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Abstract

Process mining comprises methods to analyze organizational processes based on
event data recorded by information systems during process execution. These meth-
ods generate actionable insights into how processes are truly executed and thereby
support their improvement. However, the characteristics of event data that is avail-
able in organizations often differs from the data needs of process mining analyses.
Specifically, unavailable data limits process analysis options, overly fine-granular
data leads to uninformative process mining results, and inaccurate data even leads
to incorrect results that do not mirror reality. These problems severely impact the
opportunities and outcomes of process mining analyses. The goal of this doc-
toral thesis is to support organizations in overcoming these problems so that they
can analyze their processes effectively using the event data available to them. Its
main contributions are five approaches that automatically transform event data so
that its characteristics satisfy the data needs of particular process analysis pur-
poses. Specifically, we propose approaches to (1) annotate event data with semantic
components to enable semantics-aware process analysis, (2) abstract fine-granular
event data while adhering to user-defined requirements to enable purpose-driven
process analysis, (3) transform user interaction data to task-level events to enable
process analysis, (4) extract object-related information from event data to enable
object-centric process analysis, and (5) detect best-practice violations in event data
to provide insights into data-quality and conformance issues. The common driver
of these approaches is the consideration of the semantics, i.e., the meaning, of
events. We demonstrate the efficacy of the proposed approaches through quan-
titative evaluations using data obtained in real-world settings. Furthermore, we
present application scenarios that underscore the usefulness of our approaches and
highlight the analysis opportunities they enable for organizations.
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Zusammenfassung

Process Mining umfasst Methoden zur Analyse von Unternehmensprozessen auf
der Grundlage von Ereignisdaten, die von Informationssystemen während der
Prozessausführung aufgezeichnet werden. Diese Methoden liefern Erkenntnisse
darüber, wie die Prozesse tatsächlich ausgeführt werden und unterstützen damit
die Prozessverbesserung. Die Eigenschaften verfügbarer Ereignisdaten unterschei-
den sich jedoch häufig von den Anforderungen von Process-Mining-Methoden.
Insbesondere schränken nicht verfügbare Daten die Möglichkeiten der Prozess-
analyse ein, zu feingranulare Daten führen zu wenig aussagekräftigen Ergebnis-
sen und ungenaue Daten führen sogar zu falschen Ergebnissen, die die Realität
nicht widerspiegeln. Diese Probleme beeinträchtigen die Analysemöglichkeiten
und -ergebnisse erheblich. Ziel dieser Dissertation ist es, Unternehmen bei
der Überwindung dieser Probleme zu unterstützen, damit sie ihre Prozesse mit
den Ereignisdaten, die ihnen zur Verfügung stehen, effektiv analysieren kön-
nen. Der Forschungbeitrag besteht aus fünf Ansätzen, die Ereignisdaten au-
tomatisiert transformieren, um so die Lücke zwischen den Dateneigenschaften
und den Datenanforderungen bestimmter Prozessanalysen zu schließen. Konkret
schlagen wir Ansätze vor, um (1) Ereignisdaten mit semantischen Komponen-
ten zu annotieren, die semantische Prozessanalysen ermöglichen, (2) feingran-
ulare Ereignisdaten zu abstrahieren und dabei benutzerdefinierte Anforderungen
einzuhalten, um zielgerichtete Prozessanalysen zu ermöglichen, (3) Benutzerin-
teraktionen zu Prozessereignissen zu abstrahieren, die Analysen auf Prozessebene
ermöglichen, (4) Informationen über einzelne Objekte und deren Beziehungen aus
Ereignisdaten zu extrahieren, um objektzentrierte Prozessanalysen zu ermöglichen
und (5) Best-Practice-Verstöße in Ereignisdaten zu erkennen, die Einblicke in die
Datenqualität und Konformitätsprobleme geben. Diese Ansätze haben gemein,
dass sie die Semantik, d.h. die Bedeutung, von Ereignissen berücksichtigen. Wir
zeigen die Wirksamkeit unserer Ansätze durch quantitative Evaluationen anhand
von realen Ereignisdaten. Darüber hinaus stellen wir Anwendungsszenarien vor,
die den Nutzen und die praktische Relevanz der Ansätze, sowie die damit verbun-
denen Analysemöglichkeiten für Unternehmen demonstrieren.
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Chapter 1

Introduction

This chapter provides an introduction to this doctoral thesis. Section 1.1 first out-
lines the context, before Section 1.2 motivates the need for transforming event data
for process mining. Section 1.3 gives an overview of the contributions of this thesis.
Section 1.4 describes the methodological background for the conducted research
and Section 1.5 presents the publications that resulted from it. Finally, Section 1.6
outlines the remaining chapters of this thesis.

1.1 Context

Process mining enables the data-driven analysis of organizational processes based
on event data that is recorded by information systems. In this context, an organiza-
tional process is “a collection of inter-related events, activities, and decision points
that involve a number of actors and objects, which collectively lead to an outcome
that is of value to at least one customer” [72]. Process mining offers actionable
insights into how such a process is really executed. This includes the discovery of
process models, the identification of deviations between actual and expected pro-
cess behavior, and the diagnosis and forecasting of performance and compliance
issues, all with the aim to support the improvement of a given process [8].

Event 
data

Source 
systems

Organizational
process

Data recording

Extraction Event 
log

Format

Preprocessing Analysis
results

Analysis 

Improvement

Figure 1.1: Overview of process mining.
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Chapter 1. Introduction 2

Figure 1.1 shows an overview of how to get from the execution of an organi-
zational process to analysis results that help improve this process. Data about the
process execution is recorded and entered into source systems, such as Enterprise
Resource Planning (ERP) systems, databases, transaction logs, message-oriented
middleware, and document management systems [7]. Event data is extracted from
one or more such source systems, preprocessed, e.g., filtered and cleaned, and
stored in an event log that can be used for process mining [73]. The event log has a
certain format that defines entity and relation types and their attributes, which are
used to represent the process executions.

Table 1.1 shows an event log that captures two executions of a request-handling
process. Each event corresponds to an activity that was performed in the process,
the timestamp of its occurrence, a resource that performed the corresponding activ-
ity, and an identifier of the request it belongs to. As such, the data captures the order
of steps that were performed to handle each request. Take, for instance, request-1:
after receiving the request, it was first categorized. Subsequently, a casual exam-
ination took place and, upon reaching a decision, the request was accepted. The
requester was then notified about this outcome and the request was archived.

Table 1.1: Event log capturing two executions of a request-handling process.

Request ID Activity Timestamp Resource

request-1 Request received 05-20 09:07 System
request-1 Categorize request 05-20 09:11 User1
request-2 Request received 05-20 10:23 System
request-2 Categorize request 05-20 10:55 User1
request-1 Examine casually 05-20 11:24 User3
request-1 Accept request 05-20 11:41 User3
request-1 Inform requester 05-20 11:52 User1
request-1 Archive request 05-20 11:53 User1
request-2 Examine thoroughly 05-20 13:41 User2
request-2 Reject request 05-20 15:02 User4
request-2 Archive request 05-20 15:13 User1
request-2 Inform requester 05-20 15:15 User1

The specific characteristics of an event log depend on the different aspects
involved in its creation. The granularity of the events depends on the data recording
and the source systems that are in place. The behavior that an event log captures
depends on the process itself but also on what (part of the) process behavior is
recorded and extracted. The entities and relations of the process that an event log
captures depend on the choice for a specific log format and, finally, available event
attributes depend on the extraction procedure.
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1.2 Motivation

An event log can serve as a basis for a broad range of process mining analyses.
However, its characteristics may also differ from the data needs of a given analysis
purpose. This misalignment can manifest itself in three sorts of problems.
Unavailable data limits analysis options. Data that is not readily available in an
event log may prevent an organization from performing certain process analyses.
In particular, certain techniques consider the meaning of events and their data at-
tributes. This involves recognizing what underlying activities mean in relation to
the process, or what event attributes say about the performed step. Examples for
this include social network analysis [12], which considers the actors that perform
events, object-centric process analysis [6], which considers the different objects in-
volved in a process, and semantic anomaly detection [5], which detects anomalous
behavior by considering the meaning of activities. However, the information re-
quired to conduct these analyses, such as the actions, objects, and actors associated
with events, is not readily available in most event logs. This issue considerably
limits the analysis options and thus the insights that an organization can obtain
about their process based on a given event log.
Overly fine-granular data leads to uninformative results. Data that is too fine-
granular can lead to analysis results that do not provide useful insights into the pro-
cess. In particular, fine-granular events typically cause a considerable amount of
different activities and a high degree of behavioral variability in the event data. This
leads to process mining results that are complex and challenging to interpret [187].
Consequently, an organization cannot improve its understanding of their process,
which is a primary goal of applying process mining in the first place [187]. This
problem is amplified if fine-granular events lack activity-level information and an
explicit relation to a process [60]. For instance, if events are recorded at the granu-
larity of individual user interactions such as click button or input text, their relation
to process-related activities is unclear. When applying process mining to such data,
the results are not only complex, but also lack a direct connection to an organiza-
tional process, thereby failing to improve our understanding of it.
Inaccurate data leads to incorrect results. Data that misrepresents the true pro-
cess can lead to analysis results that are incorrect. This is particularly problematic
considering that process mining aims to generate actionable insights about a given
process. Organizations may derive incorrect conclusions, redesign their process
based on them, and decrease their process quality rather than increasing it [126].
Such incorrect analysis results can result from the choice of a log format that can-
not capture complex interrelations among multiple objects involved in a process.
In particular, this can lead to false statistics about the process and process behav-
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ior that diverges from reality [6]. Incorrect analysis results may also arise from
data corresponding to anomalous process behavior, such as cancelled orders that
were never created. Whether due to erroneous data recording or process execution
issues, unknowingly including such behavior in an analysis can distort its results.

Although these problems severely impact the opportunities and outcomes of pro-
cess analysis, there is little support for organizations to address them effectively.
We aim to overcome this lack of support by automatically transforming event data
so that its characteristics satisfy the data needs of particular analysis purposes.

1.3 Contributions

This thesis addresses the need for automated event data transformation to enable
organizations to effectively analyze their processes based on event data available to
them. Its main contributions revolve around the definition of five approaches that
transform event data so that the characteristics of the transformation result satisfies
the data needs of particular analysis purposes.

Goal Illustration

1. Annotate an event log with seman-
tic components to enable semantics-
aware analysis.

Event log Annotated 
event log

Semantic 
annotation

 Actions, 
resources,
objects,…

2. Abstract an event log while adher-
ing to user-defined requirements to
enable purpose-driven analysis.

Event log Abstracted 
event log 

Constraint-driven 
event abstractionUser

requirements

3. Transform user interaction data to
task-level events to enable process
analysis.

Task-level event 
recognition

User inter-
action data

Task-level
event data

Tasks, 
labels,
objects

4. Extract object-related information
from an event log to enable object-
centric analysis.

Event log Object-centric 
event log 

Object-information 
extraction

Objects, 
properties, 
relations

5. Detect best-practice violations in
an event log to provide insights into
data-quality and conformance issues.

Event log
Annotated 
event data 

Best-practice- 
violation detection

Best-
practice 

violations
Reference 

model 
repository

Table 1.2: Overview of the approaches presented in this thesis.

As shown in Table 1.2 each approach takes event data as input and transforms
it into a representation that enhances process analysis options. Our choice for the
specific transformation use cases is motivated by the practical relevance of the anal-
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ysis purposes they enable and because addressing them requires novel conceptual
developments that benefit from the consideration of the semantics of event data. In
this thesis, we consider the term semantics in a linguistic sense, i.e., it refers to the
meaning of words [101]. As such, our approaches take the meaning of event data
into account. The five approaches correspond to the following five contributions.

1. Semantic annotation of event logs. Process mining approaches often analyze
event data in an abstract manner, without considering the meaning of the
underlying activities. Some analysis techniques do require specific informa-
tion, though. For instance, resource information is needed for handover-of-
work analysis and information about the type of action executed in an event
is needed to assess the importance of the underlying activity in the context
of the process. However, such information is often not readily available in
event logs. It is rather recorded implicitly as part of unstructured attributes
such as the event’s activity label or in unclearly named attributes or not cap-
tured by the data at all. In Chapter 3, we address this problem by proposing
an approach that identifies and categorizes semantic components in events
and creates an annotated event log that makes them explicit. In this manner,
the approach enables a broad range of semantics-aware analysis scenarios.

2. Constraint-driven abstraction of event logs. Events that are recorded by in-
formation systems are often too fine-granular to be used for process analysis
directly. When such data is used for process mining, e.g., discovery, this can
lead to results that are hard to interpret due to a high complexity of the out-
put. A range of event-abstraction approaches have been proposed [187] that
aim to tackle this problem. However, none of these allow a user to specify
what the resulting (abstracted) event log should look like. This is crucial if
they want to perform process analysis that has specific data needs, though.
For instance, a user who wants to analyze an event log with respect to the
resources that perform activities needs to be sure that each activity in the
abstracted log was performed by a single resource. In Chapter 4, we propose
an event-abstraction approach that allows for this, by letting a user impose
requirements on the resulting log in terms of constraints. As such, the ap-
proach supports the specification of properties that the abstracted log should
adhere to, so that it can be used for a specific analysis purpose.

3. Task-level-event recognition from user interaction data. User interaction
data provides detailed records about how users perform their tasks in a pro-
cess, even when performing them across different applications. Although
their comprehensiveness provides a promising basis for process mining, user
interaction events cannot be used directly for this purpose, because they do
not meet two essential requirements. In particular, they neither indicate their
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relation to a process-level activity nor their relation to a specific process ex-
ecution. Therefore, user interaction data needs to be transformed so that
it meets these requirements before process mining techniques can be ap-
plied. In Chapter 5, we propose an unsupervised approach for recognizing
task-level events from user interaction data that addresses this transforma-
tion problem. In this manner, our approach creates events from low-level
data that can be used in process mining settings.

4. Object-information extraction from event logs. Process mining techniques
have long been developed with the assumption that each process step and,
thus, event, can be associated with a single process execution, a so-called
case [8]. However, in real-world processes, individual steps often relate to
multiple objects that have interrelations across process executions, such as
multiple customer orders that are shipped in a single package [6]. Therefore,
object-centric event logs have recently been introduced, which allow events
to relate to any number of objects and enable object-centric analyses. Event
data of multi-object processes is often only available in a case-centric format,
though, without access to the systems from which it was extracted. This for-
mat obscures the true relations between objects and associated events, caus-
ing data quality issues that lead to incorrect analysis results. In Chapter 6,
we propose an approach that addresses this problem by transforming case-
centric event logs into object-centric ones, based on object information it
extracts from its input. As such, the approach enables organizations to use
their existing case-centric event logs for object-centric process mining.

5. Best-practice-violation detection in event logs. Detecting undesired behav-
ior in event logs can reveal data-quality and conformance issues. It typi-
cally requires dedicated process models that specify what desired behavior
entails [41]. Such models are rarely available, though, and their creation
involves substantial effort [72]. Reference process models [80] serve as best-
practice templates for organizational processes across domains and can, thus,
mitigate the need for dedicated models by providing a basis to check for
undesired behavior. However, matching a single reference model to a real-
world event log is impractical because organizational needs can vary (despite
similarities in process execution) and because event logs may cover the be-
havior of multiple reference models. In Chapter 7, we propose an approach
that still allows for detecting undesired process behavior based on such mod-
els. It extracts best-practice behavior from a reference model repository, se-
lects relevant behavior for a given event log, and identifies violations from
it. The resulting best-practice violations provide insights into potential data
quality issues and conformance problems.
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1.4 Methodological Background

The research presented in this thesis is conducted in the field of process mining.
Because we develop technical approaches that tackle real-world problems, our re-
search falls into the realm of algorithm engineering. Mendling et al. [128] propose
a framework for algorithm engineering research that applies to process mining re-
search on the development of technical approaches such as those proposed in this
thesis [37]. This framework provides ontological, epistemological, and method-
ological perspectives.
Ontological perspective of algorithm engineering. As shown in Figure 1.2, the
framework identifies four ontological entities in algorithm engineering: the real-
world problem, algorithmic task, algorithm design, and algorithm implementation.

Real-world 
problem

Problem context  
Envisioned solution      

Algorithmic 
task

Assumptions  
Goal     

Algorithm 
design

Design principles
Design decisions   

Algorithm 
implementation

Implementation 
decisions    

abstracts satisfies instantiates

Figure 1.2: Ontological perspective of algorithm engineering. Adapted from [128].

Real-world problem. Algorithm engineering is motivated by real-world problems,
which exist in a specific context and hint at an algorithm as part of an envisioned
solution [128]. When developing our approaches, we always start from a real-
world problem. For instance, for our constraint-driven abstraction approach, we
started from the problem that users cannot express their requirements for the char-
acteristics of abstracted event logs.
Algorithmic task. An algorithmic task abstracts from a real-world problem and
conceptualizes it, capturing essential assumptions and requirements. It has a
goal that specifies what the algorithm should achieve regarding output and per-
formance [128]. For each real-world problem we address in this thesis, we derive
one or more algorithmic tasks that jointly address it. For instance, for constraint-
driven abstraction, we derived three algorithmic tasks to address the corresponding
problem: (1) grouping events while adhering to constraints, (2) finding an optimal
solution from a set of possible groupings, and (3) abstracting an input log based on
a grouping.
Algorithm design. An algorithm design incorporates design principles and deci-
sions to address (satisfy) an algorithmic task [128]. In this thesis, we propose
approaches comprising algorithm designs that satisfy the tasks we derived from a
real-world problem. For instance, to satisfy the tasks of constraint-driven abstrac-
tion, we designed algorithms for exhaustive and heuristic event grouping, adopt an
algorithm for solving optimal grouping tasks, and design an abstraction algorithm.
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Algorithm implementations. An algorithm implementation instantiates an algo-
rithm design, which requires implementation decisions. Executing an implemen-
tation on data from the real-world problem generates specific output and gives an
indication of the algorithm’s empirical performance [128]. We provide implemen-
tations of all our algorithm designs in Python, which we use to gain knowledge
about them through evaluation experiments.

Mendling et al.’s framework describes different knowledge types that can be gained
in algorithm engineering in its epistemological perspective, which we outline next.
Epistemological perspective of algorithm engineering. In its epistemological
perspective, the framework [128] distinguishes between knowledge of and about
tasks as well as knowledge of and about designs. The approaches proposed in
this thesis contribute to the knowledge of design through novel designs that satisfy
algorithmic tasks that we derived from real-world problems. By assessing our ap-
proaches in evaluation experiments, we also contribute to knowledge about design.
Knowledge of design. Knowledge of design refers to knowledge of algorithms that
exhibit enhanced performance in crucial dimensions like execution time or output
accuracy compared to other algorithms.

Our approaches improve over existing designs in various manners. Using
state-of-the-art techniques from Natural Language Processing [100], our semantic-
annotation approach improves over existing work for semantic event parsing in
both scope and accuracy. No previous event-abstraction approach allows a user
to define requirements on the output, which our approach improved. Existing ap-
proaches do not provide an end-to-end solution to transform user interactions into
events that can be used for process mining, which our approach for recognizing
task-level events improves. Similarly, existing techniques for detecting undesired
process behavior typically require a dedicated normative model as input, which
our best-practice-violation-detection approach alleviates through the use of refer-
ence models. Lastly, our object-information-extraction represent the first approach
to solve its algorithmic tasks. It does so, by combining and enhancing existing
algorithm designs from Natural Language Processing and data profiling [14].
Knowledge about design. Knowledge about design encompasses insights about
properties and characteristics of algorithm designs. Among others, such knowl-
edge relates to a design’s performance and its sensitivity. Performance knowledge
focuses on if a designs meets the requirements of its task. It can inquire about
satisfaction, i.e., if the design satisfies the task requirements, or about the degree
of satisfaction, i.e., to which extent the design is better in satisfying the task re-
quirements than others. Sensitivity knowledge focuses on the design’s robustness
in performance when facing changes, e.g., across parameter settings [128].

Through experimental evaluations using implementations of our designs, we
contribute to performance knowledge and sensitivity knowledge. We assess the
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performance of our designs using collections of real-world event logs and estab-
lished performance metrics that are specific to the given task and compare our work
against baselines and state-of-the-art approaches. For instance, we assess how ac-
curately our semantic-annotation approach identifies semantic components from
textual labels and compare it against a state-of-the-art label parser for this task.
We provide sensitivity knowledge by systematically varying parameter settings of
our approaches. For instance, our approach for detecting best-practice-violations
uses a similarity threshold that determines when two words are considered similar.
When assessing our approach, we compare various configurations of this setting.
Methodological perspective of algorithm engineering. From a methodological
point-of-view, Mendling et al. [128] emphasize that various validity concerns must
be considered when evaluating process mining algorithm designs. We account for
these validity concerns in the following manner.
Logical validity. Logical validity refers to why an evaluation goal is valid [128].
We make sure to base the formulation of the evaluation goal on formal or empirical
knowledge of prior research. For instance, when evaluating our constraint-driven-
abstraction approach, we build on the empirical knowledge that the complexity of
a process model correlates with its comprehensibility [159]. We thus set the goal to
show that the abstracted logs lead to the discovery of less complex process models
than the logs that result from applying baseline techniques for the problem at hand.
Internal validity. The design of an evaluation is internally valid if its manipulation
causes an observed effect [128]. We account for internal validity by limiting the
confounding variables in our experiments. In particular, we keep the execution en-
vironment unchanged across different runs of our approaches and any baselines.
Furthermore, we separate training from test data in a randomized manner and con-
duct multiple evaluation runs (in a cross-validation setting), where applicable.
Implementation validity. Implementation validity refers to, among others, threats
regarding alternative implementation options for a design. In particular, imple-
mentation decisions may turn into confounding variables [128]. To account for
implementation validity, we implement all of our approaches in Python and make
any code, evaluation data, evaluation scripts, gold standards, and raw results pub-
licly available, ensuring reproducibility.
External validity. External validity measures how well findings generated from
data used in evaluation experiments can be extended to other data [128]. To ac-
count for external validity, all of our proposed approaches are evaluated using real-
world data sets that span a broad range of process domains and that are established
in the process mining research community. Using data across process domains en-
sures the presence of diverse natural language attribute values including activities
that range from the finance domain, e.g., validate loan application to healthcare
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domains, e.g., ultrasound configuration, covering different labeling styles. Fur-
thermore, the different event logs are recorded at various levels of granularity and
the traces differ considerably in terms of variability.
Construct validity. Construct validity essentially considers if an evaluation mea-
sure appropriately measures the intended property [128]. To account for construct
validity, we employ established evaluation metrics that measure the performance
of our approaches with respect to the task they solve. For instance, to assess our
object-information-extraction approach, we use the well-known precision, recall,
and F1-score metrics. In this context, precision is the fraction of objects extracted
by our approach that correspond to actual objects contained in the gold standard
and recall is the fraction of actual objects that are correctly extracted by our ap-
proach. Any gold standards that we use to assess our approaches either existed
beforehand or are established by at least two researchers independently before dis-
crepancies are discussed and consolidated.
Conclusion validity. Conclusion validity is concerned with the question to which
extend conclusions that are drawn from evaluation results are reasonable for the
evaluation goal [128]. To strengthen conclusion validity, we conduct quantitative
experiments that use established evaluation measures and conduct additional qual-
itative evaluations. In particular, we apply our approaches to various application
cases and report on an in-depth look into the results. Furthermore, we report on
threats to validity where applicable.

This discussion of algorithm engineering research methodology in relation to
the work presented in this thesis highlights that our contributions align with recog-
nized research standards. Moreover, it underscores that we have made substantial
contributions to the body of knowledge within the field of process mining.

1.5 Publications

The research conducted as part of this doctoral thesis resulted in six published
papers and one paper that is currently under submission, which correspond to the
contributions introduced in Section 1.3.
Semantic annotation of event logs.

• [149] A. Rebmann, H. van der Aa: Extracting semantic process information
from the natural language in event logs. In: International Conference on
Advanced Information Systems Engineering, 57–74 (2021)

• [148] A. Rebmann, H. van der Aa: Enabling semantics-aware process min-
ing through the automatic annotation of event logs. Information Systems
102111 (2022)
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Constraint-driven abstraction of event logs.

• [157] A. Rebmann, M. Weidlich, H. van der Aa: GECCO: constraint-driven
abstraction of low-level event logs. In: IEEE International Conference on
Data Engineering, 150–163 (2022)

Task-level-event recognition from user interaction data.

• [151] A. Rebmann, H. van der Aa: Unsupervised Task Recognition from
User Interaction Streams. In: International Conference on Advanced Infor-
mation Systems Engineering, 141–157 (2023)

• [150] A. Rebmann, H. van der Aa: Recognizing Task-level Events from
User Interaction Data. Information Systems 102404 (2024).

Object-information extraction from event logs.

• [156] A. Rebmann, J. Rehse, H. van der Aa: Uncovering Object-centric
Data in Classical Event Logs for the Automated Transformation from XES
to OCEL. In: International Conference on Business Process Management
(2022)

Best-practice-violation detection in event logs.

• [153] A. Rebmann, T. Kampik, C. Corea, H. van der Aa: Mining Con-
straints from Reference Process Models for Detecting Best-Practice Viola-
tions in Event Logs. Information Systems, under submission.

During his doctoral project, the author also contributed to research projects beyond
the scope of this thesis, which has led to the publication of one journal article, one
conference paper, two workshop papers, and two tool demonstration papers.

• [5] H. van der Aa, A. Rebmann, H. Leopold: Natural language-based de-
tection of semantic execution anomalies in event logs. Information Systems
102, 101824 (2021)

• [155] A. Rebmann, P. Pfeiffer, P. Fettke, H. van der Aa: Multi-perspective
identification of event groups for event abstraction. In: International Confer-
ence on Process Mining. Workshops (2022)

• [43] J. Caspary, A. Rebmann, H. van der Aa: Does this make sense? Ma-
chine learning-based detection of semantic anomalies in business processes.
In: International Conference on Business Process Management (2023)
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• A. Bergman, A. Rebmann, T. Kampik: BPMN2constraints: breaking down
BPMN diagrams into declarative process query constraints. In: International
Conference on Business Process Management. Demonstration Track (2023)

• A. Goossens, A. Rebmann, J. De Smedt, J. Vanthienen, H. van der Aa:
From OCEL to DOCEL—Datasets and automated transformation. In: Inter-
national Conference on Process Mining. Workshops (2023)

• F. Lang, D. Hida, Y. Bian, A. Rebmann, H. van der Aa: IM-Viz: A tool
for the step-by-step visualization of the inductive miner. In: International
Conference on Process Mining. Demonstration Track (2023)

1.6 Outline

The remainder of this thesis is structured into the following seven chapters, with
the core chapters each introducing an approach.

• Chapter 2: Background. This chapter provides background information that
is essential for the remainder of the thesis. It focuses on preliminaries of
process mining and on Natural Language Processing.

• Chapter 3: Semantic Annotation of Event Logs. This chapter presents our
approach for annotating event logs with components that are relevant for
semantics-aware process analysis. In particular, our approach first identi-
fies up to eight semantic components per event, revealing information about
actions, object types, and resources, before it further categorizes identified
actions and resources, which allows for an in-depth analysis of key process
perspectives. An evaluation using a broad range of event logs shows the ap-
proach’s efficacy, while application scenarios enabled by our approach high-
light its usefulness. This chapter is based on concepts and results previously
published in Information Systems [148] and the International Conference on
Advanced Information Systems Engineering [149].

• Chapter 4: Constraint-Driven Abstraction of Event Logs. In this chapter,
we present our constraint-driven event-log-abstraction approach that enables
users to impose requirements on the output log. It groups events so that
the requirements are satisfied and the behavioral distance to the input log is
minimized. Since exhaustive event-log abstraction has exponential run time
complexity, we also offer a heuristic approach guided by behavioral relations
found in the log. We show that the abstraction quality of our approach is
superior to baseline approaches and demonstrate the relevance of considering
user requirements during event-log abstraction in real-world settings. This
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chapter is based on concepts and results previously published in the IEEE
International Conference on Data Engineering [157].

• Chapter 5: Task-Level-Event Recognition from User Interaction Data. In
this chapter, we present an unsupervised approach for recognizing task-level
events from user interaction data. It segments user interaction data to identify
tasks, categorizes these according to their type, and relates tasks to each
other via object instances it extracts from the user interaction events. In this
manner, our approach creates events that meet the requirements of process
mining settings. Our evaluation demonstrates the approach’s efficacy and
shows that its combined consideration of control-flow, data, and semantic
information allows it to consistently outperform baseline approaches. This
chapter is based on concepts and results previously published in Information
Systems [150] and the International Conference on Advanced Information
Systems Engineering [151].

• Chapter 6: Object-Information Extraction from Event Logs. This chapter
presents our approach to extract object-related information from event logs
and automatically transform the input event log into an object-centric for-
mat. It achieves this by combining the semantic analysis of textual attributes
with data profiling and control-flow-based relation extraction techniques.
We demonstrate our approach’s efficacy through evaluation experiments and
highlight its usefulness by applying it to real-world event logs in order to mit-
igate quality issues caused by their case-centric representation. This chapter
is based on concepts and results previously published in the International
Conference on Business Process Management [156].

• Chapter 7: Best-Practice-Violation Detection in Event Logs. In this chap-
ter, we present an approach for detecting best-practice violations in event
logs. The approach mines declarative best-practice constraints from a ref-
erence model collection, automatically selects constraints that are relevant
for a given event log, and checks for constraint violations. We demonstrate
the efficacy of our approach through an evaluation based on real-world pro-
cess model collections and event logs. This chapter is based on concepts
and results previously described in a manuscript that is under submission for
Information Systems [153].

• Chapter 8: Conclusion. This chapter concludes this doctoral thesis. We
summarize the main results and reflect on their implications for research and
practice. Furthermore, we provide directions for future research.
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Background

This chapter provides the necessary background for the remainder of the thesis.
Section 2.1 introduces the preliminaries of process mining and gives formal def-
initions of relevant process mining concepts that are used throughout this thesis.
Section 2.2 introduces methods from Natural Language Processing, which our ap-
proaches use to incorporate considerations related to the semantics of event data.

2.1 Process Mining

Every organization, no matter whether it is a commercial enterprise, a government
agency, a non-profit or a healthcare organization, is driven by processes. These pro-
cesses organize how work is performed and comprise interconnected events, activi-
ties, decisions, actors, and objects that jointly produce an output of value [72]. The
way in which processes are performed impacts the quality of their output, e.g., the
quality of a service that should be delivered through a process, and the efficiency
in which this output is generated. Therefore, managing and continuously improv-
ing these processes is vital for organizations to ensure high process efficiency and
quality [72]. The discipline that studies how to support organizations in this re-
gard is called Business Process Management (BPM). BPM combines methods to
design, enact, control, and analyze organizational processes [96].

Initially, the main focus of BPM methods was on designing and enacting pro-
cesses in a model-driven manner, without taking data about their actual execution
into account [96]. Nowadays, the execution of organizational processes is sup-
ported by various types of information systems, such as enterprise systems and web
applications. Using these systems during process execution leaves digital traces of
the performed activities [7]. These traces can be extracted from the information
systems in the form of event data. Based on this event data, process mining pro-
vides means to analyze organizational processes in a data-driven manner. Process

14
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mining techniques generate insights into how processes are really executed, iden-
tify bottlenecks and deviations from expected process behavior, and predict and
diagnose performance and compliance issues. These insights eventually support
the improvement of organizational processes [8].

The remainder of this section provides the basic concepts related to process
mining that are relevant in the context of this thesis. First, Section 2.1.1 introduces
and defines event data, given that it is the main input to any process mining analysis.
Then, Section 2.1.2 introduces and defines process models that are commonly used
to represent process mining results and to specify normative process behavior that
serves as input to process mining techniques alongside event data.

2.1.1 Event Data

Event data captures the individual steps that are performed during the execution of
an organizational process. It is the main input to any process mining analysis [7].
Typically it is extracted from information systems, preprocessed, and then stored
in an event log for post-hoc process analysis. Event logs can either be represented
in a case-centric or an object-centric format. Certain situations require one to move
from post-hoc to streaming process analysis instead. For instance, when an analysis
goal requires immediate insights into the current state of a process based on event
data. In such cases, events arrive in the form of an event stream, which has to be
processed in an online manner.

In the following, we first define events as the basic entity of any form of event
data representation, before defining case-centric event logs, object-centric event
logs, and event streams.
Events. Events represent information about how an organizational process is exe-
cuted. Each event refers to one step (activity) that is performed in the context of a
process at a specific point in time. Events can have any number of attributes that
capture their context, such as the resource that performed the step. In the context
of this thesis, we formally define events and their attributes as follows.

Definition 1 (Events, Attributes) Let E be the universe of all events. An event
e 2 E is a tuple e = (a, ts,D); a 2 A is the activity that e relates to, A being
the universe of all activities, and ts 2 T S is e’s timestamp, T S being the universe
of all timestamps. D is a set of data attributes that capture additional context for
event e. We use D = D [ {a, ts} to refer to all attributes of an event. We write
dom(d) for the domain of the attribute d 2 D and name(d) for its name.

Note that, in the remainder, we use dot notation as a shorthand to refer to
attributes of events, e.g., using e.a as a shorthand to refer to the activity of an event
e 2 E and e.d to refer to its value for attribute d.
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Case-centric event logs. Case-centric event logs assume that each process execu-
tion is clearly distinguishable from others and can therefore be considered individ-
ually. For example, consider a request-handling process: for each request that is
submitted, a number of activities, such as categorize request and examine request,
are performed in coordination to eventually decide if a request is accepted or not.
An exemplary case-centric event log of this process is depicted in Table 2.1.

Table 2.1: Case-centric event log with two cases of a request-handling process.

Trace CaseID Activity Timestamp Resource

�1

request-1 Request received 05-20 09:07 System
request-1 Categorize request 05-20 09:11 User1
request-1 Examine casually 05-20 11:24 User3
request-1 Accept request 05-20 11:41 User3
request-1 Inform requester 05-20 11:52 User1
request-1 Archive request 05-20 11:53 User1

�2

request-2 Request received 05-20 11:23 System
request-2 Categorize request 05-20 11:55 User1
request-2 Examine thoroughly 05-20 13:41 User2
request-2 Reject request 05-20 15:02 User4
request-2 Archive request 05-20 15:13 User1
request-2 Inform requester 05-20 15:15 User1

As shown, in a case-centric event log, each event belongs to precisely one case
that corresponds to a single execution of a process, which is typically indicated by
a case identifier (CaseID).

All events related to the same case are grouped into a trace, a sequence of
events that are ordered by the time of their occurrence. As an example, consider the
trace �1 in Table 2.1. It shows that the request was first received and categorized,
before it was examined. Based on the result of the examination, the request was
accepted and the requester was notified about this outcome. Finally, the request
was archived. We formally define such traces as follows.

Definition 2 (Traces) A trace � 2 E
⇤ represents a single execution of an organi-

zational process (a case) and consists of a finite sequence of events � = he1, ..., eni,
with their order following from their timestamps. Given a trace �, we use �

a to
refer to the sequence of its activities, i.e., �a = he1.a, . . . , en.ai; traces with equal
activity sequences belong to the same trace variant.

Note that, for illustration purposes, we commonly represent a trace’s
events by their activities in the coming chapters. For instance, we represent
�1 as hRequest received,Categorize request,Examine casually,Accept request,
Inform requester,Archive requesti.
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Having defined events and traces, we define case-centric event logs as follows.

Definition 3 (Case-centric event logs) A (case-centric) event log L ✓ 2E
⇤ is a

finite multi-set of traces, where each trace corresponds to a case. La is the multi-
set of activity sequences obtained from all traces in L, i.e., La = {�

a
| � 2 L}.

We use EL ✓ E to denote the set of all events contained in L’s traces, AL ✓ A to
denote the set of activities that the events in EL relate to, and DL to denote the set
of attributes that events in EL have.

Most of the approaches we propose in this thesis take an event log according
to this definition as input and also produce such a log as their output.
Object-centric event logs. The assumption that process executions can be con-
sidered individually (i.e., as cases) does not hold for all types of organizational
processes. In particular, it does not hold for processes that involve multiple objects
of different types with complex interrelations. For example, in an order-handling
process, orders can consist of multiple items and multiple orders can be shipped
in one package. For such a process, there is no main object type, e.g., order, to
serve as an unambiguous notion of a case. Therefore, event data of such processes
are better represented as an object-centric event log that make objects, e.g., orders,
items, and packages, and their interrelations explicit. In such a log, each event
has a special attribute objects that contains references to any objects associated
with the event. The objects themselves are stored separately along with their own
properties. We formally define objects and object-centric event logs as follows.

Definition 4 (Objects) Let O denote the universe of all objects. An object o 2 O

is a tuple o = (oi, ot, vmap), with oi as its identifier, ot its type, and vmap a value
map, which captures the assignment of values to o’s properties.

Definition 5 (Object-centric event logs) An object-centric event log is a tuple
OL = (O,E) that comprises a set of objects O ✓ O and a set of events E ✓ E .
Each event e 2 E has an attribute d 2 e.D with name(d) = objects, a map, which
associates object types with identifiers of object instances, to which e relates. The
events in E have a known partial order, following from their timestamps.

An exemplary object-centric event log of an order-handling process is shown
below consisting of a set of events (Table 2.2) and a set of objects (Table 2.3). The
events correspond to the handling of two orders, involving several items that are
shipped in multiple packages. As shown, a single event can relate to any num-
ber of objects of different types. For instance, event e9 in Table 2.2 has rela-
tions to two orders, one package, two items, and one customer, i.e., e9 .objects =
{Order :{o1, o2},Package :{p2}, Item :{i1_1 , i2_1},Customer :{Pete}}.
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Table 2.2: Exemplary object-centric event log: events.

Event Activity Timestamp Objects

Orders Packages Items Customer

e1 Create order 05-20 09:07 {o1} ; {i1_1,i1_2} {Pete}
e2 Reorder item 05-23 10:40 {o1} ; {i1_1} {Pete}
e3 Pick item 05-23 14:20 {o1} ; {i1_2} {Pete}
e4 Send package 05-23 17:26 {o1} {p1} {i1_2} {Pete}
e5 Create order 06-03 19:17 {o2} ; {i2_1} {Pete}
e6 Pick item 06-04 15:20 {o1} ; {i1_1} {Pete}
e7 Update order 06-04 18:11 {o2} ; {i2_1} {Pete}
e8 Pick item 06-05 11:48 {o2} ; {i2_1} {Pete}
e9 Send package 06-06 16:20 {o1,o2} {p2} {i1_1,i2_1} {Pete}

Table 2.3: Exemplary object-centric event log: objects.

Type Object Instances

Customer {(Pete,Customer, {})}
Order {(o1,Order, {}), (o2,Order, {})}
Package {(p1,Package, {Weight : 70.8}), (p2,Package, {Weight : 20.4})}
Item {(i1_1, Item, {Weight:12.5}), (i1_2, Item, {Weight:70.8}),

(i2_1, Item, {Weight:7.9})}

The objects themselves, including any object-specific properties, are stored
separately. For instance, consider the item i1_1 in Table 2.3 that event e9 re-
lates to, consisting of an identifier o.oid = i1_1 , a type o.ot = Item , and a value
map o.vmap = {Weight : 12.5} that captures its weight.
Event streams. In certain situations, post-hoc process analysis, for which previ-
ously recorded data is first extracted from systems and then stored in event logs, is
not possible. On the one hand, certain analysis goals, such as process monitoring,
require (near) real-time insights based on event data. On the other hand, when fac-
ing large data volumes, events simply cannot be processed all at once. Therefore,
such situations demand a single-pass and online processing of event data [39]. In
such cases, events are assumed to arrive in the form of an event stream that serves
as input to so-called streaming process mining techniques. These handle events
as they become available [39] and provide (near) real-time insights into process
executions. We define event streams as follows.

Definition 6 (Event streams) An event stream SE is a potentially infinite se-
quence of events, i.e., SE 2 E

⇤
81i<j|SE |SE (i) 6= SE (j).
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2.1.2 Process Models

While event data captures the real-world execution of organizational processes,
process models serve as representations of these processes. There are different rea-
sons for establishing models when managing and improving processes and these
can take various forms depending on their purpose. An important purpose is the
provision of a common process understanding among the people who are involved
in its execution [72]. In process mining, process models are used to present the
results of process discovery, where the aim is to identify a process model based
on an event log [7]. Thus, they play a key role in analyzing the actual (as-is) be-
havior of a process, providing a basis for a comprehensive process understanding.
Furthermore, process models are essential for specifying normative (to-be) process
behavior in conformance checking, where the aim is to identify deviations from
such behavior in an event log [41]. In our approaches and their evaluation, we also
rely on process models for these purposes.

On a high level, there are two established paradigms of how to model pro-
cesses: through imperative and declarative process models [160]. Both of these
paradigms have their own benefits. For instance, imperative models are generally
easier to understand for humans than declarative ones [92, 190], whereas declar-
ative models are better suited to specify normative behavior of flexible processes
and subsequently check for violations [58, 84]. We use both types of models in
our work depending on their suitability for the respective transformation use case.
Therefore, we introduce both of them in the remainder of this section.

Imperative process models

In imperative process models, every possible execution sequence of a process is
explicitly modelled. As a consequence, anything that is not modeled is not allowed
to happen in the process. Note that, for brevity, we refer to imperative process mod-
els as process models in the remainder, whereas for declarative ones, we explicitly
write declarative process models.

In this thesis, we use a generic definition of process models, which is indepen-
dent of a specific notation. It defines a process model as a set of allowed execution
sequences and an assignment of roles to activities for which they are responsible.

Definition 7 (Process models, Process model collections) Using M to denote a
process model collection, each process model M 2 M is a tuple M = (A, F ,
R, performedBy). A is the set of steps in M and, just like for events, we call
a 2 A ✓ A an activity. F is the set of unique finite execution sequences allowed
by M , with each ⇡ 2 F = ha1, ..., ani as a sequence of activities in A. Focusing
on finite execution sequences captures the intuition that each process execution is
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expected to complete in a finite number of steps. Using R to denote the universe of
all roles, R ✓ R is a set of roles involved in the process represented by M . Finally,
performedBy : A ! R [ {?} is a mapping from activities to roles, e.g., a create
invoice activity may be mapped to a vendor role in a procurement process model.

There is a variety of (graphical) notations to model processes in an imperative
manner, including Business Process Model and Notation (BPMN) [21] diagrams
and directly-follows graphs (DFGs).

Categorize 
request

Request 
received

Examine 
casually

Examine 
thoroughly

Decide on  
request

Accept 
request

Reject 
request

Inform 
requester

Archive 
request

Request 
handled

Figure 2.1: An exemplary BPMN diagram.

Figure 2.1 shows an exemplary BPMN diagram of a request-handling process.
The model starts and ends with events, which are represented as circles, while
activities, called tasks in BPMN, are represented as rectangles with rounded edges.
The diamond-shaped symbols with a + denote parallel gateways, whereas the ones
with an ⇥ denote exclusive gateways. These gateways indicate concurrency and
exclusive choices respectively. As such, the model shows that the process starts
with the receipt of a request that is first categorized and then either checked casually
or thoroughly. Afterwards, a decision about the request is made, after which it is
either accepted or rejected. Finally, the requester is informed about the decision
and the request is archived, which can be done in either order.

BPMN is a comprehensive notation with more than 100 different symbols that
allow for modeling a broad range of processes in a detailed manner [72]. This also
includes the representation of process perspectives beyond the control-flow, i.e.,
beyond the representation of ordering relations between activities. For instance, the
resource perspective can be modeled using so-called pools and lanes to respectively
represent organizational entities and roles [21].
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Figure 2.2: An exemplary DFG.
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Figure 2.2 shows the same request-handling process modeled as a DFG. Such
DFGs provide a first impression of a process and are straightforward to compute
from an event log. In essence, a DFG indicates if two activities ever immediately
succeed each other in the event log. We formally define them as follows.

Definition 8 (Directly-follows graphs) Given an event log L, its DFG is a di-
rected graph (V,E), with the set of vertices V corresponding to the activities in
AL and the set of edges E ✓ V ⇥ V representing a directly-follows relation >L,
defined as: x >L y, if there is a trace � = he1, . . . , eni and i 2 {1, . . . , n � 1},
such that � 2 L and ei.a = x and ei+1.a = y.

Declarative process models

Unlike imperative process models that explicitly specify allowed process behavior,
declarative process models limit behavior through constraints. We describe this
paradigm using DECLARE as one of the main declarative languages used in the
process mining field [59]. In essence, DECLARE [142] describes a set of constraint
templates that can be instantiated to restrict occurrences and orderings of activities
in a process. Formally, we define declarative process models as follows [59].

Definition 9 (Declarative process models) A declarative process model DM is
a tuple DM = (Templ , A,K). Templ is a finite, non-empty set of con-
straint templates that are used in DM , where each templ 2 Templ is a predi-
cate K(x1, . . . , xm) on variables x1, . . . , xm. A ✓ A is a finite non-empty set
of activities. K is a finite set of constraints, where each k 2 K is a tuple
k = (templ, a1, . . . , am), with templ 2 Templ and ai 2 A the activity that
replaces the variable xi in templ .

DECLARE templates are essentially abstractions of Linear Temporal Logic
(LTL) formulas, which allow to exploit the amenities of LTL verification, with
the full complexity of LTL “hidden” from the user. Table 2.4 summarizes common
templates and their corresponding LTL formulas [59].

LTL models time as a linear sequence of states, or time points. At each time
point, some statements may be true. On this basis, LTL formulas can be used to
specify the allowed behavior over the sequence. Using �, �1, and �2 to represent
LTL formulas, F, X, G, U, S, and O are LTL operators with the following meaning:

• F� means that � holds at some point in the future,
• X� means that � holds in the next instant,
• G� means that � holds forever in the future,
• �1U�2 means that, at a future point, �2 will hold and until then �1 holds,
• �1S�2 means that, at a point in the past, �2 held and since then �1 holds, and
• O� means that � held at some point in the past.
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For a formal definition of these operators, we refer to an overview of declarative
process modeling and mining [59].

For any declarative constraint, an activation of a constraint serves as its trig-
gering condition. Once this condition becomes true, it expects the trace to satisfy
the corresponding target condition. Conversely, if the constraint is not activated,
the fulfillment of the target condition is not enforced and the constraint is (vacu-
ously) satisfied. For instance, b is an activation condition for PRECEDENCE(a,b)
and a is the target condition because the occurrence of b forces a to have occurred
before. Table 2.4 specifies the activation condition per template. Given an activity
sequence ⇡ and a constraint �, assuming that both relate to the same activity set A,
⇡ is said to satisfy �, which we denote as ⇡ |= �, if � holds in the initial time point
of the sequence. We write ⇡ 6|= � if ⇡ violates constraint �.

