designed to measure the sever-

ity of mental disorders, for which the majority of the population scores low (e.g., the

Beck Depression Inventory; Beck et al., 1996). Furthermore, many scales developed

for the assessment of personality or attitudes of the general population have expected

scores above the scale mean (e.g., five-factor models of personality like the

International Personality Item Pool scales; Goldberg et al., 2006), while other scales

have expected scores below the scale mean (e.g., the Dark Factor of Personality;

Moshagen et al., 2018). All of these response patterns are likely the result of either

skewed or shifted trait distributions in relation to the respective item distributions.

Although it is thus inherently clear for a variety of empirical research questions that

the distributions mismatch, there has been no systematic investigation of how this

affects the parameter estimation and validity of IRTree models.

Therefore, the aim of this article is to evaluate the parameter estimation of IRTree

models for various trait distributions with a focus on the separability of person para-

meters. Thereby, this article is intended to increase awareness for potentially biased

estimates of response style parameters, in which case their assigned substantive

meanings are invalid. Conversely, this does not mean that if person parameters are

successfully separated by a model and statistically unbiased estimates are obtained,

these estimates actually reflect the attributed substantive meaning in the sense of con-

tent validity. Yet, there is some evidence in the literature in favor of the validity of

response style estimates: Investigations of the criterion validity of response styles

showed that the IRTree estimates were linked to extraneous criteria as one would the-

oretically expect (Plieninger & Meiser, 2014; Zhang & Wang, 2020). In addition,

individual response style estimates were found to be stable across different constructs

(Wetzel et al., 2013) and over time (Weijters et al., 2010; Wetzel et al., 2016), which

does not provide evidence for the validity per se, but still suggests that response styles

are trait-like constructs and a characteristic of the persons rather than of the items or

questionnaires. In a combined analysis of rating responses and response times, it was

further revealed that responses that matched the person-specific response styles were

faster, as one would expect given the conception of response styles as heuristic

response processes (Henninger & Plieninger, 2020). Although these results support

the use of IRT models accommodating response styles, such as IRTree models, the

substantive validity of estimates can never be achieved without the accurate separa-

tion of traits and response styles. Therefore, with the analysis of the parameter separa-

tion in the present study, we are laying the groundwork for further investigations of

the validity of IRTree models.

In the next section, IRTree models are formally introduced and the challenge of a

meaningful separation of response style parameters from substantive traits is illu-

strated. Then, a series of three simulation studies is presented that examine the condi-

tions under which IRTree models are at risk of compromised separability. Thereby,

we quantify mimicry effects and explore how such a potential lack of validity can be
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detected. Since the main purpose of response style modeling in empirical research

and practice is to obtain unbiased trait measurements, we additionally investigate the

impact of mimicry effects on the recovery of the person-specific trait levels. In

Simulation Study 1, the extent to which mimicry effects occur depending on the dis-

tribution of the substantive trait in relation to the items is assessed. In Simulation

Study 2, potential remedies are evaluated with respect to their capability to counter-

act mimicry effects. As these two studies focus on the potential risk of applying

IRTree models to data originating from a unidimensional response process (i.e.,

where the respondents’ decisions are purely trait-based), we investigate whether the

findings are transferable to multidimensional data with the combined influences of

trait and response styles in Simulation Study 3. Thereafter, an empirical application

to the background questionnaire of the Program for International Student Assessment

(PISA) 2018 study is presented, which demonstrates the threat of mimicry effects in

real data. Finally, the results are discussed and implications for using IRTree models

in empirical research are derived.

Separation of Traits and Response Styles in IRTree Models

IRTree models decompose the ordinal rating responses Yvi 2 f0, :::, Kg of person

v = 1, : : : , N to item i = 1, : : : , I into a sequence of binary pseudo-items Xhvi, which

represent the sub-decisions assumed to be taken by respondents during the response

selection. The pseudo-items are usually parameterized by unidimensional IRT models

of the trait or a response style, and the probability of an ordinal response is the prod-

uct of the probabilities of responses to the respective pseudo-items. Figure 1 depicts a

commonly used two-dimensional IRTree model for responding to items on a 4-point

scale, with one sub-decision reflecting trait-based agreement, and a second one ERS-

based extreme responding conditional on agreement. The pseudo-item responses are

parameterized by Rasch models of either the substantive trait u (h = 1) or the ERS h

(h = 2 and h = 3), and the probability of an ordinal response Yvi 2 f0, :::, 3g is obtained

by

p(Yvi =yvi)=
exp(x1vi(uv�bi1))

1+exp(uv�bi1)

� �
3

exp(x2vi(hv�bi2))

1+exp(hv�bi2)

� �x1vi

3
exp(x3vi(hv�bi3))

1+exp(hv�bi3)

� �(1�x1vi)

,

ð1Þ

where bih denotes the difficulty of pseudo-item h of item i.

The separation of traits and response styles in IRTree models is achieved by defin-

ing model structures in which (a) the different personal characteristics are related to

different pseudo-items (e.g., trait-based agreement and ERS-based extreme respond-

ing) and (b) they affect the selection of ordinal categories in unique ways that cannot

be linearly transformed into each other (e.g., high trait levels favor high categories

and high ERS levels favor extreme/outer categories). The first property leads to the

identification of the model and enables the estimation of several parameters for each
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respondent. As these person parameters are assigned to different pseudo-items, a

non-redundant part of the information from the ordinal responses is available for the

estimation of each of them, and they can be statistically separated from each other.

Nonetheless, only the second property ensures a meaningful distinction and substan-

tive separation of different person parameters. Figure 2 illustrates the uniquely

directed influences of trait and ERS for the IRTree model of 4-point rating items:

Higher substantive trait levels are modeled to increase the probability of selecting

agreement (i.e., higher) categories, whereas higher ERS levels favor the extreme

categories, and thus either affect the response selection in the direction of the trait

(i.e., higher categories conditional on agreement) or in the opposite direction (i.e.,

lower categories conditional on disagreement). The ERS factor is therefore assigned

the substantive meaning of a preference for extreme categories based on its effects

on the category selection across the two pseudo-items. It can only capture variance in

the respondents’ behavior which equally affects the choice of extreme agreement and

extreme disagreement categories.

Although such a definition of substantive traits and response styles as unique

influences on different sub-decisions is theoretically reasonable, IRTree models may

be misspecified such that the importance of a response style is being overstated or,

correspondingly, the influence of the trait is being understated by the model. For

instance, the true data-generating process could be a unidimensional one without any

response style influence on the judgment process. Fitting an IRTree model assuming

a response style influence (like the one depicted in Figure 1) to such unidimensional

data entails the risk of a mimicry effect, as the response style parameters are not

required to account for individual category preferences, and thus may be redeclared

to capture variance which was actually introduced by the substantive trait. Such a

redeclaration of the response style factor in terms of taking over part of the

Figure 1. Tree Diagram and Definition of Pseudo-Items for Responses to 4-Point Rating Items.
Note. Pseudo-items missing by design are marked with ‘‘–’’.
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substantive trait would inevitably impede the meaningful separation of the two per-

son parameters, though without affecting the statistical separation.

In the following, our hypotheses regarding the conditions of such an impairment

of the meaningful separation of traits and response styles in IRTree models and the

occurrence of mimicry effects are derived: Primarily, we expected that the statistical

advantage of using response style parameters as a substitute for the substantive trait

should depend on the distribution of the ordinal responses across the rating scale,

which in turn is determined by the distribution of the substantive trait levels in rela-

tion to that of the items. If trait and item distributions match, the distribution of

observed item responses is symmetrical (i.e., similar frequencies of agreement and

disagreement categories; see Figure 2A), and a mimicry effect should not occur. In

the exemplary 4-point IRTree model, the more the ERS factor would mimic the sub-

stantive trait, the better the variance among the agreement item responses should be

accounted for, but the worse the variance among the disagreement categories. Thus,

the congruent and opposing effects of trait and ERS should cancel out, they should

have unique influences on the selection of ordinal categories, and their meaningful

separation should remain intact.

In contrast, if the distribution of observed responses is asymmetrical (i.e., unequal

distribution across agreement and disagreement categories; see Figure 2B), the

congruent and opposing effects of trait and ERS can be assumed to not cancel out,

and their influences on the selection of ordinal categories should partly overlap. A

large proportion of the data should be better explained by ERS parameters mimicking

the trait, and only a small proportion should be less well explained. Therefore, the

model should benefit from a redeclaration of the ERS factor as a substitute for the

trait, resulting in a substantial variance of the estimated ERS levels and covariance

with the trait levels. Such a mimicry effect would be accompanied by a reduction or

even complete loss of the meaningful separation of trait and response style, as the

A B

Figure 2. Illustration of the Meaningful Separation of Trait and ERS in an IRTree Model Depending
on the Response Distribution. (A) Symmetrical Response Distribution. (B) Asymmetrical Response
Distribution.
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trait-induced variance would be jointly explained by both parameters. The severity of

mimicry effects (i.e., the degree of reduction in separability) was thus assumed to be

larger, the more asymmetrical the response distribution is, and accordingly, the more

skewed or shifted the trait distribution in relation to the item distribution. Thereby,

the reduced separation of trait and ERS was expected to occur for both an asymmetry

of the response distribution toward high or low categories of the scale. However, an

asymmetrical distribution toward higher categories should be associated with a posi-

tive covariance of ERS and trait, whereas a shift toward lower categories with a nega-

tive covariance. Since a negative covariance of two parameters implies the same

degree of shared meaning as a corresponding positive one, the mimicry effect should

be independent of the direction of the response distribution asymmetry and quantified

by the absolute covariance.

In the next section, we illustrate our expectations regarding mimicry effects and

their dependency on the distribution of rating responses in a first simulation study.

Simulation Study 1—Mimicry Effects and Trait Distributions

The first simulation study addresses mimicry effects in IRTree models for various

distributional conditions of the trait in the absence of response style influences.

Therefore, unidimensional item response data were generated under the partial credit

model (PCM; Masters, 1982), which was chosen as the data-generating model as it is

a commonly used IRT model for ordinal rating data. The two-dimensional IRTree

model with trait and ERS influences illustrated in Figure 1 was used as the analysis

model. The underlying trait distributions were set to be either skewed or shifted in

relation to the items, which both result in asymmetrical response distributions.

Besides the investigation of mimicry effects, we evaluated the recovery of the sub-

stantive trait levels, which provides an indication of whether IRTree models produce

reasonable estimates for individual parameters despite the risk of a biased estimation

of the covariance structure.1

Simulation Design

Item response data were generated under the PCM, a unidimensional IRT model in

which the selection of all ordinal response categories is assumed to depend solely on

the substantive trait. The category probabilities of the ordinal responses

Yvi 2 f0, :::, Kg under the PCM are given by

p(Yvi = yvi) =

exp yuv �
Py
k = 0

bik

� �
PK
j = 0

exp juv �
Pj

k = 0

bik

� � , ð2Þ

with bi0 : = 0. uv denotes the person-specific trait level and bik denotes the item- and

category-specific difficulty. The difficulty parameters can be decomposed as
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bik = bi + tik , where bi denotes the item location and is defined as
PK

k = 1 bik=K and

tik denotes the category-specific deviations with
PK

k = 1 tik = 0.

Responses to 4-point rating items were generated, with the category-specific diffi-

culty parameters bik for each item drawn from a uniform distribution U (� 3, 3) and

assigned to the ordinal categories k = f1, 2, 3g in ascending order (bi0 is defined to be

0 in the PCM). This sampling procedure results in the item locations bi being approx-

imately normally distributed with mean 0 and variance 1.

For conditions of shifted trait distributions, person-specific trait levels uv were

sampled from normal distributions N(m, 1:0) with mean m set to 0.0, 0.2, 0.5, or 1.0.

Therefore, the distributions of the traits and item locations either matched (m = 0:0;

baseline condition) or were shifted by 0.2, 0.5, or 1.0 units of the SD. The stronger

the shifts of the trait distributions, the more the distributions of the ordinal item

responses were asymmetrical toward the higher categories of the scale.

For the skewed conditions, the substantive trait was assumed to stem from a skew-

normal distribution with the probability density function:

SkewN (x j j, v, a) =
2

v
f

x� j

v

� �
F a

x� j

v

� �� �
, ð3Þ

where f denotes the standard normal probability density function and F denotes the

cumulative distribution function (for further details on the skew-normal distribution,

see Azzalini & Capitanio, 2014). The parameter j is the location, v is the scale, and

a is the skewness of the distribution. Positive a values result in right-skewed distribu-

tions and negative values in left-skewed ones. The skew-normal distribution reduces

to the standard normal one for j = 0, v = 1, and a = 0. The mean and variance of a

skew-normally distributed variable X;SkewN (j, v, a) are defined as

M = j +
va

ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 + a2)p
p

)
, ð4Þ

Var = v2 1� 2a2

p(1 + a2)

� �
: ð5Þ

The trait levels were sampled from SkewN (j = 0, v, a), with skewness parameter

a set to 0.0, 0.5, 1.0, and 2.0. The corresponding scale parameters v were set to 1.00,

1.07, 1.21, and 1.43, resulting in the trait distributions of all conditions having a var-

iance of 1, which provided a high degree of comparability between all shifted and

skewed conditions. According to Equation 4, the means of the four conditions were

0.00, 0.38, 0.68, and 1.02. The baseline condition with skewness parameter a = 0:0
was equivalent to sampling from a standard normal distribution and thus equivalent

to the baseline condition of the shifted data generation. The higher the skewness para-

meters were, the stronger the asymmetry of ordinal item responses toward the higher

categories of the scale.
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For each of the four shifted and four skewed conditions, random data sets were

generated with varying sample sizes N , set to 100, 500, and 2,000, and questionnaire

lengths I , set to 5, 10, 20, and 40. The simulation factors were fully crossed, resulting

in 96 (8 3 3 3 4) simulation conditions, for which 100 replications were conducted

each. For each data set, item responses were generated as follows:2N trait levels and

33I item difficulties were randomly drawn according to the sampling procedure of

the respective simulation condition described above. Then, person and item para-

meters were inserted into the PCM given by Equation 2, yielding category-specific

probabilities for responses of each person to each item. Finally, ordinal item

responses were sampled according to the model-implied probabilities, and pseudo-

item responses were derived from such ordinal responses according to the definition

given in Figure 1.

The generated data sets were analyzed within the IRTree framework, and the

model described in Figure 1 and Equation 1 was applied. We additionally used the

PCM as an analysis model to obtain benchmarks for the trait recovery. The models

were estimated using the R package mirt3 (Chalmers, 2012) and all models

converged.

The recovery of substantive traits was assessed by the correlation of generated

and estimated (expected a posteriori) parameters. This measure of recovery was cho-

sen as it indicates whether the ranking of the persons was correctly reflected by the

model estimates. Other commonly used measures of recovery, such as the mean

absolute bias, were not suitable here as the conditions with shifted or skewed trait

distributions necessarily result in larger absolute deviations of estimated parameters.

In addition, the rank order is a crucial measure when assessments are used as the

basis for decisions in a practical context, such as the selection of the best applicants

in a job interview.

Further note that for the data generation under both shifted and skewed trait distri-

butions, only conditions resulting in an asymmetrical response distribution toward

the higher categories were defined. We chose such conditions since asymmetrical

distributions in the opposite direction toward low categories can be expected to not

affect the size of the mimicry effects in IRTree models which have a symmetrical

tree structure. The IRTree model used here has such a symmetrical structure, as the

agreement sub-decision splits the rating scale into two categories each, which are

then again split by the extreme sub-decisions. Thus, we assumed that the only differ-

ence in the mimicry effects for asymmetrical response distributions toward high and

low categories should be that the deviation of the estimated covariance from the true

covariance reverses in sign. We nevertheless run the same simulation study as

described here just with reversed trait shifts m = � 0:2, � 0:5, or� 1:0ð Þ and

reversed skewness parameters (a = 20.5, 21.0, and 22.0). The results can be found

in the Online Supplementary Materials and confirm our assumption that the corre-

sponding positive and negative parameters resulted in nearly equivalent sizes of the

mimicry effects. Therefore, only conditions associated with an asymmetry to the

high categories are presented in the following.
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Results

The mimicry effects were evaluated by the estimated covariances between ERS and

substantive trait levels. As the data-generating process was unidimensional and did

not incorporate response style influences, the accurate estimate for the covariance

would be zero. Thus, the more an estimated covariance deviated from zero, the stron-

ger the mimicry effect was. In line with our expectations, the mimicry effects were

more pronounced the more skewed or shifted the underlying trait distributions were

in relation to the distribution of item locations (i.e., the more asymmetrical the item

response distributions), as can be seen in Table 1. Likewise, the estimated correla-

tions between ERS and trait strongly increased with increasingly asymmetric

response distributions. For the baseline conditions with non-shifted or non-skewed

distributions, the covariances and correlations were correctly estimated to be close to

zero.

The conditions with shifted and skewed trait distributions hardly differed with

respect to revealing increasing mimicry effects for increasing deviations from the

standard normal baseline condition. However, the skewed conditions generally

yielded slightly stronger effects, suggesting that the asymmetry of item responses

was higher for the specific skewness parameters a, compared with the specific mean

shifts m we defined. Sample size and questionnaire length did not influence the mimi-

cry effect, as there were only small differences in the estimated covariances across

these simulation factors (see Table A1 in the Online Supplementary Materials).

Furthermore, the estimated variances of the ERS factor increased with higher

shifts or skewness parameters of the trait distributions, which is in line with the

assumption that the ERS parameters increasingly take over trait-induced variance for

a stronger asymmetry of observed item responses. Also for the baseline conditions

without mimicry effects, the ERS variances were greater than zero, indicating that

Table 1. Estimated Covariances, Correlations, and Variances of ERS h and Trait u by the
IRTree Model for Unidimensional Data (Simulation 1).

Trait distribution M (SD) across replications

Distr. family Condition dCov(h, u) dCor(h, u) dVar(h) dVar(u)

Shifted m = 0:0 0.00 (0.26) 0.00 (0.34) 0.26 (0.13) 2.11 (0.37)
m = 0:2 0.15 (0.26) 0.20 (0.34) 0.26 (0.12) 2.11 (0.37)
m = 0:5 0.35 (0.27) 0.44 (0.29) 0.31 (0.15) 2.14 (0.36)
m = 1:0 0.70 (0.26) 0.74 (0.18) 0.40 (0.16) 2.29 (0.43)

Skewed a = 0:0 0.01 (0.26) 0.01 (0.34) 0.26 (0.14) 2.12 (0.39)
a = 0:5 0.28 (0.26) 0.36 (0.30) 0.28 (0.13) 2.15 (0.38)
a = 1:0 0.54 (0.27) 0.62 (0.25) 0.35 (0.15) 2.18 (0.39)
a = 2:0 0.84 (0.23) 0.83 (0.13) 0.49 (0.18) 2.14 (0.41)

Note. Aggregated across sample sizes N = 100, 500, 2,000ð Þ and questionnaire lengths I = 5, 10, 20, 40ð Þ.
ERS = extreme response style.
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the parameters still captured some variation in the selection of extreme categories

across respondents. Nevertheless, even in conditions with strong mimicry effects, the

average variance estimates of the ERS factor were rather small in comparison to

those of the trait, which is due to the fact that the data-generating process was purely

trait-based and did not include ERS-based responding. Furthermore, the estimated

trait variances were much higher than the generated variances of 1, which is due to

differences in the model specifications between the data-generating PCM and the

analysis IRTree model.

Overall, the analysis of the variance and covariance estimation clearly demon-

strated that IRTree models pose the risk of mimicry effects, and thus potentially lead

to inaccurate conclusions about the involved response processes and the relationship

of the person parameters. Even for trait distributions with slight shifts or small

degrees of skewness, the estimated covariances of trait and ERS were of substantial

size. Such estimates would likely lead researchers to the erroneous interpretation that

respondents with high levels of the substantive trait had strong preferences for

extreme categories and those with low trait levels rather preferred the non-extreme

ones, when in fact, the respondents did not at all have category preferences.

However, since a main use case of IRTree modeling is to obtain accurate trait

measurements that are controlled for response style influences, the response style

estimates themselves or covariances with other parameters are often not of interest.

Therefore, we additionally examined the recovery of the substantive trait levels.

Notably, the presence of a mimicry effect did not impair the trait recovery by the

IRTree model. Irrespective of the distributional condition, the correlations of gener-

ated and estimated trait levels were consistently high, as is evident from Table 2

(also see Table A2 in the Online Supplementary Materials for the trait recovery split

by N and I). The PCM yielded a slightly higher trait recovery in all conditions,

which can be considered the benchmark or maximal achievable values of recovery,

Table 2. Trait Recovery Cor(u, û) by the IRTree Model and Data-Generating PCM for
Unidimensional Data (Simulation 1).

Trait distribution M (SD) across replications

Distr. family Condition IRTree PCM

Shifted m = 0:0 0.87 (0.08) .91 (.06)
m = 0:2 0.87 (0.08) .91 (.06)
m = 0:5 0.88 (0.08) .91 (.06)
m = 1:0 0.88 (0.07) .91 (.06)

Skewed a = 0:0 0.88 (0.07) .91 (.06)
a = 0:5 0.88 (0.07) .91 (.06)
a = 1:0 0.88 (0.07) .91 (.06)
a = 2:0 0.88 (0.08) .90 (.06)

Note. Aggregated across sample sizes N = 100, 500, 2,000ð Þ and questionnaire lengths I = 5, 10, 20, 40ð Þ.
SD = standard deviation; PCM = partial credit model.
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as the PCM was the true data-generating model. However, the PCM uses the infor-

mation of all four ordinal response categories for the estimation of the trait levels,

while the IRTree model only uses the information provided by the binary agreement

sub-decision, so this small advantage of the PCM is not surprising.

Thus, the potential occurrence of a mimicry effect in IRTree modeling is primar-

ily a concern for estimating response styles, but less so for recovering person-specific

trait levels. If the focus of the analysis is exclusively on the measurement of substan-

tive traits, our results suggest that skewed or shifted trait distributions do not have

relevant effects. Nonetheless, a bias in the latent covariance matrix may lead to mis-

interpretations regarding the item response process and involved person parameters.

Therefore, we explore possible modifications of the previously used IRTree model in

the next section, which potentially could counteract mimicry effects and provide

unbiased estimates of all model parameters.

Simulation Study 2—Modified IRTree Models Counteracting
Mimicry Effects

In the second simulation study, two modified IRTree models were examined with

regard to their ability to counteract mimicry effects. The first modified IRTree model

differed from the standard IRTree model described before (see Figure 1 and Equation

1) in that the covariance of trait and ERS was fixed to zero. This model constraint

prevents the estimation of artificial covariances, as evoked by the ERS parameters

mimicking the substantive traits. Consequently, erroneous conclusions about the rela-

tionship between the trait and response styles cannot arise even in the presence of

asymmetrical response distributions. However, this comes with the disadvantage that

such a model cannot capture a true covariance if it would actually be present in the

data, and that a zero covariance of personal characteristics is often not reasonable

from a theoretical point of view.

Therefore, another modified IRTree model with freely estimated covariance was

evaluated, in which the extreme pseudo-items were parameterized by multidimen-

sional IRT models (see Böckenholt, 2019; Jeon & De Boeck, 2016; Meiser et al.,

2019). Such a multidimensionality within pseudo-items (additionally to the usual

multidimensionality between pseudo-items) reflects the assumption that not only

one, but several person parameters are involved in the respective sub-decisions. For

instance, in the IRTree model for 4-point rating items, respondents may use both the

ERS and the trait for the sub-decisions of extreme versus non-extreme responding.

Previous studies showed that, indeed, response styles and traits are often simultane-

ously involved in certain sub-decisions in empirical data (Meiser et al., 2019; Merhof

& Meiser, 2023; von Davier & Khorramdel, 2013). Moreover, multidimensional

pseudo-items have the advantage that even if the sub-decisions originate from a uni-

dimensional response process, it is not required to specify in advance which person

parameter is driving this decision. Rather, both the dimensionality of sub-decisions

and the involved parameters can be explored in the given data.

Merhof et al. 13



The IRTree model with multidimensional pseudo-items used in the following is

given by

p(Yvi = yvi) =
exp(x1vi(uv � bi1))

1 + exp(uv � bi1)

� �
3

exp(x2vi(hv + luv � bi2))

1 + exp(hv + luv � bi2)

� �x1vi

3
exp(x3vi(hv � luv � bi3))

1 + exp(hv � luv � bi3)

� �(1�x1vi)

:

ð6Þ

with l � 0.

The model differs from the standard IRTree model with unidimensional pseudo-

items only in the parameterization of extreme responding, for which in addition to

the ERS h, also the trait u is assumed to influence the respondents’ decisions. The

weight parameter l indicates the relative importance of the trait for extreme respond-

ing in relation to its importance for the agreement decisions, in which it is weighted

by one. The trait is given opposite signs for extreme responding conditional on the

agreement judgment to account for the fact that extreme agreement is more likely

under both high ERS and high trait levels of respondents, whereas the probability of

selecting extreme instead of non-extreme disagreement still increases with higher

ERS but decreases with higher trait levels. These differently directed influences of

trait and ERS across the extreme pseudo-items facilitate the statistical and meaning-

ful separation of the two person parameters, despite the fact that they do not relate to

distinct sub-decisions.

IRTree models with multidimensional pseudo-items can be expected to counteract

mimicry effects since the response style parameters are statistically ineffective substi-

tutes for the substantive trait if the trait itself is also included in the respective sub-

decisions. As illustrated previously for the IRTree model with unidimensional para-

meterization (see Figure 2), ERS parameters mimicking the trait are advantageous for

explaining the trait-induced variance of extreme responding for one side of the rating

scale (e.g., variance among the agreement categories) and disadvantageous for the

other side (e.g., variance among the disagreement categories). Only if the responses

are asymmetrically distributed over both sides of the rating scale, as is the case for

shifted or skewed trait distributions, the model benefits from the redeclaration of the

ERS factor. In contrast, since the IRTree model with multidimensional pseudo-items

incorporates trait influences for all sub-decisions, the trait parameters can account for

the trait-induced variance in extreme responding independently of the response distri-

bution. Multidimensional pseudo-items can thus be assumed to not only maintain the

statistical separation of traits and response styles but also enhance the meaningful

separation of such parameters in comparison to the unidimensional parameterization.

