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Abstract: Structured science summaries or research contributions using properties or dimensions
beyond traditional keywords enhance science findability. Current methods, such as those used by the
Open Research Knowledge Graph (ORKG), involve manually curating properties to describe research
papers’ contributions in a structured manner, but this is labor-intensive and inconsistent among
human domain-expert curators. We propose using Large Language Models (LLMs) to automatically
suggest these properties. However, it is essential to assess the readiness of LLMs like GPT-3.5, Llama
2, and Mistral for this task before their application. Our study performs a comprehensive comparative
analysis between the ORKG’s manually curated properties and those generated by the aforementioned
state-of-the-art LLMs. We evaluate LLM performance from four unique perspectives: semantic
alignment with and deviation from ORKG properties, fine-grained property mapping accuracy,
SciNCL embedding-based cosine similarity, and expert surveys comparing manual annotations with
LLM outputs. These evaluations occur within a multidisciplinary science setting. Overall, LLMs show
potential as recommendation systems for structuring science, but further fine-tuning is recommended
to improve their alignment with scientific tasks and mimicry of human expertise.

Keywords: large language models; Open Research Knowledge Graph; structured summarization

1. Introduction

The exponential growth in scholarly publications poses a significant challenge for
researchers seeking to efficiently explore and navigate the vast landscape of the scientific lit-
erature [1]. This proliferation of publications necessitates the development of strategies that
go beyond traditional keyword-based search methods to facilitate effective and strategic
reading practices. In response to this challenge, the structured representation of scientific
papers has emerged as a valuable approach to enhancing FAIR research discovery and
comprehension. By describing research contributions in a structured, machine-actionable
format with respect to the salient properties of research, also regarded as research dimen-
sions, similarly structured papers can be easily compared, offering researchers a systematic
and quick snapshot of research progress within specific domains, thus providing them with
efficient ways to stay updated with research progress.

One notable initiative aimed at publishing structured representations of scientific
papers is the Open Research Knowledge Graph (ORKG, https://orkg.org/ accessed on
23 April 2024) [2]. The ORKG endeavors to describe papers in terms of various research
dimensions or properties. Furthermore, a distinguishing characteristic of the properties
is that they are also generically applicable across various contributions on the same prob-
lem, thus making the structured paper descriptions comparable. We illustrate this with
two examples. For instance, the properties “model family”, “pretraining architecture”,
“number of parameters”, “hardware used”, etc., can be effectively applied to offer struc-
tured, machine-actionable summaries of research contributions on the research problem
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“transformer model” in the domain of Computer Science (Figure 1). Thus, these properties
can be explicitly stated as research comparison properties. As another example, papers
with the research problem “DNA sequencing techniques” in the domain of Biology can
be described as structured summaries based on the following properties: “sequencing
platform”, “read length in base pairs”, “reagents cost”, and “runtime in days” (Figure 2).
This type of paper description provides a structured framework for understanding and
contextualizing research findings.

Figure 1. ORKG Comparison—Catalog of Transformer Models. This view is a snapshot of the full
comparison published here https://orkg.org/comparison/R656113/, accessed on 23 April 2024.

Figure 2. ORKG Comparison—Survey of sequencing techniques. This view is a snapshot of the full
comparison published here https://orkg.org/comparison/R44668/, accessed on 23 April 2024.

https://orkg.org/comparison/R656113/
https://orkg.org/comparison/R44668/
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Notably, however, the predominant method in the ORKG for creating structured paper
descriptions or research comparisons is manually performed by domain experts. This
means that domain experts, based on their prior knowledge and experience on a research
problem, select and describe the research comparison properties. While this ensures the
high quality of the resulting structured papers in the ORKG, the manual annotation cycles
cannot effectively scale the ORKG in practice. Specifically, the manual extraction of these
salient properties of research or research comparison properties presents two significant
challenges: (1) manual annotation is a time-consuming process, and (2) it introduces
inconsistencies among human annotators, potentially leading to variations in interpretation
and annotation.

To address the challenges associated with the manual annotation of research com-
parison properties, this study tests the feasibility of using pretrained Large Language Models
(LLMs) to automatically suggest or recommend research dimensions as candidate properties as a
viable alternative solution. Specifically, three different LLM variants, viz., GPT-3.5-turbo [3],
Llama 2 [4], and Mistral [5], are tested and empirically compared for their advanced nat-
ural language processing (NLP) capabilities when applied to the task of recommending
research dimensions as candidate properties. Our choice to apply LLMs is based on the
following experimental consideration. The multidisciplinary nature of scientific research
poses unique challenges to the identification and extraction of salient properties across
domains. In this context, we hypothesize that LLMs, with their ability to contextualize
and understand natural language at scale [6,7], are particularly well suited to navigate the
complexities of interdisciplinary research and recommend relevant dimensions that capture
the essence of diverse scholarly works. By automating the extraction process, LLMs aim to
alleviate the time constraints associated with manual annotation and ensure a higher level
of consistency in the specification of research dimensions by using the same system prompt
or fine-tuning on gold-standard ORKG data to better align them with the task. The role of
LLMs in this context is to assist human domain-expert annotators rather than replace them
entirely. By leveraging the capabilities of LLMs, researchers can streamline the process of
dimension extraction and enhance the efficiency and reliability of comparative analysis
across diverse research fields.