MP-DECLARE extends DECLARE, among others, by introducing additional
conditions on attributes of events in a trace �, i.e., additional activation condi-
tions. To illustrate this concept, let us examine the constraint ABSENCE(decide
on application), which is always activated at the beginning of a trace, indicating
that decide on application should never occur. We can use an additional condition
on other perspectives that must be satisfied to activate the constraint, though. For
instance, we may require that when decide on application takes place, it should

Table 2.4: Common DECLARE templates.

DECLARE Template LTL formula Activation

ATLEASTONE(a) F a at start
ATMOSTONE(a) ¬F(a ^ X(Fa)) at start

EXACTLYONE(a) ATLEASTONE(a)^ATMOSTONE(a) at start
ABSENCE(a) ¬F a at start

RESPONDEDEXISTENCE(a,b) F a! F b a
RESPONSE(a,b) G(a! F b) a

ALTERNATERESPONSE(a,b) G(a! X(¬aUb)) a

PRECEDENCE(a,b) G(b! O a) b
ALTERNATEPRECEDENCE(a,b) (¬b S a)^G (b! (¬b S a)) b

COEXISTENCE(a,b) F a$ F b a,b
SUCCESSION(a,b) RESPONSE(a,b) ^

PRECEDENCE(a,b)
a,b

ALTERNATESUCCESSION(a,b) ALTERNATERESPONSE(a,b) ^
ALTERNATEPRECEDENCE(a,b)

a,b

NOTCOEXISTENCE(a,b) (F a! ¬F b) ^ (F b! ¬F a) a,b
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be performed by a manager and otherwise should not occur. We can express this
constraint as ABSENCE(decide on application) | role 6= manager, where role is
an event attribute and manager its required value. Now, if (and only if) the role
associated with an event is not manager, the ABSENCE constraint is activated.

2.2 Natural Language Processing

Natural Language Processing (NLP) is a research field that investigates the use of
computers for processing and understanding human, i.e., natural, languages [54].
In this thesis, we use NLP methods to extract information from natural language
elements that are associated with events and process models as well as to assess the
similarity between those. For instance, we use NLP methods to extract semantic
components from unstructured event attribute names and values using a language
model. In this manner, we, e.g., extract the create action and the purchase or-
der object type from a purchase order created activity. To assess the similarity
between natural language elements of events and process models we use word rep-
resentations to identify, e.g., that the two activities create invoice and bill created
are highly similar from a semantic point-of-view, despite strong structural and syn-
tactical differences.

In this section, we describe the main NLP concepts and techniques that are
relevant for the remainder of this thesis. When describing them, we aim to clarify
their intuition and usefulness and, therefore, put less emphasis on technical aspects.
Section 2.2.1 discusses vector representations, which allow to capture the meaning
of words. Section 2.2.2 introduces transformer-based language models, which
can be used to tackle a broad range of NLP tasks. Section 2.2.3 introduces so-
called sequence-labeling tasks that assign labels to individual words of an input
sequence, which we frequently use in our approaches. Following the discussion of
these general NLP concepts, Section 2.2.4 concludes with a discussion of existing
works that apply them in a process analysis context.

2.2.1 Vector Representations of Words

In order to efficiently process data in NLP, words of a given vocabulary are trans-
formed into vectors, i.e., numerical representations. As an example, consider the
vocabulary V = {order , item, package}. The simplest way to create vectors for
the words in V is to use one-hot encoding, where each word receives one position
(dimension) in the vector space that is set to 1 in its vector, while all others are set
to 0. For V , this would result in the vectors vorder = h1 0 0i, vitem = h0 1 0i,
and vpackage = h0 0 1i. Vectors created in this manner have a length (dimen-



Chapter 2. Background 24

sionality) of |V | and are maximally sparse, i.e., they contain only zeros except for
one dimension. This leads to extremely long vectors for large vocabularies. Most
importantly, although each word is represented by a distinct vector, these do not
capture any additional information about the words, which is often undesirable.

Many NLP tasks require vectors to capture the meaning of the words they rep-
resent. The foundation for this is the assumption that words that appear in similar
contexts have similar meanings. For instance, because bill and invoice are used in
similar contexts, i.e., they are surrounded by the same words when they appear in
texts, they are assumed to be similar. Based on this assumption, vector representa-
tions of the meaning of words can be generated from their distributions in natural
language text [101].

There are different models that can be used to generate vectors that represent
the meaning of words. Early models represent a word as a sparse vector with di-
mensions corresponding to words in a vocabulary or documents in a collection
(similar as in the one-hot example). Each dimension of such a vector is a count of
how often a word co-occurs in close proximity to others. More recently, learned,
dense vectors—so-called embeddings—have been proposed to capture word mean-
ing. It was shown that these outperform sparse vectors in basically every NLP
task [101]. Therefore, we use such embedding models in our approaches to assess
the similarity among natural language components of events and process models.
Embeddings. Embeddings are real-valued vectors that have useful semantic prop-
erties. For instance, they capture information on semantic relations such as syn-
onymy between the words they represent. To establish them, Word2vec [130] algo-
rithms and variations such as GloVe [141] are commonly used.

The intuition of Word2vec is that, instead of counting how often each word w

occurs in close proximity to a word, e.g., invoice, we train a classifier on a binary
classification task. In this task, the classifier should answer the question Is w likely
to appear in close proximity to invoice? The learned classifier’s weights can then
be used as word embeddings. The advantage is that we can use text as training data
for self-supervised learning. A word w that occurs in close proximity to the target
word invoice in a text provides the true label, which can be used to check if the
classifier correctly answered the question [101].

GloVe, which stands for Global Vectors, has proven to be especially effec-
tive in capturing semantic similarity and, in particular, synonym relations between
words [141]. GloVe embeddings allow for efficiently computing semantic similar-
ity scores between words and for querying the most similar words in a vocabulary,
given a word. Note that we explain how to compute such a score based on two
vectors/embeddings below. For instance, querying the five most similar words of
invoice, yields the words and respective similarity scores listed in Table 2.5. Here,
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higher scores indicate higher similarity. As shown, all words are highly related
from a semantic point of view. Notably, also terms that are syntactically completely
unrelated to invoice, e.g., payment and billing, are considered highly similar.

Word Similarity score

invoices 0.756
receipt 0.643
invoicing 0.636
payment 0.624
billing 0.604

Table 2.5: The most similar words of invoice computed using GloVe embeddings.

GloVe embeddings are trained in an unsupervised manner on global word-
word-co-occurrence statistics of an entire text corpus, i.e., on statistics on how
often word pairs occur near each another in a corpus [141]. There are different
corpora used as a basis for this training, such as the entire English Wikipedia. In
essence, individual words in the corpus are mapped into a meaningful vector space
so that the distance between the vectors that represent the words is related to se-
mantic similarity between them [101].

Because of their capability of capturing semantic similarity in a precise manner,
we use GloVe embeddings in part of our semantic-annotation approach that we
describe in Chapter 3. Among others, we use them to identify the type of actions,
e.g., whether an action refers to an update of an application or a decision about it.
Vector similarity. As outlined above, a key feature of vector representations is that
they allow for assessing similarities between the words they represent.

Such similarities are computed through a function of the dot product between
vectors of equal length n, as defined in Equation 2.1. The most common function is
the cosine similarity of two vectors v and w, as defined in Equation 2.2, which we
also use when computing the semantic similarity between words in our approaches.

v · w =
nX

i=1

viwi (2.1)

cosine(v, w) =
v · w

|v||w|
(2.2)

2.2.2 Transformer-Based Language Models

Transformer-based language models are machine learning models that are capable
of efficiently learning dependencies in natural language text. They are trained to
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develop a general understanding of a language and can then be specialized for a
wide range of NLP tasks. Their remarkable performance across tasks can primarily
be attributed to the following key features:
Attention. Transformer-based language models, such as the well-known Bidirec-
tional Encoder Representations from Transformers (BERT) model [56], rely on the
(self-)attention mechanism [178]. This mechanism allows them to selectively pay
attention to words in the surroundings of a given word, which are relevant for the
meaning of that word. For example, in the sentence She runs a company, the at-
tention mechanism considers the word company while processing the word runs.
This is essential for inferring the meaning of runs in the given context, which is
to manage. As such, attention allows transformer-based language models to gen-
erate contextualized embeddings. In contrast to the static embeddings discussed
previously, contextualized embeddings exhibit contextual awareness. In particular,
unlike Word2Vec and GloVe, which generate a single static embedding for each dis-
tinct word in a corpus, BERT tailors its embeddings to the specific context in which
a word appears [101]. For example, given the two sentences She runs a company
and She runs a marathon, BERT learns two different embeddings for runs, due to
the different meanings in the respective contexts.
Pretraining. Transformer-based language models are typically pretrained, which
means that they are fed with considerably large amounts of text in order to learn a
model of the meaning of words or even full sentences [161]. As for Word2Vec, this
is typically done via self-supervised learning. Unlike supervised learning, which
requires large amounts of labeled data for a specific task, self-supervised learning
leverages large amounts of unlabeled data (huge text corpora) for a certain pre-
training objective. In case of BERT, this objective is masked-language modeling.
A certain amount of tokens, i.e., (parts of) words, in each training sequence is re-
placed by a special mask token. The goal is then to “predict” the true tokens that
were masked. This objective is particularly suitable for bidirectional training (em-
ployed by BERT), where the context (the surrounding tokens) both on the left and
the right side of a masked token are considered to make a prediction [56]. This
allows BERT to take the entire context of an input sequence into account.
Fine-tuning. Fine-tuning is the process of further training a pretrained model. The
goal is to specialize the model for a specific task, such as named-entity recogni-
tion or semantic role labeling (that we introduce below). The training data size
for fine-tuning is considerably smaller than for pretraining. In this manner, fine-
tuning pretrained models reduces the effort to create labelled training data and the
resources needed to train a model for a specific task from scratch [101].

We use BERT in our semantic-annotation approach that we describe in Chapter 3.
In particular, we fine-tune it to label parts of activity labels with semantic roles
such as action, object, and actor. Furthermore, we use contextualized embeddings
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of a pretrained transformer in our approach for detecting best-practice violations
in event data that we describe in Chapter 7. In particular, we use these to assess
the similarity between natural language components of declarative constraints and
events. These commonly consist of multiple words, e.g., purchase order requisi-
tion, so that we benefit from the context-awareness that these embeddings provide.

2.2.3 Sequence Labeling

Sequence labeling tasks aim to assign a label to each word in an input word
sequence. Such tasks can be satisfied using classic techniques such as Hidden
Markov Models (HMM) and Conditional Random Fields (CRF). However, with the
recent advancements in NLP, state-of-the-art sequence-labeling techniques employ
Transformers that consistently outperform classic techniques on these tasks [101].

Prominent examples of sequence labeling tasks are part-of-speech tagging,
named-entity recognition, and semantic role labeling, which we also use in our
approaches and briefly introduce next.

Table 2.6: Universal POS tag set.

Label Description Examples Label Description Examples

ADJ adjective old, green DET determiner this, which
ADV adverb briefly NUM numeral one, 2
INTJ interjection psst, ouch PART particle not, ’s
NOUN noun item PRON pronoun you, someone
PROPN proper noun Microsoft SCONJ subordinating if, while
VERB verb create conjunction
ADP adposition in, during PUNCT punctuation .„,()
AUX auxiliary has, will SYM symbol $, %
CCONJ coordinating and, or X other xfgh, kfql

conjunction

Part-of-speech (POS) tagging. In POS-tagging, we aim to assign linguistic roles
to the words of the input sequence. There are various label sets that can be used for
POS tagging such as the Universal POS tag set1. The individual tags, their mean-
ing, and examples of that tag set is depicted in Table 2.6. Using it as a basis, a POS-
tagger labels the word sequence the vendor creates an invoice in SAP as the\DET,
vendor\NOUN, creates\VERB, an\DET, invoice \NOUN, in\ADP, SAP\PROPN.

We use POS-tagging as part of our semantic-annotation approach, which we
describe in Chapter 3, and our approach for recognizing task-level events, which
we describe in Chapter 5.

1
https://universaldependencies.org/u/pos/

https://universaldependencies.org/u/pos/
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Named-entity recognition (NER). In NER, we aim to find spans of words that
correspond to proper names and assign them an entity type. As for POS tagging,
there are various label sets that can be used as a basis. One such set is the CoNLL
2003 NER tag set [166], which defines the PER (person), LOC (location), ORG
(organization), and MISC (miscellaneous) labels. Given an input sequence Pete
Miller works for Microsoft, a NER-tagger that uses this set would return [Pete
Miller]PER works for [Microsoft]ORG.

We use NER in our semantic-annotation approach described in Chapter 3 and
our task-recognition approach described in Chapter 5.
Semantic-role labeling (SRL). In SRL, we aim to assign semantic roles to spans of
words. The task’s goal is to answer questions like Who is doing what, where and to
whom? Various standard but also custom labeling sets can be used for SRL, such as
the so-called PropBank [103] labeling set. For instance, for the input sequence Pete
Miller works for Microsoft, an SRL technique that uses PropBank would return
[Pete Miller]ARG0 [works]PRED for [Microsoft]ARG2. In particular, PropBank defines
semantic roles with respect to an individual verb sense. In our example, ARG0 thus
translates into worker and ARG2 into beneficiary.

In this thesis, we label activities with semantic components as part of our
semantic-annotation approach (Chapter 3), which represents an SRL task.

2.2.4 Natural Language Processing for Process Analysis

There is a range of works that apply NLP methods for the purpose of (automated)
process analysis. This section provides an overview of such works, distinguishing
between ones that mainly focus on the analysis of event data, process models, and
textual process descriptions.
Analysis of event data. The analysis of event data using methods from NLP pri-
marily focuses on the activity labels that are associated with events. Research on
analyzing such labels includes the work by Deokar and Tao [55], which groups se-
mantically similar labels together in order to reduce the complexity of an event log.
Ramos-Gutiérrez et al. [147] aim to improve event log quality by relabeling activ-
ities based on proposed quality metrics. To this end, they suggest standard NLP
tasks, such as POS-tagging, based on the computed quality of an event log. In or-
der to detect process behavior in event logs, which is problematic from a semantic
point of view, e.g., cases where items are shipped after an order has been cancelled,
the notion of semantic anomaly detection has recently been proposed [5]. Existing
approaches detect such behavior through rules that they extract from linguistic re-
sources and process models [5] or by training a classifier to identify problematic
ordering of activity pairs [43].
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Analysis of process models. Research on the analysis of process models with
NLP methods focuses, among others, on the categorization of process activities,
achieved by mapping process model components to existing taxonomies [114] and
on categorizing activities according to their degree of automation [111]. Other
work focuses on the automated generation of process model names [112] or activ-
ity labels for groups of lower-level process steps [113]. Furthermore, label pars-
ing [110] is used to analyze the labeling style of activities and to extract the actions
and objects from these, which corresponds to an SRL task that we outlined above.
Analysis of textual process descriptions. Research on the analysis of textual pro-
cess descriptions focuses on extracting process models from such descriptions [1],
comparing process models to them [4], and checking conformance between event
logs and textual process descriptions [3]. Barrientos et al. [28] address the prob-
lem of automatically checking if event log traces comply with natural language
regulatory documents. Winter et al. [182] focus on automatically assessing the
compliance of process models and regulatory documents instead, whereas Sai et
al. [165] aim to detect deviations between external regulatory requirements and
manually derived internal ones. With the advent of large language models, their
applicability for such tasks, e.g., for process model extraction from text, has been
investigated. Initial results indicate that similar or better performance as state-of-
the-art approaches can be achieved for such tasks [87].



Chapter 3

Semantic Annotation
of Event Logs

Organizations frequently seek insights into the execution of their processes beyond
the control-flow. Certain process mining techniques can provide such insights by
taking into account the meaning of events or their attributes. For instance, social
network analysis [12] considers the actors that perform events, object-centric pro-
cess analysis [6] considers the objects that are handled in a process, and semantic
anomaly detection [5] detects undesired process behavior through the meaning of
performed actions.

However, the information required for applying these techniques, such as ac-
tions, objects, and actors associated with events, is not readily available in most
event logs. A prime cause for this is the limited standardization of event data,
which is neither enforced nor complete with respect to the relevant pieces of infor-
mation, which we call semantic components. As a consequence, these components
are often contained in unstructured textual attributes or in attributes that are un-
clearly named and, thus, cannot be used by process mining techniques.

In this chapter, we propose an approach that alleviates this problem by auto-
matically identifying semantic components in events. In particular, our approach
aims to identify information on eight semantic component types, covering various
kinds of information related to objects, actions, actors, and other resources. After
this, it further categorizes the identified actions and actors into various categories,
allowing for a more detailed analysis of the way in which a process is executed
and what kind of resources are involved in its execution. To achieve its goal, our
approach combines a transformer-based language model, fine-tuned for SRL, with
novel techniques for semantic attribute classification and component categoriza-
tion. We assess the accuracy of our approach by applying it on a collection of 14

30
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real-world event logs. Furthermore, we demonstrate its usefulness by showcasing
three application cases that are only possible thanks to the semantic annotations
that our approach provides. Specifically, we show how our approach can be used
to refine event labels in order to reduce the complexity of discovered process mod-
els, enable object-centric process analysis, and analyze the automation degree of
processes based on actor information.

This chapter is based on a paper titled “Enabling semantics-aware process min-
ing through the automatic annotation of event logs” [148] by Adrian Rebmann and
Han van der Aa, which itself is an extension of the conference paper “Extracting
semantic process information from the natural language in event logs” [149].

The remainder of the chapter is structured as follows. Section 3.1 illustrates
the problem of annotating events with semantic components using examples from
real-world event logs. Section 3.2 defines the scope of our work in terms of the
covered semantic information and the main aspects involved in the annotation task.
Section 3.3 presents our annotation approach. Section 3.4 reports on evaluation ex-
periments that show that our approach achieves accurate results on real-world event
logs, spanning various domains and varying considerably in terms of their infor-
mational structure. As part of the evaluation, we also highlight the usefulness of
our approach by using it in three application cases. Section 3.5 reflects on limita-
tions of our work. Finally, Section 3.6 discusses streams of related work, whereas
Section 3.7 summarizes the results.

3.1 Problem Illustration

In this section, we illustrate the problem of annotating events with semantic com-
ponents. Figure 3.1 shows three events from real-world event logs, capturing in-
formation on semantic components in various manners.

All of these example events refer to an activity (concept:name) and a
timestamp (time:timestamp), specified using attributes from the eXtensible
Event Stream (XES) standard [88], whereas event e1 also uses the standard
org:resource attribute to capture which actor performed the event. However, this
XES standard is not always followed properly. For example, event e2 uses User,
rather than the standard org:resource attribute, to indicate the actor, whereas
event e3 erroneously uses this standard attribute to capture information on the ac-
tor’s role (a staff member) rather than on the specific actor instance. Furthermore,
the XES standard only covers a limited set of attributes, which means that informa-
tion on semantic components such as actions, object types, and their status are not
covered by the standard at all. Particularly problematic here is that information on
these and other components is commonly not explicitly captured through event at-
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concept:name      O_Create Offer
time:timestamp    11-07-16 18:54
org:resource         User_28
Accepted              False         

object

obj.status

human

actor instance

create action

action

(a) Event e1 from [67].

concept:name     SRM: In transfer to 
                            Execution Syst.
time:timestamp   02-01-18 14:53
User                     batch_00

action

passive role

system

actor instance

modify action

(b) Event e2 from [69].

concept:name     Declaration final_approved 
                            by supervisor
time:timestamp   26-02-18 05:15
org:resource        staff member  

action

actor role

action statusobject

decide action

actor role

human

(c) Event e3 from [70].

Figure 3.1: Exemplary events and their semantic components.

tributes, but is rather part of unstructured, textual attributes associated with events,
usually as part of their activities. For example, the Declaration final_approved
by supervisor activities of e3 captures the event’s object (declaration), the action
(submitted) along with its status (final), and the role of the actor (supervisor).

Since these components are all contained in the same attribute value, the infor-
mation cannot be used by process mining techniques. Enabling this use requires
the processing of each individual attribute value in order to identify the included
semantic information. Clearly, this is an extremely tedious and time-consuming
task when considered in light of the complexity of real-world logs, with hundreds
of event classes, dozens of attributes, and thousands of instances. Therefore, this
calls for automated support for the semantic annotation of event data, to make rel-
evant semantic components available to process mining techniques.

3.2 Scope

This section describes the scope of our approach in terms of the semantic informa-
tion it covers and the main aspects involved in the annotation task. In the follow-
ing, Section 3.2.1 covers the scope with respect to the identification of semantic
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components in event data, whereas Section 3.2.2 discusses the subsequent further
categorization of identified components into more specific types.

3.2.1 Semantic Component Identification

Given an event log L, our work first annotates pieces of information associated
with events that correspond to particular semantic components. This identification
task covers the following semantic component types and aspects.

Semantic Component Types

Our work covers various component types that support a detailed analysis of pro-
cess execution from a behavioral perspective, i.e., we target semantic components
that are commonly observed in event logs and that are relevant for an order-based
analysis of event data. Therefore, we consider information related to objects, ac-
tions, and active and passive resources involved in a process’ execution. For each
of these categories, we define multiple semantic component types:
Objects. We use the term object to refer to any artifact or entity that is being
handled in a process, which covers documents such as an offer or a declaration,
physical objects such as a car or a computer, but can also relate to, e.g., a customer
or an applicant. For the events in a log, our work annotates two component types:

• object as the type of a object, such as an offer or a declaration associated
with an event, and

• objectstatus as the reported status of an object, e.g., whether an identified
order is indicated as being open, canceled, or accepted.

Actions. Similarly, we define two types of components to capture information on
the actions that are applied to objects:

• action as the performed action itself, e.g., create, transfer, or approve, and
• actionstatus as further information on its status, e.g., started, paused, final,

or completed.
Resources. We capture information regarding the active resources of events, i.e.,
the entities that performed the recorded actions, with two component types:

• actorrole as the type or role of active resource in the event, e.g., a supervisor
or a system, and

• actorinstance for information indicating the specific actor instance, e.g., an
employee identifier such as User_28.

Aside from the actor, events may capture passive resources involved in an event,
primarily in the form of recipients. For this, we again define two component types:
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• passiverole as the type or role of passive resource related to the event, e.g.,
the supervisor receiving a document or a system on which a file is stored or
transferred through, and

• passiveinstance for information indicating the specific resource, e.g., an em-
ployee or system identifier such as batch_00.

Coverage and extensibility. The semantic component types considered here en-
able a broad range of insights into the execution of a process. For example, the
object and action categories allow one to obtain detailed insights into the objects
moving through a process, their inter-relations, and their life-cycles. Furthermore,
by also considering the resource-related components, one can, for instance, gain
detailed insights into the resource behavior associated with a particular object, e.g.,
how resources jointly collaborate on the processing of a specific document.

While the covered component types were purposefully selected based on their
relevance in real-world event logs, our approach is not limited to these specific
component types. Given that we employ state-of-the-art NLP methods and clas-
sification models that generalize well, the availability of appropriate event data
allows our approach to be easily extended to cover additional semantic component
types, both within and outside the informational categories considered here.

The Component Identification Task

In order to make sure that all relevant information is identified in an event log,
our work considers two aspects of the semantic component identification task, con-
cerned with two kinds of event attributes: attribute-level classification for attributes
dedicated to a single semantic component type and instance-level labeling for tex-
tual attributes covering various component types:
Attribute-level classification. Attribute-level classification determines the com-
ponent types of attributes that provide the same kind of information through-
out an event log, e.g., a doctype attribute indicating an object (object) or an
org:resource attribute capturing information on the specific resource performing
an event (actorinstance).

Although the XES standard definition [88] specifies several dedicated event
attributes, such as org:resource and org:role, these only cover a subset of the
semantic component types relevant for our approach. In particular, they omit com-
ponent types related to objects, actions, and passive resources. Information on
these types may, thus, be captured in attributes with diverse names, e.g., in the real-
world hospital log [123], the status of objects (objectstatus) is jointly indicated by
several event attributes, such as isCancelled and isClosed. Furthermore, even
for component types covered by standard attributes, there is no guarantee that event
logs adhere to the conventions, e.g., rather than using org:group, the Business Pro-
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cess Intelligence (BPI) event log from 2014 [65] captures information on actors in
an Assignment_Group attribute.
Instance-level labeling. Instance-level labeling, in turn, identifies semantic infor-
mation for attributes with unstructured, textual values that encompass various se-
mantic component types, differing per event. This task is most relevant for activity
labels that are (in case of XES) stored in a concept:name attribute.

Log ID Activity label Semantic components

WABO [38] l1 T08 Draft and send request for
advice

action (⇥2), object

BPI15 [66] l2 send design decision to stake-
holders

action, object, passiverole

BPI15 [66] l3 send letter in progress action, object, actionstatus
RTFM [53] l4 Insert Date Appeal to Prefec-

ture
action, object, passiverole

BPI19 [69] l5 Vendor creates invoice actorrole, action, object
BPI19 [69] l6 SRM: In transfer to Execution

Syst.
action, passiverole

BPI20 [70] l7 Declaration final_approved by
supervisor

object, actionstatus, action,
actorrole

BPI17 [67] l8 O_Create Offer action, object

Table 3.1: Activity labels from real-world logs with their semantic components.

Activity labels contain highly valuable semantic information, but also present
considerable challenges to their proper handling, as illustrated through the real-
world activities in Table 3.1. The examples highlight the diversity of natural lan-
guage labels, in terms of their structure and the semantic component types that they
cover. It is worth mentioning that such differences may even exist for labels within
the same event log, e.g., labels l5 and l6 (the label of e2 of the running example)
differ considerably in their textual structure and the information they cover, yet
they both stem from the same event log. Another characteristic to point out is the
possibility of recurring component types within a label, such as seen for label l1,
which contains two action components: draft and send. Thus, an approach for
instance-level labeling needs to be able to deal with textual attribute values that are
highly variable in terms of the information they convey, as well as their structure.

3.2.2 Semantic Component Categorization

Once semantic components have been identified, we apply a component catego-
rization step. In this step, we use action categorization to classify identified actions



Chapter 3. Semantic Annotation 36

into predefined types of high-level actions, whereas we use resource categorization
to distinguish between human and system actors involved in a process.
Action categorization. Because of the wide range of domains in which organi-
zational processes occur, processes can consist of a plethora of different actions,
resulting in a virtually unlimited universe of potential actions. Thanks to the state-
of-the-art NLP technology on which our work builds, our component identification
approach can still recognize action components in an accurate manner, despite
this variety. Nevertheless, various kinds of process analysis, such as abstraction,
filtering, and conformance checking, can benefit from having an understanding
about which actions (or activities) in a process serve a similar purpose and what
that purpose actually entails, e.g., improving and updating both refer to a modifica-
tion of a certain object. This calls for a reduction of the range of actions observed
in a process to a set of known higher-level action types.

To operationalize this, we use action categorization to assign an action type to
each action component identified for a process. As a basis for this categorization,
we adopt the established action classification framework of the MIT Process Hand-
book [122], which classifies process-related actions in a hierarchical manner. The
top-most level of this hierarchy defines eight high-level actions, as follows:

• Create: An action is classified as create if its essence is focused on the cre-
ation of an output of some sort, e.g., producing or documenting something.

• Modify: An action is classified as modify if its essence is focused on changing
some attribute of the input as the output, e.g., improving or sending some-
thing.

• Preserve: An action is classified as preserve if its essence is to keep the
input unchanged as an output, just at a later point in time, e.g., storing or
packaging something.

• Destroy: An action is classified as destroy if its essence is focused on the
destruction of an input of some sort, e.g., retiring or eliminating something.

• Combine: An action is classified as combine if its essence is grouping or
integrating multiples of an input into a single collected output, e.g., grouping
or matching something.

• Separate: An action is classified as separate if its essence is ungrouping
or splitting a single collected input into multiple outputs, e.g., dividing or
extracting something.

• Decide: An action is classified as decide if its essence is a choice among
multiple alternatives, e.g., determining or approving something.

• Manage: An action is classified as manage when the actual process to be
used is yet unspecified, such as a means of coordinating a dependency or
other process, e.g., assigning or scheduling something.
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Categorizing actions into these top-level action types then enables a more detailed
view on the process allowing analyses based on their meaning. For instance, it
allows us to separate a process into different stages, such as creation, process-
ing (modifying), and decision phases (see Section 4.4.4 for an application case
that shows this). Note that our work is independent of this specific classification
scheme. It can be replaced with any categorization for which instance data is avail-
able, such as the broader verb classification framework by Levin [115].
Resource categorization. Knowing whether process steps are performed by hu-
mans or systems allows for a detailed analysis of a process with respect to the
resource perspective. For instance, it enables an assessment of the degree of au-
tomation or system support of a process (cf. Section 3.4.4). Furthermore, in the
context of organizational mining, the interactions among employees are of par-
ticular interest, which requires the ability to distinguish human from non-human
resources. To enable such analyses, we further categorize identified actors into
system and human resources through resource categorization.

Although this categorization thus involves only two classes, properly opera-
tionalizing it is particularly interesting. Specifically, a categorization approach has
to take into account that the nature of a resource can be derived from various kinds
of information, which may or may not be available in a given event log or for a par-
ticular resource. For example, while actorrole components that indicate roles such
as a supervisor or a service, already reveal the category of an actor from a semantic
perspective, such clear descriptions are rarely available. Similarly, actorinstance
components can be expressive, e.g., User_28 or batch_00, but may also be unspe-
cific, e.g., res_90. Thus, both types of semantic components can provide useful
information, but cannot be solely relied on. Nevertheless, even when no meaning-
ful information is available in the actor-specific components themselves, insights
about the resource category may still be derived by looking at the context in which
an actor operates. This can, for example, be achieved by considering the kind of
activities an actor performs—a resource associated with SRM: In transfer to Exe-
cution Syst. events is likely to be a system—whereas also the duration of activities
(instant versus highly variable), can be useful to distinguish between actor types.

3.3 Annotation Approach

This section describes our approach for the semantic annotation of event logs. Sec-
tion 3.3.1 first introduces the approach at a high level, whereas Section 3.3.2–
Section 3.3.4 describe its main stages in detail. Finally, Section 3.3.5 describes
the output our approach generates.
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3.3.1 Approach Overview

Our approach takes as input an event log L according to Definition 3 and annotates
the events in EL with additional information about the semantic components con-
tained in an event’s attributes1, as described in Section 3.2. To achieve this, our
approach consists of three main parts, as illustrated in Figure 3.2.

Event 
log L

Data type 
preprocessing

Semantic 
component 

identification
Instance-level 

labeling

Attribute-level 
classification

Semantic 
component 

categorization
Action 

categorization

Resource 
categorization

Annotated 
event log L’

Figure 3.2: Overview of the annotation approach.

Given an event log L, the data type preprocessing step first analyzes the do-
mains of attributes in DL in order to differentiate among textual, miscellaneous,
and irrelevant attributes. Next, the semantic component identification stage aims to
annotate each event with up to eight different component types. This stage consists
of two subsequent steps: instance-level labeling, which annotates the individual
values of textual attributes, and attribute-level classification, which determines the
appropriate component type for entire attributes. Afterwards, our approach pro-
ceeds with the semantic component categorization stage, which consists of two in-
dependent steps: in the action categorization step, identified action components
are classified according to eight high-level types, whereas resource categorization
differentiates between human and system resources. As output, our approach re-
turns an augmented event log L’, in the XES format, in which each event e is
extended with additional semantic information, i.e., with its action(s) and action
type(s), object(s), and various kinds of resource-related information.

3.3.2 Data Type Preprocessing

In its first step, our approach identifies a set of textual attributes D
T

L
, serving as

input for the instance-level labeling step, and a set of miscellaneous attributes DM

L
,

serving as input to the attribute-level classification step. Attributes that are not
1Note that we do not impose any assumptions on the attributes contained in DL, meaning that we

do not assume that standard attributes such as org:role are included in DL.
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included in either of these sets are deemed irrelevant for our purposes and, thus,
omitted from further consideration. This preprocessing step works as follows.
Data type classification. We first use standard techniques, such as provided by
the Pandas library2, to classify each attribute in DL as either timestamp, numeric,
boolean, or string, based on its domain.
Identifying textual attributes. In order to identify the set of textual attributes DT

L
,

we differentiate between string attributes with true natural language values, e.g.,
Declaration final_approved by supervisor or O_Create Offer, and other kinds of
alphanumeric attributes, with values such as User_28, A, and R_45_2A. Only the
former kind of attributes will be assigned to D

T

L
and, thus, analyzed on an instance-

level in the remainder. We identify such textual attributes as follows:
1. Given a string attribute, we first apply a tokenization function tok, which

splits an attribute value into lowercase tokens (based on whitespace, camel-
case, underscores, etc.) and omits any numeric ones. E.g., given s1 =
Declaration final_approved by supervisor, s2 = User_28, and s3 =
08_AWB45_005, we obtain: tok(s1) = [declaration, final, approved, by, su-
pervisor], tok(s2) = [user] and tok(s3) = [awb].

2. We apply a POS-tagger, provided by standard NLP tools such as spaCy [97],
to assign each token a tag from the Universal Part of Speech tag set3.
Thus, we obtain [(declaration, NOUN), (final, NOUN), (approved, VERB),
(by, ADP), (supervisor, NOUN)] for s1, [(user, NOUN)] for s2, and [(awb,
PROPN)] for s3.

3. Finally, we exclude any attribute that only has values with the same token in
tok(s) or that do not contain any NOUN, VERB, ADV, ADP, or ADJ tokens.
In this way, we omit attributes with values such as s2 = User_28 and s3 =
08_AWB45_005, which are identifiers, rather than real textual attributes. The
other attributes, which have diverse, textual values, e.g., s1 = Declaration
final_approved by supervisor, are assigned to D

T

L
.

Selecting miscellaneous attributes. We also identify a set of non-textual attributes
that are candidates for semantic labeling, referred to as the set of miscellaneous
attributes, DM

L
✓ DL \ D

T

L
. This set contains attributes that are not included in

D
T

L
, yet have a data type that may still correspond to certain semantic component

types, such as statuses or identifiers.
In order to establish D

M

L
, we first discard those attributes in DL \ D

T

L
catego-

rized as timestamp attributes, as well as numeric attributes that include real or
negative values. We exclude these because they are not used to capture semantic
information. By contrast, the remaining attributes have data types that may corre-

2
https://pandas.pydata.org

3
https://universaldependencies.org/docs/u/pos/

https://pandas.pydata.org
https://universaldependencies.org/docs/u/pos/
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spond to component types, such as Boolean attributes that can be used to indicate
specific states, e.g., Accepted, whereas non-negative integers are commonly used
as identifiers, e.g., a customer attribute with values such as 32015 and 49102.
These remaining attributes are then joined with the string attributes that were not
selected for DT

L
, e.g., attributes with values such as the aforementioned User_28,

and 08_AWB45_005 examples, to form the set of miscellaneous attributes DM

L
.

In this manner, given the log of example event e1, e.g., concept:name and
org:resource are assigned to D

T

L
, Accepted to D

M

L
, and time:timestamp is

omitted from consideration.

3.3.3 Semantic Component Identification

The semantic component identification stage comprises two subsequent steps.
First, instance-level labeling processes the values of textual attributes to extract
the parts that correspond to semantic component types, e.g., recognizing that a
document received activity label contains the object document and the action re-
ceived. Afterwards, the attribute-level classification step identifies the appropriate
component type for each of the remaining attributes, i.e., it aims to determine the
semantic component type that corresponds to all values of a certain attribute by
considering its value domain as well as its name. For example, it recognizes that
all values of a doctype attribute correspond to the object component type. The
details of these steps are as follows.

Instance-level Labeling of Textual Attributes

In this step, our approach annotates the values of textual attributes in order to ex-
tract the parts that correspond to certain semantic component types, e.g., recog-
nizing that the O_Create Offer label of event e1 contains offer as the object and
create as the action. As discussed in Section 3.2.1, this task comes with consid-
erable challenges due to the high diversity of textual attribute values in terms of
their linguistic structure and informational content. To be able to deal with these
challenges, we therefore build on state-of-the-art NLP methods.
Semantic-role-labeling task. We consider the labeling of textual attribute values
with semantic component types as an SRL task. Therefore, we instantiate a func-
tion that assigns one of the eight semantic component types (i.e., semantic roles)
described in Section 3.2.1 to chunks (i.e., groups) of consecutive tokens from a
tokenized textual attribute value. Formally, we use T to refer to the set of compo-
nent types and we denote the outcome of the tokenization of an attribute value for
a given event e 2 EL and attribute d 2 D

T

L
, as tok(e.d) = hw1, . . . , wni, where

each token represents a word wi. Then, we define a function tag(hw1, . . . , wni)!
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hc1\t1, . . . , cm\tmi, where ci for 1  i  m is a chunk consisting of one
or more consecutive tokens from hw1, . . . , wni, with ti 2 T [ {other} as
its associated semantic component type (or other for words that do not corre-
spond to any targeted semantic component). For example, tag(hcreate, offeri) re-
sults in hcreate\action, offer\objecti and tag(hdeclaration, final, approved, by,
supervisori) yields hdeclaration\object, final\actionstatus, approved\action,
by\other, supervisor\actorrolei.
Fine-tuning BERT. To instantiate the tag function, we employ BERT [56]
(cf. Section 2.2). In particular, we fine-tune a pretrained BERT model on the task
of tagging chunks of textual attribute values that correspond to semantic compo-
nent types. To this end, we manually labeled a collection of 13,231 unique textual
values stemming from existing collections of process models [110], textual process
descriptions [111], and event logs (see Section 3.4.1). As expected, the collected
samples do not capture information on resource instances, and rather contain in-
formation on the type level (i.e., actorrole and passiverole). For those semantic
component types that are included in the samples, we observe a considerable im-
balance in their commonality, as depicted in Table 3.2. In particular, while compo-
nent types such as object (14,629 times), action (12,573), and even passiverole

(1,191) are relatively common, we only found few occurrences of actorrole (135),
objectstatus (92), and actionstatus (30) component types.

Table 3.2: Characteristics of the training data used to fine-tune BERT (s = status).

Source Count object objects action actions actorrole passiverole other

Models 11,658 13,543 50 11,445 3 58 1,058 4,966
Desc. 498 503 11 498 0 8 114 206
Logs 625 583 31 630 27 69 19 291
Aug. 450 350 100 350 150 200 0 150

Total 13,231 14,979 192 12,923 180 335 1,191 5,613

To address this imbalance, we created additional samples with objectstatus,
actionstatus, and actorrole component types using established data augmentation
strategies. In particular, we created samples by complementing randomly selected
textual values with (1) known actorrole descriptions, e.g., offer created is extended
to offer created by supervisor, and (2) common life-cycle transitions [7] to create
samples containing objectstatus and actionstatus component types, e.g., check
invoice is extended to check invoice completed. However, as shown in Table 3.2,
we limited the number of extra samples to avoid overemphasizing the importance
of these component types.
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Given this training data, we operationalize the tag function using the BERT
base uncased pre-trained language model4 with 12 transformer layers, a hidden
state size of 768 and 12 self-attention heads. As suggested by its developers [56],
we trained 2 epochs using a batch size of 16 and a learning rate of 5e-5.
Reassigning noun-only attributes. Having applied the tag function to the val-
ues of an attribute d 2 D

T

L
, we check whether the tagging is likely to have been

successful. In particular, we recognize that it is hard for an automated technique to
distinguish among the object, actorrole, and passiverole component types, when
there is no contextual information, since their values all correspond to nouns. For
instance, the User attribute of event e2, which encompasses noun-based values like
user and batch, may be falsely tagged as object rather than actorrole. This hap-
pens because objects are much more common in the training data and the attribute
values do not provide any further context that indicates the correct component type.
To overcome this issue, we establish a set DN

L
✓ D

T

L
that contains all such noun-

only attributes, i.e., attributes of which all values correspond solely to the object

component type. This set is then forwarded to the attribute-level classification step
of our approach, whereas the tagged values of the other attributes directly become
part of our approach’s output in the form of semantic annotations.

In this manner, we annotate the values of our example events’ concept:name
attributes. For e1: create : action, offer : object, for e2: transfer : action,

execution sys. : passiverole, and e3: declaration : object, final : actionstatus,

approve : action, supervisor : actorrole. The events’ noun-only textual attributes,
i.e., org:resource and User, are reassigned to be handled in the next step.

Attribute-Level Classification

This step determines the semantic component types of the miscellaneous attributes
in D

M

L
, such as the Boolean Accepted attribute of e1, identified in the prepro-

cessing stage, and the noun-only textual attributes in D
N

L
, such as User of e2 and

org:resource of e3, stemming from the previous step. We target this task as a
classification problem at the attribute level, i.e., we aim to identify a single seman-
tic component type t 2 T [ {other} for each d 2 D

M

L
[ D

N

L
and then assign

type t to each occurrence of d in the event log. For attributes in D
M

L
, our approach

operationalizes this classification task based on just an attribute’s name, whereas it
considers the name as well as the values of attributes in D

N

L
.

Note that we initially assign each attribute a component type t 2 T
0, where T

0

excludes the instance component types, i.e. actorinstance and passiveinstance,
4
https://github.com/google-research/bert

https://github.com/google-research/bert
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from T . Afterwards, our approach distinguishes between type-level and instance-
level resource attributes based on their domain.
Classifying miscellaneous attributes in D

M

L
. In order to determine the compo-

nent type of miscellaneous attributes, we recognize that their values, typically al-
phanumeric identifiers, integers or Boolean, are mostly uninformative and thus not
helpful for the classification task. Therefore, we determine the component type of
an attribute d 2 D

M

L
based on its name. To do this, we build a classifier that classi-

fies a name(d) based on a set of available attribute names, which we each manually
assigned a class from the set T 0.
Attribute classifier. As training data for this classification task, we take the set
of attribute names from the available real-world event logs used in our evaluation
(see Section 3.4.1 for further details), complemented with attribute names from
the schema.org vocabulary. This latter resource provides suggestions for standard
attribute names that cover a broad range of object-related terms, e.g., product, as
well as status and resource-related terms, e.g., pending or agent. Table 3.3 provides
an overview of the training data obtained in this manner, which provides a good
basis to train a classifier for our purpose.

Table 3.3: Characteristics of the data used to training our attribute classifier.

Source object objectstatus actionstatus actorrole other

Real-world logs 6 6 1 8 38
Schema.org 68 22 4 91 70

Total 74 28 5 99 108

Using this data, we built a multi-class text classifier function classify(d),
which, given an attribute d, returns td 2 T

0
[ {other} as the semantic component

type closest to name(d), with conf(td) 2 [0, 1] as the respective confidence value.
To operationalize the classify function, we encode the training data using the
GloVe [141] vector representation for words. Subsequently, we train a logistic
regression classifier on the obtained vectors, which can then be used to classify
unseen attribute names. Since GloVe provides a state-of-the-art representation to
detect semantic similarity between words, the classifier can recognize that, e.g., an
item attribute is more similar to object attributes like product, than to the names
associated with other component types in the dataset.
Detecting status attributes. Although the classify function is able to recognize
the majority of relevant attribute classes, we observe that it relatively often fails to
recognize objectstatus attributes, which may be falsely classified as either object
or other. A primary reason for this is that examples of the objectstatus class are
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underrepresented in the available training data, whereas the class also relates to
a broad range of different kinds of statuses. However, we also observe that such
objectstatus attributes commonly follow a particular style. Specifically, status
attributes often have a name that contains the past participle of a verb, e.g., selected,
is closed, accepted, accompanied by Boolean or categorical attribute values, e.g.,
indicating that the respective object is indeed closed.

Based on this insight, we re-assign the class of any attribute d 2 D
M

L
of which

name(d) ends with a past participle, thus overwriting the class td assigned by the
classifier with objectstatus. We detect such cases using standard NLP tools, such
as spaCy [97]. In this manner, our approach annotates the values of the Boolean
Accepted attribute of e1 as objectstatus.
Classifying noun-only attributes in D

N

L
. Next, we turn to the classification of

the noun-only attributes in D
N

L
, which were identified in the instance-level label-

ing step. Recall that these are textual attributes of which all values were entirely
classified as being of the object component type, a situation that hints at a lack
of context for their proper analysis (see, e.g., the User attribute of event e2). To
properly classify such attributes, we therefore first apply the same classifier as used
for miscellaneous attributes. If classify(d) provides a classification with a high
confidence value, i.e., conf(td) � ⌧ for a threshold ⌧ , our approach uses td as
the component type for an attribute d 2 D

N

L
. In this way, we directly recognize

cases where name(d) is equal or highly similar to the attributes in our training data.
However, if the classifier does not yield a confident result, we instead analyze the
textual values in dom(d).

Since noun-only attributes were previously re-assigned due to the lack of con-
text available for their values, e.g., they just consist of words like user or vendor,
we overcome this issue by placing them in artificial contexts that cover various
kinds of semantic components, allowing us to recognize the appropriate role of an
attribute value. To provide these contexts, we use a selection of highly expressive
textual attribute values from the training collection of the instance-level labeling
step. Specifically, we use a set N of texts consisting of the 891 unique attribute
values that contain at least three different kinds of semantic components.

To illustrate this, consider vendor as an attribute value, and n = confirm to
customer that paperwork is ok as the context value from N , which contains infor-
mation on action (confirm), a passive resource (customer), an object (paperwork),
and the object’s status (ok). As shown in Figure 3.3, we create artificial texts for
the attribute value by replacing a semantic component type from n with the word
vendor. We subsequently feed these artificial texts into the language model used
for instance-level labeling (Section 3.3.3), which can then be used to quantify the
confidence score that the attribute value corresponds to the semantic component
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type it replaced in an artificial text. For instance, in Figure 3.3, vendor is regarded
as most likely corresponding to a passive resource for the context n, which we con-
sider as a vote in favor of the passiverole component type. Having computed these
confidence scores for all attributes values in dom(d) against all exemplary contexts
in N , we assign td 2 T

0
[{other} as the type that received the most votes overall.

Context n:
confirm (action) to customer (passiverole) that request (object) is ok (objectstatus)
Replace action:
vendor to customer that request is ok ! conf(action) = 0.26
Replace passiverole:
confirm to vendor that request is ok ! conf(passiverole) = 0.81
Replace object:
confirm to customer that vendor is ok ! conf(object) = 0.68
Replace objectstatus:
confirm to customer that request is vendor ! conf(objectstatus) = 0.66

Figure 3.3: Insertion of value vendor into an existing context n, providing support
of its being a passive resource (passiverole).