In the second simulation study, both the IRTree model with multidimensional

pseudo-items and the model with fixed covariance were evaluated with regard to

mimicry effects and trait recovery.3 They were compared against the standard

IRTree model used in the first simulation study, in which the covariance of trait and

ERS was estimated and all pseudo-items were parameterized by unidimensional IRT

14 Educational and Psychological Measurement 00(0)



models. The same unidimensional data-generating procedure by the PCM as in the

first simulation study was applied. As mimicry effects were found to likewise occur

for data with shifted and skewed trait distributions (see Table 1), only the shifted

conditions were considered here. Furthermore, sample size and questionnaire length

were not varied (N was set to 500, and I was set to 20), as no relevant differences

were observed (see Tables A1 and A2 in the Online Supplementary Materials). 100

replications were conducted for each shifted condition with m set to 0.0, 0.2, 0.5, and

1.0.

Results

The analysis of the estimated variances and covariances (see Table 3) revealed that

the IRTree model with fixed covariance was only suitable to a limited extent in terms

of counteracting mimicry effects and the misattribution of trait-induced variance.

Although fixing the covariances of ERS and trait naturally prevents mimicry effects

in the strict sense, the estimated variances of ERS parameters increased with increas-

ing trait shifts. This overestimation of the ERS variance suggests that the ERS para-

meters still captured part of the trait-induced variance in extreme responding. We

therefore investigated whether, despite the zero-constrained population covariance

(dCov(h, u) = 0), the covariance of the estimated trait and ERS levels (Cov(ĥ, û)) nev-

ertheless differed from zero. The covariance of estimated parameters indeed

increased with increasing trait shifts, demonstrating that a kind of hidden mimicry

effect occurred. As a result, the ERS parameters mimicked the trait, causing them to

covary with each other, although the constrained population covariance supposedly

specified that there was no relationship between the parameters. As this hidden

mimicry effect was smaller compared with the actual mimicry effect that occurred in

the standard IRTree model, forcing the population covariance to zero seems to have

suppressed at least part of the redeclaration of the ERS parameters (for m = 1.0, the

hidden effect was 0.26 and the mimicry effect of the standard IRTree model was

0.69, see Table A1 in the Online Supplementary Materials, condition with N = 500,

I = 20). Nevertheless, the model with fixed covariance did not prevent biases in the

parameter estimation to a satisfactory degree, as it still indicated that an ERS influ-

ence was present, even though it was not part of the data-generating process.

In contrast, the IRTree model with multidimensional pseudo-items provided esti-

mates of the ERS variance which were very close to zero regardless of the trait distri-

bution. Thus, it successfully detected the unidimensional data-generating process and

accurately reflected the absence of response style influences. The covariances of ERS

and trait were likewise correctly estimated to be close to zero so that mimicry effects

did not occur. The IRTree model with multidimensional pseudo-items therefore con-

sistently prevented a misattribution of the trait-induced variance even for strongly

asymmetrical response distributions.

Somewhat unexpectedly, the correlations of the ERS with the trait estimated by

the model with multidimensional pseudo-items were on average slightly negative. As

Merhof et al. 15
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these estimates largely varied across simulation replications, and given that the indi-

vidual ERS factors had a very low variance, this correlation is likely an artifact of the

estimation and suggests that the parameters adapted to small random variations of the

respondents’ selection of extreme categories. Furthermore, the fact that the variance

of the ERS and its covariance with the trait were consistently estimated to be close to

zero for all data sets, the model would hardly mislead to the false interpretation that

the small correlations between trait and ERS were substantially meaningful.

Also, the recovery of trait levels (see Table 4) was comparatively better in the

IRTree model with multidimensional pseudo-items than in the models with unidi-

mensional ones (with fixed or estimated covariance) and even reached the benchmark

recovery by the true data-generating PCM. However, the models with unidimensional

pseudo-items performed only slightly worse and still yielded satisfactory recovery.

As was shown in the first simulation study, mimicry effects and misspecifications of

IRTree models were only of limited relevance for the trait recovery and were more

severe in terms of possible incorrect conclusions about the presence and importance

of response styles.

Altogether, the second simulation study demonstrated that the model with multidi-

mensional pseudo-items successfully counteracted mimicry effects and further recov-

ered the substantive trait levels very well. These results suggest that a

multidimensional parameterization of pseudo-items should be preferred to a unidi-

mensional one if it seems plausible from a theoretical perspective, for instance, if

sub-decisions that are assumed to be based on response styles may be additionally

influenced by the trait. So far, though, we have provided evidence for the benefits of

the multidimensional parameterization only for unidimensional data. However, item

responding without any response style influence is (a) hardly found in empirical data

and (b) contrary to the primary purpose of using IRTree models, namely to control

trait measurements for response style effects. Therefore, a third simulation study was

conducted, in which the previously analyzed IRTree models with unidimensional or

multidimensional pseudo-items were fitted to data originating from a multidimen-

sional response process with ERS influence.

Table 4. Trait Recovery Cor(u, û) for Unidimensional Data (Simulation 2).

Trait shift M (SD) across replications

IRTree IRTree fixed coverage IRTree multidimensional PCM

m = 0:0 0.92 (0.01) 0.92 (0.01) 0.95 (0.01) 0.95 (0.01)
m = 0:2 0.92 (0.01) 0.92 (0.01) 0.95 (0.01) 0.95 (0.01)
m = 0:5 0.92 (0.01) 0.92 (0.01) 0.95 (0.00) 0.95 (0.00)
m = 1:0 0.92 (0.01) 0.91 (0.01) 0.94 (0.01) 0.94 (0.01)

Note. N = 500, I = 20. SD = standard deviation; PCM = partial credit model.
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Simulation Study 3—Multidimensional Data With Response
Style Influence

The third simulation study concerned mimicry effects in multidimensional item

response data, for which, in addition to the trait, also a response style was assumed to

affect the selection of rating categories. For such data, the mimicry effect is the dif-

ference between the true and estimated covariances, which is in contrast to the first

two studies where the estimated covariance directly quantified the mimicry effect.

Nevertheless, just as for unidimensional data, we assumed that the response style

parameters should mimic the trait and capture part of its variance if a misspecified

IRTree model overstated the influence of a response style and understated the influ-

ence of the trait. For example, an IRTree model could suggest that the extreme sub-

decisions were purely ERS-based, although, in fact, the trait additionally affected the

response selection. Since a skewed or shifted trait distribution results in an asymme-

trical response distribution also for multidimensional data, we expected a statistical

advantage of adjusting the meaning of the ERS toward that of the substantive trait.

However, unlike in unidimensional data, only part of the estimated response style

variance should then reflect trait-based responding, and the other part should reflect

actual differences in individual category preferences. In the data example illustrated

in Figure 2B, the person-specific ERS estimates should thus represent a compromise

between the true preferences for extreme categories and trait-based responding. The

balance of this compromise should depend on the response distribution so that a

higher asymmetry should cause the estimated ERS levels to more closely reflect the

substantive meaning of the trait. Likewise, the estimated covariance of response style

and trait should comprise the sum of both the true relationship of the latent personal

characteristics and the artificially evoked covariance. Thereby, the direction of the

asymmetry can be assumed to determine whether the covariance is overestimated or

underestimated, so a mimicry effect may even change the sign of the estimated

relationship.

Our hypotheses on mimicry effects in multidimensional data were tested in the

simulation study by generating item response data under the IRTree model with mul-

tidimensional pseudo-items according to Equation 6, in which the agreement sub-

decision is modeled to be solely dependent on the trait, and the extreme sub-decisions

are parameterized by both the trait and the ERS.2 The parameter l, which indicates

the importance of the trait for extreme responding, was set to 0.5 across all generated

data sets, as previous studies showed that such is a realistic value for empirical data

(Meiser et al., 2019; Merhof & Meiser, 2023). Since the mimicry effect is the covar-

iance of a response style and the trait which deviates from the true relationship of

these two parameters, we varied the covariance of ERS and trait as an additional

simulation factor and set it to 0.0, 0.2, 0.4, and 0.6. The variances of both ERS and

trait were set to 1, so the generated covariances corresponded to the correlations. The

trait shift m was varied and set to 0.0 and 1.0. The sample size N was set to 100, 500,

and 2,000; the questionnaire length I was set to 5, 10, 20, and 40. 100 replications

were conducted for each condition of the fully crossed simulation factors. The
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analysis models were the standard IRTree model with unidimensional pseudo-items,

the IRTree model with multidimensional pseudo-items, and the PCM.

Results

The analyses clearly demonstrated that mimicry effects also occur if a response style

was involved in the data-generating process in addition to the trait. As shown in

Table 5, the standard IRTree model with unidimensional pseudo-items yielded

inflated estimates of the covariance in case of a trait shift. The true covariance of

ERS and trait hardly influenced the mimicry effect, as the overestimation of covar-

iance was consistent across the conditions of generated covariances. However, with

an average overestimation of 0.14, the mimicry effect was considerably smaller than

the corresponding effect for unidimensional data (0.70, see Table 1). This difference

is due to the fact that the ERS parameters only capture the trait-induced variance of

extreme responding for unidimensional data but are a compromise of the trait and

actual ERS levels of respondents in multidimensional data. As was shown for unidi-

mensional data, sample size and questionnaire length did not influence the mimicry

effect (see Table A3 in the Online Supplementary Materials).

The IRTree model with multidimensional pseudo-items again proved to be resis-

tant to the mimicry effect, as it provided unbiased estimates of the covariance across

all conditions also for multidimensional data. This finding corroborates our previous

suggestion that a multidimensional parameterization of pseudo-items should be pre-

ferred to a unidimensional one if unidimensionality is not required from a theoretical

point of view. Also in terms of person parameter recovery, a similar pattern to that

observed for unidimensional data was found: The differences in recovery of trait and

Table 5. Estimated Covariances and Correlations of ERS h and Trait u for Multidimensional
Data With ERS Influence (Simulation 3).

Analysis Cov(h, u) M (SD) across replications

dCov(h, u) dCor(h, u)

m = 0:0 m = 1:0 m = 0:0 m = 1:0

IRTree 0.0 0.00 (0.16) 0.14 (0.16) 0.00 (0.15) 0.14 (0.16)
0.2 0.19 (0.16) 0.33 (0.16) 0.19 (0.16) 0.32 (0.14)
0.4 0.38 (0.16) 0.54 (0.17) 0.38 (0.14) 0.51 (0.13)
0.6 0.57 (0.17) 0.73 (0.17) 0.58 (0.13) 0.67 (0.10)

IRTree
multidimensional

0.0 20.01 (0.14) 20.01 (0.14) 20.01 (0.20) 0.00 (0.19)
0.2 0.19 (0.14) 0.19 (0.14) 0.20 (0.20) 0.21 (0.18)
0.4 0.40 (0.14) 0.40 (0.14) 0.42 (0.17) 0.43 (0.18)
0.6 0.59 (0.15) 0.59 (0.15) 0.62 (0.13) 0.63 (0.13)

Note. Aggregated across sample sizes N = 100, 500, 2,000ð Þ and questionnaire lengths I = 5, 10, 20, 40ð Þ.
ERS = extreme response style.

Merhof et al. 19



ERS levels between the models were small, with a slight advantage of the true data-

generating IRTree model with multidimensional pseudo-items (see Table 6). Only in

conditions with few data points (N = 100 and I = 5), the recovery by the IRTree model

with multidimensional pseudo-items was slightly worse compared with the other

models, which is probably due to the greater complexity of this model (see Tables A4

and A5 in the Online Supplementary Materials for the recovery of person parameters

split by N and I).

Application

To demonstrate the impact of mimicry effects on the validity of conclusions drawn

from empirical data, two scales of the background questionnaire of the PISA 2018

study were analyzed by IRTree modeling. We used the item responses of N = 4, 411

participants to the 2 scales ‘‘reading self-evaluation’’ comprising 6 items and ‘‘read-

ing enjoyment’’ comprising five items on a 4-point rating scale.4 The subset of the

data considered here is described in more detail by Henninger and Meiser (2023).

The standard IRTree model with unidimensional pseudo-items as well as the IRTree

model with multidimensional pseudo-items were fitted to the data. As the multidi-

mensional model was shown to produce unbiased estimates in the simulation studies,

it was considered the benchmark model with which the standard IRTree model was

compared in order to quantify mimicry effects.

First, both scales were analyzed separately for illustration purposes. The results

are summarized in Table 7 and suggest mimicry effects in the standard IRTree model

Table 6. Parameter Recovery for Multidimensional Data With ERS Influence (Simulation 3).

Analysis Cov(h, u) M (SD) across replications

Cor(u, û) Cor(h, ĥ)

m = 0:0 m = 1:0 m = 0:0 m = 1:0

IRTree 0.0 0.80 (0.11) 0.79 (0.12) .78 (.11) .77 (.11)
0.2 0.80 (0.11) 0.79 (0.11) .78 (.11) .78 (.11)
0.4 0.80 (0.11) 0.80 (0.10) .79 (.11) .79 (.10)
0.6 0.81 (0.10) 0.82 (0.09) .80 (.10) .81 (.09)

IRTree multidimensional 0.0 0.82 (0.11) 0.81 (0.11) .78 (.13) .78 (.14)
0.2 0.82 (0.12) 0.81 (0.11) .78 (.13) .79 (.12)
0.4 0.82 (0.11) 0.82 (0.11) .79 (.12) .79 (.12)
0.6 0.83 (0.10) 0.84 (0.09) .81 (.11) .81 (.11)

PCM 0.0 0.81 (0.10) 0.80 (0.10) — —
0.2 0.81 (0.10) 0.81 (0.10) — —
0.4 0.81 (0.10) 0.82 (0.10) — —
0.6 0.81 (0.10) 0.82 (0.09) — —

Note. Aggregated across sample sizes N = 100, 500, 2,000ð Þ and questionnaire lengths I = 5, 10, 20, 40ð Þ.
ERS = extreme response style; SD = standard deviation; PCM = partial credit model.
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for both scales: The estimated covariances, correlations, and ERS variances largely

differed between the two models, indicating a biased estimation by the IRTree model

with unidimensional pseudo-items. For ‘‘reading self-evaluation,’’ the correlation of

ERS and trait under the standard IRTree model was of substantial size, which was

strongly reduced when the model with multidimensional pseudo-items was applied.

For ‘‘reading enjoyment,’’ a mimicry effect was likewise apparent, though in the

opposite direction: The model with unidimensional pseudo-items indicated that trait

and ERS levels were unrelated, when in fact the model with multidimensional

pseudo-items showed that they were positively correlated. In both cases, the larger

ERS variances in the standard IRTree model supported the presence of mimicry

effects.

Thereby, the distributions of the observed item responses (see Figure 3) further

demonstrated that even a slight asymmetry toward one side of the rating scale can

distort the interpretation of the results derived from the IRTree model with unidimen-

sional pseudo-items: Whereas the item responses of the ‘‘reading self-evaluation’’

scale reveal a noticeable asymmetry toward the agreement side of the scale, the dis-

tribution of ‘‘reading enjoyment’’ appears to be rather symmetrical. Since erroneous

parameter estimates nevertheless occurred for both scales, this application example

highlights that visual inspections of observed item responses are not necessarily indi-

cative of mimicry effects, and should not be used as the sole diagnostic criterion for

choosing the IRTree model applied to the data.

In an additional analysis, both scales were modeled simultaneously, which is gen-

erally preferable to the separate analysis of multiple scales. Since a joint model,

which defines a response style as a category preference across several unrelated con-

structs, facilitates separating response style and trait factors more accurately (e.g.,

Bolt & Newton, 2011), this approach should also reduce mimicry effects. For the

PISA data, the mimicry effects were indeed reduced in the joint model: The differ-

ence in the estimated correlation between trait and ERS by the IRTree model with

unidimensional versus multidimensional pseudo-items decreased from .22 to .19 for

‘‘reading self-evaluation’’ and from .11 to .08. for ‘‘reading enjoyment.’’ The fact

that mimicry effects were still present and of substantial size, however, is likely due

to the high correlation of the two content traits of .48. Therefore, also when jointly

Table 7. Estimated Covariances, Correlations, and Variances of ERS h and Trait u for the
Empirical PISA Data.

PISA scale Analysis dCov(h, u) dCor(h, u) dVar(h) dVar(u)

Reading
self-evaluation

IRTree 1.92 0.41 5.74 3.87
IRTree multidimensional 0.72 0.19 4.02 3.63

Reading
enjoyment

IRTree 0.12 0.02 3.38 7.10
IRTree multidimensional 0.49 0.13 2.16 7.05

Note. ERS = extreme response style; PISA = Program for International Student Assessment.
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analyzing multiple scales, IRTree models with multidimensional pseudo-items should

be considered.

Discussion

This article investigated the separation of substantive traits and response styles in

IRTree models and addressed the threat of mimicry effects, a methodological artifact

where response styles mimic the trait and capture trait-induced variance in item

responding. As the response style factor functions as a substitute for the trait in such

instances, the meaning of the estimated response styles does not correspond to the

meaning that was assigned to the parameters when defining the model. Mimicry

effects are manifested in a biased estimation of the covariance between response style

and trait, with the bias being stronger the more the meanings of the two factors over-

lap. The covariance can be overestimated as well as underestimated, both of which

can lead to severely misleading conclusions about the relationship between personal

characteristics. For example, the IRTree model estimates may suggest that high lev-

els of the trait of interest are associated with preferences for specific categories,

although there is no or even an opposite relationship between these parameters. In

addition to the biased estimation of the covariance, mimicry effects were found to be

accompanied by inflated estimates of response style variances, meaning that the

impact of a response style on the response selection is overestimated. In extreme

cases, IRTree models might even misjudge the dimensionality of the data-generating

process and indicate an influence of response styles where respondents actually pro-

vided purely trait-based responses. It could thus be concluded that some respondents

did not work on the questionnaire with full effort but relied heavily on their response

styles, although they engaged in an optimal and desired way of response selection.

Particularly when dealing with high-stakes data such as assessments in job

A B

Figure 3. Response Distributions and Absolute Category Frequencies Across the Items of the Two
Scales in the Empirical PISA Data. (A) Reading Self-Evaluation. (B) Reading Enjoyment.
Note. PISA = Program for International Student Assessment.
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interviews, the false assumption that some applicants have made little effort to com-

plete the task comes with potentially negative implications for such individuals and

jeopardizes fairness. Consequently, it is important for both research and practice to

be aware of possible methodological artifacts in IRTree models and to question the

assigned meaning of estimated parameters rather than to interpret them as substan-

tially meaningful without further consideration.

Conditions and Implications of Mimicry Effects

An important research question is, therefore, under which conditions IRTree models

pose the risk of artificial estimates. Our investigations suggested that only those

IRTree models evoke mimicry effects, which are misspecified in a way that they

overstate the influence of response styles and understate the influence of the trait in

some pseudo-items. For example, this is the case if the item responses of a given data

set originated from a unidimensional trait-based process, though an IRTree model

with trait and ERS influences is applied. In such cases, the ERS factor can be used

as a substitute for the trait and explain the trait-induced variance in extreme respond-

ing; in other words, a mimicry effect arises. In addition, the simulation studies corro-

borated our hypothesis that mimicry effects are largely dependent on the distribution

of ordinal item responses across the rating scale. If they are symmetrically distributed

with similar frequencies of agreement and disagreement categories, unbiased esti-

mates of the variance-covariance matrix are provided. As such symmetrical response

patterns yield no statistical advantage of a redeclaration of the response style para-

meter as a substitute for the trait, mimicry effects do not occur. In contrast, the more

asymmetrically the responses are distributed across the scale, the better the variance

in extreme responding can be explained if the response style parameters mimic the

trait and capture trait-induced variance. As a result, mimicry effects occur and the

meaningful separation of trait and response style parameters is compromised.

In the simulation studies, we operationalized the asymmetry of item responses by

generating distributions of the trait levels which deviated from those of the item loca-

tions, through specifying either shifted mean structures or skewed distributions. Both

led to considerable mimicry effects and an overestimation of the impact of response

styles, even for small deviations between the distributions. This finding is highly rel-

evant, as it is certainly not uncommon to apply a questionnaire to a group of individ-

uals for whom it can be assumed that their traits are at least slightly differently

distributed from that of the items. The empirical application to PISA data supported

the results of the simulations, as indeed, even a small asymmetry of the observed

responses was found to result in a mimicry effect.

Besides the threat of biased interpretations when analyzing the data of a single

group of respondents, mimicry effects may likewise distort comparisons between

multiple groups if such differ in their trait distributions. An example is cross-national

assessments, for which one would certainly expect group differences in the distribu-

tions of the measured constructs, which would cause also the size of possible mimicry
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effects to vary. Though the comparisons of the trait of interest would not be impaired

by mimicry effects, one may conclude that the groups differed in the extent of using

response style (e.g., supposedly caused by different cultural backgrounds and sociali-

zations). IRTree models should thus be used with caution when shifted or skewed

trait distributions may be present in the data, which is likely the case for many appli-

cations across all fields of psychology in which self-reported data are analyzed (e.g.,

clinical, personality, or work psychology).

However, this article also showed that not all types of IRTree models were prone

to mimicry effects. The concerns and criticisms outlined above referred to the com-

monly used IRTree models in which all pseudo-items are parameterized by unidi-

mensional models. Such models are based on the assumption that each sub-decision

is affected by only one personal characteristic, which can be the trait or a response

style. A different assumption is underlying IRTree models with multidimensional

pseudo-items, in which the sub-decisions can be assigned several person parameters

(e.g., the trait plus a response style). The simulation studies demonstrated that if the

trait is additionally included in a pseudo-item, in which a response style would mimic

the trait in the standard IRTree model with unidimensional parameterization, the trait

itself accounts for the trait-induced variance, and the mimicry effect is prevented.

The ability of such IRTree models to counteract mimicry effects was apparent in all

simulation conditions of generated trait distribution, that is, was independent of the

symmetry or asymmetry of the response distribution.

Furthermore, the advantage of a multidimensional parameterization of pseudo-

items was not only evident for unidimensional, trait-based data-generating processes

but also for more realistic multidimensional ones. We generated data under a two-

dimensional IRTree model, in which the extreme pseudo-items were influenced by

the ERS and the trait. Regardless of the true covariance of response style and trait,

the IRTree model with multidimensional pseudo-items provided unbiased estimates

and accurately reflected their true relationship. In contrast, the standard IRTree model

with unidimensional pseudo-items led to mimicry effects whenever the response dis-

tribution was asymmetrical, although the size of such mimicry effects for multidi-

mensional data was smaller compared with the effects in unidimensional data. This

comparatively smaller mimicry effect indicates that the response style parameters are

used to capture variance of both trait-based and response style-based responding for

multidimensional data, and therefore, have less overlap with the trait compared with

unidimensional data. Even though the potential for misinterpretations was conse-

quently less severe under the more realistic multidimensional data, a disadvantage of

unidimensional pseudo-items compared with multidimensional ones was still evident.

Despite improved psychometric properties of the models with multidimensional

pseudo-items, the simulation studies also showed that the trait recovery was hardly

affected by mimicry effects and biased response style estimates. Accordingly, the

main purpose of response style modeling in empirical research and practice, namely,

to obtain unbiased trait measurements, was successfully realized by both unidimen-

sional and multidimensional parameterizations. Nevertheless, applying a model that
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yields biased estimates under certain circumstances of misspecification, even if such

parameters are not of interest, should generally be avoided, as such a model is unable

to provide information on the true data-generating process.

Recommendations for the Specification of IRTree Models

Therefore, this article provides some suggestions on how to specify IRTree models

and how to adapt them to the given research question and data: First, knowledge

about the construct to be measured and about the questionnaire that is applied helps

to anticipate whether the distributions of items and traits are likely to match or devi-

ate from each other. Such theoretical considerations give an indication of whether

using a standard IRTree model with unidimensional pseudo-items carries a risk of

mimicry effects even before the data are collected. After data collection, it should be

examined whether the empirical distribution of the item responses is symmetrical or

asymmetrical. However, the application example demonstrated that even a slight

asymmetry of responses, which can be easily overlooked or considered negligible,

can lead to mimicry effects and change the interpretation of results. Unexpectedly

high correlations of traits and response styles could thus be regarded as a warning

sign for a possible mimicry effect. Nonetheless, mimicry effects can likewise result

in an artificial reduction of an estimated relationship, which is probably a less obvi-

ous warning sign. We therefore recommend that IRTree models with unidimensional

pseudo-items should only be applied if the trait distribution matches that of the items

well, or if the response style estimates and the relationships between person para-

meters are not of interest for answering the research question. Of course, there may

be certain hypotheses to be tested that require the specification of unidimensional

processes, or only purely unidimensional sub-decisions are reasonable from a theore-

tical point of view. In such cases, it could be advisable to define an IRTree model

across several questionnaire scales, though the benefits may be limited if the traits

are correlated, as was evident in the application example. Therefore, further investi-

gations may be needed to clarify how and to what extent the occurrence of mimicry

effects can be reduced by simultaneously modeling several traits.

As a result, our analyses indicate that a multidimensional parameterization of

pseudo-items should be generally preferred to a unidimensional one whenever possi-

ble. The advantage of multidimensional pseudo-items is all the more apparent since

a possible overparameterization (e.g., using a two-dimensional parameterization for

unidimensional pseudo-items) has no negative effect on the parameter estimation, as

a non-existent influence of one of the person parameters is successfully detected by

IRTree models. Moreover, the sub-decisions may actually be the result of a multidi-

mensional response process, in which case only multidimensional pseudo-items can

correctly reflect the true data-generating process. We thus believe that the prevention

of mimicry effects and the greater flexibility of multidimensional parameterizations

of pseudo-items outweigh the slightly higher modeling complexity in comparison to

unidimensional pseudo-items. Furthermore, multidimensional pseudo-items can be
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readily implemented in standard software with little additional effort (like in the R

package mirt; see the Online Supplementary Materials for mirt code of various

IRTree models).

Outlook

One limitation of this work is that we only considered one response style, the ERS,

which is one of the most studied response styles in the literature. However, mimicry

effects are probably also relevant for modeling other types of response styles such as

the MRS. A classical IRTree model including MRS-based judgments defines three

sub-decisions for responding to 6-point items, which are the decisions of agreement,

moderate responding, and extreme responding (e.g., Böckenholt, 2017; Meiser et al.,

2019): Respondents are assumed to first decide on whether they agree or disagree

with the item and subsequently make an MRS-based sub-decision for midscale ver-

sus non-midscale responding conditional on agreement. In case they chose the non-

midscale option, they decide on the extremity of their response based on their ERS.