In this context, the central research question (RQ) is aimed at examining the perfor-
mance of state-of-the-art LLMs in recommending research dimensions: specifically, “how
good are LLMs in performing this task?” Can they replace humans? To address this RQ,
we compiled a multidisciplinary, gold-standard dataset of human-annotated scientific papers from
the Open Research Knowledge Graph (ORKG), detailed in the Materials and Methods Section
(see Section 3.1). This dataset includes structured summary property annotations made
by domain experts. We conducted a detailed comparative evaluation of domain-expert-
annotated properties from the ORKG against the dimensions generated by LLMs for the
same papers. This dataset is the first main contribution of this work. Furthermore, our
central RQ is examined with regard to the following four unique perspectives:

1. Semantic alignment and deviation assessment by GPT-3.5 between ORKG properties
and LLM-generated dimensions;

2. The fine-grained property mapping accuracy of GPT-3.5;
3. SciNCL [8] embedding-based cosine similarity between ORKG properties and LLM-

generated dimensions;
4. A survey with human experts comparing their annotations of ORKG properties with

the LLM-generated dimensions.

These evaluations as well as the resulting perspectives then constitute the second main
contribution of this work.

Overall, the contribution of this work is a comprehensive set of insights into the readiness
of LLMs to support human annotators in the task of structuring their research contributions.
Our findings reveal a moderate alignment between LLM-generated dimensions and manually
annotated ORKG properties, indicating the potential for LLMs to learn from human-annotated
data. However, there is a noticeable gap in the mapping of dimensions generated by LLMs
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versus those annotated by domain experts, highlighting the need for fine-tuning LLMs on
domain-specific datasets to reduce this disparity. Despite this gap, LLMs demonstrate the
ability to capture the semantic relationships between LLM-generated dimensions and ORKG
properties, particularly in a zero-shot setting, as evidenced by the strong correlation results of
embedding similarity. In the survey, the human experts noted that while they were not ready
to change their existing property annotations based on the LLM-generated dimensions, they
highlighted the utility of the auto-LLM recommendation service at the time of creating the
structured summary descriptions. This directly informs a future research direction for making
LLMs fit for structured science summarization.

The structure of the rest of this paper is as follows: Section 2 provides a brief summary
of related work. In Section 3—the Materials and Methods Section—we start by detailing
our materials, including the creation of an evaluation dataset. We then describe our
methodology, beginning with brief technical introductions to the three language models
selected for this study. We also discuss the evaluation methods that we used, outlining
three key types of similarity assessments performed between ORKG properties and LLM-
generated research dimensions. Additionally, we introduce a human assessment survey
that compares ORKG properties with LLM-generated dimensions. In Section 4—the Results
and Discussion Section—we provide an in-depth analysis of each evaluation’s outcomes.
Finally, Section 5 summarizes our findings, discusses their implications, and proposes
future research avenues.

2. Related Work

LLMs in Scientific Literature Analysis. The utilization of LLMs for various NLP tasks
has seen widespread adoption in recent years [9,10]. Within the realm of scientific literature
analysis, researchers have explored the potential of LLMs for tasks such as generating
summaries and abstracts of research papers [11,12], extracting insights and identifying
patterns [13], aiding in literature reviews [14], enhancing knowledge integration [15], etc.
However, the specific application of LLMs for recommending research dimensions to
obtain structured representations of research contributions is a relatively new area of
investigation that we explore in this work. Furthermore, to offer insights into the readiness
of LLMs for our novel task, we perform a comprehensive set of evaluations comparing the
LLM-generated research dimensions and the human-expert-annotated properties. As a
straightforward preliminary evaluation, we measure the semantic similarity between the
LLM and human-annotated properties. To this end, we employ a specialized language
model tuned for the scientific domain to create embeddings for the respective properties.

Various Scientific-Domain-Specific Language Models. The development of domain-
specific language models has been a significant advancement in NLP. In the scientific
domain, a series of specialized models have emerged. SciBERT, introduced by Belt-
agy et al. [16], was the first language model tailored for scientific texts. This was followed
by SPECTER, developed by Cohan et al. [17]. More recently, Ostendorff et al. introduced
SciNCL [8], a language model designed to capture the semantic similarity between scientific
concepts by leveraging pretrained BERT embeddings. In this study, to ensure comprehen-
siveness, we tested all the mentioned variants of language models. Our goal was to project
ORKG properties and LLM-generated dimensions into a scientific embedding space, which
served as a tool to evaluate their similarity.

Evaluating LLM-Generated Content. In the context of evaluating LLM-generated
dimensions against manually curated properties, several studies have employed similarity
measures to quantify the relatedness between the two sets of textual data. One widely
used metric is cosine similarity, which measures the cosine of the angle between two
vectors representing the dimensions [18]. This measure has been employed in various
studies, such as Yasunaga et al. [19], who used cosine similarity to assess the similarity
between summaries automatically generated by LLMs and human-written annotations.
Similarly, Banerjee et al. [20] employed cosine similarity as a metric to benchmark the
accuracy of LLM-generated answers of autonomous conversational agents. In contrast to
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cosine similarity, other studies have explored alternative similarity measures for evaluating
LLM-generated content. For instance, Jaccard similarity measures the intersection over the
union of two sets, providing a measure of overlap between them [21]. This measure has
been employed in tasks such as document clustering and topic modeling [22,23]. Jaccard
similarity offers a distinct perspective on the overlap between manually curated and LLM-
generated properties, as it focuses on the shared elements between the two sets rather
than their overall similarity. We considered both cosine and Jaccard similarity in our
evaluation; however, based on our embedding representation, we ultimately chose to use
cosine similarity as our distance measure.

