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Preface

In this dissertation, I examine how differences among individuals in various dimensions of
human capital, such as health or education, evolve throughout all stages of the life cycle and
endure across generations. I explore how these differences are influenced by policies and how
they interact with economic inequalities, such as those in income or wealth. To investigate
these questions, I employ quantitative methods used in modern macroeconomic research,
linking models of individual decision-making and well-being with micro–, and macroeconomic
data. The dissertation consists of three self-contained chapters.

Chapter 1 is titled “Lifestyle Behaviors and Wealth-Health Gaps in Germany” and is
co-authored with Minchul Yum. In this chapter, we build and estimate a life-cycle model
of endogenous health and wealth formation to study the observed strong positive associa-
tion between wealth and health in Germany. Even though health insurance is universal in
Germany and out-of-pocket medical expenses are low, the relationship between wealth and
health that we document –and refer to as wealth-health gaps– is substantial. Data from
a panel of representative households suggests that individual health behaviors or lifestyles
may play a role in mediating this relationship: Richer households tend to engage in more
health-promoting lifestyles, such as physical exercise, health-conscious nutrition, or absten-
tion from smoking, than poorer households, even conditional on education, occupation, or
other observable characteristics. For that reason, we include such lifestyles in our framework
and model them as individual health efforts whose adjustment over time is costly. This allows
us to capture the habitual nature of healthy and unhealthy lifestyles that we observe in the
data.

Our estimation strategy requires the model to replicate the joint distribution of individual
earnings, labor supply, and these health efforts across age, health, and education status but
we do not target the distribution of wealth by health directly. Our model with endogenous
health can rationalize between three quarters and up to the entire empirical wealth-health
gaps, depending on age and the point of the wealth distribution we measure it. In contrast,
a model with a purely exogenous health process, where individuals cannot influence the
probability of being healthy in the future, can only account for around two-thirds of the
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gaps.
In the model, wealth-health gaps then arise on the one hand because good health out-

comes make individuals more productive and labor supply less costly, leading to higher labor
earnings and wealth. Similarly, good health outcomes affect the incentives to accumulate
wealth because of higher expected longevity and quality of life in the future. Quantitatively,
our estimated model shows that it is the second channel working through savings that con-
tributes most to the observed wealth-health relationship, as it can account for around half of
the wealth-health gap. The other channel, working through earnings is particularly relevant
for the young and asset-poor for whom earnings provide the main basis for wealth accumula-
tion. On the other hand, the wealth-health relationship can also be driven by channels that
operate in the direction from wealth to health. In particular, we demonstrate theoretically
and quantitatively that the perspective of future utility driven by high levels of wealth in-
centivizes agents to engage in more health-promoting behaviors. Thus, lifestyles can act as
a dynamic amplification vehicle, which fuels the wealth-health gaps. Quantitatively, we find
that eliminating variations in individual lifestyle behaviors reduces the wealth-health gaps
by between 12% and 29%, as compared to the economy, in which individuals can adjust their
health efforts.

Chapter 2 is titled “Efficiency and Equity of Education Tracking: A Quantitative Anal-
ysis,” and is co-authored with Suzanne Bellue. In this chapter, we investigate the long-term
aggregate and distributional effects of school tracking policies. Tracking policies describe
the separation of school children into different school tracks or types of schools, that are
typically associated with different curricula and often lead to different higher education and
labor market outcomes. While tracking is a common feature of education policy in many
countries, there is a striking variety in the age at which children are tracked across countries.
In countries where tracking occurs very early, such as Germany, tracking policies are often
held responsible for low intergenerational mobility and persistent inequality.

To evaluate the effects of a broad reform to the tracking age, we build and calibrate a
model of overlapping generations, in which school children can attend different tracks in sec-
ondary school. The school track decision, made by parents, can affect the skills a school child
accumulates in two ways: through the teaching level, or instruction pace, in each track, and
through the skills of the peers in the track. The instruction pace in each track is determined
by a policy choice aimed at maximizing aggregate skills. At the same time, the development
of skills is subject to unforeseeable shocks in each period. We demonstrate analytically that
this skill formation technology can rationalize the sometimes ambiguous evidence from the
empirical literature regarding the effects of tracking on the distribution of learning outcomes.
The chosen school track also influences higher education and subsequent labor market oppor-
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tunities as college education is less costly for graduates from only one of the tracks. Wages
for college and non-college skilled workers are determined in general equilibrium and are
therefore influenced by the distribution of human capital across all workers. The wages also
affect the school track incentives for the next generations.

We estimate the parameters of the skill formation technology using data from a repre-
sentative panel of school children in Germany. This dataset comprises independently and
repeatedly administered achievement tests across various domains, which serve as noisy mea-
sures of the latent skill variable. The remaining model parameters are calibrated on a variety
of micro and macro data for Germany in the 2010s. The model matches well the cross-
sectional distribution of school skills and labor earnings, intergenerational mobility in terms
of intergenerational income elasticities and correlations between school tracks and parental
education and income, as well as the transitions of school children through the education
system.

Using counterfactual exercises, we demonstrate that a postponement of school tracking in
Germany by four years, from age ten to age fourteen, entails an efficiency-mobility trade-off
in the long run. On the one hand, intergenerational mobility improves, as the economic
outcomes of children become less correlated with those of their parents. These mobility gains
arise primarily because there is less heterogeneity in skill accumulation during longer compre-
hensive school, resulting in smaller differences in skills across children from different parental
backgrounds and, across tracks once they are tracked later. On the other hand, postponing
tracking leads to a drop in aggregate GDP, accompanied by a reduction in aggregate human
capital in the long run. These losses arise because prolonged learning in a comprehensive
school track foregoes efficiency gains from tailored instruction levels in an early tracking sys-
tem. Moreover, we demonstrate that this trade-off only materializes in the “long-run”, when
the college wage premium has had time to adjust to the policy-induced change in the supply
of skills.

Chapter 3 is titled “Aggregate and Distributional Effects of School Closure Mitigation
Policies: Public versus Private Education”, and is co-authored again with Minchul Yum.
This shorter chapter is motivated by recent research demonstrating that the school closures
that many countries implemented in the wake of the Covid pandemic can lead to substantial,
and unequally distributed, long-term costs as measured for example in terms of income. We
illustrate that the long-term effects of policies proposed to mitigate these school closure costs,
such as additional periods of public schooling, crucially depend on the interaction between
public and private investments into children’s human capital. To that end, we set up a
simple model of human capital formation, in which the human capital of school children can
be raised both through parental investments, for example by paying for private tuition or
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by spending more time with their children, and through public investments in the form of
public schooling. Importantly, these two types of inputs are imperfectly substitutable in the
production of human capital. The degree of substitutability constitutes a central parameter
in our analysis, as existing literature provides mixed findings, especially when considering
different time horizons, different ages, or different domains of skills.

We calibrate the model to match existing estimates of the long-term effects of school
closures on cross-sectional inequality and intergenerational mobility. We then illustrate that
a targeted school closure mitigation strategy, such as a means-tested subsidy to private
education, increases intergenerational mobility and reduces cross-sectional inequality. In
contrast, the long-term effects of a program that universally prolongs school days depend
crucially on the substitutability between private and public investments in human capital
formation. Specifically, when private and public inputs are complements, longer schooling
time can even hamper mobility and increase inequality, as it disproportionately benefits
children from higher socio-economic backgrounds. Depending on the welfare function of the
social planner, such policies may thus have undesirable long-term consequences.
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Chapter 1

Lifestyle Behaviors and
Wealth-Health Gaps in Germany1

with Minchul Yum2

Abstract: We document significant gaps in wealth across health status over the life cycle in
Germany—a country with a universal healthcare system and negligible out-of-pocket medical
expenses. To investigate the underlying sources of these wealth-health gaps, we build a
heterogeneous-agent life-cycle model in which health and wealth evolve endogenously. In
the model, agents exert efforts to lead a healthy lifestyle, which helps maintain good health
status in the future. Effort choices, or lifestyle behaviors, are subject to adjustment costs
to capture their habitual nature in the data. We find that our estimated model generates
the great majority of the empirical wealth gaps by health and quantify the role of earnings
and savings channels through which health affects these gaps. We show that variations in
individual health efforts account for around a quarter of the model-generated wealth gaps by
health, illustrating their role as an amplification mechanism behind the gaps.

1 We thank three anonymous referees and the editor, Chad Jones, for their helpful comments that have
improved the paper substantially. We also thank Yongsung Chang, In Choi, Antonio Ciccone, Youngsoo
Jang, Soojin Kim, Sang Yoon (Tim) Lee, Chiara Malavasi, Serena Rhee, Michele Tertilt, Hitoshi Tsujiyama,
Johanna Wallenius, Nicolas Ziebarth and participants at various conferences and seminars for useful com-
ments and discussions. Financial support from the German Research Foundation (DFG) through CRC TR
224 (Projects A03 and A04) and the SFB 884 Political Economy of Reforms is gratefully acknowledged.

2 Department of Economics, University of Southampton and CEPR (m.yum@soton.ac.uk)
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2 CHAPTER 1. LIFESTYLE BEHAVIORS AND WEALTH-HEALTH GAPS

1.1 Introduction

A large body of literature across economics, sociology, and public health demonstrates strong
positive associations between financial and health status at the individual level. For example,
De Nardi et al. (2023) document substantial differences in wealth over the life cycle in the
United States between men with a high school degree who report being in good health and
those in poor health. In this paper, we show that large gaps in wealth by health exist in
Germany as well. These gaps appear not only within the nationally representative sample but
also within education groups. The gaps begin to open up at around the age of 25 and grow
over the life cycle before stabilizing after retirement. For example, median wealth among
healthy 60-64-year-olds (100,000 EUR) amounts to more than three times that of unhealthy
individuals in the same age group (31,000 EUR).

What explains such large gaps in a country like Germany, characterized by universal
health insurance, low out-of-pocket medical expenses, and generous sickness benefits (OECD,
2019)? Existing studies on the positive relationship between health and wealth have tended
to focus on the U.S., highlighting the role of large out-of-pocket medical expenditures and
unequal access to health insurance (e.g. De Nardi et al., 2010), or the unilateral effect of
health on labor supply and productivity coupled with the availability of disability insurance
(Hosseini et al., 2021).3 In this paper, we employ a structural framework in which individuals’
wealth and health evolve endogenously over the life cycle to investigate lifestyle behaviors as
potential drivers of these observed wealth-health gaps.

Our model explicitly allows the possibility of individuals influencing their health evolution
through their health-related lifestyle behaviors (Cawley and Ruhm, 2011; Cole et al., 2019)
in an otherwise standard heterogeneous-agent life-cycle framework. We include these en-
dogenous health behaviors given that in Germany, as in most developed countries, morbidity
and mortality are predominantly attributed to individuals’ behavioral risk factors, including
dietary risks, smoking, and physical inactivity (Darden et al., 2018; Kvasnicka et al., 2018;
OECD, 2019). Furthermore, behavioral health risks tend to be more common among people
of low socio-economic status, with evidence suggesting that divergences in health behaviors
have accelerated in recent years (Lampert et al., 2018). It has thus become ever more im-
portant to understand the consequences of healthy lifestyles not only for health inequality,
but also for wealth inequality. Our quantitative theoretical framework allows to shed greater
light on these empirical observations on health and wealth inequality.

In the model, individual health efforts increase the probability of being healthy in the

3 For a comprehensive review of the potential mechanisms underlying the positive relationship between health
and socio-economic status more generally, see, for example, Cutler et al. (2011).
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future. Good health, in turn, raises survival probability, affects labor income through pro-
ductivity and the disutility of working, and complements utility from consumption. These
channels influence economic resources through labor supply choices and affect savings deci-
sions, both of which shape wealth and health inequality. As a higher fraction of individuals
maintain the same lifestyle behaviors over time in the data, in our model health effort ad-
justment is subject to stochastic adjustment costs. This allows us to capture healthy (e.g.,
physical exercise) and unhealthy (e.g., smoking) lifestyle habits. Agents differ along several
fixed dimensions including education, discount factor, productivity type, and health type.
We include such ex-ante heterogeneity to account for additional forces driving the life cycle
evolution of health and wealth.

We estimate our model using the method of simulated moments and information from
the German Socio-Economic Panel. Our estimated model is consistent with a number of
salient features in the data. For example, the model-generated data align with the observed
joint evolution of labor supply and earnings by health and education over age, and match
the empirical age pattern of average health effort choices by education. Furthermore, the
model replicates the degree of wealth accumulation as well as wealth and income inequality
seen in Germany. It also reproduces more detailed aspects of effort choices, such as its
dispersion, persistence over time and the share of individuals making large positive and
negative adjustments or no adjustments.

We find that the estimated model accounts for between 75% to 100% of the observed
wealth-health gaps in the data, depending at which point of the distribution and which age
this is measured. In contrast, an estimated model with comparable richness in heterogeneity
but without lifestyle behaviors and thus purely exogenous health transitions explains less
than two thirds of the empirical gaps, highlighting our baseline model’s ability to rationalize
observed wealth-health gaps. We then investigate two channels behind the wealth-health
gaps that work primarily from health to wealth. On the one hand, good health outcomes
are associated with higher labor earnings, as a result of both higher labor supply and higher
productivity. This translates into larger wealth. On the other hand, good health outcomes
also affect the incentives to accumulate wealth because of higher expected longevity and
improved quality of life in the future. Having illustrated these channels using a conceptual,
simple two-period model, we conduct counterfactual exercises using our estimated life-cycle
model to quantify their relative importance. We find that the second channel working through
savings contributes quantitatively most to the wealth-health relationship, accounting for, on
average around 50% of the gap. The other channel that works through earnings is particularly
relevant for the young and asset-poor agents for whom earnings provide the main basis for
wealth accumulation.
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Finally, motivated by our empirical evidence suggesting the potential role of lifestyle be-
haviors as a dynamic amplification vehicle which fuels the wealth-health gaps, we run another
counterfactual experiment that quantifies the extent to which heterogeneity in lifestyle be-
haviors accounts for the wealth-health gaps. We find that eliminating variations in individual
lifestyle behaviors reduces the wealth-health gaps by between 12% and 29%, as compared to
the baseline model economy. This significant effect demonstrates the role of lifestyle behav-
iors that operate in the direction from wealth to health: wealthier individuals engage in more
health-promoting efforts, which dynamically feeds back into better health in the presence of
the earnings and savings channels. We further demonstrate, both theoretically and quanti-
tatively, that the anticipation of future utility resulting for example from exogenous changes
in wealth could prompt agents to modify current lifestyle behaviors, thereby influencing the
health distribution and the wealth-health gaps.

Our paper primarily intersects with a growing literature that augments structural life-
cycle models with idiosyncratic health risk to study the aggregate and distributional economic
effects of health and health-related policies. Much early research in this direction has focused
on the influence of health and mortality risk on the labor supply and savings of people around
retirement age (French, 2005; French and Jones, 2011; De Nardi et al., 2010; Kopecky and
Koreshkova, 2014). More recent studies analyze rising health care expenditures and explore
specific questions regarding the implementation and economic consequences of health care
programs in the U.S.4 Capatina (2015) and De Nardi et al. (2023) endeavor to quantify
the accumulated, life-time consequences of health, and calibrate their models to U.S. data.
While Capatina (2015) highlights the importance of the productivity and time endowment
channels that influence labor supply and precautionary savings, De Nardi et al. (2023) find
that a substantial degree of ex-ante heterogeneity and a rich health process are required to
be able to match the observed wealth-health gradient in the U.S. Building on their work,
we empirically document and study inequality in health and wealth in the case of Germany.
Notably, while De Nardi et al. (2023) study the interaction between wealth and health in an
exogenous health framework, we study this in a model with endogenous health.

In this regard, our paper is closely related to several studies that endogenize health
through some form of individuals’ effort choices in a structural framework. We build, for
example, on Cole et al. (2019), who similarly construct a model with endogenous effort
choices but focus on a very different research question; namely, the interaction between labor

4 See e.g., Hall and Jones (2007); Attanasio et al. (2010); Kitao (2014); Zhao (2014); Jung and Tran (2016);
Pashchenko and Porapakkarm (2017); Jang (2023). Much work has also been devoted to understanding
the dynamics of the insurance incentive trade-offs associated with health or disability insurance, again with
a focus on the U.S., see e.g. Low and Pistaferri (2015); Cole et al. (2019).
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market and health insurance policies. In addition to this work, a number of recent studies,
including Capatina et al. (2020), Hai and Heckman (2022), and Margaris and Wallenius
(2023), highlight the interaction between health and human capital accumulation and the
role of the latter in explaining observed socio-economic gradients in health. We follow these
insights by including two education groups in our analysis. We focus, however on the relation
between health and wealth, rather than earnings, as wealth provides a more comprehensive
assessment of the accumulated costs of poor health.

The aforementioned literature tends to look at the U.S., and often finds that health in-
surance is a crucial mechanism that amplifies the two-way relationship between health and
earnings along the income distribution. For example, several studies, including Prados (2018),
Chen et al. (2022), and Ozkan (2017), use structural models for policy counterfactual exper-
iments and conclude that a switch to more universal health care coverage could substantially
lower health-related income inequality.

Given this, Germany offers a particularly interesting case for studying the wealth-health
relationship. Most notably, it is compulsory by law for all citizens and residents to have
health insurance in Germany.5 The country moreover mandates health insurance providers
to cover a relatively generous package of benefits compared to international standards. In
general, Germany reports low levels of self-reported unmet medical needs and low out-of-
pocket medical expenses relative to its European neighbors (OECD, 2019).6 Despite these,
we document that gaps in health-related outcomes between members of low and higher
socio-economic groups are sizeable in Germany. In examining a novel mechanism—lifestyle
behaviors—our study thus offers complementary findings to a literature that has largely
focused on mechanisms such as health insurance and medical expenses to explain wealth-
health gaps.

Finally, our paper also relates to the voluminous empirical literature studying the re-
lationship between socio-economic status and health. A survey and summary of the main
empirical findings of this literature is provided in Cutler et al. (2011). We contribute to this
body of work by providing an update on the state of health-related inequalities in Germany.
In doing so, we complement other studies using this same data set, such as Lampert et al.
(2018), who employ the latter to compare the socioeconomic-health gradient in Germany to
other countries and across time.

The remainder of the paper is organized as follows. Section 1.2 sets forth a number
of empirical observations related to wealth, health, and lifestyle behaviors that guide the

5 See Appendix 1.A for a detailed discussion of the German healthcare system.
6 The German healthcare system is also characterized by the highest per capita spending among EU countries

and some of the highest rates of available beds, doctors, and nurses per population.
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development of our structural model. We then present the model economy in Section 1.3
and describe its estimation in Section 1.4. Section 1.5 provides and discusses the main
quantitative results. Section 3.4 concludes.

1.2 Empirical Observations on Health, Lifestyle Behav-
iors, and Wealth in Germany

Throughout this paper, we rely on data from the German Socio-Economic Panel (SOEP). The
SOEP is an annual representative longitudinal panel study of private households, conducted
by the German Institute for Economic Research, DIW Berlin. We use information from the
2004-2018 survey waves. We convert nominal variables into 2015 Euros using a CPI index
for inflation adjustment.

1.2.1 Health and Lifestyle Behaviors

Health Status

We measure individual health using information on self-rated health status in the SOEP.7

In every survey wave, respondents are asked “How would you rank your current health?” to
which respondents can answer Very good, good, satisfactory, less well, or poor. Consistent
with much of the literature (De Nardi et al., 2023; French, 2005), we combine the first three
categories into one healthy category and the last two into one unhealthy category.8

The left panel of Figure 1.1 shows the average share of unhealthy individuals by 10-year
age groups, starting at ages 25-34 and ending with ages 75-84. We also distinguish between
individuals according to their education level, where those in the college group have obtained
a college degree, and those in the non-college group have not. Already at ages 25-34, members
of the non-college education group are around 2 percentage points more likely to be unhealthy
than the college-educated. This gap grows over the life course. At ages 75 and older, around

7 In select survey waves, the SOEP also contains more objective health measures, such as a series of concrete
diagnoses. We use this information to construct an index of frailty, similar to that in Hosseini et al. (2022),
by adding one to the index each time an individual is diagnosed with a specific health condition. Moreover,
since 2002, the SOEP includes questions that allow to construct generic indicators of perceived physical and
mental health, called Physical and Mental Component Summary scores (PCS and MCS, respectively). In
Appendix 1.B, we check the correlation of our benchmark binary health measure and these two alternatives.
We focus on the self-reported health status measure because this maximizes the amount of data available
for our empirical analysis, given that most of the more detailed questions about health deficits only started
to be asked in 2011.

8 This procedure could mitigate potential issues related to measurement errors and also reduces computa-
tional burden when we estimate our quantitative model presented in Section 1.3.
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Figure 1.1: Average Health and Health Effort over the Life Cycle by Education
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Notes: Left: Share of unhealthy people in the SOEP over 10-year age groups, distinguishing between the
non-college-education and college-education groups. Center and Right: Average health effort by 10-year
age groups for non-college (center) and college-educated (right) individuals in the SOEP, distinguished
between unhealthy status and healthy status.

40% of non-college educated individuals are in poor health compared to around 30% of the
college-educated.