Just as derived before for the ERS, the meaning of the MRS is separated from that of

the trait by defining a unique influence of the MRS across two pseudo-items (condi-

tional on agreement and disagreement). Shifted or skewed trait distributions and

asymmetrical response distributions should therefore most likely impair the separa-

tion of trait and MRS parameters and lead to mimicry effects also for the MRS. Still,

the midscale pseudo-items can likewise be parameterized by multidimensional IRT

models including an additional trait influence, which should counteract mimicry

effects as successfully as shown here for the ERS. Although mimicry effects are thus

likely to generalize to other response styles, it nevertheless remains to be clarified

how they affect the parameter estimation of IRTree models when several response

styles (e.g., ERS and MRS) are jointly modeled.

Furthermore, this article investigated mimicry effects only in IRTree models with

a symmetrical tree structure (also called nested IRTree models), in which the same

sequence of response processes is assumed to underlie the selection of corresponding

categories on both sides of the rating scale. However, IRTree models can also be

defined to have an asymmetrical structure (for an overview of different kinds of

IRTree models, see Jeon & De Boeck, 2016). An example of such an asymmetrical

IRTree model is the commonly used decomposition of 5-point rating items, in which

one sub-decision represents the MRS-based choice to select either the neutral middle

response category or one of the other categories. Conditional on the selection of a

clear-cut category, two sub-decisions of trait-based agreement and ERS-based

extreme responding are specified (Böckenholt, 2012; also see Khorramdel & von

Davier, 2014; Plieninger, 2020; Zettler et al., 2016). In contrast to the models used in

this article, the MRS is separated from the trait by means of only one pseudo-item.

Such a model structure can be expected to likewise lead to mimicry effects for asym-

metrical response distributions, though this should be systematically investigated and

quantified and future work.
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Various other modeling choices have been made in this article, the findings of

which can be straightforwardly generalized to other choices: First, all IRTree models

considered here were parameterized by the Rasch model, though other IRT models

such as the 2PL model should naturally lead to similar results regarding mimicry

effects. Furthermore, challenges in the separation of person parameters can be

expected to not only occur for shifted or skewed trait distributions but also if traits

and items mismatch otherwise. An example is bimodal trait distributions, which

could result from an unknown mixture of two populations. Finally, mimicry effects

can even be generalized beyond the IRTree model class to multidimensional ordinal

IRT models such as the multidimensional nominal response model or the multidi-

mensional PCM (e.g., Bolt et al., 2014; Falk & Cai, 2016 for an overview, see

Henninger & Meiser, 2020). Just as for IRTree models, the meaningful separation of

traits and response styles in such models is facilitated through uniquely directed

influences of the person parameters, which can be assumed to be impaired if the dis-

tributions of the trait levels and item locations deviate from each other.

Overall, this article presented compelling evidence for the risk of mimicry effects

in commonly used IRTree models. To address these concerns, we made suggestions

on how to detect the lack of meaningful separation of traits and response styles and

showed that IRTree models with multidimensional pseudo-items effectively counter-

act such mimicry effects. Our findings highlight the importance of being aware of

potential methodological artifacts when modeling item response data and underline

that further research is needed to ensure the validity of conclusions drawn from such

data.
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Böckenholt, U. (2017). Measuring response styles in Likert items. Psychological Methods,

22(1), 69–83. https://doi.org/10.1037/met0000106
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HETEROGENEITY IN IRTREE DECISION NODES
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It is essential to control self-reported trait measurements for response style effects to ensure a
valid interpretation of estimates. Traditional psychometric models facilitating such control consider item
responses as the result of two kinds of response processes—based on the substantive trait, or based on
response styles—and they assume that both of these processes have a constant influence across the items of
a questionnaire. However, this homogeneity over items is not always given, for instance, if the respondents’
motivation declines throughout the questionnaire so that heuristic responding driven by response styles
may gradually take over from cognitively effortful trait-based responding. The present study proposes two
dynamic IRTree models, which account for systematic continuous changes and additional random fluctua-
tions of response strategies, by defining item position-dependent trait and response style effects. Simulation
analyses demonstrate that the proposed models accurately capture dynamic trajectories of response pro-
cesses, as well as reliably detect the absence of dynamics, that is, identify constant response strategies. The
continuous version of the dynamic model formalizes the underlying response strategies in a parsimonious
way and is highly suitable as a cognitive model for investigating response strategy changes over items. The
extended model with random fluctuations of strategies can adapt more closely to the item-specific effects
of different response processes and thus is a well-fitting model with high flexibility. By using an empirical
data set, the benefits of the proposed dynamic approaches over traditional IRTree models are illustrated
under realistic conditions.

Key words: response styles, item response theory, multidimensional IRTree, item position effects.

Likert-type rating scales are widely used to assess personality, attitudes, or beliefs via self-
reports. However, the validity of such trait measurements is threatened by response styles (RS)—
tendencies to systematically respond to items on some basis other than what the items were
designed to measure (Paulhus, 1991). RS comprise, for instance, preferences for the extreme cat-
egories (extreme RS; ERS) or the middle category of the scale (midpoint RS; MRS), irrespective
of item content (for an overview, see Van Vaerenbergh & Thomas, 2013). Since RS can sys-
tematically bias estimates of substantive traits, resulting in inflated or underestimated individual
scores, group means, and correlations of constructs, RS must be controlled for to ensure a valid
interpretation of results (Alwin, 2007; Baumgartner & Steenkamp, 2001).

Various item response theory (IRT) approaches have been proposed that facilitate such con-
trol of RS effects under conditions in which the underlying response processes are homogeneous
across persons and over items, thus assuming a stable response strategy over the course of a ques-
tionnaire (e.g., Böckenholt 2017; Bolt & Newton, 2011; Henninger & Meiser, 2020; Plieninger
& Meiser, 2014; Wetzel & Carstensen, 2017). Extensions of such models can further account for
some kind of heterogeneity of response processes over discrete conditions, either with a focus
on latent classes of respondents (e.g., Kim & Bolt, 2021; Tijmstra et al., 2018; von Davier &
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Yamamoto, 2007) or with a focus on within-person changes across measurement occasions (e.g.,
Ames & Leventhal, 2021; Colombi et al., 2021; Weijters et al., 2010). Other approaches include
unsystematic item-by-item fluctuations of response strategies within persons (e.g., Plieninger &
Heck, 2018; Tijmstra & Bolsinova, in press; Ulitzsch et al., 2022). Neglected so far are systematic
changes of response strategies within a measurement occasion and the associated heterogeneity
regarding the manifestations of substantive traits and RS on the level of single items. We aim to
close this research gap by modeling dynamic, item position-dependent influences of trait-based
and RS-based response processes.

1. Dynamic Trait and Response Style Effects

Whenever respondents are asked to provide subjective self-reports by responding to a Likert-
type item, they are faced with the challenge of choosing one of several available categories. A
prominent theory describing two competing response strategies to bring about such decisions
is the conceptualization of Optimizing and Satisficing by Krosnick (1991). According to this
framework, the currently applied response strategy depends on the respondents’ cognitive effort
expended on item responses. On the one hand, giving accurate trait-based responses requires
a substantial amount of effort, as four cognitive stages must be proceeded through. These are
(1) comprehension of the item, (2) memory search for relevant information, (3) integration of
pieces of information into a judgment, and (4) selecting a response category (Tourangeau et al.,
2000). Responses derived from such processing are considered optimal, as they are accurate and
strong indicators of the true trait levels. On the other hand, if respondents process some or all of
the stages heuristically, item responses require less cognitive effort; they are not optimal, but still
satisfactory from the respondents’ perspective (called satisficing responses). Unlike optimized,
solely trait-based responses, such a satisficing response strategy is susceptible to the influence of
RS (Aichholzer, 2013; Podsakoff et al., 2012). For instance, respondents may reach the global
decision to agree or disagree with an item based on their trait level, but then do not consider
the fine nuances between different options that indicate (dis)agreement. In such cases, individual
category preferences determine the selection, so that extreme categories are chosen more often
by respondents with high ERS levels, whereas midpoint responses are fostered by high levels
of MRS. Metaphorically speaking, the decision vacuum left by a superficial instead of thorough
trait-based selection is filled by RS-based processes. We, therefore, define response strategy, in
the narrower sense, as a certain composition of trait-based response processes on the one side and
heuristic processes related to one or several RS on the other side.

Whether predominantly trait-based or rather RS-based response strategies are used depends
on the cognitive effort that respondents are able and willing to expend on the task, which in turn
can be attributed to several properties of items and respondents (for an overview, see Podsakoff et
al., 2012): For instance, low respondents’ abilities (e.g., low cognitive/verbal ability or education)
and high task difficulty (e.g., a complex, abstract, or ambiguous item) can prevent the use of the
optimizing, trait-based response strategy (Baumgartner & Steenkamp, 2001; Knowles & Condon,
1999; Krosnick, 1999; Messick, 1991; Podsakoff et al., 2003). Further, various properties of the
measurement method (e.g., scale formats or contexts of data collection) were found to affect the
degree of response style-related responding (DeCastellarnau, 2018; Van Vaerenbergh & Thomas,
2013). But even if a questionnaire is constructed and applied in a way that respondents are able to
give optimized responses, insufficient motivation and fatigue can strengthen the RS influence and
reduce the quality of responses (Galesic, 2006; Galesic & Bosnjak, 2009; Herzog & Bachman,
1981; Kahn & Cannell, 1957).

Whereas properties of the questionnaire and the response format can be considered fairly
homogeneous and unsystematically varying across items, due to careful item construction and
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randomization, the respondents’ motivation for pursuing the high cognitive effort for optimizing
responses may systematically change over time. In line with this, Krosnick (1991) states that
“respondents are likely to satisfy whatever desires motivate them to participate just a short way
into an interview, and they are likely to become increasingly fatigued, disinterested, impatient,
and distracted as the interview progresses” (p. 214). Indeed, item responses are perceived as
increasingly burdensome throughout a questionnaire (Galesic, 2006). In addition, long surveys
and items presented in later parts of questionnaires reveal a lower data quality with more fre-
quent omissions, dropouts, and response patterns indicating careless responding (Bowling et al.,
2021a; Deutskens et al., 2004; Galesic & Bosnjak, 2009; Liu & Wronski, 2018; Marcus et al.,
2007). Response times likewise indicate declining test-taking effort and a shift towards heuristic
processing: They were found to be shorter for items presented toward the end of a questionnaire
(Galesic & Bosnjak, 2009; Yan & Tourangeau, 2008), and such fast responses are associated with
less motivation (Bowling et al., 2021b; Callegaro et al., 2009), satisficing responses in general
(Andersen&Mayerl, 2017; Zhang&Conrad, 2014), and evenmore notably, responses that match
the person-specific RS (Henninger & Plieninger, 2020). Thus, conditional on a substantial length
of a questionnaire, respondents are likely to decrease their investment of cognitive capacity, and
rather fall back to fast, heuristic processing. Such dynamic shifts in the response strategy result
in a decreasing influence of the substantive trait, while the influence of RS increases over item
position.

2. Modeling Heterogeneity of Response Processes

The hypothesized dynamic influences of trait-based and RS-based processes reflect a within-
person heterogeneity across the items of a questionnaire. There is a wide range of psychomet-
ric approaches accounting for heterogeneity in response processes with regard to RS, whereby
the distinction between trait-based and RS-based processes has mainly been considered on the
between-person level. For instance, mixture Rasch models (e.g., Austin et al., 2006; Gollwitzer
et al., 2005, Meiser & Machunsky, 2008), mixture IRTree models (e.g., Khorramdel et al., 2019,
Kim & Bolt, 2021), and a general mixture IRT model (Tijmstra et al., 2018) were proposed,
which all can be used to identify latent classes of respondents who provide item responses based
on different processes, such as responses influenced by response styles or not (i.e., solely trait-
based responses). A limitation of such models is that the response process heterogeneity is strictly
related to between-person effects so that possible class switches cannot be detected.

Other approaches allow to investigate the within-person stability of RS and to detect changes
of respondents’ RS levels across discrete measurement occasions, like latent-state-trait models
(Weijters et al., 2010; Wetzel et al., 2016), or longitudinal IRTree models (Ames & Leventhal,
2021). A stronger focus on heterogeneous response processes rather than on changes of RS levels
per se is provided by hidden Markov models, in which respondents are assumed to hold one of
several discrete latent states associated with a particular type of response process, and in which
the assignment of respondents to states can change dynamically over measurement occasions
(see Kelava & Brandt, 2019). For instance, Colombi et al. (2021) analyzed longitudinal item
response data and defined two states, responding with or without the influence of RS, with part
of the respondents modeled to freely switch between the two states. Similarly, Ulitzsch et al.
(2022) proposed a response time-based mixture model, in which each response of a person is
assumed to be stemming from either a careless or an attentive status. Furthermore, heterogeneity
at the level of individual items was incorporated in some multi-process models, in which certain
decisions during the selection of response categories are assumed to be based on one of several
cognitively distinct processes (Plieninger & Heck, 2018; Thissen-Roe & Thissen, 2013; Tijmstra
& Bolsinova, in press). For example, in the model by Plieninger and Heck (2018), affirmative
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responses can be either an expression of acquiescence RS or of trait-based agreement with the
item content, though without accounting for systematically changing strategies.

Taken together, the past research linking RS modeling with heterogeneity of response pro-
cesses within and between persons has mainly focused on: (1) discrete instead of continuous
subpopulations or response states, (2) RS as an attribute that respondents may or may not have,
instead of treating them as one of several processes that respondents can use to varying degrees,
and (3) heterogeneity between measurement occasions or groups of items, instead of changes on
the level of individual items.

In contrast, higher interest in continuous changes of response strategies within ameasurement
situation exists in item response modeling outside the RS literature. In the research field of per-
formance decline, which describes a decreasing probability of correct responses for achievement
items at the end of a test (for an overview, see List et al., 2017), the gradual process change model
by Wollack and Cohen (2004) and Goegebeur et al. (2008) is a prominent model for generating
and analyzing smooth changes in response strategies (e.g., Huang, 2020; Jin &Wang, 2014; Shao
et al., 2016; Suh et al., 2012). In their approach, the response process of random guessing grad-
ually takes over from trait-based problem-solving, and linear as well as curvilinear trajectories
can be captured. In a later section of this article, we will account for shifts from effortful to
more and more heuristic responses in a similar way, but instead of modeling random guessing
for binary performance items, we model ordinal self-ratings and define heuristic responses as
strongly influenced by RS.

Thereby, we aim to tackle the previous limitation of RS modeling, being that systematic
within-person heterogeneity over the items of a questionnaire was not accounted for. Ignoring
shifts in response processes is not only a potential problem for measuring and interpreting person
and itemparameters, as the dynamic changes themselves can also be the focus of interest:Measures
of changes in trait and RS involvement can be used as a diagnostic tool to evaluate questionnaires
with regard to the associated burden and required effort, and to compare, for example, subgroups
of respondents (e.g., different age groups), subsets of items (e.g., positively and negatively worded
items), ormodes of data collection (e.g., online vs. lab). Furthermore, a formalmodel that describes
dynamic response strategies can help to understand the interplay of cognitive processes that
underlie item responses and to shed light on how respondents arrive at their judgments and
decisions. Therefore, we not merely aim to control trait estimates for RS effects but also to
provide a cognitive model accounting for dynamic response processes across items.

The remainder of this article is structured as follows: Firstly, traditional IRTree models are
introduced. Then, a new dynamic IRTree model for continuously shifting influences of trait-
based and RS-based processes is derived and evaluated by a first simulation study. Subsequently,
a more flexible, non-continuous version of this model is introduced and likewise tested by a
second simulation study. An empirical example is used to demonstrate the benefits of the dynamic
approach under realistic conditions. Lastly, the results are interpreted and discussed in light of
both basic and applied fields of research.

3. IRTree Model Parameterizations of Traits and Response Styles

Multi-process IRTree models (Böckenholt, 2012; Böckenholt & Meiser, 2017; De Boeck &
Partchev, 2012; Jeon & De Boeck, 2016) decompose response alternatives of rating scales into
a sequence of binary pseudo-items, which represent the decisions assumed to be taken by the
respondents during item responses. By assigning different latent traits to the pseudo-items, their
effects on response selection can be separated. Typically, one pseudo-item represents the decision
to agree vs. disagree with the item content, which is supposed to be made based on the substantive
trait, whereas all further pseudo-items relate to RS-based responding, like the judgment to give
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extreme vs. non-extreme responses guided by ERS (e.g., Böckenholt, 2017; Khorramdel & von
Davier, 2014; Plieninger & Meiser, 2014; Zettler et al., 2016).

3.1. Unidimensional Node Parameterization

In the following sections, we refer to items on a four-point Likert scale, and we decompose
the ordinal item responses into decision nodes of broad agreement and fine-grained extreme
responding based on the tree structure depicted in the upper part of of Fig. 1. The probability of
the ordinal response X pi ∈ {1, ..., 4}, representing the categories “strongly disagree”,“disagree”,
“agree”, and “strongly agree” of person p = 1, ..., N to item i = 1, ...I , is the product of the
probabilities of responses to the two pseudo-items Yhpi ∈ {0, 1} of agreement (h = 1) and
extreme responding (h = 2). This model structure serves as an exemplary illustration for our new
approach; dynamic response strategies can be easily adapted to differently structured trees and
response formats with more or fewer ordinal categories (see Sect. 7 for an extension to five-point
Likert-type items).

In the frequently applied Rasch IRTree, the two pseudo-items are each parameterized by
a dichotomous Rasch model, with the agreement decision dependent on θp, the person-specific
substantive trait, and the extreme decision dependent on ηp, the person-specific ERS. Therefore,
the ordinal category probability is obtained by:

p(X pi = xpi ) =
[
exp(y1pi (θp − β1i ))

1 + exp(θp − β1i )

] [
exp(y2pi (ηp − β2i ))

1 + exp(ηp − β2i )

]
, (1)

where βhi denotes the difficulty of pseudo-item h of item i . Note that this definition of only one
pseudo-item describing both extreme decision nodes reflects the assumption of identical decision-
making processes for extreme agreement and disagreement (i.e., directional invariance of extreme
responding, see Jeon & De Boeck, 2019).

3.2. Multidimensional Node Parameterization

The traditional IRTree model with unidimensional nodes implies that each decision during
the response selection is based on only one personal characteristic, either the substantive trait
or a RS. However, as derived above, we rather assume that respondents consistently make a
trait-based global decision to agree vs. disagree, but that the fine-grained decision in favor of the
particular extreme or moderate category is guided by both trait-based and ERS-based processes,
the composition of which is dependent on test-taking effort. In order to model this assumption,
the extreme decision nodes can be extended by within-node multidimensionality (see Jeon &
De Boeck, 2016; Meiser et al., 2019; von Davier & Khorramdel 2013) so that the respective
pseudo-item responses are affected by both the trait and the ERS. In addition, the strict Rasch
assumption of homogeneous item discrimination can be weakened by a 2PL parameterization
with item-specific loadings of the person parameters so that influences of trait and ERS are not
restricted to be constant throughout the questionnaire, but can vary depending on the item and its
position within the questionnaire.

Figure 1 specifies this multidimensional 2PL parameterization of extreme responding, in
which the item-specific response strategy is reflected by the loadings α

(θ)
i and α

(η)
i of the substan-

tive trait θ and ERS η, respectively. Further note that the extreme pseudo-item is split between the
categories of disagreement and agreement, as proposed by Meiser et al. (2019): If the decision of
agreement is answered affirmatively (y1pi = 1), extreme agreement is modeled to be more likely
under high trait levels and high ERS levels. For disagreeing responses (y1pi = 0), in contrast, the
trait loadings are set to be negative, so that high trait levels increase the probability of moderate
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p(Yhpi = yhpi)

Y1pi (Agreement) 0 0 1 1
exp(y1pi(θp−β1i))
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(η)
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(θ)
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(η)
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(θ)
i θp−β2i)
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Figure 1.
Tree diagram, definition of pseudo-items, and multidimensional node probabilities for responses to four-point Likert-type
items. Due to the conditional definition of extreme responding, one of the two pseudo-item variants is missing by design

for each ordinal category, as indicated by ’–’ . The item-specific laodings are constrained with α
(η)
i ≥ 0 and α

(θ)
i ≥ 0.

(i.e., non-extreme) disagreement, whereas high ERS levels still make extreme disagreement more
likely. Therefore, the ordinal category probability is obtained by

p(X pi = xpi ) =
[
exp(y1pi (θp − β1i ))

1 + exp(θp − β1i )

] [
exp(y2pi (α

(η)
i ηp + α

(θ)
i θp − β2i ))

1 + exp(α(η)
i ηp + α

(θ)
i θp − β2i )

]y1pi

[
exp(y2pi (α

(η)
i ηp − α

(θ)
i θp − β2i ))

1 + exp(α(η)
i ηp − α

(θ)
i θp − β2i )

]1−y1pi

,

(2)

with α
(η)
i ≥ 0 and α

(θ)
i ≥ 0.

4. The Dynamic Response Strategy Model

The novel dynamic response strategy model (DRSM) bases on the multidimensional IRTree
parameterization and accounts for dynamic changes of response strategies over the course of the
questionnaire by modeling the loadings of response processes as a function of item position. We
use a modified form of the gradually changing function proposed by Wollack and Cohen (2004)
and Goegebeur et al. (2008), which can capture linear as well as curvilinear relationships of a
response process p, and is given by:

α
(p)
i =

(
γ

(p)
1 − γ

(p)
I

) (
1 −

(
i − 1

I − 1

)λ(p))
+ γ

(p)
I , (3)

with γ
(p)
1 ≥ 0, γ (p)

I ≥ 0, and λ(p) ≥ 0. The parameters γ
(p)
1 and γ

(p)
I are the loadings of process

p of the first and last item, respectively. The actual dynamic change is captured by the slope,
which is the difference between the last and first loadings (γ (p)

I − γ
(p)
1 ). Therefore, a positive

slope reflects a dynamically increasing influence, a negative slope reflects a decreasing influence,
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and a zero-slope trajectory reflects a non-dynamic, constant influence of the respective response
process. In the further course of the article, we will frequently refer to the absolute slope, which
accordingly describes the strength of the change, irrespective of the direction. The parameter
λ(p) determines the shape of the trajectory for process p over item position, which is linear for
λ(p) = 1, and curvilinear otherwise (see Fig. 2).

The proposed DRSM for dynamic response strategies of extreme decisions can be derived
by inserting a dynamic loading trajectory described by Eq. 3 into each the trait loadings and ERS
loadings in Eq. 2. Thereby, the process loadings of the DRSM are defined to be nonnegative
across all items, which is a frequently made assumption in IRTmodeling (e.g., Jin &Wang, 2014;
Kim & Bolt, 2021; Meiser et al., 2019). We consider this a reasonable constraint also for the
loading trajectories, since variations in test-taking effort should result in a varying degree of trait
and RS involvement, that is, in a varying size of the loadings, whereas a change toward negative
loadings would rather imply a qualitatively different effect of such latent personal characteristics
on response selection (e.g., high trait levels would then be associated with low instead of high
response categories). Nonetheless, the DRSM could likewise be specified without this constraint,
by allowing γ

(p)
1 and γ

(p)
I to vary freely, in order to put the underlying assumption to the test.

The consideration of negative loadings could additionally be a useful extension when some items
are inverted with regard to the substantive trait,1 meaning that high trait levels are associated
with endorsements of lower response categories. For such items, the DRSM could be adjusted
by inverting the signs of the trait loadings in Eq. 2, so that the loadings of extreme agreement
would be constrained negative and the loadings of extreme disagreement positive. The direction
in which the trait influences the response selection (i.e., toward higher or lower categories) could
thus be determined individually for each item, while the process loadings defined in Eq. 3 would
reflect the strength with which a process is involved, without specifying the direction. Further
note that the above parameterization of the DRSM refers to a fixed item order across respondents,
as the same index i is used for the difficulty parameters and the response process loadings.
An alternative approach would be the presentation of items in person-specific random order,
for which the model can be adjusted accordingly, by defining item-dependent difficulties and
position-dependent loadings.

Other reasonablemodifications of theDRSMwill be illustrated in this article, such as integrat-
ing dynamic influences of response processes not only into the two-dimensional decision nodes of
extreme responding, but also into the unidimensional trait-based agreement decision (see Sect. 6).
Further, IRTreemodels for response scales withmore than four categories often include additional
pseudo-items and additional RS, like decisions of moderate responding dependent on MRS, and
such can likewise be modeled by the DRSM (see Sect. 7). Moreover, the DRSM as described
above considers item position as the only predictor of response process loadings, thus implying a
continuous response strategy with monotonically changing loadings. This is a theoretical model
with an explicit focus on item position as one of possibly several factors influencing the impact
of trait-based and RS-based processes within each item. However, in the context of the second
simulation study, we derive a flexible extension of the DRSM, which still accounts for dynamic
loading trajectories, but at the same time can capture further (random) item-specific variation of
loadings.

1We thank an anonymous reviewer for pointing out the importance of distinguishing between positive and negative
response process loadings.
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Figure 2.
Relationship of loadings αi and item position i for I = 40 items with γ1 = 0.8, γI = 0.2 and λ = 1 (solid line), λ = 2
(dotted line), and λ = 0.5 (dashed line).

4.1. Evaluating the Dynamic Response Strategy Model

Two simulation studies were conducted to systematically evaluate the proposed dynamic
modeling approaches (DRSM and an extended version), and to provide answers to the following
questions: Firstly, is the DRSM an appropriate cognitive explanatory model that reliably detects
and quantifies dynamic influences of response processes in the data? Secondly, is the DRSM a
beneficial psychometric measurement model that creates added value for the analysis of item
response data over existing models? Both questions were investigated under ideal conditions,
in which the data-generating model followed a continuous, model-implied response strategy
(Sect. 5), and under more realistic conditions, in which additional random variation was added
(Sect. 6). The proposed dynamic models were evaluated in relative comparison to IRTree models
representing reasonable alternatives.

5. Simulation Study 1

In the first simulation study, we addressed dynamic and non-dynamic continuous response
strategies, meaning that the trait and ERS loadings were constrained by continuous trajectories
so that influences of response processes were only depend on the position of items within the
questionnaire. For such scenarios, we examined the accuracy of the DRSM in recovering dynamic
response strategies (i.e., sensitivity to detect changes in the impact of trait and ERS), as well as
the risk of false-positive dynamics, which is finding such an effect if it is not present in the
data (i.e., specificity of unveiling dynamic changes only in cases where they do exist). Further,
we investigated the recovery of person and item parameters and the out-of-sample model fit in
comparison with alternative IRTree models.