Furthermore, aside from the straightforward similarity computations between the two
sets of properties, we also leverage the capabilities of LLMs as evaluators. The utilization
of LLMs as evaluators in various NLP tasks has been proven to be a successful approach
in a number of recent publications. For instance, Kocmi and Federmann [24] demon-
strated the effectiveness of GPT-based metrics for assessing translation quality, achieving
state-of-the-art accuracy in both reference-based and reference-free modes. Similarly, the
Eval4NLP 2023 shared task, organized by Leiter et al. [25], explored the use of LLMs
as explainable metrics for machine translation and summary evaluation, showcasing the
potential of prompting and score extraction techniques to achieve results on par with or
even surpassing recent reference-free metrics. In our study, we employ the GPT-3.5 model
as an evaluator, leveraging its capabilities to assess the quality, from its own judgment of
semantic correspondence, of LLM-generated research dimensions with the human-curated
properties in the ORKG.

In summary, previous research has laid the groundwork for evaluating LLMs’ perfor-
mance in scientific literature analysis, and our study builds upon these efforts by exploring
the application of LLMs for recommending research dimensions and evaluating their
quality using specialized language models and similarity measures.

3. Materials and Methods

This section is organized into three subsections. In the first subsection, the creation
of the gold-standard evaluation dataset from the ORKG with human-domain-expert-
annotated research comparison properties used to assess their similarity to LLM-generated
properties is described. The second subsection provides an overview of the three LLMs,
viz., GPT-3.5, Llama 2, and Mistral, applied to automatically generate the research com-
parison properties, highlighting their respective technical characteristics. Lastly, the third
subsection discusses the various evaluation methods used in this study, offering differing
perspectives on the similarity comparison of ORKG properties for the instances in our
gold-standard dataset versus those generated by the LLMs.

3.1. Material: Our Evaluation Dataset

As alluded to in the Introduction, answering the central RQ of this work requires
comparing the research dimensions generated by three different LLMs with the human-
annotated research comparison properties in the ORKG. For this, we created an evaluation
dataset of annotated research dimensions based on the ORKG. As a starting point, we
curated a selection of ORKG Comparisons from https://orkg.org/comparisons (accessed
on 23 April 2024) that were created by experienced ORKG users. These users had varied
research backgrounds. The selection criteria for comparisons from these users were as
follows: the comparisons had to have at least 3 properties and contain at least 5 contribu-
tions, since we wanted to ensure that the properties were not too sparse a representation of
a research problem but were those that generically reflected a research comparison over
several works. Upon the application of these criteria, the resulting dataset comprised
103 ORKG Comparisons. These selected gold-standard comparisons contained 1317 pa-
pers from 35 different research fields addressing over 150 distinct research problems. The
gold-standard dataset can be downloaded from the Leibniz University Data Repository at
https://doi.org/10.25835/6oyn9d1n (accessed on 23 April 2024). The selection of compar-

https://orkg.org/comparisons
 https://doi.org/10.25835/6oyn9d1n
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isons ensured the diversity of the research fields’ distribution, comprising Earth Sciences,
Natural Language Processing, Medicinal Chemistry and Pharmaceutics, Operations Re-
search, Systems Engineering, Cultural History, Semantic Web, and others. See Figure 3 for
the full distribution of research fields in our dataset.

Figure 3. Research field distribution of the selected papers in our evaluation dataset containing
human-domain-expert-annotated properties that were applied to represent the paper’s structured
contribution descriptions in the Open Research Knowledge Graph (ORKG).

Once we had the comparisons, we then looked at the individual structured papers
within each comparison and extracted their human-annotated properties. Thus, our re-
sulting dataset is highly multidisciplinary, comprising structured paper instances from the
ORKG with their corresponding domain-expert property annotations across different fields
of research. For instance, the properties listed below were extracted from the comparison
“A Catalog of Transformer Models” (Figure 1):

["has model", "model family", "date created", "organization", "innovation",
"pretraining architecture", "pretraining task", "fine-tuning task",
"training corpus", "optimizer", "tokenization", "number of parameters",
"maximum number of parameters (in million)", "hardware used",
"hardware information", "extension", "has source code", "blog post",
"license", "research problem"]

Another example of structured papers’ properties in the comparison “Survey of
sequencing techniques” (Figure 2) is as follows:

["cost of machine in $", "cost of resequencing a human genome
with 30X coverage in $", "cost per Gigabyte data output in $",
"data output rate in Gigabyte per day", "has research problem",
"read length in base pairs (paired-end*) ", "reads per run in Million",
"reagents cost in $", "runtime in days", "sequencing platform",
"total data output yield in Gigabyte"]

The aforementioned dataset is now the gold standard that we use in the evaluations
for the LLM-generated research dimensions. In this section, we provide a clear distinction
between the terms ORKG properties and LLM-generated research dimensions. According
to our hypothesis, ORKG properties are not necessarily identical to research dimensions.
Contribution properties within the ORKG relate to specific attributes or characteristics
associated with individual research papers in a comparison, outlining aspects such as
authorship, publication year, methodology, and findings. Conversely, research dimensions
encapsulate the multifaceted aspects of a given research problem, constituting the nuanced
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themes or axes along which scholarly investigations are conducted. ORKG contribution
properties offer insights into the attributes of individual papers, whereas research dimen-
sions operate at a broader level, revealing the finer-grained thematic fundamentals of
research endeavors. While ORKG contribution properties focus on the specifics of research
findings, research dimensions offer a more comprehensive context for analyzing a research
question that can be used to find similar papers that share the same dimensions. In order to
test the alignment of LLM-generated research dimensions with ORKG properties, several
LLMs were selected for comparison, as described in the next section.

3.2. Method: Three Large Language Models Applied for Research Dimension Generation

In this section, we discuss the LLMs applied for automated research dimension gener-
ation as well as the task-specific prompt that was designed as the input to the LLM.

3.2.1. The Three LLMs

To test the automated generation of research dimensions, we tested and compared the
outputs of three different state-of-the-art LLMs with comparable parameter counts, namely,
GPT-3.5, Llama 2, and Mistral.