Lifestyle Behaviors

We measure lifestyle behaviors by individual health efforts—a composite measure of three
individual behaviors for which we have information. These behaviors include: (i) the fre-
quency of sport or physical exercise; (ii) health-conscious nutrition; and (iii) the daily number
of cigarettes smoked. In Germany, as in most developed countries, physical inactivity, smok-
ing, and poor diet are recognized as the most important contributors to individual health
risk (OECD, 2019). We first standardize each component so that they have mean zero and
standard deviation one (Kling et al., 2007). We then construct health effort as a weighted
sum of these, which we normalize to be in the unit interval.9 Overall, individual health effort
observations have a mean of around 0.71 and a standard deviation of 0.16. Moreover, we
observe substantial path dependence in health efforts. For example, the autocorrelation of
health efforts in a two-year interval is high at 0.76.

Figure 1.1 compares the average health effort levels for the non-college (central panel) and

9 The weights are taken from the relative loadings of each behavior on the first principal component of all
behaviors, after stripping them of variation coming from observable characteristics. Details are explained
in Appendix 1.C.
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the college-educated (right panel), separately for unhealthy and healthy individuals. Three
patterns are worth noting. First, the life-cycle patterns for each group are relatively flat.10

Second, there are large and persistent differences in average health effort across education
groups. College-educated individuals are characterized by health efforts that are, on aver-
age, around half a standard deviation higher than those non-college-educated individuals.
Third, conditional on education, unhealthy individuals consistently exert less health effort
on average, than healthy ones. Unhealthy individuals could experience physical and mental
difficulties exerting efforts (contributing to a higher health gap). At the same time, they
could also have a greater incentive to exert more efforts to recover health (Verdun, 2022).
These two countervailing forces could explain the relatively small yet still significant observed
differences across health status (around 1/4 of a standard deviation).

1.2.2 The Relationship between Health and Wealth

Germany is no different from many countries in the strong association we observe between fi-
nancial well-being and health-related well-being. To illustrate, Figure 1.2 shows the evolution
of median wealth over the life cycle, separately for healthy and unhealthy individuals in each
education group (non-college and college). Wealth is measured as net worth, as is standard in
the literature. It includes information on owner-occupied housing and other properties (net
of mortgage debt), financial and business assets, tangible assets, private pensions (including
life insurance) and consumer credits (Frick et al., 2007).11 Wealth levels are plotted on a
log/ratio scale, such that equal spaced points go up by a factor of 2.

For both education groups, the wealth levels of the healthy are consistently higher than
those of the unhealthy. This wealth-health gap is already present early on in life. The per-
centage gap is generally higher among non-college educated individuals than among college
educated ones. In both groups, the percentage gap is relative constant throughout the work-
ing years. It decreases slightly after retirement among the non-college educated whereas it
increases slightly among the college educated. The existence of these significant wealth-health
gaps in both education groups indicates that the association between wealth and health can-
not be explained solely by education. Similar exercises can, in fact, be carried out using
10This does not preclude significant age-trends in lifestyle behaviors. For instance, while sport and exer-

cise frequencies seem to decrease over age, healthy nutrition and abstention from smoking increase (see
Figure 1.C.1).

11It does not include information on pension entitlements through both company pensions and the statutory
German social pension fund as well as the pension entitlements for civil servants. Contrary to widely used
surveys in other countries such as the Panel Study of Income Dynamics, the SOEP provides information
on wealth at the individual level. This is achieved by asking the respondents for their personal share
of ownership regarding each of the above components of wealth. In our analysis, we use an average of
individual wealth across different imputation techniques.
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Figure 1.2: Median Wealth Profiles of Healthy and Unhealthy Individuals by Education
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Notes: Median wealth by 10-year age-groups and health status for non-college-educated (left panel) and
college-educated (right panel) individuals in the SOEP, plotted on a log/ratio scale.

different dimensions of socioeconomic status. For instance, occupations could, through their
potentially different toll on health, contribute to the wealth-health gap (see Figure 1.K.1).
Yet, in all cases, an independent correlation between wealth and health seems to persist,
suggesting the existence of other channels driving this relationship.

Perhaps the most natural channel of this type consists of the detrimental effect of poor
health on an individual’s ability to productively participate in the labor market. Indeed, a
large empirical literature documents that health deficits significantly contribute to employ-
ment decline (Blundell et al., 2023b). Moreover, even when they are working, individuals in
worse health tend to reduce their hours and are less productive, as reflected in their lower
wages relative to healthy workers. Together, these factors contribute to the significantly
lower labor incomes observed for unhealthy individuals.12 Worse health thus leads to lower
available resources to accumulate wealth over the life cycle.

Yet, as pointed out by Poterba et al. (2017) and De Nardi et al. (2023), a simple ac-
cumulation of lost labor income due to poor health over the lifetime does not explain the
majority of the association between health and wealth.13 In light of these results, we explore
12Relatedly, Hosseini et al. (2021) decompose the channels through which worse health leads to reduced

labor income in the U.S. They find that the most important driver behind declines in earnings is exit from
employment. In Appendix 1.D, we investigate the effect of health on labor income in the SOEP data using
an instrumental variables approach. Our results indicate that being healthy increases the probability of
being employed by an estimated 10.8%, even conditional on employment in the past two periods. Moreover,
when working, good health increases labor income by around 10%. The majority of this increase is due to
longer working hours, which increase by over 6%, while the rest is explained by higher wages.

13In their findings for the U.S., Poterba et al. (2017) argue that between 20 and 40% of the asset costs of poor
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the importance of individual health behaviors as an additional mechanism underlying the
wealth-health relationship.14

Health Efforts and the Wealth-Health Relationship

Given that an individual’s health outcomes benefit from better health behaviors (Darden
et al., 2018; Kvasnicka et al., 2018), variations in that latter could in part explain the con-
siderable wealth-health gap observed in the data. Moreover, economic theory suggests that,
in a world where survival is endogenous and can be influenced by healthy lifestyles or invest-
ments into health, the return to such efforts should increase in wealth, as richer people gain
relatively more from prolonging their life.15

In line with this, Figure 1.3 illustrates that, indeed, healthy behaviors increase with
wealth in the SOEP data. The figure displays the average level of our constructed health
effort measure across wealth quartiles, conditional on education and age group. Health effort
consistently rises in wealth. The increase is especially pronounced for non-college-educated
45-64-year-olds, where average effort increases by almost one standard deviation when going
from the bottom to the top wealth quartile.

These effort differences by wealth might be driven by the fact that richer people can
simply afford more or higher quality health investments thanks to their greater financial
resources. We argue, however, that this is not the case here since our health effort measure
contains variables that are mostly behaviorally driven. Moreover, in the case of abstention
from smoking, higher health effort actually requires lower financial expenditure.

To further investigate the role of health-related behaviors in influencing the wealth-health
relationship net of potentially confounding factors, we estimate the following equation:16

health are attributable to lower income and annuity income. We find similar effects in our quantitative
results. De Nardi et al. (2023) estimate that even adding out-of-pocket medical expenses does not close
the wealth-health gap.

14A number of other influences of wealth on health have been investigated in the literature, including the
direct effects of material resources on health, such as living conditions, the affordability of better health
care, or certain psychological effects that can translate into better physical health. These studies draw
mixed conclusions, see for example Cesarini et al. (2016); Schwandt (2018), and a survey in O’Donnell
et al. (2015).

15We illustrate this argument in a very simple model even without monetary investments in Section 1.5.2.
The idea is that, when survival is endogenous, what matters for inter-temporal decisions is not just the
marginal utility of consumption, but the levels of utility, which increase in wealth. Similar theories that
typically include monetary investments into health (i.e. where health can be “bought”) have been set forth
in several seminal papers, such as Rosen (1988), Becker (2007), and Hall and Jones (2007), where they
serve as the main explanation for the rising share in healthcare spending in the U.S.

16We note that we do not intend to estimate causal effects of wealth on health from this regression. Instead,
the purpose of this exercise is to illustrate how dynamic correlations between current wealth and future
health are affected by the presence of health efforts, which can play a role of a mediating force behind
such dynamic relationships. In fact, it is the difficulty of estimating causal effects of wealth on health in a
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Figure 1.3: Mean Health Effort by Wealth Quartiles
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Notes: Average health effort by age group and wealth quartiles for non-college-educated (left panel) and
college-educated (right panel) individuals in the SOEP data.

Healthi,t+k = β1Wealthi,t + (β2Efforti,t) + γXi,t + ui,t, (1.1)

where Xi,t includes a constant, age, age2, years of schooling, labor income, hours worked,
lagged health, gender, marital status, labor force status, type of health insurance (private
or public), year dummies, number of children in the households, as well as a measure of
individual patience.17 Row (1) in Table 1.1 reports the estimated coefficients β̂1 of wealth on
health in the current year t and in a future year t+ k for k = 1, 2, 3. The coefficients confirm
a persistent positive correlation between wealth and current and future health, net of other
confounding influences.

Row (2) reports the estimated coefficients on wealth, while including current health effort
as an additional regressor. The estimated coefficients on wealth, β̂1, decrease by 6-8% across
all horizons of health. That is, a non-negligible share of the estimated effect of wealth on
current and future health can be explained by variations in health effort. This suggests that
health effort can mediate the positive relationship between wealth and health. At the same
time, the estimated coefficients on health effort, β̂2 are all positive and increase with the
horizon of health, indicating that our measure of health effort captures aspects of lifestyle

reduced-form way that, amongst other things, motivates our structural analysis in the following sections.
17We include patience in an attempt to control for unobserved discount factor heterogeneity that could be

correlated with individual health evolution and health behaviors but also wealth. Due to the fact that
detailed wealth information is only available every 5 years in the SOEP, we cannot directly estimate a
version of (1.1) that includes individual fixed effects. Section 1.4 details how we measure patience from the
data, as our quantitative model also features discount factor heterogeneity.
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Table 1.1: Effect of Wealth on Current and Future Health, with and without Effort

Effect on Healthi,t+k
(i) (ii) (iii) (iv)

k = 0 k = 1 k = 2 k = 3
(1) Wealthi,t 0.106 0.111 0.134 0.139

(0.035) (0.031) (0.043) (0.048)

(2) Wealthi,t 0.100 0.103 0.124 0.128
(0.033) (0.036) (0.039) (0.044)

Efforti,t 0.103 0.148 0.170 0.192
(0.015) (0.015) (0.016) (0.017)

(1) R2 0.299 0.253 0.234 0.215
(2) R2 0.301 0.256 0.238 0.219

Notes: Estimated coefficient β̂1 from equation (1.1) in row (1), and β̂1 and β̂2 in row
(2). Columns (i) - (iv) correspond to separate regressions for k = 0, 1, 2, 3. Numbers in
parentheses are heteroskedasticity-robust standard errors. The estimated coefficients and
standard errors of wealth are multiplied by 107. N = 24, 928.

behaviors that positively affect the probability of being healthy, and that these effects take
time to materialize.

The empirical observations presented in this section paint a clear picture. There exists
a strong association between individual health and financial resources in Germany. These
wealth-health gaps grow substantially in absolute terms over the working career and per-
sist even after controlling for obvious potential confounding factors, such as education and
occupation. We provide suggestive evidence that variations in individual lifestyle behaviors
play an important role in explaining these gaps. Over time, positive wealth gradients in
efforts could translate into better health outcomes, which in turn are associated with higher
earnings.

The dynamic nature and mutual dependencies of these effects make empirically assessing
the relative importance of the different mechanisms underlying the wealth-health relation-
ship particularly challenging without a structural framework. In the following sections, we
therefore construct and estimate a model around the joint evolution of wealth and health of
heterogeneous agents over the life cycle that allows us to disentangle the contribution of the
different channels.
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1.3 Model

1.3.1 Demographics

Agents enter the model at the beginning of their working career at age j = 1 and live at most
for J periods. A period corresponds to two years. They decide how much to work for every
period until age jR, when they retire and consume out of their savings and pension benefits.

Agents are ex-ante heterogeneous along several dimensions. First, education status e can
either be high (e = 1), corresponding to college education, or low (e = 0), corresponding to
no college education. Second, agents also differ in their fixed discount factor β. Moreover,
we allow agents to be different in their productivity type θ, which affects life-cycle wage
offers (Storesletten et al., 2004). Finally, agents differ in their fixed health type η, which
influences the health transition over the life cycle. We think of these health types as primarily
capturing heterogeneity in health evolution that stems from factors that occur before agents
enter the model (such as child and adolescent health and lifestyles or family environment and
upbringing) or innate and genetic heterogeneity.18

1.3.2 Health and Lifestyle Behaviors

At every age j, agents can be either healthy (hj = 1) or unhealthy (hj = 0). Being unhealthy
affects economic outcomes in several ways. First, it decreases the survival probability from
age j to j + 1, denoted by Sj(hj, e), which also depends on age and education. Second, it
results in productivity loss when working, which manifests in a constant education-specific
productivity penalty. Third, poor health affects the disutility incurred from working and the
marginal utility derived from consumption. Finally, it also affects the utility costs associated
with maintaining a healthy lifestyle.

We view lifestyles as being the result of health effort choices fj ∈ [0, 1]. Analogous to the
definition in Section 1.2, we think of this level as a compound measure of all the efforts an
individual makes to lead a healthy lifestyle. Agents enter every period j with a health effort
level fj−1, chosen in the past period. They then decide whether to change their health effort
level from fj−1 or not. This decision is subject to a stochastic adjustment cost drawn from
an age-dependent uniform distribution χj ∈ U [0, Bj] ≡ Hj(χ), which has to be paid if the
agent decides to change her effort level relative to her previous level fj−1.19 The inclusion

18In their analysis of the joint wealth and health distribution in the U.S., De Nardi et al. (2023) find that
inherent differences in time preferences across fixed health types are a substantial driving force of the
observed wealth-health gradient. As detailed in Section 1.4.2, we also allow the initial conditions to be
correlated with each other, in line with the data.

19Stochastic adjustment costs are widely used in different contexts such as firm investment and price ad-
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of such a cost is motivated by the fact that a relatively high number of people in the data
do not adjust their health efforts over time. Intuitively, this captures the idea of habits in
health-related lifestyle behaviors.

Aside from a discrete decision on adjustment, we maintain the assumption that exerting
health effort fj comes at a direct contemporaneous utility cost, as in Cole et al. (2019). This
utility cost φj(fj;hj, e) is allowed to differ by age, health status and education. The depen-
dence on education could capture any advantages more educated people have when exerting
efforts, such as better neighborhoods or social networks, which could mitigate disutility of
exerting healthy behaviors (Cutler and Lleras-Muney, 2010).

The benefit of leading a healthy lifestyle is that the latter increases the probability of being
healthy in j + 1, denoted by π(hj+1 = 1|hj, fj, fj−1, e, η). This probability firstly depends
on the fixed health type η. Moreover, it depends not only on health efforts undertaken
in period j, but also on those in the previous period. This assumption at least partially
accommodates the fact that healthy lifestyles take time to materialize and may have health
benefits that persist into the future (Cutler et al., 2011). Through its effect on health,
higher health effort is then also associated with better survival prospects, given that survival
probability increases in health. Finally, we let this probability be education-specific to allow
for potential advantages in good health outcomes stemming from higher education net of its
effect on efforts, for example through better living conditions.20

1.3.3 Preferences

Agents derive utility from consumption c and disutility from hours worked n. We assume
that n can take a value from {0, np, nf}, allowing for adjustments along both extensive and
intensive margins. Working in age j implies a utility cost ϕj(nj;hj, e) that decreases in
current health and is age- and education-dependent. This captures the fact that continuing
to work when unhealthy may be more inconvenient.

Moreover, we assume that health affects the utility of consumption, where the effect is
governed by κ(hj). This takes a value of one if healthy and κ̃, which is less than one if
unhealthy. We include this complementarity between health and consumption utility as,
for the great majority of goods and services, there is evidence that individuals enjoy their

justment in order to generate behaviors that often feature inaction. See Khan and Thomas (2008) for an
overview.

20Moreover, this dependence on education allows us also to capture effects that cannot be picked up by
our health effort measure, because of the way we construct it. For example, these could be more regular
preventive doctor visits of the better educated because of better knowledge or access to information that
would not show up in our data.
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consumption more when healthy.21

Under these assumptions, per-period utility then takes the following form:

u(cj, nj, fj;hj, e) = κ(hj)
(
c1−σ
j

1 − σ
+ b

)
− ϕj(nj;hj, e) − φj(fj;hj, e), (1.2)

where σ denotes the inverse of the elasticity of intertemporal substitution and b is a utility
constant that is added to ensure that the value of being alive is always greater than the
value of being dead (Hall and Jones, 2007). We let this utility constant be also dependent on
health through κ(hj). Without this, the utility level would shift up for the unhealthy with
an empirically reasonable value of σ > 1, which could result in higher utility of life for the
unhealthy relative to the healthy.

The addition of this constant b has implications for the levels of future utility. Since
survival is endogenous and can be influenced by health effort, the future utility levels play a
role in shifting individual effort choices. This is in contrast to standard dynamic problems,
where agents only care about marginal utility in each given period of life. The dependence
on future utility levels through endogenous survival therefore incentivizes richer individuals
(who can expect to have higher future utility levels through a longer life length) to increase
their health efforts (Becker, 2007). This is because the return to health effort, namely the
ability to enjoy a longer and healthier life, increases with wealth—one of the reasons why we
expect our model to generate a wealth gradient in health efforts, as in the data. We explore
this mechanism both theoretically and quantitatively in Section 1.5.2.

1.3.4 Earnings, Taxes and Transfers

When working in age j, agents receive gross labor income equal to wj(hj, e, θ, zj)nj. The wage
offer wj(hj, e, θ, zj) consists of a deterministic component λj(hj, e) that depends on health
hj and education e as well as the fixed productivity type θ and persistent idiosyncratic
productivity risk zj:

wj(hj, e, θ, zj) = exp(λj(hj, e) + θ + zj) (1.3)

We include the fixed effects θ to allow for the possibility that factors beyond education, age,
and health can shift wage profiles (Low and Pistaferri, 2015).
21For example, Finkelstein et al. (2013), using data from the U.S. Health and Retirement Survey, observe a

decline in marginal utility of consumption when health deteriorates; medical goods and services, such as
nursing care, being the exception. Similarly, Blundell et al. (2023a) find that the resulting consumption
drop of non-durable goods after an adverse health shock comes mainly from a change in the utility of
consuming them rather than from the effect of health on resources.
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We incorporate progressive labor income taxation captured by T (yj, ȳ) (Heathcote et al.,
2017), where yj denotes gross labor income and ȳ refers to its average in the economy.
In addition, agents are provided with transfers T (cj, hj, nj) that incorporate two types of
welfare programs. First, a minimum consumption c̃ is guaranteed by the government to
every individual, so that T (cj, hj, nj) includes c̃ − cj if cj < c̃. This could capture various
means-tested social safety programs in Germany that are especially relevant to those with zero
labor income, in particular Germany’s basic social security provisions. We also incorporate a
state-contingent transfer to capture sickness benefits, which would provide insurance against
adverse health shocks. Specifically, T (cj, hj, nj) includes T̃ > 0 if an agent is unhealthy
(hj = 0) and does not work (nj = 0).22 Finally, the government provides pension benefits
P (e), which are paid out in retirement periods.

1.3.5 Individual Optimization Problems

We first describe the individual optimization problem of a working-age agent (j < jR). At
the beginning of each period j, the agent learns about her current health realization hj and
productivity draw zj. At this point, the state variables are composed of a vector given by
sj = (e, β, θ, η, aj, hj, zj). Given (sj, fj−1), the value function at the beginning of age j is
then given by:

Vj(sj, fj−1) = EχjMj(sj, fj−1, χj), (1.4)

where Mj denotes the interim value after the stochastic effort adjustment cost draw χj is
realized. This is given by:

Mj(sj, fj−1, χj) = max

W adj
j (sj, fj−1, χj)︸ ︷︷ ︸

value of adjusting effort

, W not
j (sj, fj−1)︸ ︷︷ ︸

value of not adjusting effort

 . (1.5)

Here, W adj
j is the value of adjusting health effort relative to its level in the previous period,

which is given by:

W adj
j (sj, fj−1, χj) = max

cj ,aj+1≥0
fj∈[0,1],nj∈{0,np,nf}


u(cj, nj, fj;hj, e) − χj

+βSj(hj, e)Ehj+1,zj+1|ΩjVj+1(sj+1, fj)

 , (1.6)

22In Germany, an integral part of the health insurance system consists of sickness benefits provisions that
are paid to insured people in case they become incapable of working due to sickness (disability).
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subject to

cj + aj+1 ≤ aj(1 + r) + T (cj, hj, nj) + wj(hj, e, θ, zj)nj − T (wj(hj, e, θ, zj)nj, ȳ)
hj+1 = 1 with prob. πj(hj+1 = 1|hj, fj, fj−1, e, η)

= 0 with prob. 1 − πj(hj+1 = 1|hj, fj, fj−1, e, η).

That is, the adjustment cost χj must only be paid when an agent decides to change her health
effort relative to her previous level. Ωj refers to the relevant subset of the state variables in
period j used for taking conditional expectations.

Finally, W not
j is the value of not adjusting health effort:

W not
j (sj, fj−1) = max

cj ,aj+1≥
¯
aj

nj∈{0,np,nf}


u(cj, nj, fj−1;hj, e)

+βSj(hj, e)Ehj+1,zj+1|ΩjVj+1(sj+1, fj−1)

 , (1.7)

subject to

cj + aj+1 ≤ aj(1 + r) + T (cj, hj, nj) + wj(hj, e, θ, zj)nj − T (wj(hj, e, θ, zj)nj, ȳ)
hj+1 = 1 with prob. πj(hj+1 = 1|hj, fj−1, fj−1, e, η)

= 0 with prob. 1 − πj(hj+1 = 1|hj, fj−1, fj−1, e, η).