Recognizing instance-level attributes. Because we only focused on the type-
level components T

0 in the above, we lastly check for every attribute that was
classified as being resource related, i.e., with td 2 {actorrole, passiverole}, if
it actually corresponds to an instance-level component type instead. Particularly,
we change td to the corresponding instance-level component type if dom(d) has
values that contain a numeric part or only consist of named-entities (e.g., Pete).
For instance, a User attribute (cf. event e2) with values like batch_00, contains
numeric parts and is, thus reassigned to actorinstance, while the attribute of event
e3, with dom(org:resource) = {staff member, system}, clearly does not describe
resource instances and, therefore, will retain its actorrole component type.5

Component Identification Output

Having completed both the instance-level labeling and attribute-level classification
steps, the component identification stage of our approach returns a collection of
tuples (t, v) with t 2 T a semantic component type and v a value, for each event
e 2 EL. For values of a textual attribute d1 2 D

T

L
\ D

N

L
), v corresponds to part

of the attribute value e.d1. For those attributes that were classified at the attribute
level, i.e., d2 2 D

M

L
[ D

N

L
, a tuple receives the entire value. In case of Boolean

5This is an interesting case, as org:resource attributes are intended for capturing actor instances.
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values, the attribute’s name is used if the original value is true, if it is false, not is
prepended to the attribute’s name.

For event e1 of our running example, we obtain the tuples (action, create)
and (object, offer) based on instance-level labeling and (actionstatus, notAc-
cepted) and (actorinstance, User_28) based on attribute-level classification. For
e2, we obtain (action, transfer) and (passiverole, execution syst.) based on
instance-level labeling and (actorinstance, batch_00) based on attribute-level clas-
sification. Finally, for e3, we obtain (object, declaration), (actionstatus, final),
(action, approve), and (actorrole, supervisor) based on instance-level labeling
and (actorrole, staff member) based on attribute-level classification.

3.3.4 Semantic Component Categorization

In this section, we describe the two steps of the component categorization stage:
action categorization and resource categorization.

Action Categorization

In this step, our approach categorizes identified action components, stemming
from the previous stage, according to the eight high-level action categories de-
scribed in Section 3.2.2. In this manner, we are able to recognize which events in
a log relate to similar kinds of process steps, such as events that create, modify,
or combine objects. For instance, we recognize that the transfer action of event
e2 modifies the handled item, whereas the approve action of event e3 refers to a
decision about a declaration.

We tackle this categorization task by establishing a set of reference actions,
derived from the same MIT Process Handbook [122] that defines the eight high-
level action categories. Then, given an action identified in the log, we use these
reference actions to determine the most suitable high-level category.

Table 3.4 provides an overview of the collection of reference actions RA es-
tablished for this purpose, which corresponds to the actions found in the first four
layers of the action hierarchy defined by the handbook. We note that lower parts of
the hierarchy do not provide additional reference actions, but rather contain more
specific versions. For example, given retire as as a reference action for Destroy,
further layers of the hierarchy include retire physical object and retire digital object
as specializations, whose inclusion would not help to categorize individual actions.
It is important to remark that some reference actions are part of multiple high-level
categories, given that an action can have different impacts depending on its con-
text. For example, document is part of both the Create and Preserve categories,
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as documenting something can both indicate the creation of a new informational
object, as well as the preservation of information, such as writing down a decision.

Category Exemplary reference actions Count

Create build, duplicate, design, produce, document 15
Destroy retire, dispose, eliminate, obliterate, depreciate 7
Modify improve, update, complete, move, send 24
Preserve wait, retain, store, document, package 10
Combine group, organize, match, aggregate, link 10
Separate disaggregate, divide, segment, diversify, extract 10
Decide select, determine, assign, assess, approve 20
Manage assign, organize, allocate, schedule, budget 11

Table 3.4: High-level action categories and exemplary reference actions.

To categorize an identified action component ac, we first determine the most
similar reference action ra 2 RA. For this purpose, we again employ the GloVe
vector representations for words [141]. Given these vectors, we compute the co-
sine similarity between all vector pairs (ac, ra 0), with ra

0
2 RA, retrieving the

reference action ra with the highest similarity to ac. We then categorize action ac

according to the high-level category that ra is part of. For example, given ac =
transfer, we obtain ra = move as the reference action, so that ac is accordingly
recognized as belonging to the Modify category.

Note that if there are multiple reference actions with the same, highest similar-
ity score for a given action ac (and those actions are part of different categories),
or if the most similar reference action is part of multiple high-level categories, we
break the tie by computing the similarity between ac and the high-level actions
themselves, assigning ac to the category with the highest similarity score. For ex-
ample, given the action write, we get document as the reference action, which is
part of both the Create and Preserve categories. Because write has a higher simi-
larity to the create than to preserve, we assign the action to the former category.

In this manner, we annotate the create action of e1 with the Create action type,
the transfer action of e2 with Modify, and the approve action of e3 with Decide.

Resource Categorization

Finally, our approach turns to the categorization of the resources identified in the
events of a log, determining whether they correspond to human or system actors.
For instance, we categorize the actorinstance component User_28 of event e1 as
human and the actorinstance component batch_00 of event e2 as system. Depend-
ing on the event log or specific resource, the information that may be available to
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perform this categorization can vary greatly, ranging from specific descriptions of
actor roles, e.g., supervisor and staff member in event e3, to only having informa-
tion on identifiers, e.g., batch_00 or or User_28 in the other two example events.
Therefore, we propose several strategies, exploiting different kinds of information.
Identifying individual actors. We perform this categorization task for each actor
contained in a log, which means that we first determine the set of resources RS

that performed the activities of events, including all information available on them.
To achieve this, we populate RS with all distinct actorinstance components, since
these represent unique actors. We associate these with any actorrole components
found in an actor’s events. For example, given an event with actorinstance =
0011 and actorrole = supervisor, we add the resource tuple rs1 = (actorrole
= supervisor, actorinstance = 0011) to RS. For events without actorinstance
but with actorrole information, we consider unique combinations of actorrole

components as additional actors and add them to RS. For instance, for event e3,
which has two actorrole components but no instance information, we add rs2 =
(actorrole = supervisor, actorrole = staff member) to RS.
Categorization strategies. To categorize a resource, we apply up to four cate-
gorization strategies in a sequential manner: (1) WordNet-based categorization of
actorrole components, (2) named entity recognition of actorinstance components,
(3) BERT-based resource classification, and (4) execution time analysis. The un-
derlying idea is that the earlier strategies are highly precise, but may not be applica-
ble for every resource rs 2 RS. Therefore, if a strategy yields a hit for rs, we use
that outcome to categorize it, otherwise our approach moves to the next strategy.
WordNet-based categorization of actorrole components. This strategy aims to
categorize a resource by comparing its actorrole component, if available, to cat-
egories established in the lexical database WordNet [131]. This database relates
words to each other via semantic relationships, such as hypernymy. A hypernym is
a more general term for a given word, e.g., color is the hypernym of red.

If the actorrole value of a resource rs is included in WordNet, we use the hy-
pernymy relation to check if the value has a hypernym that corresponds to person
or organization, in which case we categorize rs as being human, or to system, com-
puter, or information, in which case we categorize rs as a system. For example,
this strategy detects that a vendor is a person and, thus, a human actor, whereas a
database corresponds to information, and is thus categorized as a system.

While this strategy is highly precise, its applicability is impeded by the limited
scope of WordNet, which only covers rather common English terms. As such, this
strategy requires that a resource has a semantically meaningful actorrole compo-
nent and, furthermore, that this is not too domain-specific.
NER for identifying actorinstance components. This strategy detects human re-
sources by determining if information contained in the actorinstance component
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corresponds to a known name, e.g., Pete or Verena. For this purpose, we use a stan-
dard NER tool [97] to check if the available instance information is found to be a
person. In this manner, we are able to recognize a broad range of given and sur-
names of involved human actors, though this strategy can naturally only be applied
to event logs that have not been properly pseudonomymized.
BERT-based resource classification. If the two previous deterministic strategies do
not yield a result, we next apply a probabilistic strategy that classifies a resource
according to the textual information contained in its components (if any), as well as
based on the activities that it performs. While the former speaks for itself, the idea
of the latter is that the activities can indicate whether they are likely to be performed
automatically, i.e., by a system, or not. For instance, a resource performing a
transmit data activity is more likely to be a system than a resource performing a
conduct quality check activity, which requires the expertise of a human.

We operationalize this step by fine-tuning BERT to the task of classifying tex-
tual fragments, consisting of actor descriptions and activity names, as either system
or human. To train this model, we employ a dataset and gold standard established
by Leopold et al. [111], which contains sets of activities that are classified as being
performed in an automated or in a manual fashion. In this manner, the fine-tuned
model will learn to distinguish texts that relate to automated activities performed
by system actors and manual activities performed by human actors. Given a re-
source rs, we consider each unique activity label l of an event that rs performs and
apply the fine-tuned BERT model on the string l + by + rs.actorrole (or just l if
rs has no actorrole). For instance, with l = in transfer to execution sys and rs =
batch, we feed in transfer to execution sys by batch to the classifier. The classifier
recognizes this activity as being performed by a system, resulting in a vote for the
system category. Afterwards, we assign the category of rs according to the most
commonly predicted class across all unique labels that rs has executed in the log.

Naturally, this strategy requires activity labels with sufficient semantic infor-
mation, i.e., activities that refer to an action and/or object. Therefore, we only
apply this strategy for activity labels that contain at least one of these components.
Alternatively, in case actorrole components are available for a resource, we can
use these as standalone input to the classifier if no activity labels with sufficient
semantic information are available. If neither informative labels nor actor descrip-
tions are available, we turn to the last strategy.
Execution time analysis. Finally, if none of the previous strategies can be applied,
we use a final categorization heuristic. Specifically, we consider the execution
times of the events that are performed by a given resource r. If these hint at in-
stantaneous execution of process steps, i.e., the timestamps of an event and its
predecessor are equal6, we categorize r as a system, otherwise as a human.

6While the timestamp is at least specific to the second.
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In our example, we categorize the actor of e1, User_28, as human using BERT-
based resource classification, which is based on the word User itself, in combina-
tion with the labels of the events that the actor performed. The actor of event e2 is
categorized as system, based on the same strategy, whereas the actor of e3 is cate-
gorized as human based on WordNet, which relates both its actorrole components,
supervisor and staff member, via the hypernymy relation to the word person.

3.3.5 Output

The component identification stage of our approach returns a collection of tuples
(t, v) with t 2 T a semantic component type and v a value, for each event e 2 EL,
as described in Section 3.3.3. Afterwards, the component categorization stage adds
a tuple (action:type, cata), with cata as a high-level action, for each identified
action component, and a tuple (actor:type, catr), with catr as either human or
system, if applicable. To enable the subsequent application of process mining
techniques, the implementation of our approach returns an augmented XES event
log that captures these tuples as dedicated, additional event attributes. We, thus, do
not override any attributes from the original log.

Note that we support different ways to handle cases where an event has mul-
tiple tuples with the same semantic component type, such as the draft and send
actions stemming from a draft and send request label or staff member and super-
visor, both actorrole components stemming from the same event e3. Particularly,
users can choose to collect the values into one attribute, i.e., action = [draft, send]
and actorrole = [staff member, supervisor], or into multiple, uniquely-labeled at-
tributes, i.e., action:0 = draft, action:1 = send and actor:role:0 = supervi-
sor, actor:role:1 = staff member. Information on the respective action types
is then analogously captured in one or more event attributes. Lastly, if multiple
objectstatus (or actionstatus) attributes exist that each have Boolean values, e.g.,
isCancelled and isClosed for the Hospital log [123], these are consolidated into
a single attribute, for which events are assigned a value based on their original
Boolean attributes, e.g., {?, isCancelled, isClosed}.

For the running example, we obtain the annotated events that are shown in Fig-
ure 3.4 as the final output of our approach, which make the semantic components
available for process analysis techniques.
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concept:name      O_Create Offer
time:timestamp    11-07-16 18:54
org:resource         User_28
Accepted              False
————————————————
action:name         create
action:type           create
object:name         offer
object:status        notAccepted
actor:instance      User_28
actor:type             human
                       

(a) Output for event e1.

concept:name     SRM: In transfer to 
                            Execution Syst.
time:timestamp   02-01-18 14:53
User                     batch_00
————————————————
action:name         transfer
action:type           modify
passive:role          Execution Syst.
actor:instance      batch_00
actor:type             system   

(b) Output for event e2.

concept:name     Declaration final_approved 
                            by supervisor
time:timestamp   26-02-18 05:15
org:resource        staff member
———————————————————
action:name         approve
action:status        final
action:type           decide
object:name         declaration 
actor:role:0           supervisor
actor:role:1           staff member
actor:type             human     

(c) Output for event e3.

Figure 3.4: Final output of our approach for the running example’s events.

3.4 Evaluation

In this section, we describe the evaluation experiments we conducted to demon-
strate the accuracy of our proposed event log annotation approach with respect
to its ability to both identify and categorize semantic components. Section 3.4.1
presents the collection of 14 real-world event logs we use as a basis for these ex-
periments, Section 3.4.2 describes the employed implementation and experimental
setup, whereas the results are presented and discussed in Section 3.4.3. Finally,
Section 3.4.4 highlights the usefulness of our approach though three application
cases that each show a semantics-aware analysis option that our approach enables.
To support reproducibility, the employed implementation, gold standard, and links
to the event logs are all available through a repository.7

7
https://github.com/a-rebmann/semantic-annotation

https://github.com/a-rebmann/semantic-annotation
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3.4.1 Data Collection

For our evaluation, we selected all real-world event logs publicly available in the
common 4TU repository8, excluding those capturing data on software interactions
or sensor readings, given their lack of natural language content. For collections
that included multiple event logs with highly similar attributes, i.e., BPI13, BPI14,
BPI15 and BPI20, we only selected one log per collection, to maintain objectivity
of the obtained results. Table 3.5 depicts the details on the resulting collection of
14 event logs. They cover processes of different domains, e.g., financial services,
public administration, and healthcare. Moreover, they vary substantially in their
number of activities, textual attributes, and miscellaneous attributes.

Table 3.5: Event log characteristics, with AL as the set of activities in the respective
log, DL of data attributes, and D

T

L of textual data attributes.

Log name Ref. |AL| |DL| |DT

L
| Log name Ref. |AL| |DL| |DT

L
|

BPI12 [64] 24 4 2 BPI20 [70] 51 5 4
BPI13 [169] 4 11 4 CCC19 [132] 29 9 4
BPI14 [65] 39 7 2 Credit Req. [62] 8 4 3
BPI15 [66] 289 13 3 Hospital [123] 18 20 2
BPI17 [67] 26 15 4 RTFM [53] 11 15 2
BPI18 [68] 41 12 5 Sepsis [124] 16 31 1
BPI19 [69] 42 4 2 WABO [38] 27 6 2

3.4.2 Evaluation Setup

We conducted our evaluation experiments based on the following setup.
Implementation. We implemented our approach in the form of a Python proto-
type, which is publicly available through the aforementioned project repository and
also includes a command that allows users to directly incorporate our approach in
their Python projects through pip installation.

Our implementation uses the PM4Py [32] library to handle event logs, Pandas9

for the data type preprocessing stage, the BERT base uncased pre-trained language
model10 as a foundation for the instance-level labeling step, and GloVe vector rep-
resentations [141] to determine semantic similarity between words.
Gold standard. We established a gold standard in which we manually annotated
the contents of all 14 event logs used in the evaluation. For the component iden-

8
https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22

9
https://pandas.pydata.org

10
https://github.com/google-research/bert

https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22
https://pandas.pydata.org
https://github.com/google-research/bert
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tification stage, we annotated all unique textual values, for instance-level labeling,
and attributes, for attribute-level classification with their proper semantic compo-
nent types. For the component categorization stage, we labeled identified resource
components as system if the description of the data set clearly stated which re-
sources are systems or if explicit information about the resource type was available
from the event log itself. The action components that our approach identified in
the 14 evaluation logs were labeled with their action type according to the MIT
Process Handbook [122].
Cross-validation procedure. The semantic component identification stage of our
approach uses a language model in the instance-level labeling step and a classi-
fier in the attribute-level classification step that are both, among others, trained on
data from the same real-world event logs used in the evaluation. Therefore, to
avoid biasing the results, we perform our evaluation experiments using leave-one-
out cross-validation, in which we repeatedly train our approach using data from 13
event logs and evaluate it on the 14th. This procedure is repeated such that each
log in the collection is considered as the test log once. For the component cate-
gorization, this procedure is not required, since the training data we use does not
stem from the collection of evaluation logs.
Evaluation metrics. To assess the performance of our approach, we compare
the annotations obtained using our approach against the established gold standard.
Specifically, we report on the standard precision, recall, and the F1-score. Note
that for instance-level labeling, we evaluate correctness per chunk, e.g., if a chunk
(purchase order, object) is included in the gold standard, both purchase and order
need to be associated with the object component type in the result, otherwise,
neither is considered correct.
Baselines. To place the results obtained by our approach into context, we compare
them to those obtained by relevant baselines. While there is no baseline against
which we can compare our entire work, we compare the accuracy of our instance-
leveling step against an existing activity label parser [110] and we compare the
improved version of our attribute-level classification step against its initial ver-
sion [149]. The details of these comparison are described in the respective parts of
the results discussion below.

3.4.3 Evaluation Results

In this section, we report on the accuracy of our approach when it comes to seman-
tic component identification and categorization.
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Component Identification Results

We assess the results of the component identification stage by first considering the
individual instance-level labeling and attribute-level classification steps, followed
by a discussion of the overall results.
Instance-level labeling results. Table 3.6 shows the results obtained when label-
ing the 625 unique textual attribute values included in the event logs, where the
Count column reflects the respective number of times a component type occurred
in the gold standard. The table shows that our instance-level labeling technique
is able to identify semantic components in textual attributes with high accuracy,
achieving an overall F1-score of 0.91. The comparable precision and recall scores,
e.g. 0.94 and 0.95 for action or 0.89 and 0.88 for object, each suggest that the
approach can accurately identify components while avoiding false positives. This
is particularly relevant, given that nearly half of the textual attribute values also
contain information beyond the scope of the semantic component types considered
here (as shown in Table 3.2, there are 291 textual parts marked as other). Due to
this ability to recognize which parts of texts are actually relevant for the component
identification task, our approach even performs well on complex values. For exam-
ple, for the t13 adjust document x request unlicensed from the WABO log [38], our
approach correctly recognizes the objects (document, request), the action (adjust)
and status (unlicensed), while omitting the superfluous content (t13 and x).

Table 3.6: Instance-level labeling results for the 625 unique textual attribute values.

Component Count Prec. Rec. F1

object 583 0.89 0.88 0.88
objectstatus 31 0.85 0.77 0.78
action 630 0.94 0.95 0.94
actionstatus 27 0.85 0.81 0.82
actorrole 69 0.93 0.84 0.88
passiverole 19 0.84 1.00 0.91

Overall 1,359 0.91 0.91 0.91

Challenges. We observe that the primary challenge for our approach relates to the
differentiation between relatively similar component types, namely between the
two kinds of statuses, objectstatus and actionstatus, as well as the two kinds of
resources, actorrole and passiverole. Making this distinction is particularly dif-
ficult in cases that lack sufficient contextual information or proper grammar. For
example, an attribute value denied can refer to either type of status, whereas it is
even hard for a human to determine whether the create suspension competent au-
thority label describes competent authority as a primary actor or a passive resource.
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Baseline comparison. To put the performance of the instance-level labeling step
into context, we compared it to a state-of-the-art parser for process model activity
labels, proposed by Leopold et al. [110]. For a fair comparison, we retrained our
approach on the same training data as used to train the baseline (corresponding to
the collection of process models in Table 3.2) and only assess the performance with
respect to the recognition of objects and actions, since the baseline only targets
these. Table 3.7 presents the results obtained in this manner for the activity labels
from all 14 considered event logs.

Table 3.7: Comparison of our instance-level-labeling technique against a state-of-
the-art label parser. Both techniques are trained on process model activity labels
and evaluated on the activity labels in our data collection.

Our approach Baseline [110]
Component Count Prec. Rec. F1 Prec. Rec. F1

object 562 0.65 0.68 0.66 0.40 0.40 0.40
action 618 0.86 0.81 0.83 0.59 0.48 0.53

Overall 1,180 0.76 0.75 0.75 0.50 0.44 0.47

The table shows that our approach outperforms the baseline by a large margin,
achieving an overall F1-score of 0.75 versus the baseline’s 0.47. Post-hoc analysis
reveals that this improved performance primarily stems from activity labels that
are more complex (e.g., multiple actions, various semantic components or com-
pound nouns spanning multiple words) or lack proper grammar. This is in line
with expectations, given that the baseline approach has been developed to recog-
nize several established labeling styles, whereas we observe that event data often
does not follow such modeling guidelines in practice. Finally, it is worth observing
that the performance of our approach in this scenario is considerably lower than
when trained on the full data collection (e.g., an F1 of 0.66 versus 0.88 for the
object component type), which highlights the benefits of our data augmentation
strategies as well as the benefits of also training on activity labels besides process
model activities.
Attribute-level classification results. After discarding 61 out of the total of 156
attributes in the preprocessing step and handling 24 attributes at the instance-level,
a total of 71 attributes reach the attribute-level classification step. 36 of these at-
tributes relate to one of the semantic component types, whereas the remaining 35
are of the other category. As shown in Table 3.8, our approach achieves highly
accurate results for this step, with an overall precision of F1 score of 0.92 for the 36
attributes corresponding to semantic components and of 0.91 for the entire set. No-
tably, these results reveal that our approach avoids false positives well, even though
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a substantial amount of attributes are beyond the scope of our semantic component
types, such as monetary amounts or timestamps. This can largely be attributed to
the domain analysis employed in our approach’s first step.

Table 3.8: Results of the attribute-classification step for the non-textual attributes.

Our approach Old approach [149]
Component Count Prec. Rec. F1 Prec. Rec. F1

object 6 0.67 1.00 0.80 1.00 0.33 0.50
objectstatus 6 0.83 0.83 0.83 0.50 0.33 0.40
actionstatus 6 1.00 1.00 1.00 1.00 1.00 1.00
actorinstance 18 0.95 1.00 0.97 0.95 1.00 0.97
other 35 0.94 0.86 0.90 0.81 0.92 0.86

Overall (without other) 36 0.89 0.97 0.92 0.89 0.78 0.80
Overall (with other) 71 0.92 0.91 0.91 0.85 0.88 0.83

Note that the outstanding performance of our approach with respect to the
actionstatus and actorinstance component types is in part due to the usage of
standardized XES names for some of these attributes, enabling easy recognition.
Yet, this is not always the case: 5 out of 18 actorinstance attributes use differ-
ent names than the XES standard (org:resource or org:group), such as User

or Assignment_Group. Nevertheless, our approach maintains a high accuracy for
these cases, correctly recognizing all such attributes. Overall, however, it is im-
portant to consider that these results were obtained for a relatively small set of 36
attributes. Thus, both the remarkable performance for most component types and
the comparably low accuracy for object attributes must be considered with care.
Baseline comparison. Compared to our original attribute-level classification tech-
nique [149], we improved this step through the incorporation of additional training
data and by adding an additional heuristic technique to improve the detection of
objectstatus attributes (see Section 3.3.3). As shown in Table 3.8, these adap-
tations resulted in an improved classification accuracy, raising the F1 score from
0.80 to 0.92 for the semantic attributes. The increase in F1 for the objectstatus

attributes from 0.40 to 0.83 highlights the value of the heuristic technique, whereas
also our approach’s ability to detect object attributes improved, with an F1 of 0.80
versus 0.50 before.
Overall component identification results. The overall performance of the com-
ponent identification stage can be considered as the average over the instance-level
labeling and attribute-level classification results, weighted against the number of
entities that were annotated with this component, i.e., a unique textual attribute
value (instance-level) or an entire attribute (attribute-level). These scores are shown
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in Table 3.9, which are naturally skewed towards the performance of the instance-
level labeling step, given that this step covered 1,359 out of the 1,395 entities.

Table 3.9: Overall results of the component-identification stage.

Component Count Prec. Rec. F1

object 589 0.89 0.88 0.88
objectstatus 37 0.85 0.78 0.79
action 630 0.94 0.95 0.94
actionstatus 33 0.88 0.84 0.85
actorrole 69 0.93 0.84 0.88
actorinstance 18 0.95 1.00 0.97
passiverole 19 0.84 1.00 0.91

Overall 1,395 0.91 0.91 0.91

We observe that the approach achieves highly accurate overall results, with
a precision, recall, and F1-score of 0.91. Still, when considering the results per
component type, we observe that there are considerable differences. These are
largely due to the lower accuracy achieved for the underrepresented component
types in the data set, as it is clear that our approach is highly accurate on more
common component types, such as the F1 score of 0.94 for recognizing actions.

Component Categorization Results

This section provides the results of the component categorization experiments.
First, the results of the action categorization are discussed, before focusing on the
categorization of resources.
Action categorization. Table 3.10 shows the results of the categorization of the
235 action components identified by our approach in the 14 evaluation logs per
action type, consisting of 42 create, 4 destroy, 113 modify, 14 preserve, 6 combine,
5 separate, 49 decide, and 2 manage actions.

Overall, our approach rather accurately categorizes the identified actions,
achieving an F1 score of 0.79. For more common action types, our approach per-
forms well, achieving an F1 score of > 0.73 for create, modify, and decide. How-
ever, for the less common action types, i.e., combine, destroy, manage, preserve,
and separate results vary, with an F1 from 0.57 (separate) to 1.00 (manage).

An in-depth look into specific cases reveals that our approach is able to catego-
rize both rather common actions, e.g., such as generate, accept, and notify, as well
as actions performed in specialized processes, such as surgery [132]. For instance,
the action anesthetize is correctly categorized as modify, whereas the action widen
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is correctly categorized as separate. Though, this does not hold in all cases. For
instance, the action clean is categorized as create rather than modify, which can be
attributed to the limited amount of available training data.

Table 3.10: Results of the action-categorization step.

Category Count Prec. Rec. F1

Create 42 0.70 0.90 0.79
Destroy 4 0.75 0.75 0.75
Modify 113 0.85 0.84 0.85
Preserve 14 0.62 0.62 0.62
Combine 6 0.62 0.83 0.71
Separate 5 0.44 0.80 0.57
Decide 49 0.91 0.61 0.73
Manage 2 1.00 1.00 1.00

Overall 235 0.81 0.79 0.79

A challenge of this task is the ambiguity of some of the actions. For instance,
suspension could be considered as either a destroy, modify, or a decide action, mak-
ing it difficult to categorize such actions. A related challenge is that the framework
does not classify actions into disjoint top-level categories. For instance, the ac-
tion document is both categorized as create and preserve, which both makes sense
given that an artifact can be considered both as preserved or created when it is doc-
umented. Similarly, the action allocate is both categorized as manage and decide.
While such framework-specific issues are problematic, even with this set-up, our
approach provides a helpful categorization of actions and, thus, activities.11

Resource categorization. The 14 evaluation logs contain a total of 5,236 distinct
resources. 5,204 of these are human, while only 32 are system, an imbalance
that clearly reflects the fact that many different human actors can be involved in a
process, while the number of different systems is typically limited.

Overall, we achieve an F1 score of 0.999 for human (precision and recall also
0.999) and of 0.80 for system actors (with a precision of 0.86 and recall of 0.75).
The performance of the individual strategies in terms of their number of hits, i.e.,
how often they were applicable, and their precision is depicted in Table 3.11.

As shown in the table, the WordNet-based strategy has perfect precision, but is
only applied to a few cases. However, it should be noted that these eight hits corre-
spond to entire resource classes (i.e., actorrole components), rather than individual
resources like the other strategies. For seven of these cases there are no instances

11We demonstrate this usefulness in an application case in Chapter 4.
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Table 3.11: Performance of the resource-categorization strategies, with the aster-
isks (*) indicating class-level hits.

Strategy Category Hits Prec.

WordNet human 6⇤ 1.00
system 2⇤ 1.00

NER human 585 1.00
system 0 -

BERT human 1,340 0.99
system 30 0.85

Time human 1,299 1.00
system 0 -

contained in the log, such as the employee, director, and supervisor roles in the
BPI20 log. However, the vendor role from the BPI19 log relates to 1,975 different
resources, thus highlighting the overall relevance of this class-level strategy.

For the NER-based strategy, we again observe a perfect precision, though this
strategy can only be applied to the BPI13 log. This event log uses first names, such
as Tomas, Carrie, and Niklas, to refer to 585 specific resources.

The BERT-based strategy, which primarily focuses on activity label names,
can be applied more broadly than the previous strategies. Yet, as shown by the
precision of 0.99 for human resources and 0.85 for system ones, the accuracy of
this strategy is still high. An in-depth analysis of these results reveals that a primary
challenge here involves activities that can be executed by both human and system
resources, such as seen for the BPI18 [68] log. In these situations, the analysis
of activity labels does not always allow for the appropriate distinction between
resource types, affecting the strategy’s precision.

Finally, the results for the heuristic analysis of execution times are rather incon-
clusive, since this strategy was not applicable to system resources in the employed
event log collection. However, the strategy also did not falsely categorize a human

resource as a system, thus nevertheless achieving a precision of 1.00.

3.4.4 Application Cases

To highlight the benefits of our approach, we next look at a selection of three ap-
plication cases that our approach enables, involving real-world event logs. Specif-
ically, we show how the semantic information identified by our approach can sup-
port (1) activity refinement, (2) object-centric process analysis, and (3) the analysis
of a process’ automation degree.
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Activity refinement. In this first application case, we show how semantic com-
ponents identified in the instance-level labeling step of our approach can be used
to establish more appropriate activities for the permit log from the BPI Challenge
2020 [70]. This log consists of 7,065 cases and 86,581 events, divided over 51
activities (according to the activity label, i.e., the concept:name attribute). This
relatively large number of activities is problematic when aiming to gain insights
about the recorded process. Particularly, any process model derived on its basis
will automatically exceed the recommended maximum of 50 nodes in a process
model [129] and quickly reach a spaghetti-like structure.

However, an assessment of the activity labels and the semantic components
identified in them, reveals that the labels in the log are polluted by superfluous in-
formation, resulting in an unnecessarily high number of different activities. Specif-
ically, the majority of activity labels mixes up information about the conducted ac-
tivity, which should indeed be contained in a label, with information on the actor
that performs the activity, which should rather be captured in a dedicated actorrole

attribute. Typical examples of this situation are labels such as declaration approved
by budget owner and declaration approved by administration.

Recognizing this situation, we can use the semantic components identified by
our approach to establish refined activity labels, which consist of only the informa-
tion from the action and object roles, e.g., declaration approved, while deferring
the actor information to a actorrole attribute. This operation yields an event log in
which the number of activity labels has been greatly reduced, from 51 to just 21.
In this way, we have consolidated different pieces of semantic process information
in dedicated places, i.e., activity information in the label and actor information in
a separate attribute, whereas, when used as the new activity, the refined activity
labels allow for the discovery of smaller and hence more understandable process
models. Finally, it is important to point out that this transformation does not lead
to any loss of information, given that the old labels are not overwritten, whereas
it is, as always, also possible to define activities as combinations of the (refined)
activity labels plus the actorrole attribute.
Object-centric process analysis. In this application case, we demonstrate how the
semantic information identified by our approach can be used to obtain an object-
centric view on a process, which helps to provide clearer insights into processes
that deal with various kinds of objects. For this, we again use the permit log [70].

After applying our approach, we observe that the log contains six different ob-
jects (indicated as object): permit, trip, request for payment, payment, reminder,
and declaration. Such information was not initially available in the log, given that
these objects were identified in the activity labels themselves (see also the previous
application case). Yet, after having identified them, we can investigate the execu-
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tion of the process in both an inter-object and intra-object manner, which provides
novel insights that the original log could not reveal.
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Figure 3.5: Example for object-centric analysis. The DFG shows the actions ap-
plied to the object declaration in the log (includes 100% activities, 50% paths).

To illustrate this potential, consider the DFG shown in Figure 3.5, which we
obtained by selecting all events related to declarations, i.e., with object = decla-
ration, and using the identified actions to establish the activity. The figure clearly
reveals how these objects are handled in the process. Mostly, declarations are sub-
mitted, approved, and then final approved. Interestingly, though, we also see 112
cases in which a declaration was definitely approved, yet rejected afterwards. Fur-
thermore, we see 140 cases, in which a declaration was resubmitted after it was
already definitely approved.

It is important to stress that such insights would not be possible from the origi-
nal log, given that, in reality, the events related to declarations may be interspersed
with events related to other objects. Furthermore, by employing different filters
and activities, this object-centric view can be used as a basis for a wide range of
other insights, e.g., to reveal how documents are handed over between different
employees or to reveal the inter-relations between objects. Besides using the an-
notated object-centic information directly, it can also serve as a starting point to
transform existing classical event logs into object-centric ones [156], which can in
turn be used for object-centric process mining [6].
Analysis of automation degree. Finally, we use the resource categorizations pro-
vided by our approach to assess the automation degree and impact of system re-
sources for the purchase order event log, part of the BPI Challenge 2019 [69]. The
event log contains 251,734 cases, 1,595,923 events, and 628 unique resources.
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By applying the resource categorization step of our approach, we discover that
the events in the log originate from 608 human resources and 20 system resources,
primarily captured in the log’s User attribute. We can leverage this categorization,
stored in a resource:type event attribute, to analyze the automation degree of the
Purchase Order process. At the event level, we find that about 79% of the events in
the log are performed by employees, whereas the other 21% are performed in an
automated manner, i.e., by a system. When considering full traces, we recognize
that just 2,338 cases (0.9%) are entirely performed by systems, showing that only a
fraction of cases can be handled in an automated manner. By contrast, we find that
162,505 (64.9%) do not involve any automatically executed steps. Both insights,
thus, hint at clear opportunities for further automation, e.g., through the application
of robotic process automation [109] technology.

3.5 Limitations

The evaluation results demonstrate that our annotation approach can be used to ob-
tain semantic information about events that are otherwise not readily available and
thus cannot be taken into account by process mining techniques. Nevertheless, it is
important to consider these outcomes in light of certain limitations. In particular,
there are limitations related to our approach and the evaluation.

The main limitation of our approach is its dependency on the availability of
natural language information in event logs. All real-world event logs we have at
our disposal show at least some natural language as part of the activity attribute
and attribute names. However, it is imaginable that some organizations rather use
highly domain-specific terminology, abbreviations, and codes in their event data.
In such cases, our approach is not applicable in a straightforward manner. Dic-
tionaries for such specific information could be used for a translation into natu-
ral language labels and attribute names, though. Another limitation relates to our
action-categorization step, which relies on static embeddings of the actions. As a
consequence, it cannot differentiate between different contexts in which an action
is applied, which may lead to incorrect categorization results. In particular, incor-
rect categorizations may occur if the action does not fully capture what is being
done by itself. For instance, consider the activity make selection. Its action, make,
is incorrectly categorized as create because what is done is in fact captured by the
object, selection, and the action should, thus, rather be categorized as select. To
avoid this, contextualized embeddings of the entire activity label could be used
instead. This would lead to less transparency of the results, though, because we
would omit the action taxonomy that we use as a basis now.
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As for our evaluation, even though we used a broad range of real-world event
logs that cover diverse process domains and have various labeling styles, we cannot
conclude that our approach works equally well on event data from unseen domains.
Furthermore, there is limited evaluation data available for assessing our attribute
classification step, whereas the data for resource categorization is highly unbal-
anced, comprising a considerable amount of samples for the human class and little
for the system class. Here, further evaluation data could help to provide stronger
performance propositions.

3.6 Related Work

Our work relates to research streams focused on the analysis of activity labels,
semantic annotation of process information, and semantic role labeling.

3.6.1 Activity Label Analysis

Various approaches strive to either disambiguate or consolidate labels in event logs.
Lu et al. [119] propose an approach to detect duplicate activity labels, i.e., labels
that are associated with events that occur in different contexts. By refining such
duplicates, the quality of subsequently applied process discovery algorithms can
be improved. By contrast, Sadeghianasl et al. [163, 164] aim to detect the op-
posite case, i.e., situations in which different labels are used to refer to behav-
iorally equivalent events. They achieve this through context-aware metrics [164]
and crowdsource-based gamification [163]. As already discussed in Section 2.2.4,
other approaches strive for the analysis of labels, such as work by Deokar and
Tao [55], which group together activities that are semantically similar, as well as
the label parsing approach by Leopold et al. [110] against which we compared our
work in the evaluation. Other research aims to improve event log quality by rela-
beling activities based on proposed quality metrics. To this end, they suggest NLP
tasks, such as POS-tagging, based on the quality they computed for a log [147].

3.6.2 Semantic Annotation of Process Information

Various works are complementary to ours, as they also strive to annotate event data
or process models with different kinds of semantic information. Work by Tsoury et
al. [176] strives to augment logs with additional information derived from database
records and transaction logs. Works by Leopold et al. focus on the categorization of
process activities, achieved by mapping process model components to an existing
process categorization [114] and by categorizing activities according to their degree
of automation [111].
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3.6.3 Semantic Role Labeling

Beyond the scope of process analysis, our work relates to semantic annotation
applied in various other contexts. Most prominently, SRL is a widely recognized
task in NLP (see also Section 2.2.3), which labels spans of words in sentences
that correspond to semantic roles. While early work in this area mostly applied
feature engineering methods [146], recently deep learning-based techniques have
been successfully applied, e.g., [95, 188]. In the context of web mining, semantic
annotation focuses on assigning semantic concepts to columns of web tables [189],
while in the medical domain it is, e.g., used to extract the symptoms and their status
from clinical conversations [71].

3.7 Summary

In this chapter, we proposed an approach for the automatic semantic annotation of
event data. Namely, our approach identifies up to eight semantic component types
per event, covering objects, actions, actors, and other resources, without imposing
any assumptions on the structure of an event log’s attributes. It then further cate-
gorizes the identified action and resource components into predefined categories,
enabling new analysis opportunities that consider the meaning of events.

We demonstrated our approach’s efficacy through evaluation experiments using
a wide range of real-world event logs. The results show that our approach accu-
rately identifies the targeted semantic components from textual attributes, whereas
our attribute classification techniques yield good results when dealing with the in-
formation contained in non-textual attributes. In both cases, we showed that our
techniques outperform existing state-of-the-art work. Furthermore, our approach
performs well in further categorizing identified semantic components. Finally, we
highlighted the potential of our work by illustrating some of its benefits in three
application cases based on real-world data. Particularly, we showed how our ap-
proach can be used to refine and consolidate activities in the presence of polluted
labels, as well as to obtain object-centric insights about a process. Moreover, we
showed that detailed analysis of the automation degree of a process is enabled by
categorizing resource components.



Chapter 4

Constraint-Driven Abstraction
of Event Logs

Events that are recorded during the execution of a process are often too fine-
granular to be used for process mining. This is because fine-granular events lead to
a considerable amount of different activities and a high degree of behavioral vari-
ability in the traces of a given event log, causing process mining results to become
exceedingly complex and challenging to interpret [187]. Consequently, an organi-
zation cannot improve its understanding of the underlying process based on these
results. To tackle this issue, event-abstraction approaches lift the traces of an event
log to a more abstract representation, by grouping low-level events into higher-
level ones. Existing approaches (cf. [60, 187]) differ in the adopted algorithms
and employ, e.g., temporal clustering of events [51] or the detection of predefined
patterns [125].

Although these approaches can help reduce the behavioral variability in an
event log and thus, the complexity of process mining results, their focus is on how
the abstraction is conducted, rather than what properties the resulting log should
satisfy. However, without any control on the result of event abstraction, it is hard to
ensure that this result is appropriate for a specific analysis goal. Therefore, to pro-
vide effective abstraction, an approach must enable users to incorporate dedicated
constraints on the resulting event log.

In this chapter, we achieve this by proposing an event-abstraction approach that
enables a user to impose requirements on the resulting log in terms of constraints.
As such, it supports a declarative characterization of the properties that the ab-
stracted log should adhere to, in order to ensure a specific analysis goal. In partic-
ular, we define the optimal-event-abstraction task that requires minimizing the dis-
tance to the original log while satisfying a set of constraints on the abstracted log.

65



Chapter 4. Constraint-Driven Abstraction 66

To satisfy this task, our approach covers a broad set of common constraint types
and a distance measure. As part of our approach, we present an algorithm for ex-
haustive event abstraction. Striving for more efficient processing, we also provide
a heuristic algorithm that is guided by behavioral dependencies found in the log.
Our evaluation shows that the event logs obtained with our approach provide better
abstraction and are more cohesive than those obtained with baseline approaches.
As such, process discovery algorithms also yield more structured models.

This chapter is based on a paper titled “GECCO: Constraint-driven Abstraction
of Low-level Event Logs” [157] by Adrian Rebmann, Matthias Weidlich, and Han
van der Aa.

In the remainder of the chapter, Section 4.1 first motivates the need for user-
defined constraints in event abstraction. Next, Section 4.2 describes the scope of
our approach by defining the optimal-event-abstraction task, specifying covered
constraint types, and defining a distance function. Section 4.3 then presents our
abstraction approach and Section 4.4 reports on evaluation results, which we com-
plement with two application cases. Section 4.5 reflects on limitations of our work.
Finally, Section 4.6 reviews related work, before Section 4.7 provides a summary.

4.1 Problem Illustration

For illustration purposes, consider the event log in Table 4.1, which consists of
the activity sequences of four traces that correspond to a request-handling process.
Blue underlined events denote activities performed by a clerk, whereas the others
are performed by a manager.

Table 4.1: Exemplary traces of an event log.

Trace Activity sequence

�1 hrcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, ckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckc, acc, prioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprio, infinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfinf, arvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvi
�2 hrcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, cktcktcktcktcktcktcktcktcktcktcktcktcktcktcktcktckt, rej, prioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprio, arvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarv, infinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfi
�3 hrcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, ckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckc, acc, infinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfinf, arvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvi
�4 hrcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, ckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckc, rej, rcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, cktcktcktcktcktcktcktcktcktcktcktcktcktcktcktcktckt, acc, prioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprio, arvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarv,infinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfi

The event log shows that each case starts with the receipt of a request (rcp)
by a clerk. The clerk checks the request either casually (ckc) or thoroughly (ckt)
depending on the information provided. Then, the request is forwarded to a man-
ager, who either accepts (acc) or rejects (rej) it. Afterwards, the clerk may or may
not assign priority to a request (prio), before they inform the customer (inf ) and
archive the request (arv). The latter two activities can be performed in either order,
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as shown, e.g., in �1 and �2. As shown in trace �4, a rejected request may also be
returned to the applicant, who will resubmit it, restarting the procedure.

Although this process consists of only eight distinct activities, its behavior is
already fairly complex. This is evidenced by the DFG shown in Figure 4.1. The
graph’s complexity already obscures key behavioral aspects of the process. Event
abstraction may alleviate this problem. However, existing techniques focus on how
the abstraction should be done. For instance, they may exploit that the steps ckt,
ckc, acc, and rej are closely correlated from a behavioral perspective and abstract
them to a single activity. Yet, this is not meaningful for many analysis tasks, as it
would obscure the fact that the activity encompasses some steps performed by a
clerk (ckt and ckc), whereas others are performed by a manager (acc and rej).

rcp
ckt

ckc

acc
prio

inf

rej arv

Figure 4.1: DFG of the running example.

By incorporating user-defined constraints on what properties the abstracted
log should satisfy, such a result can be avoided. For instance, if a user wants to
primarily understand the interactions between employees, while abstracting from
details on the individual steps they perform, a constraint may enforce that each
activity comprises only events performed by the same employee role. If applied
in a naive manner, this constraint would result in two groups of activities, i.e.,
gclrk = {rcp, ckc, ckt, prio, inf, arv} and gmgr = {acc, rej}. Yet, using these groups
for abstraction is not meaningful either. The group gclrk includes activities that oc-
cur at the start of the process, as well as ones that only happen at the end. Moreover,
abstracting the steps in gmgr to a single activity would obfuscate that {acc, rej} ex-
clude each other and that only after activities rej, the process may be restarted.

Against this background, our approach aims at constructing activities for
groups of events that satisfy user-specified constraints, while also preserving the
behavior represented in traces as much as possible. For the example, this would
result in an abstraction that consists of four groups: gclrk1 = {rcp, ckc, ckt}, con-
taining the initial activities performed by the clerk, {acc} and {rej}, as singleton
groups of activities that are mutually exclusive and both performed by the man-
ager, and gclrk2 = {prio, inf, arv}, the final activities of the process performed
by the clerk. The DFG obtained with this abstraction is shown in Figure 4.2. It
highlights that a clerk starts working on each case, before handing it over to the
manager. Accepted requests are completed by the clerk, whereas rejected requests
may be completed or returned to the start of the process.
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clrk1
acc

rej
clrk2

Figure 4.2: DFG of the log abstracted with our approach.

4.2 Scope

This section describes the scope of our approach by defining the optimal-
event-abstraction task (Section 4.2.1), specifying covered constraint types (Sec-
tion 4.2.2), and defining a distance function (Section 4.2.3).

4.2.1 Event-Abstraction Task

Event abstraction aims to group similar events for an event log. Formally, this
task is captured by a grouping, i.e., a set of groups, G ⇢ 2A, over the activities of a
given log L, AL, such that each activity a 2 AL is part of exactly one group g 2 G.
Given a grouping, a function abstract : 2E

⇤
⇥ 2A ! 2E

⇤ is applied to obtain an
abstracted log L

0. For instance, using the log and grouping from Section 4.1, �1 is
abstracted to �

0
1 = hclrk1, acc, clrk2i.

We target scenarios in which a user formulates requirements on what properties
the abstracted event log and, hence, the grouping G should satisfy, e.g., to group
only events performed by a single role (see Section 4.1). Then, we aim to identify
a grouping Ĝ that meets these requirements, while preserving the behavior of the
traces as much as possible. To this end, we define dist : 2E

⇤
⇥ 2A ! R as

a distance function quantifying the distance of a grouping to an event log. Also,
using C to denote the universe of possible constraints, we define a predicate holds :
2A ⇥ C ⇥ 2E

⇤
! {true, false} to denote if a grouping satisfies a set of constraints

for a given log. Based thereon, we define optimal event abstraction as follows:

Definition 10 (Optimal event abstraction) Given an event log L with activities
AL, a distance function dist, and a set of constraints C, optimal event abstraction
aims to find an optimal grouping Ĝ = {g1, . . . , gk}, such that:

• Ĝ is an exact cover of AL, i.e.,
T

k

i
gi = ; ^

S
k

i
gi = AL;

• Ĝ adheres to the desired constraints C, i.e., holds(Ĝ, C, L) = true;
• the distance dist(Ĝ,L) is minimal.