GPT-3.5, developed by OpenAI, is one of the most influential LLMs to date. Its number
of parameters is not publicly disclosed [26]. In comparison, its predecessor GPT-3 models
come in different sizes and contain from 125 million parameters for the smallest model
to 175 billion for the largest [10]. GPT-3.5 has demonstrated exceptional performance on
a range of NLP tasks, including translation, question answering, and text completion.
Notably, the capabilities of this model are accessed through the OpenAI API since the
model is closed-source, which limits direct access to its architecture for further exploration
or customization.

Llama 2 by Meta AI [4], the second iteration of the Llama LLM, represents a significant
advancement in the field. Featuring twice the context length of its predecessor, Llama 1 [27],
Llama 2 offers researchers and practitioners a versatile tool for working with NLP. Impor-
tantly, Llama 2 is available free of charge for both research and commercial purposes, with
multiple parameter configurations available, including a 13-billion-parameter option. In
addition, the model supports fine-tuning and self-hosting, which enhances its adaptability
to a variety of use cases.

Mistral, developed by Mistral AI, is a significant competitor in the landscape of LLMs.
With a parameter count of 7.3 billion, Mistral demonstrates competitive performance on
various benchmarks, often outperforming Llama 2 despite its smaller size [5]. In addition,
Mistral is distinguished by its open-source code, released under the Apache 2.0 license,
making it easily accessible for research and commercial applications. Notably, Mistral
has an 8k context window, which allows for a more complete understanding of context
compared to the 4k context window of Llama 2 [28].

Overall, GPT-3.5, despite its closed-source nature, remains influential in NLP research,
with a vast number of parameters that facilitate its generic task performance in the context
of a wide variety of applications. Conversely, Llama 2 and Mistral, with their open-source
nature, provide flexibility and accessibility to researchers and developers while displaying
similar performance characteristics to GPT [29]. Released shortly after Llama 2, Mistral, in
particular, shows notable performance advantages over Llama 2, highlighting the rapid
pace of innovation and improvement in the development of LLMs. These differences
between models lay the groundwork for assessing their alignment with manually curated
properties from the ORKG and determining their potential for automated research metadata
creation and the retrieval of related work.

To effectively utilize the capabilities of these LLMs, we employed various compu-
tational resources and APIs. GPT-3.5 was accessed via the OpenAI API, which allowed
us to harness its extensive capabilities through cloud-based infrastructure. This setup
facilitated efficient and scalable interactions with the model. For the Llama 2 and Mistral
models, we used the GPU cluster at our organization at TIB and the L3S Research Centre.
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This cluster includes a range of GPUs, such as NVIDIA series 1080 ti, 2080 ti, RTX 8000,
and RTX A5000. The LLMs were accessed through the Ollama API (accessed on 23 April
2024), enabling the deployment and execution of the LLMs on our dedicated hardware.
This GPU cluster provided the necessary computational power to meet the demands of
running these models, ensuring robust performance for our evaluation tasks. The GPUs
were selected based on the resources available in our server at the time of each specific
experiment. By integrating these APIs and computational infrastructures, we were able to
efficiently leverage the strengths of each LLM within the constraints of our resources.

3.2.2. Research Dimension Generation Prompts for the LLMs

An LLM’s performance on a particular task is highly dependent on the quality of
the prompt. To find the optimal prompt methodology, our study explores various estab-
lished prompting techniques, including zero-shot [30], few-shot [10], and chain-of-thought
prompting [31]. The simplest type of prompt is a zero-shot approach, wherein pretrained
LLMs, owing to the large-scale coverage of human tasks within their pretraining datasets,
demonstrate competence in task execution without prior exposure to specific examples.
While zero-shot prompting provides satisfactory results for certain tasks, some of the more
complex tasks require few-shot prompting. By providing the model with several examples,
few-shot prompting enables in-context learning, potentially enhancing model performance.
Another popular technique is chain-of-thought prompting, which instructs the model
to think step-by-step. Guiding the LLM through sequential steps helps to break down
complex tasks into manageable components that are easier for the LLM to complete.

In this study, the task involves providing the LLM with a research problem, and
based on this input, the model should suggest research dimensions that it finds relevant to
structure contributions from similar papers that address the research problem. Our system
prompts for each technique, along with examples of output for the research problem
“Automatic text summarization” from GPT-3.5, are shown in Table 1.

Table 1. Prompt variations utilizing different prompt engineering techniques to instruct LLMs for the
research dimension generation task.

Prompting Technique System Prompt Output Example

Zero-Shot

You will be provided with a research problem,
your task is to list dimensions that are relevant to

find similar papers for the research problem.
Respond only in the format of a python list.

[“Natural Language Processing”, “Text Analysis”,
“Machine Learning”, “Deep Learning”,

“Information Retrieval”, “Artificial Intelligence”,
“Language Models”, “Document Summarization”]

Few-Shot

You will be provided with a research problem,
your task is to list dimensions that are relevant to

find similar papers for the research problem.
Respond only in the format of a python list.

The following are two successfully completed task
examples.

Research problem: “Transformer models”
Research dimensions: [”model”, “date created”,
“pretraining architecture”, “pretraining task”,

“training corpus”, “optimizer”, “tokenization”,
“number of parameters”, “license”]

Research problem: “Liposomes as drug carriers”
Research dimensions: [”Type of nanocarrier”,
“Nanoparticle preparation method”, “Lipid
composition”, “Drug type”, “Particle size”]

[”Summarization approach”, “Document type”,
“Language”, “Evaluation metric”, “Model type”,

“Training dataset”, “Compression ratio”,
“Summary length”]

https://github.com/ollama/ollama/blob/main/docs/api.md
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Table 1. Cont.