During retirement periods (j ≥ jR), the optimization problem reduces to a standard
consumption-savings problem in combination with choosing whether or not to adjust health
effort and, in the affirmative, to which level. Thus, the interim value function (1.5) becomes:

Mj(sj, fj−1, χj) = max

Radj
j (sj, fj−1, χj)︸ ︷︷ ︸
value of adjusting

, Rnot
j (sj, fj−1)︸ ︷︷ ︸

value of not adjusting

 (1.8)

where the values of adjusting effort, Radj
j , and not adjusting effort, Rnot

j , during retirement
are now defined as

Radj
j (sj, fj−1, χj) = max

cj ,aj+1≥0
fj∈[0,1]


u(cj, 0, fj;hj, e) − χj

+βSj(hj)Ehj+1|ΩjVj+1(sj+1, fj)

 , (1.9)



18 CHAPTER 1. LIFESTYLE BEHAVIORS AND WEALTH-HEALTH GAPS

Rnot
j (sj, fj−1) = max

cj ,aj+1≥0


u(cj, 0, fj−1;hj, e)

+βSj(hj)Ehj+1|ΩjVj+1(sj+1, fj−1)

 , (1.10)

subject to the constraints

cj + aj+1 ≤ aj(1 + r) + P (e)
hj+1 = 1 with prob. πj(hj+1 = 1|hj, fj, fj−1, e, η)

= 0 with prob. 1 − πj(hj+1 = 1|hj, fj, fj−1, e, η)

Thus, during retirement, expectations are only made over future health realizations.

1.4 Estimation

1.4.1 Estimation Strategy

For the estimation of our model, we adopt a two-step strategy. In the first step, a set
of parameters are set or estimated externally without using our model. Some of these,
in particular the survival probabilities and the parameters governing the health transition
probabilities are estimated directly from the SOEP data (waves 2004–2018). For the others,
we set their values in line with the literature.

In the second step, we estimate the remaining set comprising 42 parameters using a
moment matching estimator that minimizes the distance between model-implied moments
and the corresponding empirical moments, taking as given the parameter values determined
in the first step. Most importantly, we require the model to match the joint distribution of
earnings and labor supply by age, health and education as well as the joint distribution of
health efforts by age, health and education.23 This results in 64 target empirical moments
that are estimated from the data or taken from other sources, and summarized together with
the parameters in Table 1.2.24

Formally, let Θ0 be a vector of the 42 parameters to be estimated and ∆̂ be a vector of
the 64 empirical moments that we want to match. Our structural model provides a mapping
from a set of parameters Θ to the model-implied moments, denoted by a function h(Θ). The

23We do not explicitly target the joint distribution of wealth and health over age. This is because one of our
key quantitative exercises is to investigate how much of the observed positive wealth-health association can
be generated through the forces present in our model.

24Table 1.E.1 in the Appendix provides the full list of target statistics.
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method of simulated moments estimator of Θ0 is then given by

Θ̂ = arg min
Θ

(∆̂ − h(Θ))′W (∆̂ − h(Θ)), (1.11)

where W is a 64-by-64 weighting matrix. The standard errors of each individual component
of ∆̂ (i.e., δ̂1, ..., δ̂64) are estimable in our case, although the full variance-covariance matrix
of ∆̂ is unknown. For that reason, we follow the algorithm proposed by Cocci and Plagborg-
Møller (2021) to estimate the standard errors of our estimates Θ̂. Their strategy first obtains
the worst-case standard errors by assuming that all elements of ∆̂ are perfectly correlated
with each other, which bounds the variance of any linear combination of its elements and
therefore the variance of the estimator Θ̂. They then show that one can use an efficient
selection of moments for every parameter that minimizes the worst-case estimator variance
when the model is over-identified. We describe the algorithm to compute the standard errors
and justify its use in detail in Appendix 1.E. The resulting estimates and standard errors are
reported in the second and third columns of Table 1.2.

1.4.2 Model Parameters

As is well known for the application of the method of simulated moments, some moments are
more informative for particular parameters although there is no one-to-one mapping between
them. We now explain these links intuitively along with the description of the parameters
belonging to the first step.

Demographics

We estimate the model at a biannual frequency so as to align with the frequency of health
effort variables in our micro data. The first model period (j = 1) corresponds to age 25, so
that agents enter the model after having obtained an education level. We assume that agents
live at most until age 99, so that J = 38 with a model period of two years. Retirement age
is set at 65 (jR = 21).

Preference: Consumption/Saving and Labor Supply

We set the inverse of the elasticity of intertemporal substitution to σ = 2, a commonly-used
value in the literature. The effect of poor health on the marginal utility of consumption, κ̃,
is estimated internally to match the consumption differences between healthy and unhealthy
25-64 year-olds in the data (1.16). Note that in the model, a certain degree of consumption
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differences across health types is also endogenously generated. We estimate κ̃ = 0.872, which
implies a 13% loss for the unhealthy.

Next, we specify the disutility of working ϕj(nj;hj, e) as a combination of an age-,
education-, and health-dependent shifter and a standard constant-Frisch-elasticity function:

ϕj(nj;hj, e) = ν
hj
j exp(νeI{e = 0})

n
1+1/γ
j

1 + 1/γ . (1.12)

Thus, the labor supply disutility shifter is a combination of age- and health-specific coefficients—
ν
hj
j —and νe, which determines extra disutility for those with a lower education level. Several

labor supply patterns in the data motivate our parametric assumptions. As shown in the
left panel of Figure 1.5, employment rates over age are hump-shaped with substantial gaps
across health status. Moreover, there is a robust gap in employment rates between the edu-
cation groups, as shown in the right panel of Figure 1.5. We estimate the above parameters
internally to match two sets of moments that capture these patterns. These are the average
employment shares among the healthy and unhealthy, by the age groups 25-34, 35-44, 45-54,
and 55-64 and the average ratio of the employment rate of the college-educated to that of non-
college educated (1.24). Given these nine target moments, we estimate nine parameters—νhj

for j ∈ {1, 8, 13, 20} and h ∈ {0, 1} as well as νe—while interpolating νhj using piece-wise
cubic splines for each h to obtain its value for all j.

The parameter γ is the Frisch elasticity of both intensive and extensive labor supply and
is set to γ = 1, as is standard in the literature. We set np = 0.5, nf = 1, and n̄ = 3 so that
full-time work is one third of the total time endowment.

Preference: Lifestyle Behaviors

Health effort is a key and novel endogenous variable in our model. Its dynamics at the
individual level are influenced by two kinds of utility costs in the model. Our aim is to
parameterize such costs parsimoniously while being empirically consistent with the effort
evolution across agents and over age.

We first specify the contemporaneous disutility incurring from exerting health effort level
fj as a combination of age-, education-, and health-dependent effort cost shifters, and a power
function that increases with efforts, with the curvature parameter ψ shaping the degree of
responsiveness in efforts:

φj(fj;hj, e) = ι
hj ,e
j

f
1+1/ψ
j

1 + 1/ψ . (1.13)

To reproduce the education and health gradients in efforts presented in Figure 1.1 in
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Section 1.2.1, we adopt age-specific coefficients ιhj ,ej for each health status hj and education
e. These empirical patterns are well summarized in the target moments, which consist of the
mean health effort observed in the data by the age groups 25-34, 35-44, 45-54, 55-64, 65-74
and 75-84, separately for each health status and education. To match these 24 moments,
we estimate 16 parameters—ι

hj ,e
j for j ∈ {1, 12, 20, 31}, h ∈ {0, 1} and e ∈ {0, 1}—while

interpolating ιhj ,ej using piece-wise cubic splines for each h and e. Next, we internally estimate
the curvature parameter ψ = 1.115 to match the empirical dispersion of efforts (standard
deviation of 0.16).

The other kind of the utility cost concerns the distribution of the stochastic effort adjust-
ment costs. This dynamic adjustment cost is crucial in governing the proportion of agents
who choose not to adjust their efforts. In the data, this share increases with age, as reported
in Table 1.2. To replicate this pattern, we parameterize the age-dependent upper bound of
U [0, Bj] as

Bj = ς0 exp(ς1(j − 1)). (1.14)

and estimate the two parameters—ς0 and ς1—to match the share of individuals not adjusting
efforts for three age groups: 25-44, 45-64, and 65-84.

Next, we internally estimate the utility constant to b = 13.1, such that the model-implied
value of a statistical life year (VSLY) is equal to 8.49 times average annual per capita con-
sumption. The VSLY describes the average utility-equivalent value that individuals in our
model would attach to one extra year of life. In quantitative models with endogenous sur-
vival, the VSLY can be defined by equalizing the average flow utility of a life year across
individuals with average consumption, multiplied by average marginal utility of consumption
so as to transform this into utility units, as in Glover et al. (2023):25

ū(cj, nj, fj;hj, e) + b = ∂̄u

∂c
× 8.49c̄︸ ︷︷ ︸

VSLY

. (1.15)

We take the empirical target for the VSLY from a meta-analysis of value of a statistical
life estimates in OECD (2012), who report a value of around 4.7 million 2005-USD among
a sample of EU countries.26 We transform this value into a VSLY of around 140 thousand
2018-EUR using the average age (44.4 years) and average life expectancy at that age (34.8

25Since our model frequency is two life years, we are technically comparing the value of two extra life years
to average consumption over two years when estimating b. Thus, we can still use the ratio of 8.49 as our
target statistic.

26The estimates are obtained from surveys, where participants are asked about their willingness to pay for
small reduction in mortality risks. The results are in Table 6.1 in OECD (2012). In comparison to other
estimates in the literature (such as Glover et al. (2023)), this is a rather conservative estimate.
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Figure 1.4: Estimated Conditional Survival Probabilities by Education and Health
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Notes: Probability of survival for two years conditional on being alive at a given age, coming
from a probit model of survival on a cubic polynomial in age estimated on SOEP data. Survival
probabilities are estimated separately for non-college and college individuals and by health status.

years) in Germany in 2018 and under the assumption of a 1% annual discount factor (Glover
et al., 2023).

Survival Probability

We estimate the two-year survival rates Sj(hj, e) directly from the data using information on
deaths of survey respondents contained in the SOEP. Specifically, we fit a probit model of
survival up to age j+1 on a cubic polynomial in age by health status at age j and education.
The resulting estimated conditional two-year survival probabilities are plotted in Figure 1.4.27

Conditional on being alive at a given age, healthy people are more likely to survive the next
two years than unhealthy people. This difference increases with age. Moreover, at all ages,
higher educated people have higher chances of survival than lower educated people although
the differences driven by education are relatively small (Pijoan-Mas and Ríos-Rull, 2014).

Health Evolution and Fixed Health Types

The probability of being healthy in the next period is a function of an individual’s age,
education, current health, and past and present health efforts. On top of that, we allow the
health evolution to depend on unobserved fixed type, which we consider arising primarily
27To check that the estimated survival rates are reasonable and do not suffer from a lack of tracking the reasons

respondents exited the SOEP survey, we compare the results in Figure 1.4 with the German Statistical
Office’s mortality risk tables. Doing so largely confirms our estimates.
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from different initial conditions before the age of 25 when agents enter the model. As such,
they can originate from inherent genetic predispositions but also from differences in family
environments and lifestyles during childhood and adolescence. Given the inclusion of the
unobserved heterogeneity, we employ a two-step group fixed effects estimator (Bonhomme
et al., 2022) to estimate the health evolution process.

The first step in the estimation involves classifying individuals into a small number of
discrete fixed health types η, based on the kmeans clustering algorithm. The goal is to
group individuals together that are most similar in terms of a latent type which influences
their health evolution net of observable characteristics. To that end we define a vector of
individual-specific moments that are likely informative about an underlying latent health
type. These moments include the number of doctor visits, self-rated health status (5-point
scale), inpatient nights in a hospital, both physical and mental health summary scores (PCS
and MCS) and the body mass index. Details on these moments, as well as the clustering
procedure are given in Appendix 1.F. We run the classification repeatedly while increasing
the number of clusters and randomizing the initial group centers. We then compare the total
within-cluster sum of squares of each cluster solution to find a suitable number of clusters.
We end up with two fixed health types η ∈ {0, 1}, where around 2/3 of individuals in our
data are of the high health type η = 1 and the rest are of the low health type η = 0.28

In the second step, we estimate the probability of being healthy in the next period con-
ditional on current and past health effort, education, current health and these fixed health
type groups, πj(hj+1 = 1|hj, fj, fj−1, e, η), directly from the data with the following logistic
model:

πj(hi,j+1 = 1|hi,j, fi,j, fi,j−1, ei, ηi) =(
1 + exp (−(π0

i,j + λ1fi,j + λ2fi,j−1 + δhi,j + γ1ei + γ2ηi + γ3Ai))
)−1

,
(1.16)

where hi,j is a dummy variable that equals 1 if person i is healthy at age j, fi,j is our
compound health effort measure, ei is a dummy variable equal to 1 if person i has college
education, ηi is a dummy variable that equals 1 when individual i’s health type is high, and
Ai is a vector of dummies that are equal to 1 when individual i is a member of a 10-year age
group.

We present the exact logistic estimates from (1.16) that we use in the model in Table 1.G.1
along with detailed discussions in Appendix 1.G. Notably, the estimated effects of current

28When comparing the total within-cluster sum of squares as a measure for cluster homogeneity, a kink
appears most noticeably at two and three clusters. We opted for two health type groups, which offers a
compromise between maintaining computational feasibility and accounting for a sufficient degree of het-
erogeneity.
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and past health effort are positive and quantitatively meaningful. The estimates imply that,
for example, a 75-year-old college-educated individual of the high health type can increase
her probability of being healthy by almost 2% if she is currently healthy and increases just
her contemporaneous health effort by one standard deviation above the average. If she
is currently unhealthy this effort improvement will raise her probability of being healthy
next period by over 7%. Moreover, by increasing effort for two consecutive periods to one
standard deviation above the mean, the probability will be increased by 15% if she is currently
unhealthy and over 3% if she is currently unhealthy. Generally speaking, past health effort is,
on average, slightly more productive in increasing the healthy probability, which underlines
the importance of considering the dependence of good health outcomes on a longer history
of healthy lifestyles.

We gauge the empirical realism of our health transition parameter estimates in detail in
Appendix 1.G and discuss their implications for disease prevalence and mortality in compar-
ison to existing estimates in the medical literature. Relative to the latter, we conclude that
our estimated effectiveness of past and present health effort in improving health outcomes is
rather conservative.

Wage and Fixed Productivity Types

For estimation, we augment the wage equations (1.3) with the specification of the idiosyn-
cratic risk zj and statistical error terms:

lnwj = λj(hj, e) + θ + zj + εj

zj = ρzj−1 + υj,
(1.17)

where θ ∼ N (0, σ2
θ), εj ∼ N (0, σ2

ε), and υj ∼ N (0, σ2
υ). Thus, log wages are a combina-

tion of an observed, deterministic component λj(hj, e) that is dependent on education and
health, as well as an idiosyncratic component that consists of unobserved fixed productivity
heterogeneity θ and persistent shocks zj.29

We estimate the deterministic component λj(hj, e) internally within our structural model
to address selection bias that might arise due to the well-known issue that we do not observe
wages for non-working individuals and it is likely that individuals select into employment
based on their observable characteristics, including their health status (Low and Pistaferri,

29Although the wage equations (1.3) in the model do not include transitory shocks εj , the empirical equations
do so in order to identify fixed productivity types θ (Storesletten et al., 2004). We abstract from correlations
of fixed productivity or idiosyncratic shocks with observables, in particular health and education, as is
common in the literature (e.g., Low and Pistaferri (2015)).
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2015). Specifically, we parameterize it such that for each education group e,

λj(hj, e) = ζe0 exp(ζe1(j − 1) + ζe2(j − 1)2) × (1 − wepI{hj = 0}). (1.18)

The coefficients ζe0 allow the two education groups to have a different intercept in their de-
terministic wage profile. The exponential term captures different trajectories of productivity
over age by education group. The last term is a constant productivity penalty wep that cap-
tures productivity losses due to poor health. In line with the literature (Hosseini et al., 2021),
we allow these contemporaneous effects of poor health to differ by education, which might
capture, for example, the fact that non-college workers are more likely to work in physically
demanding jobs, where poor health might be more consequential in terms of productivity
losses. We then estimate these eight parameters—ζe0 , ζe1 , ζe2 , and wep for e ∈ {0, 1}—internally
so that the model matches the mean (two-year) earnings by education and health status for
the age groups 25-34, 35-44, 45-54, and 55-64 (16 moments in total) in the data.

Next, we estimate the distribution of fixed productivity types and the persistence of id-
iosyncratic shocks directly using individual-level wage data in the SOEP, using a standard
procedure in the literature (De Nardi et al., 2023; French, 2005), as detailed in Appendix 1.F.
This yields an estimated persistence of idiosyncratic productivity shocks of ρ = 0.975 and
provides a distribution of empirical individual-specific productivity fixed effects estimates θ̂i.
To recover the fixed productivity types used in our model, we classify this distribution of
θ̂i into two discrete types, similar to Low and Pistaferri (2015), corresponding to low pro-
ductivity θl (the bottom 50%), and high productivity types θh (the top 50%).30 We then
set θl = −0.29 and θh = 0.29 symmetrically, such that the variance of the discrete types
corresponds to the estimated variance σ2

θ = 0.084. Given the estimates of the persistence
of idiosyncratic shocks and the fixed productivity type distribution, the variance of the id-
iosyncratic productivity component σ2

υ is estimated internally such that the model matches
the observed variance of log earnings (0.59) in the data.

Initial Distribution

We construct the initial distribution of agents over the state space upon entry into the
model directly from the data. We first describe the distribution over the fixed types. As
before, education distinguishes college (31%) and non-college education (69%). As detailed
above, the fixed productivity types are discretized into two equal-sized masses, and the fixed
30We also experimented with three discrete productivity types as in Low and Pistaferri (2015), which did

not alter the results significantly. As in Low and Pistaferri (2015), we classify the individuals who never
work in our sample and, hence, do not have an estimated productivity fixed effect into belonging to the
low productivity type.
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health types are estimated using the kmeans clustering algorithm, leading to 63% of the
high health type (η = 1) and 37% of the low health type (η = 0). The remaining source
of ex-ante heterogeneity in our model comes from differences in the discount factor β. We
discretize the distribution of β into two equal-sized masses, βl and βh, using information
about time preferences coming from an incentivized experiment conducted in the 2006-wave
of the SOEP.31 Since this information does not inform the levels of the discount factors in
the model directly, we assume that βl = µβ − δβ, and βh = µβ + δβ, and estimate µβ and
δβ internally, such that our simulated data matches the following seven relevant moments in
the data: the median wealth for the age groups 25-34, 35-44, 45-54, 55-64, 65-74, and 75-84
(as shown in the left panel of Figure 1.8) and the Gini-index of wealth (0.746).

We require the joint distribution over education, unobserved health types, productivity
types and discount factor types upon entry into the model to be the same as in the working-
age population in the data.32 This is important since the observed positive wealth-health
association can be at least partly explained by the joint density of discount factor and other
fixed types, in particular unobserved health types, as highlighted by De Nardi et al. (2023).
In our sample, patience and fixed health types are indeed positively correlated (with the
correlation being 0.1). Moreover, the health type is slightly positively correlated with the
productivity type.

We also require the initial distribution to reflect differences in initial health and healthy
lifestyles. Accounting for these initial differences is potentially important given the habitual
nature of healthy lifestyles and path-dependence of health evolution, reflected in our esti-
mated health technology (1.16). To that end, we use the conditional means of health and
health effort at ages 25 to 30 as the initial states, where we condition on education and fixed
health type. We report the resulting exogenous distribution across states including average
health and health effort at the beginning of our model in Table 1.K.1. Finally, we assume
that agents enter the model with zero wealth and set the real interest rate to r = 0.082,
which corresponds to an annual rate of 4%.33

31Details on the experiment are given in Richter and Schupp (2014). The experiment consisted of the
individual’s decision whether to obtain money now or at a later point in time with increasing interest rates.
From the implied interest rate each individual requires to be indifferent between the two options, we can
extract information about their patience.

32In the data there remain small differences in the distributions over age, despite age typically being a control
variable in the construction of the types. The only source that influences the distribution of fixed types
over age in the model is endogenous survival. This may in particular be a concern, if agents of the low
health type are more likely to exit the model due to death. However, given that exogenous survival rates
during the working ages are very high (see Figure 1.4), we see this issue as negligible.

33In our data, we do not have sufficient information about wealth at age 25 and younger to justify a different
assumption about initial wealth when entering the model.
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Taxes and Transfers

We specify the progressive labor tax system using a commonly used parametric function
(Heathcote et al., 2017):

T (yj, ȳ) = yj − (1 − τs)y1−τp
j ȳτp . (1.19)

In this formulation, τs captures the scale and τp captures the degree of progressivity of the
tax system. ȳ is the average income. In accordance with the estimates in Kindermann et al.
(2020) for Germany, we set to τs = 0.321 and τp = 0.128.

In terms of pension benefits P (e), we follow a similar approach as in Kindermann et al.
(2020). We initially set these as equal to the earnings agents would have earned in the period
prior to retirement if they had worked full-time with a median productivity shock value. We
then scale them by a constant ω, which we estimate internally to match the average pension
replacement rate of 47.7% in our data.

Finally, c̃ is the consumption floor given by the government to all agents, which is partic-
ularly relevant for those who do not work. We set this to 10% of average income.34 Sickness
benefits, captured by T̃ , paid to non-workers who are unhealthy are set to 11.5% of average
income. Sickness benefits in Germany are, as a rule, based on 70% of the gross labor income
and paid for a maximum duration of 78 weeks over three years for the same disease.35 In
the data, the average duration of payments due to sickness that are covered by the benefits
ranges from 5 to 120 days per year, depending on the disease (Knieps and Pfaff, 2019). We
choose an average duration of 60 days per year, which results in our chosen value for T̃ .