4.2.2 Covered Constraint Types

Our approach is able to handle a broad range of constraints on a grouping G.
As shown through the examples in Table 4.2, we consider grouping constraints,
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class-based constraints, and instance-based constraints. The table also indicates a
monotonicity property of the constraints, which is important when aiming to find
an optimal grouping in an efficient manner.

Table 4.2: Exemplary constraints covered by our approach.

Category Examples Monotonicity

Grouping
constraints

There should be at most 10 groups in the final
grouping.

n/a

There should be at least 5 groups in the final group-
ing.

n/a

Class-based
constraints

There should be at least 5 activities per group. monotonic
At most 10 activities should be grouped together. anti-monotonic
The activities rcp and acc cannot be members of the
same group.

anti-monotonic

The activities inf and arv must be members of the
same group.

non-monotonic

Instance-
based
constraints

At least 2 distinct document codes must be associ-
ated with a group instance.

monotonic

The cost of a group instance must be at most 500$. anti-monotonic
The duration of a group instance must be at most 1
hour on average.

non-monotonic

The time between consecutive events in a group in-
stance must at most be 10 minutes.

anti-monotonic

Each group instance may contain at most 1 event
per activity.

anti-monotonic

At least 95% of the group instances must have a cost
below 500$.

anti-monotonic

Grouping constraints. This constraint category can be used to bound the size
of a grouping G, i.e., the number of high-level activities that will appear in the
abstracted log. An upper bound restricts the size and complexity of the obtained
log, whereas a lower bound can limit the applied degree of abstraction.
Satisfaction. We use CG ✓ C to refer to the subset of grouping constraints.
Whether a constraint c 2 CG holds can be directly checked against the grouping
size, |G|. As such, for the holds predicate, we require 8c 2 CG : c(G) = true .
Class-based constraints. The second category of constraints can be used to influ-
ence the characteristics of an individual group (higher-level activity type) g 2 G in
terms of the class-level attributes and, in particular, the (low-level) activities that it
can contain. Our approach supports any class-based constraint for which satisfac-
tion can be checked by considering g in isolation, i.e., without having to compare g
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to other groups in G. As shown in Table 4.2, this, for instance, includes constraints
that each group should comprise at least (or at most) a certain number of activities,
as well as cannot-link and must-link constraints, which may be used to specify that
two activities must or must not be grouped together.
Satisfaction. We use CC ✓ C for class-based constraints. The satisfaction of a
constraint c 2 CC is directly checked by evaluating the contents of each group
g 2 G. Hence, the holds predicate requires that 8g 2 G, 8c 2 CC : c(g) = true .
Monotonicity. Class-based constraints that specify a minimum requirement on
groups, e.g., a minimal group size, are monotonic: If the constraint holds for a
group g, it also holds for any larger group g

0, with g ⇢ g
0. In other words, adding

activities to a group can never result in a (new) constraint violation. By contrast,
constraints that express requirements that may not be exceeded, e.g., a maximal
group size or cannot-link constraint, are anti-monotonic: If they hold for a group
g, they also hold for any subset of that group g

0
⇢ g. However, if a group g violates

a constraint, a larger group g
0, with g ⇢ g

0, also violates it.
Instance-based constraints. The third category comprises constraints that must
hold for each instance of a group g 2 G, i.e., a sequence of (not necessarily con-
secutive) events that occur in the same trace and of which the activities are part of
g. In line with Definition 1 that defines event attributes, we use g.d to refer to the
set of values of attribute d for a group g when defining constraints of this type.

As indicated in Table 4.2, diverse constraints can be defined on the instance-
level, relating to attribute values, associated roles, and duration, such as the total
cost of an instance is at most 500$ and the average duration of group instances
must be at most 1 hour. As shown in the table’s last row, also looser constraints
may be expressed, such as ones that only need to hold for 95% of the respective
group instances. In fact, as for class-based constraints, our approach supports all
constraints of which satisfaction can be checked for an individual group g.
Satisfaction. We write CI ✓ C for the instance-based constraints. Contrary to the
other categories, these constraints must be explicitly checked against the event log
L, specifically for each group g 2 G and each instance of g in the traces of L.

Formally, we first define a function inst : E⇤
⇥ 2A ! 2E

⇤ , which returns all
instances of a group in a given trace. The operationalization of inst is straightfor-
ward for simple cases: An instance of group g is the projection of the activities of
g over a trace �. In �1, �2, and �3 of our running example, exactly one instance
of each group occurs per trace and, e.g., inst(�1, gclrk1) = {hrcp, ckci}. How-
ever, processes often include recurring behavior, such as trace �4 with its activity
sequence hrcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, ckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckc, rej, rcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, cktcktcktcktcktcktcktcktcktcktcktcktcktcktcktcktckt, acc, prioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprio, infinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfinf, arvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvi, in which a request is first re-
jected, sent back to the restart the process, and then accepted in the second round.
Here, to detect multiple instances of a group, we instantiate the function inst
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based on an existing technique [5] that recognizes when a trace contains recurring
behavior and splits the (projected) sequence accordingly. For the above trace, this
yields inst(�4, gclrk1) = {hrcp, ckci, hrcp, ckti}. Note that inst can also be used
to enforce cardinality constraints, e.g., if a user desires that each group instance
should contain at least 2 events of a particular activity.

Given the function inst, a constraint c 2 CI is satisfied if for each group
g 2 G, c holds for each instance ⇠ 2 inst(�, g), for each � 2 L. Note that con-
straints are vacuously satisfied for traces that do not include an instance of a partic-
ular group, i.e., where inst(�, g) = ;. Therefore, for instance-based constraints,
holds is checked for each g 2 G as 8 c 2 CI , 8 �i 2 L, 8 ⇠ 2 inst(�i, g) : c(⇠) =
true . For looser constraints, e.g., ones that should for 95% of the group instances,
predicate satisfaction is adapted accordingly.
Monotonicity. As for class-based ones, instance-based constraints are monotonic
when specifying a minimum requirement to be met, e.g., each instance should take
at least one hour, and anti-monotonic when specifying something that may not be
exceeded, e.g., each instance may take at most one hour. However, constraints in
CI may also be based on aggregations that behave in a non-monotonic manner,
such as constraints that consider the average or variance of attribute values per
instance or sums including negative values. In these cases, adding and removing
activities from a group can result in a violated constraint to now hold or vice versa.

4.2.3 Distance Measure

To determine which activities are suitable candidates to be grouped together, we
employ a distance function dist(G, L) that quantifies the relatedness of the activ-
ities per group. Although our work is largely independent of a specific distance
function, we argue that event abstraction should group together activities such that
(1) events within a group are cohesive, i.e., the events belonging to a single group
instance occur close to each other, meaning there are few interspersed events from
other instances; (2) events within a group are correlated, i.e., the events belonging
to a single group typically occur together in the same trace and group instance; (3)
larger groups are favored over unary groups, i.e., the grouping G actually results in
an abstraction. To capture these three aspects, we propose the following distance
function for an individual group g and a log L:

dist(g, L) =
X

⇠2inst(L,g)

interrupts(⇠)
|⇠| + missing(⇠,g)

|g| + 1
|g|

|inst(L, g)|
(4.1)

The first summand in the numerator of Equation 4.1 considers cohesion. Here,
interrupts(⇠) counts how many events from other instances are interspersed be-
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tween the first and last events of a given group instance ⇠. As such, this penalizes
groups of events that are often interrupted by others, e.g., in a trace ha, b, c, d, ei,
grouping a and e together is unfavorable, since the instance ha, ei has three inter-
spersed events. In Equation 4.1, the number of interruptions is considered relative
to the length of ⇠. The second summand in the numerator of Equation 4.1 quanti-
fies the degree of completeness of ⇠ with respect to g, thus capturing the correlation
between the events in g. Here, missing(⇠, g) returns how many activities from g

are missing from its instance ⇠, which is then offset against the total number of
activities |g|. Finally, since groups with a single activity have perfect cohesion and
correlation by default, we include 1

|g| to ensure that larger groups with the same
cohesion and correlation are favored, thus avoiding unary groups when possible.

To quantify the total distance of a grouping G, we sum the distances of groups
in G, resulting in the following function that our approach aims to minimize:

dist(G, L) =
X

g2G

dist(g, L) (4.2)

4.3 Abstraction Approach

In this section, we describe how our approach finds an optimal event grouping
based on an event log, given the distance function and constraints defined in the
previous section, to abstract that log. Section 4.3.1 provides a high-level overview,
while Section 4.3.2 to Section 4.3.4 outline the algorithmic details.

4.3.1 Approach Overview

As shown in Figure 4.3, our approach takes an event log L and a set of user-defined
constraints C as input and then applies three main steps in order to obtain an ab-
stracted event log L

0.

Cohesive 
candidates

All possible 
candidates

1. Candidate 
computation 
Exhaustive 
approach 

2. Find an 
optimal 

grouping

3. Create an
abstracted 
event log

DFG-based 
approach

Event 
log L Abstracted 

Event log L’
User-defined 
Constraints C

Figure 4.3: Overview of the abstraction approach.

In the first step, our approach computes a set of candidate groups G, i.e., groups
of activities that adhere to the constraints in C. As depicted in Figure 4.3, we pro-
pose two instantiations for this step: an exhaustive instantiation and an efficient
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DFG-based one. The exhaustive instantiation yields a set of candidates that is
guaranteed to be complete and, thus, assures that it can afterwards be used to es-
tablish an optimal grouping if it exists. Since this approach may be intractable in
practice, we also propose a DFG-based alternative. It only retrieves cohesive can-
didates, i.e., candidates likely to be part of an optimal grouping. By exploiting the
process-oriented nature of the input data, cohesive candidates are identified effi-
ciently. Any solution obtained using this instantiation is still guaranteed to satisfy
the constraints in C, yet may have a sub-optimal distance score.

In the second step, our approach uses the identified set of candidates to find an
optimal grouping G that minimizes the distance function dist, while ensuring that
all constraints are met and each activity in AL is assigned to exactly one group in
G. We formulate this task as a mixed-integer programming (MIP) problem.

Finally, having obtained a grouping G, the third step abstracts the input event
log L by replacing the events in a trace with activities based on groups defined in
G, yielding an abstracted log L’.

4.3.2 Computation of Candidate Groups

In this first step, our approach computes a set of candidate groups of activities, G,
i.e., subsets of AL that adhere to constraints in C. As described in Section 4.3.1,
we propose an exhaustive and a DFG-based instantiation for this step:
Exhaustive candidate computation. In order to obtain a complete set of candidate
groups, in principle, every combination of activities, i.e., every subset of AL, needs
to be checked against the constraints in C. However, we are able to considerably
reduce this search space by (for the moment) only looking for candidate groups
g ✓ AL that actually co-occur in at least one trace of the event log L (referred to as
group co-occurrence) and by considering the monotonicity of the constraints in C.
Then, candidate groups of increasing size can be identified in an iterative manner,
as outlined in Algorithm 1.
Initialization. We first set a constraint-checking mode (line 1) based on the mono-
tonicity of the constraints in C; mode is set to anti-monotonic if C contains at least
one such constraint, monotonic if all constraints in C \ CG are monotonic (i.e., all
constraints that must be checked per group), and otherwise to non-monotonic.

Using this constraint-checking mode, we employ two pruning strategies. First,
consider a group g1 ⇢ AL and a constraint set C in which all constraints C\CG are
monotonic. If holds(g1,C, L) = true , any supergroup g

0
1 ◆ g1 will also adhere

to the constraints, since adding more activities to g1 will never lead to a violation
of a monotonic constraint. Therefore, in the monotonic mode, we can avoid the
costs of constraint validation for g01. Second, consider a group g2 ⇢ AL, known to
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Algorithm 1 Exhaustive candidate computation.
Input Event log L, user constraints C
Output Set of candidate groups G
1: mode setCheckingMode(C)
2: toCheck { {c} for c 2 AL} . Set the first groups to check
3: while toCheck 6= ; do
4: if mode = monotonic then
5: Gnew  {g 2 toCheck if 9g0 2 G : g0 ⇢ g _ holds(g,C, L)
6: else
7: Gnew  {g 2 toCheck if holds(g,C, L)}
8: G  G [ Gnew

9: if mode = anti-monotonic then
10: toCheck expandGroups(Gnew)
11: else
12: toCheck expandGroups(toCheck)
13: toCheck {g 2 toCheck if occurs(g, L)}
14: return G

violate any anti-monotonic constraint in C, i.e, holds(g2,C, L) = false . Then we
also know that no supergroup g

0
2 ◆ g2 can adhere to C, as expanding a group can

never resolve violations of anti-monotonic constraints. Thus, in the anti-monotonic
mode, all supergroups of g2 can be skipped.

With mode set, the algorithm adds all activities in AL as singleton groups to the
set of potential candidates, toCheck, which are checked in the first iteration (line 2).
Candidate assessment. In each iteration, Algorithm 1 first establishes a set Gnew,
which contains all groups in toCheck that adhere to the constraints in C. When
validating a group, we check constraints in CC before ones in CI , since the former
do not require a pass over the event log, thus, minimizing the validation cost per
candidate. In the monotonic mode, the algorithm employs the first pruning strategy
by directly adding any group g, for which there is a g

0
⇢ g already in G, given that

we then know that the monotonic constraints will be satisfied for g as well (line 5).
For other groups and for the other two modes, we need to check holds(g,C, L)
for each group g 2 toCheck (lines 5 and 7). Having established Gnew, the new
candidates are added to the total set G (line 8).
Group expansion. Next, the algorithm repopulates toCheck with larger groups that
are assessed in the next iteration. In the anti-monotonic mode, using the second
pruning strategy, the algorithm only needs to expand groups that are known to
adhere to all anti-monotonic constraints in C. Therefore, in this case, we only ex-
pand the groups in Gnew (line 10). This expansion involves the creation of new
groups that consist of a group g 2 Gnew with an additional activity from AL.
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Naturally, the anti-monotonic mode avoids the creation of groups that contain sub-
groups that are already known to violate C. For the monotonic and non-monotonic
mode, we also need to expand groups that currently violate the constraints, since
their super-groups may still lead to constraint satisfaction. Therefore, these modes
expand all groups in toCheck (line 12). Afterwards, we only retain those groups in
toCheck(g, L) that actually occur in the event log, by checking if there is at least
one trace in L that contains events corresponding to all activities in g (line 13).
Termination. The algorithm stops if there are no new candidates to be checked,
returning the set of all candidates, G.
Computational complexity. Although Algorithm 1 guarantees to find a complete
set of candidates, its time complexity is exponential with respect to the number of
activities in the event log, i.e., 2|AL|. In the worst case, all subsets of AL must be
analyzed against the entire log, where primarily the number of traces is important,
since each group must be separately checked against all traces. Given that each
checked group may become a candidate, the algorithm’s space complexity is also
bounded by 2|AL|. Hence, this exhaustive approach can quickly become infeasible.
DFG-based candidate computation. Given the run time complexity of the ex-
haustive approach, we also propose a DFG-based approach to compute candidate
groups. It exploits behavioral regularities in event logs in order to derive a set of
cohesive candidate groups more efficiently than the exhaustive approach.
Intuition. Event abstraction aims to find cohesive groups of activities and, there-
fore, is more likely to group together activities that typically occur close to each
other. In our running example, even though the request receipt (rcp) and archive
request (arv) activities meet the constraint (both are performed by a clerk), it is un-
likely that they will end up in the same higher-level activity in an optimal grouping
G, since rcp occurs at the start of each trace and arv at the end.

We exploit this characteristic of optimal groupings by identifying only can-
didates that occur near each other. This is achieved by establishing a DFG of the
event log and traversing this graph to find highly cohesive candidates groups. Since
this traversal again iteratively increases the candidate size, we can still apply the
aforementioned pruning strategies.

This idea is illustrated in Figure 4.4, which visualizes (parts of) two iterations
for the running example, highlighting candidate groups that are checked. Iteration
1 involves the assessment of paths of length two, consisting of connected activities.
This identifies, e.g., the candidate paths [prio,inf ], [prio,arv], and [inf,arv], which
all adhere to the constraint, whereas, e.g., [acc, inf ] is recognized as a violating
path, since acc and inf are performed by different roles. Given their distance from
each other in the DFG, this iteration avoids checking groups such as {rcp, arv} and
{ckt, inf }. In the next iteration, since the example deals with an anti-monotonic
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rcp
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2

Figure 4.4: DFG-based candidate computation (Iterations 1 & 2).

constraint, we concatenate pairs of constraint-adhering paths to obtain candidate
paths (i.e., groups) of length three, as shown for [prio, inf, arv] in Figure 4.4.

The DFG-based approach works as described in Algorithm 2. Next to an event
log L and a constraint set C, it takes a parameter k, defining the beam-search width.
Initialization. The algorithm starts by again setting the constraint-checking mode
(line 1), before establishing the log’s DFG as defined in Definition 8(line 2). Then,
for every node n in the DFG (i.e., for every activity), we add the trivial path hni to
the set of candidates to check in the first iteration (line 3).
Candidate assessment. In principle, we could assess for each path p 2 toCheck
if p’s nodes form a proper candidate group, as we do in the exhaustive approach.
However, we here recognize that in event logs with a lot of variability, the number
of paths to check will still be considerable. Hence, we allow for a further pruning of
the search space by incorporating a beam-search [181] component in the algorithm.
In this beam search, we only keep the k most promising candidates (i.e., the beam)
in each iteration of the algorithm.

To this end, each iteration starts by sorting the candidate paths in toCheck, pri-
oritizing paths of which the nodes have the lowest distance to each other, according
to dist(nodes(p), L) (line 5). Then, the algorithm picks candidates from sorted-
Paths as long as there are candidates to pick and the beam width k has not been
reached (line 8). Each group g, defined by a path’s nodes (i.e., g = nodes(p)), is
then checked for constraint satisfaction. As for the exhaustive approach, we check
constraints in CC before ones in CI minimizing validation cost per candidate.

We use the same pruning strategies for monotonic and anti-monotonic
constraint-checking modes as before. In the monotonic mode, a group g can be
directly added to the set of candidates G if we have already seen a subset g0 ⇢ g

that adheres to the constraints (lines 12–13), whereas in the anti-monotonic mode,
we no longer expand paths that violate the constraints (lines 18–19).



Chapter 4. Constraint-Driven Abstraction 77

Algorithm 2 DFG-based candidate computation.
Input event log L, user constraints C, pruning parameter k
Output Set of candidate groups G
1: mode setCheckingMode(C)
2: DFG  computeDFG(L)

3: toCheck {hni for n 2 DFG .nodes} . First paths to check
4: while toCheck 6= ; do
5: sortedPaths sort(toCheck, dist) . Lowest dist first
6: toExpand ;
7: i 0
8: while i < min(|sortedPaths|, k) do
9: p sortedPaths[i] . Get next path

10: g  nodes(p) . Derive nodes, i.e., activities of p
11: if mode = monotonic then
12: if 9g0 2 G : g0 ⇢ g _ holds(g,C, L) then
13: G  G [ {g}

14: toExpand toExpand [ {p}

15: else if holds(g,C, L) then
16: G  G [ {g}

17: toExpand toExpand [ {p}

18: else if mode 6= anti-monotonic then
19: toExpand toExpand [ {p}

20: i i+ 1
21: toCheck ; . Start computing new paths to check
22: for p = hp0, . . . , pmi 2 toExpand do
23: for (pm, succ) 2 DFG .outgoingEdges(pm) do
24: if succ /2 nodes(p) then
25: toCheck toCheck [ { hp0, . . . , pm, succi }
26: for (pred, p0) 2 DFG .incomingEdges(p0) do
27: if pred /2 nodes(p) then
28: toCheck toCheck [ { hpred, p0, . . . , pmi }
29: toCheck {p 2 toCheck if occurs(nodes(p), L)}
30: return G

Path expansion. The candidates for the next iteration are created by expanding
paths in toExpand with either a predecessor of their first or a successor of their
last node (lines 22–28). As before, we only retain those paths in toCheck, whose
groups g actually occur in the event log (line 29).
Termination. Algorithm 2 stops if no candidates remain to be checked, i.e., toCheck
is empty and the set G is returned.
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Computational complexity. The DFG-based approach is considerably more effi-
cient than the exhaustive one. Each iteration expands up to k groups, each into up
to |AL| � 1 new candidates. As such, given the maximum of |AL| iterations, the
worst-case time and space complexity is k ⇤ |AL|

2. Moreover, this worst case only
occurs if the DFG is a complete digraph and no constraints are imposed.
Dealing with exclusion. Generally, it is undesirable to group exclusive activities
together, since these never occur in the same trace. Therefore, we have so far
omitted these from consideration, by ensuring that occurs(g, L) holds for every
candidate group g 2 G. However, exclusive activities (or groups) that are proper
alternatives to each other are the exception. Grouping these will result in further
complexity reduction of the log, while not affecting its expressiveness.
Intuition. To illustrate this, reconsider the running example, which contains two
sets of exclusive activities, {ckc, ckt}, corresponding to two ways in which a re-
quest can be checked, and {acc, rej}, corresponding to acceptance and rejection
of a request. By considering Figure 4.5, we see that the former two activities are
proper behavioral alternatives: both ckc and ckt are preceded and followed by the
exact same sets of activities. Therefore, behavioral alternatives can be defined as
groups of activities that have identical pre- and postsets in the DFG. Merging them
will thus not lead to a loss of behavioral information. By contrast, acc and rej do
not represent proper behavioral alternatives to each other, since their postsets dif-
fer. Particularly, while after acceptance the process always moves forward to one
of the activities in {prio, inf, arv}, a rejection may also result in a loop back to the
start of the process (rcp). Therefore, if these exclusive classes were merged, we
would obscure the fact that there are two different possibilities here.

rcp
ckt

ckc

acc
prio

inf

rej arv

Figure 4.5: DFG of the running example highlighting proper behavioral alterna-
tives (blue) and exclusive activities, which are no behavioral alternatives (red).

Candidate identification. Algorithm 3 determines if previously identified candi-
dates in G, with excluding activities, can be merged to obtain additional candidates.

The algorithm establishes a set equivGroups consisting of candidate groups
that share the same pre- and postset (line 4). Then, a stack is created consisting of
all pairs of groups in this set (lines 5–7). For each pair (gi, gj) in this stack, we
assess if gi and gj are indeed exclusive to each other and if their merged group,
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gij , still adheres to the user constraints (line 11). Both conditions can be efficiently
checked. The former by ensuring that there are no edges from nodes in gi to nodes
in gj or vice versa, while for the latter only adherence to class-based constraints
(CC) needs to be assessed, given that instance-based constraints cannot be (newly)
violated when merging exclusive groups, thus avoiding a pass over the event log L.

If gij is indeed a proper, new candidate, we next determine if this group can
also be combined together with its preset, postset, or with both, to create more can-
didates (lines 13–19). For instance, having identified {ckt, ckc} as a new candidate
group for the running example, we would this way recognize that this new group
together with its preset (rcp) also forms a proper candidate group: {rcp, ckt, ckc},
since both {rcp, ckt} and {rcp, ckc} were also already part of G.

Having established these new candidates, Algorithm 3 adds any new pair
(gij , gk) to the stack, so that also iteratively larger candidates, comprising three
or more exclusive groups, can be identified (lines 20–21). It terminates when all
relevant pairs have been assessed, returning G as the final output of this step.
Computational complexity. Algorithm 3 has linear complexity with respect to |G|,
i.e., the number of candidate groups stemming from the previous step. As such, its
worst-case time and space complexity is 2|AL| when previously using the exhaus-
tive approach and k ⇤ |AL|

2 for the DFG-based one.

4.3.3 Finding an Optimal Grouping

Having established candidate groups G, we set out to find an optimal grouping
G ✓ G based on these candidates, which is a set of disjoint groups that covers all
activities, while minimizing the overall distance. We formulate this task as a MIP
problem, which can be tackled using standard solvers.

rej rcp

{rcp, ckt, ckc} {prio, inf, arv} {rej} {acc} 

{ckt, ckc} {rcp} {ckt} {arv} {prio} {ckc} {inf} 

{inf, arv} 

{prio, inf} 

{prio, arv} {rcp, ckc} 

{rcp, ckt} 

Optimal grouping 
(dist = 3.08)

acc ckt arv prio inf ckc 

Figure 4.6: Optimal grouping of the running example given all candidates com-
puted in the first step using the DFG-based approach.
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Algorithm 3 Finding exclusive candidate groups.
Input Event log L, user constraints C, current candidate groups G
Output Extended set of candidate groups G
1: DFG  computeDFG(L)

2: seenGroups ;
3: for g 2 G \ seenGroups do
4: equivGroups DFG .equalPrePost(g) [ {g}

5: pairsToCheck new Stack()
6: for (gi, gj) 2 equivGroups⇥ equivGroups do
7: pairsToCheck.push((gi, gj))
8: while ¬pairsToCheck.isEmpty() do
9: (gi, gj) pairsToCheck.pop()

10: gij  gi [ gj . Merge into single group
11: if exclusive(gi, gj) ^ holds(gij , L,RC) then
12: G  G [ {gij} . New candidate found
13: (pre, post) (DFG .pre(gi), DFG .post(gi))
14: if pre [ post [ gi 2 G ^ pre [ post [ gj 2 G then
15: G  G [ {pre [ post [ gij}

16: else if pre [ gi 2 G ^ pre [ gj 2 G then
17: G  G [ {pre [ gij}

18: else if post [ gi 2 G ^ post [ gj 2 G then
19: G  G [ {post [ gij}

20: for gk 2 equivGroups \ {gi, gj} do
21: pairsToCheck.push((gij , gk))
22: equivGroups equivGroups [ {gij}

23: seenGroups seenGroups [ equivGroups
24: return G

This formulation is based on a bipartite graph (G, AL, E), which connects each
candidate group to the activities it covers, i.e., it contains an edge (gi, aj) 2 E if
aj 2 gi. Figure 4.6 visualizes this for the running example, in which the cir-
cled nodes in the middle indicate activities in AL, the sets indicate the candidate
groups G, and the edges their coverage relation. The grayed sets highlight the
optimal grouping in this case, which is an exact cover because every event-class
node is connected to exactly one of the selected groups. Given this bipartite graph
(G, AL, E), we formalize a MIP problem with two decision variables:

• selectedgi 2 {0, 1}: 1 if gi 2 G is selected, else 0;
• coveredaj 2 {0, 1}: 1 if aj 2 AL is covered, else 0.
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We aim to minimize the distance of the selected groups in the objective function:

minimize
X

gi2G
dist(gi) ⇤ selectedgi

This objective function is subject to two constraints:

|AL|X

j=1

coveredaj = |AL| (4.3)

X

(gi,aj)2E

selectedgi = coveredaj , 8aj 2 AL (4.4)

These constraints jointly express that each activity must be covered (Equa-
tion 4.3), by exactly one group (Equation 4.4). In case a user imposes grouping
constraints in CG, bounding the number of groups that may be selected, these are
imposed by adding either or both of the following additional constraints:

|G|X

i=1

selectedgi  x resp.
|G|X

i=1

selectedgi � y (4.5)

The selected groups, i.e., G = {gi 2 G : selectedgi = 1}, then form the ob-
tained grouping. Note that, depending on the characteristics of log L and the im-
posed constraints C, a grouping may not be found, since there is no guarantee that
a feasible solution exists. In that case, our approach returns the initial log. To allow
users to then refine their constraints appropriately, our approach also indicates pos-
sible causes of infeasibility, e.g., the affected activities that lead to violations for
constraints in CC , or the fraction of cases for which constraints in CI are violated.
If a solution is found, our approach continues with its third and final step.
Computational complexity. Most MIP problems are NP-hard, although an assess-
ment of the exact complexity depends on the concrete problem and is poorly char-
acterized by input size [162]. However, solvers like Gurobi often solve MIP prob-
lems efficiently, e.g., by applying heuristics. Our experiments confirm this, show-
ing that Step 2 only contributes marginally to the overall run time of our approach.

4.3.4 Creating an Abstracted Event Log

Finally, we use the grouping G to establish abstracted versions of the traces in L to
establish the output of our approach, an abstracted event log L

0.
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For each trace � 2 L, we identify all activity instances in the trace, i.e., all
instances of groups in G, I� =

S
g2G inst(�, g). Each activity instance, ⇠i 2 I

�,
corresponds to an ordered sequence of events, he1, ..., eki.

Next, our approach creates an abstracted trace �
0, which reflects the activity

instances in I
�, instead of the events of its original counterpart, �. A common

abstraction strategy is to let �0 capture only the completion of activity instances, by
creating a projection of � that only retains the last event, ek, per activity instance.
For instance, for trace �1 = hrcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, ckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckc, acc, prioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprio, infinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfinf, arvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvi of the running example,
this abstraction would yield �

c
1 = hclrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1, acc, clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2i.

Yet, this strategy may obscure information when activities are executed in an
interleaving manner. For this, consider a new trace �5 = hrcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcprcp, ckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckcckc, prioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprioprio, acc, infinfinfinfinfinfinfinfinfinfinfinfinfinfinfinfinf,
arvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvarvi. Here, events belonging to the clrk2 group occur both before (prio) and after
(inf, arv) the unary activity instance acc. When only retaining completion events,
this yields the trace �

c

50 = hclrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1clrk1, acc, clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2clrk2i, which hides the interleaving nature
of the activities. Therefore, we also propose an alternative strategy, which retains
both the start (s) and completion (c) events per activity instance ⇠i 2 I

�. This
yields a trace �

s+c

50 = hclrk1s, clrk1c, clrk2s, acc, clrk2ci, which thus shows that
activity clrk2 starts before acc and completes afterwards. The choice for a particu-
lar strategy depends on the relevance of parallelism in a particular analysis context,
given that the latter strategy also leads to longer traces, thus partially mitigating the
benefits of the obtained abstraction.

The log L
0 that results from this last step represents the final output of our ap-

proach. It is an event log in which the high-level activities are guaranteed to satisfy
the user-defined constraints in C while providing a maximal degree of abstraction.

4.4 Evaluation

To evaluate our approach, we conducted experiments using a collection of real-
world event logs, which we describe in Section 4.4.1. Section 4.4.2 outlines the
evaluation setup. Section 4.4.3 reports on the results obtained for our approach
and its configurations and compares our work against three baselines. Finally, Sec-
tion 4.4.4 further illustrates the value of constraint-driven log abstraction through
two application cases. The employed implementation, evaluation pipelines, and
additional experimental results are all publicly available.1

1
https://github.com/a-rebmann/constraint-driven-abstraction

https://github.com/a-rebmann/constraint-driven-abstraction
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4.4.1 Data Collection

We use a collection of 13 publicly-available event logs. To be able to cover various
constraints, the events in all of these logs have at least one categorical event at-
tribute, as well as timestamps used for numerical constraints. Table 4.3 shows they
vary considerably in terms of key characteristics, e.g., the number of activities.

Table 4.3: Properties of the real-world log collection.

Ref. |AL| Traces Variants |EL| Avg. |�|
[53] 11 150,370 231 70 3.73
[69] 40 75,928 3,453 357 6.35
[65] 39 46,616 22,632 772 10.01
[67] 24 31,509 5,946 180 16.41
[68] 39 14,550 8,627 407 52.48
[64] 24 13,087 4,366 125 20.04
[62] 8 10,035 1 14 15.00
[70] 51 7,065 1,478 553 12.25
[169] 4 1,487 183 10 4.47
[38] 27 1,434 116 99 5.98
[124] 16 1,050 846 115 14.49
[66] 70 902 295 124 24.00
[132] 29 20 20 164 69.70

4.4.2 Evaluation Setup

We conducted our evaluation experiments based on the following setup.
Implementation and environment. We implemented our approach in Python,
using PM4Py [32] for event-log handling and Gurobi [90] as a solver for MIP
problems. All experiments were conducted single-threaded on an Intel Xeon 2.6
GHz processor with up to 768GB of RAM available.
Constraints. We use ten constraint sets, covering the various constraint types that
our approach supports. Each set includes the class-based constraint |g|  8, which
is used to limit the number of abstraction problems that time out. This constraint
is combined with each of the sets from Table 4.4, covering anti-monotonic (AM ),
monotonic (MO), and non-monotonic (NM ) instance-based constraints, a group-
ing constraint (GR), as well as two sets of their combinations (C1 and C2). Ta-
ble 4.4 also contains additional constraints (BL1 to BL4) used in baseline com-
parisons, described below. By combining these constraint sets with the 13 event
logs, we establish a total of 121 abstraction problems to be solved.2

2BL3 can only be applied to 4 out of 13 logs, as the others lack class-level event attributes.
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Table 4.4: Constraints used in the experiments.

ID Categories Constraint(s)

AM CI |g.role|  3
MO CI sum(g.duration) � 101

NM CI avg(g.duration)  5 ⇤ 105

GR CG |G|  3

C1 CI ,CG AM ^ NM ^GR

C2 CI ,CG AM ^MO ^NM ^GR

BL1 CC |g|  5
BL2 CC BL1 ^ cannotLink(e1.a, e2.a)
BL3 CC |g.d| = 1
BL4 CG |G| = |L|/2

Configurations. We test three configurations that differ in the instantiation of the
first step of our approach (cf. Section 4.3.2):

• Exh, using exhaustive candidate computation;
• DFG1, using the DFG-based instantiation without beam search (i.e., unlim-

ited beam width);
• DFGk, using the DFG-based instantiation with a beam width that adapts to

the number of activities in the given log, i.e., k = 5 ⇤ |AL|.
Note that we let candidate computation time out after 5 hours. our approach then
continues with the candidates identified so far.
Baselines. We compare our approach against three baselines. These represent
alternative approaches to satisfy the optimal-event-abstraction task (Definition 10)
and differ in the scope of constraints they can handle.3

Graph querying (BLQ ). Our approach’s DFG-based candidate computation tra-
verses a DFG to find candidate groups that adhere to imposed constraints. Recog-
nizing the overlap of this with graph querying, BLQ replaces Step 1 of our approach
with an instantiation using graph querying. For this, the DFG is stored in a graph
database, which is queried for candidate groups using constraints formulated in a
state-of-the-art graph querying language [82]. Given that a DFG captures a log on
the class-level (i.e., on the level of activities), BLQ can only support class-based
constraints, though. Thus, we assess BLQ using a constraint on the maximum
group size (BL1), an additional cannot-link constraint between activities (BL2),
and a constraint over a class-level attribute (BL3). By comparing against BLQ , we
aim to show that our approach yields more comprehensive sets of candidate groups
than those obtained by adopting existing solutions.

3Additional details on the baselines and their implementation are available through our repository.
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Graph partitioning (BLP ). Our approach’s goal to find a disjoint set of cohesive
groups for log abstraction is similar to the goal of graph partitioning, which aims to
partition a graph such that edges between different groups have a low weight [179].
Therefore, we compare our approach against a baseline using such partitioning,
BLP . Given a DFG, BLP aims to minimize the sum of directly-follows frequen-
cies of cut edges, while cutting the graph into n partitions. For this, BLP applies
spectral partitioning [179], where the weighted adjacency matrix is populated us-
ing normalized directly-follows frequencies. Since graph partitioning simply splits
a DFG into a certain number of groups, BLP can only support strict grouping
constraints, whereas instance-based, class-based, and flexible grouping constraints
(e.g., constraint GR), cannot be handled. Therefore, we compare BLP against our
approach using the constraint BL4, which aims to reduce number of activities of
a log by half. This comparison aims to show that our approach leads to better ab-
straction results, while also supporting a considerably broader range of constraints.
Greedy approach (BLG). Finally, we compare our approach against a greedy event
abstraction strategy. BLG starts by assigning all activities from AL to a set of
singleton groups, G0. Then, in each iteration, BLG merges those two groups from
Gi that lead to the lowest overall distance, i.e., dist(Gi+1, L), without resulting
in any constraint violations. BLG stops if the overall distance cannot improve in an
iteration. Unlike the other baselines, BLG can handle instance-based constraints,
since it works directly on the event log rather than the DFG, although, grouping
constraints cannot be enforced in this iterative strategy. Therefore, we compare
BLG against our approach using the instance-based constraint set AM , MO , and
NM . This comparison against BLG aims to show the importance of striving for a
global optimum in the log-abstraction problem.
Measures. To assess the results obtained by the various configurations and base-
lines, we consider the following measures:
Solved abstraction problems (Solved).: We report on the fraction of solved prob-
lems, to reflect the general feasibility of abstraction problems and the ability of a
specific configuration to find such feasible solutions.
Size reduction (S. red.).: We measure the obtained size reduction by comparing
the number of high-level activities in an obtained grouping to the number of orig-
inal activities, i.e., |G|/|AL|. Given the strong link between model size and process
understandability [159], this measure provides a straightforward but clear quantifi-
cation of the abstraction degree.
Complexity reduction (C. red.).: We also assess the abstraction degree through
the reduction in control-flow complexity, using an established complexity mea-
sure [159]. Since this measure requires a process model as input, we discover a
model for both the original and the abstracted log using the state-of-the-art Split
Miner [24] and then compare their complexity.
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Silhouette coefficient (Sil.).: We quantify the intra-group cohesion and inter-group
separation of a grouping G using the silhouette coefficient [102], an established
measure for cluster quality. To avoid bias, we compute this coefficient using a
standard measure for the pair-wise distance between activities [89], which consid-
ers their average positional distance.
Run time (T(m)).: Finally, we measure the time required to obtain a result in min-
utes, from the moment a log L is imported until the abstracted log L

0 is returned.

4.4.3 Evaluation Results

In this section, we report on the results for the different constraint sets, followed
by a comparison of the different configurations.
Overall results. Table 4.5 presents the results obtained using the Exh configu-
ration of our approach per constraint set. For the anti-monotonic (AM , BL1-3)
and grouping constraint sets (GR,BL4) our approach finds a solution to all of the
problems. Infeasible problems primarily occur for the monotonic MO constraint
set and the combination sets, C1 and C2, since these are more restrictive. Inter-
estingly, C1 has more than twice as many solved problems (54%) than C2 (23%),
clearly showing the impact of C2’s additional monotonic constraint on feasibility.

The other measures in the table report on the results obtained for the solved
problems. We observe that our approach achieves a considerable degree of abstrac-
tion, reflected in the reductions in size and complexity. Groupings are reasonably
cohesive and well separated from each other, indicated by silhouette coefficients�
0.12. These results are stable for the less restrictive constraint sets, such as AM ,
NM , and GR, as well as their combination C1. For instance, for AM a size re-
duction of 0.68, complexity reduction of 0.63, and silhouette coefficient of 0.15 is
achieved. In line with expectations, for more restrictive constraint sets, e.g., C2,
the impact of abstraction is less significant (0.50, 0.40, and 0.09 resp.). Finally,
the impact of the constraint-checking modes on efficiency can also be observed.4

While, e.g., the GR constraint set requires 144m on average to be solved, the anti-
monotonic BL2 constraint cases are solved in 121m. In this mode, candidates are
not expanded if they already violate the constraint, yielding improved run times.

Overall, our approach is thus able to greatly reduce the size and complexity
of event logs, while respecting various constraints. Although the solution feasibil-
ity and the abstraction degree depends on the employed constraints, our approach
consistently finds groups that have strong cohesion and good separation.

4For constraint sets with unsolved problems, run times must be compared carefully, as they de-
pend on the specific logs with feasible solutions.
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Table 4.5: Results for Exh (averaged over solved problems).

Const. Solved S. red. C. red. Sil. T(m)

AM 1.00 0.68 0.63 0.15 146
MO 0.31 0.58 0.55 0.15 75
NM 0.77 0.68 0.65 0.12 154
GR 1.00 0.66 0.61 0.13 144
C1 0.54 0.68 0.59 0.12 134
C2 0.23 0.50 0.40 0.09 100
BL1 1.00 0.67 0.61 0.12 122
BL2 1.00 0.66 0.61 0.12 121
BL3 1.00 0.38 0.29 -0.02 38
BL4 1.00 0.51 0.46 0.05 147

Exhaustive versus efficient configurations. Table 4.6 depicts the evaluation re-
sults for the three our approach configurations, again providing the averages over
the solved problems. Notably, the configurations were able to solve the same prob-
lems, except for a single problem in the non-monotonic NM constraint set, which
the DFGk configuration failed to solve. We observe that the DFG-based configu-
rations achieve substantial efficiency gains in comparison to the exhaustive one,
where in particular DFGk needs only about 40% of the time in comparison to Exh
(49m vs. 130m on average). With respect to the abstraction degree, we observe that
DFG1 maintains results comparable to Exh for size (0.62 vs. 0.63) and complexity
reduction (0.56 vs. 0.57). It even obtains better results for the silhouette coefficient
(0.16 vs. 0.11), which shows the ability of the DFG-based approach to find can-
didate groups that are cohesive and well-separated. The results achieved by DFGk

suggest a trade-off between optimal abstraction and efficiency, as the abstraction
degree is about 7% lower compared to the other configurations. Finally, we ob-
serve that the DFG-based configurations are particularly useful for anti-monotonic
and grouping constraints. In these cases, the results differ only marginally, even
for DFGk, while achieving considerable efficiency gains.

Table 4.6: Results per configuration over solved problems.

Conf. Solved S. red. C. red. Sil. T(m)

Exh 0.78 0.63 0.57 0.11 130
DFG1 0.78 0.62 0.56 0.16 108
DFGk 0.77 0.56 0.50 0.08 49
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Baseline Results

Table 4.7 depicts the results obtained using the baseline approaches against the
most relevant configurations of our approach.
Comparison to graph querying. The results of BLQ indicate that the candidate
groups obtained using graph queries are not as comprehensive as those found by
our approach’s DFG1 configuration. BLQ ’s solutions are therefore subpar with
respect to size and complexity reduction. Furthermore, the negative silhouette co-
efficients (-0.2 avg. vs. 0.17 for DFG1) indicate that the groupings found by BLQ

are neither cohesive nor separated, which highlights the ability of DFG-based can-
didate computation to find better sets of candidates for abstraction.
Comparison to graph partitioning. With respect to BLP we find that partition-
ing the DFG by minimizing edge cuts naturally reduces the size of the DFG and,
thus, achieves a certain degree of abstraction. However, the groupings created by
BLP are not as cohesive, indicated by the silhouette coefficient of 0.01 compared to
our approach (0.05). Moreover, the complexity reduction achieved by BLP (0.41)
is lower than achieved by our approach (0.46), even though their groupings con-
tain the same number of activities. This highlights the benefits of the three-step
approach our approach takes and the suitability of its distance measure to obtain
meaningful groupings for log abstraction.
Comparison to greedy approach. When considering the results of BLG, the
downsides of a greedy solution strategy quickly become apparent. BLG finds solu-
tions to fewer abstraction problems (64%) than even the most efficient configura-
tion, DFGk, whereas the solutions that are identified are far subpar. For example,
for the anti-monotonic AM constraint set, BLG achieves an average size reduction
of 0.47, whereas DFGk yields a size reduction of 0.64, which clearly shows that a
greedy strategy often yields solutions that are far from optimal.

Table 4.7: Baseline comparison over the applicable constraint sets. Results are
averaged over solved problems.

Const. Conf. Solved S. red. C. red. Sil. T(m)

BL[1–3] DFG1 1.00 0.63 0.55 0.17 77
BLQ 0.96 0.55 0.43 -0.20 24

BL4
Exh 1.00 0.51 0.46 0.05 147
BLP 1.00 0.51 0.42 0.01 1

AM ,MO,NM
DFGk 0.67 0.59 0.52 0.08 58
BLG 0.64 0.45 0.37 0.02 24
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Discussion. Overall, these results demonstrate that our approach outperforms all
three baselines with respect to their applicable constraints, whereas it can, further-
more, handle a much broader range of process-oriented abstraction constraints.

4.4.4 Application Cases

In this section, we apply our approach in two application cases to give an illustra-
tion of the value of constraint-driven event abstraction.

To this end, we use the BPI17 log [67] that captures a loan application pro-
cess at a large financial institution. Although the log only contains 24 activities,
its complexity is considerable, as evidenced by its 160 DFG edges. As shown in
Figure 4.7 this issue even remains for a so-called 80/20 model, which omits the
20% least frequent edges, since this still provides few useful insights into the un-
derlying process. Clearly, there is a need for abstraction, for which our approach
can be applied.
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Figure 4.7: 80/20 DFG discovered from the BPI17 event log that captures a loan
application process [67].

Origin-aware abstraction. We recognize that the needed abstraction can be
guided by considering the three IT systems from which events in the log originate:
an application-handling system (A), the offer system (O), and a general workflow
system (W). Since these systems each relate to a distinct part of a process, we im-
pose a constraint that avoids mixing up events from different systems into a single
activity, i.e., |g.origin|  1.

Figure 4.8 depicts the DFG obtained by our approach in this manner, where the
activity labels reflect their origin systems. Having grouped the events into seven
high-level activities, the DFG shows a considerable reduction in terms of size and
complexity. Due to this simplification, we observe clear inter-relations between the
different sub-systems. For instance, the process most often starts with the execution
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Figure 4.8: 80/20 DFG of the abstracted loan application log.

of steps in the application-handling system (A_Activity 1 to 3), followed by a part
in the offer system (O_Activity 1), and again concluded in the application-handling
system (A_Activity 4). Next to this main sequence, the workflow-related steps
(W_Activity 1) occur in parallel to the other activities, whereas the refusal of an
offer (O_Activity 2) represents a clear alternative path.
Semantics-aware event abstraction. Next, we show how the identified compo-
nents and categorized actions that become available by applying our annotation
approach (Chapter 3) can be used for semantics-aware event abstraction.

We observe that the events in the loan-application log primarily relate to ac-
tions performed for two main types of objects: applications and offers. Moreover,
while various actions are applied to these objects, their action type reveals that
these primarily relate to create, modify, and decide actions. We use these insights
to establish two constraints: (1) grouped activities should refer to the same object
type and (2) they should refer to the same type of action. We apply our abstraction
approach using these constraints. We then name the obtained high-level activities
as a combination of their action type and object type, resulting in the abstracted
DFG of Figure 4.9. The graph contains the 80% most frequent edges, while omit-
ting activities that do not refer to either of the main types of objects.

Having obtained this abstracted view on the process reveals clear dependencies
between action types within and across the two object types. For instance, we find
that applications are first created and processed (modified). Moreover, a decision
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Figure 4.9: Abstracted 80/20 DFG that shows the actions types applied to the main
type of objects in the log, if any.

about an application, i.e., its acceptance, is necessary before an offer can be cre-
ated. Further, there can be multiple iterations between offer and application. After
modifying the offer, the application can be modified before the offer is modified
again. Finally, the majority of cases end with a decision, either about an offer or
about the application. Another common end of the process is a final modification
of the offer. By looking into the original activities, this corresponds to sending a
notification about an offer.