Prompting Technique System Prompt Output Example

Chain-of-Thought

You will be provided with a research problem,
your task is to list dimensions that are relevant to

find similar papers for the research problem.
Provide justification why each dimension is
relevant for finding similar papers. Think

step-by-step. At the end combine all the relevant
dimensions in the format of a python list.

[“Task/Methodology”, “Domain/Genre”,
“Evaluation Metrics”, “Language”, “Input/Output
Format”, “Deep Learning/Traditional Methods”,

“Applications”]

Our analysis shows that the utilization of more advanced prompting techniques did
not necessarily result in superior outcomes, which leads us to believe that our original zero-
shot prompt is sufficient for our task’s completion. The absence of discernible performance
improvements with the adoption of more complex prompting techniques highlights the
effectiveness of the initial zero-shot prompt in aligning with the objectives of research
dimension extraction. Consequently, we apply the zero-shot prompt methodology.

To test the alignment of LLM-generated research dimensions with ORKG properties,
each of the LLMs was given the same prompt to create a list of dimensions that are relevant
for finding similar papers based on the provided research problem. Table 2 shows the
comparison between some of the manually created properties from the ORKG and the
research dimensions provided by GPT-3.5, Llama 2, and Mistral.

Table 2. A comparison of manually created ORKG properties with LLM-generated research dimen-
sions for the same papers.

Research Problem ORKG Properties GPT-3.5 Dimensions Llama 2 Dimensions Mistral Dimensions

https://orkg.org/
comparison/R141123/
(accessed on 23 April

2024), Limestone
mineral identification

using Hyperion
imagery

“Data used”, “Research
problem”, “Study
Area”, “Software”,

“Analysis”,
“Processing”, “Field

instrument”,
“Reference”

“Mineralogy”,
“Limestone”,

“Hyperion imagery”,
“Identification”

“Remote Sensing”,
“Hyperspectral

Imaging”, “Mineral
Identification”,
“Limestone”,

“Hyperion Imagery”,
“Geological Mapping”,
“Image Classification”,

“Spectral Analysis”,
“Earth Observation”,

“Geoscience”

“Limestone”, “Mineral
identification”,

“Remote sensing”,
“Hyperion imagery”,
“Spectral signatures”,

“Band ratios”, “Textural
features”, “Shape

descriptors”, “Machine
learning algorithms”,

“Support Vector
Machines”, “Decision

trees”, “Random
forests”

https://orkg.org/
comparison/R204005/
(accessed on 23 April

2024), Do human
noroviruses infect

animals

“Material”, “Method”,
“Symptoms and signs”,

“Research problem”,
“Species”, “Location”,

“Antigen used”,
“Immunoglobulin
class”, “Primers”’,

“Noroviruses found’,
“Norovirus genotype”

“viral infectivity”,
“host range”,
“cross-species
transmission”,

“zoonotic potential”

“Host species”, “Viral
genotype”,

“Transmission route”,
“Infection prevalence”,

“Pathogenesis”,
“Diagnostic methods”,

“Epidemiology”,
“Evolutionary history”,
“Interaction with other

pathogens”, “Public
health implications”

“Norovirus”,
“Animals”,

“Transmission”,
“Species”, “Symptoms”,

“Epidemiology”,
“Serotypes”,
“Immunity”,

“Detection methods”,
“Genome analysis”

3.3. Method: Three Types of Similarity Evaluations between ORKG Properties and LLM-Generated
Research Dimensions

This section outlines the methodology used to evaluate our dataset, namely, the auto-
mated evaluation of semantic alignment and deviation, as well as mapping between ORKG
properties and LLM-generated research dimensions performed by GPT-3.5. Additionally,

https://orkg.org/comparison/R141123/
https://orkg.org/comparison/R141123/
https://orkg.org/comparison/R204005/
https://orkg.org/comparison/R204005/
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we present our approach to calculating the embedding similarity between properties and
research dimensions.

3.3.1. Semantic Alignment and Deviation Evaluations Using GPT-3.5

To measure the semantic similarity between ORKG properties and LLM-generated
research dimensions, we conducted semantic alignment and deviation assessments using
an LLM-based evaluator. In this context, semantic alignment refers to the degree to which
two sets of concepts share similar meanings, whereas semantic deviation assesses how far
apart they are in terms of meaning. As the LLM evaluator, we leveraged GPT-3.5. As input,
it was provided with both the lists of properties from ORKG and the dimensions extracted
by the LLMs in a string format per research problem. Semantic alignment was rated on a
scale from 1 to 5, using the following system prompt to perform this task:

You will be provided with two lists of strings, your task is to rate
the semantic alignment between the lists on the scale form 1 to 5.
Your response must only include an integer representing your assessment
of the semantic alignment, include no other text.

Additionally, the prompt included a detailed description of the scoring system shown
in Table 3.

Table 3. Descriptions of the semantic alignment scores provided in the GPT-3.5 system prompt.

Score Description

1—Strongly Disaligned The strings in the lists have minimal or no semantic similarity.
2—Disaligned The strings in the lists have limited semantic alignment.
3—Neutral The semantic alignment between the lists is moderate or average.
4—Aligned The strings in the lists show substantial semantic alignment.
5—Strongly Aligned The strings in the lists exhibit high semantic coherence and alignment.

To further validate the accuracy of our alignment scores, we leveraged GPT-3.5 as
an evaluator again but this time to generate semantic deviation scores. By using this
contrastive alignment versus deviation evaluation method, we can cross-reference where
the LLM evaluator displays a strong agreement in its evaluation and assess the evaluations
for reliability. Specifically, we evaluate the same set of manually curated properties and
LLM-generated research dimensions using both agents, with the expectation that the
ratings will exhibit an inverse relationship. In other words, high alignment scores should
correspond to low deviation scores, and vice versa. The convergence of these opposing
measures would provide strong evidence for the validity of our evaluation results. Similar
to the task of alignment rating, the system prompt below was used to instruct GPT-3.5
to measure semantic deviation, and the ratings described in Table 4 were also part of
the prompt.