1.4.3 Estimation Results

Table 1.2 summarizes the internally estimated parameters (both point estimates and their
standard errors), their target statistics, as well as the match between the empirical and
model-implied data moments. We now discuss the fit of the model in greater detail along
the dimensions relevant for the quantitative exercises in the following section.

The left panel of Figure 1.5 displays the employment rate by health status over 10-year
age groups, comparing our model results with their data counterparts. The right panel shows

34In 2018, the calculated government transfer that is guaranteed as part of basic social security to secure the
subsistence level was around 400 Euros per month for a single household (BAMS, 2018). This amounts to
around 10% of average labor income in the same year.

35For the first up to 6 weeks after sickness, labor income is paid fully by their employer. After that, the health
insurance company is mandated to pay. Eligibility of these sickness benefits depend on having worked for
at least 4 weeks prior to sickness.
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Table 1.2: Internally Estimated Parameters

Param Estimate S.E. Description Target Statistics
-meter Model Data Description

Labor Supply and Wages
νh=1

1 2.634 0.399 Disutility of work Figure 1.5 Age-Employment
νh=1

8 1.666 0.081 parameters (Left Panel) Profiles by
νh=1

13 1.278 0.027 (healthy) Health
νh=1

20 1.714 0.207
νh=0

1 2.412 0.445 Disutility of work
νh=0

8 1.813 0.126 parameters
νh=0

13 1.391 0.090 (unhealthy)
νh=0

20 2.415 0.377
νe 0.807 0.005 Work Disutility Figure 1.5 Employment by

for Non-CL (Right Panel) Education
ζe=0

0 0.899 0.009 Deterministic wage Figure 1.6 Age-Earnings
ζe=0

1 0.0616 0.004 profiles Profiles by Education
ζe=0

2 -0.0025 0.0003 (non-college) and Health
ζe=1

0 1.165 0.026 Deterministic wage
ζe=1

1 0.0874 0.004 profiles
ζe=1

2 -0.0029 0.0002 (college)
we=0

p 0.178 0.026 Wage loss for the unhealthy: Non-College
we=1

p 0.145 0.051 Wage loss for the unhealthy: College

Health Effort
ιh=1,e=0
1 0.146 0.042 Disutility of effort Figure 1.7 Age-Effort
ιh=1,e=0
12 0.560 0.066 parameters Profiles by
ιh=1,e=0
20 1.048 0.086 (healthy + Health and
ιh=1,e=0
31 1.603 0.081 non-college) Education

ιh=0,e=0
1 0.628 0.186 Disutility of effort
ιh=0,e=0
12 1.366 0.155 parameters
ιh=0,e=0
20 1.650 0.129 (unhealthy +
ιh=0,e=0
31 0.735 0.070 non-college)

ιh=1,e=1
1 0.0913 0.024 Disutility of effort
ιh=1,e=1
12 0.302 0.042 parameters
ιh=1,e=1
20 0.740 0.065 (healthy +
ιh=1,e=1
31 1.366 0.088 college)

ιh=0,e=1
1 0.469 0.151 Disutility of effort
ιh=0,e=1
12 0.997 0.143 parameters
ιh=0,e=1
20 1.654 0.136 (unhealthy +
ιh=0,e=1
31 1.089 0.084 college)
ψ 1.115 0.067 f cost elasticity 0.163 0.161 Std.Dev.(f)
ς0 0.00012 0.0001 Adjustment costs 0.256 0.267 Share of
ς1 0.145 0.015 0.355 0.328 Non-Adjusters

0.389 0.404 by Age Group

Remaining Parameters
κ̃ 0.872 0.038 Cons. Util. shifter 1.146 1.163 Cons. Ratio by Health
µβ 0.943 0.003 Mean of β Figure 1.8 Median Wealth Profiles
δβ 0.0284 0.005 Dispersion of β 0.718 0.746 Wealth Gini
σx 0.0289 0.001 Produc. shock dispersion 0.585 0.595 Var(log income)
ω 0.359 0.011 Pension scale 0.473 0.477 Replacement rate
b 13.11 0.296 Utility constant 8.83 8.49 VSLY/c̄
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Figure 1.5: Model Fit of Employment by Health and by Education
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Notes: Two-year employment rate by health status (left) and by education (right) over 10-year age
groups in the model and data.

employment by education.36 Similarly to what we observe in the data, the model generates a
gap in the working population fraction by health. For example, at ages 25-34, the employment
rate among healthy individuals is around 72%, whereas it is only 53% among the unhealthy.
This gap in employment remains relatively constant over the working career. Similarly, our
model replicates well the employment patterns by education, where non-college individuals
work less than college individuals over all age groups. Notably, a constant additional work
disutility for non-college workers suffices to generate the age pattern despite only targeting
the average difference by education.

Figure 1.6 compares the life-cycle profiles of average labor income from our model-
generated data with the SOEP data. We distinguish between the non-college (left panel)
and college-educated (right) and plot the average earnings for healthy (green) and unhealthy
(red) individuals. For both education groups, healthy individuals earn substantially more
compared to unhealthy ones. Our model captures this difference conditional on education
well. The productivity loss when working due to poor health is estimated to be 18% for
non-college workers and 14% for college workers.

Figure 1.7 displays the evolution of average health effort over the life cycle by health
status, again separating between the two education states. In the data, average health effort
increases slightly for the non-college educated individuals over age and tends to be relatively

36In the data, we define two-year employment to be 1, if an individual is recorded as employed part- or
full-time, or has labor income larger than 5,400 EUR in two consecutive years. If she is only recorded as
employed for one year, we set 2-year employment to 0.5 and set it to 0 otherwise.
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Figure 1.6: Model Fit of Labor Income by Health and Education
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Notes: Average two-year labor income by 10-year age groups, distinguishing between healthy
individuals (green) and unhealthy ones (red) in the data and the model. Left panel: Non-college
educated individuals. Right panel: College educated individuals.

stable, albeit at a higher level, for the college-educated cones. Healthy individuals always
exert more health effort compared to unhealthy ones. Our estimated model produces a
similarly consistent difference between health groups, conditional on education.

Our estimation strategy is designed to discipline effort dynamics to be empirically reason-
able along various dimensions. One such feature is the sizeable share of individuals who do
not adjust their efforts, which in fact increases with age. Specifically, around 24% of young
individuals (age 25-44) do not adjust their efforts, compared to a much higher share of 39%
among the retired. Due to the adjustment costs that become more sizeable with age, our
model replicates this pattern quite successfully.

Finally, the left panel of Figure 1.8 shows median wealth profiles over age in the model
and data, as before on a log/ratio scale. While we match the peak wealth in age group
55-64, the model produces slightly lower wealth levels at younger and older age groups. This
is not surprising as in our model all agents start out with zero initial wealth and there are
no bequests motives that would prompt individuals to maintain high wealth levels well into
retirement. We estimate average β generating these profiles to be 0.943. Moreover, the
differences in discount factors across β types is estimated to be 0.0284, which together with
other forces in the model generates a Gini coefficient of wealth of around 0.72, slightly below
its empirical counterpart.
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Figure 1.7: Model Fit of Health Effort
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Notes: Average health effort by 10-year age groups, distinguishing between individuals being
healthy (green) and unhealthy (red) in the model and data. Left panel: Non-college educated
individuals. Right panel: College educated individuals.

Figure 1.8: Model Fit of Wealth Evolution and Average Health
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1.4.4 Non-targeted Moments

We now turn to several relevant non-targeted moments generated by the model, as a valida-
tion check of our estimated model. First, our model successfully captures the evolution of
health status in the data that we discussed in Section 1.2.1, as shown in the right panel of
Figure 1.8.

In addition to the health-, and education-specific age profiles of health effort behavior,
which we target in our estimation procedure, we also investigate how well our model captures
the non-targeted adjustment patterns in individual lifestyle behaviors. To this end, the model
produces an autocorrelation coefficient of health effort choices of 0.81, which is close to its
data counterpart, 0.76. In light of the non-convex adjustment costs to health efforts, we
further compare the model-generated shares of individuals that change their health effort
levels by more than 10% or 20% to their empirical counterparts. Table 1.3 displays theses
shares, separately for increases (positive changes) and decreases (negative changes) in health
effort, by three different age groups.

We find that our model is successful in reproducing these micro-level adjustment distri-
butions observed in the data. Overall, the model generates relatively large adjustments of
around 20%, and their shares align quantitatively well with the data. Moreover, the model
successfully generates asymmetry: for the same size changes, there is a higher fraction of
agents making a positive adjustment compared to a negative adjustment for the young and
prime-age groups. This is a salient feature in the data, which our model captures despite the
fact that the estimation does not directly target these moments.

Table 1.3: Health Effort Adjustment at the Individual Level in Model and Data

Age Group Shares with positive changes Shares with negative changes
10% 20% 10% 20%

Model Data Model Data Model Data Model Data
24-44 0.18 0.29 0.09 0.14 0.18 0.22 0.04 0.08
45-64 0.20 0.27 0.08 0.12 0.13 0.21 0.04 0.07
65-84 0.22 0.25 0.10 0.10 0.16 0.22 0.11 0.06

Notes: Average shares of individuals adjusting health effort in the model and data by age
groups. Positive (Negative) Change: fj−fj−1

fj−1
> (<)10% or 20%.

Finally, in line with the empirical observations outlined in Section 1.2.2, our model fea-
tures a pronounced wealth gradient of lifestyle behaviors. To quantify this, we compute a
wealth elasticity of health effort defined as the estimated coefficient on the logarithm of av-
erage wealth per age-group specific wealth quartiles from a linear regression of the logarithm
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of health effort on a constant, age group dummies and logarithm of average wealth per age-
group specific wealth quartiles. We find that our model features a wealth elasticity of health
effort of 2.4, which is very close to the one we obtain in the data at 2.5.

1.5 Quantitative Results

1.5.1 Wealth-Health Gaps and Channels

In this section, we use our estimated model to investigate the joint evolution of wealth and
health and its underlying drivers. We begin by presenting how much of the wealth-health
gaps are generated endogenously by our baseline model. The life cycle profiles of median
wealth of healthy and unhealthy people are plotted in the left panel of Figure 1.9, as before
on a log/ratio scale.37

We see that the relative gap in median wealth between the healthy (dashed green line)
and the unhealthy (dotted red line) in the data is already present at young ages and persists
throughout the life cycle. Our estimated model is able to endogenously generate a wealth-
health gap that amounts to around three quarters of that observed in the data at younger
ages, and that is as large as the one in the data for individuals between 65 and 74 years-
old.38 Given that our model agents differ in various characteristics, including rich ex-ante
heterogeneity, one might wonder whether we should be surprised by this quantitative success.

For that reason, we consider a variant of our model, where health transitions are no longer
affected by health efforts, removing the need for the individual agents to decide on optimal
health efforts. We estimate this exogenous health model, which still maintains the same rich
ex-ante heterogeneity as in our baseline model, using a parallel estimation strategy and find
that the model fits the target moments equally well.39 However, as shown in the right panel
of Figure 1.9, this exogenous health model can only account for less than two thirds of the
non-targeted wealth-health gaps observed in the data, performing considerably worse than
37Since wealth levels are (almost) zero in the youngest age group (25-34 year-olds) both in the data and

in the model, we plot the gaps from age group 35-44. We report the age profiles of wealth by health
status at different points of the wealth distribution (25th percentile, 50th percentile, and 75th percentile)
in Appendix Figure 1.K.2. At all wealth quartiles, the model generates sizable wealth-health gaps, which
grow over age and are comparable in size as those in the data among prime-age groups. We also report the
wealth-health gaps for each education group in Figure 1.K.3, confirming that our model generates sizable
wealth-health gaps even conditional on education.

38It is not surprising that the model-generated gaps tend to open up later than in the data, given that all
our model agents start with zero initial wealth.

39Concretely, we re-estimate the health transition probabilities in (1.16) without current and past health
efforts but keeping all other covariates (see Table 1.G.1). Naturally, the estimated parameters exclude
those shaping health effort disutility and adjustment in (1.13)-(1.14) and the target moments exclude those
concerning health efforts.
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Figure 1.9: Median Wealth Profiles by Health: Model vs. Data
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Notes: The left panel displays median wealth by 10-year age groups, distinguishing between healthy
individuals (green) and unhealthy ones (red) in the baseline model relative to the data. A log scale
is used for the vertical axis. The right panel plots the counterparts from the re-estimated exogenous
health model that abstracts from health efforts.

our endogenous health model. This result indicates that individual lifestyle behaviors contain
valuable information for rationalizing the observed wealth-health gaps.

We now investigate and quantify channels behind these wealth-health gaps using a series
of counterfactual experiments. To develop an intuition behind the logic of these experiments,
we begin by presenting a greatly simplified version of our full model that nevertheless contains
the key forces that are chiefly responsible for the wealth-health gaps. To that end, consider
an individual who maximizes utility solving the following two-period problem (using the same
notation as before):

max
c0,c1,f,n

u0(c0) − φ(f) − ϕ(n, h0) + βS(h1)u1(c1, h1)

subject to c0 + c1 = w(h0)n
h1 = π(f),

(1.20)

where choice variables include current consumption (c0), future consumption (c1), lifestyle
behaviors (f), and labor supply (n).40 The key assumptions, as in our quantitative model,
are that (i) better health improves the survival probability (S ′(h) > 0); (ii) better health
improves productivity or the wage offer (w′(h) > 0); (iii) health status affects the disutility of

40In this simple model, we abstract from several mechanisms that are present in our quantitative model to
focus on illustrating the key mechanisms we highlight below. See Appendix 1.I for details.
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labor supply (ϕ(n, h)); (iv) better lifestyle behaviors improve health (π′(f) > 0); and (v) the
marginal utility from future consumption is higher with better health (∂2u1(c, h)/ (∂c∂h) >
0).

Using this simple model, we first illustrate two broad channels through which the health
status affects wealth accumulation. The first is an earnings channel, which can drive the
wealth-health relationship as unhealthy individuals mechanically earn less even when sup-
plying the same hours (as they are less productive), but also because labor supply itself is
affected by health status. To see how, we can combine the first order conditions of con-
sumption and labor supply resulting from (1.20) (given by equations (1.27) and (1.28) in
Appendix 1.I), which yields the labor-leisure condition:

∂ϕ(n, h0)
∂n

= u′
0(c0)w(h0). (1.21)

The left-hand side shows the marginal cost of labor supply, which is expected to be
larger for the unhealthy. Hence, this force would induce the unhealthy to work less keeping
wages constant. The right-hand side shows the marginal benefit of labor supply, which
primarily consists of the wage. Since this is lower for the unhealthy, the first-order effect
could potentially reduce the incentives to work.41

The second broad channel is a savings channel, which results from unhealthy individuals
having different incentives to accumulate wealth compared to healthy individuals. The Euler
equation resulting from (1.20) is given by:

u′
0(c0) = βS(h1)

∂u1(c1, h1)
∂c1

(1.22)

The right-hand side shows that savings can be higher with better health for two reasons; if
one expects to live longer (i.e., a higher survival probability S(h)) or if one expects to have
a higher quality of life (i.e., a higher marginal utility from consumption ∂u(c1, h)/∂c1). We
therefore expect this channel to contribute to the wealth-health gaps endogenously generated
in the model.42

To quantify how important these channels working mostly from health to wealth are in
our full quantitative life-cycle model, we perform two counterfactual experiments. First,
to quantify the earnings channel, we assume that both the disutility from work and labor

41In practice, this effect depends on whether the substitution effect dominates the income effect as well as
whether a health shock is permanent or not. See Appendix 1.I for further discussions.

42Note that our simplified model intentionally assumed that today’s utility is independent of health to
illustrate the savings channel clearly. Having the health-dependence in u0 would affect the result, as
discussed in Appendix 1.I.
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Figure 1.10: Effects of the Earnings and Savings Channels on Wealth-Health Gaps
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Notes: Differences in the wealth levels of those being healthy and unhealthy at the 25th (left), 50th
(middle), and 75th (right) percentile of the wealth distribution in the baseline model (blue), and in
the counterfactual scenarios without differences in labor supply disutility and labor productivity
by health (red), and with average savings choices across health status (purple) across 10-year age
groups. The counterfactual experiments are calculated using the baseline distribution of health.

productivity are no longer affected by health status (i.e., the disutility of labor supply is
as if one was healthy for everyone and wep = 0 for both education groups). This effectively
shrinks the differences in labor incomes across health status. Second, to quantify the savings
channel, we assume that the survival probability is as if one was healthy for everyone (i.e.,
Sj(hj = 1, e) ∀j, e), and that the consumption utility and value of life is no longer diminished
from being unhealthy (i.e., κ̃ = 1). This reduces differences in the incentives to accumulate
wealth between the healthy and unhealthy, conditional on other states. In both exercises
above, we let agents behave optimally in terms of their labor supply, savings, and health
effort choices. However, to isolate the effects going from health to wealth, we keep the
baseline distribution of health when we simulate the counterfactual economy.43

Figure 1.10 summarizes the effects of these experiments on the wealth gap between healthy
and unhealthy agents at the 25th percentile (left), the median (center) and the 75th percentile
(right) and over age, expressed relative to the wealth of the healthy.44 Both the red dash-

43That is, unbeknownst to the agents in the model, their health outcomes at the beginning of each period
are set to be exactly the same as in the baseline economy. This also implies that survival realizations are
the same as in the baseline.

44For the counterfactual exercises hereafter, we present wealth-health gaps in relative terms to ease interpre-
tation. They are constructed as the difference between wealth owned by healthy and unhealthy individuals
in a given age groups, divided by wealth of the healthy. Thus, a number of 0.6, for example, means that
going from healthy to unhealthy amounts to a 60% drop in wealth or that unhealthy individuals own 40%
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dotted line, illustrating the experiment of closing the earnings channel, and the purple solid
line, which depicts the gaps after removing the savings channel as defined above, are below
the baseline blue dotted line throughout the life cycle. This suggests that both channels
contribute to the wealth-health gaps. Yet, their relative importance differs across age groups
and wealth positions. The earnings channel is quantitatively more important for the younger,
and particularly asset-poor agents, for whom wealth levels are relatively small such that
differences in savings across health status are of little consequence. In contrast, differences
in earnings across health status play a major role, as they provide almost the sole basis
for wealth accumulation. In fact, at the 25th wealth percentile, minimizing such differences
effectively closes the entire model-generated wealth-health gap in age group 35-44. At median
wealth levels, the gaps between those being healthy and unhealthy are reduced by over 10
percentage points in that age group.

For all other age groups however, the effect of turning off the savings channel has quan-
titatively larger implications for the wealth-health gaps. The effect is particularly strong
for asset-rich individuals, where the gaps are approximately halved, on average, and even
reduced by almost 70% at age group 55-64. With the exception of the youngest age groups,
the relative importance of the savings channel for driving the wealth-health gaps is quite con-
stant across age. In sum, these results suggest that different savings incentives originating
from differences in the length and quality of life across health status are an important reason
why relative wealth-health gaps are persistent over the life-cycle.

Against the backdrop of the illustration in the simple model above, we use our model to
further decompose the contributions of the earnings channel into effects that work through
health-dependent labor productivity and disutility from work separately. As shown in Table
1.J.1, we find that the former is quantitatively much more important and that these two
sub-channels are complementary to each other in generating the total effects of the earnings
channel. Similarly, we further decompose the contributions of the savings channel into effects
that come from the quality of life (i.e. through differences in κ) and effects that work through
the length of life (survival rates) across healthy and unhealthy agents. We find that the
survival channel is quantitatively more relevant in delivering the total effects of the savings
channel, especially for the relatively older individuals, as shown in Table 1.J.1.

1.5.2 Heterogeneity in Lifestyle Behaviors and Wealth-Health Gaps

In Section 1.2.2, we presented suggestive evidence that lifestyle behaviors could contribute to
the positive association between wealth and health observed in the data. In contrast to the

of the wealth of healthy ones at that point in the distribution.
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channels investigated in Section 1.5.1 that run from health to economic outcomes, endogenous
lifestyle choices have the potential to capture effects running in the other direction. By doing
so, they can potentially amplify the wealth-health relationship over the life-cycle if good
economic outcomes and higher wealth lead to higher effort choices, which in turn improve
the probability of good health outcomes, feeding back into the channels in Section 1.5.1.45

We investigate these effects in our model in two ways: First, we quantify the extent to which
differing lifestyle behaviors across individuals explain the large wealth-health gaps in the
model. Second, we illustrate how wealth impacts lifestyle choices, net of other factors.

Regarding the first way, we perform a counterfactual experiment, in which we force all
agents to choose the age-specific average health effort level at the baseline model.46 The rest
of the model remains unchanged and we let the agents optimize given this constraint. In
particular, the earnings and savings channels of health we investigated in Section 1.5.1 are
operative in generating wealth-health gaps.