It is important to stress that the insights of these two application cases are only pos-
sible due to the constraint-driven nature of our work. In fact, when applying our
approach without imposing any constraints, the intertwined nature of the process
yielded high-level activities that contain events from all three sub-systems respec-
tively both object types, thus obfuscating the key inter-relations in the process.
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4.5 Limitations

Our experiments reveal that our approach is capable of effectively abstracting event
logs, while guaranteeing user-defined characteristics in the output log. However,
in its current form our work has certain limitations, which relate to the approach
and the evaluation.

The scope of our approach is currently limited to constraints on individual
groups, such that, e.g., instance-based constraints over the entire grouping (rather
than per group) are currently not supported, which may be relevant for certain anal-
ysis purposes. Second, the complexity of the task at hand results in our approach
to exhibit long run times (even when using the more efficient heuristic version) for
event logs with a considerable amount of different activities and traces. Therefore,
further research is needed to improve this performance by, for instance, using trace-
sampling techniques to obtain approximate solutions. Finally, while our approach
effectively groups events of an input event log, it cannot automatically generate
semantically meaningful labels for the higher-level activities. Instead, it requires a
user to manually assign such labels based on the groups’ content.

As for our evaluation, we acknowledge that the quantitative experiments and
application cases provide limited insights into the efficacy of our approach in real-
world scenarios. To address this limitation, user studies could be conducted that
investigate the usefulness of our approach in supporting users with different anal-
ysis purposes that require event abstraction.

4.6 Related Work

The work on constraint-driven event abstraction that this chapter presents primarily
relates to event abstraction in process mining, behavioral pattern mining from event
logs, and sequential pattern mining.

4.6.1 Event Abstraction

A broad range of event-abstraction approaches has been proposed by the process
mining community, each with its own requirements and assumptions. In their
event-abstraction taxonomy, Van Zelst et al. [187] consider the degree of super-
vision, i.e., the amount of information on how to abstract that an abstraction ap-
proach requires as input, as a main differantiator. This is also the main dimension
considered by Diba et al. [60] in their review on event abstraction.

The spectrum of information that different abstraction approaches require is
shown in Figure 4.10. Fully unsupervised approaches mostly employ clustering
techniques [81, 158] or generic abstraction patterns [99, 180] to map low-level
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Figure 4.10: Spectrum of information on how to abstract required by different
event-abstraction approaches. Adopted with slight modifications from [60].

events to higher-level ones. Supervised approaches often require users to provide
information about the high-level activities to be discovered, captured, e.g., in the
form of behavioral patterns, process models [26], specific event annotations [106],
or even detailed domain knowledge, such as event hierarchies [104].

Our approach enables a user to impose requirements on the abstracted event
log such that it serves a particular analysis purpose. Unlike our approach, exist-
ing approaches do not guarantee any characteristics for the abstracted logs, which
can result in a considerable loss of information. At the same time, our approach
only needs a specification of what properties a user requires, whereas existing su-
pervised approaches require a user to explicitly specify how abstraction should be
performed. As such, it can be positioned on the left of the spectrum, between
clustering and supervised learning.

4.6.2 Behavioral Pattern Mining from Event Logs

Behavioral pattern mining also lifts low-level events to a higher degree of abstrac-
tion by identifying interesting patterns in event logs, including constructs such
as exclusion, loops, and concurrency. Local Process Models (LPMs) [172] pro-
vide an established foundation for this. LPMs are mined according to pattern
frequency, while extensions have been proposed to employ interest-aware utility
functions [171] and incorporate specific types of user constraints [173]. Behav-
ioral pattern mining has been also addressed through the discovery of maximal
and compact patterns in event logs [16] including a context-aware extension [15].
While their purpose is similar, a key difference between behavioral pattern mining
and event abstraction is that the former “cherry-picks” interesting parts from a log,
whereas the latter strives for comprehensive abstraction over an entire event log.

4.6.3 Sequential Pattern Mining

Approaches for sequential pattern mining [20, 139] identify interesting patterns in
sequential data. As for LPMs, interesting is typically defined as frequent [93],
while techniques for high-utility sequential pattern mining also support utility
functions specific to the data attributes of events [175, 184, 185]. Cohesion, com-
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parable to distance measures used in event abstraction, has also been applied as a
utility measure for pattern mining in single long sequences [49, 50]. Furthermore,
research in constrained sequential pattern mining primarily focuses on exploiting
constraint characteristics such as monotonicity to improve efficiency [140], which
we leverage during the first step of our approach. Often the focus is on specific con-
straints, e.g., time-based gap constraints [22]. In contrast to our approach, pattern
mining techniques do not consider concurrency and exclusion. Moreover, like for
behavioral pattern mining, the focus is on the identification of individual patterns,
while our work strives for global abstraction.

4.7 Summary

This chapter proposed an approach for constraint-driven abstraction of event logs.
With our approach, users can define the desired characteristics and requirements
of abstracted logs in terms of constraints, thus enabling the meaningful and
purpose-driven abstraction of low-level event data. We defined the optimal-event-
abstraction task that requires minimizing the distance to the original log while
satisfying a set of constraints on the abstracted log. To satisfy this task, our ap-
proach covers a broad set of common constraint types and a distance measure. We
provided two primary instantiations of our approach, allowing users to trade-off
computational efficiency and result optimality.

Our quantitative evaluation experiments on 13 real-world event logs reveal that
our work considerably outperforms three baseline techniques. Furthermore, we
present two application cases that demonstrate the usefulness of constraint-driven
abstraction in practical settings.



Chapter 5

Task-Level-Event Recognition
from User Interaction Data

User interaction data comprises events that capture individual actions that a user
performs on their computer. Each user interaction event corresponds to a single
interaction between the user and the user interface of a software application, such
as clicking a button, entering a text into a field, or ticking a checkbox [13, 109].
Therefore, such events provide detailed records about how users carry out their ac-
tivities in a process (which we, here, refer to as tasks). In process mining settings,
user interaction data provides a lot of potential, since it records events across ap-
plications, at a detailed level, and without the need to extract or integrate data from
different source systems.

However, user interaction events are unsuitable to be directly used for process
mining, as they do not meet two essential requirements. First, user interaction
events do not indicate their relation to a process-level activity. Consequently, when
analyzing a process using such events, insights will show how a user interacted with
their applications, rather than how the process was executed. For instance, in the
context of an order-handling process, applying process mining to user interaction
events would result in insights such as input text is commonly followed by click
button, instead of insights such as create order is commonly followed by update
order. Second, user interaction events do not relate to specific process executions,
which means that the relation between different process steps is not captured. For
example, having identified a number of process steps that involve the handling of
orders, it is crucial to understand which of these steps relate to the same customer
order and which to different ones. Hence, to enable process mining based on user
interaction data, it must be transformed so that it meets the requirements of events
in process mining settings (which we, here, call task-level events).

95



Chapter 5. Task-Level-Event Recognition 96

In this chapter, we propose an unsupervised approach for recognizing task-level
events that addresses this problem. It segments user interaction data to identify
tasks, categorizes these according to their type, and relates tasks to each other via
object instances it extracts from the low-level events. In this manner, our approach
creates task-level events that can be used in process mining settings. In addition to
being the first approach that provides an end-to-end solution to this transformation
problem, it can also deal with online streams of user interaction events. It emits
task-level events to a stream that can directly be used as input for streaming process
mining techniques [39]. These, in turn, can provide a timely understanding of
current process behavior and enable process monitoring and predictions on-the-fly.

This chapter is based on a journal paper titled “Recognizing Task-level Events
from User Interaction Data” [150] by Adrian Rebmann and Han van der Aa, which
is an extension of the conference paper “Unsupervised Task Recognition from User
Interaction Streams” [151].

The remainder of this chapter is structured as follows. Section 5.1 illustrates the
challenges of recognizing task-level events from user interaction data. Section 5.2
presents our approach, which we evaluate in Section 5.3. Section 5.4 reflects on
limitations of our work. Finally, Section 5.5 discusses related work and Section 5.6
provides a summary.

5.1 Problem Illustration

In this section, we first describe the two main parts involved in recognizing task-
level events from user interaction data, before highlighting the additional chal-
lenges of doing this in a streaming setting.
Recognizing task-level events. To illustrate the problem of recognizing task-level
events in an unsupervised manner, consider the excerpt of event data in Table 5.1,
where the events record how a user handles requests related to orders. Although
the user interaction events show what a user does at a detailed level, it fails to
give clear information about the actual process that is executed. In particular, the
user interaction events neither make their relation to process-relevant tasks nor to
specific process executions explicit. For instance, they do not indicate that events
u1–u8 correspond to the execution of a particular task, i.e., creating order O007501,
and events u9–u16 to a different one, i.e., updating order O008102 after a change
request was made. Identifying these relations involves the following two parts:

1. Identify tasks and their types. The first part involves identifying groups of
user interaction events that jointly form tasks and their types. This can be
achieved in a two-step manner:
(1) We need to find sequences of user interaction events that together form
individual tasks. Working under the assumption that a user performs one
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Table 5.1: Excerpt of a user interaction data recording two task executions.

ID Action Application Timestamp Element Label Value

. . . . . . . . . . . . . . . . . . . . .
u1 click Mail 15:41:32 list Order -
u2 input Chrome 15:42:10 field Login -
u3 input Chrome 15:42:26 field Password -
u4 click Chrome 15:42:31 button ok -
u5 click Chrome 15:43:01 button Create order O007501
u6 input Chrome 15:43:29 field Search Pete Miller
u7 input Chrome 15:43:43 field Customer C0075
u8 click Chrome 15:43:58 button Save order O007501
u9 click Mail 15:44:32 list Change request -
u10 input Chrome 15:44:41 field Customer C0081
u11 click Chrome 15:45:39 button Edit order O008102
u12 input Chrome 15:45:48 field Quantity 4
u13 click Chrome 15:46:05 button Save order O008102
u14 click Chrome 15:46:39 button Edit order O008102
u15 input Chrome 15:46:48 field Quantity 5
u16 click Chrome 15:46:55 button Save order O008102
. . . . . . . . . . . . . . . . . . . . .

task before moving to the next, this involves the identification of points in the
data where one task completes and the next one starts. In the given example,
this is the case after events u8 and u16, which denote the completion of
two higher-level tasks. The difficulty here is that such end points are not
explicitly indicated in the data. For instance, although u8 ends the first task
by the press of a Save order button, event u13 involves such a button as well,
even though it occurs only halfway through the execution of the second task.
As such, this requires identifying when execution has moved to the next task,
based on clues from the context and attributes of events.
(2) Having identified individual tasks, we aim to recognize which tasks cor-
respond to the same type (e.g., creating an order), and which to different
ones. However, variability makes this difficult, since the same process-level
task may be executed by performing different sequences of user interaction
events. For instance, the create order task (u1–u8) could also be executed
without first logging in (u2–u4) or by having to search multiple times (u6)
until the right customer is found.

2. Identify task relations. The second part is to identify the relations of tasks
to process executions. To identify such relations, process-relevant object in-
stances, such as specific orders and customers, provide valuable information.
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For example, by identifying object instances in the events of the running ex-
ample, we can recognize that the events comprising the first task (u1–u8)
do not relate to those comprising the subsequent one (u19–u16), since they,
respectively, relate to orders O007501 and O008102. However, extracting
such information is challenging, because user interaction events generally
record object instances only implicitly. In particular, there are typically no
dedicated attributes associated with user interactions that capture informa-
tion about process-related object instances. Instead, these are spread across
attributes that describe user interface elements and their values, such as but-
ton labels or input values. For example, event u5 does not make its relation
to order O007501 explicit. Instead, the object type, order, is contained in its
Label and the identifier (O007501) in its Value attribute.

This problem is partially addressed in robotic process mining (RPM) [109], where
the main purpose is to identify automatable tasks in user interaction data. For in-
stance, the RPM approach by Leno et al. [108] identifies tasks by segmenting user
interaction data. However, it neither recognizes a task’s type nor its relation to a
process execution, so that the first part is only partially solved, while the second
part is not addressed at all. The approach by Urabe et al. [177] goes beyond seg-
mentation and also clusters identified tasks, thus addressing the first part of the
transformation problem, yet also leaving the second part unaddressed.

Therefore, we propose an approach for recognizing task-level events that ad-
dresses both parts. Furthermore, unlike existing approaches, ours works in stream-
ing settings. This comes with additional challenges, though, as explained next.
Challenges of the streaming setting. Our work (also) targets online settings, in
which user interaction events arrive in a stream. Recognizing task-level events
from a stream is more complex than doing it in an offline manner using an event
log, due to the general constraints of streaming settings [34]. Specifically, we have
to identify tasks, recognize their type, and extract objects to infer their relations as
they are observed, using just a limited buffer to temporarily store a relatively small
number of events. This leads to two main difficulties:

1. Single-pass processing. In an offline setting, approaches can do multiple
passes over an entire collection of events, allowing them to use global infor-
mation, such as overall co-occurrence counts [177], when making decisions.
However, in a streaming setting, events cannot be accessed indefinitely [39],
so that decisions have to be made on the basis of potentially incomplete in-
formation, e.g., the counts observed up to a certain point in the stream.

2. Adapting to changes over time. An associated issue is that when dealing with
streams, decisions have to be made without knowing what kind of events and
objects will arrive in the future. For example, while offline approaches can
be certain that all types of tasks they need to identify are already available,
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this is not the case in a streaming setting. At any point in time, events cor-
responding to new kinds of applications, actions, objects, or task types may
be observed. For instance, for the running example, events u9–u16 must be
properly analyzed, even if no such update order task has been seen before,
which requires on-the-fly updating of the recognition mechanisms.

5.2 Recognition Approach

In this section, we describe our approach for recognizing task-level events from
user interaction data. We first give an overview of its input, components, and out-
put, before describing the individual components in detail.

5.2.1 Approach Overview

Input. Our approach takes as input low-level event data in the form of a user
interaction stream. In line with the definitions of Leno et al. [108], we define user
interaction events, user interaction classes, and user interaction streams (see also
Definition 6) as follows.

Definition 11 (User interactions and user interaction events) A user interac-
tion is a manual action performed on a user interface, such as clicking a button
or entering a value into a text field. We denote a user interaction event (UI-event)
u = (uid, ts, P, V ) as a tuple that records a user interaction, with U the universe
of all UI-events. Each UI-event has a unique identifier u.uid, a timestamp u.ts, a
set of context attribute values u.P , capturing the interaction type and information
about the affected user interface element, and a set of data attribute values u.V ,
capturing data associated with an interaction, e.g., what the user typed into a field.

For instance, u6 = (u6, 15:43:29,{input, Chrome, field, Search}, {Pete Miller}).

Definition 12 (UI-classes) Given a UI-event, we let its context attributes values,
i.e., u.P , define its UI-class. We use the shorthand X.P to refer to the set of UI-
classes of all UI-events in a collection X , with X ⇢ U .

For instance, the UI-class of u6 is given as {input, Chrome, field, Search}.

Definition 13 (User interaction streams) A user interaction stream SU is a po-
tentially infinite sequence of UI-events recorded during task execution, i.e., SU 2

U
⇤
81i<j|SU |SU (i) 6= SU (j).
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Approach components. Figure 5.1 provides a high-level overview of our ap-
proach, which we complement with a formalization in Algorithm 4. As depicted, it
recognizes task-level events from a user interaction stream SU based on three com-
ponents: the object-instance-identification component determines to which object
instances UI-events relate, the task-identification component identifies sequences
of UI-events that correspond to individual tasks, and the task-categorization com-
ponent assigns a type to an identified task.

While object-instance identification is applied to each UI-event as soon as it
arrives, the task-identification and categorization components operate on the basis
of an event buffer B. We assume that B is large enough to store the UI-events
comprising a single task instance. In online settings, our approach applies task
categorization as soon as it identified a task based on the UI-events in the buffer. In
offline settings, it first applies task identification to an entire UI-event log and only
then continues with task categorization.
Output. For each recognized task, our approach emits a start and a completion
event to a task-level event stream ST (cf. Definition 6). In line with Definition 1,
each task-level event t 2 T ⇢ E consists of a task’s type (i.e., activity, t.a), its
timestamp (t.ts), and the following data attributes: its object instances (t.objects),
a task identifier (t.id), and lifecycle information (t.lifecycle) that indicates whether
it corresponds to the task’s start or completion.

User interaction 
stream SU

Task-level 
event stream ST

Task 
Identification

Object-instance 
Identification

Event 
Buffer B

A1

u10u11u12u13u14
A1complete A1start

Create order Create orderTask 
Categorization

Create 
order

O007501, order
C0075, customer        

O007501      C0075        O007501 
C0075        

O007501      C0075        

O007501, order
C0075, customer        

Figure 5.1: Overview of the recognition approach.

5.2.2 Object-Instance Identification

First, our approach identifies object instances in the UI-events, which (1) it uses
in the subsequent components and (2) which indicate if and how recognized task-
level events relate to each other through shared object instances (line 4). As shown
in Figure 5.2, the object-instance-identification component consists of two parts
that are applied for each UI-event u: First, type extraction aims to extract an object
type ot from u. Then, instance recognition detects if u indeed refers to an instance
of ot and—if so—adds it to the current task’s object instances. In the following,
we explain these parts in detail.
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Algorithm 4 Recognizing task-level events from user interaction data.
Input SU : User interaction stream, b: Maximum buffer size
Output ST : Task-level event stream

. Initialize buffer B, clustering model CM , chunk list C, and object

instance set objects

1: B  new FIFOQueue(b), CM  new ClusteringModel(), C  [], objects ;
2: loop forever
3: u SU .observeEvent() . A new UI-event is consumed from the stream

. Object-instance identification

4: objects objects [ {(u.uid, identifyObject(u))}
. Add the UI-event to the buffer

5: B.insert(u)
. Task identification

6: if completesChunk(u) then
7: C.add(B.getEventsSinceLastChunk(C)) . Create and store new chunk

8: if |C| � 2 then . Check if enough chunks available

9: ci, ci+1  C[�2], C[�1] . Get chunks to be checked

10: if endsTask(B, C, ci, ci+1, objects) then
11: taskEvents (B.dequeueUpThrough(ci)) . De-queue UI-events

12: C  C.removeRange(C[0], ci) . Remove chunks

. Task categorization

13: v  vectorize(taskEvents, objects) . Create a feature vector

14: CM .update(v) . Update the clustering model

15: type CM .categorizeTask(v) . Assign task type

16: label label, getDefiningTerms(taskEvents) . Assign task label

. Emit task-level events

17: tid newID() . Assign an ID to the task

18: taskObjects {obj | (uid, obj) 2 objects}

19: objects ; . Empty the objects set for the next task

20: emit(ST , (tid, type, taskEvents[0].ts, {(lifecycle, start),
(label, label)}, taskObjects))

21: emit(ST , (tid, type, taskEvents[�1].ts, {(lifecycle, complete),
(label, label)}, taskObjects)})

Type Extraction

The first part of this component extracts an object type ot from a given UI-event u.
For instance, it aims to detect that u1, u5, and u8 each refer to an order, while u7
refers to a customer. This involves noun identification and UI-object removal.
Noun identification. Recognizing that object type information is often contained
in context attribute values, e.g., in button labels such as Save order, noun iden-
tification establishes a set of nouns Nu from the context attribute values P of u.
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Figure 5.2: Object-instance-identification component.

To establish Nu, we employ a POS-tagger provided by standard NLP tools
(e.g., spaCy [97]). Given a context-attribute value p, e.g., Create order (see u5),
the tagger assigns linguistic roles to individual words in p, e.g., it assigns VERB to
Create and NOUN to order. Using this, we instantiate a function nouns that, given
a value p 2 u.P returns the set of nouns in p. For instance, nouns(Create order)
= {order}. Noun identification applies nouns to all p 2 u.P , which results in a set
Nu =

S
p2u.P nouns(p) that may contain process-related nouns. Yet, it likely also

contains nouns that rather relate to the user interface itself, which we remove next.
UI-object removal. Having identified a set of nouns Nu, UI-object removal dis-
cards any nouns that pertain to user interface elements (e.g., textfield or excel)
rather than process-related objects, as these cannot be used to establish meaningful
relations between tasks.

To this end, we use a set KU of user-interface-specific terms, which consists of
names of different UI elements, such as button, field, and link, common application
names, such as names of browsers, spreadsheet applications, text-processing soft-
ware, productivity tools, and application-specific objects, such as workbook, sheet,
and cell in case of MS Excel1. If a noun n 2 Nu corresponds to a term in KU ,
it is not process-related and thus removed from Nu. In this manner, our approach
establishes a set of process-related nouns Not

u = Nu \KU .
Output. If N

ot
u still contains nouns after this removal step, i.e., Not

u 6= ;, our
approach concatenates these to represent the object type ot of u. For instance,
N

ot
u = {order} becomes ot = order, while N

ot
u = {order, line} becomes ot =

order line before it continues with instance recognition for u. If no nouns remain,
it continues with type extraction for the next UI-event.

1For the full set KU of terms we refer to our repository linked in Section 5.3



Chapter 5. Task-Level-Event Recognition 103

Instance Recognition

Having extracted an object type ot from u, the object-instance identification com-
ponent next aims to recognize if u indeed refers to a specific instance of ot. For
example, it recognizes that the O007501 Value of UI-event u5 represents the iden-
tifier of the specific order that was created by u5.

To this end, instance recognition establishes a set of identifying values Ioiu that
jointly represent an object identifier oi based on u’s value attributes V . We rec-
ognize that, in the context of UI-events, such identifying values are typically al-
phanumeric IDs, URLs, email addresses, and names of people, organizations, and
places. Therefore, our approach adds any value v 2 u.V to I

oi
u that (partially)

consists of digits, corresponds to a URL or email address, or refers to a named
entity such as Pete Miller (see u6). Note that digits, URLs, and email addresses
can be straightforwardly detected using regular expressions, whereas named enti-
ties, i.e., persons, organizations, countries, cities, etc., can be detected using NER
capabilities of standard NLP tools [97].

Instance recognition then concatenates any identifying values in the same man-
ner as done for nouns in type extraction to represent the object identifier oi.

Provided that the object-instance-identification component extracts an object type
and recognizes a corresponding identifier in u, it establishes an object instance
o = (oi, ot, {}) according to Definition 4.2 Finally, the component adds the new
instance to the set of current objects (line 4). Regardless of whether an object
instance was added or not, the component then continues with the next UI-event.

5.2.3 Task Identification

The task-identification component identifies sequences of UI-events from the
stream that correspond to individual tasks. It consists of two main operations, as vi-
sualized in Figure 5.3. Here, chunking identifies sequences of observed UI-events
that represent sub-tasks, such as filling in a form or sending an e-mail, whereas
segmenting determines if consecutive sub-tasks corresponds to the same process-
level task or rather to different ones. Once such a transition from one task to the
next has been detected, we forward the segment that corresponds to the completed
task to our task-categorization component.

2Note that the empty map represents the object’s value map, which may later be used to associate
the object with specific properties, such as monetary amounts in case of orders.
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Figure 5.3: Task-identification component.

Chunking

We recognize sub-tasks by looking for common keywords in user interaction
data that indicate the conclusion of an interaction sequence, achieved through the
completesChunk function in Algorithm 4 (line 6). To operationalize this function,
we use a set of completion actions KA, which consists of 20 keywords stemming
from design guidelines for user interfaces by IBM [98], covering typical terms that
indicate the conclusion of a smaller part in a process, such as ok (to go to the next
step in a user interface), submit (for a form), send (e-mail), or save (changes).3

For a UI-event u, completesChunk(u) returns true if u’s class contains a men-
tion of an action in KA. Based on the UI-events stored in B, a sub-task is formed
by the UI-events that occurred since the last completed chunk in C (line 7). For in-
stance, for the running example, u4, u8, u13, and u16 complete chunks (due to their
ok and save labels), resulting in u1–u4, u5–u8, u9–u13, and u14–u16 as chunks.

Segmenting

The segmenting operation aims to decide whether a chunk ci corresponds to the
end of a task or if it continues with the next chunk, ci+1 (function endsTask in
line 10). Specifically, as shown in Figure 5.3, endsTask identifies ci as finalizing a
task if: (1) the chunks are contextually unrelated to each other, (2) the chunks have
no overlap in data values, (3) ci does not represent an overhead activity, and (4) the
control-flow after ci is non-deterministic. Otherwise, ci and ci+1 are considered to
belong to the same task.
(1) Assessing contextual relatedness. Our approach first checks if ci and ci+1 are
contextually related or not. We do this by lifting the notion of contextual relat-
edness proposed by Urabe et al. [177], which targets offline segmentation, to our
setting. The idea is to check if the UI-classes contained in ci and ci+1 commonly

3We refer to our repository for the full list of keywords, though KA can naturally be extended
with, e.g., self-defined keywords or other languages.
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co-occurred so far (indicating a shared context) or not (suggesting that the chunks
belong to different tasks).

Global co-
occurrence matrix

Co-occurrence vectors

Centroid ci Centroid ci+1

sim(ci,ci+1) < t

Figure 5.4: Contextual-relatedness approach inspired by Urabe et al. [177].

As illustrated in Figure 5.4, contextual relatedness is quantified on the basis
of a global co-occurrence matrix, which tracks how often pairs of UI-classes have
been observed to be part of the same chunk. Based on the global counts, we ob-
tain the co-occurrence vectors of the UI-classes per chunk (i.e., rows in the co-
occurrence matrix) and compute their centroid. Then, we compute the similarity
score sim(ci, ci+1) as the cosine similarity between the centroids of ci and ci+1.
Given a similarity threshold t 2 [0, 1]4, we consider the two chunks contextually
unrelated if sim(ci, ci+1) < t.

In this manner, given the four chunks identified in the previous operation, we
would determine that the transitions from u1–u4 (logging in) to u5–u8 (creating
an order), and from u5–u8 (creating an order) to u9–u13 (updating a quantity) are
both clear changes in context. By contrast, the transition from u9–u13 to u14–u16
occurs within the same context (updating and fixing an order quantity), due to the
chunks’ strongly related UI-classes.
(2) Checking for data value overlap. Next, we recognize that sub-tasks may be
part of the same task, even when they relate to different contexts, such as opening
a request sent by a customer per e-mail and subsequently updating one of their
orders in a system. Therefore, we check if UI-events belonging to chunks ci and
ci+1 share particular attribute values, including IDs of identified object instances,
such as customer names or order numbers. Specifically, we check the last two UI-
events of ci and the first two of ci+1 for exact matches in their attribute sets V ,
and, if such matches are present, determine that there should be no segmentation
between ci and ci+1.

In this manner, we would, for instance, recognize that chunks u9–u13 and u14–
u16 also relate to each other in terms of their data values, because UI-events u13
and u14 both refer to order O008102, thus avoiding segmentation here.
(3) Checking for overhead sub-tasks. Then, we check if ci actually corresponds
to a sub-task performed for a particular process instance or that it, rather, corre-
sponds to overhead being performed. Common examples of this include logging

4t is configurable and we set it to 0.3 by default.
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into a system, launching an application, or visiting non-work related websites. If
ci represents such an overhead sub-task, we do not want to treat it as a distinct
task on a process level, which is why we would not segment after ci (even though
contextual relatedness or shared data values between ci and ci+1 are unlikely).

To operationalize this check, we established a set KO of overhead keywords
based on the guidelines [98] we also use for chunking, including log in, sign up,
reload, and open. Using this set, we check if a member of the last two UI-classes of
ci is contained in KO and, if so, avoid segmentation. In this manner, we, e.g., rec-
ognize that the first sub-task in our running example (u1–u4), which corresponds
to a user logging into a web app, belongs to the same task as the next chunk u5–u8,
where the same app is used to create an order.

Note that if one wants to specifically investigate the occurrence of overhead
actions in a process, one can simply disable this check in our approach, which will
result in such chunks being treated as separate tasks.
(4) Checking for control-flow determinism. Finally, we check if chunks that
consist of ci’s UI-classes have always been followed by the same behavior so far.
Such control-flow determinism suggests that ci does not complete a task because it
is always necessary to perform the exact same steps after it.

To be able to check for control-flow determinism, we count how often sets of
UI-classes directly follow each other throughout the stream and compare it to the
number of times the set of ci’s UI-classes, ci.P , formed a chunk so far. If these
counts are the same, i.e., count(ci.P ) = countDF((ci.P , ci+1.P ))5, the chunk’s
subsequent control-flow is considered to be deterministic.6 This suggests that their
corresponding sub-tasks belong to the same task and we avoid segmentation after
ci. These counts can be stored efficiently by identifying UI-classes through their
index in the co-occurrence matrix used in the first check, thus, only storing sets of
indices and their counts instead of storing sets of entire UI-classes.

Note that the checks based on contextual relatedness and control-flow determinism
may benefit from a warm-up phase, during which we populate the co-occurrence
matrix and control-flow counts for a certain number of UI-events before making
the first segmentation decision based on them.

Post-Processing

When our approach has detected that ci represents the final chunk of a task
(line 10), this means that all UI-events currently in the buffer, up to and includ-
ing the final UI-event of ci, together form a task. The UI-events that comprise the

5
DF stands for directly-follows.

6We only apply this check if count(ci.P )� 3, to avoid using it for new sets of UI-classes.
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task are then forwarded to the task-categorization component and removed from
buffer B as well as chunk list C (lines 11–12), so that the first UI-event in B is the
first UI-event of the next task.

5.2.4 Task Categorization

The task-categorization component assigns a type to identified tasks. Given that
we cannot store identified tasks in a streaming setting, we categorize them directly
after task identification. This is complex, though, because it means we may not yet
have observed all possible task types.

Task Categorization

Typed 
task

  8,1,0,1,0,1,1,0,0,0,1,1,0,1,1,0,0,…,0 

Task A - “Create order”

Task 

Feature vector
Assign & Explain

Online
clustering 

model
Term- 

distribution
in clusters

Update

A1complete A1start

Task-level 
event stream ST

Create order Create order

(O007501, order), 
(C0075, customer)

(O007501, order), 
(C0075, customer)

Figure 5.5: Task-categorization component.

To deal with this challenge, we perform task categorization on the basis of an
online clustering model CM , which is incrementally updated as new task instances
arrive. As shown in Figure 5.5, this involves the transformation of a task into a
feature vector, updating the model CM , then using it to assign a cluster to the task,
and—finally—providing a textual label for the task.

Establishing Feature Vectors of Tasks

Given an identified task, we first transform its contents into a feature vector that
can be used for clustering (line 13). We use a vector encoding that accounts for
variability in the executions of tasks of the same type, such as tasks that consist
of slightly different sets of UI-classes or that are performed in a different order.
Therefore, we capture the number of unique UI-classes (as an indicator of a task’s
complexity), and the frequency of each UI-class (to capture its contents) as fea-
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tures, with a fixed position for each UI-class.7 For instance, the task u1–u8 in our
running example consists of eight UI-classes that are all performed once, resulting
in a vector h8, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, . . . , 0i. Here, the zeros at
the end are used to ensure that vectors remain of the same size sv throughout the
stream8, accounting for a number of UI-classes not seen so far. In offline settings,
the vector size can be set to the number of unique UI-classes in the entire input log
plus one (to account for the number of unique UI-classes in the task).

Clustering Tasks

We use an online clustering model CM to recognize tasks that are of the same
type, based on their vector representation. Specifically, we use DenStream [40],
a density-based online clustering technique building on the DBSCAN algo-
rithm [78]. It dynamically creates, updates, and deletes so-called micro-clusters in
the online feature space it maintains. This technique has two key benefits. First, it
is highly memory efficient, since it only stores summaries of vector sets (the micro-
clusters), rather than the vectors themselves. Second, unlike many other clustering
techniques, it does not depend on a user-defined number of desired clusters.

As shown in Figure 5.5 and Algorithm 4, we update CM with the vector v that
corresponds to an identified task (line 14), before using it to assign the task to a
cluster (line 15). For instance, due to the distinct features of the two tasks in our
running example, these are assigned to different clusters (e.g., types A and B).

To improve the performance of task categorization, it can also be beneficial to
introduce a warm-up phase, which postpones assignment of task types to a point
in time when the clustering model has already been updated with a number of
identified tasks, and thus is more mature than it is with a cold start. Note that,
in offline settings, such a warm-up phase effectively spans the entire event log,
since we can then establish a clustering model based on all identified tasks, before
assigning categories to them.

Task Labeling

After using clustering to recognize the type of a task, we provide the task with a
textual label that indicates what its type actually means.

We automatically generate a suitable label for a given task, by considering the
terms that are distinctive to the UI-classes for tasks in its assigned cluster. For this,

7Note that the encoding could also capture the types of object instances identified in the UI-events
that comprise a task, but in our experiments this did not lead to performance improvements.

8Given that, in online settings, the final number of UI-classes is unknown, sv should be set
sufficiently large. We set 1,000 as the default for sv , which already covers more than 6 times the
total number of UI-classes in our evaluation data.
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we use the well-known term frequency–inverse document frequency (tf-idf) score.
Specifically, we use a term dictionary to keep track of the frequency of terms used
in the UI-classes within tasks of a specific type, i.e., cluster. Using CM .types

to refer to the types currently recognized by the clustering model CM , we write
tf-idf(x, type) as the score for a term x and a type type 2M.types .

Then, we set the label of type as the term x with the highest tf-idf(x, type),
e.g., Create order for type A. If multiple types are assigned the same label (e.g.,
if Quantity is the most distinctive term for types B and C), we add the term with
the next highest tf-idf score to each label, until they are all unique. For example,
after basic post-processing (term re-ordering and removing capitalization), B may
get the label Edit order, while C gets Confirm quantity.

5.2.5 Output

The output of our approach is a stream of task-level events based on the identified
and categorized tasks as well as the object instances identified in the UI-events
that comprise the tasks. For each recognized task, we emit a start event with the
timestamp of its first UI-event and a completion event with the last timestamp
(lines 20–21). Both task-level events are assigned the task’s type (along with its
label), a task identifier (created in line 17), and its object instances. For example,
for u1–u8, we emit:

te1= {A : Create order, 15:41:32,{(ID, 1), (lifecycle, start),
(objects, {(C0075, customer, {}), (O007501, order, {})})}}

te2= {A : Create order, 15:43:58,{(ID, 1), (lifecycle, complete),
(objects, {(C0075, customer, {}), (O007501, order, {})})}}

and for u9–u16 we emit:

te3= {B : Edit order, 15:44:32,{(ID, 2), (lifecycle, start),
(objects, {(C0081, customer, {}), (O008102, order, {})})}}

te4= {B : Edit order, 15:46:55,{(ID, 2), (lifecycle, complete),
(objects, {(C0081, customer, {}), (O008102, order, {})})}}

Compared to the UI-events in our running example, our approach thus emits events
that relate to a process-level activity and to a specific process execution and, thus,
fulfill the requirements of process mining settings.

5.3 Evaluation

In this section, we describe the evaluation experiments we conducted. We de-
scribe the data collection used in our experiments in Section 5.3.1 and the setup
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in Section 5.3.2. In Section 5.3.3 we present the evaluation results showing our
approach’s capability to automatically recognize task-level events from user in-
teraction data in comparison to baseline approaches. The implementation, data
collection, evaluation pipeline, and raw results can be found in our repository.9

5.3.1 Data Collection

We aim to show that our approach is capable of recognizing task-level events
of varying types. However, there are no publicly available event logs (let alone
streams) that contain interaction data related to different task types that are asso-
ciated with a necessary gold standard. Therefore, we follow the idea of Urabe et
al. [177] and take available task logs, each recording various instances of the same
type, and combine these into three evaluation logs, which thus cover multiple task
types, in various orders. We use these event logs as input in offline settings and as
a basis to simulate event streams in online settings.

Task Logs

As shown in Table 5.2, we have eight task logs from three sources available, which
include gold-standard task instances (though contained task IDs) and associated
types (through their description in the source).10

Table 5.2: Characteristics of the task logs used in our experiments.

Task Log Description #Tasks Avg.len. #Var. #Events #Classes

1 [108] Copy data 100 14.5 7 1,462 15
2 [108] Reimbursement 50 62.3 1 3,113 32
3 [108] Student record 50 30.8 2 1,539 23
4 [18] Travel request 40 73.5 2 2,940 48

5 [13] New struct. unit 30 10.9 30 331 9
6 [13] New chapter 30 10.1 30 425 12
7 [13] New org. unit 30 14.2 30 304 8
8 [13] New specification 30 11.0 30 326 9

The types of tasks that these logs cover can be divided into two groups:
9
https://github.com/a-rebmann/task-recognition

10Note that these logs do not include a gold standard for object instances. To establish that gold
standard, the author of this thesis and another researcher annotated user interaction events with cor-
rect object instances independently. Afterwards, these were compared and any discrepancies were
settled in a discussion. The gold standards are available in our repository.

https://github.com/a-rebmann/task-recognition
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1. Task logs 1–4 involve copying address data from spreadsheets to web forms,
entering reimbursement details, entering student records into a web-based
app, and filling in travel requests. Logs 1–3 were all published by Leno
et al. [108], whereas log 4 stems from a tutorial given by Agostinelli et
al. [18]. Note that task log 1 originally contained substantially more in-
stances (1,000 versus 50) and UI-events (14,582 versus 1,539–3,113) than
the others. Therefore, we use a sample of its tasks, so that we maintain a
more balanced distribution among types as well UI-events per log. To this
end, we randomly select 100 instances using stratified sampling with respect
to the different execution variants.

2. Task logs 5–8 all relate to the creation of informational objects, such as orga-
nizational units, in an SAP system and are provided by Abb and Rehse [13].

Four out of these eight task logs (1–4) contain overhead tasks such as logging into
a system, starting an application, or opening a file. As shown in the table, the
logs also differ considerably in their variation and task lengths. Note that we also
unified the data structure across the task logs as much as possible before combining
them, such that attribute names are the same for all task types.

User Interaction Logs

We established three evaluation logs (LU1–LU3) by combining the tasks from indi-
vidual task logs:
LU1: LU1 consists of instances from task logs 1–3 (which are also used by Urabe
et al. [177] in their evaluation). We start from an empty log LU1 and (1) randomly
select a task log and an instance from it, (2) add this instance to LU1, and (3) remove
it from the task log, until all instances have been added to LU1. The resulting user
interaction log LU1 consists of 200 tasks and has a total of 6,114 UI-events.
LU2: We established LU2 from task logs 1–4, in the same way as LU1. The resulting
user interaction log LU2 consists of 240 tasks and contains 9,054 UI-events.
LU3: LU3 is based on task logs 5–8. We use these task logs separately from the other
ones, since their event attributes, and thus UI-classes, differ considerably. In par-
ticular, none of the UI-classes that logs 5–8 contain, occur in logs 1–4. Combining
them into one evaluation log would, thus, considerably simplify the identification
of transition points between tasks. We combined logs 5–8 in the same way as done
for LU1 and LU2, so that the resulting user interaction log LU3 consists of 120 tasks
and contains 1,386 UI-events.

We provide all logs (task logs 1–8 and LU1–LU3) in our repository alongside the
implementation. When performing experiments for online settings, we use LU1–
LU3 to simulate UI-streams (SU1–SU3).
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5.3.2 Setup

This section describes the environment, configurations, baselines, and measures
used in our experiments.

Environment

We implemented our approach in Python and ran our experiments single-threaded
on a laptop with a 2 GHz Intel Core i5 processor and 16GB of memory.

Configurations

Our approach requires a buffer size b that can store all UI-events belonging to a
single task. We report on the results using a buffer size of 250 UI-events (also
for the streaming baselines), which covers three times the number of events of
the longest task in our data collection. Furthermore, we consider that parts of our
approach are initialized at the beginning of a stream and populated over time: the
global co-occurrence matrix and control-flow-counts for task identification and the
online clustering model for task categorization. Given that the accuracy of these
components may improve as more UI-events are observed, we test the value of a
warm-up phase, where our approach populates the matrix, control-flow counts, and
clustering model using the first 0, 100, 250, 500, or 1,000 UI-events, before starting
to identify and categorize on them. Note that, in offline settings, the number of
warm-up events corresponds to the number of UI-events in the input log.

Baselines

We compare against three streaming baselines and two offline baselines with re-
spect to task identification and categorization. Note that we cannot compare against
any baseline with respect to object-instance identification, because none of the ex-
isting works considers that as a part of recognizing tasks.
Streaming baselines. We compare our approach to three baselines in a streaming
setting. Aside from our initial approach [151], we established two baselines by
adapting existing works, since there are currently no other techniques capable of
recognizing tasks based on a stream of user interactions. The task-identification
component of the two additional baselines consists of an existing, offline iden-
tification technique, lifted to an online setting (as described below). Their task-
categorization components, by contrast, are operationalized with the same tech-
nique used in our approach. This is necessary because existing offline categoriza-
tion techniques cannot be lifted to an online setting.
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• BLcaise: Our previous approach. In our previous work [151], we pro-
posed the first approach for recognizing task-level events from user inter-
action streams, which we use to investigate the value of our extended task-
identification component.

• BLdfg: Back-edge-based identification. Leno et al. [108] proposed a log seg-
mentation technique based on back-edges identified from a directly-follows
graph (DFG). We adapted the technique to build the DFG incrementally us-
ing the same UI-classes as available to our approach and apply the authors’
back-edge detection method periodically, after every b events (i.e., each time
the buffer is full).

• BLco-oc: Co-occurrence-based identification. The approach by Urabe et
al. [177], which also inspired parts of our work, leverages co-occurring
UI-classes in fixed windows to segment a log. We adapted it to count co-
occurrence incrementally and compute similarities on a buffer of UI-events.
We use the same parameter configurations as reported in their paper.

Offline baselines. When evaluating our approach in offline settings, we compare
it against two baselines:

• BLleno: Back-edge-based identification. The original approach by Leno et
al. [108] serves as the first offline baseline. As described for BLdfg, it con-
structs a DFG based on UI-classes that immediately follow each other in a
given log. Then, it detects back-edges in the graph, which it uses to segment
the log into tasks. As such, this baseline only covers task identification.

• BLurabe: Co-occurrence-based identification and subsequent clustering. The
original approach by Urabe et al. [177] consists of two phases: task identi-
fication and task clustering. First, it segments the complete input log using
co-occurring UI-classes (as explained above), before applying agglomera-
tive hierarchical clustering to categorize tasks. As such, it covers both task
identification and task categorization.

Measures

We use the following measures to assess quality in our experiments.
Object-instance-identification quality. We assess object-instance-identification
quality through the well-known precision, recall, and F1-measures by comparing
the object instances our approach identified from a stream/log to the object in-
stances in the manually created gold standard. Using A to denote the set of object
instances identified by our approach and G for the set of object instances in the
gold standard these measures are defined as follows:

• Precision (Pre.). Precision is the fraction of object instances that are actually
correct (|A\G|/|A|).
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• Recall (Rec.). Recall is the fraction of object instances in the gold standard
that were also correctly identified by our approach (|A\G|/|G|).

• F1-score (F1). The F1-score is the harmonic mean of precision and recall.
Task-identification quality. We assess task-identification quality by comparing
the identified task segments to those of the corresponding gold standard, for which
we use two measures:

• #tasks. To assess if an approach makes the right amount of segmentation
decisions, we compare the numbers of identified and gold-standard tasks.

• Normalized edit distance (n.ED). To quantify how similar identified tasks are
in comparison to the gold standard, we calculate the average normalized edit
distance between identified tasks and their closest task in the gold standard.

Task-categorization quality. We assess categorization quality through measures
for cluster quality, by comparing the tasks that are assigned to the same category
in the gold standard (i.e., task types).
Cluster quality.

• Rand index (R). We compute the Rand index, which considers the
fraction of pairs (tasks at macro level, UI-events at micro level) that
are correctly assigned to the same or to different categories, i.e.,
(TP+TN)/(TP+TN+FP+FN), where a true positive (TP) indicates that two
tasks/events are correctly assigned to the same category.

• Jaccard index (J). We also compute the weighted average Jaccard index to
quantify the similarity between identified clusters and the gold-standard clus-
ters, which is given as A\G/A[G per cluster, with A a cluster’s contents iden-
tified by our approach and G its gold-standard contents (i.e., tasks at the
macro level, UI-events at the micro level).

5.3.3 Results

In this section, we first present the overall results of our approach applied in an on-
line setting in comparison to the streaming baselines, before examining the impact
of a warm-up phase. Following this, we discuss the importance of considering var-
ious types of information in task identification through an ablation study. Shifting
our focus to offline settings, we report on our approach’s performance in compar-
ison to the offline baselines, followed by a discussion on performance differences
between online and offline settings. Lastly, we discuss computational efficiency.

Online Results

In Table 5.3, we present the online results of our approach in terms of object-
instance identification, while Table 5.4 shows the outcomes of task-identification
and task-categorization. The latter table includes results for the three streaming



Chapter 5. Task-Level-Event Recognition 115

baselines and a perfect identification strategy (to show the quality of task catego-
rization independently of task-identification quality), with a warm-up phase of 250
UI-events. Note that the baselines do not take object-instance identification into
account, making it unfeasible to derive corresponding results for this aspect.

Table 5.3: Results of our approach for object-instance identification.

Stream Approach Pre." Rec." F1 "
SU1 Ours 0.91 0.88 0.90
SU2 Ours 0.95 0.93 0.94
SU3 Ours - - -

Table 5.4: Results of our approach and the baselines for task-identification and
categorization (warm-up of 250 UI-events). Perf. ident. shows task-categorization
results in case of perfect task identification. " and # indicate the desired direction
per measure.

Task Ident. Task Categorization
Stream Approach #tasks n.ED# R(mi)" R(ma)" J(mi)" J(ma)"

SU1

Ours 202 0.04 0.96 0.97 0.92 0.95
BLcaise 198 0.04 0.94 0.95 0.92 0.92
BLdfg 202 0.83 0.58 0.82 0.38 0.89
BLco-oc 159 0.33 0.74 0.80 0.64 0.71
Perf. ident. 200 0.00 1.00 1.00 1.00 1.00

SU2

Ours 241 0.05 0.96 0.97 0.92 0.95
BLcaise 231 0.06 0.89 0.95 0.82 0.89
BLdfg 99 0.32 0.42 0.80 0.24 0.56
BLco-oc 198 0.33 0.69 0.71 0.50 0.51
Perf. ident. 240 0.00 0.97 0.97 0.95 0.95

SU3

Ours 132 0.17 0.97 0.99 0.93 0.99
BLcaise 138 0.23 0.87 0.88 0.76 0.76
BLdfg 29 0.58 0.34 0.49 0.16 0.35
BLco-oc 58 0.37 0.45 0.57 0.31 0.46
Perf. ident. 120 0.00 1.00 1.00 1.00 1.00

Object-instance-identification results. Our approach achieves accurate results
in terms of object-instance identification for SU1 and SU2, both with an F1-score
of 0.9 or higher. The similar precision and recall scores (0.91 resp. 0.88 for SU1
and 0.95 and 0.93 for SU2) further suggest that the object-instance-identification
component is both accurate in identifying actual object instances and effective in
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identifying most of these object instances. Note that for SU3, we could not obtain
any results, because there is simply no object instance information available to be
identified. Furthermore, recall that none of the baselines considers object-instance
identification, thus, we could not obtain respective results for those either.