5.1. Models of Continuous Response Strategies

The simulation study covered item response data under the assumption of continuous response
strategies, and all applied models can be derived from the general model structure described in
Fig. 1 and Eq. 2. The parameterization of the agreement pseudo-item was equal across models
and corresponded to a solely trait-dependent unidimensional Rasch model. The two-dimensional
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Table 1.
Loading constraints of models with continuous response strategies used in simulation study 1.

Model Trait loading α
(θ)
i ERS loading α

(η)
i

DRSM (γ
(θ)
1 − γ

(θ)
I )

(
1 −

(
i−1
I−1

)λ(θ)
)

+ γ
(θ)
I (γ

(η)
1 − γ

(η)
I )

(
1 −

(
i−1
I−1

)λ(η)
)

+ γ
(η)
I

Static α(θ) α(η)

ERS 0 1
Ordinal 1 0

definition of the extreme pseudo-item with item-specific loadings of trait and ERS served as a
superordinate framework, from which we derived unidimensional as well as two-dimensional
special cases, as defined in Table 1.

Under the DRSM, the item-specific loadings were determined by the trait and ERS trajec-
tories, which comprise the three parameters γ1, γI , and λ each. The static model excludes such
a change over items, but rather assumes a single constant loading for each of the two processes.
Besides thosemodels with two-dimensional response strategies, also unidimensionalmodels were
derived. Their extreme decision nodes were Rasch parameterized and included only one of the
person parameters with constant loading 1, that is the ERS η for the ERS model and the substan-
tive trait θ for the ordinal model. The loadings of the respective other parameter were set to 0.
The ERS model is equivalent to the traditional IRTree described by Eq. 1 and the ordinal model
corresponds to its counterpart as was proposed by Kim and Bolt (2021).

5.2. Data Generation

Using R (R Core Team, 2020), item response data were generated according to the four
IRTree models with continuous response strategies described above. In the DRSM, the trait and
ERS loading trajectories were systematically varied to cover a wide range of plausible dynamic
response strategies (resulting in six model variants). We only simulated decreasing trait loadings
and increasing ERS loadings, as these correspond to our theoretical consideration, and analogous
models can be specified for opposite trajectories. The trait loading trajectories were generated
with (γ1; γI ) set to (0.8; 0.2), (0.7; 0.3), (0.6; 0.4), and (0.5; 0.5), so that the absolute slopes were
of size 0.6, 0.4, 0.2, and 0.0. Likewise, the ERS loading trajectories were set to (0.2; 0.8), (0.3;
0.7), (0.4; 0.6), and (0.5; 0.5).2 We combined trait and ERS trajectories with different absolute
slopes so that the response strategy change was either large (i.e., one process changed by 0.6,
the other by 0.4), medium (0.4 and 0.2), or small (0.2 and 0.0). For each generated data set, both
trajectories were generated with the same value of λ, set to 2 or 0.5, which we considered as
reasonable values for a positively or negatively accelerated dynamic change, respectively. For
data generation with the static model, two model variants were defined, which are the constant
trait and ERS loadings (α(θ);α(η)) set to (0.3; 0.7) and (0.7; 0.3). The two unidimensional models
have fixed trait and ERS loadings and thus do not require to specify additional parameters.

For all model variants, 100 replications were conducted each for two sample sizes N , set to
500 and 1000, and with the two questionnaire lengths I , set to 20 and 40. Each data set consisted

2The center of all trait and ERS trajectories, that is (γ1 + γI )/2, was set to 0.5. This value was chosen for both
response processes because a prior study (Meiser et al., 2019) and our empirical application indicated (1) that trait-based
and RS-based processes have about the same influence on two-dimensional IRTree decisions, and (2) that the loadings
of the substantive trait are roughly twice as large in the broad agreement decision compared to fine-grained response
selection (e.g., in extreme decision nodes).
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of binary responses to the two pseudo-items of agreement and extreme responding under a certain
model variant and was generated as follows: Firstly, the person parameters, that are N trait levels
θp and N ERS levels ηp, were generated to be uncorrelated and sampled from independent
standard normal distributions. Likewise, 2I pseudo-item difficulties βhi were randomly drawn
from a standard normal distribution. Then, person and item parameters were inserted into the
respective equation of the model variant with its item-specific trait and ERS loadings. Lastly,
for each person and each item, binary responses to the pseudo-items were randomly sampled
according to the model-implied probabilities.

5.3. Model Estimation and Analysis

Each data generation step was followed by a model estimation step, in which all four models
with continuous response strategy changes (see Table 1) were applied to the respective data set. In
addition, also a 2PL model with freely estimated item-specific trait and ERS loadings was fitted
(the agreement node was Rasch parameterized as in the other models). The 2PL model is not
specifically targeted at continuous response strategies, but as all previously described continuous
models are nested within it, it could be a flexible, universal alternative.

Bayesian parameter estimation was performed using the No-U-Turn Sampler (Hoffman &
Gelman, 2014), a Markov chain Monte Carlo algorithm implemented in the software program
Stan (Carpenter et al., 2017). R served as the interface to Stan along with the package CmdStanR
(Gabry & Cešnovar, 2021). Four chains were run with each 1000 iterations and a warmup of 500
iterations. All estimated models reached convergence, indicated by values of the potential scale
reduction factor R̂ less than 1.05. Note that all point estimates reported in the following sections
are the expected a posteriori (EAP) estimates.

Priors were chosen according to recommendations in the Bayesian IRT literature (e.g., Luo&
Jiao, 2018; Stan Development Team, 2020). The priors for θp and ηp were set to standard normal
distributions, and a normally distributed hierarchical prior was applied to the item difficulties βhi

with a Cauchy(0, 5) hyperprior for the mean and nonnegative Cauchy(0, 5) for the standard
deviation. Weakly informative LogNormal(0, 2) priors were placed on (1) γ1 and γI of the
DRSM trajectories, (2) the constant loadings of the static model, and (3) the item-specific trait
and ERS loadings of the 2PL model (α(θ)

i , α
(η)
i ). This ensured the convergence of the models

even under conditions in which a response process did not contribute to the data generation, but
needed to be estimated by the model (e.g., estimating the influence of the ERS for ordinal data).
The shape λ of the DRSMwas defined in the interval [0.25, 4] and given a LogNormal(−0.5, 1)
prior. Again, this prior was chosen to ensure convergence, as only weak information is available to
estimate λ if the difference of γ1 and γI is small. In an extreme case of a zero-slope trajectory, λ can
take any value without having an effect on the loading trajectory. Further, the interval boundaries
were chosen to account for the fact that λ and 1

λ
have symmetrical effects on the curvature of the

trajectory, though in the opposite directions (see Fig. 2) and assured that the estimated shapes were
within the range of plausible trajectories that we considered to be continuously and not abruptly
changing.

5.4. Results

The DRSM and the four alternative models considered in the simulation study only differed
in their constraints regarding the loadings of response processes. To give an overview of how
the models behaved when fitted to item response data generated under such constraints, Fig. 3
illustrates the trait loading estimates provided by the differentmodels for exemplary data sets. Even
though these examples cannot summarize the entirety of simulations, beneficial characteristics of
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the DRSM in comparison with alternative models become clear, which we will elaborate on in
the following.3

5.4.1. Sensitivity: Estimation of Dynamic Trajectories The first aim of the simulation was to
examine the sensitivity of the DRSM, and accordingly, to answer the question of whether it is
suitable for detecting and quantifying dynamic trajectories of trait and ERS loadings. Therefore,
we evaluated (1) the recovery of the slope (γI − γ1), which is probably the most informative
dynamic measure, as it quantifies the change over the course of the questionnaire, (2) the recovery
of the shape λ, and (3) the precision of estimates of the trajectory parameters γ1, γI , and λ.

Figure 4a, b summarizes the slope estimates of trait and ERS loadings by the DRSM and
reveals a good recovery of both trajectories. Irrespective of sample size and questionnaire length,
the means across simulation replications closely matched the respective true generated values.
The good recovery of slopes is in line with consistently small posterior SDs of γ1 and γI (two
bottom lines in Fig. 4c), meaning that they were estimated quite precisely. In contrast, λ estimates
had high uncertainty and the posterior SDs were a multiple of those of the other two parameters.
Note that the difference in posterior SDs between λ set to 0.5 and 2, as apparent in Fig. 4c, stems
from the nonlinear relationship of λ and trajectory curvature, since the smaller λ is, the large the
change in the degree of curvature induced by slight changes in the parameter. In general, all three
trajectory parameters were estimated more precisely the larger the size of the data set, determined
by N and I (see Table A1). Moreover, the larger the absolute slope, the higher the precision of λ

estimates, whereas estimates of γ1 and γI were not affected by the slope.
The link between slope and shape was already discussed with regard to the informative prior

on λ, which was imposed to assure convergence in case of flat trajectories. Accordingly, the λ

estimates of trajectories with small absolute slopes were highly influenced by the prior, which
moved the parameter toward the value 1 (see Fig. 4d). The steeper the trajectories, the more
information regarding the shape was provided by the data, the prior had less influence, and the
λ estimates moved closer to the true values of 2 and 0.5, respectively. However, even for large
slopes, the uncertainty of λ estimates was high so that EAP estimates should not be interpreted in a
substantial manner without considering the uncertainty (e.g., the rough classification as positively
or negatively accelerated trajectory is possible if the credible interval (CI) does not contain the
value 1). Altogether, the analysis of sensitivity demonstrated that the DRSM is an appropriate
cognitive model for investigating dynamic response strategies; it was highly suitable to detect
systematic changes of response process influences, to assess the magnitude of such changes with
high precision, and to roughly inform about the shape of the trajectory, if the DRSM itself was
used to generate the data.

5.4.2. Specificity: Estimation of Non-dynamic Trajectories Furthermore, also the specificity
was to be examined, that is, whether the model accurately detected the absence of dynamic
changes. To answer this question, we evaluated simulation conditions in which the DRSM was
fitted to non-dynamic data generated by the unidimensional models and the static model, which
all have zero-slope trajectories. Indeed, the estimated slopes by the DRSM were all very close to
0 and had low variance (see Table A2), demonstrating that the model consistently detected the
absence of dynamic changes (also see the illustration of estimated trajectories in exemplary zero-
slope data sets in Fig. 3). The more parsimonious models were successfully mimicked, meaning
that the estimated parameters by the DRSM reflected the restrictions of models nested within
it. Therefore, the DRSM is a suitable cognitive model also for data with non-dynamic response
strategies.

3The detailed results of all replications conducted in the simulation study can be foundon theOpenScienceFramework
repository: https://osf.io/kc8ve/.
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Figure 3.
Trait loading estimates of the static model, DRSM, and 2PL model to exemplary data sets generated by the four models
of continuous response strategies used in simulation study 1. Trait loadings of the ordinal and ERS model are not shown,
as they are not estimated, but fixed at 1 and 0, respectively.

5.4.3. Parameter Recovery Besides investigating the adequacy of the DRSM to accurately
describe different response strategies, we aimed to examine its quality as a psychometric model.
To this end, the recovery of person parameters (θp and ηp) and item parameters (βhi and αi ) was
compared across models, measured by root mean square error (RMSE). There were only minor
differences in parameter recovery between conditions with different sample sizes or questionnaire
lengths, except that the overall levels of RMSEs were smaller, the larger the data set (see Fig. A1).
The results for conditions with N = 1000 and I = 40 are illustrated in Fig. 5. In general, the
models with two-dimensional extreme decision nodes (static model, DRSM, and 2PL model)
yielded considerably smaller errors compared to the unidimensional models (ordinal and ERS).
The unidimensional models showed good parameter recovery only for data sets generated by the
respective model itself but performed poorly for data generation with all other models.

The two-dimensional models, in contrast, were nearly equally well suited to recover the
parameters of all kinds of data sets, with the exception of the response process loadings. Here,
the 2PL model revealed comparably large errors, which is in line with the finding that its freely
estimated loadings do not perfectly mimic the underlying dynamic or non-dynamic continuous
trajectories, but rather scatter around them (see Fig. 3). The static model and DRSM recovered all
parameters of models nested within them well, though unsurprisingly, the static model showed
larger errors for the loadings of the DRSM. This shows that the DRSM was the model with
the overall best parameter recovery and that it did not pose a risk of increased errors in case of
misspecifications, but successfully mimicked lower-parameterized models.
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Figure 4.
Estimates and precision of trajectory parameters by the DRSM for continuous dynamic data in simulation study 1. Error
bars represent the SDs of estimates across simulation replications.

5.4.4. Model Fit The five models were further compared with regard to their fit, for which
we calculated the out-of-sample prediction accuracy by an approximation of leave-one-out cross-
validation (LOO; Vehtari et al., 2017). LOO is a fully Bayesian information criterion, which has
been shown to outperform alternative methods like Akaike’s information criterion (AIC; Akaike,
1974) or the deviance information criterion (DIC; Spiegelhalter et al., 2002) in IRT model selec-
tion (Luo & Al-Harbi, 2017). Table 2 lists the average LOO information criterion values (small
values indicate better fit), as well as the proportion of simulation replications in which the respec-
tive model was the best one in predicting the data.

Across all conditions, the respective data-generating model itself provided the best out-of-
sample fit in the majority of replications and entailed the smallest average LOO values. The
DRSM was almost always selected as the best-fitting model for data sets with dynamic response
strategies of medium or large size. For small response strategy changes (i.e., one process changed
with absolute slope 0.2, the other was constant with slope 0.0), the DRSM was still the best-
fitting model, though also the static model often predicted the data well. This condition of small
dynamic changes was the only one in which we found substantial differences across sample sizes
and questionnaire lengths: For N = 500 and I = 20, the DRSM itself was selected in only 50 %
of replications, whereas it was selected in 92 % for N = 1000 and I = 40. Thus, only if limited
data was available, the zero-slope trajectories of the static model gave a good approximation of
dynamic loadings. The larger the data set, the more evident the advantage of the more complex
DRSM and its additionally estimated parameters was.

For data sets generated by the unidimensional models, not only the respective model itself,
but also the static model and DRSMpredicted the data well, as can be seen by average LOO values
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RMSEs of estimated person and item parameters for continuous data in simulation study 1. The boxplots summarize
the results for the simulation condition with N = 1000 and I = 40. For data generation with the static model, only the

condition with α
(θ)
i = 0.7; α(η)

i = 0.3 is shown. RMSEs of η estimates for data generated with or estimated by the ordinal
model are missing, as the model does not incorporate an ERS influence.

quite close to the values of the data-generating model. This can be explained by the fact that both
two-dimensional models closely mimicked the lower-parameterized models and did not overfit
despite their greater flexibility (see the good recovery of person and item parameters in Figs. 5 and
3). The same holds true for static data, which was mostly best predicted by the static model itself,
but for which the DRSM also revealed small LOO values. In contrast, the 2PL model was hardly
ever selected as the best-fitting model, and the average LOO values were considerably larger
than those of the DRSM. The analysis of the parameter recovery suggests that these indicators of
overfitting and reduced generalizability of the 2PL model are mainly due to the comparably poor
recovery of loading estimates.

The DRSM thus offered the best compromise between flexibility on the one hand, and gen-
eralizability on the other hand, if dynamic or non-dynamic continuous response strategies are
present in the data. The model not only proved to be a valuable cognitive model of response
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Table 2.
Model comparisons by LOO out-of-sample prediction accuracy for continuous data in simulation study 1.

Data generation Average LOO information criterion Proportion of replications in favor of
Model Abs. slopes ORD ERS Static DRSM 2PL ORD ERS Static DRSM 2PL

ORD 0/0 87,419 92,860 87,422 87,423 87,492 0.68 0 0.22 0.10 0
ERS 0/0 96,649 88,135 88,137 88,139 88,212 0 0.58 0.28 0.14 0
Static 0/0 92,071 91,416 89,751 89,754 89,853 0 0 0.74 0.26 0
DRSM 0.2/0.0 91,885 91,465 90,036 90,019 90,125 0 0 0.25 0.75 0

0.4/0.2 92,053 91,755 90,264 90,163 90,266 0 0 0.01 0.99 0
0.6/0.4 91,872 91,665 90,107 89,841 89,942 0 0 0 1.00 0

The LOO values and proportions in bold indicate the overall best-fitting model in the respective data
generation condition.
The average LOO information criterion values include the replications with N = 1000 and I = 40. The
other conditions yielded comparable patterns.

strategies with high sensitivity (i.e., dynamic changes of response process influences over items
are reliably captured) and high specificity (i.e., dynamic changes are not falsely revealed)—it is
further a beneficial psychometric measurement model, which provides added value in terms of
parameter recovery and models selection.

6. Simulation Study 2

In order to further investigate the benefits of the DRSM under real-world conditions, the
second simulation study addressed non-continuous dynamic response strategies. They are char-
acterized by a general trend of loadings over the course of the questionnaire, but, in contrast
to continuous strategies, allow for item-specific deviations from the trajectories. Such loading
patterns are probably more frequently encountered in empirical data than strictly continuous tra-
jectories, because even though previous research indicated that item position is a crucial factor
influencing the impact of response processes, additional item-specific variation of loadings could
arise; for instance, due to the items’ levels of abstractness or complexity (e.g., positively vs. neg-
atively worded items, grammatical or linguistic complexity). Such additional variance between
items does hardly affect the overall dynamic response strategy change across item positions and,
as a result, should not limit the validity of the DRSM as a cognitive model. Thus, the first aim of
the simulation study is to put this assumption to the test and to analyze the performance of the
DRSM in detecting dynamic changes in the presence of additional random variation of loadings.
However, even if general changes in the response behavior can be detected, the DRSM would
simplify the true, underlying data-generating processes. Therefore, we propose a more flexible
extension, the F-DRSM, which can capture the hypothesized non-continuous dynamic response
strategies in addition to systematic underlying trajectories. Thus, the second aim of the simulation
study is to evaluate the F-DRSM and to examine its psychometric properties.

6.1. The Flexible Dynamic Response Strategy Model

The F-DRSM can be seen as a combination of the DRSM and 2PL model: The item-specific
loadings are the sum of a systematic component, which is defined by a continuous trajectory, and
unsystematic, random noise. Fixing this unsystematic component for each item to 0 would yield
the DRSM, whereas omitting the systematic trajectory component would result in the 2PLmodel.
In the F-DRSM, the random noise is assumed to stem from a common normal distribution across
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all items, in which the mean is fixed to zero, and the standard deviation indicates the strength of
the deviation from the trajectory. The F-DRSM loadings of a response process p are defined by:

α
(p)
i ∼ Normal(μ(p)

i , σ (p)),

μ
(p)
i = (γ

(p)
1 − γ

(p)
I )

(
1 −

(
i − 1

I − 1

)λ(p))
+ γ

(p)
I ,

σ (p) ∼ Cauchy(0, 5). (4)

The F-DRSM provides estimates for (1) the item-specific loadings α
(p)
i , (2) the underlying

dynamic trajectory, and (3) the standard deviation σ (p), with which the loadings scatter around the
trajectory. Thereby, the item-specific loadings are allowed to deviate from the respective values
predicted by the common trajectory (μ(p)

i ) but are at the same time shrunken to this mean. The
trajectory can thus be seen as a prior for the free loadings, which is not fixed but estimated from
the data. Whether this prior is rather informative or uninformative depends on the data: If almost
all item-specific loadings of a process closely fit a trajectory, the remaining loadings are strongly
shrunken to this trajectory. In contrast, if the data suggest that the loadings largely scatter and
do not form a trajectory, the individual loading estimates are hardly affected by the trajectory
estimate, and the F-DRSM converges to the standard 2PL model. As the extent of unsystematic
variation of loadings does not have to be determined a priori, but emerges as an estimate from
the model, hypotheses regarding the strength of the continuous trend can be tested. Moreover,
the variance of loadings does not have to remain unsystematic but can be explained by further
predictors.

6.2. Data Generation and Model Estimation

All generated data sets of the second simulation study contained item responses of N = 1000
respondents to I = 40 items on a four-point scale under the model assumptions of the F-DRSM.
In contrast to the first simulation study, not only the two-dimensional IRTree nodes of extreme
responding but also the unidimensional agreement node was given a 2PL parameterization with
item-specific trait loadings, so that the ordinal category probability was given by:

p(X pi = xpi ) =
[
exp(y1pi (α

(θ)
1i θp − β1i ))

1 + exp(α(θ)
1i θp − β1i )

] [
exp(y2pi (α

(η)
i ηp + α

(θ)
2i θp − β2i ))

1 + exp(α(η)
i ηp + α

(θ)
2i θp − β2i )

]y1pi

[
exp(y2pi (α

(η)
i ηp − α

(θ)
2i θp − β2i ))

1 + exp(α(η)
i ηp − α

(θ)
2i θp − β2i )

]1−y1pi

.

(5)

Thus, three noisy trajectories were defined, that are the trait loadings of agreement (α(θ)
1i ), the

trait loadings of extreme responding (α(θ)
2i ), and the ERS loadings of extreme responding (α(η)

i ).
The absolute slopes of these three trajectories were varied (0.0, 0.2, 0.4, 0.6), whereby all trait
trajectories decreased over items and the ERS trajectories increased. The standard deviation of the
unsystematic noise was set to either 0.1 or 0.2 for all trajectories. All further settings were chosen
as in the first study. Examples of the resulting non-continuous dynamic loadings for different
underlying trajectories are given in Fig. 6. We generated 100 data sets for each model variant and
fitted the DRSM, the F-DRSM, and the 2PLmodel, using the sameBayesian parameter estimation
and priors as in the first study.
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Figure 6.
Examples of randomly generated loadings under the F-DRSM.

6.3. Results

6.3.1. Slope Estimates To evaluate the utility of the two dynamic models as cognitive models
for describing systematic changes in response strategies, we analyzed the recovery of the slopes
of the three response process trajectories. In addition, also the slope recovery of the 2PL model
was investigated, which does not provide estimates of trajectories inherently, so that we fitted
dynamic functions through the freely estimated loadings in a post hoc analysis. In contrast to the
F-DRSM, the estimation of the loadings in the 2PL model is independent of the estimation of the
trajectories.

Notably, the DRSM, F-DRSM, and 2PLmodel recovered the slopes equally well, irrespective
of the size of the slope and irrespective of the SD of the unsystematic component, demonstrating
that dynamic as well as non-dynamic response processes were successfully detected (see Table A3
for the comparison of slope estimates by the three models). Moreover, the data set-specific slope
estimates of DRSM, F-DRSM, and 2PL model hardly differed from each other and were highly
correlated, which underlines that the models drew almost identical conclusions regarding the
response strategy changes. This suggests that, for the sole sake of determining the size of strategy
changes, there is no practical difference between (1) taking a continuous dynamic trajectory as
a direct estimate of individual loadings, (2) using it as a prior that shrinks the loadings, or (3)
fitting the trajectory after estimating the loadings freely. However, the models largely differed in
the uncertainty with which the slopes were estimated, as the DRSM yielded considerably higher
precision of trajectory parameter estimates and had the smallest posterior SDs of slopes. Thus,
the DRSM enables more specific conclusions to be drawn about the extent of response strategy
changes (e.g., whether the change is different from 0, or whether there are differences between
groups of items or persons), so that it should be preferred over the other models for response
behavior analyses.

6.3.2. Model Fit and Parameter Recovery Furthermore, the three models also differed in their
suitability as psychometric models: Model comparisons by LOO out-of-sample prediction accu-
racy clearly showed the benefits of the F-DRSM, which provided the smallest LOO values and
was chosen as the best-fitting model in all replications (see Table 3). Even under conditions with
large unsystematic SD of 0.2, in which the item-specific loadings largely scatter so that trajec-
tories are hardly recognizable (see Fig. 6), the F-DRSM was advantageous over the unrestricted
estimation by the 2PL model. Unsurprisingly, the DRSM could not predict the data well, since it
cannot properly capture the non-continuous patterns of loadings.
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Table 3.
Model comparisons by LOO out-of-sample prediction accuracy for non-continuous data in simulation study 2.

Data generation Average LOO information criterion Proportion of replications in favor of
Abs.
slope

SD DRSM F-DRSM 2PL DRSM F-DRSM 2PL

0.0 0.1 90,230 90,140 90,210 0 1.00 0
0.2 90,365 89,836 89,864 0 1.00 0

0.2 0.1 89,969 89,883 89,952 0 1.00 0
0.2 90,509 89,987 90,015 0 1.00 0

0.4 0.1 89,926 89,840 89,904 0 1.00 0
0.2 89,814 89,328 89,354 0 1.00 0

0.6 0.1 89,605 89,521 89,582 0 1.00 0
0.2 89,638 89,162 89,184 0 1.00 0

The LOO values and proportions in bold indicate the overall best-fitting model in the respective data
generation condition.

Likewise, the analysis of parameter recovery demonstrated the superiority of the F-DRSM,
which yielded the smallest errors across person and itemparameters (see Fig. 7). Aswas the case in
the first simulation study, also the 2PL model provided a good recovery, except for slightly higher
RMSEs of loadings. The DRSM showed comparably high errors for the item parameters but still
recovered the person-specific substantive trait levels as accurately as the higher-parameterized
models. This suggests that the model adjusted the item difficulties in a way that they counteracted
the deviations of individual loadings from a continuous trajectory. In line with this, the smaller
the unsystematic SD, the smaller the disadvantage of the DRSM compared to the more flexible
models.

Overall, the second simulation study clearly showed the benefits of modeling dynamic
response strategies under real-world conditions and revealed that both the DRSM and the F-
DRSM are models with high utility, though for different kinds of research goals. On the one hand,
the DRSM accurately reflected the magnitude of response strategy changes over the items of a
questionnaire, and although the two alternative models produced almost identical results at the
level of point estimates, the DRSM had the advantage of more precise estimates. Therefore, we
recommend using the DRSM as a cognitive explanatory model if the goal is to analyze data sets
with a focus on investigating the respondents’ behavior. Further, the recovery of person-specific
trait levels was hardly affected by model choice, making the DRSM a parsimonious and conve-
nient model for controlling substantive trait estimates for dynamic RS effects. Nevertheless, the
DRSM inevitably simplifies the true loading patterns whenever strategy changes are not perfectly
continuous. Therefore, the more flexible F-DRSM is the preferable model for investigating influ-
ences of response processes on the level of individual items, as it can accurately capture random
fluctuations of response strategies in addition to the underlying continuous trend. Further, it was
even better suited than a 2PL model in terms of model selection and parameter recovery, so the
F-DRSM has proven to be a beneficial psychometric model for the analysis of item response data
under influence of response style effects.