Figure 1.11 summarizes the wealth-health gaps in the data, the baseline model and the
counterfactual model with equalized health effort choices at three different points along the
wealth distribution. Equalizing health efforts throughout the life span reduces the wealth-
health gaps across the wealth distribution relative to the baseline economy. For example, the
maximum percentage difference in median wealth of the unhealthy relative to the healthy is
reduced to around 33% from around 46% in the baseline at ages 55-64. Across the life cycle,
equalizing health efforts reduces the relative wealth-health gap on average by 12% at the 25th
percentile, by 23% at the median, and by 29% at the 75th percentile relative to the baseline
model. These findings obtained in the presence of the earnings and savings channels yet in
the absence of effort heterogeneity suggest that individual health behaviors are an important
amplification mechanism for wealth-health gaps.47

When we force everyone to choose the same average lifestyles, we remove heterogeneity
in health outcomes that arises solely from differences in lifestyle behaviors. Since our model
features a realistic positive wealth gradient of health efforts, this on average reduces the

45Such an amplification mechanism could therefore be especially powerful if the wealth-gradient in health
efforts observed in both model and data is driven by higher wealth itself, on top of third factors such as
education.

46In this exercise, we therefore maintain the estimated effects of other characteristics such as education on
health transitions when removing effort heterogeneity, whereas the re-estimated exogenous health model
does not (as can be seen in Table 1.G.1). Moreover, the current exercise allows us to flexibly explore the
role of differences in lifestyle behaviors at different points in the life cycle.

47If we close both savings channel and earnings channel in the model, there are no incentives left to exert
health efforts as being healthy has no benefits. Yet, some of the wealth-health gaps remain, as shown in
Figure 1.J.1. This is because there remain other factors in the model that drive the evolution of both health
and wealth. In particular, education affects the probability of being healthy even without any efforts, while
at the same time generating higher wages.
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Figure 1.11: Effect of Equalizing Health Efforts on Wealth-Health Gaps
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Notes: Differences in the wealth levels of those being healthy and unhealthy at the 25th (left), 50th
(middle), and 75th (right) percentile of the wealth distribution in the baseline model (blue) and in
the counterfactual scenario with constant health effort choices (yellow). Differences are expressed
relative to the wealth levels of the healthy.

share of good health outcomes among rich individuals and increases the share of good health
outcomes among poorer individuals, keeping the distribution of wealth fixed, which decreases
the wealth-health gap.48 At the same time, the counterfactual of equalizing efforts could in
principle also affect other choices that drive the gap, even without its effect on health.49 In
Appendix 1.J, we quantify these two effects and find that total effects of equalizing efforts
works primarily through its direct effect on the health distribution.

In addition, given the habitual character of lifestyle behaviors both in the data and in the
model, it is conceivable that behavior differences at younger ages matter relatively more for
the whole life cycle than those at older ages. In Figure 1.J.2 in Appendix 1.J, we investigate
the extent to which the wealth-health gaps are differently affected according to the timing
of equalizing health behaviors. The results suggest that eliminating effort variation during
earlier life years, especially in prime ages, has prominent lasting effects in terms of reducing
the wealth-health gaps in later years.

The second important question is then what drives heterogeneity in lifestyle behaviors, in

48Therefore, by construction, averages of key variables such as life expectancy, health, earnings and health
barely change.

49For example, an agent choosing lower health efforts relative to the baseline may find it optimal to also save
less in anticipation of worse health outcomes in the future, which will make consumption less enjoyable.
For the same reason, however, she might also save more to insure against the risk of not being able to work
because of poor health outcomes. Overall, these indirect effects of the effort equalization counterfactual on
the relationship between wealth and health are therefore ambiguous.
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particular, along the wealth dimension. Although the wealth-gradient in lifestyles is likely in
part driven by ex-ante heterogeneity, more wealth raises the incentive to exert better lifestyle
behaviors even conditional on these fixed types. To see this, we resort again to the simple
model (1.20), this time considering the optimality condition for efforts derived in Section 1.I:

φ′(f) = βS ′(h1)π′(f)u1(c1, h1) + βS(h1)
∂u1(c1, h1)

∂h1
π′(f). (1.23)

The right-hand side determines the benefit of exerting more efforts. Its first term shows that
improvement in the survival probability driven by better health is multiplied by the level of
utility, a feature that is common to models with endogenous survival. Since utility levels are
increasing in (future) wealth, richer individuals, or those expecting to be rich in the future
should, all things equal, thus have a stronger incentive to exert health efforts. This also
means that the (anticipation of) redistribution of future consumption has the potential to
reduce current disparities in lifestyle behaviors. This, in turn, could reduce inequalities in
future health outcomes and consequently narrow wealth-health gaps.

We illustrate the importance of these dynamic effects working through endogenous lifestyle
behaviors using the following experiment in our quantitative model. We solve for optimal
effort choices in a counterfactual economy where all agents think that when entering retire-
ment, all assets and pensions will be taxed at 100% and everyone instead receives transfers
that equal exactly the average retirement wealth in the baseline economy. In the simulation
of the distribution, however, we maintain the savings and labor supply levels of the base-
line model for every agent. Thus, only effort choices and their consequences for the health
distribution are changed.

We report the results of this experiment in Table 1.4. Panel A shows the percentage
changes in average health effort, conditional on wealth quartiles and age groups. For almost
every age group and wealth quartile, agents increase their efforts relative to the baseline
case.50 This rise in healthy behaviors is accelerated with age. Moreover, there is a clear
negative trend in the change in efforts going from the first wealth quartile to the fourth one
at every age group. This is precisely because for rich individuals, this counterfactual scenario
does not lead to significantly different expectations in wealth levels during retirement. For
that reason, they do not need to change their lifestyles (which were already at a high level).
Poor individuals, on the other hand, have much stronger incentives to survive and be healthy
in later years, anticipating increased wealth that will allow them to enjoy a larger utility
from consumption.

50This is sensible given that the size of the average uniform transfers is quite generous for a large fraction of
agents given the skewed wealth distribution.
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The adjustments in health efforts translate into changes in health outcomes, as shown
in changes in the share of individuals in bad health in Panel B of Table 1.4. As expected
the share drops in particular among poorer individuals. Mirroring the lifestyle changes, the
improvements in average health again become stronger with age, but are already visible
even before retirement. Taken together, the disparities in health outcomes of poor and rich
individuals therefore become smaller, which eventually narrows the wealth-health gap (as
presented in Panel C of Table 1.4), even in the absence of the earnings and savings channels
defined in Section 1.5.1.

These results also indicate that changes in economic conditions during the life course can
lead to meaningful changes in the distribution of health outcomes. A natural question is
then to ask how much of inequality in health outcomes is pre-determined at the initial period
(age 25). Using a decomposition exercise following Huggett et al. (2011) (as discussed in
details in Appendix 1.H), our model shows that although initial conditions at age 25 play a
substantial role in shaping the variation in economic outcomes, such as lifetime earnings, they
are less important for explaining lifetime inequality in health-related outcomes. For example,
approximately one-third of the variation in the share of healthy life years is predetermined
by the conditions at age 25, in contrast to nearly 80% for lifetime earnings. In sum, these
results add support to the idea that lifestyle behaviors, which allow individuals to react to
changing economic circumstances, can act as an amplification mechanism between economic
outcomes and health over the life cycle.51

1.6 Conclusion

We document a strong association between individual wealth and health over the life cycle
in Germany. We then build a structural life-cycle model of endogenous wealth and health
evolution as individual lifestyle behaviors shape future health outcomes. These, in turn,
affect wealth accumulation through differences in earnings and savings behaviors across health
status. Our estimated model accounts for the great majority of the empirical wealth-health
gaps, rationalizing that large and persistent wealth-health gaps can occur even in countries
where the healthcare system does not frequently entail large out-of-pocket expenses. Through
51The fact that health efforts react to changes driven by future wealth leaves untouched other reasons that

drive effort choices that also work through the utility level channel, and could potentially also affect the
wealth-health relationship. For example, the return to efforts is higher when the future is expected to be
more enjoyable, which is the case not only when one is rich but also healthy. Moreover, during working
years, the return to effort includes an effect coming through higher expected future wages. Interestingly,
this last motive can be decreasing in wealth, as we show in Appendix 1.I. Generally, the direction in which
such forces could affect the wealth-health relationship is often not clear, and a quantitative exploration
goes beyond the scope of this paper.
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Table 1.4: Results of Equalizing Wealth during Retirement Periods

Unit: % Panel A Panel B Panel C
Average Effort Share Bad Health Wealth-Health Gaps

Age by Wealth Quartile by Wealth Quartile at Percentile
Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 25th 50th 75th

35-44 0.4 0.7 0.1 -0.3 0.0 -0.8 -1.2 0.0 0.0 0.0 -1.1
45-54 2.0 1.4 0.7 0.0 -1.5 -0.7 0.0 0.0 -0.1 -0.8 -0.7
55-64 7.7 4.0 1.8 0.1 -4.1 -2.3 -1.1 0.0 -4.3 -5.5 -5.6
64-75 11.2 10.2 4.8 1.1 -8.9 -7.4 -4.3 -1.1 -7.0 -16.4 -17.6
Notes: Reported numbers are percentage changes relative to the benchmark case without the
counterfactual experiment. The counterfactual experiment assumes that effort choices are based
on the belief of a uniform 100% tax on wealth and retirement benefits during retirement years
along with transfers equal to the average retirement wealth in the baseline economy.

a series of decomposition exercises, we find that, quantitatively, while the earnings channel is
important for the young and asset poor, the savings channel drives the wealth-health gaps at
most ages, and especially for asset-rich individuals. We demonstrate that lifestyle behaviors
can act as an amplification mechanism behind the dynamic relationship between wealth and
health since good economic outcomes lead to higher health effort choices in our model.

While our model is relatively rich, we abstract from several potentially relevant mecha-
nisms, in particular those through which money itself could influence future health. These
include private medical expenditures, preventive monetary investments in health, and higher-
quality but costly private insurance options. While we believe that these channels are likely
less important in the German context, as we discuss in Appendix 1.A, they could nonetheless
help the model to match the wealth-health gaps more closely. Moreover, these channels are
crucial to consider when analyzing other countries where out-of-pocket medical expenses are
more prevalent and private insurance frequently consists of better healthcare relative to the
public option.

Our results imply that policies aimed at improving individual health behaviors (e.g.,
conditional cash transfers when joining a gym Charness and Gneezy, 2009), can result not
only in lasting benefits in terms of improving health inequality over the life course but may
also extend into dimensions of economic inequality. Conversely, our findings also suggest
that rising wealth inequality may, by exacerbating heterogeneity in lifestyles, contribute to
consolidating the pronounced positive association between economic- and health-related well-
being, and could underlie the increasing divergence in health-related behaviors observed in
recent years (Lampert et al., 2018). We leave this interesting empirical question for future
work.
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Appendices to Chapter 1

1.A Medical Spending in Germany

The healthcare system in Germany is characterized by the co-existence of two insurance sys-
tems. Almost 90% of the population are covered by statutory health insurance (SHI), while
the remaining share is covered by a substitutive private health insurance (PHI). Only individ-
uals with an annual income above a certain opt-out threshold (currently around 64,000 EUR
annually in 2022), the self-employed, or civil servants can choose to be covered by a PHI.
A detailed discussion of the differences between the two insurance types and their funding
and reimbursement schemes can be found in Karlsson et al. (2016). Notably, SHI coverage,
as mandated by law, includes a very generous package of benefits, including all medically
necessary treatments, prescription drugs, and, importantly for our purpose, preventive, and
rehabilitation care. The PHI benefit packages are more heterogeneous but typically oriented
towards the public package. They may include additional features, such as preferential treat-
ment in hospitals, or dental and eye care. Given that PHI enrollees are generally wealthier,
as they tend to be better educated and earn higher incomes (Karlsson et al., 2016), if these
features materially improve individual health, they may be an important explanatory factor
for the wealth-health relationship.

On top of that, there are numerous “individual health services”, including non-standard
screenings and therapies that are increasingly offered by physicians but are typically paid
for directly by the patients and not covered by health insurance. Similarly, other potentially
health-promoting expenses on nutritional supplements, physical treatments or even private
psychological counselling could theoretically strengthen the wealth-health relationship if these
are normal goods and significantly improve an individual’s future health prospects.

However, the use of many of these health services is at least scientifically unclear, and
they often comprise medically unnecessary cosmetic and luxury treatments or use methods
whose benefits have not been sufficiently certified (Schnell-Inderst et al., 2011).52 Moreover,

52This is not to say that in given circumstance, such services may be very sensible. However, consumer pro-
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Table 1.A.1: Effect of Earnings and Wealth on Spending on Health Goods

Cons. of Health Goods and Servicesi
Good Healthi -108.7*** -107.9**

(53.1) (59.2)
Agei 8.1*** 6.7***

(1.0) (1.3)
Collegei 104.3*** 92.7***

(32.7) (28.3)
Earningsi 0.7

(0.5)
Wealthi 0.07

(0.05)
N 16,193 11,314
R2 0.007 0.006

Notes: The dependent variable is annual household consumption spending on health goods
and services. Coefficients and standard errors (in parentheses) of earnings and wealth are
multiplied by 1,000. Stars denote statistical significance at the 10%, 5%, and 1% level.

using data on household consumption spending from the 2010 survey wave of the SOEP,
we do not see a significant statistical correlation between spending on health-related goods
and services and labor income (or wealth) after controlling for individual characteristics
(that are also present in our model). Table 1.A.1 shows the results of a linear regression of
annual consumption of health-related goods and services on a dummy for good health, age,
college education, and labor income or wealth, respectively. In line with our expectations,
the estimated coefficients indicate that individuals in good health spend significantly less
on health-related consumption, while older and higher educated individuals tend to spend
more.53 Labor income or wealth, in contrast, are not statistically significantly associated
with higher health-related consumption.

Notwithstanding this suggestive evidence, there can be alternative possibilities through
which larger financial resources could affect health that go beyond direct medical goods
and services. These include, for instance, access to better housing in less polluted, quieter
neighborhoods, the possibilities of more frequent or costly recreational activities or vacations,
and potential effects of wealth on psychological stress, which can also translate to physical
health conditions (Schwandt, 2018). However, such effects are hard to detect statistically as

tection authorities frequently warn against using unsolicited health services without extensive information.
53Karlsson et al. (2016) investigate individual medical spending using data from a private health insurer and

find that medical spending increases over age and is particularly concentrated in the last three years before
death.
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they likely take a long time horizon to realize and are dependent on individual circumstances.
Perhaps unsurprisingly, the literature that tries to establish a causal link from resources to
health among adults in developed countries remains debatable (Cutler et al., 2011).

In sum, the arguments provided in this discussion lead us to believe that a “money can
buy health” channel is less relevant in Germany than it might be in other countries, such
as the U.S. Thus, our paper focuses on another margin that is frequently pondered as an
important mechanism behind the wealth-health relationship: lifestyle behaviors (Cutler et al.,
2011; Cawley and Ruhm, 2011).

1.B Comparison of Different Health Measures

We compare our binary health measure to two alternative measures of health. First, begin-
ning in 2002, the SOEP includes a series of questions on the health-related conditions of the
respondents, which are repeated every second year. These are designed to mirror the second
version of the 12-item Short Form Health Survey (SF-12 v2) questionnaire. The purpose
of these questions is to provide generic indicators of perceived physical and mental health,
called Physical and Mental Component Summary scores (PCS and MCS, respectively). For
example, they ask about difficulty getting dressed, climbing stairs, or feeling alone. The
scores are transformed into a 0-100 range and standardized to have a mean of 50 and stan-
dard deviation of 10. Figure 1.B.1 displays box plots of the evolution of these indicators by
10-year age group.

Second, we construct a frailty index of individuals’ health history as in Hosseini et al.
(2022). Beginning in 2011, the SOEP added questions regarding the diagnosis of specific
health conditions by doctors, ranging from diabetes and asthma to depression and anxiety.
We construct the index by adding a 1 whenever an individual has been diagnosed with one
of these illnesses. Thus, the higher the frailty, the worse the health. The resulting average
frailty by 10-year age groups is depicted in Figure 1.B.2.

Table 1.B.1 summarizes the correlation between our preferred binary health measure and
these alternative, possibly more objective, health measures, as well as with the original 5-
point self-reported health scale.54 As expected, binary health is negatively correlated with
frailty and positively correlated with the physical and mental health summary score (though
the correlation with the mental health score is rather weak). Moreover, the correlations of
the original 5-point self-reported health scale with these measures are only slightly higher
than with the aggregated binary health measure, which suggests that we do not lose much
54All measures have been standardized. Note that PCS and MCS scores are orthogonal to each other by

construction.
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Figure 1.B.1: Physical and Mental Health Summary Scores over the Life Cycle

0

20

40

60

80

P
C

S
: 

S
u

m
m

a
ry

 s
c
a

le
 P

h
y
s
ic

a
l 
(N

B
S

)

25 35 45 55 65 75 85

Physical Condition Index

20

40

60

80

M
C

S
: 

S
u

m
m

a
ry

 s
c
a

le
 M

e
n

ta
l 
(N

B
S

)

25 35 45 55 65 75 85

Mental Condition Index

Notes: Box plots of Physical and Mental Health Summary Scores over 10-year age groups in the
SOEP. The scores are calculated based on the SF-12 v2 series of questions on health-related quality
of life. They are normalized to a mean of 50 and a standard deviation of 10 for 2004. A higher
score indicates better health.

variation by focusing on the latter.

Table 1.B.1: Correlations across Different Health Measures

Binary 5-point
Health SRHS Frailty PCS MCS

Binary Health 1 0.77 -0.41 0.62 0.26
5-point SRHS 1 -0.50 0.76 0.29
Frailty 1 -0.55 -0.16
PCS 1 -0.02
MCS 1
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Figure 1.B.2: Evolution of Frailty over the Life Cycle
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Notes: Average frailty by 10-year age group. The frailty index is calculated by
adding a 1 each time an individual is diagnosed with a specific health condition
(Hosseini et al., 2022).

1.C Construction of Health Effort

We use information on three individual health-related behaviors in constructing our health
effort measure, following Cole et al. (2019). First, the frequency of practicing a sport or
exercising is given by never or almost never, several times a year, at least once a month, and
at least once a week. Second, survey respondents are asked how strongly they take health
considerations into account in their nutrition. The answers range from very strongly to not at
all.55 Third, we use information on the number of cigarettes smoked in a day, which we cap
at 50 as in Cole et al. (2019). We standardize each measure to have mean zero and standard
deviation one (Kling et al., 2007) and use the negative of cigarettes smoked as a measure of
healthy behaviors. The correlation of the three behaviors is reported in Table 1.C.1.

Table 1.C.1: Health Effort Components and Weights
Health Physical Healthy Abstention Loading
Behavior Exercise Nutrition from Smoking
Physical Exercise 1 0.17 0.15 0.5918
Healthy Nutrition 1 0.21 0.5865
Abstention from Smoking 1 0.5530

All of these behaviors are likely also correlated with other observable characteristics.
For example, Figure 1.C.1 shows the average evolution over age of the three components of
55Information about amounts and frequencies of alcohol consumption are only infrequently included in our

data, which is why we rely on more general health-conscious nutrition.
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Figure 1.C.1: Evolution of Each Standardized Lifestyle Behavior
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Notes: Average of each standardized component of health effort by 10-year age group: Abstention
from smoking, sport or exercise, and health-conscious nutrition.

health effort, separately for the college and non-college educated. While smoking becomes
less frequent with age, and nutrition becomes healthier, physical exercise declines. For each
component, a clear positive educational gradient is observed. Similarly, each behavior, in
particular the frequency of sports and exercises, is positively correlated with wealth. Given
that the weight on each behavior should reflect its relative importance in explaining lifestyle
variations net of potentially confounding factors, we purge each behavior from variation
coming from such factors by regressing them on age, age squared, years of schooling, marital
status, work status, insurance type, labor income, and wealth.

Using the residualized effort measures, we perform a principal component analysis, where
we take as the first principal component the measure that most closely resembles the notion
of individual lifestyle behaviors. The first principal component explains around 45% of all
variance in the residualized physical exercise, nutrition, and abstention from smoking. We
then calculate the weights as the relative loadings of each behavior, which are relatively equal
as summarized in the last column of Table 1.C.1. Finally, we normalize the aggregated effort
variable to be in the unit interval.
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1.D The Effects of Health on Employment and Labor
Income

In our baseline model in the main text, we introduce a productivity (wage) penalty and dif-
ferences in disutility of work for unhealthy individuals. In this section, we provide empirical
evidence that supports our modeling approach. Specifically, we estimate how contempora-
neous health affects the probability of working, as well as labor income and hours worked
conditional on working, using the SOEP data and the following model:

yi,t = αhHealthi,t + δ1yi,t−1 + δ2yi,t−2 + γXi,t + γi + ui,t, (1.24)

where yi,t denotes either a dummy that equals 1 if individual i is working at time t and 0
otherwise, log labor income conditional on employment, or log hours worked conditional on
employment. Xi,t includes a constant, age, age2, marital status, type of health insurance
(private or public), survey year, the number of children in the household, and dummies for
the occupation in case of work. We also include individual fixed effects γi. We are interested
in αh, the contemporaneous effect of health on wage or hours worked.56 In estimating such
an effect, one concern might be simultaneity bias, which arises if labor income or hours
worked themselves affect health status. We consequently instrument health status in year t
by the number of doctor visits and the nights spent in the hospital in that same year. Given
generous health insurance coverage benefits and sick-day regulations in Germany, the effect
of the number of doctor visits or nights spent in the hospital on earnings and hours should
work largely through health.

The results of estimating (1.24) using GMM are reported in Table 1.D.1. Column (i)
gives the estimated effect of health in year t on the probability that individual i works in the
same year, estimated across the whole population. Going from being unhealthy to healthy
increases this probability by an estimated 15.2%, even conditional on employment in the past
two periods. We find a similar role of health in affecting labor supply along the extensive
margin as that observed in other countries.