Looking at the results in detail reveals that our approach is capable of correctly
identifying objects of various types. For instance, it correctly extracts objects of
the type bank account, identified by an account number, and of type tax code, iden-
tified by a respective code. However, there are also cases where our approach fails,
in particular because object types were not recognized correctly. Type recognition
relies on the accurate identification of nouns; hence, failing to correctly identify
nouns hinders the recognition of object instances. For instance, noun identification
failed to recognize that address is a noun, as it can also function as a verb, which
leads to relevant instances being missed. Similarly, it does not recognize types that
are not represented by actual words, e.g., countycode (which misses white space
between county and code). Conversely, although discarding UI-specific objects
(such as button or text field) generally avoids false positives, our approach iden-
tified some instances that do not have gold standard counterparts. For instance,
it identified personal data objects, associating these with an identifier. However,
such objects are not informative and their identification should, thus, be avoided.

Overall, the results still show that our approach can accurately identifying ob-
ject instances from user interaction streams, allowing it to relate tasks to each other.
Task-identification results. Our approach achieves highly accurate results for
SU1 and SU2, identifying approximately the same numbers of tasks as in the gold
standard (202 vs 200 and 241 vs 240), to which they are very close in terms of
contents, yielding edit distances of just 0.04 and 0.05. However, stream SU3 is more
challenging. Our approach overestimates the total number of tasks (132 versus
120), achieving an edit distance of 0.17. An in-depth look into the results shows
that it occasionally fails to recognize that certain sub-tasks belong to the same gold-
standard task, since they lack contextual relatedness and overlapping data values.

Compared to the baselines, our approach consistently obtains better results in
terms of edit distances. This indicates that the tasks that the baselines identify
differ more from their gold-standard counterparts than the ones identified by our
approach. Our previous approach, BLcaise, performs similarly well as our approach
for SU1 and SU2 (with 0.007 improvement for SU1 and 0.01 improvement for SU2),
yet considerably better for SU3 (improved by 0.06). This improvement can be at-
tributed to the additional check for deterministic control-flow that our approach
employs, which BLcaise does not do. BLdfg and BLco-oc often miss segmentation
points, resulting in much lower numbers of identified tasks than contained in the
gold standard. BLdfg, specifically, only finds 99 tasks for SU2 (out of 240) and 29
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for SU3 (out of 120). Although BLco-oc generally performs better than BLdfg, we
find that its results are heavily dependent on the selection of two parameter values,
with the edit distances differing by up to 0.5 across configurations.11

Overall, these results indicate that our approach, which considers the seman-
tic and data perspectives in addition to the control-flow perspective considered by
BLdfg and BLco-oc, leads to more accurate task identification. Furthermore, our
approach does not depend on user-defined parameters (unlike BLco-oc).
Task-categorization results. As for task categorization, our approach achieves
high macro Rand scores of 0.97 for SU1 and SU2 and 0.99 for SU3, which shows that
it accurately assigns pairs of tasks to the same category as their gold-standard coun-
terparts. The comparable micro-level scores show that this categorization quality
generally also holds for pairs of UI-events, which thus accounts for tasks of dif-
ferent lengths. The Jaccard index, which provides insights into the quality per
cluster, rather than per task (or UI-event) pair, confirms the accurate categorization
quality, achieving macro scores of 0.95 for SU1 and SU2 and 1.00 for SU3 and the
comparable scores on the micro level (0.92, 0.92, and 0.97).

As shown by the results obtained when using our task-categorization compo-
nent on perfectly identified tasks (gray row in Table 5.4), the categorization itself
is highly accurate, achieving perfect scores for SU1 and SU3, and near-perfect ones
(� 0.95) for SU2. The improved task-categorization performance on SU3 compared
to BLcaise can, therefore, be attributed to our improved task-identification compo-
nent. The subpar results of BLdfg and BLco-oc, which use the same categorization
technique as our approach, also clearly indicate that lower identification quality
leads to lesser categorization results.

Impact of the Warm-up Phase

Table 5.5 shows the results of our approach for warm-up phases of 0, 100, 250,
500, and 1,000 UI-events. The results indicate that the warm-up phase does not
have any impact on task-identification quality. For task-categorization quality, the
benefit of a warm-up phase becomes clear, though.12 A closer look at the streams
suggests that this benefit relates to whether the warm-up phase covers each task
type at least once. For SU1, this coverage occurs within the first 250 UI-events
but not within the first 100 UI-events. Between these two warm-up phases we see
a clear performance boost. While for up to 100 warm-up events, we achieve a
macro Rand score of 0.84 and Jaccard score of 0.78 for SU1, setting the warm-up
phase to 250 UI-events increases the scores by 0.13 resp. 0.17. A further exten-
sion of the warm-up to 500 still improves the results, yet, less substantially (by

11See our repository for detailed experiments regarding BLco-oc’s parameter configurations.
12Warm-up phases do not apply for object-instance identification as this is done per UI-event.
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Table 5.5: Results of our approach with warm-up phases of 0, 100, 250, 500, and
1,000 UI-events. " and # indicate the desired direction per measure.

Task Ident. Task Categorization
Stream #Events #tasks n.ED# R(mi)" R(ma)" J(mi)" J(ma)"

SU1

0 202 0.04 0.89 0.84 0.84 0.78
100 ‘’ ‘’ 0.89 0.84 0.84 0.78
250 ‘’ ‘’ 0.96 0.97 0.92 0.95
500 ‘’ ‘’ 0.98 0.99 0.97 0.98

1,000 ‘’ ‘’ 0.98 0.99 0.97 0.98

SU2

0 241 0.05 0.96 0.97 0.92 0.95
100 ‘’ ‘’ 0.96 0.97 0.92 0.95
250 ‘’ ‘’ 0.96 0.97 0.92 0.95
500 ‘’ ‘’ 0.96 0.97 0.92 0.95

1,000 ‘’ ‘’ 0.98 0.99 0.97 0.99

SU3

0 132 0.17 0.90 0.93 0.81 0.87
100 ‘’ ‘’ 0.91 0.94 0.84 0.88
250 ‘’ ‘’ 0.97 0.99 0.93 0.99
500 ‘’ ‘’ 0.97 0.99 0.93 0.99

1,000 ‘’ ‘’ 0.97 0.99 0.93 0.99

0.02–0.03). For SU3, where all task types are covered by the first 100 UI-events,
performance improves as well. However, this improvement is not as considerable
as observed for SU1 (macro scores increase by only 0.01). Notably, increasing the
warm-up phase to 250 UI-events has a more significant impact on categorization
quality for SU3 (macro scores increase by 0.05–0.11). This may be attributed to
the coverage of additional execution variants per task type, of which SU3 has sig-
nificantly more compared to other streams (30 versus at most 7). Interestingly, for
SU2, performance remains consistently high regardless of whether all task types are
seen during warm-up or not. This suggests that it is not strictly necessary to have
observed all task types before starting categorization to achieve good quality.

Overall, these results show that a warm-up phase is not necessary for task-
identification, but that it can be beneficial for task categorization, if an application
context allows for it. However, even without any warm-up phase our approach
achieves good categorization results across streams.

Ablation Study

Our task-identification component uses various types of information associated
with UI-events to decide whether a task completes or continues (cf. Section 5.2.3).
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In order to understand the value of taking information beyond the control-flow into
account, we conducted an ablation study. This involves, in turn, removing those
task-identification strategies that consider data values (including object instances),
semantic information (specifically overhead actions), and both of these.

Table 5.6: Task-identification results of the ablation study. " and # indicate the
desired direction per measure.

Stream SU1 SU2 SU3

Considered perspectives #tasks n.ED# #tasks n.ED# #tasks n.ED#

Full approach 202 0.04 241 0.05 132 0.17
Control-flow & semantic 202 0.04 241 0.05 150 0.27
Control-flow & data 302 0.35 338 0.33 132 0.17
Control-flow only 336 0.42 372 0.38 150 0.27

We present the results of the ablation study in Table 5.6. It shows that we
achieve the same identification performance on SU1 and SU2 when removing the
data values from consideration, whereas the performance on LU3 decreases (the
edit distance worsens from 0.17 to 0.27). Conversely, when not considering the
semantic perspective, we obtain considerably worse results SU1 and SU2 (the edit
distance worsens by ca. 0.3 for both streams), while achieving the same perfor-
mance as when considering all perspectives on SU3. Finally, the subpar results
achieved when only considering control-flow information highlight the value of
taking additional perspectives into account.

Overall, the results indicate that considering specific perspectives is important
for some streams and not for others. However, only when considering all perspec-
tives can the overall good performance of our approach across streams be achieved.

Offline Results

Table 5.7 shows the results of our approach applied in an offline setting compared
to BLleno and BLurabe. For BLurabe, the table shows the average results across the
configurations that were evaluated in the original paper [177] as well as the results
of the best configuration per log.

The results show that our approach also outperforms the offline baselines by
a large margin. When it comes to task identification, it achieves an edit distance
of just 0.04 for LU1, while the baselines fall short; BLurabe achieves only 0.28 at
best and BLleno achieves 0.35. For LU2, BLurabe achieves an edit distance of 0.28
in the best case and BLleno achieves 0.26, while our approach achieves 0.05; a
substantial improvement of 0.23 compared to BLurabe and 0.21 compared to BLleno.
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Table 5.7: Results of our approach applied in an offline setting and the offline
baselines, BLleno and BLurabe. Note that BLleno only provides task identification
and that, for BLurabe, we show average results across the configurations used in
the original paper [177] and the results from the best configuration per log. Perf.
ident. shows task-categorization results in case of perfect task identification. " and
# indicate the desired direction per measure.

Task Ident. Task Categorization
Log Approach #tasks n.ED# R(mi)" R(ma)" J(mi)" J(ma)"

LU1

Ours 202 0.04 0.98 0.99 0.97 0.99
BLleno 50 0.35 - - - -
BLurabe (avg.) 163 0.56 0.72 0.78 0.59 0.64
BLurabe (best) 131 0.28 0.90 0.98 0.85 0.97
Perf. ident. 200 0.00 1.00 1.00 1.00 1.00

LU2

Ours 241 0.05 0.98 0.99 0.97 0.99
BLleno 101 0.26 - - - -
BLurabe (avg.) 190 0.54 0.69 0.72 0.48 0.53
BLurabe (best) 161 0.28 0.89 0.99 0.80 0.99
Perf. ident. 240 0.00 1.00 1.00 1.00 1.00

LU3

Our approach 132 0.17 0.97 1.00 0.93 1.00
BLleno 90 0.48 - - - -
BLurabe (avg.) 25 0.67 0.26 0.36 0.11 0.28
BLurabe (best) 18 0.66 0.26 0.54 0.11 0.52
Perf. ident. 120 0.00 1.00 1.00 1.00 1.00

The performance gains are even more considerable for LU3, where we observe an
improvement of 0.49 compared to BLurabe and 0.31 compared to BLleno. This again
highlights the efficacy of our task-identification strategy that considers control-
flow, semantic, and data information, instead of solely relying on control-flow.

Interestingly, BLurabe achieves good macro-level results for task categorization
on LU1 and LU2 (0.97–0.99) considering the subpar task-identification results. This
indicates that the baseline’s post-hoc categorization generally works well, despite
poor task-identification quality. For LU3, for which the tasks are more similar in
terms of their UI-classes across types, the baseline’s poor identification quality
cannot be compensated by its good categorization performance, yielding macro
Rand and Jaccard scores of 0.52 at best. In contrast, our approach achieves high
macro (0.99–1.00) and micro (0.93–0.99) scores for all three logs. Note that BLleno
does not cover task categorization, for which we could, thus, not compute results.

Overall, both good task-identification and task-categorization quality are re-
quired to accurately abstract a user-interaction log to a task-level event log, which
our approach provides across the evaluation logs.
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Performance in Online Versus Offline Settings

As shown in the previous sections, our approach achieves consistently high re-
sults in both online and offline settings. Specifically, its object-instance and task-
identification performance is equal in both settings. Only for task categorization
with short warm-up phases, performance decreases slightly when applied in online
compared to offline settings. For the approach by Leno et al. [108], we observe a
clear performance drop when comparing the results of the adapted online version
(BLdfg) to the original approach (BLleno), showing that it is more suitable for offline
task identification. However, we do not observe the same trend for the approach by
Urabe et al. [177], which also targets offline task identification and categorization.
Although its offline version (BLurabe) generally outperforms the adapted online ver-
sion (BLco-oc) in terms of task categorization, it is noteworthy that its online versus,
on average, achieves better results for task identification.

Overall, the evaluation results highlight that, regardless of the specific setting,
our approach achieves good performance in recognizing task-level events from user
interaction data. It consistently outperforms the baselines in both online and offline
settings and, unlike existing works, allows to relate recognized events to each other.

Computational Efficiency

Finally, we assessed the memory and response time efficiency of our approach. To
assess memory efficiency, we measure the maximum memory it requires, which is
the sum of the largest buffer size during run time, the final size of the global co-
occurrence matrix, the directly-follows counts between UI-class sets, and the final
size of the clustering model. As for response time, we measure how long it takes
our approach to perform object-instance identification and task identification after
an UI-event arrives, as well as how long it takes to categorize an identified task.

We find that our approach requires less than 1% of the memory that would be
needed to store all UI-events from the streams, thus clearly demonstrating its mem-
ory efficiency. As for response time, our approach requires between 1 and 107 ms,
for object-instance identification, between 2 and 4 ms for task identification, and
between 40 to 150 ms for task categorization. Note that the latter is only executed
once per identified task. Therefore, the response time depends on a task’s length,
i.e., number of UI-events it consists of. Given that the average time between user
interactions is over 2.5 seconds in the available data, this means that our approach
can easily keep up in terms of responses.
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5.4 Limitations

Our experiments have shown that our approach is capable of transforming low-
level user interaction data into task-level events that can be used for process min-
ing. Nevertheless, our work is subject to certain limitations, which relate to the
approach itself and its evaluation.

As for our approach, a key limitation is that it assumes that tasks are executed
sequentially, i.e., one task must be completed before another one is started. This
is naturally a limiting assumption as it is well-imaginable that users switch be-
tween tasks in their daily work. Especially knowledge workers in office settings
commonly work on several tasks in an interleaving manner [29]. However, it is im-
portant to remark that this limitation so far applies to all unsupervised approaches
that recognize tasks from user interaction data, because it is highly challenging and
may impose additional data requirements to be solved properly.

As for our evaluation, we acknowledge that the considered user interaction data
may impact generalizability of the results. Although this data covers a variety of
task types, was obtained from different sources, and goes beyond the evaluation
data used in other work [177], it does not capture a user’s real sequence of process-
related and overhead tasks conducted during a workday. Therefore, we plan to
conduct further experiments as soon as more suitable data becomes available.

Furthermore, the generalizability of the sets of completion actions, keywords
for overhead actions, and UI-objects (all used during task identification) remains to
some degree uncertain given the available data. While these sets are generic, stem
from established design guidelines, and occur across different types of graphical
user interfaces, we cannot guarantee their completeness for any user interaction
stream or log. Nevertheless, they can easily be adjusted and extended so that they,
for instance, cover domain-specific applications and different languages.

5.5 Related Work

Our work primarily relates to research on the identification of tasks from low-
level event data (Section 5.5.1), RPM (Section 5.5.2), the identification of object-
centric information from event data (Section 5.5.3), and preprocessing techniques
for stream-based process mining (Section 5.5.4).

5.5.1 Identifying Tasks from Low-level Event Data

Various approaches have targeted the identification of tasks in low-level event data.
Focusing on user interaction events, various works [19, 127] take a supervised ap-
proach based on the computation of alignments between user interaction logs and
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task models that they require as input. Tello et al. also approach task identification
in a supervised manner by applying classical machine learning approaches [174],
whereas Pegoraro et al. train a neural network model to segment user interaction
logs [137, 138]. Linn et al. [118] combine transactional data recorded by infor-
mation systems with user interaction logs, to integrate interaction data with tra-
ditional process mining. Finally, our earlier work [155] identifies tasks through
self-learning of multi-perspective dependencies between low-level interactions, al-
though this currently requires expensive pre-training on large interaction logs.

Beyond user interaction events, related approaches aim to recognize process-
related tasks from so-called active-window-tracking data [29], ambient or wearable
sensors [46, 152, 154], network traffic data [76, 91], or low-level, server-side appli-
cation logs [79]. However, due to the low-level, abstract nature of the data used by
these approaches, they depend on supervised recognition strategies or even manual
labeling, as opposed to our unsupervised approach.

5.5.2 Robotic Process Mining

The core idea of RPM is to discover repetitive routines from user interaction logs,
which are suitable for automation [109]. Leno et al. [109] propose an RPM-
pipeline, which starts from a raw user interaction log and eventually yields au-
tomatable task scripts. The so-called segmentation stage of this pipeline identifies
which user interaction events jointly form individual tasks (yet, not their types),
thus only partially solving part of the transformation problem that our approach
addresses. We use the corresponding approach by Leno et al. [108] as a baseline
for task identification in our evaluation. The candidate-routine-identification stage
(also covered by Leno et al. [108]) recognizes tasks that are executed in the same or
similar manner. In a sense, tasks are thus categorized into candidate routines, which
may be considered as types. However, this stage only takes tasks into account if
they are performed frequently, thus neglecting infrequent ones. Furthermore, it
does not assign labels to identified tasks. Unlike candidate-routine identification,
the approach by Urabe et al. [177] categorizes all tasks that it previously identi-
fied through segmentation, thus addressing task identification and categorization.
However, the approach does not relate tasks to each other in any way. We lift the
segmentation strategy of this approach to an online setting and use it as a baseline
in our evaluation.

Although our work and works on RPM (partially) address similar sub-
problems, their overarching goals are fundamentally different. RPM aims to get
in-depth insights into the execution of individual tasks with the goal of automating
suitable ones, whereas we aim for a comprehensive transformation of low-level
user interactions into task-level events that are usable in process mining settings.
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5.5.3 Identifying Object-centric Information in Event Data

Relating task-level events to each other by identifying to which case they belong
has been addressed by several works [60]. The problem of inferring missing ob-
ject information from event data as well as the conversion of classical event logs
into object-centric logs have also been investigated [156, 170]. Berti et al. propose
approaches to extract object-centric event logs from SAP systems and relational
databases [31]. Finally, the extraction of object-centric information from knowl-
edge graphs has been researched [183]. However, these techniques assume that
events are already on the task level and that they can operate in an offline setting,
whereas our approach overcomes both of these assumptions.

5.5.4 Stream-Based Preprocessing of Event Data

Research on stream-based preprocessing in process mining mostly focuses on
cleaning noisy event streams. Van Zelst et al. [186] filter a stream based on esti-
mates of how likely new events belong to real process behavior, whereas Hassani et
al. [94] filter noise by extracting frequent sequential patterns from an event stream
before applying streaming process discovery. Finally, Awad et al. [25] propose
an approach to resolve situations in which events arrive in an incorrect order on a
stream. However, these techniques assume arriving events to be on the task level,
even though, in practice, streaming data is commonly at a lower-level of abstrac-
tion, such as taken into account by our approach.

5.6 Summary

In this chapter, we proposed an automated approach for recognizing task-level
events from user interaction data, which works in a fully unsupervised manner.
It segments user interaction data to identify tasks, categorizes these according to
their type, and relates tasks to each other via object instances it extracts from the
low-level events. In this manner, our approach creates task-level events that meet
the requirements of process mining settings as they relate to a process-level activity
and to a specific process execution. In addition to being the first approach that ad-
dresses this transformation problem in full, it works in both, offline and streaming
settings. In particular, it takes a user interaction stream and recognizes task-level
events that it emits to a task-level event stream. Streaming process mining tech-
niques can then subscribe the task-level stream and process its events on the fly.

We demonstrated our approach’s efficacy in an experimental evaluation on real
user interaction data and showed that it outperforms three streaming baselines and
two offline baselines in both their scope and accuracy.



Chapter 6

Object-Information Extraction
from Event Logs

Many real-world processes comprise multiple concurrent object types with com-
plex interrelations [6]. For example, in an order-handling process, multiple items
can be part of a single order and multiple orders can be shipped in one package. As
such, individual steps in the process may involve any number of different objects,
such as sending items of multiple orders in one package. Therefore, such steps can-
not be assigned to a single process execution and thus, their corresponding events
cannot be assigned to a single case either. This violates the basic assumption of
case-centric event logs (cf. Section 2.1.1). If event data of such processes is nev-
ertheless captured in a case-centric format, this can cause data quality issues, such
as duplicate events and spurious behavioral relations, which ultimately lead to in-
accurate analysis results.

However, researchers and practitioners have long exclusively focused on case-
centric event logs when developing and applying process mining techniques. Con-
sequently, there is an abundance of event data captured in such logs, without access
to the source systems from which these were extracted (cf. [67, 69]). As a result,
the only option to resolve the data quality issues that are caused by the log format, is
to transform a case-centric log into an object-centric one. Performing this transfor-
mation manually is a tedious and time-consuming task, considering the complexity
of real-world logs, with dozens of attributes and thousands of events. Hence, the
transformation needs to be supported automatically.

In this chapter, we propose an approach that addresses this problem by auto-
matically transforming a case-centric event log into an object-centric one. Such a
transformation is far from straightforward, though, because it requires an approach
to identify which object types occur in the event log, which object instances exist

125



Chapter 6. Object-Information Extraction 126

with which properties, and how these instances relate to the events. This informa-
tion is to a certain extend contained in case-centric event logs, but in an unstruc-
tured, i.e., hidden way. Our approach uncovers this information by combining the
semantic annotation of events (using the approach we proposed in Chapter 3) with
data profiling and control-flow-based relation-extraction techniques.

This chapter is based on a paper titled “Uncovering Object-centric Data in
Classical Event Logs for the Automated Transformation from XES to OCEL” [156]
by Adrian Rebmann, Jana-Rebecca Rehse, and Han van der Aa.

The remainder of the chapter is structured as follows. Section 6.1 illustrates the
challenges that our approach needs to address. Section 6.2 presents our approach
itself. Section 6.3 describes our evaluation, which shows that our approach can ac-
curately rediscover object-centric logs that were transformed into case-centric ones
and can effectively mitigate quality issues in real-world logs. Section 6.4 reflects
on limitations of our work. Section 6.5 discusses related work and Section 6.6
provides a summary.

6.1 Problem Illustration

This section illustrates the problems caused by recording object-centric event data
in case-centric event logs and the challenges that must be overcome when trans-
forming such logs into object-centric counterparts. For this, we use the example
of an order-handling process [6], which involves four types of objects: customers,
orders, items, and packages. As shown in Figure 6.1, a customer can place multi-
ple orders, an item belongs to exactly one order and one package, a package can
contain multiple orders, and an order can be split over multiple packages.

Package

Item1 1..*

0..*
1..* 1..*

0..1

Customer Order1 0..*

Figure 6.1: UML data model of the running example.

Problems of case-centric event logs. We illustrate the problems of recording a
multi-object process in a case-centric format using the following trace, with an
order as the case notion, i.e., the main object type from whose point of view the
process execution is recorded.

�order = hCreate order, Reorder item, Pick item, Send package, Pick item, Send packagei

The events in �order indicate the picking of two items and the sending of two pack-
ages. Although their ordering suggests that these activities occur in an interleaving
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fashion, there is a clear relation between first picking an item and then sending
it in a package. This clear precedence relation on the item level is lost, because
there can be several items and packages per order, which we cannot distinguish on
the trace level. This phenomenon, called divergence, is unavoidable when record-
ing processes with object relations beyond 1:1 in the form of case-centric event
logs [6]. It often occurs together with another unavoidable issue, called conver-
gence. Convergence emerges when we use an individual item as the case notion to
represent the events from trace �order, which results in the following traces:

�item(1) = hCreate order, Reorder item, Pick item, Send packagei
�item(2) = hCreate order, Pick item, Send packagei

Because both items belong to the same order, the Create order event is duplicated
across the traces. As a result, the information that both items relate to the same
order is no longer captured at the trace level. Due to the m:n relations in the process
at hand, the impact of this issue is amplified, given that also multiple orders can
relate to the same package, and vice versa.

To overcome these issues and the incorrect analysis results they lead to, a case-
centric log needs to be transformed into an object-centric one, as discussed next.
From case-centric to object-centric logs. To illustrate the transformation of case-
centric into object-centric event logs, consider the example in Table 6.1, which
provides a case-centric event log with two orders. The log captures information on
the events related to each order, as well as attributes that associate events with a
PackageID, a Weight, and the Customer.

Table 6.1: Two traces of a case-centric event log of an order handling process with
the order as the case notion.

CaseID Event Activity Timestamp PackageID Weight Customer

o1 e1 Create order 05-20 09:07 Pete
o1 e2 Reorder item 05-23 10:40 12.5 Pete
o1 e3 Pick item 05-23 14:20 70.8 Pete
o1 e4 Send package 05-23 17:26 p1 70.8 Pete
o1 e6 Pick item 06-04 15:20 12.5 Pete
o1 e9 Send package 06-06 16:20 p2 20.4 Pete

o2 e5 Create order 06-03 19:17 Pete
o2 e7 Update order 06-04 18:11 Pete
o2 e8 Pick item 06-05 11:48 7.9 Pete
o2 e10 Send package 06-06 16:20 p2 20.4 Pete
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Table 6.2: Object-centric event log of the running example.

Event Activity Timestamp Orders Packages Items Customer

e1 Create order 05-20 09:07 {o1} ; {i1_1,i1_2} {Pete}
e2 Reorder item 05-23 10:40 {o1} ; {i1_1} {Pete}
e3 Pick item 05-23 14:20 {o1} ; {i1_2} {Pete}
e4 Send package 05-23 17:26 {o1} {p1} {i1_2} {Pete}
e5 Create order 06-03 19:17 {o2} ; {i2_1} {Pete}
e6 Pick item 06-04 15:20 {o1} ; {i1_1} {Pete}
e7 Update order 06-04 18:11 {o2} ; {i2_1} {Pete}
e8 Pick item 06-05 11:48 {o2} ; {i2_1} {Pete}
e9 Send package 06-06 16:20 {o1,o2} {p2} {i1_1,i2_1} {Pete}

Table 6.3: Objects of the object-centric event log.

Type Instances

Customer {Pete ()}
Order {o1 (), o2 ()}
Package {p1 (Weight: 70.8), p2 (Weight: 20.4)}
Item {i1_1 (Weight: 12.5), i1_2 (Weight: 70.8), i2_1 (Weight: 7.9)}

As shown in Table 6.2 and Table 6.3, constructing an object-centric version of
this event log requires information about: object types (customers, orders, items,
and packages), their instances and associated properties (e.g., that package p1 has
a weight of 70.8), and the relations between object instances and events (e.g., that
event e1 creates order o1, which relates to items i1_1 and i1_2). However, such
crucial information is not explicit in the case-centric version of the event log, but
rather needs to be uncovered in order to transform case-centric data into an object-
centric log. This results in four main transformation tasks:

1. Detect object types. Object types in a process are not explicitly indicated
in case-centric event logs. Rather, transformation requires these types to be
extracted from unstructured activity labels, such as the order type in “Create
order”, and from certain event attributes, such as Customer in Table 6.1.

2. Identify object instances. Due to divergence and convergence, a transfor-
mation approach needs to identify distinct object instances within cases, e.g.,
that case o1 deals with two items and two packages, and relate object in-
stances across cases, e.g., that package p2 appears in both o1 and o2. This
involves identifying event attributes that represent identifiers of a specific ob-
ject, e.g., that PackageID defines individual packages. Furthermore, because
such identifier attributes may not exist for all object types, it also requires in-
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ferring certain object instances from the event log itself, e.g., that events e3
and e6 yield two different items (i1_1 and i1_2).

3. Relate objects to their properties. Case-centric event logs do not distin-
guish between attributes that relate to a specific event, such as a resource
performing it, and attributes that provide information about the object han-
dled in the event, such as the Weight attribute, which captures information
about an individual package or item. When establishing an object-centric
log, such relations must thus be derived by separating event attributes from
object properties, in order to have a comprehensive view on the instances
involved in the process, as captured in Table 6.3.

4. Associate object instances with events. Finally, instead of referring to a
specific case, each event in an object-centric log must be mapped to the ob-
ject instances it relates to. Obtaining a complete mapping requires a thor-
ough analysis of the inter-relations that exist between object instances. For
example, this requires the recognition that package p2 relates to orders o1
and o2, as well as items i1_1 and i2_1, and associating all these objects with
event e9, even though the objects originally stem from a range of different
events and cases in the case-centric log.

6.2 Extraction Approach

As shown in Figure 6.2, our approach for the transformation of a case-centric event
log L (cf. Definition 3) into an object-centric event log OL (cf. Definition 5) con-
sists of five main steps.

1. Object-Type 
and Action 
Extraction 

3. Object-
Instance 

Discovery

4. Property-
to-Type 

Assignment

5. Instance-
to-Event 

Assignment 

Object Types 
& Actions

Object 
Instances

Object 
Properties

Instance-Event-
Relations

2.Type-to-
Identifier 
Matching

Case-centric 
Event log L

Object-centric 
Event log OL

Figure 6.2: Overview of the transformation approach.

Step 1 extracts the object types and actions from the activity label and other
textual attributes of events, which yields object types and the applied actions per
event. Steps 2 and 3 jointly establish a set of object instances: Step 2 first matches
extracted object types to attributes that capture identifiers to recognize distinct in-
stances of object types, whereas Step 3 aims to discover instances for object types
for which no such identifier attribute was found. Afterwards, Step 4 aims to assign
properties to object types by identifying attributes that represent object properties.
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Finally, Step 5 assigns the discovered object instances to events by exploiting be-
havioral relations among object types and instances discovered in previous steps.
Based on the result of Step 5, we create an object-centric event log according to
the OCEL format [83]1. Next, we describe each of these five steps in detail.

6.2.1 Object-Type and Action Extraction

The first step of our approach extracts the object types and actions from an event
log. Object types need to be derived from unstructured textual attribute values,
such as activity labels, and attribute names of a case-centric event log. An action is
applied to an object, incurring a change in its state [110]. For instance, the Create
order activity indicates that a create action is applied to an order. We extract
actions along with the object types since these can contain information about the
creation of new object instances, which we will exploit in a later step.

To achieve this, we use our semantic-annotation approach introduced in Sec-
tion 3.3. Recall that it extracts parts of textual attribute values that correspond to
different semantic roles, such as object types and actions in two ways:

1. Instance-level labeling labels parts of unstructured textual attribute values
with semantic roles. The parts that correspond to the desired roles are then
extracted. For instance, for the Send package activity label of event e9, it
labels package as an object type and send as an action.

2. Attribute-level classification identifies event attributes that in their entirety
correspond to a certain semantic role. It does so based on an attribute’s name
and its value range. This, e.g., applies to the Customer attribute in Table 6.1,
which allows us to also identify customer as an object type contained in the
event log, assigning this type to any event that has a value for the attribute.

By taking the output of the semantic annotation approach, Step 1 instantiates
a function extract, which, given an event e 2 EL, extracts the object types
and the actions applied to them (if any) from e. The result maps the object
types to a (possibly empty) set of actions, e.g., extract(e9) = {package !
{send}, customer! ;}. Each event’s object map is then initialized with its types,
e.g., e9.objects = {package ! ;, customer ! ;}. The empty set in the object
maps are later used to store references of a respective event to object instances.
Finally, we establish a set of identified object types OT =

S
e2EL

dom(e.objects)
and move to Step 2, which aims to match these types to identifier attributes.

1Note that our approach is not limited to this specific object-centric event-log format and can be
adapted to output logs in alternative formats, such as DOCEL as we showed in our other work [85].
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6.2.2 Type-to-Identifier Matching

In this step, our approach tries to associate identifier attributes with the extracted
object types to be able to recognize distinct object instances. For our running exam-
ple, we can differentiate between the two packages p1 and p2 by recognizing that
the PackageID is an identifier for package objects. Such identifier attributes are
not explicitly given, meaning that we need to match object types to attributes. To
establish these matches, our approach first identifies a set DID

L
of potential object

identifiers, by categorizing attributes according to their domain. Then, we match
these attributes to object types in OT , resulting in a set �, consisting of (ot, d)
pairs with ot 2 OT and d 2 D

ID
L

.
Finding potential identifier attributes. To identify the set DID

L
✓ DL, we recog-

nize that identifiers generally use alphanumeric domains, i.e., string or int, such
as PackageID (p1 and p2) and Customer (Pete) in Table 6.1. Therefore, we cate-
gorize attributes according to their domain’s data type and add those with string

and int domains to D
ID
L

. This way, we discard attributes corresponding to, e.g.,
timestamps, Boolean values, and floats, such as the Weight attribute.
Matching identifier attributes and object types. Next, we identify matches be-
tween the object types in OT and potential identifier attributes in D

ID
L

, resulting in
a set of matches �. Some object types and attributes can be directly matched. For
others, we first establish candidate matches, and then verify their validity.
Direct matching. Object types in OT that stem from the attribute-level classifi-
cation of Step 1 reflect objects that correspond to the name of a specific event at-
tribute, such as the customer object type corresponding to the Customer attribute.
Because these types were identified in this manner, we know that their identifiers
are captured in the corresponding attributes, if these are part of DID

L
. Therefore,

we directly add such pairs, e.g., (customer, Customer), to the matches in �.
Establishing candidate matches. For object types that cannot be directly matched,
such as the package type extracted from activities, we first establish candidate
matches, collected in a set �candidate, considering attribute names and values.

First, we establish candidate matches by checking if the name of an unmatched
object type encompasses the name of an unmatched attribute, or vice versa. E.g.,
we recognize a candidate match between the package type and the PackageID

attribute, or between the item type and a, hypothetical, order_item attribute.
Then, for attributes in D

ID
L

that are not yet in a candidate match with an object
type, we apply a data profiling-strategy [14], which checks if an attribute exclu-
sively co-occurs with an object type. For the running example, all events associ-
ated with the package type (e4, e9, e10) have values for the PackageID attribute,
but this attribute does not apply to any other events. Thus, even if PackageID was
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named pID and hence not a name-based candidate match, our approach would still
recognize it as a potential identifier for the package type and add it to �candidate.
Validating candidate matches. Although name-based similarity and co-occurrence
are useful indicators to identify relations between object types and attributes, there
is no guarantee that the candidate matches capture proper identifiers. Therefore,
we next validate each candidate match (ot, d) 2 �candidate by determining if each
unique value of d is associated with a specific instance of ot, and vice versa.

This validation task is complex, though, given that multiple events in a case can
relate to the same object instance (e.g., creating and updating an order) or multiple
instances of the same object type (e.g., shipping multiple packages for one order),
and that, due to duplication issues, the same event can essentially appear in two
cases (cf. e9 and e10). For an object type ot, we deal with these issues by aiming
to establish a set of events E

0
L
(ot) that should each relate to a different instance

of ot. Given EL(ot) ✓ EL as the events related to ot (i.e., that have ot in their
objects attribute after Step 1), we obtain E

0
L
(ot) by avoiding duplicate events and

by selecting only a single event per case. Our approach avoids duplicates by only
selecting events from EL(ot) that have a unique combination of an activity label,
timestamp, and event attributes (aside from their CaseID and event ID, if available).
In this manner, we detect e9 and e10 as duplicates. Given the identified duplicates,
we select a single event per case related to ot, in a manner that maximizes the
size of E0

L
(ot). For instance, given EL(package) = {e4, e9, e10}, we select e10,

because e4 and e9 stem from the same case, and obtain E
0
L
(package) = {e4, e10}.

Finally, if the attribute values of d are unique for the events in E
0
L
(ot), we

consider d as a valid identifier of ot and add (ot, d) to �. For instance, we consider
(package, PackageID) a valid match, given that the two events in E

0(package) have
unique values for the attribute, p1 and p2. If there are multiple valid candidates for
the same object type, we match the type to the attribute with the largest number of
unique values and discard the other candidates.
Object-instance creation. For all matches (ot, d) 2 �, our approach creates an
object instance o with its type ot for each unique value of d, i.e., its identifier oi,
and adds these instances to the object maps of the events that refer to this instance.
For example, we add package p1 to event e4 and package p2 to events e9 and e10.

6.2.3 Object-Instance Discovery

Next, our approach sets out to discover instances for those object types for which
no explicit identifier attribute was found in the previous step, such as the item
type in the running example. For this, we try to find activities that indicate the
instantiation of objects, either based on their activity labels or based on the life-
cycle of an object.
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Instance discovery based on creation actions. First, the approach identifies ac-
tivities whose meaning hints at the instantiation of an object, such as Create order.
To this end, we again use the action classification framework of the MIT Process
Handbook [122]. It defines a set of creation actions (see Table 6.4) describing the
creation of some output.

Table 6.4: Creation actions [122] used by object-instance discovery.

build compute construct copy create
design develop document duplicate generate
make manufacture perform produce record

Given an event, we check if any of its actions, extracted in the first step, cor-
responds to an action in this set. If so, the occurrence of this event implies the
instantiation of a new object. For instance, we recognize that events e1 and e5,
corresponding to the Create order activity label, result in two new orders.

Although we here identify creation actions based on the MIT Process Hand-
book, our work is independent of this specific resource. It can be replaced
or enhanced with alternatives, such as the build verbs from the framework by
Levin [115], multilingual resources, e.g., ConceptNet [168], or a self-defined set.
Instance discovery based on object life-cycles. Although creation actions are
a reliable indicator for the creation of new objects, they are not always available
for an object type. Therefore, our approach next analyzes the life-cycles of object
types in terms of the applied activities per case, which is illustrated in Figure 6.3.

⟨Receive request, Update request, Complete request⟩ 

Indicator activity: “Receive request”

 life cycle 1
life cycle 2 ⟨Receive request, Complete request, Receive request, Complete request⟩ 

Figure 6.3: Recognizing activities that indicate new object instances.

For an object type ot, we aim to identify an indicator activity, which corre-
sponds to a new object instance. We look for such an indicator by checking if there
are any activities related to ot that occur for every case of this type. For example,
assuming only the two depicted cases relate to requests in the process at hand, both
Receive request and Complete request are candidate activities, since they occur in
both life-cycles. In case of such a tie, we select the activity that most commonly
occurs first among the candidates—Receive request in the example—as the indica-
tor activity that we use to identify new object instances. Therefore, we recognize
that the cases in Figure 6.3 relate to three distinct request objects: one in the first
life-cycle and two in the second.
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Object-instance creation. For each event that indicates a new object instance,
based on a creation action or indicator activity, our approach establishes an object
instance, for which we generate a unique identifier oi, and add it to the event’s
object map. Duplicate events, as identified in Step 2, form an exception here.
Since they correspond to the creation of the same object instance, which is why we
assign the same instance to them. Note that we discard all object types for which
neither Step 2 nor Step 3 identified any instances, by removing the type from OT

as well as from any event’s object map.

6.2.4 Property-to-Type Assignment

In this step, our approach tries to associate properties to object types, which are at-
tributes that capture information about an object instance associated with an event,
rather than relate to the event itself. For instance, although event e3 (Pick item) has
a Weight attribute with a value of 70.8, it is clear that this refers to the weight of
the item, not of the event. Therefore, in this step we aim to establish a mapping
between a log’s attributes DL and the object types in OT .

To establish this mapping, we first select all attributes that were not recognized
as object identifiers in Step 2. Then, we consider an attribute d to be a property of
an object type ot if (1) events related to ot have a value for d and (2) all events
related to the same object instance have the same value for d. The former ensures
co-occurrence, ascertaining that d indeed relates to ot , whereas the latter ensures
that object properties are immutable per object instance, in line with their definition
in the OCEL format [83]. In this manner, we identify that Weight is an attribute
of both the item and package types, whereas attributes such as a timestamp or
employee are not identified as properties, because they change across the events
related to the same object instance.

Finally, we avoid assigning an attribute d as a property to multiple object types
if the attribute name indicates a clear relation to one of the types. For example, we
avoid assigning an item_category attribute to the package type, given that this
property clearly relates to items, irrespective of the co-occurrence of the attribute
and packages.

6.2.5 Instance-to-Event Assignment

Finally, our approach sets out to complete the mapping between events and ob-
ject instances, which is necessary to account for missing instance-to-event and
instance-to-instance relations. The former involves events that correspond to a
particular object type, but for which no particular instance has yet been discovered.
For example, event e2 (Reorder item) is already recognized as relating to the item



Chapter 6. Object-Information Extraction 135

type, yet we still need to identify that this event refers to the same item that is later
handled by event e6 (Pick item). The latter refers to the inter-relations that can
exist among object instances, which need to be reflected in the object maps of the
corresponding events. For example, since package p1 relates to order o1, event e4,
which creates this package, should also be associated with that order. We identify
these missing relations as follows.
Finding missing instance-to-event relations. To find missing instance-to-event
relations, we first identify the events that are associated with an object type
(through Step 1), but for which no instance was discovered in Step 2 or 3. This
applies, e.g., to event e2 (Reorder item) and e7 (Update order). Then, given such
an event, we search within the case for other events that are associated with an ob-
ject instance of the same type and verify that the object’s properties match across
the events. For instance, since event e2 has a Weight of 12.5, we do not want to
associate it with the item of event e3, which has a weight of 70.8, but rather with
the same item as event e6, which also relates to an item weighing 12.5kg. Should
multiple object instances satisfy this requirement, we associate the event to the
instance of its nearest predecessor or successor.
Finding missing instance-to-instance relations. Our approach finds missing
instance-to-instance relations by (1) considering relations between instances and
cases, (2) identifying strict orders among object types, and (3) consolidating cross-
case relations.
Discovering case objects. We first exploit that, commonly, each case in a case-
centric event log corresponds to an instance of a particular object type, such as an
order in our running example. If such a case object can be identified, we know that
any other object instance handled in the same case also relates to that object, e.g.,
that the items and packages handled in the first case all relate to order o1 as well.

However, to recognize such inter-relations, we need to identify the case object
type, if any, for a particular log. Given that instances of this object type must, by
definition, be in a 1:1 relation with the cases in a log, we first discard all object
types for which this does not apply, i.e., which are affected by convergence and
divergence. Given an object type ot , we thus ensure that (1) no instance of ot is
associated with multiple cases, such as the package type in the example, and (2)
that no case is associated with multiple instances of ot , such as the item type.

If these checks yield a single case object type, otc, we add each object instance
of otc to the object map of all events e in their case, using the case’s id as the
instance’s identifier. For example, order is the only object type that passes the
checks, so that we assign orders o1 and o2 to all events in their respective cases.
Strict order between object types. We next identify instance-to-instance relations
by looking for the existence of strict orders between object types. Here, we con-
sider an object type ot1 to be in a strict order with type ot2 if every time an event
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related to ot2 occurs, an event related to ot1 (directly or indirectly) precedes it. In
this manner, we, for example, observe a strict order between items and packages in
the running example. Note that these object types can still occur in an interspersed
manner, as seen in case o1, where events related to items occur between packages.

Given a strict order between ot1 and ot2, we relate an instance o1 of type ot1 to
an instance o2 of ot2 if the life-cycle of o1 completes before the one of o2 begins,
i.e., if the last event related to o1 comes before the first event related to o2. For
example, we relate i1_1, which last occurs in e6, to p2, which first occurs in e9.
Consolidating cross-case relations. Last, we consolidate inter-relations across
cases by ensuring that duplicate events are associated with the same sets of ob-
ject instances. Given two duplicates, e and e

0, we achieve this by associating both
events with all object instances stemming from the union of their object maps. For
example, having recognized that events e9 and e10 are duplicates, we add all object
instances stemming from case o1 (associated with e9) to the object map of e10, and
vice versa. In this manner, we, e.g., recognize that package p2, which is created
by these duplicate events, deals with item i1_1 (stemming from case o1) as well as
item i2_1 (stemming from o2).

Having associated events with all object instances, our approach has uncovered the
necessary information to construct its output, an object-centric event log OL.

6.2.6 Output

Our approach returns an object-centric event log according to the OCEL for-
mat [83], which, at a high level, consists of an objects and an events map2.

The objects map relates object identifiers to instances, which are in turn as-
sociated with their type and property values. To populate this map, we add all
instance identifiers, either detected in Step 2 or generated in Step 3, to the map
and associate these instances with their properties identified in Step 4. Simulta-
neously, we also disassociate any object property from the events that they were
associated with in the case-centric event log, e.g., rather than having Weight as
an attribute of event e4, we represent it as a property of the respective package:
objects[p1] = {package, {Weight:70.8}}.

The events map associates identifiers with events, which are associated with
object instances through their objects attribute. It is important to recognize that
these events are no longer grouped per case. As a result, we can omit any duplicate
event from consideration, e.g., by removing event e10 and preserving e9. The map
is then populated with the remaining events, which are each associated with the

2Note that our conceptual approach is not bound to specific output format and can be extended to
consider, for instance, dynamic object properties as well [85].



Chapter 6. Object-Information Extraction 137

identifiers of their respective object instances, as assigned in Steps 2, 3, and 5, e.g.,
e1.objects = {order = {o1}, item = {i1_1, i1_2}.

Based on the established maps, we return the object-centric log, which can
directly be used by object-centric process mining techniques [10, 117].

6.3 Evaluation

We implemented our approach in Python3, using the PM4Py library [32] for event
log handling. Based on this implementation, we perform experiments to assess our
approach’s capability to rediscover object-centric logs that were transformed into
case-centric ones. Finally, we illustrate its practical value by showing that it can
resolve divergence and convergence in real-world scenarios.

6.3.1 Data Collection

For our evaluation experiments, we use a publicly available OCEL log of an order
handling process.4 It contains 22,367 events and 11,522 object instances of five
object types: 2,000 orders, 8,159 items, 20 products, 17 customers, and 1,325
packages. From this original OCEL log, we create three case-centric logs, using
the item, order, or package as the case notion. The resulting logs capture 1:n, n:1,
and n:m relationships between objects and include object types both in attribute
names and activity labels. Thus, all relation types are covered, meaning that all
strategies employed by our approach can be assessed.