7. Empirical Application

To demonstrate the advantages ofmodeling response strategy changes in real data, we applied
the proposed dynamic models as well as the other models used in the simulation studies to
an empirical data set taken from Johnson (2014). The data consists of item responses to the
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Figure 7.
RMSEs of estimated person and item parameters for non-continuous data in simulation study 2.

IPIP-NEO-120 with 120 items on five broad personality domains (Neuroticism, Extraversion,
Conscientiousness, Agreeableness, and Openness to Experience), and we randomly selected 1000
participants of the large online sample from the American population with complete data. The
response scale of the IPIP-NEO-120 comprises five rating categories, which is why we extended
the tree structure of Fig. 1 by an additional node of moderate vs. non-moderate responding (e.g.,
Böckenholt, 2012; Böckenholt & Meiser, 2017; Khorramdel & von Davier, 2014). The extended
tree of five-point rating scales is depicted in Fig. 8.

The decision of moderate responding was modeled to be dependent on the respondent’s mid-
point RS (MRS) κp, weighted with an item-specific loading α

(κ)
i , and on the item difficulty β0i

of the additional pseudo-item (h = 0). As was done in the second simulation study, the trait load-
ings of the agreement node (α(θ)

1i ) were not fixed but estimated so that our theoretical assumption
of dynamically changing response strategies predominantly occurring in fine-grained decisions
could be empirically tested. Thus, all four response processes (MRS-based moderate responding,
trait-based agreement, trait-based extreme responding, and ERS-based extreme responding) had
independent item-specific loadings,whichwere either fixed (ordinal andERSmodel), or estimated
according to the model-specific constraints. Further, we let the variances of person parameters
be estimated unless a standard normal prior was needed for model identification (i.e., one of the
five traits and both RS for the static model and DRSM; all traits and both RS for the F-DRSM
and 2PL model). We used the same Bayesian model estimation as in the simulation studies, with
four chains, 500 warmup iterations, and 1000 post-warmup iterations to assure convergence (all
R̂ < 1.05).

For the analysis of dynamic response strategy changes, we examined the estimates of the
DRSM, as the simulations suggested that it provides the most precise trajectory estimates. As
hypothesized, the estimated slopes ofMRS loadingsα(κ)

i andERS loadingsα(η)
i wereof substantial

size and were both significantly larger than 0, meaning that the response strategy changed toward
more RS involvement (see Table 4).Moreover, the influence of the substantive trait on fine-grained
extreme decisions decreased, as indicated by a negative slope of loadings α

(θ)
2i , which is in line

with the idea of RS-based processes taking over from trait-based responding in two-dimensional
pseudo-items. This is original evidence that fine-grained decisions—and in particular, the RS-
based processes—are highly dependent on the item position, suggesting an increase in fatigue
and satisficing over the course of the questionnaire. Contrary to our assumption, we found that
the trait loadings of the broad agreement decision (α(θ)

1i ) also decreased over time. However, as
will be argued below, this is probably due to other item characteristics than the position within
the questionnaire. Furthermore, the λ estimates were 0.48 (MRS), 0.33 (ERS), 0.67 (trait-based
agreement), and 0.59 (trait-based extreme responding), though only the 95 % CIs of the two RS
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Figure 8.
Tree diagram, definition of pseudo-items, and node probabilities for responses to five-point Likert-type items. Pseudo-
items that are missing by design are marked with ’–’.

trajectories did not include 1. This indicates that the response strategy change was most dominant
in earlier item positions and is decelerated at the end of the questionnaire (also see Fig. 9).

The models were further compared by the LOO information criterion, which demonstrated
that the F-DRSM provided the best fit (see Table 4). As was the case in the second simulation
study, shrinking loadings to a dynamic trajectory was advantageous over freely estimating them
or constraining them to a continuous function. The shrinkage effect is clearly visible in Fig. 9,
which displays the estimated item-specific loadings by the 2PL model as well as the loadings
and trajectories by the F-DRSM. Notably, the MRS and ERS loadings of the F-DRSM closely
scatter around the respective estimated dynamic trajectories and the estimated SDs are 0.15 and
0.12, respectively. In contrast, the trait loadings of agreement and extreme responding scatter
much stronger and the estimated SDs are 0.74 and 0.41, respectively.4 This indicates that the
item position is a crucial determinant of the impact of RS-based response processes, whereas
trait-based responding is greatly affected by other factors (e.g., other item characteristics or item
content).

To give an example of how such additional factors can be investigated, we fitted an additional
model with separate dynamic trajectories for positively and negatively worded items. For three
of the four response processes, there were hardly any differences between the loading trajectories
of positively and negatively worded items.5 Only trait-based agreement (α(θ)

1i ) differed largely
between conditions: Positively worded items had high trait loadings throughout the questionnaire
and the slope was not significantly different from zero (γ1 = 1.524; γI = 1.345), whereas
negatively worded items started with significantly smaller loadings, which then increased over
items (γ1 = 0.990; γI = 1.265). In the later part of the questionnaire, the conditions did not differ
anymore (at 5 % error level). This suggests that it took the respondents some practice to process
negativelyworded items as accurately as positivelyworded ones. Further, negativelyworded items

4The second simulation study revealed accurate recovery of theSD of the unsystematic component.Across replications
with low SD of 0.1: M = 0.103, SD = 0.023; with high SD of 0.2: M = 0.201, SD = 0.030.

5The only significant differences at 5 % error level were in γI and slope of the trait loadings of extreme responding

(α(θ)
2i ), which indicated that loadings of positively worded items had a stronger decline.
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Table 4.
Model fit and slope estimates for the empirical data set.

Model LOO Estimated slope and 95 %-CI

α
(κ)
i α

(η)
i α

(θ)
1i α

(θ)
2i

Ordinal 311,417 0 0 0 0
ERS 305,271 0 0 0 0
Static 300,667 0 0 0 0
DRSM 300,433 0.31 [0.20, 0.42] 0.54 [0.43, 0.66] −0.28 [−0.43, −0.16] −0.12 [−0.22, −0.03]
F-DRSM 296,649 0.30 [0.14, 0.49] 0.54 [0.35, 0.72] −0.34 [−0.92, 0.24] −0.08 [−0.37, 0.28]
2PL 296,718 0.31 [0.13, 0.50] 0.57 [0.36, 0.79] −0.38 [−1.02, 0.19] −0.02 [−0.35, 0.31]

α
(κ)
i = loadings of MRS-based moderate responding; α

(η)
i = loadings of ERS-based extreme responding;

α
(θ)
1i = loadings of trait-based agreement; α(θ)

2i = loadings of trait-based extreme responding.

occur more frequently in the later part of the IPIP-NEO-120, which would lead to artifacts such
as the unexpected negative slope of trait-based agreement in the models not accounting for item
wording (see α

(θ)
1i in Table 4).

Taken together, our empirical application gave a first indication that there are qualitatively
different mechanisms behind (1) response process of fine-grained decisions, which seem to be
susceptible to response strategy changes toward heuristic responding (e.g., due to loss of motiva-
tion or fatigue) and (2) broad agreement decisions, which appear not to be affected by satisficing
and reduced test-taking effort. However, more research focusing on response strategies as a psy-
chological, cognitive construct is needed, in order to better understand how respondents arrive at
their decisions, why they change their behavior over time, and how covariates (e.g., itemwording)
can explain different strategies.

8. Discussion

The present research introduced the dynamic response strategy model (DRSM) as well
as a more flexible extension (F-DRSM) and demonstrated how these models overcome the
previous limitation of response style (RS) modeling, being that systematically changing influ-
ences of response processes over the items of a questionnaire were not accounted for. The new
approaches address such dynamic response behaviors by modeling item position-dependent load-
ings of response processes (e.g., trait-based or RS-based response selection) in unidimensional
and two-dimensional IRTree decision nodes. These loadings are assumed to follow continuous or
non-continuous trajectories, which can either be dynamically changing with a linear or curvilinear
shape, reflecting a response strategy change throughout the questionnaire, or be static ones, reflect-
ing a constant response behavior. While the DRSM is an idealized and theory-driven model of
strictly continuously changing loadings, the F-DRSM is adapted tomore realistic, non-continuous
settings, in which the item-specific loadings scatter around an underlying trajectory with normally
distributed noise.

Simulation studieswere conducted to compare the dynamicmodels and reasonable alternative
models in terms of their suitability as cognitive explanatory models (i.e., requiring accurate quan-
tification of dynamic changes of response processes and correct identification of non-dynamic,
constant response strategies) as well as psychometric measurement models (i.e., requiring good
recovery of person and item parameters and model fit). The DRSM turned out to be a capable
cognitive model, as it reliably captured dynamically changing influences of response processes,
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Figure 9.
Loading estimates by the F-DRSM and 2PL model to the empirical data set.

irrespective of whether the data followed a continuous or non-continuous response strategy.More-
over, it did not pose the danger of misinterpretations due to falsely identified dynamics in the case
of constant response strategies. Although perfectly continuous trajectories of response process
loadings are most likely a simplification of real-world settings, the DRSM is a parsimonious for-
malization of the underlying general trend of the respondents’ behavior. Regardless of whether
the model can capture all characteristics of a data set well, it proved to be a simple but appropriate
model for investigating response strategies and changes of those over items. As such, it can be
used to investigate how respondents arrive at their decisions, to uncover increasing satisficing or
reduced test-taking effort, to evaluate questionnaires with regard to their cognitive load and bur-
den, and to compare subgroups of respondents or items. The empirical application demonstrated
that it is worthwhile to address such research questions, as the findings provided new insights
on factors influencing the impact of different response processes on response selection, which
eventually affect the data quality. Knowing about such factors, like item wording, can inform and
improve test construction. Furthermore, constraining loadings to a trajectory is easy to implement,
also outside Bayesian estimation methods, and requires only minor adjustments of the tradition-
ally applied IRTree models and only few additional parameters to estimate. Therefore, the DRSM
is a convenient model in applied fields of research to analyze personal characteristics, attitudes,
or beliefs, and to control substantive trait estimates for dynamic RS effect.

Nevertheless, under realistic conditions of non-continuous response strategy changes, the
constraint of continuous trajectories inevitably impairs the accurate representation of the true
item-specific response behavior. Accordingly, the simulations showed that the more flexible mod-
els with item-specific influences of response process were superior in terms of psychometric
properties. Notably, the F-DRSM with the underlying assumption of the response strategy being
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a composition of a systematic item position-dependent component and unsystematic noise was
preferable not only to the continuous DRSM, but also to the unconstrained estimation of loadings
by the 2PL model; both in simulated data and in the empirical application. Whenever the influ-
ences of response processes follow some sort of systematic over items, the F-DRSM effectively
uses the information on this general trend for the estimation, making it a successful analysis
model with good psychometric properties. The F-DRSM additionally comes with the advantage
that the extent of unsystematic variance is estimated by the model so that the relative importance
of the item position for the item-specific response strategy can be determined. For example, the
empirical application not only showed that the influences of different response processes changed
to different degrees over items, but also that the unsystematic variance greatly differed between
trait-based and RS-based responding. The F-DRSM, therefore, allows to examine response strate-
gies beyond the effect of the item position and opens up new possibilities for investigating the
roles of different response processes in item responding.

Overall, the two new dynamic models provide a surplus value to previous RS modeling
because they facilitate the investigation of systematic heterogeneity of response processes across
items of a questionnaire, which goes beyond existing approaches on discrete heterogeneity across
measurement situations (e.g., Ames & Leventhal, 2021; Colombi et al., 2021; Weijters et al.,
2010) or classes of respondents (e.g., Gollwitzer et al., 2005; Khorramdel et al., 2019; Meiser &
Machunsky, 2008; Tijmstra et al., 2018). Thereby, our proposed models are a valuable first step
toward transforming the heterogeneity of response processes over items into systematic variance,
and toward answering the question of how respondents arrive at their judgments and decisions.

8.1. Limitations and Future Directions

A limitation of the proposed models is that we defined the loading trajectories at the group
level, which was based on the assumption that the factors leading to a change in the response
strategy across items (e.g., loss of motivation) apply to all respondents to a similar extent. The
estimated loading trajectories, however, can only represent the average response behavior and do
not allow a differentiated assessment of individual response processes. In contrast, the mixture
IRTree model by Kim and Bolt (2021) facilitates to distinguish groups of respondents by their
response strategy, though under the strict assumption that all decisions during response selection
are unidimensional and based either on the substantive trait or on the ERS, without considering
a combination of processes, and without accommodating systematic changes. An integration of
both approaches in the sense of a mixture DRSM (or F-DRSM) seems promising, as it may
allow identifying classes of respondents with a dynamically changing response strategy, with a
constant response strategy, and also respondents with only one of the two processes involved
(which then follow the ERS or ordinal model). Such a model could be used in future studies to
examine the heterogeneity of response processes between persons and simultaneously account
for within-person changes across the items of a questionnaire.

A limitation of the conducted simulation studies is the chosen range of dynamic scenarios,
which only partially covers all conceivable empirical response strategy changes. For instance, the
simulated variation of the unsystematic component of the F-DRSMwas lower than thosewe found
for some processes in the empirical application. However, the process loadings in the simulation
were centered around 0.5, while they were substantially larger in the application, which could
naturally lead to a higher variance of the noise. Nonetheless, the conclusions drawn from the
simulation study are limited to small or medium unsystematic variation, while the suitability of
the F-DRSM for larger variations of loadings was suggested by empirical findings.

Further investigations might also be needed with regard to the shape of loading trajectories,
as the proposed models are based on monotonous functions of loadings. If the response strategy
changes were non-monotonic, for example, because respondents need to warm up to the task in
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the first part of a questionnaire, but lose motivation later on, U-shaped functions might be more
appropriate. Even more complex loading patterns could result if respondents repeatedly alternate
between responding with high and low effort, or if they start changing their strategy at a certain
point within the questionnaire rather than from the very first item. Such complex patterns could
in principle be investigated using the DRSM by replacing the curvilinear trajectories with other
functions that match those hypotheses, although this would be challenging for model estimation
and would likely require much larger data sets to achieve satisfactory precision of the results.

Also, the loadings might not only be associated with the time respondents spent on the
test, which is captured by the item position, but further be dependent on the item content. For
instance, in multidimensional questionnaires (such as the IPIP-NEO-120 used in the empirical
application), the respondents’ interest or expertise might differ between trait dimensions, leading
to a correlation of response process loadings with the measured dimensions. Though we have not
addressed such dependencies, they could be empirically tested and accounted for by estimating
dimension-specific trajectories, or by explaining the unsystematic variation of loadings in the
F-DRSM by trait dimensions.

In addition, the present research investigated dynamic response strategies exclusively in the
framework of IRTree models. However, our modeling approach with focus on response process
loadings could likewise be integrated in other IRTmodel classes for which extensions for response
styles were developed, such as the generalized partial credit model (Muraki, 1992) or the graded
responsemodel (Samejima, 1969). Notwithstanding such conceivable extensions, with theDRSM
and F-DRSM, we have presented two of several ways to approach dynamic response processes
in item responding, and leave further adaptations, developments, and generalizations to future
research.

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments on earlier drafts of
this article.

Funding Open Access funding enabled and organized by Projekt DEAL. This research was funded by the
Deutsche Forschungsgemeinschaft (DFG) Grant 2277, Research Training Group Statistical Modeling in
Psychology (SMiP).

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

References

Aichholzer, J. (2013). Intra-individual variation of extreme response style in mixed-mode panel studies. Social Science
Research, 42(3), 957–970. https://doi.org/10.1016/j.ssresearch.2013.01.002

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6),
716–723. https://doi.org/10.1109/TAC.1974.1100705

Alwin, D. F. (2007).Margins of error: A study of reliability in survey measurement. Wiley.



1378 PSYCHOMETRIKA

Ames, A. J., & Leventhal, B. C. (2021).Modeling changes in response style with longitudinal IRTreemodels.Multivariate
Behavioral Research. https://doi.org/10.1080/00273171.2021.1920361

Andersen, H., & Mayerl, J. (2017). Social desirability and undesirability effects on survey response latencies. Bul-
letin of Sociological Methodology/Bulletin de Méthodologie Sociologique, 135(1), 68–89. https://doi.org/10.1177/
0759106317710858

Austin, E. J., Deary, I. J., & Egan, V. (2006). Individual differences in response scale use: Mixed Rasch modelling of
responses to NEO-FFI items. Personality and Individual Differences, 40(6), 1235–1245. https://doi.org/10.1016/j.
paid.2005.10.018

Baumgartner, H., & Steenkamp, J.-B.E. (2001). Response styles in marketing research: A cross-national investigation.
Journal of Marketing Research, 38(2), 143–156. https://doi.org/10.1509/jmkr.38.2.143.18840

Böckenholt, U. (2012). Modeling multiple response processes in judgment and choice. Psychological Methods, 17(4),
665–678. https://doi.org/10.1037/a0028111

Böckenholt, U. (2017). Measuring response styles in Likert items. Psychological Methods, 22(1), 69–83. https://doi.org/
10.1037/met0000106

Böckenholt, U., &Meiser, T. (2017). Response style analysis with threshold and multi-process IRT models: A review and
tutorial. British Journal of Mathematical and Statistical Psychology, 70(1), 159–181. https://doi.org/10.1111/bmsp.
12086

Bolt, D. M., & Newton, J. R. (2011). Multiscale measurement of extreme response style. Educational and Psychological
Measurement, 71(5), 814–833. https://doi.org/10.1177/0013164410388411

Bowling, N. A., Gibson, A.M., Houpt, J. W., & Brower, C. K. (2021a).Will the questions ever end? Person-level increases
in careless responding during questionnaire completion. Organizational Research Methods, 24(4), 718–738. https://
doi.org/10.1177/1094428120947794

Bowling, N. A., Huang, J. L., Brower, C. K., & Bragg, C. B. (2021b). The quick and the careless: The construct validity
of page time as a measure of insufficient effort responding to surveys. Organizational Research Methods. https://doi.
org/10.1177/10944281211056520

Callegaro,M., Yang, Y., Bhola, D. S., Dillman, D. A., & Chin, T.-Y. (2009). Response latency as an indicator of optimizing
in online questionnaires. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, 103(1), 5–25.
https://doi.org/10.1177/075910630910300103

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., &
Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32. https://
doi.org/10.18637/jss.v076.i01

Colombi, R., Giordano, S., &Kateri,M. (2021). Hiddenmarkovmodels for longitudinal rating datawith dynamic response
styles. https://arxiv.org/pdf/2111.13370

De Boeck, P., & Partchev, I. (2012). IRTrees: Tree-based item response models of the GLMM family. Journal of Statistical
Software, 48(1), 1–28. https://doi.org/10.18637/jss.v048.c01

DeCastellarnau, A. (2018). A classification of response scale characteristics that affect data quality: A literature review.
Quality and Quantity, 52(4), 1523–1559. https://doi.org/10.1007/s11135-017-0533-4

Deutskens, E., de Ruyter, K., Wetzels, M., & Oosterveld, P. (2004). Response rate and response quality of internet-based
surveys: An experimental study. Marketing Letters, 15(1), 21–36. https://doi.org/10.1023/B:MARK.0000021968.
86465.00

Gabry, J., & Cešnovar, R. (2021). Cmdstanr: R interface to CmdStan.
Galesic, M. (2006). Dropouts on the web: Effects of interest and burden experienced during an online survey. Journal of

Official Statistics, 22(2), 313–328.
Galesic, M., & Bosnjak, M. (2009). Effects of questionnaire length on participation and indicators of response quality in

a web survey. Public Opinion Quarterly, 73(2), 349–360. https://doi.org/10.1093/poq/nfp031
Goegebeur, Y., De Boeck, P., Wollack, J. A., & Cohen, A. S. (2008). A speeded item response model with gradual process

change. Psychometrika, 73(1), 65–87. https://doi.org/10.1007/s11336-007-9031-2
Gollwitzer, M., Eid, M., & Jürgensen, R. (2005). Response styles in the assessment of anger expression. Psychological

Assessment, 17(1), 56–69. https://doi.org/10.1037/1040-3590.17.1.56
Henninger, M., & Meiser, T. (2020). Different approaches to modeling response styles in divide-by-total item response

theory models (part 1): A model integration. Psychological Methods, 25(5), 560–576. https://doi.org/10.1037/
met0000249

Henninger, M., & Plieninger, H. (2020). Different styles, different times: How response times can inform our knowledge
about the response process in rating scale measurement. Assessment, 28(5), 1301–1319. https://doi.org/10.1177/
1073191119900003

Herzog, A. R., & Bachman, J. G. (1981). Effects of questionnaire length on response quality. Public Opinion Quarterly,
45(4), 549–559. https://doi.org/10.1086/268687

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research, 15(47), 1593–1623.

Huang, H.-Y. (2020). A mixture IRTree model for performance decline and nonignorable missing data. Educational and
Psychological Measurement, 80(6), 1168–1195. https://doi.org/10.1177/0013164420914711

Jeon, M., & De Boeck, P. (2016). A generalized item response tree model for psychological assessments. Behavior
Research Methods, 48(3), 1070–1085. https://doi.org/10.3758/s13428-015-0631-y

Jeon, M., & De Boeck, P. (2019). Evaluation on types of invariance in studying extreme response bias with an IRTree
approach. British Journal of Mathematical and Statistical Psychology, 72(3), 517–537. https://doi.org/10.1111/bmsp.
12182



VIOLA MERHOF, THORSTEN MEISER 1379

Jin, K.-Y., & Wang, W.-C. (2014). Item response theory models for performance decline during testing. Journal of
Educational Measurement, 51(2), 178–200. https://doi.org/10.1111/jedm.12041

Johnson, J. A. (2014). Measuring thirty facets of the five factor model with a 120-item public domain inventory: Devel-
opment of the IPIP-NEO-120. Journal of Research in Personality, 51, 78–89. https://doi.org/10.1016/j.jrp.2014.05.
003

Kahn, R. L., & Cannell, C. F. (1957). The dynamics of interviewing: Theory, technique, and cases. Wiley.
Kelava, A., & Brandt, H. (2019). A nonlinear dynamic latent class structural equation model. Structural Equation Mod-

eling: A Multidisciplinary Journal, 26(4), 509–528. https://doi.org/10.1080/10705511.2018.1555692
Khorramdel, L., & von Davier, M. (2014). Measuring response styles across the Big Five: A multiscale extension of an

approach using multinomial processing trees.Multivariate Behavioral Research, 49(2), 161–177. https://doi.org/10.
1080/00273171.2013.866536

Khorramdel, L., von Davier, M., & Pokropek, A. (2019). Combining mixture distribution and multidimensional IRTree
models for the measurement of extreme response styles. British Journal of Mathematical and Statistical Psychology,
72(3), 538–559. https://doi.org/10.1111/bmsp.12179

Kim,N.,&Bolt, D.M. (2021).Amixture IRTreemodel for extreme response style:Accounting for response process uncer-
tainty. Educational and Psychological Measurement, 81(1), 131–154. https://doi.org/10.1177/0013164420913915

Knowles, E. S., & Condon, C. A. (1999). Why people say “yes”: A dual-process theory of acquiescence. Journal of
Personality and Social Psychology, 77(2), 379–386. https://doi.org/10.1037/0022-3514.77.2.379

Krosnick, J. A. (1991). Response strategies for coping with the cognitive demands of attitude measures in surveys.Applied
Cognitive Psychology, 5(3), 213–236. https://doi.org/10.1002/acp.2350050305

Krosnick, J. A. (1999). Survey research. Annual Review of Psychology, 50(1), 537–567. https://doi.org/10.1146/annurev.
psych.50.1.537

List, M. K., Robitzsch, A., Lüdtke, O., Köller, O., & Nagy, G. (2017). Performance decline in low-stakes educational
assessments: Different mixturemodeling approaches. Large-scale Assessments in Education. https://doi.org/10.1186/
s40536-017-0049-3

Liu, M., & Wronski, L. (2018). Examining completion rates in web surveys via over 25,000 real-world surveys. Social
Science Computer Review, 36(1), 116–124. https://doi.org/10.1177/0894439317695581

Luo, Y., & Al-Harbi, K. (2017). Performances of LOO and WAIC as IRT model selection methods. Psychological Test
and Assessment Modeling, 59(2), 183–205.

Luo, Y., & Jiao, H. (2018). Using the Stan program for Bayesian item response theory. Educational and Psychological
Measurement. https://doi.org/10.1177/0013164417693666

Marcus, B., Bosnjak, M., Lindner, S., Pilischenko, S., & Schütz, A. (2007). Compensating for low topic interest and
long surveys: A field experiment on nonresponse in web surveys. Social Science Computer Review, 25(3), 372–383.
https://doi.org/10.1177/0894439307297606

Meiser, T., & Machunsky, M. (2008). The personal structure of personal need for structure. European Journal of Psycho-
logical Assessment, 24(1), 27–34. https://doi.org/10.1027/1015-5759.24.1.27

Meiser, T., Plieninger, H., & Henninger, M. (2019). IRTree models with ordinal and multidimensional decision nodes for
response styles and trait-based rating responses. British Journal of Mathematical and Statistical Psychology, 72(3),
501–516. https://doi.org/10.1111/bmsp.12158

Messick, S. (1991). Psychology and methodology of response styles. In R. E. Snow & D. E. Wiley (Eds.), Improving
inquiry in social science (pp. 161–200). Lawrence Erlbaum Associates.