Columns (ii) and (iii) report the effect of being healthy on income and hours worked,
restricting the sample to those working in t. Good health increases labor income conditional
on working by around 7%. The majority of this increase is due to longer working hours, which
increase by over 6%. This suggests that, even conditional on working, healthy individuals

56It would also be reasonable to assume that health has only lagged effects on labor income and supply.
Moreover, we could also highlight heterogeneous effects of health on particular demographic subgroups,
as in Hosseini et al. (2021). However, our goal here is simply to quantify the contemporaneous effects of
health on labor market outcomes, net of other confounding effects.
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Table 1.D.1: Effect of Health on Work Status, Labor Income, and Hours Worked

(i) (ii) (iii)
worki,t log(incomei,t|worki,t = 1) log(hoursi,t|worki,t = 1)

Healthi,t 0.152 0.072 0.068
(0.016) (0.017) (0.017)

N 104,085 61,185 61,185

Notes: Estimated coefficient α̂h from equation (1.24). Healthi,t is instrumented by number
of doctors visits and nights spent in the hospital in t. Column (i) reports results from the
estimation on the whole sample of 25-64 year-olds, column (ii) and (iii) only on the sample of
employed individuals. First-stage tests confirm relevance assumption of these instruments.

increase their labor supply, possibly through switching from part-time to full-time work.
The results furthermore indicate that good health could be accompanied by an increase in
productivity that manifests in higher wages per hour, and thus larger labor income gains
from being healthy.

1.E Details on the Estimation of Standard Errors

We estimate 42 parameters Θ0 to match 64 empirical moments ∆̂ using the method of sim-
ulated moments. To conduct standard inference on our estimates using this estimator, we
would need know a consistent estimate of the full variance-covariance matrix of the empirical
moments V̂ . Alternatively, a bootstrap method can be used to construct standard error esti-
mates. In our case both of these options are infeasible. While most of our empirical moments
are computed from the SOEP data, they often use specific subsets of the data. In particular,
wealth information is only available every 5 years. On top of that, the estimate for the values
of a statistical life year (VSL) are taken from a meta-analysis of VSL estimates in OECD
countries (OECD, 2012), which prevents us from computing the correlation between the el-
ements of ∆̂. Moreover, the application of a bootstrap method would be computationally
expensive given that our parameter and moment space is relatively large.

For that reason, we use the strategy of Cocci and Plagborg-Møller (2021), who show that
the standard errors of the method of moment estimates Θ̂ can be bounded when assuming that
the elements of ∆̂ are perfectly correlated with each other. They are computed as the weighted
sum of the standard errors of individual empirical moments. They show that these worst-case
standard errors can further be minimized for over-identified models by selecting only those
moments which are most-informative about the parameter at question. To construct the
weights, we compute the Jacobian matrix that contains the derivatives of the model-implied
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moments with respect to the standard errors using first differences. The main assumption
behind this method is a joint normality assumption of all empirical moments. We view this
as reasonable in our context as all moments with the exception come from the same data set.

The algorithm to compute the efficient worst-case standard error for each component of
Θ̂ then comprises the following steps (see Cocci and Plagborg-Møller (2021), page 11-12):
First, we construct an efficient estimator Θ̂ using the weight matrix that has the inverse
of each empirical moment’s standard error on its diagonal, and zeros on the off-diagonals.
Next, we construct the Jacobian matrix using first differences. Finally, we solve the median
regression (eq. 6 in Cocci and Plagborg-Møller (2021)) that allows us to perform the efficient
moment selection procedure for each parameter, which yields the standard error estimates
as reported in Table 1.2.

1.F Further Details on Structural Model Estimation

Classification of Fixed Health Types

As explained in Section 1.4, the first step of estimating the probability of being in good health
in the next period involves the classification of individuals in our data into fixed unobservable
health type groups η using the kmeans algorithm. We construct the data moments used for
the classification in the following way: First, we take all direct measures of health and health-
related status that are available in our data for at least half of the sample period. These are
(i) the number of annual doctor visits, (ii) self-rated health status on a 5-point scale, (iii)
inpatient nights in a hospital, (iv) and (v) the Physical and Mental Component Summary
scores (see Appendix 1.B), and (vi) the body-mass index.57

Second, we residualize these variables against age, age squared, a college education
dummy, gender, health insurance type status, and cohort dummies. We do this because
the individual health type should be informative about variation in health and health-related
status net of variation that arises from other time-constant observable characteristics. More-
over, we strip the health moments from variation coming from mere satisfaction with own
health (on a 10-point scale). This is to make sure that the classification into unobserved
health types is based on fundamental factors that are no changed as a result from noisy
reporting and measurement issues. Third we standardize the resulting residuals to give ev-
ery variable the chance to be equally important for the health type classification. Since the
health type is fixed over time, we take one average standardized residual per individual.

57We experimented with including individual fixed effects from a regression of future health on current and
past health, effort and age as additional moments. However, this restricted our sample too much.
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Table 1.E.1: Empirical Moments and Standard Errors

Description Value S.E. Description Value S.E.

Employment Share 0.651 0.002 Median Wealth 0.062 0.003
among healthy 0.766 0.002 divided by average 0.516 0.015
by 10-year age group 0.823 0.002 2-year labor income 1.166 0.024

0.619 0.002 by 10-year age group 1.651 0.037
Employment Share 0.506 0.008 1.567 0.043
among unhealthy 0.583 0.005 1.006 0.047
by 10-year age group 0.601 0.005 Education Gradient in Employment 1.237 0.003

0.409 0.005 Non-Adjuster Shares 0.267 0.004
Average Effort among 0.678 0.002 by Long Age Group 0.328 0.003
non-college and healthy 0.677 0.002 0.404 0.004
by 10-year age group 0.680 0.002 VSL multiple 8.493 0.595

0.699 0.002 Standard Deviation of Effort 0.161 0.000
0.730 0.002 Consumption Ratio of Healthy/Unhealthy 1.163 0.022
0.724 0.002 Average Labor Income 35.393 0.196

Average Effort among 0.643 0.007 in Ths for non-college 49.379 0.232
non-college and unhealthy 0.623 0.005 and healthy by 10-year age group 55.955 0.266
by 10-year age group 0.627 0.004 42.219 0.353

0.655 0.003 Average Labor Income 24.948 0.563
0.697 0.003 in Ths for non-college 33.166 0.519
0.692 0.003 and unhealthy by 10-year age group 36.691 0.499

Average Effort among 0.779 0.002 25.311 0.499
college and healthy 0.770 0.002 Average Labor Income 59.483 0.488
by 10-year age group 0.766 0.002 in Ths for college 89.538 0.632

0.763 0.002 and healthy by 10-year age group 107.928 0.761
0.779 0.002 98.277 1.108
0.769 0.004 Average Labor Income 50.388 1.849

Average Effort among 0.752 0.011 in Ths for college 66.253 1.656
college and unhealthy 0.744 0.008 and unhealthy by 10-year age group 78.318 1.688
by 10-year age group 0.737 0.006 63.133 1.786

0.738 0.005 Variance of Log Labor Income 0.595 0.002
0.751 0.005 Pension Replacement Rate 0.477 0.002
0.734 0.006 Wealth Gini Coefficient 0.746 0.004

The fourth step comprises the clustering of individuals using the kmeans algorithm that
assigns observations to the cluster with the smallest Euclidean distance. We repeat the
clustering for randomly chosen initial group centers and for up to 5 clusters. We then calculate
the within-cluster sum of squares for each cluster number. Our goal in selecting the number
of clusters is to have intra-cluster variation that is as small as possible while maintaining
computational feasibility in our model. Since the within-cluster sum of squares display a
kink (“elbow”) after 2 clusters, we opt to select two clusters.
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Estimation of Wages and Productivity

Our estimation of the distribution of fixed productivity types and the persistence and variance
of idiosyncratic shocks involves the following steps. First, we compute real hourly wages xij
for individual i with age j in our data on the sample of workers that work for at least two
consecutive years. We then recover combined residuals and individual fixed effects estimates
from a regression of log wages on the full set of age and health dummies (Dage

it and Dhealth
it ,

respectively) according to:

ln xij =
63∑
t=25

∑
h={0,1}

dht ×Dage
it ×Dhealth

it + θi + uij, (1.25)

as in De Nardi et al. (2023); French (2005). Here, the coefficients dht capture the effect of the
interaction of dummy variables for age and health status and θi captures unobserved fixed
labor productivity. While we treat this fixed productivity continuous in the estimation, we
follow Low and Pistaferri (2015) in assuming discrete productivity “types” in the model as
detailed in Section 1.4.2.

Next, we regress the combined estimated (predicted) residuals (θ̂i+ûij) on cohort dummies
and education to strip them from variation coming from these sources that we capture through
λj(hj, e). We then estimate the parameters of the idiosyncratic components using a standard
generalized method of moments (GMM) procedure that minimizes the distance between the
empirical age-profile of the variances of the combined residuals and the population analogue
following Storesletten et al. (2004).58 We obtain the estimated persistence of idiosyncratic
productivity shocks ρ = 0.975.

1.G Discussion of Estimated Health Technology Pa-
rameters

Table 1.G.1 shows the results of estimation of (1.16) along with the estimates of the exogenous
health model. All estimates are statistically significant at the 95% level. Table 1.G.2 reports
average marginal effects calculated from the estimated parameters for the baseline model.

The estimates from the columns for the baseline model with endogenous health imply
that the probability of being healthy in the next period, conditional on effort, current health,
education and health type, decreases monotonically over age. Individuals with the high health
58Concretely, to distinguish the variance of the fixed effect from the variance of transitory shock, we again

follow Storesletten et al. (2004) and references therein by computing the sum of three consecutive residuals
for 25-year olds.
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Table 1.G.1: Logit Estimation of Probability of being Healthy in 2 years

Model: Endogenous Health Exogenous Health
Variable Coef. Estimate Std.Error Estimate Std.Error

Current Health Effort λ1 0.693 0.138
Past Health Effort λ2 0.734 0.137

Current Health ht = 1 2.311 0.029 2.340 0.029

Age Group Dummies
35 -0.289 0.079 -0.301 0.078
45 -0.644 0.074 -0.655 0.074
55 -0.881 0.074 -0.871 0.074
65 -1.138 0.074 -1.074 0.073
75 -1.586 0.077 -1.527 0.077

Health Type η = 1 0.632 0.028 0.654 0.028
College e = 1 0.238 0.033 0.388 0.032

Constant -0.906 0.095 0.013 0.072

Pseudo R2 0.242 0.237

Notes: N = 43, 336. Standard Errors are heteroscedasticity robust.

type consistently have, ceteris paribus, a larger probability of being healthy than those with
the low health type. The same, albeit to a smaller degree, is true for agents with college
rather than non-college education. However, the largest differences in the probability of
being healthy conditional on all other covariates, arise between individuals who are currently
unhealthy and individuals who are currently healthy. For example, a healthy 75-year-old
college-educated individual of the high health type has a 67% probability of being healthy in
two years absent any effort (past and present) if she is currently healthy, while this probability
is only 16% if she is currently unhealthy.

Much research, primarily medical, has aimed to causally identify the effect of different
lifestyle components on good future health. For example, Lee (2003) review data from 50
epidemiological studies on the relationship between physical activity and cancer incidence.
Similarly, Colman and Dave (2013) analyze the connection between physical activity and
the prevalence of hypertension, diabetes, and heart disease. Other papers, such as those
by LaCroix et al. (1991) and Van Oyen et al. (2014) highlight the impact of smoking on
mortality and disability. More recently, Cena and Calder (2020) review evidence on the
health-promoting effects of more plant-based diets. Generally speaking, there is a strong
consensus in this literature on the beneficial effects of healthy lifestyle behaviors, such as
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Table 1.G.2: Average Marginal Effects from Health Technology Estimates

Low Health Type (η = 0)
No College (e = 0) College (e = 1)

Unhealthy Healthy Unhealthy Healthy
(ht = 0) (ht = 1) (ht = 0) (ht = 1)

Age π0 λ1 λ2 π0 λ1 λ2 π0 λ1 λ2 π0 λ1 λ2
25-34 0.29 0.17 0.18 0.80 0.05 0.06 0.34 0.17 0.18 0.84 0.04 0.05
35-44 0.23 0.17 0.18 0.75 0.07 0.07 0.28 0.17 0.18 0.79 0.05 0.06
45-54 0.18 0.16 0.17 0.68 0.09 0.09 0.21 0.17 0.18 0.73 0.07 0.08
55-65 0.14 0.15 0.16 0.63 0.10 0.11 0.18 0.16 0.17 0.68 0.09 0.09
65-74 0.11 0.13 0.14 0.57 0.12 0.12 0.14 0.15 0.16 0.62 0.10 0.11
75+ 0.08 0.11 0.11 0.45 0.15 0.15 0.10 0.12 0.13 0.51 0.13 0.14

High Health Type (η = 1)
No College (e = 0) College (e = 1)

Unhealthy Healthy Unhealthy Healthy
(ht = 0) (ht = 1) (ht = 0) (ht = 1)

Age π0 λ1 λ2 π0 λ1 λ2 π0 λ1 λ2 π0 λ1 λ2
25-34 0.43 0.15 0.16 0.88 0.03 0.03 0.49 0.14 0.15 0.91 0.02 0.03
35-44 0.36 0.16 0.17 0.85 0.04 0.04 0.42 0.15 0.16 0.88 0.03 0.03
45-54 0.29 0.17 0.18 0.80 0.05 0.06 0.34 0.17 0.18 0.84 0.04 0.05
55-65 0.24 0.17 0.18 0.76 0.06 0.07 0.29 0.17 0.18 0.80 0.05 0.06
65-74 0.20 0.17 0.17 0.71 0.08 0.08 0.24 0.17 0.18 0.76 0.07 0.07
75+ 0.13 0.15 0.115 0.61 0.11 0.11 0.16 0.16 0.17 0.67 0.09 0.10

physical activity, a healthy diet, and abstention from smoking, on morbidity and mortality.
However, since these studies typically focus on the effect of a specific lifestyle behavior on the
onset of a specific disease, such as hypertension or diabetes, it is not possible to directly com-
pare their estimates with our health transition technology parameters, which are estimated
based on self-reported health status.

To facilitate a meaningful comparison, we accordingly employ three approaches. First,
similar to Cole et al. (2019), we use the SOEP data to map health status to the prevalence of
a specific health condition, conditional on age group and education (see Table 1.G.3). We use
this information to construct the probability of the onset of a specific disease in the future,
conditional on current health status, age group, fixed health type, as well as current and
past health effort, which is implied by our estimated health technology parameters using the
formula:

Pr(diseasej+1|hj, fj, fj−1, e, η) =πj(hj+1 = 1|hj, fj, fj−1, e, η) × Pr(disease|hj+1 = 1, e)
+ (1 − πj(hj+1 = 1|ht, ft, fj−1, e, η)) × Pr(disease|hj+1 = 0, e)
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Table 1.G.3: Prevalence of Diseases in Population by Age Group and Health Status

Health Condition Prevalence by Education

No CL CL No CL CL No CL CL No CL CL
Age Health Diabetes Cancer Hypertension Heart Condition

25-34 Unhealthy 0.038 0.000 0.015 0.006 0.111 0.073 0.029 0.011
Healthy 0.007 0.006 0.006 0.005 0.042 0.028 0.013 0.011

35-44 Unhealthy 0.055 0.034 0.035 0.029 0.201 0.118 0.062 0.044
Healthy 0.018 0.011 0.015 0.011 0.104 0.067 0.015 0.012

45-54 Unhealthy 0.116 0.064 0.074 0.075 0.327 0.286 0.118 0.084
Healthy 0.039 0.022 0.025 0.030 0.201 0.162 0.032 0.019

55-64 Unhealthy 0.200 0.177 0.094 0.113 0.525 0.462 0.213 0.172
Healthy 0.089 0.063 0.051 0.047 0.342 0.328 0.075 0.058

65-74 Unhealthy 0.263 0.243 0.164 0.179 0.575 0.593 0.348 0.347
Healthy 0.147 0.123 0.084 0.104 0.456 0.423 0.149 0.150

75+ Unhealthy 0.262 0.251 0.138 0.221 0.583 0.621 0.460 0.491
Healthy 0.179 0.171 0.102 0.135 0.490 0.508 0.248 0.276

Finally, we average this implied probability of having a specific disease over individuals in
the top, middle, and bottom terciles of the current health effort distribution and/or the past
effort distribution, conditional on age group, current health and education but averaging
over health type. To be comparable to Cole et al. (2019), we use only individuals between
the age of 25 and 75. We then calculate the average percent deviation of the implied disease
probabilities in each effort tercile relative to their within-status mean and compare the results
to those in Colman and Dave (2013).

Table 1.G.4 shows the results. Overall, the effectiveness of health efforts in reducing the
probability of disease onset implied by our estimated health technology parameters seems
lower than that reported in Colman and Dave (2013) for the case of exercise. For example,
while they find that exercise can reduce the prevalence of heart conditions by between 23-
29%, our estimates imply that being in the top effort tercile for current and past health effort
lessens the prevalence of heart conditions by around 5% compared to the mean.

Yet, the disadvantage of this approach is that it focuses on just one specific component of
our compound health effort measure, namely exercise. We consequently implement a second
approach, again in an effort to gauge our estimated health technology parameters against
the literature, this time using a mapping between health status and survival in old age to
benchmark our estimates against the results found in Knoops et al. (2004). Their study not
only explores the effect of a comprehensive lifestyle measure, comprised of a Mediterranean
diet, moderate alcohol use, physical activity, and nonsmoking, but also uses data on European
men and women between ages 70 and 90 and is thus closer to our German data source.
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Table 1.G.4: Implied Probability of Disease by Past and Current Effort Tercile

Percent Change of Probability relative to the within-status Mean
Effort Tercile Diabetes Cancer Hypertension Heart Condition

Current Effort
Low 3.52 2.85 1.52 4.05
Middle -0.52 -0.43 -0.21 -0.61
High -3.35 -2.72 -1.45 -3.86

Past Effort
Low 2.11 1.74 0.88 2.52
Middle -0.26 -0.22 -0.10 -0.33
High -2.12 -1.73 -0.90 -2.51

Both
Low 4.26 3.5 1.81 5.06
Middle -0.76 -0.62 -0.31 -0.923
High -4.11 -3.36 -1.75 -4.87

Coleman & Dave 1.2-3% decrease 10-31% decrease 23-29% decrease

To compare their estimate of the impact of healthy lifestyles on mortality, we simulate
the random health and survival evolution of 100,000 individuals between the ages of 70 and
84 that are equipped with our estimated health transition technology, as specified in Sec-
tion 1.4.2.59 As Table 1.G.5 summarizes, our parameter estimates paired with the empirical
average lifestyle effort results in a 10-year mortality rate around 42% percent, which is slightly
above the rate reported in Knoops et al. (2004). When restricting everyone to have a healthy
lifestyle, which we assume to be the effort at the 90th percentile by age, the simulation-
implied mortality rate drops to 40.6%. This drop is slightly smaller, yet comparable to that
found in Knoops et al. (2004). Vice versa, if we assume everyone exerts efforts equal to the
10th percentile, mortality over 10 years is increased by half a percentage point. We take this
as confirmation that our estimated health technology parameters, and especially the effec-
tiveness of health efforts, are conservative but reasonable in light of the empirical medical
literature.

Finally, several papers investigate the causal effect of compound measures of healthy
lifestyles on specific disease prevalence. For example, Schlesinger et al. (2020) find, in a meta-
analysis of the literature, that adherence to healthy lifestyle behaviors (i.e., a favourable diet,
physical activity, nonsmoking, moderate alcohol intake, and normal weight) lowers the risk

59We choose 84 instead of 90 to have ample sample size to measure 10-year mortatiliy. We assume that initial
age is drawn uniformly between 70 and 84.
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Table 1.G.5: Mortality among Older-Age Individuals implied by Our Estimates

Mortality Rates over 10 years (%)
Knoops et al. Implied by Simulation

Average Lifestyle 39.9 42.3
Healthy Lifestyle 35 40.6
Unhealthy Lifestyle 42.8

of type 2 diabetes by almost 80%, which qualifies the numbers found in column 1 in Table
1.G.4. Similarly, Barbaresko et al. (2018) survey 22 research papers that analyze the effect of
adhering to a healthy lifestyle on the onset of various serious conditions, and find a reduced
risk of 66% for cardiovascular disease, 60% for stroke, and 69% for heart failure.

1.H Sources of Lifetime Inequality

To get a sense of the importance of initial conditions in shaping inequality in lifetime out-
comes, we follow the strategy in Huggett et al. (2011) and calculate the share of (the present
value of) lifetime earnings, of the variance in the wealth at retirement ages, of the number of
healthy years, and of the the share of healthy years to overall life years that can be explained
by variation in the individual states at age 25. Specifically, following Huggett et al. (2011),
we compare the conditional variance in these outcomes, where we condition on all individual
state variables at age 25, with the unconditional variance. The state variables are education,
discount factor type, productivity type, and health type, as well as initial health and initial
health effort habits. For the latter, we group individuals into three equally sized groups re-
flecting their initial health effort habits. If a significant share of wealth and health inequality
can be explained by initial conditions, the positive association between wealth and health is
more likely to be predetermined at age 25. On the other hand, if the explained share is small,
this points to the significance of luck in terms of economic but also health shock realizations
during life in determining inequalities.