You will be provided with two lists of strings, your task is to rate
the semantic deviation between the lists on the scale form 1 to 5.
Your response must only include an integer representing your assessment
of the semantic deviation, include no other text.

Table 4. Descriptions of the semantic deviation scores provided in the GPT-3.5 system prompt.

Score Description

1—Minimal Deviation The strings in the lists show little or no semantic difference.
2—Low Deviation The semantic variance between the lists is limited.
3—Moderate Deviation There is a moderate level of semantic difference between the strings

in the lists.
4—Substantial Deviation The lists exhibit a considerable semantic gap or difference.
5—Significant Deviation The semantic disparity between the lists is pronounced and substantial.
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By combining these two evaluations, we can gain a more nuanced understanding of
the relationship between the ORKG properties and LLM-generated research dimensions.

3.3.2. ORKG Property and LLM-Generated Research Dimension Mappings by GPT-3.5

To further analyze the relationships between ORKG properties and LLM-generated
research dimensions, we used GPT-3.5 to find the mappings between individual properties
and dimensions. This approach diverges from the previous semantic alignment and
deviation evaluations, which considered the lists as a whole. Instead, we instructed
GPT-3.5 to identify the number of properties that exhibit similarity to individual research
dimensions. This was achieved by providing the model with the two lists of properties and
dimensions and prompting it to count the number of similar values between the lists.

The system prompt used for this task was as follows:

You will be provided with two lists of strings, your task is to count how
many values from list1 are similar to values of list2.
Respond only with an integer, include no other text.

By leveraging GPT-3.5’s capabilities in this manner, we were able to count the number
of LLM-generated research dimensions that are related to individual ORKG properties.
The mapping count provides a more fine-grained insight into the relationships between the
properties and dimensions.

3.3.3. Scientific Embedding-Based Semantic Distance Evaluations

To further examine the semantic relationships between ORKG properties and LLM-
generated research dimensions, we employed an embedding-based approach. Specifically,
we utilized SciNCL to generate vector embeddings for both the ORKG properties and
the LLM-generated research dimensions. These embeddings were then compared using
cosine similarity as a measure of semantic similarity. We evaluated the similarity of
ORKG properties to the research dimensions generated by GPT-3.5, Llama 2, and Mistral.
Additionally, we compared the LLM-generated dimensions to each other, providing insights
into the consistency and variability of the research dimensions generated by different
LLMs. By leveraging embedding-based evaluations, we were able to quantify the semantic
similarity between the ORKG properties and the LLM-generated research dimensions, as
well as among the dimensions themselves.

3.3.4. Human Assessment Survey Comparing ORKG Properties with LLM-Generated
Research Dimensions

We conducted a survey to evaluate the utility of LLM-generated dimensions in the
context of domain-expert-annotated ORKG properties. The survey was designed to solicit
the impressions of domain experts when shown their original annotated properties versus
the research dimensions generated by GPT-3.5. We selected participants who are experi-
enced in creating structured paper descriptions in the ORKG. These participants included
ORKG curation grant participants (https://orkg.org/about/28/Curation_Grants (accessed
on 23 April 2024)), ORKG employees, and authors whose comparisons were displayed
on the ORKG Featured Comparisons page at https://orkg.org/featured-comparisons,
accessed on 23 April 2024. Each participant was given up to 5 surveys, one for each of
5 different papers that they structured. Each survey evaluated the properties of a paper
against it’s research dimensions. Participants could choose to complete one, some, or all
of the surveys. At the end, we received 23 total responses to our survey, corresponding to
23 different papers.

The survey itself consisted of five questions, most of which were designed on a Likert
scale, to gauge the domain expert’s assessment of the effectiveness of the LLM-generated
research dimensions. For each survey, as evaluation data, participants were presented with
two tables: one including their annotated ORKG property names and values (Figure 4)
and another one consisting of the research dimension name, its description, and value

https://orkg.org/about/28/Curation_Grants
https://orkg.org/featured-comparisons
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generated by GPT-3.5 from a title and abstract of the same paper (Figure 5). Following
these data was the survey questionnaire. The questions asked participants to rate the
relevance of LLM-generated research dimensions, consider making edits to the original
ORKG structured contribution, and evaluate the usefulness of LLM-generated content
as suggestions before creating their structured contributions. Additionally, participants
were asked to describe how LLM-generated content would have been helpful and rate
the alignment of LLM-generated research dimensions with the original ORKG structured
contribution. The survey questionnaire is shown below:

1. How many of the properties generated by ChatGPT are relevant to your ORKG
structured contribution? (Your answer should be a number)

2. Considering the ChatGPT-generated content, would you consider making edits to
your original ORKG structured contribution?

3. If the ChatGPT-generated content were available to you as suggestions before you
created your structured contribution, would it have been helpful?

(a) If you answered “Yes” to the question above, could you describe how it would
have been helpful?

4. On a scale of 1 to 5, please rate how well the ChatGPT-generated response aligns with
your ORKG structured contribution.

5. We plan to release an AI-powered feature to support users in creating their ORKG
contributions with automated suggestions. In this context, please share any additional
comments or thoughts you have regarding the given ChatGPT-generated structured
contribution and its relevance to your ORKG contribution.

Figure 4. An example of ORKG properties shown to survey respondents.

Figure 5. An example of GPT dimensions shown to survey respondents.

The subsequent section will present the results obtained from these methodologies,
providing insights into the similarity between ORKG properties and LLM-generated re-
search dimensions.