6.3.2 Evaluation Setup

To assess the ability of our approach to correctly discover relevant object-centric
information in case-centric event logs, we conduct experiments using two settings:
(1) All attributes. In this setting, we use all information from the case-centric event
logs as input for the rediscovery task.
(2) Masked ID attributes. To assess the robustness of our approach, we also pur-
posefully reduce the information that is available by masking object ID attributes
in the case-centric event logs. This increases the dependency of our approach on
its instance discovery techniques employed in Step 3. Specifically, we mask each
ID attribute once for each of the three case-centric logs. Since the item and order
logs include identifiers for all four other types, and the package log captures only a

3
https://github.com/a-rebmann/object-information-extraction

4
http://ocel-standard.org/1.0/running-example.jsonocel.zip

https://github.com/a-rebmann/object-information-extraction
http://ocel-standard.org/1.0/running-example.jsonocel.zip
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customer identifier, we obtain nine masked logs, one with package, four with item,
and four with order as the case notion.

We measure the performance of our approach in terms of the well-known pre-
cision, recall, and F1-score metrics with respect to the original OCEL log per type
of element, i.e., object types, object instances, properties, and instance-to-event as-
signments. Using A to denote the set of elements uncovered by our approach and G

for the set of elements in the ground truth, i.e., the OCEL log, precision is the frac-
tion of elements uncovered by our approach that are actually correct (|A\G|/|A|),
recall is the fraction of elements in the OCEL log that were also correctly uncov-
ered by our approach (|A \ G|/|G|), and the F1-score is the harmonic mean of
precision and recall. Because transforming an object-centric into a case-centric log
can cause the loss of information about entire object types, we only include object
types in G that are actually contained in a particular case-centric log. To avoid
propagating false positives from object-type extraction (Step 1), we only include
elements in A that relate to object types actually present in the original OCEL log
for the other steps.

6.3.3 Evaluation Results

Table 6.5 reports on the results of our rediscovery experiments with the all at-
tributes setting, whereas Table 6.6 reports on the results with the masked ID at-
tribute setting; all numbers are micro-averaged over the logs. In the following, we
discuss the results for the different tasks that our approach addresses.

Table 6.5: Results of the experiments (all attributes) averaged over logs.

Element Count Precision Recall F1

Object Types 12 0.71 1.00 0.82
Object Instances 24k 1.00 1.00 1.00
Object Properties 10 0.37 1.00 0.54
Instance-to-Event 411k 0.94 1.00 0.97

Table 6.6: Results of the experiments (masked ID attributes) averaged over logs.

Element Count Precision Recall F1

Object Types 42 0.71 1.00 0.82
Object Instances 94k 1.00 1.00 1.00
Object Properties 34 0.39 1.00 0.56
Instance-to-Event 1,559k 0.93 0.97 0.95
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Object-type extraction. For the extraction of object types, our approach achieves
a recall of 1.00 and a precision of 0.71, yielding an F1-score of 0.82. We thus
accurately identify all object types from the original log. The lower precision is
caused by the extraction of two additional object types, payment reminder and
delivery. Although not contained in the original OCEL log, their extraction is
not problematic and can even enable additional insights, e.g., on the number of
payment reminders sent per order.
Object-instance identification. Our approach identifies object instances with per-
fect accuracy in both the regular and masked settings. This highlights its ability
to find and match ID attributes to object types (Step 2) and the usefulness of our
instance-discovery strategies (Step 3), which can identify instances for types with
masked ID attributes.
Property-to-type assignment. When assigning properties to object types, our ap-
proach achieves a perfect recall, but a rather low precision of 0.37. An in-depth
look reveals that these different assignments are not problematic, though. For ex-
ample, the attribute cost is assigned to both product and item, whereas in the
original it is only associated with products. However, given that also items have
costs, such assignments are redundant, but not wrong. Similarly, our approach
associates attributes such as price and weight with orders, items, packages, and
products. While these are realistic assignments, the attributes are not considered
as properties in the original OCEL log, but are associated with events. Thus, our
approach actually provides a more complete mapping.
Instance-to-event assignment. For instance-to-event assignment, we achieve an
excellent recall (0.998, rounded in Table 6.5) and a high precision (0.94) in the all-
attributes setting. Thus, our approach assigns relevant object instances to events
they relate to. An in-depth look into the constructed OCEL logs reveals that the
superfluous assignments of instances to events are mainly assignments of packages
to events that relate to items shipped in the respective package. Such assignments
are not considered in the original log, but can enable insights into the packaging
process in a post-hoc analysis.

When masking identifier attributes (Table 6.6), precision and recall decrease
slightly, which indicates that our approach occasionally makes incorrect assign-
ments. This is especially the case for 1:n relationships between object types and
the case notion. For example, in the order event log, where one order may contain
many different items, items with the same properties may be assigned incorrectly.
However, it is important to recognize that such assignments are simply not pos-
sible based on the information in the masked log, whether done by an automated
approach or manually.

Our evaluation experiments show that our approach is capable of accurately
uncovering object-centric information from artificially created case-centric event
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logs, using different settings and case notions. We also observe that our approach
even uncovers more information than originally captured in the OCEL log. This
includes additional object types, properties, and relations, which allow for deeper
insights into the process. The main difficulty for our approach was the recognition
of object inter-relations for objects in a 1:n relation with the case object, which
resulted in several incorrect instance-to-event assignments. Despite their promise,
the evaluation results must be considered with care, given that only one original
OCEL log was available as a basis.

6.3.4 Application Cases

To demonstrate the practical value of our approach, we show that it can resolve
convergence and divergence in well-known real-world event logs. The full re-
sults and OCEL logs obtained by our approach can be found in our repository (see
page 137). In the following, we use individual cases and events from these logs to
illustrate in detail how our approach mitigates divergence and convergence.
Divergence. We use the BPI17 application log [67] to show how our approach mit-
igates divergence issues. The log captures a loan application process, containing
1,202,267 events, 31,509 cases, and 26 distinct activities. Divergence is partic-
ularly frequent, because the log uses the application as the case notion and one
application can have multiple offers. This means that cases in the log often contain
multiple events that denote execution of the same activity for distinct offers (diver-
gence). Applying process discovery to the log leads to loop-backs, as visualized
in Figure 6.4. This shows the DFG discovered for one case of the log, which is
already quite complex.

When applying our approach to mitigate the divergence issue, we discover that
42,995 offers are handled in the 31,509 applications and that offers have several
properties, such as an offered amount and a monthly cost. For the particular case
in Figure 6.4, we find that four distinct offers are handled in this application, that
these all have different properties, and that the process is linear with respect to a
single offer, e.g., hCreate Offer, O Created, O Sent, O Canceledi. It is important
to stress that this information on the sub-case level is not readily available in the
case-centric log and has to be uncovered by identifying the distinct offers handled
in a single case. Our approach achieves this by extracting the offer type, finding
an identifier attribute for it, and assigning it, among others, the MonthlyCost and
OfferedAmount properties.
Convergence. To illustrate how our approach can mitigate convergence issues, we
chose the BPI19 event log [69], which captures data on the purchasing process
of a multinational company and contains 1,595,923 events across 251,734 cases



Chapter 6. Object-Information Extraction 141

Create Application
Create Offer

A Complete A Canceled
O Cancelled

O Created

O Sent

A Accepted

Figure 6.4: DFG of application 196483749 of the BPI17 log.

with 42 distinct activities. Each event relates to a single purchase order item and
multiple purchase order items can belong to the same purchasing document. Con-
sequently, events on the purchasing-document level are duplicated across cases
(convergence). For example, the duplication of “Vendor creates invoice” events
suggests the creation of invoices per purchase order item, whereas in reality in-
voices can cover multiple such items.

When applying our approach to mitigate convergence, we discover, among oth-
ers, 251,734 purchase order items, 76,349 purchasing documents, 86,868 invoices,
1,975 vendors, and 4 companies. The resulting OCEL log reveals the relationships
between object types, as shown in Figure 6.5: Purchasing documents consist of any
number of purchase order items, a vendor creates multiple invoices, and each in-
voice is associated with one purchasing document. Notably, in contrast to the input
log, events related to purchasing documents and invoices, such as Vendor creates
invoice or Document created, are not captured at the level of individual purchase
order items, but at the level of purchasing documents, thus eliminating duplicate
events. This demonstrates that our approach can reveal actual relationships among
objects and mitigate the convergence issue present in real-world logs.

1

1..*

0..*

11

1..*

Vendor Purchasing Document1 1..*

CompanyInvoice

Purchase Order Item1 1..*

Figure 6.5: UML model with object-type relations found in the BPI19 log.

These application cases demonstrate that our approach can mitigate divergence and
convergence in real-world event logs. Although, due to a lack of a ground truth,
the completeness of uncovered object-centric information cannot be quantified, the
results nevertheless show that our approach provides considerable practical value
by extending the analysis potential for event data of multi-object processes.
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6.4 Limitations

Our experiments reveal that our approach is capable of recovering object-centric
information from case-centric event logs and can effectively mitigate quality is-
sues related to case-centric event data. In its current form, our work has certain
limitations, though, that relate to the approach and the evaluation.

First, object types must at least be mentioned in the case-centric log for our
approach to extract them. However, once an object type is extracted, instances,
properties, and relations can be identified through the use of diverse strategies that
include and go beyond the semantic analysis of events. Second, to accurately han-
dle n:1 and m:n relations with respect to the case notion, our approach relies on
duplicate detection, which requires (non-duplicate) events to have discriminative
timestamps or attribute values. Finally, because the assignment of objects to events
often depends on domain knowledge about inter-object relations, our approach can
currently not handle all scenarios. For example, it is not clear without domain
knowledge that items should relate to packages but not vice versa.

Despite their promise, the quantitative evaluation results must be considered
with care, given that only one suitable object-centric log was available as a basis.
Moreover, while we obtain the case-centric event logs for this evaluation by trans-
forming an object-centric log, in reality such logs are typically established through
a dedicated extraction procedure and preprocessing (cf. Section 1.1). Due to a
lack of such data with a corresponding gold standard, we cannot assess our work
in such scenarios in a quantitative manner. As for the qualitative evaluation, the
lack of a gold standard and limited domain knowledge does not allow us to claim
completeness of uncovered object-centric information either.

6.5 Related Work

Our work primarily relates to research on object-centric representations of event
data and discovering object-centric information from event logs.

6.5.1 Object-Centric Representations of Event Data

After storing event data in case-centric formats like XES [88] for many years, the
first data format proposed for object-centric event logs was the eXtensible Object-
centric Event Log (XOC) format [116]. It does not require a case notion and there-
fore avoids forcing multi-dimensional data into cases. More recently, researchers
introduced the OCEL format [83], which allows for more efficient storage and
processing than its predecessor. Beyond log formats, another proposed option for
storing multi-dimensional object-centric event data are event graphs, which enable
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the analysis of behavior of different objects handled in a process [77]. For our
approach, we adopt OCEL as the output format, which, among others, enables the
subsequent application of techniques for discovering object-centric process mod-
els, such as object-centric behavioral constraint models [117] and object-centric
Petri nets [10].

6.5.2 Discovering Object-Centric Information from Event Logs

Approaches for the discovery of object types and their behavioral relations from
event data usually require relational data or rich logs that cover multiple perspec-
tives of a process as input. This includes approaches for the discovery of artifact
(i.e., object) life-cycles from raw logs of artifact-centric systems [74, 145] as well
as the discovery of behavioral dependencies between object types based on such
logs [144] or based on data extracted from ERP systems [120]. Compared to these
approaches, our approach takes case-centric event logs, where no explicit rela-
tions between objects are given, and transforms them into object-centric logs. The
approach by Bano et al. [27] uses case-centric event logs as input data as well.
However, their goal is to discover UML models from activity labels and attribute
names to provide analysts with domain-specific context information not to trans-
form event data in order to enable object-centric process analysis.

6.6 Summary

In this chapter, we proposed an approach to uncover object-centric data from case-
centric event logs to automatically transform them into object-centric logs. To this
end, our approach combines the semantic analysis of textual event attributes with
data profiling and control-flow-based relation-extraction techniques. It extracts ob-
ject types, discovers object instances and their properties, and assigns these in-
stances to events they relate to.

We demonstrated our approach’s efficacy in an evaluation by showing that it
is able to rediscover an object-centric log from case-centric event logs that were
generated from it. Furthermore, we showed that it can mitigate the well-known
convergence and divergence issues in real-world event logs. In this manner, the
approach can alleviate the problem of obtaining incorrect results as a consequence
of capturing event data in an unsuitable log format. Furthermore, it enables object-
centric process mining based on existing case-centric event logs.



Chapter 7

Best-Practice-Violation Detection
in Event Logs

Detecting undesired process behavior in event logs can reveal data quality issues,
compliance problems, and process inefficiencies. In process mining settings, this
is primarily done using conformance-checking techniques [41], which require ded-
icated normative models that capture what desired behavior entails in a given pro-
cess. Here, the normative process model is compared with the traces of an event log
in order to reveal any deviations that might have occurred. While such techniques
can provide valuable insights for organizations, an inherent problem is that such
dedicated process models are rarely available to them and require time-consuming
and costly efforts in their creation [72]. Fortunately, many process types, such
as procurement and invoicing processes, are commonly organized in similar ways
across organizations or (at least) involve similar steps. As a consequence, reference
process models have been recognized as an important means to provide depic-
tions of proven ways to run these processes, serving as best-practice templates for
process implementations in various domains [80, 86]. Furthermore, they contain
knowledge about general behavioral relations that have to hold in these processes,
e.g., that an invoice must be checked before it is approved. The availability of
reference process models can, thus, alleviate the need for manually creating a cus-
tomized normative model, as they provide a basis to check for undesired behavior.

However, finding a single reference model for a real-world event log is im-
practical because the individual needs of organizations can vary. This means that a
real-world process may be subject to additional requirements than those captured
in a reference model and that some parts of a reference model may not be appli-
cable in a particular situation. Additionally, event logs may cover the behavior of
multiple reference models, e.g., related to both procurement and invoicing. There-
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fore, in order to leverage the best practices captured in these models for detecting
undesired behavior, a more flexible alignment between them and an event log must
be established, involving multiple reference models at once.

In this chapter, we tackle this problem by proposing an approach that mines
declarative constraints from a reference model collection, automatically selects
constraints for a given event log, and then checks for constraint violations. The
constraints we extract may stem from thousands of reference process models that
capture best practices of a plethora of domains, depending on the model collec-
tion used as input. Here, the main challenge is that we need to determine which
constraints are actually relevant and interesting—or even applicable—for a given
event log. We address this challenge through established techniques from declara-
tive process mining as well as NLP methods to refine and measure the relevance of
mined constraints for a given event log. We implement our approach and demon-
strate its capability to detect best-practice violations through an evaluation based
on real-world process model collections.

This chapter is based on a manuscript titled “Mining Constraints from Refer-
ence Process Models for Detecting Best-Practice Violations in Event Logs” [153]
by Adrian Rebmann, Timotheus Kampik, Carl Corea, and Han van der Aa, which
is under review at the time of writing.

The remainder of the chapter is structured as follows. Section 7.1 illustrates
the potential and problem of mining constraints from reference process models
to check for best-practice violations. Section 7.2 presents our approach for min-
ing and selecting relevant constraints and checking for violations using these. We
evaluate in Section 7.3 in a quantitative manner and apply it in application cases
using real-world event logs. Section 7.4 reflects on limitations of our work. Finally,
Section 7.5 discusses related work and Section 7.6 provides a summary.

7.1 Problem Illustration

This section illustrates the potential and problem of detecting best-practice viola-
tions using declarative constraints that are mined from reference process models.
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Figure 7.1: Exemplary reference process model in BPMN.
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Detecting best-practice violations using a reference process model. Consider
the process model in Figure 7.1, which shows an exemplary reference process
model of a procurement process for materials. From this model, we can extract
a variety of behavioral relations, such as: A purchase order (PO) must be created
before it is checked and, also, checked before it is approved; a PO must not be both
approved and rejected; a PO must be approved before goods are received; and no
invoice should be entered when a PO is rejected.

Now, consider a trace � that stems from an event log of a procure-to-pay pro-
cess for consumer products:
� = hcreate order, receive goods, enter invoice, check amount, make paymenti
In this trace, an order is first created, before goods are received, then an invoice is
created of which the amount is checked and, finally, a payment is made. We can
use the relations extracted from the reference process model to identify behaviors
in � that correspond to best-practice violations. For instance, goods are received
in � but an order was neither checked nor approved beforehand and an invoice
is entered before goods were received. While the latter may depend on the spe-
cific organizational context, e.g., an arrangement with a supplier would allow for
entering an invoice before goods are delivered, the former is clearly undesirable,
regardless of any specific arrangements.

The example thus shows that the reference model can be used to gain insights
on best-practice violations of the given trace, despite not stemming from exactly
the same process. In fact, some of the behavioral relations captured in reference
models can be broadly applicable. For example, the fact something cannot be
both approved and rejected applies to virtually any process in which such approval
decisions need to be made.
Combining constraints from multiple reference process models. An important
aspect to recognize, though, is that, besides containing activities that relate to ma-
terials procurement, trace � also contains activities that go beyond the scope of
the reference process model shown in Figure 7.1. In particular, � also contains
activities related to checking the invoice amount and making a payment, which
would sooner be covered by a reference model relating to an invoicing process.
Therefore, relying solely on a single reference model may result in missing rele-
vant best-practice violations, which means that it is necessary to jointly check for
adherence to behavior captured in multiple reference models.

This can be achieved by turning the behavioral relations captured by impera-
tive process models (such as Figure 7.1) into declarative constraints. This has two
main benefits: (1) it allows to consider behavioral relations from multiple reference
models at the same time and (2) it allows to omit parts of the imperative process
model, that are not relevant to the trace at hand, from consideration. Specifically, in
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the presence of tens of thousands of constraints, we need to avoid that constraints
that are irrelevant for an event log cause the detection of violations, i.e., false pos-
itives. For instance, a constraint such as “process goods receipt should precede
enter invoice” (extracted from a procurement process model) should not be applied
to a sales process event log, which does not involve goods receipt objects.

However, expecting users to manually select from tens of thousands of con-
straints is unfeasible. To reduce manual effort, we need to automatically preselect
constraints based on the specific context, i.e., the given event log. To this end, our
approach mines constraints from a large collection of reference process models and
only selects those constraints that are relevant to the particular situation at hand.

7.2 Detection Approach

This section presents our proposed approach for detecting best-practice violations
in event logs based on constraints mined from reference process models. As illus-
trated in Figure 7.2, it consists of three main stages.
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Figure 7.2: Overview of the detection approach.
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The Constraint Mining stage takes as input a collection of reference process
models M (according to Definition 7), from which it extracts a set CM of best-
practice constraints. This first stage is independent of a specific event log and,
therefore, only needs to be performed once for a given collection M. Then, given
an event log L, the Constraint Selection stage identifies which constraints from the
collection CM are applicable to log L and fits these constraints to the log, resulting
in a set of selected, fitted constraints CS

L
. This stage contains multiple sub-stages,

including constraint identification and checking whether the recommended set of
constraints is consistent. Note that this stage can be executed in a fully automated
manner, although users can also choose to manually refine the set CS

L
. Finally, the

Conformance Checking stage compares the traces in log L against the constraints
in C

S

L
. This results in a map of detected best-practice violations VL that assigns

each trace � in L a set of best-practices that it violates. Furthermore, it provides a
summary of violating traces per constraint type. In the following, we describe the
individual stages of our approach in detail.

7.2.1 Constraint Mining

In the constraint mining stage, we establish a constraint collection CM that rep-
resents best practices found in a reference process model collection M. In the
remainder of this section, we first describe the constraint types and templates that
our approach covers, before discussing the steps performed to mine the constraints:
Constraint Extraction and Collection Refinement.

Coverage

Our approach covers four types of constraints, corresponding to constraints that
capture behavioral relations that should hold between activities (i.e., activity-level
constraints), across object types (i.e., inter-object constraints), within object types
(i.e., intra-object constraints), and ones that restrict the organizational roles that
can perform particular process steps (i.e., role constraints). Examples of each con-
straint type are shown in Table 7.1. To represent the specific constraints, we use
different sets of DECLARE templates per constraint type, as shown in Table 7.2.
Activity-level constraints. Activity-level constraints capture best practices about
the behavioral relations that should hold between pairs of activities in a trace. In or-
der to represent different activity inter-relations, we use DECLARE templates that
capture that two activities should occur together (RESPONDEDEXISTENCE, CO-
EXISTENCE) or in a certain order (SUCCESSION, ALTERNATESUCCESSION), an
activity causes (RESPONSE, ALTERNATERESPONSE) or requires (PRECEDENCE,
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Table 7.1: Constraint types covered by our approach with examples.

Constraint type Exemplary constraint Description

Activity-level PRECEDENCE(Approve PO,
Process GR)

Approve PO should happen be-
fore Process GR.

NOTCOEXISTENCE(Reject PO,
Process GR)

Reject PO and Process GR
should not co-occur.

SUCCESSION(Process GR, En-
ter Invoice)

Process GR happens if (and only
if) Enter Invoice happens later.

Inter-object PRECEDENCE(purchase order,
goods receipt)

A purchase order should appear
before a goods receipt.

RESPONDEDEXISTENCE(invoice,
goods receipt)

If there is an invoice there
should be a goods receipt as
well.

Intra-object PRECEDENCE(create, approve)
| purchase order

For each purchase order, create
should precede approve.

ATLEASTONE(create) | pur-
chase order

For a purchase order, create
should always occur.

Role ABSENCE(Enter invoice) if
role 6= accounts payable

Enter Invoice should be per-
formed by accounts payable.

ALTERNATEPRECEDENCE) another activity, or two activities should not occur to-
gether (NOTCOEXISTENCE).

For instance, an activity-level constraint may capture that an approve purchase
order activity must precede a process goods receipt activity, which is captured by
a PRECEDENCE(approve purchase order, process goods receipt) constraint. We do
not cover constraints that require activities to immediately occur after each other
(e.g., CHAINRESPONSE) which, we assume, is too restrictive for best practices.
Each such activity-level constraint is defined as follows:

Definition 14 (Activity-level constraint) An activity-level constraint cM 2 CM
is a tuple cM = (type, templ, a1, a2, support), with cM.type = activity,
cM.templ the constraint’s DECLARE template, cM.a1 and cM.a2 the activities,
and cM.support the constraint’s support.

Note that the constraints of all types we cover have a support that indicates
how often a constraint was extracted from the model collection M and is set when
refining the collection of mined constraints CM.
Inter-object constraints. Inter-object constraints capture relations that should
hold between pairs of object types occurring in a process, e.g., that a trace can
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Table 7.2: Templates used per constraint type (cf. Table 2.4 for their definition).

Constraint types Templates

Activity, Inter-object RESPONDEDEXISTENCE, PRECEDENCE, ALTER-
NATEPRECEDENCE, RESPONSE, ALTERNATERESPONSE,
SUCCESSION, ALTERNATESUCCESSION, COEXISTENCE,
NOTCOEXISTENCE

Intra-object ATLEASTONE, ABSENCE, EXACTLYONE, RESPONDEDEX-
ISTENCE, PRECEDENCE, ALTERNATEPRECEDENCE, RE-
SPONSE, ALTERNATERESPONSE, SUCCESSION, ALTER-
NATESUCCESSION, COEXISTENCE, NOTCOEXISTENCE

Role ABSENCE

only contain (activities related to) an invoice if there is also at least one activity re-
lated to a delivery, i.e., RESPONDEDEXISTENCE(invoice, delivery). As shown in
Table 7.2, we use the same DECLARE templates to express inter-object constraints
as we use for activity-level constraints, with the difference that the constraint pa-
rameters here correspond to objects, rather than activities. Consequently, each
inter-object constraint is defined as follows:

Definition 15 (Inter-object constraint) An inter-object constraint cM 2 CM
is a tuple cM = (type, templ, ot1, ot2, support), with cM.type = interobj,
cM.templ the constraint’s DECLARE template, cM.ot1 and cM.ot2 its object
types, and cM.support its support.

Intra-object constraints. Intra-object constraints capture relations regarding the
actions, i.e., state changes, that are applied to an object type, e.g., that an order
must be checked before it is approved, i.e., PRECEDENCE(check, approve) | or-
der. We use the vertical bar (|) to denote the constraint’s object type, i.e., that
both actions are applied to an order. Although it is also possible to represent such
constraints at the activity level (e.g., using PRECEDENCE(check order, approve or-
der)), explicitly capturing them for a object offers greater flexibility in generalizing
across different object types. For instance, in this manner, constraints like PRECE-
DENCE(check, approve) can be more effectively extended to other contexts, such
as sales orders. This is advantageous during the fitting of constraints for a specific
event log, as we show in the Constraint Selection stage (Section 7.2.2).

In addition to capturing pair-wise behavioral relations between actions, we also
consider situations where specific actions must or must not be performed for certain
types of objects. These are captured through the unary ATLEASTONE, ABSENCE,
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and EXACTLYONE templates, which can, e.g., capture that, if a trace contains an
activity related to a purchase order item, that trace must contain an activity that
creates that item, i.e., EXACTLYONE(create) | purchase order item.

Based on this, each intra-object constraint is defined as follows:

Definition 16 (Intra-object constraint) An intra-object constraint cM 2 CM is
a tuple cM = (type, templ, object, arity, n1, n2, support), with cM.type =
intraobj, cM.templ the constraint’s DECLARE template, cM.object its object,
and cM.arity 2 {unary, binary} its arity indicating whether cM is a unary
or binary constraint, according to cM.templ. Moreover, cM.n1 corresponds
to the constraint’s first action, cM.n2 represents its second action (set to ? if
cM.arity = unary), and cM.support pertains to its support.

Role constraints. Finally, role constraints focus on the resource perspective, re-
stricting the execution of activities to specific roles, i.e., who in an organization can
perform a given process step. These constraints can be expressed using the AB-
SENCE template with an activation condition. For instance, a role constraint may
capture that an approve order activity must be performed by an employee with a
manager role, written as ABSENCE(approve order) | role 6= manager, with role

6= manager as the activation condition. Each role constraint is defined as follows:

Definition 17 (Role constraint) A role constraint cM 2 CM is a tuple cM =
(type, templ, a, r, support), with cM.type = role, cM.templ =ABSENCE, cM.a

the constraint’s activity, cM.r the role in its activation condition, and cM.support

its support.

Constraint Extraction

The goal of constraint extraction is to derive a set of constraints CM from each
process model M 2 M. Using the constraint types and corresponding templates
introduced in the previous section, we base the extraction of constraints on the
idea of declarative constraint mining from event logs [59], where each template is
instantiated with all possible parameters (or parameter combinations) before they
are checked against the traces for satisfaction. We apply the same idea to the set of
execution sequences allowed by a model, rather than to traces from an event log,
with the extraction procedure depending on the constraint type:
Activity-level constraints. We extract activity-level constraints from a model
M = (A,F,R, performedBy) by first instantiating potential constraints using each
template from Table 7.2 and each pair-wise combination of activities in A. Then
we check which of these potential constraints is satisfied by all and activated by at
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least one of the execution sequences in F . For instance, for the RESPONSE tem-
plate, we check for each pair (a1,a2) 2 A ⇥ A if G(a1 ! F a2) (see Table 2.4
for the LTL formulas of DECLARE templates) holds for all ⇡ 2 F and—if so—set
cM.type = activity, cM.templ = RESPONSE, cM.a1 = a1, and cM.a2 = a2

and add cM to CM .
Inter-object constraints. We extract inter-object constraints by obtaining a set of
allowed object sequences Fobj and then checking which constraints hold between
pairs of objects according to Fobj.

To obtain Fobj , we project each (activity) execution sequence ⇡ 2 F to an
object sequence ⇡obj, which we achieve using our semantic annotation approach
(cf. Chapter 3) that allows us to obtain the object types (if any) from each activity in
⇡. For instance, ⇡ = hcreate order, check order, approve order, ship goodsi, yields
⇡obj = horder, order, order, goodsi. Activities that do not relate to any object type
are not considered in the projected trace. While uncommon, if an activity relates
to multiple object types, these are considered as a single object type, assuming that
in a reference process model, these are then consistently referenced together.

Afterwards, we instantiate constraint templates between possible pairs of ob-
jects (ot1, ot2) occurring in Fobj and check them against the sequences in Fobj, in
the same manner as done for activity-level constraints. For instance, for the bi-
nary RESPONDEDEXISTENCE template, we check for each combination (ot1,ot2)
with ot1, ot2 2 OT if F ot1 ! F o2 holds for all ⇡obj 2 Fobj and—if so—set
cM.type = interobj, cM.templ = RESPONDEDEXISTENCE, cM.ot1 = ot1, and
cM.ot2 = ot2 and add cM to CM .
Intra-object constraints. We extract intra-object constraints for each object type
that is contained in the activities in A based on the actions that are applied to them.

To obtain the necessary information on object types and actions, we, there-
fore, again use the semantic-annotation approach (Chapter 3), as done for inter-
object constraints. This time, we turn the output of that approach into a func-
tion getObjectActionPairs, which, given an activity a, returns a set of object-
type-action pairs obtained from a, where each pair is given as a tuple (ot, n),
indicating that action n is applied to object ot.1 E.g., getObjectActionPairs
(approve purchase order) = {(purchase order, approve)}. By applying the func-
tion to each activity a 2 A, we obtain a set OT of distinct object types that appear
in the activities in A and a set Not of actions per object type ot 2 OT , which we
use to create intra-object sequences.

As shown in Algorithm 5, we create a set of intra-object action sequences Fot

for each object type ot 2 OT as follows: For each ⇡ 2 F , we check for each
1Note that, for clarity, we here focus on situations where each activity yields a single object-

action pair, although our approach can also handle activities with multiple pairs, e.g., receive and
check document.
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activity ai in ⇡ if ai refers to ot and if so only retain the action applied to ot. For
instance, for ⇡ = hcreate order, check order, approve order, ship goodsi, we get
⇡order = hcreate, check, approvei.

Algorithm 5 Creating intra-object sequence sets.
Input F : set of finite execution sequences; OT : set of object types
Output res: set containing a set of action sequences per object type
1: res {Fot  ; | ot 2 OT} . Initialize an empty set of action sequences

for each object type

2: for each object type ot 2 OT do
3: for each ⇡ 2 F do
4: ⇡ot hi

5: for each activity ai in ⇡ = ha1, . . . , ani do
6: (otai , nai) getObjectActionPairs(ai)
7: if ot = otai then
8: ⇡ot  ⇡ot + hnaii . Retain the action applied to ot and

append to current sequence

9: Fot  Fot [ {⇡ot}

10: return res

Based on an intra-object sequence set Fot, we can instantiate DECLARE tem-
plates with actions in Not in the same manner as done with activities for activity-
level constraints. For instance, for PRECEDENCE, we check for each combination
(n1, n2) 2 Not⇥Not if G(n2 !O n1)(cf. Table 2.4) holds for all ⇡o 2 Fot and—
if so—set cM.type = intraobj, cM.templ = PRECEDENCE, cM.arity = binary,
cM.n1 = n1, cM.n2 = n2, and cM.object = order and add cM to CM .
Role constraints. Finally, role constraints can be extracted independently of exe-
cution sequences from the mapping performedBy of a model M , which maps an
activity to the role that is supposed to perform it (if any). These can thus be created
by instantiating the ABSENCE template with a corresponding activation condition
setting cM.type = role, cM.templ = ABSENCE, cM.a = a, and cM.q = q and
adding cM to CM for each activity a 2 A that performedBy maps to a role r 2 R.

Through this procedure, we obtain a set of constraints CM per model M 2 M.
Having a large collection of models and a considerable number of constraints ex-
tracted per model, we next set out to refine this collection of constraint sets.

Collection Refinement

Having extracted independent constraint sets {CM | M 2M} per reference pro-
cess model, we next establish a single refined constraint collection CM aggregating
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the individual constraint sets. To this end, we standardize equal (or very similar)
constraints and omit redundant constraints that are subsumed by stronger ones.
Standardizing constraints. First, we standardize the actions of the constraints
that we extracted to obtain a single, more concise set of constraints CM. For in-
stance, we avoid that PRECEDENCE(create invoice, approve invoice) and PRECE-
DENCE(invoice created, invoice approved), are treated as distinct constraints.
Therefore, we standardize the activities of activity-level and action(s) of intra-
object constraints by turning past-tense actions, like created and approved, into
the present-tense, i.e., create and approve. We also update the word ordering of
activity-level constraints accordingly, e.g., invoice created becomes create invoice.

After this standardization step, we can then aggregate the constraints from dif-
ferent models, setting a constraint’s support to reflect from how many process mod-
els in M the particular constraint was extracted.
Removing redundant constraints. Finally, we remove weaker constraints that are
encompassed by stronger ones, because these weaker ones are then redundant. To
this end, we make use of the subsumption relation between DECLARE constraints,
following the approach by Di Ciccio et al. [57]. For instance, RESPONSE(a, b),
which encompasses RESPONDEDEXISTENCE(a, b) ("every RESPONSE is also a
RESPONDEDEXISTENCE"). The subsumption relations between templates em-
ployed by our approach are shown in Figure 7.3, where the subsumption relation
is depicted as a line starting from the subsumed template with an empty triangu-
lar arrow and ending in the subsuming one. For each c

w

M 2 CM, we check if a
stronger (subsuming) constraint csM exists that was observed the same number of
times, i.e., cwM.support = c

s

M.support, and—if so—remove c
w

M from CM.

RespondedExistence(b,a)
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RespondedExistence(a,b) CoExistence(a,b)
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Figure 7.3: Subsumption relations between constraint templates employed by our
approach (adapted from [57]).

Output of the mining stage. The output of this stage is a refined collection of
mined constraints CM, which together with an event log L serves as the input of
the next stage, the Constraint Selection stage.
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7.2.2 Constraint Selection

CM is based on the the entire reference model collection and therefore might con-
tain various irrelevant constraints for a concrete event log L. The Constraint Selec-
tion stage therefore aims to select those constraints from CM that are most relevant
for the detection of best-practice violations in a given event log L. This involves
three steps, as illustrated in Figure 7.4. In the first step, we “fit" the constraints for
L, which yields a collection of fitted constraints CL (we will explain what is meant
by “fitting" below). Out of these, we recommend the most relevant ones CR

L
, tak-

ing into account selected configuration parameters and additional user preferences.
Finally, we check the set of selected constraints CR

L
for consistency to ensure they

are without any contradictions, which yields a consistent set of selected, fitted con-
straints CS

L
. In the following, we explain these steps in detail.

Constraint 
Fitting

Consistency 
CheckingConstraint 

Collection Cx

Event Log L CL Selected 
Constraints CL

Constraint 
Recommendation

CL
R

S

Figure 7.4: Overview of the constraint selection stage.

Constraint Fitting

In this step, our approach tries to fit the mined constraints in CM to the contents of
the given event log L, by relating the activities, objects, actions, and roles used in
mined constraints (derived from models in M), to counterparts found in the event
log L, yielding a set of fitted constraints CL. To do this, our approach looks for se-
mantically similar counterparts, allowing it to, e.g., relate a PRECEDENCE(receive
invoice, pay invoice) constraint to receive bill and make payment activities found
in a log. Each such fitted constraint is defined as follows:

Definition 18 (Fitted constraint) Given a mined constraint cM and an event log
L, a fitted constraint cL is a tuple cL = (cM, type, templ, [components],
support, sim, relevance), with cL’s type, templ, and support being equal to
those of cM. cL.[components] is a shorthand to refer to the list of cL’s type-
specific components (e.g., cL.[components] = cL.a1, cL.a2 for activity-level con-
straints) that are each linked to components (i.e., activities, actions, objects, or
roles) found in L. Finally, cL.sim is a map capturing the semantic similarity
between cM’s and cL’s components, and cL.relevance is a score indicating the
relevance of cL for the event log L.

Creating fitted constraints for L involves matching constraint components to their
event log counterparts and replacing these components with their counterparts, as
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shown by Algorithm 6. The algorithm takes as input the constraint collection CM
and the event log L, using a type-specific fitting procedure for each cM 2 CM.

Algorithm 6 Constraint fitting.
Input CM: set of mined constraints; L: event log
Output CL: set of fitted constraints
1: CL  ;

2: for cM 2 CM do
3: if cM.type is activity then
4: for (a1L , a2L) 2 AL ⇥AL do
5: if match(cM.a1, a1L) ^ match(cM.a2, a2L) ^ a1L 6= a2L then
6: FitActivityConstraint(cM, a1L , a2L )
7: if cM.type is interobj then
8: for (ot1L , ot2L) 2 OTL ⇥OTL do
9: if match(cM.ot1, ot1L) ^ match(cM.ot2, ot2L) ^ ot1L 6= ot2L then

10: FitInterObjectConstraint(cM, ot1L , ot2L )
11: if cM.type is intraobj then
12: for otL 2 OTL do
13: if match(cM.object, otL) then
14: if cM.arity = unary then
15: for nL 2 NoL do
16: if syn(cM.n1, nL) then
17: FitIntraObjectConstraint(cM, nL, ?)
18: if cM.arity = binary then
19: for (n1L , n2L) 2 NotL ⇥NotL do
20: if syn(cM.n1, n1L) ^ syn(cM.n2, n2L) ^ n1L 6= n2L then
21: FitIntraObjectConstraint(cM, n1L , n2L )
22: if cM.type is role then
23: for aL 2 AL do
24: if match(cM.a, aL) then
25: for rL 2 RL do
26: if match(cM.r, rL) then
27: FitRoleConstraint(cM, aL, rL)
28: return CL

Semantic similarity computation. A key part of Algorithm 6 is the match(xM,
xL) function, which is used to decide whether a constraint component xM is se-
mantically similar to an event log component xL. It is instantiated using a similarity
measure sim and a threshold ✏, i.e., match(xM, xL):= sim(xM, xL) > ✏. As a
similarity measure, we employ the cosine similarity based on embedding vectors
for xM and xL, which we obtain from a pre-trained sentence transformer [161].
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These transformers are specifically designed to capture semantically meaningful
representations on the level of sentences rather than individual words and can thus
be applied on activities or object types that may consist of multiple words. We set
✏ to 0.5 by default, ensuring that all fitted constraints are reasonably similar to the
components of L, which avoids having to filter out a lot of constraints from C

S

L
in

the next step. Note that, in order to make match more or less restrictive, it is possi-
ble to use different values for ✏ depending on the type of component we aim to find
matches for, i.e., setting different thresholds for activities, objects, and actions.
Activity-level constraints. For an activity-level constraint cM, we need to find
activities in L that correspond to the constraint’s activity components, cM.a1 and
cM.a2. Specifically, we create a fitted version of cM for any pair of distinct log
activities a1L and a2L for which both match(cM.a1, a1L) and match(cM.a2, a2L)
hold (lines 5–6).

It is important to note that this can result in multiple fitted constraints being
added to CL that stem from a single mined constraint cM. To illustrate this, con-
sider a mined constraint that specifies that requests must first be examined before
a decision can be made on them, i.e., PRECEDENCE(examine request, decide on
request). It is well-imaginable that a process like this actually uses different kinds
of examinations for different types of cases or situations, e.g., having perform ba-
sic examination and perform thorough examination. In such a scenario, the mined
constraint needs to be fitted twice, so that both types of examinations are covered,
yielding constraints capturing PRECEDENCE(perform simple examination, decide
on request) and PRECEDENCE(perform thorough examination, decide on request).
Inter-object constraints. To be able to fit an inter-object constraint cM, we
need to find two object types in L that match the object types of cM. To do
this, we use OTL to denote the set of object types in L, which is obtained us-
ing getObjectActionPairs (see Section 7.2.1), i.e., OTL = {ot | (ot, n) 2
{getObjectActionPairs(a) | a 2 AL}}. Then, the fitting procedure for inter-
object constraints is identical to the procedure for activity-level constraints, with
the exception that we match the constraint’s objects to objects in OTL (lines 9–10).
Intra-object constraints. For an intra-object constraint cM, we need to find both
a matching object type and one or two corresponding actions (depending on if cM
is a binary or unary constraint) in L. To this end, we first check for a matching
object type otL, in the same manner as done for inter-object constraints (line 13).
If found, we next check for matches between cM’s action(s) and those in the log
that are applied to otL, i.e., in the set NotL (see Section 7.2.1).

A distinction we make here is that we do not look for corresponding actions
based on semantic similarity (i.e., using match), but rather look for synonyms of
actions. We make this distinction because actions generally correspond to verbs,
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which is a specific class of words that is covered well by lexical resources, such
as WordNet [131], which provide curated lists of similar terms (e.g., synonyms).
Therefore, by checking for synonymous actions, we can use a restrictive, but highly
precise matching strategy for actions. Note that this synonym-based matching
strategy using syn can be straightforwardly replaced with match if desired.

For instance, consider a constraint cM corresponding to ATLEASTONE(check)
| order and an event log that relates to purchase order objects, including an ex-
amine purchase order activity. Then, our approach would recognize that order and
purchase order are semantically similar, i.e., match(order, purchase order)= true,
and that examine is a synonym of check, i.e., syn(check, examine)= true, yielding
a fitted constraint cL corresponding to ATLEASTONE(examine) | purchase order.
Role constraints. Finally, to fit a role constraint cM, we need to identify both
a matching activity and a matching role in L. To this end, we first check for a
matching activity aL 2 AL in the same manner as for activity-level constraints
(line 24). If found, we next check for matches between cM’s role cM.r (captured in
its activation condition) and the roles in the log, i.e., in the set RL. If for rL 2 RL,
match(cM.r, rL = true) holds, we fit cM with aL and rL (line 27).

When fitting a constraint, we populate cL’s similarity map cL.sim such that it maps
the matched components from cM and their counterparts in cL to their respective
similarity scores, which we will use for recommendation. Having iterated through
all constraints cM 2 CM, the algorithm outputs the set of fitted constraints CL.

Constraint Recommendation

While from the previous step we have obtained a set of fitted constraints, this set
might still be too large, or contain constraints that are uninteresting. In the recom-
mendation step, we therefore aim to select a subset of constraints from CL that are
most relevant to the event log L. To this end, we first compute a relevance score for
each constraint, which we then use to select a set CR

L
of recommended constraints,

according to user-defined parameters regarding size and relevance.
Relevance computation. To be able to recommend appropriate constraints, we
need an indicator of how relevant a constraint cL 2 CL is to an event log L. To
achieve this, we compute the relevance score cL.relevance based on cL’s semantic
similarity scores and support. We consider these two aspects, since a higher seman-
tic similarity indicates that a constraint is more applicable to the specific context
of the given event log L (e.g., because the activities from the original, mined con-
straint are highly similar to those found in L), whereas higher support indicates
that a constraint is more generally applicable to processes (because it was found in
a larger number of models in M). We capture these aspects as follows:
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cL.relevance = ! · avg({s | ((x, y), s) 2 cL.sim})

+ (1� !) ·
cL.support

max({c0
L
.support | c0

L
2 CL, c

0
L
.type = cL.type})

(7.1)

As shown, we combine the average similarity score avg({s | ((x, y), s) 2
cL.sim}) observed for the constraint with the constraint’s support cL.support,
normalized by dividing it by the maximum support of a constraint of the same
type in CL, such that both, similarity and support, have a comparable range. The
semantic similarity and support parts can be weighed differently by adapting ! 2

[0, 1], e.g., to give a higher weight to support.
Constraint selection. The computed relevance scores can be employed to obtain
a selection of recommended constraints C

R

L
. Our approach allows users to select

all constraints from CL that have a relevance higher than a certain threshold ⌧ , or
to select the top-k constraints from CL that have the highest relevance scores, thus
providing users control over either the minimum desired relevance score ⌧ or the
maximal number of constraints k. Users can also apply the selection strategies in
a type-specific manner, i.e., by specifying different relevance thresholds ⌧type for
each constraint type, or by selecting the top-k constraints per type.
User input. After providing a set of recommended constraints CL, the user can de-
cide to continue without intervention or inspect the recommended constraints and
optionally filter the collection manually. For instance, if they find that some rec-
ommended constraints involve an object that is not interesting from a compliance
perspective, they can remove all constraints that involve that object.

Consistency Checking

The final step of the Constraint Selection stage ensures that CR

L
contains no in-

consistencies. For instance, we want to avoid that the set contains both COEX-
ISTENCE(a,b) and NOTCOEXISTENCE(a,b) constraints, since these directly con-
tradict each other. Note that inconsistencies can also be more complex due to
transitivities, e.g., a set of constraints RESPONSE(a,b), RESPONSE(b,c) and NOT-
COEXISTENCE(a,c) is also inconsistent, since the first two constraints transitively
state that a should eventually be followed by c, whereas the final constraint explic-
itly forbids this. Since such combinations are hard, if not impossible, to spot for
humans [133], automated consistency checking and resolution is required.

To operationalize this, we use an existing approach for inconsistency resolu-
tion in declarative process specifications [48]. Given a set of constraints C, this
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approach identifies a set of minimal correction sets MCS(C), which are sets of
constraints that, if removed from C, make C consistent:

Definition 19 (Minimal correction sets) Given a constraint set C, a set X ✓ C

is a minimal correction set of C, if C \ X is consistent, and 8X 0
⇢ � : C \ X

0

is inconsistent. We denote MCS(C) as the set of minimal correction sets for the
constraints in C.

If the inconsistency resolution approach detects inconsistencies in C
R

L
, our ap-

proach, by default, deletes the constraints from the correction set in MCS(CR

L
)

with the lowest cumulative relevance score. This ensures that we obtain a consis-
tent set CS

L
of constraints, while maximizing the overall relevance of the retained

constraints. If there are no inconsistencies, CR

L
simply becomes CS

L
.

User input. The inconsistency-resolution approach [48] also allows a user to select
specific constraints that should not be removed from C

R

L
, giving them control over

the recommended correction sets. Furthermore, users have the option to inspect
the correction sets and choose to remove one of these based on their preferences
instead of automatically having the one removed that maximizes relevance.
Output of the selection stage. The output of this stage is a collection of fitted
constraints CS

L
that is free of inconsistencies. C

S

L
is used in the subsequent stage

to check for best-practice violations in traces of the event log L.

7.2.3 Conformance Checking

Our approach’s final stage uses the set of selected constraints CS

L
to check for best-

practice violations in the event log L and, if found, presents these to the user. To
this end, the approach first identifies violations per trace, yielding a trace-based
violation map VL. Afterwards, it aggregates the violations in VL to the log-level
and adds an explanation of each type of violation, providing a summary to the user.

Trace-Based Conformance Checking

The goal of this step is to check which constraints are violated per trace � 2 L.
To this end, our approach first creates a collection of trace-constraint pairs DVL,
where each pair represents the detected violation of cL in �. It then uses DVL to
create a map VL that assigns each trace the best-practices that it violates.