Table 1.H.1 summarizes the results. We find that around 81% of the variation in lifetime
earnings in our model is accounted for by differences in the initial conditions individuals face
at age 25, similar to the 62% that Huggett et al. (2011) find for this outcome in the U.S.
The corresponding statistic for wealth at the retirement age (i.e., age 65-66) is lower but is
quite large at 53%. By contrast, the differences in initial conditions explain much smaller
fractions of the variations in healthy years (25%), and the share of healthy years in life (37%),
implying that events over the lifetime largely drive the health-related outcomes. Overall, our
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Table 1.H.1: Contribution of Initial Conditions at Age 25 to Lifetime Inequality

Statistic Model
Fraction of variance in lifetime earnings 81.3%
Fraction of variance in wealth at age 65-66 53.0%
Fraction of variance in healthy years 24.9%
Fraction of variance in the share of healthy years in life 36.5%

results indicate the the role of both initial conditions and lifecycle events (and choices made
by agents) in accounting for health and wealth inequality over the lifecycle.

1.I Details about the Conceptual Two-Period Model

We presented a simple two-period model with endogenous health and wealth accumulations
in Section 1.5.1 to build insights on key channels. Here we provide more details such as a
full set of assumptions, derivations for the optimality conditions, and further results with
different assumptions.

In addition to the key assumptions laid out in Section 1.5.1, we further assume that utility
is positive (ut > 0 for t = 0, 1) and that the survival probability is positive (S(h1) > 0). For
simplicity, we assume zero interest rate, which is not important for our results. Current
health (h0) is assumed to be a state variable, and future health (h1) can be shaped by the
effort choice through π(f). Having endogeneity of current health is feasible, yet complicates
the analytic results. Similarly, we abstract from several mechanisms that are present in our
quantitative life-cycle model to focus on illustrating our key channels of interest. These
include the effect of current health on effort cost disutility, the effect of current health on
current consumption utility and the effect of current health on future health. We provide
implications of incorporating these extra effects below.

We can rewrite the constrained optimization problem (1.20) as

max
c0,f,n

{u0(c0) − φ(f) − ϕ(n, h0) + βS(π(f))u1(w(h0)n− c0, π(f))} (1.26)

which yields the following first-order conditions:

[c0] : u′
0(c0) = βS(h1)

∂u1(c1, h1)
∂c1

(1.27)

[n] : ∂ϕ(n, h0)
∂n

= βS(h1)
∂u1(c1, h1)

∂c1
w(h0) (1.28)

[f ] : φ′(f) = βS ′(π(f))π′(f)u1(c1, π(f)). (1.29)
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The first equation 1.27 describes the optimal savings choice, as discussed in Section 1.5.1.
As noted earlier, one could consider the health-dependence on u0 as well. Then, the condition
would read

∂u0(c0, h0)
∂c0

= βS(h1)
∂u1(c1, h1)

∂c1
. (1.30)

Therefore, if we consider a health penalty in the form of a multiplicative constant κ(h), one
can see that the relative health status would shape the strength of the savings motive. For
example, if h0 < h1, then it could reinforce the savings motive. On the other hand, for those
with h0 = h1, the savings channel we discussed in Section 1.5.1 would only work through the
length channel (i.e., S(h1)).

Combining equations (1.27) and (1.28), we can obtain:

∂ϕ(n, h0)
∂n

= u′
0(c0)w(h0), (1.31)

which is the labor-leisure condition (1.21). As is standard in any labor-leisure condition, the
effects of higher wages due to health on labor supply depends on whether the substitution
effect is stronger than the income effect, which is shaped by the functional form on utility.
In practice, it would also matter if the wage decline is temporary or not, since a temporary
change would induce a stronger positive effect on labor supply than a permanent change.

Finally, (1.29) describes the optimality condition for the effort choice. As in the labor
disutility, one could potentially introduce health-dependence on the disutility of efforts. The
implication is going to be parallel: poor health would shift the left-hand side up, which would
increase the marginal cost of efforts.

Moreover, we note that if we assume that health for the working period (i.e., h0) can also
be endogenously affected by the effort choice, the right-hand side would additionally include:

βS(π(f))∂u1(c1, π(f))
∂c1

w′(π(f))π′(f), (1.32)

which captures an effect coming through higher expected future wages when healthy. Inter-
estingly, this motive can be decreasing in wealth, as it is weighed by the marginal utility of
future consumption, which decreases with wealth. In other words, the motive to exert efforts
to be healthy in the future and therefore be more productive, is weaker with rising income,
which we can interpret as an income effect of effort. This force would mitigate the earnings
channel in generating wealth-health gaps.
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Table 1.J.1: Contributions to Wealth-Health Gaps of the Baseline Model

Earnings Channel
Total Wage Loss Only Disutil. Only

Wealth 25th 50th 75th 25th 50th 75th 25th 50th 75th
Age Group
35-44 100% 28% 21% 21% 0% 15% -1% 11% 1%
45-54 15% 6% 15% 14% 5% 8% -4% 0% 1%
55-64 34% 23% 6% 17% 12% 6% 5% 7% 1%
65-74 8% 19% 12% 7% 10% 11% 0% 7% 3%

Savings Channel
Total Length Only Quality Only

Wealth 25th 50th 75th 25th 50th 75th 25th 50th 75th
Age Group
35-44 4% 1% 28% -2% 0% 16% -4% -7% 11%
45-54 48% 42% 50% 16% 18% 36% 12% 2% 7%
55-64 55% 52% 69% 30% 19% 37% 17% 7% 9%
65-74 56% 51% 55% 32% 33% 40% 8% 5% 7%

Notes: This table reports the proportions of the baseline relative wealth-health gaps explained by
different components of the earnings and savings channels. See the text for their definitions.

1.J Additional Quantitative Exercises

Savings and Earnings Channel

Table 1.J.1 reports the proportions of the baseline relative wealth-health gaps that are ex-
plained by different channels. With Wage Loss Only, we only impose wep = 0 for both
education groups. With Disutil. Only, we only impose that the disutility of labor supply is
as if one was healthy for everyone. With Length Only, we only equalize the survival proba-
bility at the healthy level: Sj(hj = 1, e)∀j, e). With Quality Only, we only impose that the
consumption utility and value of life is not reduced from being unhealthy (κ̃ = 1). In all
exercises, we keep the distribution of health fixed at the baseline economy.

Figure 1.J.1 shows the results of a counterfactual experiment, in which we shut down
both savings and earnings channel, and leave the distribution of health free to adjust to
different health effort choices. This effectively takes away any incentive to exert efforts, as
being unhealthy is no longer different from being healthy in terms of labor supply, wages,
survival or consumption utility. This shrinks the wealth-health gaps considerably, by around
60%, on average. The remaining gaps in our model can be explained as individuals still differ
in fixed characteristics that drive both wealth accumulation and the probability of being
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Figure 1.J.1: Effect of Both Earnings and Savings Channels

35-44 45-54 55-64 65-74

Age Group

0

0.2

0.4

0.6

0.8

1
 W

e
a
lt
h
 G

a
p
 r

e
l.
 t
o
 H

e
a
lt
h
y
 

25th Prctl. Wealth

35-44 45-54 55-64 65-74

Age Group

0

0.2

0.4

0.6

0.8

1

 W
e
a
lt
h
 G

a
p
 r

e
l.
 t
o
 H

e
a
lt
h
y
 

50th Prctl. Wealth

35-44 45-54 55-64 65-74

Age Group

0

0.2

0.4

0.6

0.8

1

 W
e
a
lt
h
 G

a
p
 r

e
l.
 t
o
 H

e
a
lt
h
y
 

75th Prctl. Wealth

Baseline Model

All Channels

Notes: Differences in the wealth levels of those being healthy and unhealthy at the 25th (left),
50th (middle), and 75th (right) percentile of the wealth distribution in the baseline model (blue)
and in the counterfactual scenario when shutting down both earnings and savings channel together
(green). Differences are expressed relative to the wealth levels of the healthy.

health, most notably education.

Equalizing Efforts

In this section, we first explain how to quantify the contributions of the two different (di-
rect versus indirect) effects that we discussed in Section 1.5.2 to the wealth-health gaps of
the baseline economy separately at different ages and points of the wealth distribution in
Table 1.J.2.

Specifically, we quantify the contribution of direct effects of health effort equalization that
work through the health distribution by simulating our baseline economy but, unexpectedly
to the model agents, changing the health distribution to be the same as in the equal efforts
counterfactual. That is, all decisions on savings, labor supply and health efforts are the same
as in the baseline economy but the health evolution of every agent is as if she would have
exerted the average effort level. Analogously, we quantify the contribution of the indirect
effects of the equal efforts experiment that work through choices, by simulating the counter-
factual economy, but keeping the health distribution of the baseline case. The results clearly
suggest that the total effects of equalizing efforts works primarily through its direct effect on
the health distribution rather than the indirect effects.

Next, in addition to equalizing efforts at all age groups, we perform a series of further
counterfactual exercises, in which we separately equalize individual health efforts for the
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Table 1.J.2: Contributions of Equal Efforts to Baseline Wealth-Health Gaps

Equal Efforts
Total Direct Effects Only Indirect Effects Only

Wealth 25th 50th 75th 25th 50th 75th 25th 50th 75th
Age Group
35-44 -17% 3% 26% 0% 6% 24% -2% -4% 1%
45-54 10% 14% 20% 12% 14% 17% -3% -2% 2%
55-64 22% 28% 34% 21% 29% 33% -3% -1% 2%
65-74 28% 41% 40% 25% 40% 41% 2% 3% 2%

Notes: This table reports the proportions of the baseline relative wealth-health gaps that are
explained by different effects. See the text for the definitions of direct and indirect effects.

following ages groups: 25-44-year-olds, 45-64-year-olds, and 65-and-older (i.e., retired indi-
viduals).

Figure 1.J.2 displays the resulting wealth-health gaps at the median for different scenarios.
The left panel suggests that when equalizing health efforts among the young working-age
agents only (ages 25-44), the wealth-health gaps are also slightly reduced in the 45-54-year-
old age group. For older individuals, however, the gaps remain as large as in the baseline
economy, meaning that eliminating effort variation early on has some moderately lasting
effects in terms of closing the wealth-health gaps during the working ages. This is sensible
given that the estimated adjustment costs are low when agents are young.

The lasting effect becomes more pronounced when equalizing efforts among prime-age
workers (ages 45-64), who begin to face a more significant risk of becoming unhealthy. On
the one hand, the gap at ages 45-54 is higher than in the counterfactual case with constant
effort everywhere, as health behaviors are allowed to vary at young ages and this spills over
into the age groups where efforts are held constant. On the other hand, the gap at ages 65-74
is diminished by almost 20% relative to the benchmark case even though health behaviors
are allowed to vary.

1.K Additional Figures and Tables

Table 1.K.1 summarizes the initial distribution we estimate for our quantitative model. Sev-
eral patterns are worth noting. Among college-educated individuals, 5% report being un-
healthy between ages 25-30, while this number is over 8% among the non-college educated.
Moreover, average initial health effort is almost two-thirds of a standard deviation higher for
the college educated. The fixed health type is strongly correlated with initial health. Over
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Figure 1.J.2: Effect of Timing of Health Efforts on Wealth-Health Gaps
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Eq. Effort: Age 45-64
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Notes: Differences in the wealth levels by health status at the median of the wealth distribution in
the baseline model (blue), in the counterfactual scenario with constant health effort choices across
all age groups (yellow), and in the counterfactual scenarios where health efforts are equalized
separately for the 25-44-year-old (left), 45-64-year-old (middle), and 65+ (right) age groups.

11% of those with the low health type are on average unhealthy, while it is less than 6% for
the high health type. In contrast, initial health effort levels differ only little across health
types. Generally, differences in both initial health and initial health effort are only marginal
across productivity and discount factor types in the data, which is why we do not report
them here.
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Table 1.K.1: Initial Distribution

No College (e = 0)
β = βl β = βh

θ = θl θh θl θh
η = ηl ηh ηl ηh ηl ηh ηl ηh

Prob. Mass 0.062 0.133 0.070 0.101 0.061 0.099 0.063 0.102
Avg. h 0.878 0.937 0.878 0.937 0.878 0.937 0.878 0.937
Avg. f 0.663 0.690 0.663 0.690 0.663 0.690 0.663 0.690

College (e = 1)
β = βl β = βh

θ = θl θh θl θh
η = ηl ηh ηl ηh ηl ηh ηl ηh

Prob. Mass 0.034 0.033 0.024 0.045 0.029 0.047 0.025 0.072
Avg. h 0.926 0.960 0.926 0.960 0.926 0.960 0.926 0.960
Avg. f 0.773 0.785 0.773 0.785 0.773 0.785 0.773 0.785

Figure 1.K.1: Median Wealth Profiles by Health Status and Occupation
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Notes: Median wealth per 5-year age group and health status for manual (left) and non-manual
(right) occupations, separated by healthy (green) and unhealthy (red) status. Manual occupations
include agricultural workers, craft and trades-persons, plant and machine operators, and other
elementary occupations. The non-manual category includes all other occupations.



1.K. ADDITIONAL FIGURES AND TABLES 71

Figure 1.K.2: Wealth-Health Gaps at Different Distribution Points: Model vs. Data
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Notes: Wealth by 10-year age groups, distinguishing between healthy individuals (green) and
unhealthy ones (red) in the model relative to the data at different point of the wealth distribution.
Left panel: 25th percentile. Central panel: 50th percentile. Right panel: 75th percentile.

Figure 1.K.3: Wealth Profiles by Health and Education: Model vs. Data
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Notes: Wealth by 10-year age groups, distinguishing between healthy individuals (green) and un-
healthy ones (red) in the model relative to the data. Left panel: Non-college educated individuals.
Right panel: College educated individuals.



Chapter 2

Efficiency and Equity of Education
Tracking: A Quantitative Analysis1

with Suzanne Bellue2

Abstract: We study the long-run aggregate, distributional, and intergenerational effects
of school tracking—the allocation of students to different types of schools—by incorporating
school track decisions into a general-equilibrium heterogeneous-agent overlapping-generations
model. The key innovation in our model is the skill production technology during school years
with tracking. School tracks endogenously differ in their pace of instruction and the students’
average skills. We show analytically that this technology can rationalize reduced-form evi-
dence on the effects of school tracking on the distribution of end-of-school skills. We then
calibrate the model using representative data from Germany, a country with a very early
school tracking policy by international standards. Our calibrated model shows that an edu-
cation reform that postpones the tracking age from ten to fourteen generates improvements
in intergenerational mobility but comes at the cost of modest losses in aggregate human
capital and economic output, reducing aggregate welfare. This efficiency-mobility trade-off
is rooted in the effects of longer comprehensive schooling on learning and depends crucially
on the presence of general equilibrium effects in the labor market.

1 We are very grateful to Antonio Ciccone, Michèle Tertilt, and Minchul Yum for their continued and in-
valuable support and guidance in this project. In addition, we thank Hans Peter Grüner, Andreas Gulyas,
Yannick Reichlin, Luca Henkel, and numerous seminar and conference participants for helpful discussions
and suggestions. Suzanne Bellue gratefully acknowledges financial support from the German Academic
Exchange Service (DAAD) and the German Research Foundation (through the CRC-TR-224 project A03).
Lukas Mahler gratefully acknowledges the financial support from the German Science Foundation (through
the CRC TR 224 Project A04) and the SFB 884 Political Economy of Reforms.

2 Department of Economics, CREST-ENSAE
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2.1 Introduction

School tracking—the allocation of school children into different types of schools at some point
during their school career—is a common feature of education policy across OECD countries.
For example, in 2018, 27 out of 37 countries in the OECD had an education system with at
least two distinct school programs available to 15-year-old students.3 The argument behind
tracking is typically one of efficiency: grouping children by ability and aspirations creates
more homogeneous classrooms and allows for tailored instruction levels and curricula, which
improves educational outcomes (Duflo et al., 2011). On the other hand, as the track decision is
often related to the socioeconomic background of children, tracking may impair socioeconomic
mobility across generations and increase inequality in education and income (Carlana et al.,
2022; Meghir and Palme, 2005; Pekkarinen et al., 2009; Hanushek and Wößmann, 2006). This
concern is particularly strong for countries that track at a relatively young age (Dustmann,
2004). For this reason, school tracking, and, in particular, its timing, is a recurrent issue in
the public and academic debate about education reforms in countries with an early tracking
regime, such as Germany (OECD, 2020a).4

This paper contributes to the debate by quantitatively assessing the long-run aggregate,
distributional, and inter-generational effects of school tracking policies. Any such assessment
needs to consider the effects of tracking on educational outcomes in school and college, the
effects of the supply of different skills on labor market outcomes, and the intergenerational
effects of parental skills differences. Quantitative macroeconomic models of overlapping gen-
erations have proven useful in analyzing these effects and the interplay between them, but
have so far not incorporated how skill accumulation is affected by school tracking policies
(Lee and Seshadri, 2019; Daruich, 2022; Restuccia and Urrutia, 2004; Yum, 2023). We aim
to fill this gap by providing a macroeconomic model that features tracking in secondary
school, allowing us to quantify the role that tracking plays for aggregate and distributional
socioeconomic outcomes, within and across generations.

3 An overview of school tracking policies in OECD countries is given in Chapter 3 in OECD (2020b). We
differentiate school tracking, which refers to allocating students into physically distinct types of schools
that differ in the curriculum taught, intensity, and length, from ability grouping within a school, where
the curriculum and educational goals remain the same. School tracking is also common among non-OECD
countries. Based on 2018 PISA data, only two out of 38 non-OECD countries with available information
featured an education system with one comprehensive school program available to 15-year-old students.

4 There is substantial variation in the timing of tracking across countries (see Figure V.3.9 in OECD, 2020b,
based on 2018 PISA data). Germany and Austria are among the countries with the earliest track selection,
at age 10. The Slovak Republic and the Czech Republic track at age 11; Belgium, the Netherlands,
Switzerland, Indonesia, and Singapore at age 12; Bulgaria at age 13; Argentina, Italy, and Slovenia at age
14; France, Greece, Israel, Japan, Mexico, Portugal and many other countries at age 15. Other countries,
like the US, UK, Australia, or the Scandinavian countries do not track during secondary school.
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The model is built around a parsimonious theory of how school tracking affects the ac-
cumulation of skills in school. Our skill accumulation technology implies that each child has
an optimal pace of instruction, which is increasing in children’s skills. The pace of instruc-
tion can differ across school tracks but not within tracks. Policymakers choose the pace of
instruction across tracks to maximize aggregate skills at the end of secondary school. We
also allow for direct peer effects—children learn more if their school peers have higher skills.
Because of the (endogenous) stratification in skills implied by school tracking, this is a further
channel through which tracking affects skill accumulation in school. Under linear direct peer
effects and absent any shocks to child skills during their time in school, the skill formation
technology implies that the optimal tracking policy should perfectly stratify children when
they start school. However, in the more realistic scenario where children’s skills develop at
different—and hard to predict—tempos as they grow older, early tracking may lead to lower
aggregate end-of-school skills because of a mismatch between children’s skills and the pace
of instruction. Also, early tracking can increase inequality in educational outcomes. An-
other interesting implication of tracking is that children who lose in terms of skills are often
concentrated in the track with the lower instruction pace. Thus, our child skill formation
technology rationalizes some of the most robust empirical findings regarding school tracking
in the literature and encompasses the main arguments about school tracking frequently made
in the public discourse.5

We embed our theory of skill accumulation in school into a general-equilibrium life-cycle
incomplete-markets framework of overlapping generations, in which parents care about their
offspring in the tradition of Becker and Tomes (1986). Some aspects of the model are tailored
to fit the German Education System. Children are tracked into two school tracks at the age
of ten, typically at the end of four years of comprehensive primary school. Of the two
school tracks, only one permits direct access to college (called academic track), but there is
a second-chance opportunity for children in the other track (called vocational track). The
school track children attend is decided by parents, who are altruistic and principally decide
based on what’s best for their children. However, parental preferences over school tracks

5 Empirical estimates of the effects of (early) tracking on average learning outcomes of school children are
often ambiguous (Hanushek and Wößmann, 2006). Evidence for the effects of tracking on inequality is more
consistent, finding that tracking raises educational inequality and tends to predominantly disadvantage
children from lower socioeconomic backgrounds (see, for instance, Meghir and Palme (2005), Aakvik et al.
(2010), and Pekkala Kerr et al. (2013) for evidence from Scandinavian countries and Matthewes (2021) and
Piopiunik (2014), for the case of Germany). While opponents of early tracking argue in favor of postponing
the tracking age as a means to increase equality of opportunity in access to education for disadvantaged
children (for example Wößmann (2020) in Germany), proponents argue that in a comprehensive school,
children who learn quickly are thwarted, while slower-learning children overstrained, resulting in learning
losses (see, for example Esser and Seuring (2020) in Germany).
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can also play a role. End-of-school skills translate into adult human capital, which evolves
stochastically over the working life and determines wages. Going to college allows access
to the college-skill labor market, which affects the wage profile over the working years, but
incurs an opportunity (time) cost and psychic costs that depend on end-of-school skills. The
distribution of human capital across college and non-college workers affects equilibrium wages,
which parents anticipate when they choose the school track for their children. Households
can save into a non-state-contingent asset subject to life-cycle borrowing constraints, and
parents can make a non-negative inter-vivos transfer when children become independent.