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measure-
ment, 16(2), 159–176. https://doi.org/10.1177/014662169201600206

Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R. Shaver, & L. S. Wrightsman
(Eds.), Measures of personality and social psychological attitudes (pp. 17–59). Academic Press. https://doi.org/10.
1016/B978-0-12-590241-0.50006-X

Plieninger, H., & Heck, D. W. (2018). A new model for acquiescence at the interface of psychometrics and cognitive
psychology. Multivariate Behavioral Research, 53(5), 633–654. https://doi.org/10.1080/00273171.2018.1469966

Plieninger, H., & Meiser, T. (2014). Validity of multiprocess IRT models for separating content and response styles.
Educational and Psychological Measurement, 74(5), 875–899. https://doi.org/10.1177/0013164413514998

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research:
A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://
doi.org/10.1037/0021-9010.88.5.879

Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research
and recommendations on how to control it. Annual Review of Psychology, 63(1), 539–569. https://doi.org/10.1146/
annurev-psych-120710-100452

R Core Team. (2020). R: A language and environment for statistical computing. https://www.R-project.org/
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika, 34(S1), 1–97.

https://doi.org/10.1007/BF03372160
Shao, C., Li, J., & Cheng, Y. (2016). Detection of test speededness using change-point analysis. Psychometrika, 81(4),

1118–1141. https://doi.org/10.1007/s11336-015-9476-7
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and

fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639. https://doi.org/10.
1111/1467-9868.00353

Stan Development Team. (2020). Stan modeling language users guide (2.26). https://mc-stan.org



1380 PSYCHOMETRIKA

Suh, Y., Cho, S.-J., & Wollack, J. A. (2012). A comparison of item calibration procedures in the presence of test speed-
edness. Journal of Educational Measurement, 49(3), 285–311. https://doi.org/10.1111/j.1745-3984.2012.00176.x

Thissen-Roe, A., & Thissen, D. (2013). A two-decision model for responses to Likert-type items. Journal of Educational
and Behavioral Statistics, 38(5), 522–547. https://doi.org/10.3102/1076998613481500

Tijmstra, J., & Bolsinova, M. (in press). Modeling within- and between-person differences in the use of the middle
category in Likert scales.Applied PsychologicalMeasurement. https://research.tilburguniversity.edu/en/publications/
modeling-within-and-between-person-differences-in-the-use-of-the-

Tijmstra, J., Bolsinova, M., & Jeon, M. (2018). General mixture item response models with different item response
structures: Exposition with an application to Likert scales. Behavior Research Methods, 50(6), 2325–2344. https://
doi.org/10.3758/s13428-017-0997-0

Tourangeau, R., Rips, L. J., & Rasinski, K. A. (2000). The psychology of survey response. Cambridge University Press.
Ulitzsch, E., Pohl, S., Khorramdel, L., Kroehne, U., & von Davier, M. (2022). A response-time-based latent response

mixture model for identifying and modeling careless and insufficient effort responding in survey data. Psychometrika,
87(2), 593–619. https://doi.org/10.1007/s11336-021-09817-7

Van Vaerenbergh, Y., & Thomas, T. D. (2013). Response styles in survey research: A literature review of antecedents,
consequences, and remedies. International Journal of Public Opinion Research, 25(2), 195–217. https://doi.org/10.
1093/ijpor/eds021

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation
and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4

von Davier, M., & Khorramdel, L. (2013). Differentiating response styles and construct-related responses: A new IRT
approach using bifactor and second-order models. In R. E. Millsap, L. A. van der Ark, D. M. Bolt, & C. M. Woods
(Eds.), New developments in quantitative psychology (pp. 463–487). Springer. https://doi.org/10.1007/978-1-4614-
9348-8_30

von Davier, M., & Yamamoto, K. (2007). Mixture-distribution and HYBRID Rasch models. In M. von Davier & C. H.
Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 99–115). Springer. https://doi.org/10.
1007/978-0-387-49839-3_6

Weijters, B., Geuens, M., & Schillewaert, N. (2010). The stability of individual response styles. Psychological Methods,
15(1), 96–110. https://doi.org/10.1037/a0018721

Wetzel, E., & Carstensen, C. H. (2017). Multidimensional modeling of traits and response styles. European Journal of
Psychological Assessment, 33(5), 352–364. https://doi.org/10.1027/1015-5759/a000291

Wetzel, E., Lüdtke, O., Zettler, I., & Böhnke, J. R. (2016). The stability of extreme response style and acquiescence over
8 years. Assessment, 23(3), 279–291. https://doi.org/10.1177/1073191115583714

Wollack, J. A., & Cohen, A. S. (2004). A model for simulating speeded test data [Conference presentation]. San Diego:
Annual meeting of the American Educational Research Association.

Yan, T., & Tourangeau, R. (2008). Fast times and easy questions: The effects of age, experience and question complexity
on web survey response times. Applied Cognitive Psychology, 22(1), 51–68. https://doi.org/10.1002/acp.1331

Zettler, I., Lang, J. W. B., Hülsheger, U. R., & Hilbig, B. E. (2016). Dissociating indifferent, directional, and extreme
responding in personality data: Applying the three-process model to self- and observer reports. Journal of Personality,
84(4), 461–472. https://doi.org/10.1111/jopy.12172

Zhang, C., & Conrad, F. (2014). Speeding in web surveys: The tendency to answer very fast and its association with
straightlining. Survey Research Methods, 8(2), 127–135. https://doi.org/10.18148/srm/2014.v8i2.5453

Manuscript Received: 15 FEB 2022
Published Online Date: 6 FEB 2023





CO-OCCURRING RESPONSE PROCESSES 1

Co-Occurring Dominance and Ideal Point Processes:

A General IRTree Framework for Multidimensional Item Responding

Viola Merhof and Thorsten Meiser

University of Mannheim

January 22, 2024

Author Note

Viola Merhof ID https://orcid.org/0000-0002-1328-0000

Thorsten Meiser ID https://orcid.org/0000-0001-6004-9787

Additional materials are available on OSF:

https://osf.io/yu4gx/?view only=50fc21d10d52414aaeece310d680fc0e

The data sets used for reanalyses in the empirical applications are made available by the

original authors: https://www.icpsr.umich.edu/web/HMCA/studies/6647 and https://osf.io/

gqb4y/.

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) grant 2277,

Research Training Group Statistical Modeling in Psychology (SMiP).

This work was partly performed on the computational resource bwUniCluster funded by

the Ministry of Science, Research and the Arts Baden-Württemberg and the Universities of the
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Abstract

Responding to rating scale items is a multidimensional process, since not only the

substantive trait being measured, but also additional personal characteristics can

affect the respondents’ category choices. A flexible model class for analyzing such

multidimensional responses are IRTree models, in which rating responses are decom-

posed into a sequence of sub-decisions. Different response processes can be involved

in item responding both sequentially across those sub-decisions and as co-occurring

processes within sub-decisions. In the previous literature, modeling co-occurring

processes has been exclusively limited to dominance models, where higher trait lev-

els are associated with higher expected scores. However, some response processes

may rather follow an ideal point rationale, where the expected score depends on the

proximity of a person’s trait level to the item’s location. Therefore, we propose a new

multidimensional IRT model of co-occurring dominance and ideal point processes

(DI-MIRT model) as a flexible framework for parameterizing IRTree sub-decisions

with multiple dominance processes, multiple ideal point processes, and combina-

tions of both. The DI-MIRT parameterization opens up new application areas for

the IRTree model class and allows the specification of a wide range of theoretical

assumptions regarding the cognitive processing of item responding. A simulation

study shows that IRTree models with DI-MIRT parameterization provide excellent

parameter recovery and accurately reflect co-occurring dominance and ideal point

processes. In addition, a clear advantage over traditional IRTree models with purely

sequential processes is demonstrated. Two application examples from the field of

response style analysis highlight the benefits of the general IRTree framework under

real-world conditions.

Keywords: IRTree models, ideal point models, dominance models, multidimen-

sional IRT, response styles
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Likert-type rating scales are widely used to assess personality, attitudes, or beliefs via self-

reports, and they are omnipresent in research and applied fields of psychology and social sciences.

A popular item response theory (IRT) approach for analyzing such rating data are item response

tree (IRTree) models (Böckenholt, 2012; Böckenholt & Meiser, 2017; De Boeck & Partchev,

2012; Jeon & De Boeck, 2016), which have been proven to be a broadly applicable model class

offering high flexibility with regard to investigating response processes underlying respondents’

judgments and decisions.

A key characteristic of IRTree models is their multidimensional nature with the underlying

assumption that multiple response processes are sequentially1 involved in the selection of re-

sponse categories. This property arises from the decomposition of the ordinal rating responses

into a sequence of pseudo-items, which represent the sub-decisions assumed to be taken by the

respondents during response selection. For example, respondents may first decide on whether

to agree or disagree with an item, and subsequently make fine-grained decisions among the

available agreement or disagreement categories. Such sub-decisions are typically assumed to be

binary judgments, though the pseudo-items can likewise be defined as ordinal judgments with

three or more options (see Meiser et al., 2019, and Figure 1). The pseudo-items are modeled by

separate IRT models, and by assigning different latent traits to the sub-decision, their effects on

the response selection can be disentangled. Thus, IRTree models can capture multidimensional

response processes, even though making use of unidimensional IRT modeling for the individual

pseudo-items.

A typical aim of using IRTree models is to separate the effects of substantive traits from

those of response styles (RS) – individual preferences for specific response categories of rating

scales irrespective of item content (for an overview, see Van Vaerenbergh & Thomas, 2013).

For instance, some respondents may prefer categories located in the middle of the response

scale (midscale response style; MRS), whereas others may rather prefer clear-cut responses

and tend to select the extreme categories (extreme response style; ERS). Such different usages

of the response scale can systematically distort the estimation of individual substantive trait

1The term sequential in the context of IRTree models refers to the logical sequence and conditionality of
response processes, which does not necessarily imply a temporal sequence.
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Figure 1

Tree Diagrams for Decomposing Responses to Six-Point Rating Items Into Sub-Decisions

(A)
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Note. A: Decomposition into three sub-decisions by five binary pseudo-items. Adapted from

Böckenholt (2017). B: Decomposition into two sub-decisions by binary and ordinal (three-step)

pseudo-items. Adapted from Meiser et al. (2019).

levels, group means, and correlations among multiple traits, so that RS must be controlled for

to obtain valid measurements (Alwin, 2007; Baumgartner & Steenkamp, 2001). Commonly

used IRTree models for the analysis of RS define agreement decisions as dependent on the

substantive trait levels of respondents, whereas more fine-grained decisions are modeled to be

based on individual RS, like the judgment to give extreme versus non-extreme responses guided

by ERS, or the judgment to select the neutral middle category guided by MRS (e.g., Böckenholt,

2017; Khorramdel & von Davier, 2014; Plieninger & Meiser, 2014; Thissen-Roe & Thissen,

2013). However, even though IRTree models are mostly used for RS analysis, they are flexible

to incorporate any kind of person-specific influences on the selection of individual response

categories (e.g., socially desirable responding) by defining the pseudo-items correspondingly.

In contrast to this flexibility of IRTree models with regard to including various latent traits

in the pseudo-items, little attention has so far been devoted to their flexibility in terms of

modeling both monotonous and non-monotonous effects of such traits on the response selection.

This property is described by the item response function (IRF), which defines how each value

of the latent trait continuum maps to the expected score of an item. For ordinal item responses

Y ∈ {0, ...,K} on a rating scale with K +1 categories, the IRF of trait θ is given by
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IRF(θ) =
K∑

y=0

y · p(Y = y | θ). (1)

Thus, the IRF defines the expected value of Y for a given trait level θ depending on the category-

specific probabilities that are specified by the IRT model (e.g., the generalized partial credit

model; GPCM; Muraki, 1992).

IRT models can be grouped into two classes based on their IRFs: Dominance and ideal point

models (Coombs, 1964). They go back to Likert (1932) and Thurstone (1928), respectively, and

both have a long history in the psychometric literature. Typically, IRTree decision processes

are assumed to follow the dominance rationale, meaning that a higher trait level is modeled to

result in a higher expected score of the respective pseudo-item (see Figure 2A). As suggested

by the term dominance, respondents overcome an item if their trait level values exceed the

item’s level of difficulty. For instance, the probability to agree with an item, which states that

environmental protection is an important issue, increases with higher levels of environmental

awareness of the respondents. Dominance models have monotonically increasing IRFs and

frequently applied members of this class are the models of the Rasch family; for example, the

Rasch model (Rasch, 1960) or 2PL model (Birnbaum, 1968) for binary items, or the GPCM

for ordinal items. An alternative assumption is captured by ideal point models, in which the

relationship between the expected score and the latent trait is unimodal and non-monotonic

(see Figure 2B). The expected score is highest if a respondent’s trait level, which is called

their ideal point, matches the item’s location, and decreases with larger distances. The more

the trait levels deviate from the item location in an upward or downward manner, the stronger

respondents will dismiss the item content from above or from below, respectively. For example,

respondents with moderate environmental awareness may agree with the statement that the

current environmental regulations are adequate, whereas respondents who prefer either stricter

or less strict regulations disagree, though for different reasons. As the IRFs are symmetrical

about the item location, only the proximity of a respondent and the item, not the direction

of a deviation, is relevant for the response selection. Several IRT models for dichotomous

and polytomous items have been developed for the ideal point rationale, like the hyperbolic
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Figure 2

Item Response Functions Under the Dominance and Ideal Point Assumption
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cosine model (Andrich, 1995; Andrich & Luo, 1993) or the generalized graded unfolding model

(Roberts et al., 2000).

Although rating scale items are mostly constructed under and analyzed by dominance

approaches, there is compelling evidence that ideal point models often better describe item

responding of non-cognitive constructs, and thus, should be considered when analyzing self-

reported data (e.g., Liu & Wang, 2016; Roberts & Laughlin, 1996; van Schuur & Kiers, 1994;

for an overview, see Drasgow et al., 2010). Nevertheless, compared to dominance IRT model-

ing, there is little research on multidimensional response processes so far, and most ideal point

models treat item responses as solely dependent on the substantive trait to be measured, while

ignoring possible other influences. This poses a threat to the validity of ideal point models

whenever RS or other additional response processes are involved in item responding (Liu &

Wang, 2019).

Multidimensional processes should, therefore, be investigated not only for dominance but

also for ideal point items. However, this can require integrating response processes with different

IRFs into multidimensional models, for instance, if RS are to be considered. Such are by

definition dominance processes since higher RS levels reflect stronger preferences for certain

response categories. A straightforward way to include RS into the analysis of ideal point items

are IRTree models, as the pseudo-items are parameterized independently of each other, and

thus, processes of different IRFs can be defined by existing unidimensional IRT models of the
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dominance and ideal point rationale. Indeed, Jin et al. (2022) demonstrated the advantages

of such an IRTree model, in which an ideal point model was applied to a trait-based sub-

decision and a dominance model to an ERS-based sub-decision. In two application examples

of attitudinal questionnaires, the authors showed that their model fitted the data better than

both an ideal point model ignoring RS, and than classical dominance IRTree models accounting

for RS.

This example nicely illustrates that the decomposition of multidimensional item responses

into unidimensional decision processes with different kinds of IRFs provides high flexibility while

keeping the modeling complexity low. Still, this advantage comes at the cost of the simplis-

tic assumption that each cognitive processing step during response selection is based on one

response process at a time (e.g., either the substantive trait or a RS). However, multiple re-

sponse processes may not only contribute to item responding sequentially, but may also occur

simultaneously on the level of sub-decisions. Such co-occurring processes can likewise be in-

tegrated into IRTree models by replacing the traditionally used unidimensional pseudo-items

with multidimensional IRT (MIRT) models (see Jeon & De Boeck, 2016; Meiser et al., 2019;

von Davier & Khorramdel, 2013). In RS analysis, for example, Meiser et al. (2019) showed

that the selection of more or less extreme response categories was not only dependent on the

individual ERS, but further influenced by the substantive trait levels of respondents. Such mul-

tidimensional parameterizations of pseudo-items allow the investigation of more complex and

presumably more realistic hypotheses about the cognitive processing during item responding,

and they were shown to be preferable over unidimensional ones with regard to psychometric

properties (Merhof & Meiser, 2023).

Nevertheless, multidimensional pseudo-items have so far been exclusively applied to combi-

nations of dominance processes. Dominance MIRT models can be derived from unidimensional

ones by extending a single latent trait to a linear combination of multiple traits, and thus re-

flect the assumption that several processes contribute to the response selection in a cumulative,

additive way (e.g., Bolt & Johnson, 2009; Bolt & Newton, 2011; Falk & Cai, 2016; Henninger

& Meiser, 2020; Jin & Wang, 2014). Ideal point processes, in contrast, must not be considered
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additive to other processes, as this would counteract the proximity concept.2 Therefore, mod-

eling co-occurring response processes under the ideal point assumption is less straightforward

and there exist only few models that address this challenge, all of which focus on modeling RS

in addition to trait-based responding to ideal point items. For instance, the approaches by G.

Luo (1998) and Wang et al. (2013) implicitly account for RS in ideal point items by defining

random category thresholds which vary across persons. Javaras and Ripley (2007) and Liu and

Wang (2019) also use random thresholds, though specify such explicitly as a linear combination

of different RS. However, none of the models treats RS as independent, stand-alone response

processes, but all rather assume that they can only occur in the presence of another trait-based

process, as they are defined as person-specific shifts of trait-based responding. In contrast, our

understanding of item responding in the framework of IRTree models is that trait-based and

RS-based responding are distinct processes, which can make both individual and combined con-

tributions to the sub-decisions during response selection. Further, the models are only adapted

to the co-occurrence of an ideal point trait and dominance RS, and do not generalize to other

types of response processes with any IRF. None of the models provides a general formulation

that consistently connects multiple response processes independent of dominance and ideal point

assumptions.

Therefore, the aim of the present article is to provide a general IRTree framework which is

independent of the choice of dominance or ideal point modeling, and in which multiple response

processes can be involved in the response selection (a) sequentially across pseudo-items, and

(b) as co-occurring processes within pseudo-items. While sequential multidimensionality can be

implemented using existing IRT modeling, we propose a new approach for co-occurring response

processes, in which multiple dominance processes, multiple ideal point processes, as well as a

combination of both are modeled in a consistent manner. The new MIRT model of co-occurring

2Nevertheless, the assumption of cumulative effects can also be reasonable in ideal point modeling under
certain circumstances: For instance, Cui (2008) proposed a multidimensional model for repeated measurements,
in which the person-specific latent trait at a given time point t was modeled as the sum of the trait at the baseline
time point plus the change from baseline to time t. Since both of the trait factors are on the same latent scale,
their contributions to the response selection can be considered to be additive. In contrast, the present article
rather addresses scenarios of multidimensional item responding in which different response processes relate to
different constructs, so that their contributions cannot be aggregated in a cumulative way.
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dominance and ideal point processes (DI-MIRT) is based on the divide-by-total framework for

ordinal item responses (see Thissen & Steinberg, 1986). It can be used independently of IRTree

models, though in this article we focus on that model class and demonstrate that a DI-MIRT

parameterization can specifically benefit IRTree pseudo-items: The new DI-MIRT model can not

only be used for modeling multidimensional response processes in ideal point items (see section

Response Style Analysis in Ideal Point Items), but also for including ideal point processes into

dominance items (e.g., when modeling the selection of midscale response categories; see section

Middle Categories in Dominance Items).

Furthermore, this article highlights the flexibility of the proposed general IRTree frame-

work, which can be considered a modular system with three independent components that can

be combined as desired. One component of IRTree models is the psychological theory concern-

ing the decomposition of ordinal rating responses into sub-decisions. By specifying the number

and structure of the sub-decisions, theory-driven hypotheses on the logical sequence of cognitive

processing stages can be defined (see Figure 1). A second component is the definition of the

response processes that contribute to the individual sub-decisions. Since various processes can

be assigned to the pseudo-items separately from each other, personal characteristics may be

involved in one or more pseudo-items, and pseudo-items may depend on one or more processes.

Using the new DI-MIRT model, it is now possible to define a third IRTree component indepen-

dently of the other two, which is the choice of process-specific IRFs. The individual response

processes can be parameterized by dominance or ideal point models, and they can be freely

combined both within and between pseudo-items.

In the remainder of this article, we will illustrate this modular system and present exemplary

IRTree models that differ in terms of the selection and combination of the three components. To

this end, we firstly derive the new DI-MIRT model of co-occurring processes from existing models

of the divide-by-total framework. Secondly, we introduce IRTree models in which dominance and

ideal point processes co-occur within sub-decisions. Thirdly, a simulation study on parameter

recovery and model selection is presented. Then, the utility of the new approach is illustrated

by two empirical examples, the first one focusing on the investigation of the relative importance

of co-occurring processes in IRTree sub-decisions, and the second one using response time data
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to provide a construct validation of the parameter estimates. We conclude with a discussion of

the results.

Existing Dominance and Ideal Point Divide-By-Total Models

The divide-by-total framework contains both dominance and ideal point models. For both of

them holds that the category probabilities of ordinal responses Y ∈ {0, ...,K} are defined as

the ratio of category-specific components divided by the sum of the K + 1 components of all

available categories, so that the probabilities across categories sum up to 1. For modeling item

responses of person v = 1, . . . , N to item i = 1, . . . I under the dominance assumption (D),

divide-by-total models can take the form

p(D)(Yvi = yvi) =
ωviy
K∑
j=0

ωvij

=
exp(ηviy)
K∑
j=0

exp(ηvij)

, (2)

where ηviy is a linear combination of person and item parameters.

A prominent member of dominance divide-by-total models is the generalized partial credit

model (GPCM; Muraki, 1992), which is given by

p(D)(Yvi = yvi | s,θ,α,β) =

exp

[
αi

(
syθv −

y∑
k=0

βik

)]

K∑
j=0

exp

[
αi

(
sjθv −

j∑
k=0

βik

)] , (3)

with βi0 := 0 and sy = y. θv denotes the person-specific trait level, αi the item-specific

discrimination parameter, and βik the item- and category-specific thresholds (or difficulties).

The threshold parameters can be rewritten as βik = βi+ ζik, where βi denotes the item location

and is defined as
∑K

k=1 βik/K and ζik denotes the category-specific deviations. If the thresholds

βik are ordered across the ordinal categories, each category has a section on the latent trait

continuum for which the probability to be chosen is higher than the probabilities of all other

categories. The scoring weights s define the relation between trait and response categories

and are fixed to sy = y in the GPCM, reflecting that the response categories are ordered and

that higher trait levels are associated with higher categories. However, they can be set to any
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other values depending on the theoretical assumptions, or can be estimated like in the nominal

response model for categorical responses (Bock, 1972; Thissen et al., 2010). Note that the

choice of scoring weights depends on the assumption of how the trait influences the selection

of categories, but does not change the underlying dominance assumption. Figure 3A shows

exemplary category probability curves for an item on a four-point scale under the GPCM.

For modeling item responses under the ideal point assumption (I), divide-by-total models

can take the form

p(I)(Yvi = yvi) =
ωviy
K∑
j=0

ωvij

=
exp(η1viy) + exp(η2viy)

K∑
j=0

(
exp(η1vij) + exp(η2vij)

) , (4)

where η1viy and η2viy are linear combinations of person and item parameters. The category-

specific components ωviy are defined as the sum of two exponential terms since it is assumed

that each response category of a rating scale is composed of two unobservable, latent categories.

Each two associated latent categories reflect the perspectives from above and from below the

item location, respectively. For instance, the observable categories ”agree” and ”disagree” of

a dichotomous item correspond to the latent categories ”disagree from below”, ”agree from

below”, ”agree from above”, and ”disagree from above”. Thus, ideal point divide-by-total

models account for two different reasons for which respondents can select a specific category,

such as disagreement being chosen because of having a much higher or a much lower ideal point

compared to the item location. By adding up the probabilities of selecting a category from

below and from above, probabilities of the observable categories are obtained.

The generalized graded unfolding model (GGUM; Roberts et al., 2000) belongs to the class

of ideal point divide-by-total models and is given by
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p(I)(Yvi = yvi | s,θ,λ, δ, ξ) =

exp

[
λi

(
sy(θv − δi)−

y∑
k=0

ξik

)]
+ exp

[
λi

(
(M − sy)(θv − δi)−

y∑
k=0

ξik

)]

K∑
j=0

{
exp

[
λi

(
sj(θv − δi)−

j∑
k=0

ξik

)]
+ exp

[
λi

(
(M − sj)(θv − δi)−

j∑
k=0

ξik

)]} (5)

with ξi0 := 0, M = 2K + 1 and sy = y. θv denotes the person’s trait level (ideal point), δi

the item location, λi the discrimination parameter, and ξik the category-specific threshold. If

the thresholds ξik are < 0 and ordered across the ordinal categories, all observable categories

have sections on the latent trait continuum for which the probability to be chosen is higher

than for the other categories. Note that the parameterization of each exponential term has

high similarity to the GPCM, which in fact causes the category probability curves of the M + 1

latent categories to take the form of a GPCM. The first exponential term in the numerator and

denominator of the GGUM corresponds to latent response categories from below, whereas the

second term corresponds to latent categories from above. Each two associated latent categories

differ only in their scoring weights of the person-item proximity (θv − δi), which are defined as

y and (M − y), respectively. Thus, the scoring weights of latent categories from below increase

across categories (0, ...,K), whereas they decrease to the same extent for latent categories from

above (M, ...,K + 1). The observable category probabilities are symmetrical about the point

(θv − δi) = 0, which implies that selecting response category y is equally likely for a positive

or negative deviation of a respondent’s trait level from the item location. As is the case for

dominance models, the scoring weights of ideal point divide-by-total models can be fixed to any

values, which would reflect different hypotheses on the relation between trait and categories,

without changing the ideal point rationale. Figure 3B shows exemplary category probability

curves for an item on a four-point scale under the GGUM.
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Figure 3

Category Probability Curves for Responding to Four-Point Rating Items
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Note. Category probabilities under the dominance assumption of the GPCM (A) and under the

ideal point assumption of the GGUM (B). Discrimination parameters α and λ are set to 1; the

thresholds are set as follows: β1 = −3; β2 = −1; β3 = 1; ξ1 = −3.5; ξ2 = −2.1; ξ3 = −0.6.