To establish a collection DVL of trace-constraint pairs (�,cL), our approach
checks per trace � 2 L and each constraint cL 2 C

S

L
if that constraint is violated,

i.e., if � 6|= cL. The checking process is analogous to the one used in constraint
mining (cf. Section 7.2.1). However, while in constraint mining we assess whether
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a constraint is fulfilled across all sequences allowed by a model, here we focus
on identifying specific traces where a constraint is not met. Given a trace �, the
conformance checks per constraint type are performed as follows:
Activity-level and role constraints. For an activity-level or a role constraint cL,
our approach can directly check if � 6|= cL holds and, if so, add (�, cL) to DVL.
Inter-object constraints. For an inter-object constraint cL, our approach checks
against the object sequence �

a

obj
that it obtains by projecting the activity sequence

�
a to its objects, as also done when mining constraints of this type. Then, it checks

if �a

obj
6|= cL holds and, if so, adds (�, cL) to DVL.

Intra-object constraints. For an intra-object constraint cL, the approach checks
against the action sequence �o for its object type ot = cL.object, which it obtains
in the same manner as done in Algorithm 5. Then, it checks if �o 6|= cL holds and,
if so, adds (�, cL) to DVL.

To report on best-practice violations per trace, our approach establishes a map
VL based on the pairs in DVL, which associates each trace � in L with a set of
constraints that it violates (or an empty set if � does not violate any constraints).

Result Summarization

In this final step, our approach creates a more concise and informative summary of
the detected best-practice violations for the user by aggregating them across traces.
Specifically, it groups violations per constraint type and template and adds a textual
explanation to each such violation. An example of this is shown in Table 7.3. To
generate the explanations for the violations, we use a standard sentence template
for each combination of constraint type and DECLARE template.

Constraint Constraint explanation Affected traces

ATLEASTONE (create)|order Each order must be created {�6, . . . ,�76}

PRECEDENCE
(check,approve)|invoice

An invoice must be checked be-
fore it is approved

{�23}

Table 7.3: Exemplary result summary of intra-object violations.

Output of the conformance-checking stage. The output of this final stage con-
sists of (1) a map VL assigning each trace in L the best-practices that it violates
and (2) a violation summary providing an overview of best-practice violations con-
tained in L, explicating the traces that are affected by them.
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7.3 Evaluation

In this section, we aim to demonstrate the effectiveness of our approach to select
relevant constraints for detecting best-practice violations. To do so, we test if the
constraints that our approach selects for a given log can be used to find known vio-
lations. We describe the data collection in Section 7.3.1 and the experimental setup
in Section 7.3.2. In Section 7.3.3, we present our evaluation results demonstrating
our approach’s efficacy in detecting best-practice violations and that it outperforms
a state-of-the-art approach in both scope and accuracy. The implementation, data
collection, evaluation pipeline, and raw results are all available in our repository2.

7.3.1 Data Collection

Our goal is to show that our approach is effective in selecting constraints that are
relevant for a given event log and that these constraints can be used to detect best-
practice violations. Therefore, we need a process model collection to extract con-
straints from and event logs with known best-practice violations, i.e., with behavior
that deviates from a process model that represents desired behavior.
Process model collection. Since there is no public reference model collection
available, we use a collection of real-world process models. We use this collection
for both extracting constraints and generating event logs with best-practice vio-
lations. For the experiments, we apply a cross-validation procedure as explained
later. Specifically, we use the public SAP-SAM data set [167], a large process model
collection created by academic users of a commercial process modeling tool.

Given that there is no quality assurance for the entire model collection, we se-
lect only English models that fulfill a set of requirements to reduce data quality
issues. In particular, each model needs to have between 5 and 50 elements, pass
the BPMN syntax check (using the functionality of a commercial process model-
ing tool), and must be transformable into a sound workflow net. The former two
requirements reduce the probability that models with barely any (too few elements)
or pointless (too many elements and syntax errors) behavior are included, whereas
the latter ensures that we can generate proper event logs from the models. From
those we randomly select 1,500 models, primarily in order to keep run times man-
ageable. Note that because this is not a real reference process model collection, we
assume that the behavior of the contained models captures best practices.
Generating event logs with best-practice violations. To obtain logs with known
violations from this process model collection, we play out the models and insert
noise: For each model, we use its workflow net to generate an event log that con-

2
https://github.com/a-rebmann/semantic-constraint-miner/

https://github.com/a-rebmann/semantic-constraint-miner/
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tains a single trace of each variant that is possible in the net (in case of loops, each
loop is executed at most once). For nets with fewer than 100 variants, we keep
playing out traces until the log has 100 traces, so that we have a minimum amount
of traces available per log for noise insertion. Then, to add violations to the logs,
we select traces to introduce noise into, with a probability of 50% per trace. If a
trace is chosen for noise insertion, we either randomly add, remove, or swap events
or assign a different role to an event than the original one. After performing a
noise-insertion action for a selected trace, there is a 50% probability to insert noise
again (repeated until false). The characteristics of the log collection (before and
after noise insertion) obtained in this manner are shown in Table 7.4. As depicted
there, the complexity of the logs varies considerably. For instance, the logs have 5
activities on average, whereas the maximum number observed is 18 and the num-
ber of object types is 3.9 on average, whereas the maximum is 17. The differences
between the original and noisy logs become clear when looking at the variants.
While the original logs contain 3.5 different variants on average, this increases to
30.9 for the noisy logs.

Table 7.4: Characteristics of the original and noisy logs.

Collection Count Activities Object types Variants Variant length
avg. max. avg. max. avg. max. avg. max.

Original logs 1,500 4.9 18 3.9 17 3.5 720 3.7 10
Noisy logs 1,500 4.8 18 3.9 17 30.9 703 3.9 14

The inserted noise then leads to violations of activity, inter-object, intra-object,
and role constraints. Because we assume that a process model established by
users contains semantically sound behavior, any behavior not allowed by the model
can be considered a best-practice violation. Hence, we compute the known best-
practice violations for an event log L by verifying for each trace � 2 L if � violates
the behavior of the model M that was used to generate L and recording violations
of this behavior in a collection of true best-practice violations LM

V
. Statistics about

the best-practice violations contained in our log collection are depicted in Table 7.5.
As shown there, on average 40% of traces are affected by activity-level violations,
28% by inter-object violations, 38% by intra-object violations, and 9% by role
violations. Across constraint types, the average number of violations per log is
considerably higher than the number of affected traces, indicating that frequently
there are multiple violations per trace.
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Table 7.5: Violations per noisy log.

Const. type Affected traces Violations
avg. max. avg. max.

Activity 40.77 312 169.00 1979
Inter-object 28.34 276 95.35 1453
Intra-object 38.31 199 91.22 905
Role 9.14 150 11.47 172

7.3.2 Evaluation Setup

Implementation. We implemented our approach and evaluation pipeline in
Python. For handling the import and generation of event logs, we used
PM4Py [32]; as a basis for constraint checking, we used Declare4Py [63]. To as-
sess semantic similarity between activities and business objects, we generated sen-
tence transformer embeddings [161] using the all-MiniLM-L6-v2 pretrained lan-
guage model3. Finally, as described in Section 7.2, we use our semantic-annotation
approach (Section 3.3) to extract objects and actions from activities and the ap-
proach by Corea et al. to check for inconsistencies in constraint sets [48].
Configurations. We test various settings for the relevance threshold ⌧ , the weight
of the semantic similarity ! when computing the relevance of a constraint, and k

that determines how many of the most relevant constraints per type are selected. In
particular, we run experiments for ⌧ 2 {0.5, 0.8} to investigate the effect of a low
vs. a high relevance score, ! 2 {0.5, 0.9} to investigate the importance of sup-
port, and k 2 {10, 100, 250} to investigate how the number of selected constraints
impacts the performance of our approach.
Baseline. We compare our approach to the state-of-the art approach for seman-
tic anomaly detection proposed by Van der Aa et al. [5]. The approach populates
a knowledge base with semantic relations that reflect appropriate process execu-
tions. The knowledge records for this population procedure are extracted from (1)
a general-purpose linguistic resource that captures relations between verbs and (2)
a process model collection (i.e., the same process model collection we use to mine
constraints from). For a given trace, the approach checks whether pairs of actions
that are applied to the same object violate records in the knowledge base, indicating
semantic anomalies. We compare our work against the configuration with the best
reported results in the original paper, referred to as SEM4. Importantly, this con-
figuration leverages semantic similarity to enhance the generalizability of the rules
stored in the knowledge base. Note that, because of its focus on actions applied to
the same object, the baseline can solely detect intra-object violations.

3Available here: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Cross validation. Because we use the same model collection M for constraint
mining and detection, we conduct a 5-fold cross validation. To this end, we ran-
domly split the model collection into 5 sets and use models of 4 sets for constraint
mining and the noisy logs generated from the 5th set for testing the violation de-
tection. We run the experiments 5 times, so that each set acts as the test set once.
Measures. We check for best-practice violations in the noisy log L

M , given the
original model M , which yields a collection of detected violations LM

D
. For each

detected violation v 2 L
M

D
, we check if v is contained in the set of true violations

L
M

V
(computed as explained above) resulting in a true positive (TP) or false positive

assessment (FP). Any violation that is present in L
M

V
but has not been detected by

our approach, i.e., is not included in L
M

D
, is deemed a false negative (FN). Using

this approach, we quantify the precision, given by TP/(TP+FP) and the recall, given
by TP/(TP+FN). We also report on run time for the different stages.

7.3.3 Evaluation Results

We first report on the constraints mined from the model collection, before describ-
ing the overall results of the best-practice-violation detection. Then, we report on
the results per constraint type and inspect the detailed results of selected logs to
provide insights into when our approach performs well and when it fails. Finally,
we compare our approach against the baseline and reflect on its run time.
Extracted constraints. Our approach extracted more than 250,000 constraints
from the 1,500 process models. As shown in Table 7.6, this includes more than
150,000 activity-level, almost 60,000 inter-object, more than 42,000 intra-object
constraints, and more than 3,000 role constraints. Per process model, it extracted at
most 662 activity-level constraints (104.0 on average), 416 inter-object constraints
(54.1 on average), 366 intra-object constraints (33.3 on average), and 17 role con-
straints (6,3 on average).

Table 7.6: Characteristics of the constraints extracted from the model collection
before collection refinement

Const. type Count Avg. per model Min./Max. per model

Activity 150,082 104.0 2 / 662
Inter-object 59,452 54.1 2 / 416
Intra-object 42,377 33.3 3 / 366
Role 3,349 6.3 0 / 17

After refinement, i.e., after equal or highly similar constraints were standard-
ized and weaker, redundant ones were filtered out, 55,913 activity-level, 20,920
inter-object, 8,223 intra-object constraints, and 2,387 role constraints remain, as
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depicted in Table 7.7. Many constraints were extracted from multiple models, as
shown by the number of constraints with a support of > 1. Notably, more than
half of the intra-object constraints (4,484) were extracted from multiple models,
which suggests that these are more generally applicable than the other types of
constraints, for which this ratio is lower.

Table 7.7: Characteristics of the constraint collection once aggregated and refined.

Const. type Count Support > 1

Activity 55,931 5,277
Inter-object 20,920 2,965
Intra-object 8,223 4,484
Role 2,387 266

Overall detection results. Table 7.8 depicts the evaluation results per configu-
ration for detecting best-practice violations from the noisy logs, averaged across
these. We generally favor high recall over high precision and the best trade-off
between recall and precision per constraint type is printed in bold. In the table, k
determines the number of most relevant constraints selected per type. ⌧ is a thresh-
old for the minimum relevance score that a constraint must have to be selected.
The weight factor of the relevance score, !, is set to 0.9 in all configurations. Our
experiments showed that the performance trends per configuration are the same
across folds. We also found that weighing the semantic relevance ! with 0.9 for
all constraint types consistently yields slightly better results than weighing support
equally. For the other parameters the variety of the performance achieved is more
substantial, though. Therefore, we report on results with ! = 0.9 here for brevity.4

Overall, we find that both precision and recall vary considerably across con-
figurations (0.37–0.86 resp. 0.35–0.85). Because we favor high recall over high
precision when detecting best-practice violations, the best out of the tested config-
urations, which achieves good recall while maximizing precision is k = 100 com-
bined with a low relevance threshold (⌧ = 0.5) for all constraint types. By picking
this configuration, we achieve an average precision of 0.50 and a recall of 0.81
across constraint types. Note that, while this configuration achieves the best results
across constraint types, we do not need to use the same configuration per type. Se-
lecting a high relevance threshold (⌧ = 0.8) yields considerably lower recall scores
(0.35–0.65) compared to when using a lower threshold (⌧ = 0.5; 0.57–0.85). This
indicates that applying such a high relevance threshold is too restrictive, causing a
considerable amount of best-practice violations to remain undetected.

4Detailed results including all configurations can be found in our repository.
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Table 7.8: Results of detecting best-practice violations per constraint type for var-
ious configurations (averaged across logs).

Type Config. TP FP FN Precision Recall
k ⌧

Activity

10 0.5 77.10 62.04 91.90 0.70 0.51
100 0.5 134.22 230.83 34.78 0.43 0.82
250 0.5 139.80 286.17 29.20 0.39 0.84

10 0.8 54.54 24.82 114.46 0.86 0.35
100 0.8 80.08 76.61 88.92 0.75 0.49
250 0.8 80.27 79.64 88.73 0.74 0.49

Inter-object

10 0.5 50.56 77.46 44.79 0.59 0.58
100 0.5 77.57 231.39 17.77 0.34 0.82
250 0.5 79.47 277.79 15.88 0.32 0.84

10 0.8 42.07 52.11 53.28 0.70 0.48
100 0.8 53.87 98.07 41.48 0.59 0.59
250 0.8 53.87 98.33 41.48 0.59 0.59

Intra-object

10 0.5 51.69 26.46 39.53 0.84 0.70
100 0.5 68.64 131.71 22.58 0.72 0.79
250 0.5 69.55 172.97 21.67 0.70 0.79

10 0.8 46.74 21.26 44.48 0.86 0.59
100 0.8 58.47 94.93 32.75 0.78 0.65
250 0.8 58.80 104.46 32.42 0.77 0.65

Role

10 0.5 6.51 16.73 4.96 0.60 0.57
100 0.5 9.01 37.39 2.46 0.49 0.80
250 0.5 9.08 38.31 2.39 0.49 0.80

10 0.8 4.39 8.47 7.08 0.78 0.38
100 0.8 4.77 10.78 6.69 0.76 0.41
250 0.8 4.77 10.78 6.69 0.76 0.41

Overall 100 0.5 72,36 157,82 19.40 0.50 0.81

We also looked into per-log performance to get insights into how often our
approach achieves excellent, good, and poor performance. Figure 7.5 shows the
number of logs for which various performance levels are reached, using the best
configuration per constraint type (k = 100, ⌧ = 0.5). We find that our approach
achieved perfect precision and recall for a considerable number of logs. Especially
for intra-object constraints this was the case for more than 350 logs. For the others
the approach does not perform as well but still for the vast majority, i.e., more than
90% of the logs, a recall (the most important score) of more than 0.5 was achieved.
Only for very few logs both precision and recall are poor, i.e., both below 0.25.
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Figure 7.5: Number of logs for different performance levels per constraint type
(considering logs for which there were best-practice violations to be detected for
the given type of constraint); p=precision, r=recall, lower performance levels ex-
clude logs that are already included in higher ones.

Results per constraint type. To get a better understanding of when the approach
excels and when it fails, we next discuss the results per constraint type by analyzing
the impact of the parameter settings on performance and inspecting the results
achieved for individual event logs.
Activity-level constraints. The best configuration achieves a moderate precision of
0.43 and a good recall of 0.82 for activity-level constraints. We find that we primar-
ily obtain perfect scores for rather standard types of processes, where organization-
specific deviations are expected to occur rather rarely. For instance, for an order-
handling event log, all 246 best-practice violations were correctly identified with-
out any false positives, recognizing, e.g., that confirm order must precede emit
invoice, that archive order should only happen after receive payment, and that ship
product should not occur before get shipment address if the latter occurs. The
same applies to a loan-application log, where for instance, finalize loan applica-
tion must naturally not precede create application. Conversely, we find that logs
for which our approach achieved poor performance correspond to rather special-
ized processes, for instance, for a log of a process that handles the calculation of
compensation during parental leave, our approach only achieved a precision of 0.30
and recall of 0.56 and for a log that captures the interaction between a technician
and a pharmacist with a software system, we achieved a precision of 0.20 and re-
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call of 0.78. This indicates that activity-level constraints are especially useful to
detect best-practice violations in processes that are executed by many organiza-
tions in similar ways, i.e., the main use case for reference process models which
our approach expects as input.
Inter-object constraints. For inter-object constraint, we observe similar trends as
for activity-level ones. The best configuration achieves a precision of 0.34 and a
recall of 0.82. For rather streamlined processes, such as a claim-handling process,
it correctly detects that a claim should occur before a payment and that payment
and claim rejection cannot co-occur. Accordingly, in a travel booking process,
it perfectly identifies that a plane ticket should be involved in a process before
luggage is and a destination should occur before there is a plane ticket. Larger
numbers of false positives are detected, for instance, when the process contains
many different object types and at the same time there is a lot of variability in the
process, i.e., many execution variants. For instance, in a log capturing a heath-care
process that spans multiple departments, 349 false positive violations were found,
compared to 75 true positive ones.
Intra-object constraints. When considering intra-object constraints, we observe
substantially better performance compared to the other constraint types. The best
configuration achieves a precision of 0.72 and a recall of 0.79. For more than 400
logs a perfect recall and a precision above 0.75 was obtained at the same time. The
reason for the better results compared to other constraint types can also be observed
by inspecting results of individual logs. For instance, we achieve perfect recall and
precision for a sales process, for which, e.g., best-practice violations were found
where an order was archived before it was rejected, an order was both rejected
and confirmed, and an order was confirmed before it was received. Similarly, in
a credit-application log we found credits that are offered before they are checked
and applications that are never assessed. These examples show that our approach
is capable of identifying violations of general behavioral relations that make sense,
such as that an object should be created before it is checked.

However, there are also cases for which our approach fails for intra-object vio-
lation detection, i.e., misses true best-practice violations. For instance, in an event
log that captures the process of candidate selection for scholarships. In the pro-
cess, candidates are first classified and later selected. Our approach failed to rec-
ognize best-practice violations where one of these were missing or their order was
swapped causing false negatives. A possible reason for this may be the similar
meaning of the actions select and classify, which both describe the separation of
elements of a group [122]. Still, we found that intra-object constraints provide a
reliable means to detect best-practice violations involving the same type of object.
Role constraints. For role constraints, the best configuration achieves a precision of
0.49 and recall of 0.8. We also inspected logs for which role constraints performed
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perfectly. For instance, in a credit-check process all best-practice violations of
wrong roles performing a task were correctly identified, e.g., that calling a client
should be performed by customer contact, whereas a credibility check should be
performed by risk management and a payment should be issued by finance. How-
ever, we also observed false positives. For instance, for a log capturing the in-
teraction of a pharmacist with an information system that performs some tasks
autonomously, such as sending and processing notifications, the approach selected
constraints that did not correctly identify who (i.e., the pharmacist or the system)
should perform which steps of the process.
Main insights. Overall, we observe that with a relatively small number of con-
straints, picked from a large collection of thousands of constraints per type, we
detect a substantial amount of true best-practice violations, achieving good recall
scores across constraint types. Yet, there are also false positives, which in turn lead
to lower precision scores. For the goal of detecting best-practice violations allow-
ing for false positives while minimizing false negatives can be acceptable, though,
given that a user of our approach can easily filter out constraints that lead to false
positives by selecting constraint components to avoid when inspecting the detec-
tion results. The results must also be seen in light of the fact that the underlying
model collection varies in terms of quality (despite the automated quality checks
we performed), abstraction-level, and modeling style. The insights from the in-
dividual logs suggest that our approach works particularly well for processes that
are commonly executed in similar ways in organizations, which is exactly what we
target by mining constraints from reference process models. Expectedly, for more
specialized and niche processes the performance decreases.
Baseline comparison. Table 7.9 shows the results of the comparison against the
baseline. The comparison results presented here focus on intra-object constraints,
which the scope of the baseline is limited to. The baseline achieves an average pre-
cision of 0.80 and recall of 0.20. Our approach surpasses the baseline for all con-
figurations in terms of recall: When choosing the configuration that yields the best
trade-off between precision and recall (k = 100, ⌧ = 0.5), we achieve a slightly
lower precision than the baseline (0.72), but a recall of 0.79, which is almost four
times higher. Choosing a configuration with fewer constraints (k = 10, ⌧ = 0.8),
we also surpass the baseline in terms of precision (0.86), while the recall we
achieve with that configuration is still three times higher than the baseline’s recall.

Our approach’s improved performance, especially in terms of recall, can be at-
tributed to its use of a broader range of constraints, resulting in an increase in true
positives and a decrease in false negatives. In particular, the baseline focuses on de-
tecting best-practice violations that depend on pairwise relations between actions
that are applied to the same object, e.g. that reject and accept exclude each other.



Chapter 7. Best-Practice-Violation Detection 171

The declarative constraint templates we use can also detect best-practice violations
independent of such pairwise relations. For instance, we can detect that an order
was never created independent of what happens to the order in the remainder of a
trace, whereas the baseline can only detect this based on other actions applied to
the order, e.g., if an archive action is applied to the order and it observed a relation
create is followed by archive. Nevertheless, despite these improvements compared
to the baseline, our approach detects a substantial number of false positives. Still,
for the goal of detecting best-practice violations, our approach is generally better
suited than the baseline. This is because we do not want users to miss poten-
tially relevant best-practice violations; thus, it makes sense to sacrifice precision
for recall. Only when we do this, we achieve a somewhat lower precision than the
baseline, for the benefit of a much higher recall.

Table 7.9: Results of the baseline comparison only considering intra-object con-
straints (averaged across logs).

Approach TP FP FN Precision Recall

Ours (best trade-off) 68.64 131.71 22.58 0.72 0.79
(best precision) 51.69 26.46 39.53 0.86 0.59

Baseline [5] 35.56 26.16 55.66 0.80 0.20

Run time. We ran our experiments single-threaded on a laptop with a 2 GHz Intel
Core i5 processor and 16GB of memory. In this environment, the constraint mining
stage, which has to be run only once for a model collection, took 112.5 minutes
(99% of the time was used for constraint refinement). The average time to run the
selection and checking stages for a log was 72.9 seconds, varying between 19.4 and
167.6 seconds depending on the complexity of the input event log, i.e., the number
of activities and object types.

7.3.4 Application Cases

Finally, we applied our approach to real-world event data of a purchasing process
and a sales process to highlight its usefulness in practical settings:

1. Purchasing process. We use the BPI19 event log [169], which captures event
data on a purchasing process at a multinational company. We selected those
traces from the original log that are supposed to adhere to a 3-ways-match
procedure where the invoice is to be recorded after goods receipt. The re-
sulting log contains 15,182 traces, 319,233 events, and 38 event classes.

2. Sales process. We use a proprietary event log of a sales process. The process
instances were executed as part of a business-to-business software sales pro-



Chapter 7. Best-Practice-Violation Detection 172

cess of a medium-sized European company. In this process, a lead (customer
contact) is generated and eventually converted into an opportunity (lead with
specific purchase scenario) that is then either closed or turned into a pay-
ing customer. This event log cannot be shared for privacy-related ethics and
compliance reasons.

For the real-world application cases we employed a proprietary reference model
collection of ca. 4,000 BPMN models that provide vendor-specific best practices.
Results. We discuss the results obtained for each process separately.
Purchasing process. Although there is no gold standard available that indicates
best-practice violations in this process, our approach was able to detect a range of
potentially undesired behaviors, as shown in Table 7.10.

ID Constraint Constraint explanation #Traces

p1 RESPONSE(create,confirm)|invoice After an invoice is created, it
should be confirmed.

10,722

p2 SUCCESSION(goods receipt, in-
voice)

An invoice occurs if and only if it
is followed by a goods receipt.

9,601

p3 ATLEASTONE(create)|invoice An invoice must be created. 940
p4 RESPONSE(purchase order item,

goods receipt)
A goods receipt should follow a
purchase order item.

638

Table 7.10: Exemplary constraints that were selected by our approach and the num-
ber of traces that violated them in the purchasing event log.

The examples correspond to situations where an invoice is never created (p3),
where purchase order items are never followed by goods receipt (p4), and invoices
that are created but never confirmed (p1). All of these issues represent behavior that
deviates from best practices extracted from a high-quality reference model collec-
tion that includes models for purchasing, invoicing, and payment processes. Most
interestingly, in a considerable amount of traces a good receipt is not followed by
an invoice (p2), which violates the underlying matching procedure, where invoices
should be recorded after goods are received. These may include incomplete traces,
yet, may also hint at undesired behavior, which is worth investigating further.
Sales process. For the sales process event log we also found some best-practice vi-
olations based on constraints recommended by our approach as shown in Table 7.4.
In particular, there are traces where a lead is never created (s4) and assigned more
than once or never (s1). Furthermore, there is a considerable amount of opportu-
nities that are never closed (s2) and activities in the process that are recorded but
not documented properly afterwards (s3). A discussion with a technical process
operations specialist confirmed that all of these best-practice violations indicate
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lacking process discipline in the affected traces, i.e., these do not adhere to estab-
lished procedures, which may cause efficiency and quality issues in the process.
The best-practice violations, therefore, provide valuable insights into process im-
provement opportunities for the organization.

ID Constraint Constraint explanation #Traces

s1 EXACTLYONE(assign)| lead A lead is assigned once. 220,057
s2 EXACTLYONE(close)|opportunity An opportunity is closed once. 11,175
s3 ALTERNATERESPONSE(activity

logged task, enter notes)
Activity logged task should be fol-
lowed by enter notes.

9,228

s4 ATLEASTONE(create) | lead For a lead, create should occur. 418

Table 7.11: Exemplary constraints that were selected by our approach and the num-
ber of traces that violated them in the sales process event log.

These insights further highlight the benefits of our approach to detect potentially
undesired behavior without the need for dedicated process models to be available.

7.4 Limitations

Our evaluation results show that our approach accurately identifies best-practice
violations in event logs and can thus provide valuable insights into data quality is-
sues and potential conformance problems in the underlying process. Our approach
and evaluation have to be considered in the light of certain limitations, though.

First, our approach does not cover constraints for all process perspectives, ex-
cluding constraints related to the time and data perspectives from consideration.
For instance, it cannot cover that an order should be approved within a given
amount of time or that a specific check should be performed for orders of a certain
value. This is because such constraints are rarely found in reference process mod-
els, whereas they are also much harder to generalize than our activity-, object-,
and role-related ones, because restrictions on time and monetary values can dif-
fer substantially across organizations and processes. Second, in order to provide
relevant best-practice violations, the event log is assumed to be on the same gran-
ularity level as the components of constraints the approach mined. If the event log
records activities on a more fine-granular level, it may, therefore, be necessary to
first abstract the event log before applying our approach.

With respect to our evaluation, there are certain threats to validity. A threat to
internal validity is that the process models used as a basis for our experiments, al-
though being real-world models, stem from different sources and were established
for different purposes, which means that they jointly do not represent a reference
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model collection (due to the absence of publicly available reference collections).
Despite automated quality checks, the contained models may thus vary in terms of
quality, granularity, and modeling style. A threat to external validity is the (cur-
rently) limited application of our approach in practice. While we applied it on
real-world event data, which yielded interesting best-practice violations that were
verified with a specialist, it has not been field-tested in an organization so far.

7.5 Related Work

In this section, we discuss the primary research streams to which the work that is
presented in this chapter relates: conformance checking, declarative process min-
ing, process matching, and anomaly detection in process mining.

7.5.1 Conformance Checking

Conformance checking aims to detect deviations between true behavior recorded
in event logs and desired behavior captured in a process model [41]. If the input
model captures rules or regulations, conformance-checking techniques can thus be
used for process compliance checking, where the goal is to detect violations of
these [42]. Most research on conformance checking focuses on scenarios where
an event log and a dedicated imperative process model, e.g., a BPMN diagram, are
available. In this context, conformance is primarily checked based on so-called
alignments [9, 17], where observed traces are compared with executions allowed
by a predefined process model to find deviations.

In the context of declarative models, conformance checking involves checking
for each trace in an event log, if it satisfies each constraint in a declarative pro-
cess model [59]. To get a global view on conformance, the idea of aligning log
traces to the closest model trace (considering all model constraints) can also be
lifted to a declarative setting [52]. In our approach, we adopt the former approach,
though, because we do not check conformance against a given normative (declar-
ative) model. Instead, we mitigate the need for such a dedicated model and rather
check against a collection of relevant, yet individual, best-practice constraints, es-
sentially querying (cf. [143]) the event log for violating traces.

7.5.2 Declarative Process Mining

Declarative process mining is an active research field [59]. In this context, DE-
CLARE [142] is among the most prominent formalisms. It relies on LTL, leverag-
ing its reasoning mechanisms for, among others, model analysis and conformance
checking, which we use in our approach. Research in this area is also dedicated to
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identifying and resolving inconsistencies and redundancies in declarative process
models [47, 48, 57], which we leverage for both refining our constraint collection in
the Constraint Mining stage of the approach and for checking if the recommended
constraints are actually consistent in the Constraint Selection stage.

The notion of object-centric behavioral constraints has recently been proposed.
These constraints allow for a detailed specification of complex networks of objects
and their relations that co-evolve in one or multiple processes [23]. While still in its
infancy [59], this line of research is promising to be adopted for our approach. The
level of detail this formalism can express goes beyond what is typically captured
in BPMN diagrams, though. Therefore, we would first need to extend the scope of
the input of our approach.

Research on declarative process mining further focuses on discovering declar-
ative models from event logs [58, 121]. In this context, measuring the interest-
ingness of traces of an event log given a declarative process model [45] and vice
versa [44] is researched. This closely relates to the notion of relevance we employ
in our approach, where we essentially want to assess how interesting a constraint
is for a given log. Complementary to existing approaches, we consider semantic
similarity as an indicator of interestingness.

7.5.3 Process Matching

Process matching techniques revolve around establishing links between process
concepts found in various artifacts. The primary research focus lies in process
model matching, where the goal is to find links between activities present in dif-
ferent process models. To achieve this, process model matchers leverage diverse
process model features including model structure [61] and allowed behavior [105],
but also natural-language-based features [75]. Beyond model-to-model matching,
there is also work on matching (parts of) models to events recorded in event logs [2,
26]. The selection stage of our approach also creates links between constraint com-
ponents and event log counterparts based on semantic similarity in order to select
the most relevant constraints for the given log.

7.5.4 Anomaly Detection in Process Mining

Anomaly detection in process mining aims to identify anomalous process behavior
in the traces of an event log. Unlike conformance-checking approaches, anomaly-
detection approaches rely on the event data itself to detect anomalies [11].

Most approaches do this by identifying statistical outliers at the trace-level
or the behavioral-relation-level. Basic approaches simply filter out a trace if its
activity sequence is shared by less than a certain percentage of other traces in
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the log [33]. Process-discovery approaches use such frequency-based detection
strategies to filter out anomalies as well. For instance, the Inductive Miner infre-
quent [107] detects and eliminates infrequent directly-follows relations in order
to preserve the most common process behavior. The resulting models of process
discovery approaches can also be used for anomaly detection [11]. To this end,
a model is discovered based on a subset of traces in a log, before conformance-
checking between the full log and the discovered model is applied to identify
anomalies. While most approaches focus on control-flow information, some of
them also consider additional process perspectives. Böhmer and Rinderle-Ma [36]
proposed an approach that considers multiple perspectives by calculating proba-
bilities of event attributes to co-occur with certain activities. They further devel-
oped this approach and employ association rule mining to identify and explain
multi-perspective anomalies [35]. Deep learning approaches use a neural network
architecture to learn what constitutes proper process behavior across multiple per-
spectives and thus to learn to detect anomalies as well [134, 135, 136].

Recently, the notion of semantic anomaly detection has been proposed [5, 43],
which aims to identify process behavior that does not make sense from a semantic
perspective. We used a state-of-the-art approach [5] for this task as a baseline in
our evaluation, showing that our approach outperforms it in detecting best-practice
violations in both scope and accuracy.

7.6 Summary

In this chapter, we proposed an approach for mining declarative constraints from
reference process models to detect best-practice violations in event logs. Our ap-
proach extracts and refines constraints based on imperative models, instantiates and
selects relevant constraints given an event log, and checks whether the process exe-
cutions recorded in the log violate the behavior captured by the constraints. In this
manner, we mitigate the need for a process model that is specifically designed to
capture the desired behavior of the process that is recorded in the given event log.
The best-practice violations that our approach detects give insights into potential
data quality issues and conformance problems. Regardless of their cause, these
violations thus inform analysts about potentially problematic behavior contained
in the log, which may distort process analysis results.

Our experiments show that with a small number of constrains, which our ap-
proach selects from a collection of tens of thousands of mined constraints, we cor-
rectly detect a substantial amount of best-practice violations. Furthermore, appli-
cation scenarios based on real-world reference models and event logs demonstrate
the approach’s usefulness in practical settings.
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Conclusion

This chapter concludes this doctoral thesis. Section 8.1 provides a summary of
the main results. Section 8.2 discusses the implications of its contributions for
research and practice. Finally, Section 8.3 provides directions for future research
starting from the work presented in this thesis.

8.1 Summary of the Results

In this thesis, we focused on the automated transformation of event data to close the
gap between its characteristics and the data needs of particular analysis purposes.
The main contributions of this thesis are provided by five approaches. We can
summarize the results per contribution as follows:

• Semantic annotation of event logs. The application of certain process anal-
ysis techniques requires specific semantic information, such as actions, ob-
jects, and actors, to be associated with events of a given log. However, such
information is often not readily available, which limits the process analysis
options based on that log. In Chapter 3, we proposed an approach that ad-
dresses this, by identifying and categorizing semantic components in events
and creating an annotated event log that makes them explicit. In this manner,
it enables a broad range of semantics-aware process analysis options. We
demonstrated our approach’s efficacy through evaluation experiments using
a wide range of real-world event logs. The results show that our approach ac-
curately identifies the targeted semantic components from textual attributes,
while our attribute classification techniques also yield good results when
dealing with the information contained in non-textual attributes. In both
cases, we showed that our approach outperforms state-of-the-art work and
performs well in further categorizing the identified semantic components.

177
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• Constraint-driven abstraction of event logs. Fine-granular events are preva-
lent in real-world organizational settings and lead to complex analysis results
that do not provide useful insights into a process. To overcome this, event
abstraction lifts fine-granular events to higher-level ones. However, exist-
ing approaches do not allow a user to specify what the abstracted event log
should look like, which is crucial if they want to perform process analy-
sis that has specific data needs. In Chapter 4, we proposed an event-log-
abstraction approach that allows a user to impose requirements on the result-
ing log in terms of constraints. As such, the approach supports the speci-
fication of the properties that the resulting log should have, such that it is
meaningful for a given analysis purpose. Our evaluation experiments using
real-world event logs showed that our work considerably outperforms base-
line techniques, whereas two application cases demonstrate its usefulness in
practical settings.

• Task-level-event recognition from user interaction data. User interaction
data provides detailed records about how a user performs their tasks in a
process, even when this involves multiple applications. However, user in-
teraction events cannot be used directly for process mining, because they
neither indicate their relation to a process-level activity nor their relation to
a specific process execution. In Chapter 5, we proposed an unsupervised
approach for recognizing task-level events from user interaction data. It seg-
ments a stream of user interaction events to identify tasks, categorizes these
according to their type, and relates tasks to each other via object instances
it extracts from the user interaction events. In this manner, our approach
creates events that meet the requirements of process mining settings. We
demonstrated our approach’s efficacy in an evaluation using real data and
showed that it outperforms three streaming and two offline baselines.

• Object-information extraction from event logs. Object-centric event logs
capture event data of processes that involve multiple concurrent object types,
with potentially complex interrelations. Such logs allow process mining
techniques to handle multi-object processes in an appropriate manner. How-
ever, event data is often not available in such a format. It is rather captured in
case-centric event logs, which obscure the true relations between objects and
events, causing data quality issues that lead to incorrect analysis results. In
Chapter 6, we addressed this issue by proposing an approach that automat-
ically transforms a case-centric event log into an object-centric one, which
allows organizations to use their existing case-centric logs for object-centric
process analysis. We demonstrated its efficacy in an evaluation showing that
it accurately rediscovers object-centric from corresponding case-centric logs
and that it can mitigate data quality issues in real-world logs.
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• Best-practice-violation detection in event logs. Detecting undesired process
behavior in event logs can reveal data-quality issues and conformance prob-
lems. It is primarily done based on dedicated process models that specify
what is desired behavior. However, these are rarely available and their cre-
ation involves substantial effort. In Chapter 7, we proposed an approach
that mitigates the need for dedicated models, by mining declarative con-
straints from reference process models to detect best-practice violations in
event logs. Our approach extracts best-practice constraints from reference
models, selects relevant constraints given an event log, and checks whether
the process executions recorded in the log violate the behavior captured by
the constraints. As such, the approach provides insights into potential data-
quality and conformance problems. Our experiments showed that, with a
small number of constrains that our approach selects from a collection of
thousands of extracted constraints, it correctly detects a substantial amount
of best-practice violations. An application on real-world reference models
and event logs demonstrated the approach’s usefulness in practical settings.

When developing and evaluating our approaches, we followed established prac-
tices from algorithm-engineering research (cf. Section 1.4). For each approach,
we started from a real-world problem, derived one or more algorithmic tasks that
jointly address this problem, designed algorithms that satisfy these tasks, and
implemented them to evaluate the design. When evaluating the approaches we
employed established evaluation metrics as well as real-world event data and ac-
counted for relevant validity concerns. In this manner, we made substantial contri-
butions to the body of knowledge of the process mining field.

8.2 Implications

This section discusses the implications of the work presented in this thesis, with
Section 8.2.1 reflecting on implications for practice and Section 8.2.2 reflecting on
implications for research.

8.2.1 Implications for Practice

The work presented in this thesis has several implications for organizations aiming
to effectively analyze their processes based on available event data. Because our
approaches close the gap between event data characteristics and the data needs of
certain analysis purposes, we identify the following main implications for practice:

• Enabling the application of existing process analysis techniques to previ-
ously unsuitable event data. Three of our approaches transform event data
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to make it usable with existing process analysis techniques, addressing the
following use cases:
(1) Fine-granular event data poses a considerable challenge to organizations
when analyzing their processes in a data-driven manner. Specifically, using
such data for process mining directly yields complex results that do not pro-
vide useful insights into the process. Although event abstraction can alleviate
this problem, existing approaches do not provide guarantees about the result-
ing data characteristics. We presented an approach that allows organizations
to specify what characteristics an abstracted log should have (Chapter 4). In
this manner, our approach enables purpose-driven process analyses on the
basis of otherwise too fine-granular events.
(2) Some (parts of) processes are not supported by applications that have a
specific relation to a process and, therefore, event data in the classical sense
is not available for them. Consequently, such processes cannot be analyzed
by process mining techniques. Although user interaction data has the poten-
tial to fill in the blanks in the process coverage of event data, it is unusable
in process mining settings. We proposed an approach that transforms user
interaction data into task-level events (Chapter 5). These fulfil the require-
ments of process mining settings and, thus, extend the coverage of event data
that can be used for process analysis.
(3) Storing event data of a multi-object process in a case-centric log format
causes data quality issues that, in turn, lead to an incomplete or incorrect
picture of the true process. We proposed an approach that addresses this by
transforming case-centric event logs of multi-object processes into object-
centric logs (Chapter 6). The approach uncovers true relations in the process,
while mitigating data quality issues that were introduced through a case-
centric data representation. Thereby, it enables object-centric analysis on
existing but previously unsuitable logs.

• Enabling the application of novel analysis techniques that leverage semantic
information. Event data available to organizations frequently have character-
istics that prevents them from analyzing their process from a semantic point
of view, such as analyzing how different types of objects are handled in the
process. The reason for this is that the required semantic information is not
readily available in existing event logs. We address this by making seman-
tic information about events explicit (Chapter 3), enabling a broad range of
semantics-aware analysis options. Among others, the semantic components
our approach identifies and categorizes enable organizations to analyze how
particular objects are handled in their process and to analyze the automation
degree of their process. Furthermore, it enables the semantics-aware abstrac-
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tion of event logs (cf. Chapter 4), which groups together activities based on
their meaning. In this manner, such abstraction provides a high-level view
of processes based on “semantic stages” where, e.g., one stage may be con-
cerned with processing information, whereas another is about making a de-
cision in the process. Hence, our approach provides novel analysis options
that were not yet available through existing process mining techniques.

• Enabling the detection of problematic process behavior without the need for
dedicated models. Undesired process behavior in event logs poses a con-
siderable threat to organizations. In particular, non-compliant process ex-
ecutions can substantially impact the efficiency of an organization and the
quality of their process’ output. Such behavior is commonly detected based
on dedicated process models. However, these are often not available in or-
ganizations and are costly to establish from scratch. We present approach
that detects best-practice violations in event logs based on constraints mined
from reference process models (Chapter 7). Using our approach, organiza-
tions can detect undesired behavior without the need to establish dedicated
models of their processes. Such violations may point to data quality issues
and non-conforming process behavior. Therefore, their detection provides
valuable information to organizations that aim to ensure efficient processes
execution and high process output quality, with limited effort.

8.2.2 Implications for Research

Our contributions enable and inform several research directions in the process min-
ing field. In particular, we identify implications of our results for research on
semantics-aware process mining, object-centric process mining, event abstraction,
and stream-based process mining:

• Semantics-aware process mining. Process mining has long focused on the
analysis of the control-flow of processes on an abstract level, i.e., without
considering the actual meaning of events. Our work on the semantic anno-
tation of event logs (Chapter 3) and best-practice-violation detection (Chap-
ter 7) shows that considering event meaning holds considerable potential.
Our research thus serves as a starting point for the development of novel
semantics-aware process mining techniques, such as conformance-checking
techniques that can estimate the severity of conformance violations based
on event semantics and discovery techniques that can infer unseen process
behavior based on the meaning of observed activities.

• Object-centric process mining. Object-centric process mining has gained
increasing attention in recent years and event log formats that support this
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paradigm are (as of early 2024) being actively developed [30, 83, 85].
Our research on extracting object information from case-centric event logs
(Chapter 6) has implications for research on object-centric process mining.
This is especially the case for research on respective log formats. Among
others, our work highlights the importance of a clear separation of object
properties and event attributes as well as the need for representing object
evolution and how individual events are involved in this evolution. Further-
more, our approach provides object-centric event logs that can serve as eval-
uation data for the research community and, therefore, contributes to the
development of novel object-centric process mining techniques.

• Event abstraction in process mining. Abstracting fine-granular event data
is an important task in process mining, among others, to alleviate the com-
plexity of process analysis results. Existing research has, so far, neglected
the fact that certain analysis purposes have specific data needs. We provide
the research community with the first approach that abstracts event logs as
much as possible, but guarantees characteristics of the resulting log that a
user requires (Chapter 4). In this manner, our research provides a basis for
the development of analysis techniques that build on data that provides such
guarantees including, but not limited to, process discovery techniques.

• Stream-based process mining. Our research on recognizing task-level events
from user interaction data (Chapter 5) transforms low-level events into
higher-level ones based on an event stream. As such, our work demonstrates
the potential of developing approaches that achieve similar goals based on
other kinds of low-level data that is commonly available in a streaming set-
ting, such as network traffic data [76] or sensor data [152].

8.3 Future Research

This thesis focused on the automated transformation of event data in order to pro-
vide organizations with a broad range of process analysis options based on the
data available to them. There are several promising directions for future research
that have not been addressed within this thesis, which open up additional possi-
bilities for how organizations can use their event data to improve their processes.
We see the greatest potential in this regard in extending semantics-aware process
mining, further broadening the coverage of process mining, and providing orga-
nizations with explanations and recommendations regarding the characteristics of
their event data based on our results.

• Extending semantics-aware process mining. The five approaches we devel-
oped all share that they consider the semantics of event data to transform
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it. However, the work presented in this thesis is only the starting point of
semantics-aware process mining. Taking the meaning of events into account
can provide many more analysis opportunities in process mining. One such
opportunity is the automated assessment of the severity of conformance vi-
olations. In particular, state-of-the-art conformance-checking techniques do
not consider the severity of violations. For example, if an activity, e.g., con-
duct fraud check or archive application, is not executed, they cannot recog-
nize that missing the fraud check is much more severe than not archiving
an application. Semantics-aware conformance-checking may alleviate this
shortcoming. A respective approach can then recognize the criticality of
missing a fraud check compared to an archiving activity. To develop such
an approach, the action categorization we propose in this thesis combined
with recent advancements in NLP, such as large language models, and re-
sources that capture common-sense knowledge about activities performed in
organizations can serve as a starting point.

• Further broadening process mining coverage. Future research may con-
tinue to extend the parts of organizational processes that can be analyzed
by process mining techniques. For instance, we have shown how recogniz-
ing task-level events based on user interaction data can fill-in blanks in the
coverage of conventional event data used in process mining settings. Future
research could focus on other types of low-level data, such as sensor data
and network-traffic data. More importantly, future research should address
the problem that, currently, the abstracted data still only covers a fragment of
a process. In particular, the resulting task-level events only refer to the parts
of the process supported by a user interface. More generally, the results of
event-abstraction approaches are typically based on data from a single source
and are detached from process-related data from other sources. Therefore,
an important future research direction in this regard is the combination of
event abstraction and data integration. The goal must be to support the auto-
mated integration of such fragmented event data and to jointly abstract them
to a common granularity level that is meaningful for process analysis, and,
thereby, provide the basis for a truly holistic view on processes.

• From enabled analysis options to explanations and recommendations. We
have presented approaches that change event data characteristics to enable
additional process analysis options. Future research can go beyond this and
provide pointers to root causes of the misalignment between data character-
istics and data needs. For instance, in the context of detecting best-practice
violations, the cause of a frequently missing activity may be derived from
the behavior of the process executions for which this occurs. In a next step,
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approaches could even provide recommendations about how to address this
misalignment. In particular, causes for data quality issues, missing data, and
conformance violations could be identified and automated suggestions how
to resolve these could be derived from them. The final step in this regard
would be an action-oriented process mining setting [8], in which actions are
derived and initiated automatically based on diagnostics obtained through
analysis results. For instance, to address conformance issues (e.g., detected
through best-practice violations), a notification is automatically sent to a
manager based on identifying that employees repeatedly skip a mandatory
check. To address data quality issues, changes to the recording procedure
are recommended based on the results of applying event abstraction, or the
recording is even automatically enhanced to get events at the right level of
granularity in the first place. To implement this, traceability between the pro-
cess, data recording, source systems, and event data is important. Therefore,
also research on how to provide such traceability is needed.
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