4. Results and Discussion

This section presents the results of our evaluation, which aimed to assess the LLMs’
performance in the task of recommending research dimensions by calculating the similar-
ity between ORKG properties and LLM-generated research dimensions. We employed
three types of similarity evaluations: semantic alignment and deviation assessments, prop-
erty and research dimension mappings using GPT-3.5, and embedding-based evaluations
using SciNCL.

4.1. Semantic Alignment and Deviation Evaluations

The average alignment between paper properties and research field dimensions was
found to be 2.9 out of 5, indicating a moderate level of alignment. In contrast, the average
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deviation was 4.1 out of 5, suggesting a higher degree of deviation. When normalized, the
proportional values translate to 41.2% alignment and 58.8% deviation (Figure 6). These
results imply that, while there is some alignment between paper properties and research
field dimensions, there is also a significant amount of deviation, highlighting the difference
between the concepts of structured papers’ properties and research dimensions. This
outcome supports our hypothesis that LLM-based research dimensions generated solely
from a research problem, relying on LLM-encoded knowledge, may not fully capture the
nuanced inclinations of domain experts when they annotate ORKG properties to structure
their contributions, where the domain experts have the full paper at hand. We posit that an
LLM not explicitly tuned to the scientific domain, despite its vast parameter space, is not
able to emulate a human expert’s subjectivity to structure contributions.

Figure 6. Proportional values of semantic alignment and deviation between ORKG properties and
GPT-generated dimensions.

4.2. Property and Research Dimension Mappings

We examine our earlier posited claim in a more fine-grained manner by comparing
the property versus research dimension mappings. The average number of mappings
was found to be 0.33, indicating a low number of mappings between paper properties
and research field dimensions. The average ORKG property count was 4.73, while the
average GPT dimension count was 8. These results suggest that LLMs can generate a more
diverse set of research dimensions than the ORKG properties, but with a lower degree of
similarity. Notably, the nature of ORKG properties and research dimensions differs in their
scope and focus. Common ORKG properties like “research problem”, “method”, “data
source”, and others provide valuable information about a specific paper, but they cannot
be used to comprehensively describe a research field as a whole. In contrast, research
dimensions refer to the shared properties of a research question, rather than focus on an
individual paper. This difference contributes to the low number of mappings between
paper properties and research field dimensions, which further supports our conjecture that
an LLM based only on its own knowledge applied to a given research problem might not
be able to completely emulate a human expert’s subjectivity in defining ORKG properties.
These results, therefore, are not a direct reflection of the inability of the LLMs tested to
recommend suitable properties to structure contributions on the theme. This then opens the
avenue for future work to explore how LLMs fine-tuned on the scientific domain perform
in the task as a direct extension of our work.

4.3. Embedding-Based Evaluations

The embedding-based evaluations provide a more nuanced perspective on the seman-
tic relationships between the ORKG properties and the LLM-generated research dimensions.
By leveraging the SciNCL embeddings, we were able to quantify the cosine similarity be-
tween these two concepts, offering insights into their alignment. The results indicate a high
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degree of semantic similarity, with the cosine similarity between ORKG properties and the
LLM-generated dimensions reaching 0.84 for GPT-3.5, 0.79 for Mistral, and 0.76 for Llama 2.
These values suggest that the LLM-generated dimensions exhibit a strong correlation with
the manually curated ORKG properties, signifying a substantial semantic overlap between
the two.

Furthermore, the correlation heatmap (Figure 7) provides a visual representation
of these similarities, highlighting the strongest correlations between ORKG properties
and LLM-generated dimensions. The embedding-based evaluations indicate that GPT-3.5
demonstrates the highest similarity to the ORKG properties, outperforming both Llama
2 and Mistral. When comparing LLM-generated dimensions between these models, the
strong similarity observed between the Llama 2 and Mistral dimensions highlights the
remarkable consistency in the research dimensions generated by these two models.

Figure 7. Correlation heatmap of cosine similarity between SciNCL embeddings of ORKG properties
and LLM-generated dimensions.

To further validate our findings, we extended our evaluations using SciBERT and
SPECTER embeddings in addition to SciNCL. These additional embeddings provided
similar results, reinforcing the reliability of our conclusions. Specifically, using SPECTER
embeddings, the cosine similarity between the ORKG properties and the LLM-generated
dimensions was 0.86 for GPT-3.5, 0.70 for Llama 2, and 0.76 for Mistral. With SciBERT
embeddings, the cosine similarity values were 0.84 for GPT-3.5, 0.57 for Llama 2, and 0.66
for Mistral (Figure 8). These consistent results across different embedding models highlight
the robustness of the LLMs’ capacity to generate research dimensions that are semantically
aligned with the manually curated ORKG properties.

Overall, the embedding-based evaluations provide a quantitative representation of
the semantic relationships between the ORKG properties and the LLM-generated research
dimensions. These results suggest that, while there are notable differences between the two,
the LLMs exhibit a strong capacity to generate dimensions that are semantically aligned
with the manually curated ORKG properties, particularly in the case of GPT-3.5. This
finding highlights the potential of LLMs to serve as valuable tools for automated research
metadata creation and the retrieval of related work.
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(a) SciBERT embeddings (b) SPECTER embeddings
Figure 8. Correlation heatmap of cosine similarity between embeddings of ORKG properties and
LLM-generated dimensions.

4.4. Human Assessment Survey

To further evaluate the utility of the LLM-generated research dimensions, we con-
ducted a survey to solicit feedback from domain experts who annotated the properties to
create structured science summary representations or structured contribution descriptions
in the ORKG. The survey was designed to assess the participants’ impressions when pre-
sented with their original ORKG properties alongside the research dimensions generated
by GPT-3.5.