Co-Occurring Dominance and Ideal Point Processes

The novel DI-MIRT model of co-occurring processes is a multi-process generalization of dom-

inance and ideal point divide-by-total models and includes both of them as special cases. In

order to combine response processes described by those two models, the definitions of dominance

and ideal point approaches must be brought into the same format. As described above, ideal

point divide-by-total models consist of the sum of two exponential terms, which correspond to

the two underlying latent categories together defining the probability distribution of observable

categories. For dominance models, in contrast, the probability distribution of observable cate-

gories can be modeled directly. Nonetheless, such models can likewise be displayed in the form

of two added components, by applying the single linear parameter combination of a dominance

model (which is ηviy in Equation 2) to both exponential terms in the ideal point formulation

(η1viy and η2viy in Equation 4). Consequently, all category-specific components ωviy are simply

doubled both in the numerator and denominator, which does not affect the probability distribu-

tion across categories, so an equivalent model results. Metaphorically speaking, each observable

response category is artificially divided into two latent categories, which are selected with equal
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probability. Thereby, ideal point and dominance models can be expressed in the same form

and are represented by two added components. If several response processes r ∈ {1, ..., R}, no

matter if dominance or ideal point processes, are to be aggregated to a common probability

distribution, the respective linear parameter combinations can simply be added within each of

the two exponential terms. The resulting DI-MIRT model is given by

p(Yvi = yvi) =

exp

(
R∑
r=1

η1viyr

)
+ exp

(
R∑
r=1

η2viyr

)

K∑
j=0

[
exp

(
R∑
r=1

η1vijr

)
+ exp

(
R∑
r=1

η2vijr

)] . (6)

With this general formulation, the co-occurrence of several dominance processes, several

ideal point processes, or a combination of both can be modeled in a consistent way. Note that

the two linear parameter combinations do not differ for dominance response processes (η1vijr =

η2vijr), whereas the parameterizations for ideal point processes differ in their scoring weights

(see Equation 5). In the further course of the article, we use the GPCM for modeling dominance

processes and the GGUM for ideal point processes. However, the individual processes can be

defined by any unidimensional dominance or ideal point IRT model which can be represented

in the form of divide-by-total models (as defined in Equation 2 and Equation 4). Figure 4

illustrates the co-occurrence of one dominance and one ideal point process for an exemplary

binary item. The higher a person’s dominance trait level (θ
(D)
1 ) and the higher the proximity

of a person’s ideal point to the item location (|θ(I)2 − δ|), the higher the probability of endorsing

the item.

Identification

The DI-MIRT model is a suitable theoretical model of how co-occurring processes jointly de-

termine item responding, though it is highly parameterized and not identified without certain

constraints, whenever two or more processes are to be considered. Given that the linear parame-

ter combinations of the co-occurring processes (η1viyr and η2viyr) each consist of a person-specific

trait and item-specific category thresholds, some restriction may arise with respect to estimating

those two kinds of parameters.
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Figure 4

Probability Curves for Endorsing a Binary Item Under the DI-MIRT Model
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Note. One response process follows the dominance assumption parameterized by the GPCM

(θ
(D)
1 ) and the other process follows the ideal point assumption parameterized by the GGUM

(θ
(I)
2 ). A: Probability curves for fixed |θ(I)2 −δ| of .5 (dotted line), 1.5 (solid line), and 2.5 (dashed

line). B: Probability curves for fixed θ
(D)
1 of 1 (dotted line), 0 (solid line), and -1 (dashed line).

The other parameters are set as follows: α = 1, λ = 1, β1 = 0, ξ1 = −1, s(D) = (0, 1), and

s(I) = (0, 1).

Firstly, the threshold parameters of several processes cannot be separated, so only one

common threshold per category can be estimated. This common threshold, which we call

category intercept, is a weighted linear combination of the threshold parameters of the co-

occurring processes. It is, therefore, not possible to examine the individual contributions of

the involved processes to the size of each category intercept, that is, to why specific response

categories are selected more or less frequently. For instance, for dominance processes modeled by

the GPCM and ideal point processes modeled by the GGUM, the linear parameter combinations

are defined as

R∑

r=1

η1viyr =
R∑

r=1

[
(αirsyrθvr)

mr +
(
λirsyr(θvr − δir)

)(1−mr)
]
−

y∑

k=0

τik (7)
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and

R∑

r=1

η2viyr =
R∑

r=1

[
(αirsyrθvr)

mr +
(
λir(M − syr)(θvr − δir)

)(1−mr)
]
−

y∑

k=0

τik, (8)

where mr = 1 if process r is a dominance process and mr = 0 if it is an ideal point process. τik

is the category intercept of the R processes and is given by

τik =
R∑

r=1

(αirβikr)
mr + (λirξikr)

(1−mr). (9)

Note that this constraint of only the common category intercept of several processes being esti-

mated applies to existing MIRT models as well (such as the multidimensional nominal response

model; Bolt & Johnson, 2009), though it is implicitly captured in the model formulations by

defining only one threshold in the first place.

The second constraint of the DI-MIRT model is that the respondents’ trait levels can only

be separated from each other if the scoring weights differ in at least one of the two exponential

terms. Therefore, two (or more) dominance processes or two (or more) ideal point processes

must be defined to affect the response categories in different ways. Again, this also applies to

other MIRT models. For instance, in multidimensional models for the analysis of ERS, the ERS-

based process typically gets assigned the scoring weights (1, 0..., 0, 1), reflecting the assumption

that only the outermost two categories are affected, and thus can be separated from the ordinal

influence of a trait with scoring weights (0, ...,K).

In addition to the above remarks, it should be noted that the scale of the latent contin-

uum is not per se identified in the DI-MIRT model – as is the case for any other IRT model.

When estimating the DI-MIRT model, the location, the variability, and the orientation of the

continuum have to be fixed. The identification of the location is required in all IRT models

and is typically done by setting the mean of the latent trait distribution to zero. Models with

discrimination parameters, such as the GPCM, additionally require fixing the variability, which

is often done by setting the variance of the trait distribution to one. In ideal point models,

such as the GGUM, the orientation (or sign) of the continuum is unknown and therefore has

to be fixed. The non-identified orientation is due to the fact that the estimation of the trait
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levels and item locations in ideal point models is based on their proximity, that is, the pairwise

distances on the common latent continuum. Thus, two sets of parameters result in the same

likelihood, whereby the two parameter solutions only differ in the signs of the person-specific

trait levels and item-specific locations. Importantly, both solutions are equally correct; only the

meaning of the latent continuum changes, so it is up to the researcher to decide which of the two

parameter sets corresponds to the interpretation of the latent continuum that is more intuitive.

The practical specification of the continuum orientation is described below in the context of the

simulation study (see Estimation and Analysis).

Probability-Based Formulation

The DI-MIRT formulation as divide-by-total model given by Equation 6 can be rewritten as

a model which aggregates processes at the level of process-specific category probabilities. Let

p(r)(Yvi = yvi) denote the vector of probabilities for responding to each of the K + 1 categories

of an item for response process r. The joint probability for R co-occurring processes can then

be obtained by passing the process-specific probabilities to a probability-aggregating function

σ, which is defined as

p(Yvi = yvi) = σy

[
p(1)(Yvi = yvi), ...,p

(R)(Yvi = yvi)
]

= softmax

[
R∑

r=1

log
(
p(r)(Yvi = yvi)

)]

(y+1)

,

(10)

with softmax being a normalized exponential function transforming a Z-dimensional vector x

into a vector of probabilities summing up to 1. Position z of this probability vector is given by

softmax[x]z =
exp(xz)
Z∑
w=1

exp(xw)

for z = 1, ..., Z. (11)

This formulation of the DI-MIRT model with aggregation of response processes on the level

of category probabilities is equivalent to the aggregation on the level of linear parameter combi-

nations derived above. Thus, even though these two formulations seem to differ regarding their
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theoretical assumptions (the aggregation at the level of linear parameter combinations suggests

that multiple response processes are simultaneously active; the probability-based approach sug-

gests separate cognitive processing and subsequent aggregation), they cannot be distinguished

statistically.

Note, however, that the probability-based model is more general and not restricted to divide-

by-total models, since the category-specific probabilities of a process could result from any kind

of IRT model (e.g., difference models like the graded response model; Samejima, 1969). Nonethe-

less, depending on the choice of process-specific models, the estimated parameters might have

unintuitive interpretations (e.g., the threshold parameters in a co-occurring model including

one process defined by a difference model and another process defined by a divide-by-total

model) and different constraints might be necessary in order to identify the models. In this

article, we will therefore only refer to processes defined by divide-by-total models, for which

both formulations are equivalent.

IRTree Models of Co-Occurring Processes

IRTree models allow to separate the influences of multiple latent traits, which can be involved

in the response selection both sequentially across sub-decisions and as co-occurring processes

within sub-decisions. The modular system of IRTree models offers high flexibility for the speci-

fication of theoretical assumptions with respect to three components: (a) the decomposition of

ordinal response into sub-decisions, (b) the response processes involved in such sub-decisions,

and (c) the IRFs of the individual processes of each pseudo-item. In this article, we introduce

two exemplary IRTree models from the field of RS modeling in which these three components

are combined in different ways, and in which dominance and ideal point processes co-occur in at

least one pseudo-item. The first model addresses influences of RS on responding to ideal point

items; the second one addresses the selection of middle response categories in dominance items.

The two models are formally outlined in the following two sections (Response Style Analysis

in Ideal Point Items and Middle Categories in Dominance Items, respectively) and applied to

empirical data sets in the section Empirical Applications. Even though these exemplary models

cover only a part of all conceivable IRTree configurations that arise from the DI-MIRT frame-
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work, they illustrate the advantages of the new parameterization for IRTree pseudo-items. Our

proposed approach is a rather general one and can be easily adapted to differently structured

trees and response processes outside RS modeling. Further, we will only refer to pseudo-items

with a maximum of two response processes, although the new approach would allow modeling

any number of co-occurring response processes. Within IRTree models, however, we consider

this as a reasonable restriction since different processes, like MRS and ERS, are assumed to be

sequentially involved in item responding and do not affect the same sub-decisions.

Response Style Analysis in Ideal Point Items

The first application concerns IRTree models for the analysis of ideal point items while control-

ling for RS. Assuming that some sub-decisions within the response selection depend on both the

trait (i.e., an ideal point process) and a RS (i.e., a dominance process), the model of co-occurring

processes is necessary for modeling the respective pseudo-items. We illustrate the analysis of

this kind of item response data by an IRTree model of six-point rating scale items, which are

decomposed into two sub-decisions of agreement and intensity, as depicted in Figure 5. The

probability of an ordinal response Yvi ∈ {0, ..., 5} of person v = 1, . . . , N to item i = 1, . . . , I is

the product of the probabilities of responses to the pseudo-items Xhvi, where one pseudo-item

reflects an agreement decision (h = 1) and two pseudo-items reflect the decisions regarding the

intensity of responses conditional on the agreement judgment (h = 2 and h = 3):

p(Yvi = yvi) = p(X1vi = x1vi)× p(X2vi = x2vi)
x1vi × p(X3vi = x3vi)

(1−x1vi). (12)

Under the assumption that all sub-decisions are dependent on the substantive trait θ, and

that the intensity judgments are additionally affected by the ERS η, the probabilities of the

three pseudo-items can be specified as follows:
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Figure 5

Tree Diagram and Definition of Pseudo-Items for Responses to Six-Point Rating Items

0                                1
Agreement

Intensity

0            1            2            3            4            5

2           1       0

Intensity

0           1       2

X1vi (Agreement) 0 0 0 1 1 1

X2vi (Intensity | agree) – – – 0 1 2

X3vi (Intensity | disagree) 2 1 0 – – –

Note. Pseudo-items that are missing by design are marked with ’–’.

p(X1vi = x1vi) = p(I)
(
x1vi | s = (0, 1), θv, λ1i, δi, ξ1i

)

p(X2vi = x2vi) = σx

[
p(D)

(
x2vi | s = (0, 1, 2), ηv, αi,β1i

)
, p(I)

(
x2vi | s = (0, 1, 2), θv, λ2i, δi, ξ2i

)]

p(X3vi = x3vi) = σx

[
p(D)

(
x3vi | s = (0, 1, 2), ηv, αi,β2i

)
, p(I)

(
x3vi | s = (2, 1, 0), θv, λ2i, δi, ξ3i

)]
,

(13)

where p(D) denotes response probabilities under the GPCM as given in Equation 3, p(I) denotes

probabilities under the GGUM as given in Equation 5, and σ denotes the probability-aggregating

function given in Equation 10. As the sub-decision of agreement depends on a trait-based ideal

point process and the intensity decision comprises co-occurring trait and ERS processes, this

IRTree structure is abbreviated as Iθ–DηIθ in the following.

The scoring weights s of the trait-based ideal point process differ between the two intensity

pseudo-items to account for the fact that high proximity of a respondent’s ideal point and the

item’s location (i.e., a small difference of θv and δi) increases the probability of intense agreement

but reduces the probability of intense disagreement. As such intensity scoring weights relate

to the definition of the pseudo-items in Figure 5 from inner to outer ordinal categories of

the scale, the respective first weights refer to the least intense ordinal categories (3 and 2 for
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agreement and disagreement, respectively), followed by the weights for moderately intense (4

and 1) and the most intense (5 and 0) categories. Further, the ordinal definition of the ERS-

based dominance process implies that a preference for the extreme categories and a preference for

the midscale categories are opposite poles of a common trait. Thus, positive ERS levels increase

the probability to select extreme categories and decrease the probability of midscale categories,

while it is the other way around for negative ERS levels. Also note that the thresholds of the

co-occurring processes within the intensity pseudo-items cannot be separated, meaning that

only one category intercept can be estimated. Such category intercepts τ are defined as given

in Equation 9: For pseudo-item X1vi, only one response process is defined, so that the intercept

τ1i is simply given by λ1iξ1i. For pseudo-item X2vi, the intercept is τ 2i = αiβ1i + λ2iξ2i, and

for pseudo-item X3vi, it is τ 3i = αiβ2i + λ2iξ3i.

Middle Categories in Dominance Items

The second application relates to IRTree sub-decisions of midscale versus non-midscale respond-

ing in dominance items. There is an ongoing discussion in the literature on whether middle

categories are used as part of the ordinal scale and reflect a neutral attitude of respondents, or

whether they are rather considered as a non-response option and selected to avoid providing

personal information (e.g., Kalton et al., 1980; Nowlis et al., 2002; Sturgis et al., 2014; Tijmstra

& Bolsinova, in press; Tijmstra et al., 2018). The first interpretation implies a trait-based re-

sponse selection; the latter one indicates that such decisions are based on another trait, which

could be referred to as MRS. Thus, it seems reasonable to consider both kinds of response

processes in a co-occurring model in order to examine their relative importance for the selection

of middle categories.

For such sub-decisions of midscale responding, the substantive trait behaves like an ideal

point process, despite the fact the item generally follows the dominance rationale. Therefore,

trait-based agreement is modeled as a dominance process, whereas trait-based midscale respond-

ing as an ideal point process. This unintuitive property is due to the fact that only respondents

who have moderately high substantive trait levels in relation to the item location are assumed to

select middle categories as an expression of a neutral opinion. In contrast, respondents having
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Figure 6

Tree Diagram and Definition of Pseudo-Items for Responses to Five-Point Rating Items.

1001

0 1 3 4

1   

Agreement

Midscale

2

2

0

   

Extreme

  

Extreme

10

X1vi (Midscale) 1 0 0 0 0

X2vi (Agreement) – 0 0 1 1

X3vi (Extreme | agree) – – – 0 1

X4vi (Extreme | disagree) – 1 0 – –

Note. Pseudo-items that are missing by design are marked with ’–’.

a very high or very low trait level are unlikely to select neutral response categories, because

they are assumed to have a clear-cut opinion regarding the item content. Accordingly, if such

a trait-based ideal point process is to be modeled to co-occur with a MRS-based dominance

process, the DI-MIRT model is required.

This use case of the DI-MIRT model is illustrated by an IRTree model of items on a five-

point rating scale with the three sub-decisions of midscale responding, agreement, and extreme

responding, as depicted in Figure 6. The probability of an ordinal response Yvi ∈ {0, ..., 4} is

the product of the conditional pseudo-item probabilities Xhvi and is given by:

p(Yvi = yvi) = p(X1vi = x1vi)×
[
p(X2vi = x2vi)×p(X3vi = x3vi)

x2vi×p(X4vi = x4vi)
(1−x2vi)

](1−x1vi)
,

(14)

Assuming that the decision of midscale responding depends on the substantive trait θ and

the MRS η1, that agreement is solely trait-based, and that extreme responding depends on the
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trait and the ERS η2, the pseudo-item probabilities can be defined as follows:

p(X1vi = x1vi) =σx

[
p(D)

(
x1vi | s = (0, 1), η1v, α1i, β1i

)
, p(I)

(
x1vi | s = (0, 1), θv, λi, δi = β2i, ξi

)]

p(X2vi = x2vi) = p(D)
(
x2vi | s = (0, 1), θv, α2i, β2i

)

p(X3vi = x3vi) =σx

[
p(D)

(
x3vi | s = (0, 1), η2v, α3i, β3i

)
, p(D)

(
x3vi | s = (0, 1), θv, α4i, β4i

)]

p(X4vi = x4vi) =σx

[
p(D)

(
x4vi | s = (0, 1), η2v, α3i, β5i

)
, p(D)

(
x4vi | s = (1, 0), θv, α4i, β6i

)]
,

(15)

where p(D) denotes the GPCM, p(I) the GGUM, and σ the probability-aggregating function.

Note that the DI-MIRT parameterization is used in two ways, once for modeling the co-

occurrence of a dominance and an ideal point process in the midscale pseudo-item, and once to

model two dominance processes in the extreme pseudo-items. This IRTree structure is abbre-

viated Dη1Iθ–Dθ–Dη2Dθ.

As before, the thresholds of co-occurring response processes within one pseudo-item cannot

be separated so that common category intercepts are defined for all pseudo-items. For pseudo-

item X1vi, the intercept is τ1i = α1iβ1i + λiξi, for pseudo-item X2vi it is τ2i = α2iβ2i, for

pseudo-item X3vi it is τ3i = α3iβ3i + α4iβ4i, and for pseudo-item X4vi it is τ4i = α3iβ5i +

α4iβ6i. Importantly, the item location of the trait-based process of midscale responding δi is

not estimated independently, but set equal to the threshold of agreement β2i. This equality

constraint implies that respondents whose trait levels are equal to the agreement difficulty

parameter (a) have maximal ambiguity regarding the decision to agree or disagree (see pseudo-

item X2vi), and (b) have maximal probability for a trait-based selection of the middle category

(see pseudo-item X1vi). The larger the distance of the respondents’ trait levels to the item

difficulty, the more clear-cut the agreement decisions and the less likely midscale responses are.

Simulation Study

A simulation study was conducted to evaluate the parameter recovery and model fit of IRTree

pseudo-items of co-occurring processes modeled by the DI-MIRT model. The study was based on



CO-OCCURRING RESPONSE PROCESSES 24

the Iθ–DηIθ IRTree model described in the section Response Style Analysis in Ideal Point Items,

which analyzes ideal point items on a six-point rating scale while incorporating an ERS influence

in the intensity sub-decisions. We choose this model for the simulations since all six response

categories were influenced by co-occurring dominance and ideal point processes. This model of

co-occurring response processes was compared to two models of sequential processes, in which

the intensity pseudo-items were unidimensional and dependent on only one of the two processes,

that is, either ERS-based (trait-ERS model of sequential processes; Iθ–Dη) or trait-based (trait-

trait model of sequential processes; Iθ–Iθ). We evaluated how the co-occurring model performed

when it was the true data-generating model, and when it was over-parameterized and fitted to

data generated under the models of sequential processes, which are both nested within it.

Further, we evaluated how the models of sequential processes performed when fitted to data

generated by the co-occurring model, meaning that one of the two intensity processes was

ignored in the analysis.

Data Generation

Item response data were generated for each of the three models, which are described by Equa-

tion 12 and Equation 13 (Iθ–DηIθ model of co-occurring processes), or by special cases with

unidimensional pseudo-items (Iθ–Dη trait-ERS model and Iθ–Iθ trait-trait model of sequential

processes). 100 replications were conducted for each of two sample sizes N , set to 500 and 1000,

and two questionnaire lengths I, set to 10 and 20. The person-specific trait levels θv and ERS

levels ηv were sampled from independent standard normal distributions. The discrimination

parameters αi, λ1i, and λ2i were drawn from LogN(0, 0.25). The item locations δi were drawn

from a uniform distribution U(−3, 3). The thresholds of ideal point processes were sampled

from the distributions N(−2.2, 0.2), N(−1.3, 0.2), N(−1, 0.2), N(−0.8, 0.2), and N(−0.2, 0.2).

The means of these threshold distributions were ordered across ordinal response categories, so

that the first two correspond to the thresholds of intense disagreement (ξ3i), the third to the

threshold of the agreement pseudo-item (ξ1i), and the last two to the two thresholds of intense

agreement (ξ2i). For dominance processes, the thresholds β1i and β2i were defined as the sum

of item-specific locations βi, which were generated from U(−1, 1), and the category-specific de-
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viations ζik, which were drawn from N(−0.5, 0.2) and N(0.5, 0.2). Item responses were sampled

according to the model-implied probabilities.3

Estimation and Analysis

All analyses were conducted in R (R Core Team, 2023). Bayesian parameter estimation was

performed since the proposed IRTree models with DI-MIRT parameterization are comparably

complex and their estimation would probably not be possible within the frequentist framework.

We used the software program Stan (Stan Development Team, 2023) and the R package Cmd-

StanR (Gabry et al., 2023). For each generated data set, the three models (Iθ–DηIθ, Iθ–Dη, and

Iθ–Iθ) were fitted. Priors were set as follows: α ∼ Gamma(1.5, 1.5), λ ∼ Gamma(1.5, 1.5), and

τ ∼ N(0, 5). The parameters δ were given a hierarchical prior with a N(0, 5) hyperprior for the

mean and nonnegative N(0, 5) for the standard deviation. The distributions of θ and η were

set to N(0, 1) for identifying the models.

Furthermore, we set initial values for the Markov chain Monte Carlo (MCMC) chains in

all models. Firstly, this was important to avoid MCMC chains getting stuck in local maxima.

The same applies to the GGUM, for which Roberts et al. (2000) proposed to fit a constrained

model first, and to use the estimates of this model as initial values for the full model. We

followed this procedure and defined three constrained models (corresponding to the three full

models), in which the discrimination parameters (α and λ) and category intercepts (τ) were set

equal across items. Secondly, setting initial values also allowed to specify the orientation of the

latent continuum, which otherwise would not be identified. To this end, the initial values of the

item locations were set in accordance with one of the two possible scale orientations. Thereby,

the chains only explore that part of the posterior distribution that aligns with this parameter

solution and do not jump to the alternative parameter set. As suggested by Liu and Wang

(2016), the signs of the item locations were treated as known, which is why such parameters

were initialized with values 1 or -1, depending on the signs of the respective generated data

set (for empirical data, the signs of the item locations are obviously not known, so content

3The R code for generating data sets can be found in the OSF project; https://osf.io/yu4gx/?view only=
50fc21d10d52414aaeece310d680fc0e.
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knowledge can inform the selection of one of the two possible scale orientations; a slightly

different procedure for setting the initial values is then used as described in the Empirical

Applications). For the constrained models, one chain with 500 warmup iterations and 500 post-

warmup iterations was run to derive approximate estimates for the model parameters. The

expected a posteriori (EAP) estimates were then used to create initial values for fitting the full

model.

For the full model, four chains with 500 warmup iterations and 1000 post-warmup iterations

were run. To ensure model convergence and enough independent posterior samples for the

estimation of each parameter, the Gelman-Rubin statistic R̂ and the effective sample size were

evaluated (for more information on these diagnostics, see Vehtari et al., 2021). If at least one

model parameter had an R̂ value greater than 1.05 or either the bulk or tail effective sample

size was smaller than 100, more samples were drawn (in steps of 500, up to 3000 post-warmup

iterations). By this procedure, accurate estimates were achieved for all models while keeping

the computation time reasonable for models which provided good diagnostic values after fewer

samples.4

It is important to note that despite the careful choice of initial values and the interim step

of fitting a constrained model, by chance, some MCMC chains may move to either a local

maximum or to the area of the posterior distribution which corresponds to the solution with

inverted scale orientation. This becomes apparent in that the model does not converge or that

the signs of estimated item locations are inverted compared to the initial values. Since this only

occurs in very few instances, the model can simply be re-fitted with a different seed. In the

simulation study, we ensured that all models converged to the solution of the scale orientation

corresponding to that of the data generation to ensure sensible results for the parameter recovery.

The fitted models (i.e., the co-occurring model and the two models of sequential processes)

were compared regarding their parameter recovery by mean absolute bias (MAB) of the EAP

point estimates. Further, out-of-sample model fit was compared by an approximation of leave-

one-out cross-validation based on Pareto smoothed importance sampling (LOO; Vehtari et al.,

4The Stan model code and an R script illustrating the estimation procedure can be found in the OSF project.
The R script also shows how traceplots can be used as an additional check of model convergence.
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Table 1

Recovery of Person Parameters by MAB

Generation Analysis Trait θ ERS η

I10 I20 I10 I20

Iθ–DηIθ Iθ–DηIθ 0.346 0.249 0.395 0.296

Iθ–Dη 0.496 0.375 0.434 0.352

Iθ–Iθ 0.377 0.286

Iθ–Dη Iθ–Dη 0.497 0.377 0.351 0.264

Iθ–DηIθ 0.502 0.379 0.352 0.265

Iθ–Iθ Iθ–Iθ 0.309 0.221

Iθ–DηIθ 0.309 0.221

2017), where small values indicate better fit. The LOO information criterion has been shown

to be superior to other commonly used methods of IRT model comparisons such as the AIC or

DIC (Fujimoto & Falk, 2023; Y. Luo & Al-Harbi, 2017).5

Results

The comparison of the co-occurring model (Iθ–DηIθ) with the trait-ERS (Iθ–Dη) and trait-trait

(Iθ–Iθ) models of sequential processes in terms of recovering person and item parameters is

summarized in Table 1 and Table 2, respectively. In general, if the co-occurring model was used

to generate the data, the model itself provided considerably lower MABs of estimated parameters

than both unidimensional models of sequential processes. In contrast, if one of the models of

sequential processes was used to generate the data, the co-occurring model yielded MABs of

almost equal size. Thus, the co-occurring model successfully adapted to data sets generated by

models of sequential processes nested within it, whereas applying such to co-occurring data led

to poor parameter recovery.

The evaluation of the out-of-sample model fit (see Table 3) supports these findings: If the

5Additional analyses are provided in the OSF project, including recovery by root mean square error and
correlation of generated and estimated parameters as well as model fit by the widely applicable information
criterion (WAIC; Watanabe, 2010).
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data were generated under the co-occurring model, this was superior to the models of sequential

processes and was selected as the best-fitting model in all replications. The average LOO values

of the models of sequential processes were considerably larger (i.e., indicating worse fit), also

when the uncertainty of the LOO estimates is taken into account. In contrast, the differences in

the model fit for sequential data were rather small: The respective true model was still selected

as the best-fitting model in a large proportion of replications, though in some replications, the

co-occurring model provided a better fit. Further, the average LOO values of the co-occurring

model were only slightly larger than the values of the respective true model, and such differences

were small compared to the standard errors of the LOO estimates. This suggests that the co-

occurring model adapted comparably well to the data of sequential processes and successfully

captured the restrictions of models nested within it.

Altogether, the simulation study showed that the new DI-MIRT parameterization of IRTree

pseudo-items is beneficial for the analysis of item response data and should be preferred over

traditional IRTree models of sequential processes. Analyzing data with co-occurring processes

under the assumption of sequential processing, that is, ignoring one of two processes, led to

poorer model fit and larger errors of estimated parameters. In contrast, there were hardly any

negative effects of applying the co-occurring model to data generated by more parsimonious

sequential ones. The higher-parameterized co-occurring model entailed greater flexibility and

Table 2

Recovery of Item Parameters by MAB

Gen. Analysis τ δ λ1 (Agree. Iθ) α1 (Int. Dη) λ2 (Int. Iθ)

N500 N1000 N500 N1000 N500 N1000 N500 N1000 N500 N1000

Iθ–DηIθ Iθ–DηIθ 0.320 0.257 0.260 0.209 0.133 0.094 0.108 0.081 0.126 0.095

Iθ–Dη 1.260 1.230 0.738 0.568 0.188 0.132 0.166 0.163

Iθ–Iθ 0.505 0.470 0.426 0.353 0.149 0.109 0.252 0.241

Iθ–Dη Iθ–Dη 0.275 0.206 0.719 0.584 0.192 0.135 0.101 0.070

Iθ–DηIθ 0.286 0.200 0.490 0.412 0.191 0.134 0.104 0.070

Iθ–Iθ Iθ–Iθ 0.290 0.227 0.233 0.184 0.126 0.089 0.113 0.082

Iθ–DηIθ 0.300 0.232 0.225 0.180 0.126 0.089 0.119 0.085
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Table 3

Model Comparison by LOO

Gen. Analysis N500, I10 N500, I20 N1000, I10 N1000, I20

LOO SE Prop. LOO SE Prop. LOO SE Prop. LOO SE Prop.

Iθ–DηIθ Iθ–DηIθ 14321 99 1.00 27743 144 1.00 28517 139 1.00 54889 205 1.00

Iθ–Dη 15093 94 0.00 29503 140 0.00 30131 132 0.00 58416 199 0.00

Iθ–Iθ 15304 90 0.00 30134 131 0.00 30502 127 0.00 59561 187 0.00

Iθ–Dη Iθ–Dη 15146 93 0.95 29597 137 1.00 30158 131 0.98 58812 194 0.99

Iθ–DηIθ 15164 93 0.05 29623 138 0.00 30174 132 0.02 58837 194 0.01

Iθ–Iθ Iθ–Iθ 14924 91 0.86 29127 134 0.99 29690 128 0.90 58141 188 1.00

Iθ–DηIθ 14934 92 0.14 29156 135 0.01 29702 129 0.10 58170 189 0.00

Note. LOO = Average LOO value across replications. SE = Average standard error of LOO

estimate across replications. Prop. = Proportion of replications with smallest LOO.

was better able to compensate for possible misspecification.

Empirical Applications

To illustrate the benefits of the general IRTree framework with DI-MIRT parameterization

under real-world conditions, two empirical applications of co-occurring dominance and ideal

point processes are presented. They relate to the two models described in section IRTree

Models of Co-Occurring Processes.6

Response Style Analysis in Ideal Point Items

In the first application example, the co-occurring IRTree model of RS analysis in ideal point

items was applied to a data set consisting of item responses of N = 1505 participants to I = 15

items measuring attitudes toward sexual practices by a subscale of the National Health and

Social Life Survey (Laumann et al., 1992)7. The items were rated on a four-point scale, with

categories ”not at all appealing”, ”not appealing”, ”somewhat appealing”, and ”very appealing”.

6The Stan code of such models can be found in the OSF project.
7The data are provided here: https://www.icpsr.umich.edu/web/HMCA/studies/6647
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The ordinal categories Yvi ∈ {0, ..., 3} were decomposed into two sub-decisions of agreement and

intensity as defined in Table 4. With the exception that the intensity pseudo-items had two

instead of three options, the co-occurring model as described in the section Response Style

Analysis in Ideal Point Items was applied.

The data set was previously used as an application example by Jin et al. (2022; using a

subset of the data with 1498 respondents), and the authors showed that a trait-ERS model of

sequential processes (Iθ–Dη) fitted the data better than an ordinal ideal point model ignoring

RS, and than IRTree models under the dominance assumption. Here we analyze the data further

and examine whether the co-occurring model (Iθ–DηIθ) fits the data even better, which would

indicate that the decisions about the intensity of responses were additionally influenced by the

ideal point trait.

We used the same analysis scheme as described in the simulation study. The initial values

for identifying the orientation of the latent continuum were set on the basis of the estimates

reported by Jin et al. (2022). To this end, constrained models without setting initial values were

fitted each. If the order of estimated item locations was inverted compared to the results of the

previous study, the initial values of item locations and substantive trait levels were set as minus

one times the estimates of the constrained model (this was the case for the co-occurring model).

Otherwise, the estimates of the constrained model were directly used as the initial values (this

was the case for the model of sequential processes). Both models converged with R̂ < 1.05.

Model comparisons clearly showed that indeed, the new co-occurring model fitted the data

well, since the LOO information criterion of this model (LOO = 33726) was substantially smaller

than the one of the model of sequential processes (LOO = 36537). Thus, both a trait-based

ideal point process and an ERS-based dominance process were involved in the respondents’

decisions regarding the intensity of their responses. This result provides empirical support

for multidimensional sub-decisions and underlines the importance of modeling co-occurring

processes in IRTree pseudo-items in addition to sequential ones.

In light of this finding, we further analyzed the discrimination parameters of the co-occurring

model (see Table 5), as these provide information about the relative importance of each of the

processes for the two sub-decisions. Overall, the estimates of the co-occurring model were
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Table 4

Definition of Pseudo-Items for Responses to Four-Point

Rating Items

Pseudo-item Ordinal category

0 1 2 3

X1vi (Agreement) 0 0 1 1

X2vi (Intensity | agree) – – 0 1

X3vi (Intensity | disagree) 1 0 – –

consistent with previous studies on co-occurring dominance processes (e.g., Meiser et al., 2019;

Merhof & Meiser, 2023): Firstly, the discriminating power of trait-based agreement was larger

than that of trait-based intensity judgments, suggesting higher importance of the trait for global

agreement compared to fine-grained decisions among agreement or disagreement categories. In

addition, trait-based and ERS-based processes appear to have similar impacts on intensity

decisions, as indicated by discrimination parameters of comparable size. Moreover, the item-

specific discrimination parameters of trait-based agreement correlated positively with those of

trait-based intensity, but not with those of ERS-based intensity judgments. This correlation

pattern also seems reasonable since decisions made on the basis of one and the same personal

characteristic, in this case the substantive trait, can be assumed to be interrelated within a

single item, whereas trait-based and ERS-based decisions are considered independent processes.

This interpretation is supported by the fact that the person variables (i.e., the trait and ERS

factors) were only weakly correlated (r̂(θ, η) = −.16).

Middle Categories in Dominance Items

The second empirical example of the DI-MIRT parameterization for co-occurring processes

relates to modeling middle categories in dominance items. Response time (RT) data were

included in the analysis of item responses in order to put the construct validity of estimated

IRTree model parameters to the test. To this end, we examined whether RTs were sensitive to

the psychological processes reflected by specific parameters of the IRTree model and changed
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Table 5

Estimated Discrimination Parameters of the Co-Occurring Iθ–DηIθ

Model Fitted to Empirical Data

Parameter Mean Min Max Correlation

αi λ2i

λ1i (Agreement Iθ) 1.553 0.913 2.756 -0.015 0.548

αi (Intensity Dη) 1.338 0.480 2.909 0.383

λ2i (Intensity Iθ) 1.119 0.764 1.517

as hypothesized, which would corroborate reasonable substantive interpretations of the IRT

estimates and a meaningful model. We used an empirical data set collected by Fladerer et al.

(2021) and Henninger and Plieninger (2020), consisting of item responses and corresponding

RTs of N = 786 participants to two questionnaires, the Identity Leadership Inventory (I = 14)

and a scale of Social Identification (I = 6)8. The items were rated on a five-point rating scale,

and the ordinal categories were decomposed into three sub-decisions of midscale responding,

agreement, and extreme responding as defined in Figure 6.

In an initial analysis, for which only the item response data were used, the LOO model fit

of a co-occurring model described in the section Middle Categories in Dominance Items (Dη1Iθ–

Dθ–Dη2Dθ) was assessed. The model assumes that the sub-decisions of midscale and extreme

responding depend on the substantive trait plus the MRS or ERS, respectively. Note that

although the items are considered dominance items, the substantive trait is modeled as an ideal

point process in the midscale sub-decision, as non-midscale categories are expected to be more

likely for respondents whose trait levels are more strongly deviating from the item in either

an upward or downward direction. Thus, a dominance and an ideal point process co-occur in

the midscale pseudo-item, whereas two dominance processes co-occur in the pseudo-items of

extreme responding. In order to test our assumption of trait-based responding being an ideal

point process in the midscale pseudo-item, we compared this model with an alternative model

in which all processes were considered dominance processes (Dη1Dθ–Dθ–Dη2Dθ). In a second

8The data are made available by the original authors here: https://osf.io/gqb4y/
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alternative model of sequential processes (Dη1–Dθ–Dη2), only the agreement sub-decision was

defined as dependent on the trait, so midscale and extreme responding were parameterized by

unidimensional models of the respective RS.

All three models converged with R̂ < 1.05. Note that even though an ideal point process

was modeled in the co-occurring model, it was not necessary to set initial values for identifying

the orientation of the latent continuum. This is because the item locations were set equal to the

item-specific thresholds of agreement (see Equation 15), which in turn are inherently identified

by the dominance modeling.

The model comparisons revealed that the proposed model of co-occurring processes yielded

a considerably better fit (LOO = 30656) than the alternative model with dominance processes

(LOO = 31923), demonstrating that trait-based midscale responding was indeed better de-

scribed by the ideal point rationale. Further, the model also provided a better fit than the

model of sequential processes (LOO = 32333), indicating that respondents used both the trait

and a RS for the decisions of midscale and extreme responding. The estimated discrimination

parameters of the co-occurring model supported this assumption, as they were of substantial

size for all processes in all sub-decisions (see Table 6).

A subsequent analysis targeted at the construct validation of the co-occurring model ad-

dressed not only the item response data, but additionally the item-level RTs, and both kinds

of data were included in a joint model. The item responses were modeled by the co-occurring

Dη1Iθ–Dθ–Dη2Dθ IRTree model. The RTs were log-transformed and analyzed by linear mixed

modeling, whereby the predictor variables included IRTree model parameters. Such a joint

model allowed to test whether the RTs were sensitive to specific IRTree parameters and changed

according to theory-driven hypotheses, which in turn would suggest that the model produced

reasonable estimates.

Our hypotheses on how the parameters of the co-occurring IRTree model should affect the

RTs were twofold: Firstly, we assumed that the more the item responses were based on the

respondents’ individual RS levels, the faster they should be given. The literature suggests

that fast responses are associated with low motivation, low data quality, and insufficient effort

responding (Bowling et al., 2021; Callegaro et al., 2009; Zhang & Conrad, 2014). Since RS-
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Table 6

Estimated Discrimination Parameters of the Co-Occurring Dη1Iθ–Dθ–Dη2Dθ

Model Fitted to Empirical Data

Parameter Identity leadership Social identification

Mean Min Max Mean Min Max

α1i (Midscale Dη1) 0.936 0.646 1.210 0.694 0.527 0.921

λi (Midscale Iθ) 1.819 0.691 2.527 1.373 1.178 1.747

α2i (Agreement Dθ) 3.076 1.739 4.898 1.982 1.074 2.830

α3i (Extreme Dη2) 1.642 1.076 2.086 0.879 0.642 1.097

α4i (Extreme Dθ) 1.351 0.661 2.205 1.398 0.663 2.233

based responding is a heuristic process requiring less cognitive effort than accurate trait-based

responding (Krosnick, 1991; Podsakoff et al., 2012), selecting response categories that match

the individual RS should correspond to short RTs. This hypothesis was also investigated by

Henninger and Plieninger (2020) in their original work using the data we reanalyzed, and indeed,

they found that responses which matched the person-specific RS were given faster. However,

they used a two-step approach and obtained estimates of RS levels by an aggregation procedure

of dichotomous responses style indicators (i.e., the respondents’ ERS and MRS levels were

computed based on the information on whether the given responses were extreme versus non-

extreme and midscale versus non-midscale, respectively). Here in contrast, we analyzed the

data by the joint model, in which the RS levels were estimated by the co-occurring IRTree

model in a one-step approach. Nonetheless, we expected to find similar effects, namely shorter

RTs for responses that matched the preferred categories.

Most importantly, our second assumption concerned the ideal point modeling of trait-based

midscale responding, and we expected that large distances between the respondents’ trait levels

and the items’ locations would result in fast responses. This reasoning relates to a hypothesis

that has been frequently described in the literature under terms such as speed-distance or

distance-difficulty hypothesis (e.g., Ferrando & Lorenzo-Seva, 2007; McIntyre, 2011; Ulitzsch

et al., 2022). It states that a large person-item distance on the latent trait continuum evokes

high certainty, which in turn, should be reflected in clear-cut (compared to moderate) responses
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and shorter RTs. Part of this hypothesis was also already tested and supported by Henninger

and Plieninger (2020), as they found that selecting the middle category was associated with

longer RTs, indicating that such responses were related to uncertainty. However, we further

analyzed whether RTs were not only dependent on the selected rating category per se (e.g.,

whether an extreme or midscale category was selected), but additionally affected by the distance

of latent person and item locations. We defined the respondents’ locations as the estimated

substantive trait levels obtained by the IRTree model and the items’ locations as estimated

difficulty parameters of the agreement sub-decision. The agreement difficulty parameter was

used, as it determines for which trait levels the general attitude toward the item statement

is rather positive or negative, and thus marks the point of maximal uncertainty. Note that

this person-item distance is also part of the IRTree pseudo-item of midscale responding: In

this pseudo-item, the substantive trait levels represent the ideal points of the respondents with

respect to the midscale sub-decision, and the item locations are set equal to the agreement

difficulty parameters (see X1vi in Equation 15). Therefore, the person-item distance is assumed

to affect both the RTs (a higher distance should result in shorter RTs) and the probability of a

trait-based selection of middle categories (a higher distance should be associated with a lower

probability).

The linear mixed model for predicting the log-transformed RTs of a response r given by

person v to item i is defined by

log(RTrvi) =γ000 + γ1v0 ×X1vi + γ2v0 ×X3vi + γ2v0 ×X4vi+

γ011 × |θv − β2i|+ u0v0 + u00i + εrvi (16)

with

γ1v0 = γ100 + γ110 × η1v,

γ2v0 = γ200 + γ220 × η2v. (17)



CO-OCCURRING RESPONSE PROCESSES 36

The predictors Xhvi refer to the IRTree pseudo-items as defined in Figure 6 and indicate

whether a given response was the middle category (X1vi) or one of the extreme categories (X3vi

or X4vi). As those predictors are manifest observations, they do not relate to the IRTree model

and were merely included as control variables. In addition, random person and item effects (u0v0

and u00i, respectively) were included to account for the fact that some respondents are generally

faster than others and that some items are faster to respond to than others. Predictors resulting

from the IRTree model and referring to the substantial hypotheses were the MRS levels η1v,

the ERS levels η2v, and the person-item distances |θv − β2i|. The effect of RS levels matching

a given response (hypothesis 1) was captured by γ110 and γ220. The effect of the person-item

distance (hypothesis 2) was captured by γ011.

The results of our analysis using the joint model corroborated both hypotheses (see Table 7):

Firstly, we found that heuristic, RS-based responding was related to short RTs. Both for

midscale and extreme responding, a match of individual preferences with the selected category

reduced the predicted RT in the mixed model (Person x Response level). Further, selecting

the middle category was associated with on average longer RTs and extreme responses with

shorter RTs (Response level). Thus, the closer the selected category was to the middle of the

scale, the more time respondents needed, which indicates that such decisions were related to

higher uncertainty. Importantly, a larger person-item distance was associated with shorter RTs

in addition to this effect of the selected category (Person x Item level). Therefore, the speed-

distance hypothesis was supported not only at the level of manifest response categories, but also

at the level of latent locations estimated by the IRTree model. This result is original evidence

that the absolute person-item distance, regardless of the direction, influenced both the time it

took respondents to choose a category and the probability of selecting the middle category (see

estimates of λi in Table 6). The direction of this distance, however, affected the probability to

agree or disagree with the item (see estimates of α2i in Table 6).

Altogether, the estimates produced by the co-occurring IRTree model affected the RTs in

accordance with our theory-driven hypotheses. This suggests that the new DI-MIRT model

appropriately captured the co-occurring response processes, and corroborates the construct

validity of the applied IRTree model.
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Table 7

Estimated Coefficients of the Linear Mixed Model Predicting Log-Transformed RTs

Level Predictor Coefficient Estimate 95 %-credible interval

Response Middle category γ100 0.041 [0.016; 0.067]

Extreme category γ200 -0.068 [-0.093; -0.042]

Person x Response MRS level x middle cat. γ110 -0.116 [-0.152; -0.079]

ERS level x extreme cat. γ220 -0.127 [-0.155; -0.098]

Person x Item Person-item distance γ011 -0.086 [-0.105; -0.067]

Conclusion

The present article introduced a general IRTree framework for modeling multidimensional re-

sponse processes with dominance and ideal point item response functions (IRFs). Such response

processes (e.g., responding based on the substantive trait or based on response styles; RS) can

be defined to be involved in item responding both sequentially across sub-decisions and as co-

occurring processes within sub-decisions. Unlike sequential multidimensionality, which can be

implemented using existing IRT modeling (see Jin et al., 2022), co-occurring response processes

have previously been limited exclusively to dominance models (e.g., Alagöz & Meiser, 2023;

Jeon & De Boeck, 2016; Meiser et al., 2019; Merhof & Meiser, 2023; von Davier & Khorramdel,

2013). Therefore, we developed a new multidimensional IRT model of co-occurring dominance

and ideal point processes (DI-MIRT model), with which multiple dominance processes, multiple

ideal point processes, as well as a combination of both can be included in IRTree pseudo-items in

a consistent way. The proposed DI-MIRT parameterization expands the toolbox of IRTree mod-

els and thereby opens up new application areas for this model class. A wide range of theoretical

assumptions about the cognitive processing during item responding can be specified within the

new general IRTree framework, in which different components can be flexibly combined in the

sense of a modular system. Independent choices can be made regarding the decomposition of

ordinal responses into sub-decisions, the assignment of response processes to the sub-decisions,

and the selection of IRFs for the individual processes. Such components can be freely defined

and adapted to the research question and the data at hand.
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A simulation study demonstrated that the proposed IRTree framework with DI-MIRT pa-

rameterization of pseudo-items accurately captured co-occurring processes and recovered the

person and item parameters well. Furthermore, it also showed good parameter recovery in the

case of over-parameterization, that is, when applied to data generated under IRTree models

in which multiple response processes were only involved sequentially across pseudo-items. In

contrast, if one of the co-occurring processes was ignored and a parsimonious IRTree model

of sequential processes was falsely applied, larger errors of estimated parameters and poorer

model fit resulted. These findings indicate that multidimensional pseudo-items should be pre-

ferred over unidimensional ones, wherever this seems reasonable from a theoretical point of

view. The DI-MIRT model facilitates this for both dominance and ideal point processes and

goes beyond previous MIRT models, which were limited to specific kinds of processes (Bolt &

Johnson, 2009; Bolt & Newton, 2011; Falk & Cai, 2016; Henninger & Meiser, 2020; Javaras &

Ripley, 2007; Jin & Wang, 2014; Liu & Wang, 2019).

Two empirical examples further demonstrated the advantage of the new IRTree parameteri-

zation under realistic conditions. In the first example, a co-occurring model was used to analyze

the influence of ERS on responding to ideal point items, in which trait-based responding was

modeled under the ideal point assumption and ERS-based responding under the dominance

assumption. Both kinds of response processes were considered for modeling the sub-decisions

of extreme versus non-extreme responding by using the DI-MIRT parameterization, and the

results showed that indeed the trait and the ERS co-occurred in such decisions, which is why

ignoring one of the two processes led to a substantially worse model fit. The exemplary IRTree

model used for analyzing this data set can be easily adapted to other applications of co-occurring

trait and RS effects with differently structured trees, different sub-decisions, or other RS. Fur-

ther extensions are also conceivable with respect to additional influences apart from RS, such

as socially desirable responding, which likewise follows the dominance rationale. Thereby, the

default assumption in the literature that traits are dominance processes can be challenged and

compared to the alternative ideal point assumption, while taking further response processes into

account. Such investigations seem promising, as the previous research has shown that even if

items were constructed as dominance items, ideal point models may better describe the response



CO-OCCURRING RESPONSE PROCESSES 39

behavior of respondents (Drasgow et al., 2010).

The second empirical example of this article made use of the DI-MIRT parameterization for

examining the respondents’ use of middle categories. It was shown that the substantive trait

as well as the MRS influenced such decisions, and that multidimensional pseudo-items fitted

the data better than the unidimensional ones. The additional analysis of response time data

further supported the construct validity of the estimated DI-MIRT parameters, as the relation

of parameters and response times was in line with the theory-driven hypotheses. Moreover,

the model used in this application demonstrated that response processes do not necessarily

adhere to fixed IRFs (i.e., are inherently dominance or ideal point processes), but that it may

be beneficial to assign different IRFs to one and the same process across IRTree pseudo-items:

Although the items were considered dominance items, meaning that trait-based agreement was

modeled as dominance process, trait-based midscale responding was defined as an ideal point

process. This choice of IRFs reflected our hypothesis that midscale responding was unlikely

for both very high and very low trait levels in relation to the item location, which was indeed

supported by the data. Such a varying assignment of IRFs could also be useful for other research

questions. For instance, one could assume that the respondents first decide on whether the item

generally fits their own attitude (i.e., trait-based agreement follows the ideal point rationale),

but subsequently respond according to a more-is-better principle (i.e., fine-grained sub-decisions

are reflected by the dominance rationale).

Furthermore, co-occurring dominance and ideal point response processes may exist outside

self-reported rating data, such as in the field of educational research and ability measurement:

For example, the performance in low-stakes assessments might not exclusively be the result of

a dominance process with the probability of correct responding being monotonously increas-

ing with higher ability levels. Instead, respondents with very high ability levels may not feel

sufficiently challenged and respond with a somewhat lower effort than others, which may re-

sult in a lower-than-expected performance. In such cases, a combination of ideal point and

dominance IRFs might be appropriate, resulting a steep increase in expected performance from

low to high trait levels and a slight decrease for even higher levels. As responding to perfor-

mance items can usually not be decomposed into different sub-decisions, and as the responses
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to such items are typically coded as correct or incorrect, the DI-MIRT model could be used

as an ordinal or dichotomous model without implementing it within the IRTree framework. A

similar dichotomous DI-MIRT model might be suitable for investigating missing responses in

performance tests, where a higher-than-expected number of item omissions could likewise occur

for respondents who are not sufficiently challenged.

In addition, a DI-MIRT parameterization of IRTree models could be used for modeling

missing responses in Likert-type rating data, for instance, as an extension of the missing model

introduced by Jeon and De Boeck (2016). The authors proposed an IRTree model in which

respondents first decide on whether they wanted to omit the item based on their omission

propensity, and then optionally answer the item and chose one of the available categories based

on the substantive trait. As a further development to the original model, the omission sub-

decision could be given a two-dimensional parameterization of both the omission propensity and

the trait. While the omission propensity can be considered a dominance process, the ideal point

assumption seems reasonable for the trait-based response process: Mainly respondents who have

moderately high trait levels in relation to the item are expected to omit the response, whereas

respondents with very high or low trait levels are unlikely to skip the item, as they should have

clear-cut opinions. Thus, the ideal point trait could be combined with the dominance omission

propensity in the omission sub-decision using the DI-MIRT model, similar to the modeling

approach of middle categories in the present article.

Another possible application of the proposed DI-MIRT model (within or outside the IRTree

framework) is the co-occurrence of two ideal point response processes. For instance, a bifactor

model may reflect the factor structure of a questionnaire with several interrelated sub-scales. If

both the general factor and the specific factors are assumed to follow the ideal point rationale,

multidimensional modeling of several ideal point processes would be required, which can be

achieved by the DI-MIRT model.

A limitation of the proposed DI-MIRT approach is the assumption that the same compo-

sition of response processes holds for all respondents.9 It seems likely that individuals differ

9We thank an anonymous reviewer for pointing this out.
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in what response processes they use to what extent in empirical data, especially if the circum-

stances of the data collection vary (e.g., because the respondents’ motivation or perceived time

pressure differ). As a result, some respondents may derive their answers solely based on their

substantive trait, while others may additionally use RS. Further, respondents may also differ in

how they perceive the item statements and the rating scale, which could lead to some respon-

dents applying trait-based responding in a dominance way, while others may rather respond

in an ideal point fashion. The model proposed here cannot account for such heterogeneity

between respondents and instead will reveal the average group-level response behavior. More

detailed insights about the item response process would be obtained if interindividual differences

were considered, for example, by extending the DI-MIRT model by a person mixture. Though

such an approach appears very promising from the theoretical perspective, future studies would

be needed to evaluate the practical feasibility of estimating group-specific parameters in the

DI-MIRT framework.

A further limitation of the present work is that we investigated the co-occurrence of only

two response processes at most. We considered this as a plausible assumption within the IRTree

framework since more than two processes nevertheless can contribute to item responding across

sub-decisions. Moreover, this ensured that the complexity of the models was kept at a reasonable

level. Although the DI-MIRT approach comprises a wide range of potentially very complex

models, heavily parameterized models including many response processes should be used with

caution, as it may become impossible to disentangle and interpret the defined processes. Instead,

researchers should specify their models based on theoretical considerations and compare models

with increasing complexity against each other in order to select a well-fitting but interpretable

model. With this in mind, the DI-MIRT model introduced here offers a versatile approach for

psychometricians in various fields of research and practice.
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Böckenholt, U. (2012). Modeling multiple response processes in judgment and choice. Psycho-

logical Methods, 17 (4), 665–678. https://doi.org/10.1037/a0028111
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