For the first question in the questionnaire assessing the relevance of LLM-generated
dimensions for creating a structured paper summary or structuring the contribution of a
paper, on average, 36.3% of the research dimensions generated by LLMs were considered
highly relevant (Figure 9). This suggests that LLM-generated dimensions can provide useful
suggestions for creating structured contributions in the ORKG. For the second question,
the majority of participants (60.9%) did not think it was necessary to make changes to
their existing ORKG structured paper property annotations based on the LLM-generated
dimensions, indicating that, while the suggestions were relevant, they may not have been
sufficient to warrant significant changes (Figure 10). However, based on the third question,
the survey also revealed that the majority of authors (65.2%) believed that having LLM-
generated content as suggestions before creating the structured science summaries or
structured contributions would have been helpful (Figure 11). The respondents noted that
such LLM-based dimension suggestions could serve as a useful starting point, provide a
basis for improvement, and aid in including additional properties. Based on the fourth
question, the alignment between LLM-generated research dimensions and the original
ORKG structured contribution properties was rated as moderate, with an average rating
of 2.65 out of 5 (Figure 12). This indicates that, while there is some similarity between
the two, there is room for further alignment. As such, participants raised concerns about
the specificity of generated dimensions potentially diverging from the actual goal of the
paper. For the final question on the release of such an LLM-based feature, the respondents
emphasized the importance of aligning LLMs based on the domain-expert property names
while allowing descriptions to be generated, ensuring relevance across different research
domains and capturing specific details like measurement values and units.
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Figure 9. Counts of the number of relevant LLM-generated research dimensions for structuring a
paper’s contribution or creating a structured science summary.

Figure 10. The willingness of the participants to make changes to their existing annotated ORKG
properties when shown the LLM-generated research dimensions.

Figure 11. The utility of LLM-generated dimensions as suggestions.
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Figure 12. The alignment of LLM-generated dimensions with ORKG structured contributions.

Overall, the findings of the survey indicate that LLM-generated dimensions exhibited
a moderate alignment with manually extracted properties. Although the generated prop-
erties did not perfectly align with the original contributions, they still provided valuable
suggestions that authors found potentially helpful in various aspects of creating structured
contributions for the ORKG. For instance, the suggestions were deemed useful in facilitat-
ing the creation of comparisons, identifying relevant properties, and providing a starting
point for further refinement. However, concerns regarding the specificity and alignment
of the generated properties with research goals were noted, suggesting areas for further
refinement. These concerns highlight the need for LLMs to better capture the nuances of
research goals and objectives in order to generate more targeted and relevant suggestions.
Nonetheless, the overall positive feedback from participants suggests that AI tools, such as
LLMs, hold promise for assisting users in creating structured research contributions and
comparisons within the ORKG platform.

5. Conclusions

In this study, we investigated the performance of state-of-the-art Large Language
Models (LLMs) in recommending research dimensions, aiming to address the central
research question: How effectively do LLMs perform in the task of recommending research
dimensions? Through a series of evaluations, including semantic alignment and deviation
assessments, property and research dimension mappings, embedding-based evaluations,
and a human assessment survey, we sought to provide insights into the capabilities and
limitations of LLMs in this domain.

The findings of our study elucidated several key aspects of LLM performance in
recommending research dimensions. First, our semantic alignment and deviation assess-
ments revealed a moderate level of alignment between manually curated ORKG properties
and LLM-generated research dimensions, accompanied by a higher degree of deviation.
While LLMs demonstrate some capacity to capture semantic similarities, there are notable
differences between the concepts of structured paper properties and research dimensions.
This suggests that LLMs may not fully emulate the nuanced inclinations of domain experts
when structuring contributions.

Second, our property and research dimension mapping analysis indicated a low
number of mappings between paper properties and research dimensions. While LLMs can
generate a more diverse set of research dimensions than ORKG properties, the degree of
similarity is lower, highlighting the challenges in aligning LLM-generated dimensions with
human-expert-curated properties.

Third, our embedding-based evaluations showed that GPT-3.5 achieved the highest
semantic similarity between ORKG properties and LLM-generated research dimensions,
outperforming Mistral and Llama 2 in that order.
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Fourth and finally, our human assessment survey provided valuable feedback from
domain experts, indicating a moderate alignment between LLM-generated dimensions and
manually annotated properties. While the suggestions provided by LLMs were deemed
potentially helpful in various aspects of creating structured contributions, concerns regarding
specificity and alignment with research goals were noted, suggesting areas for improvement.

While this study provides valuable insights into the performance of LLMs in generat-
ing research dimensions, there are several limitations that should be acknowledged. Firstly,
the LLMs used in this research are trained on a wide range of text, not exclusively the
scientific literature, which may affect their ability to accurately generate research dimen-
sions. Secondly, due to hardware limitations, we were unable to test larger LLM models,
restricting our evaluation to small and medium-sized models. Furthermore, this work
represents the first empirical investigation into this novel research problem, defining a
preliminary paradigm for future research in this area. As such, our evaluation focused on
state-of-the-art LLMs, serving as a stepping stone for future studies to explore a broader
range of LLM architectures and scales. Moving forward, researchers should consider test-
ing a diverse array of LLMs, including larger models and those specifically fine-tuned for
scientific domains, to gain a more comprehensive understanding of their capabilities and
limitations in generating research dimensions.

In conclusion, our study contributes to a deeper understanding of LLM performance in
recommending research dimensions to create structured science summary representations
in the ORKG. While LLMs show promise as tools for automated research metadata creation
and the retrieval of related work, further development is necessary to enhance their accuracy
and relevance in this domain. Future research may explore the fine-tuning of LLMs on
scientific domains to improve their performance in recommending research dimensions.
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