We solve for the steady-state equilibrium of the model numerically and calibrate the
parameters in two steps. First, we estimate the skill formation technology parameters directly
from German data on school children (Blossfeld et al., 2019) using a latent variable framework
as in Cunha et al. (2010) and Agostinelli et al. (2023). In particular, we use information
on achievement test scores to measure children’s skills at different stages of their school
careers. We then calibrate the remaining parameters to match a set of salient moments
from representative German survey data. The model matches the data well, both in terms of
aggregate moments and in terms of the distribution of skills across school tracks and parental
backgrounds, as well as the transitions through the education system. To test the model’s
validity, we investigate non-targeted moments, such as the determinants of the school track
choice. The model reproduces well the relationship between skills and school track choice by
parental background. In addition, we also check our calibrated model against Dustmann et al.
(2017)’s empirical observation that for children at the margin between two school tracks in
Germany, school tracking is inconsequential for earnings later in life. We do so by computing
the effects of the initial school track on later-in-life economic outcomes for a set of children
who are around the margin between the two school tracks in equilibrium. Our model confirms
that lifetime economic outcomes for these children are similar no matter which school track
they attend.

To better understand the role of skill formation during the school tracking years for
lifetime inequality, we implement a variance decomposition analysis in the spirit of Huggett
et al. (2011) and Lee and Seshadri (2019). We find that around a third of the variation in
lifetime economic outcomes is accounted for at age ten, just after the school track choice. This
share rises to around two-thirds at age eighteen after the college choice, a number consistent
with the literature. This suggests that the evolution of skills during the tracking years in
secondary school is crucial for determining lifetime inequality, underscoring the importance
of understanding skill formation during these years.

Our main policy interest is in the long-run and welfare effects of later school tracking or,
equivalently, a longer period of comprehensive schooling. We find that a policy reform that
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postpones the school tracking age by four years to age fourteen—the average tracking age in
OECD countries—entails an efficiency-mobility trade-off. On the one hand, postponing the
tracking age improves social mobility as it decreases the intergenerational elasticity of income
by around 2.2%. These mobility gains arise primarily because there is less heterogeneity in
skill accumulation during comprehensive schooling, with children who would have gone to
an academic track school losing and children who would have gone to a vocational track
school gaining. This reduces the heterogeneity of end-of-school skills and, in particular,
the skill differences across school tracks. On top of that, by the time the track decision is
made, children from different parental backgrounds become more similar, and the later track
choice depends less on parental background. There is also a source of mobility gains from
labor market adjustments. The decrease in heterogeneity in end-of-school skills translates
into smaller differences in human capital across college and non-college workers, and the wage
premium falls. Moreover, as skills are linked between generations, this also reduces the initial
skill differences of the next generation of children by parental background, reinforcing the
effects on skill heterogeneity. Ultimately, inequality, as measured by the Gini coefficient of
earnings, drops by 0.4%.

On the other hand, our results indicate that postponing tracking comes at the cost of
a 0.1% drop in GDP and a 0.05% drop in consumption equivalent units. This is because
prolonged learning in a comprehensive school track foregoes efficiency gains from tailored
instruction levels in an early tracking system. Quantitatively, these learning losses cannot be
recuperated even though the later tracking decision occurs after more uncertainty about skills
has been resolved. As a result, later tracking leads to lower aggregate end-of-school skills and
lower aggregate output. The 0.1% drop in GDP depends on general equilibrium adjustments
in the labor market that influence school track and college decisions. In partial equilibrium,
holding wages fixed, aggregate output would increase as the share of academic-track children
and college-educated workers rises. Abolishing tracking in favor of comprehensive schooling
altogether would further exacerbate the efficiency-mobility trade-off.6

Finally, we evaluate the effects of reducing the direct influence of a child’s socioeconomic
background on the school track choice. Our data indicate that when parents go against the
school track recommendation of their children’s primary school teachers, it is generally in fa-
vor of their own educational path. We rationalize this as coming from parental preferences.7

6 A similar trade-off has been highlighted in the literature about the effects of economic segregation on growth
and inequality (see Bénabou, 1996) and more recently by Arenas and Hindriks (2021) where efficiency gains
from unequal school opportunities arise because of positive assortative matching between parents who invest
more in their children and better schools. In contrast, in our case, efficiency gains arise from matching
similar-ability peers to tailored instruction levels for longer.

7 These preferences may refer to actual track tastes, as parents might want their children to follow in their



2.1. INTRODUCTION 77

Consistent with previous findings (e.g. Dustmann, 2004), our calibrated model yields that
parental preferences play an important role for school track choices and may result in an
inefficient allocation of children across tracks.8 An important question is whether the conse-
quences of such “misallocation” effects are visible not only in child skill outcomes but also
in the aggregate and distributional outcomes in the economy. We show that eliminating the
preference-driven influence of parental background on the school track leads to improvements
in both social mobility and economic output in the range of 0.9% and 0.04%, respectively,
and raises aggregate welfare by 0.04% in consumption equivalent units. The reason is that
the initial school track choice depends more strongly on skills, which improves the teaching
efficiency in each track and thereby raises the aggregate skill level. These results highlight
that measures, such as well-executed mentoring programs, which provide information and
support to children from lower socioeconomic families and have been effective in alleviating
the negative influence of family background on school track decisions (Raposa et al., 2019),
can not only improve the outcomes of these individual children but also lead to aggregate
efficiency gains in the economy.

Related Literature

This paper links several strands of the literature: the quantitative macroeconomic literature
on inequality and mobility, the literature on children’s skill formation during school years,
and the school tracking literature.

Much research in the quantitative macroeconomic literature on inequality and intergen-
erational mobility shares our focus on the role of skill formation, education, and education
policies (e.g. Becker and Tomes, 1979, 1986; Restuccia and Urrutia, 2004; Lee and Seshadri,
2019; Abbott et al., 2019). While many papers in this literature focus on early childhood
education and the role of parental investments (e.g. Daruich, 2022; Yum, 2023; Caucutt and
Lochner, 2020; Lee and Seshadri, 2019), or study the role of college-education policies (e.g.
Krueger and Ludwig, 2016; Abbott et al., 2019; Capelle, 2022), few papers explicitly include
the secondary schooling stage into their analysis. An exception is Fujimoto et al. (2023),
who study the importance of free secondary schooling for misallocation driven by borrowing

footsteps (Doepke and Zilibotti, 2017), or to some form of biased information about how each school track
influences later outcomes or about the costs associated with completing it. In our data, we cannot tell the
underlying reasons apart.

8 For example, a college-educated parent may push her child into an academic-track school even though her
child’s skills optimally suggest a vocational-track school. This harms her child’s learning outcomes and
affects average learning in that track as the instruction pace endogenously adjusts to the composition of
skills in that track. We calibrate the extent of these asymmetric preferences in our model to replicate the
share of deviations of the chosen school track from what had been recommended by the primary school
teachers in our data.
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constraints in Ghana. However, in their context, secondary schooling is the highest education
level. In addition, recent research has highlighted the heterogeneous impact of school closures
in the wake of the Covid pandemic on children at different stages of their schooling career
(Jang and Yum, 2022; Fuchs-Schündeln et al., 2022) and across public and private secondary
schools (Fuchs-Schündeln et al., 2023). Our contribution is to study a widespread feature of
education policy during secondary school—tracking. Even though tracking occurs in many
countries and (early) tracking policies are often made responsible for persistent inequality
and social immobility in the public debate, an analysis of broad reforms to tracking policies
in the macroeconomic literature is, to the best of our knowledge, missing.9

Our theory of skill formation during schooling years builds on the insights of the liter-
ature on child skill formation, which studies how children’s skills evolve as a function of
endowments, parental and environmental inputs, and schooling and teaching inputs (see, for
instance, Cunha and Heckman, 2007; Cunha et al., 2010; Agostinelli et al., 2023, 2019; Duflo
et al., 2011; Aucejo et al., 2022; Bonesrønning et al., 2022). To incorporate how tracking
affects learning in secondary school, we consider two forms of peer effects.10 First, similar to
Agostinelli (2018), we incorporate direct peer effects, which capture the idea that children
are affected by different-quality peer groups in a school track. Second, following Duflo et al.
(2011)’s evidence in Kenyan primary schools and Aucejo et al. (2022)’s findings of comple-
mentarities between classroom composition and teaching practice in the US, we consider how
the instruction levels across tracks adjust endogenously to the skill composition in that track.
For that reason, school tracking is conceptually different from schools of different qualities
(often related to neighborhood effects), which would mechanically disadvantage children in
the lower-quality tracks. For example, Arenas and Hindriks (2021) provide a model of un-
equal school opportunity, defined as unequal school quality and access probability to the
best schools, and quantify its effect on intergenerational persistence, highlighting the role
of positive assortative matching between parents who invest more into their children and

9 There is an extensive literature in education economics, which theoretically analyzes tracking policies, to
which we relate (see Epple et al. (2002) and Betts (2011) for a general theoretical foundation of tracking).
This literature tends to conclude that the effects of tracking on the level and distribution of educational
outcomes are often theoretically ambiguous and depend on the shape of peer effects, resources between
tracks, or the uncertainty surrounding child abilities. We make a similar point in Section 2.3. Brunello
et al. (2007) offer an analysis of the optimal timing of tracking focusing on the role that an increasing
demand towards more general skills plays, while Brunello et al. (2012) estimate the efficiency losses of
deviating from the optimal tracking age across Europe, finding losses in the range of half a percent of GDP,
on average. Our contribution to this literature is that we provide a richer framework that incorporates
important macroeconomic effects of tracking on higher education and labor market outcomes and allows
us to draw conclusions on the effects of tracking on mobility across generations.

10A summary of theoretical models of peer interactions and their implications for tracking policies can be
found in Epple and Romano (2011). Sacerdote (2011) provides an overview of empirical approaches to
measuring peer effects in education.
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high-quality schools. In contrast, schools tracks differ endogenously in their instruction pace.
Choosing a school track is thus less about choosing a “good” versus a “bad” school but more
about choosing a school that fits a child’s learning needs.11

We incorporate the skill formation technology with tracking into a standard life-cycle
model with intergenerational linkages, such that the initial conditions of a new generation
are endogenous, following the work in Daruich (2022); Lee and Seshadri (2019); Yum (2023).
Moreover, we share with these papers the importance of considering GE effects when studying
policy reforms that affect the skill composition in the economy. While the quantitative
macroeconomic literature focuses almost exclusively on the US, where tracking across schools
is uncommon (Fujimoto et al., 2023, is a notable exception as they focus on a developing
country, Ghana), we focus on a country with a very early tracking system—Germany. At
the same time, our school track model is general enough to be used in other countries that
track between schools, such as many European countries, but also Asian countries like Korea
and Singapore, or South American countries like Argentina or Uruguay (OECD, 2020b), and
could even be adapted to be informative for countries where tracking occurs mostly within
schools, across classrooms, such as in the US.

Lastly, this paper connects to an extensive empirical literature that estimates the effects
of school tracking, and, in particular, its timing, on educational and later-in-life outcomes
of students.12 This literature typically either exploits temporal within-country variation in
tracking practices (Meghir and Palme (2005), for Sweden; Aakvik et al. (2010), for Norway;
Bauer and Riphahn (2006), for Switzerland; Malamud and Pop-Eleches (2011), for Romania;
Pekkala Kerr et al. (2013), for Finland; and Matthewes (2021); Piopiunik (2014) for Ger-
many) or between-country variation with a difference-in-differences strategy (Hanushek and
Wößmann, 2006; Ruhose and Schwerdt, 2016). Most studies suggest that earlier tracking
raises inequality in educational outcomes and increases the effect of parental education on
student achievement. Dustmann et al. (2017) use an individual-level instrumental variables
strategy (the date of birth) and find no effect of the school track on educational attainment
or earnings for students at the margin between two tracks. This result suggests that school
tracking in Germany is largely inconsequential in the long run for children whose skills put
them in between tracks when the decision was made, a result that our model accommodates.
We add to this literature a quantitative model-based assessment of the long-term aggre-
gate, distributional, and welfare effects of broad reforms to the school tracking age, which is

11Similarly, tracking is also different from having private schools or schools with different costs, where selection
into schools is likely to depend on parental wealth directly. The degree to which private schools are similar
to a tracking system will then depend on the correlation between child skills and parental wealth.

12See Betts (2011) for an excellent overview. We relate our model-based predictions of these effects to the
findings in this literature in detail in Appendix 2.C.
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difficult to establish empirically.
The remainder of the paper is organized as follows. Section 3.2 presents our model of over-

lapping generations and tracking during secondary school and introduces the skill formation
technology. In Section 2.3, we build intuition about the model mechanisms underlying school
tracking by deriving theoretical implications of that technology. Section 2.4 explains how we
parameterize and calibrate the model. It also offers some validation exercises. In Section 3.3,
we use the calibrated model to perform a series of counterfactual experiments to quantify
the effects of different school tracking policy regimes. Finally, Section 3.4 concludes.

2.2 The Model

Time is discrete and infinite, and one model period, j ∈ {1, ..., 20}, corresponds to the four
years between ages [4j − 2, 4j + 2] in real life. Thus, agents enter the model as two-year-old
children and exit at age 82.13 This frequency allows us to investigate meaningful variations
in school tracking ages. The structure implies that 20 generations are alive at every point in
time. As in Lee and Seshadri (2019), we assume a unit mass of individuals in each period.

A life cycle can be structured into several stages, as illustrated in Figure 2.1: During
the first four periods, a child lives with her parent, goes to school, and accumulates (school)
skills. School tracking happens at the beginning of child period j = 3. At the beginning
of child period j = 5, at age 18, the child becomes an independent adult, her skills are
transformed into adult human capital, and she can decide to go to college. Both college
and non-college-educated types of labor are used, next to capital, by a representative firm
to produce the final consumption good. Adult agents decide how much labor to supply until
they retire at the beginning of j = 17, at age 66. During the working periods, human capital
grows stochastically. Finally, in j = 9, when they are 34 years old, adults become parents of
a child. Adults make inter-vivos transfers to their children when they turn 18 and become
independent.14

13We choose this perhaps unorthodox timing to capture that in Germany, children are ten years old when
parents make the secondary school track decision, which resembles reality in Germany. Appendix 2.B.1
gives an overview of the German Education System.

14For the remainder of the text, we will denote all child variables with primes whenever both parental and
child states are present. The child of a parent who is in period j is in period j′ = j − 8.
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Figure 2.1: Timeline of Life-cycle Events
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2.2.1 Child Skill Formation

Every new child has an initial ability or skill endowment, ϕ, which is imperfectly transmitted
from her parent.15 When children enter primary school, at the beginning of j = 2, the initial
ability translates into a first child school skill level, θ2, expressed in logarithm, to which we
refer to as skills henceforth.

θ2 = log ϕ. (2.1)

We think of these skills as stage-specific competencies during the schooling periods, j = 2
to j = 5, that can be observed by everyone and are rewarded on the labor market for both
college and non-college-educated workers.

Subsequently, the evolution of skills depends on the schooling system. During primary
school (j = 2), the system is comprehensive, meaning that there is only one track to which
all schools belong, denoted by S = C. During secondary school, there are two distinct school

15As in Cunha and Heckman (2007), we do not differentiate between abilities and skills, as both are partly
endogenously produced and partly exogenously determined pre-birth. The initial ability thus captures
genetic components and investments made by parents into their child’s development during early childhood,
infancy, and even in-utero.
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tracks, a vocational track S = V and an academic track S = A.16 School tracks can differ in
their pace of instruction, denoted by P S, which reflects the differences in the intensity and
depth with which school subjects are taught.17 Notably, the pace of instruction in each school
track is endogenous in the sense that the education policymaker can choose it in every period
to achieve her goals. For our analysis, we assume that the policymaker has an efficiency goal
and maximizes aggregate end-of-school skills.18 We further assume that all classrooms and
schools in the same track are identical. Thus, if a child is allocated to a particular track, we
can think of her as attending a “representative” classroom and school for that track. This
implies that all children in a given track are exposed to the same set of classroom and school
peers.

The technology of (log) skill formation during the school years j = 2, 3, 4, of a child in
school track S, is then given recursively by:

θj+1 = κθj + αθ̄Sj + g(θj, P S
j ) + ζE + ηj+1

ηj+1 ∼ N (0, σ2
ηj+1

).
(2.2)

Next period’s skills are directly affected by past skills θj and parental education E, which we
take as a proxy for the home environment in which a child grows up, including differences in

16While in principle a larger number of school tracks is conceivable, we restrict our analysis of tracking to
two school tracks as this corresponds to a typical number across OECD countries. Typically, the two tracks
serve the purpose of preparing children for academic higher education at a college or similar institution or
to prepare children for a more vocational career.

17In Germany, the curricula and core subjects are no longer materially different across school tracks. The
main difference between academic and vocational schools is that the former results in direct qualification
to enter university, while the latter does not. In academic track schools, topics are generally taught more
densely and comprehensively than in vocational track schools, preparing students for higher education.
Moreover, students typically have more options for elective subjects at later stages of secondary school.
Vocational track schools, by contrast, are less demanding in terms of the required learning effort, and
graduation occurs after fewer years. A detailed comparison between the teaching intensity and learning
goals across Germany is provided in Dustmann et al. (2017). Note that heterogeneity in instruction paces
across tracks does not entail systematic differences in teacher quality or resources devoted to teaching
across tracks that could also affect child skill development. In Appendix 2.B.1, we summarize information
on expenditure per student as well as teacher quality across different school tracks in Germany.

18For example, in Germany, the curricula in the different tracks are set by each federal state under some
general federal education goals. They consist of learning and competence goals, methods, and specific topics
that should be taught in each school track, subject, and grade. The curricula are subject to frequent review
and renewal. For example, as of 2023, 14 out of 16 federal states in Germany updated the curriculum in the
last four years and 7 out of 16 in the last two years. The concrete implementation of the curricula, however,
is in the hands of the teachers and individual schools, who have some discretionary margin to adjust the
instruction paces to the needs of their pupils. Therefore, we view the pace-setting process as a mix of
overarching learning goals and individual adjustment across school tracks. To the best of our knowledge,
there is no clear teaching goal about the distribution of end-of-school skills formulated by German education
policymakers.
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parental investments into child skills by parental background (Heckman and Mosso, 2014).
By ηj+1, we denote unobserved i.i.d. shocks to the skills. This type of uncertainty in the
formation of child skills is crucial for analyzing school tracking policies. We interpret these
shocks as stemming, for example, from unexpected heterogeneity in child development speeds
(such as late-bloomers), but also health shocks that can permanently influence the skill
formation trajectory of a child.19

The school track can affect next period’s skills in two ways: First, through direct in-
teractions with peers in a track, which affect future skills linearly through the average skill
level of other children in school track S, denoted by θ̄Sj , as is common in the peer effects
literature (Sacerdote, 2011).20 Second, through the pace of instruction in her school track,
P S
j , as governed by the function g, which we assume takes the following form:

g(θj, P S
j ) = βP S

j + γθjP
S
j − δ

2(P S
j )2. (2.3)

This functional form implies firstly that for each skill level θj, there exists an individually-
optimal instruction pace, P ∗

j (θj), that maximizes future skills in each period. Secondly, if
γ > 0, there is a positive complementarity between the individually optimal pace and the
individual skill level, such that higher-skilled children also prefer a higher pace of instruc-
tion. This is motivated by evidence on the heterogeneous effects of teaching or instructional
practices depending on prior student achievement and, in particular, by evidence on “match”
effects between teaching practices and classroom skill composition (see Duflo et al. (2011),
Aucejo et al. (2022) and references therein). As we will demonstrate theoretically in Section
2.3 and quantitatively in Section 3.3, this complementarity plays a central role in providing
the rationale behind any efficiency argument in favor of school tracking policies.

Given (2.3), it is clear that aggregate learning is maximal if every child is taught at her
preferred instruction pace in every period. However, there is only one instruction pace per
school track. Given this constraint, a policymaker seeking to maximize expected future skills
would then set the pace in each track to the one that is optimal for a child with exactly the

19Our assumption of shocks as the source of skill formation uncertainty is slightly different from the idea that
the “true” academic potential of a child cannot be perfectly observed and must be learned over time from
signals, such as school grades. We discuss the differences that a model with imperfectly observed child
skills would imply in Appendix Section 2.D.

20We concentrate on the case with a linear-only direct peer externality governed by α. As summarized in
Epple and Romano (2011), many studies find that such linear-in-means peer effects are sizable and robust
across settings. Evidence on non-linear peer effects in the classroom is more ambiguous. For that reason,
we do not incorporate non-linearities in peer effects directly. Instead, we consider the endogenous setting
of instruction levels across school tracks as a channel through which non-linear peer effects arise. We
note, however, that non-linear peer effects could have important implications for the assessment of tracking
policies.
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average skill level in that track, as summarized in Lemma 1.

Lemma 1. The pace of instruction a policymaker would set in each school track to maximize
expected skills in the next period is given by

P S
j = P ∗

j (θ̄Sj ) =
β + γθ̄Sj

δ
(2.4)

where θ̄Sj is the average skill level of children in track S.

Proof. Follows from taking the first order condition of the conditional expected value E(θj+1|S)
in (2.2) with respect to P S

j using (2.3) and under the i.i.d. assumption of ηj+1, and the fact
that maximization of skills in each school track is a necessary condition for maximizing
unconditional skills.

According to Lemma 1, the instruction pace setting implies that future child skills depend
non-linearly on her peers’ skills. Specifically, skill gains decrease monotonically with the
distance between a child’s own skills and the average skill level in that track, or equivalently
with the distance between her optimal instruction pace and the one she is currently taught
at.21 Consequently, for a child with a low skill level, going to a school track with a high
instruction pace tailored to a higher average skill level can be harmful to the point that she
actually learns less, despite being surrounded by better peers, than if she had attended a
school with a lower pace.

After finishing school, at the beginning of j = 5, child skills are transformed one-to-one
into the first adult human capital level, h5,

h5 = exp(θ5). (2.5)

2.2.2 Preferences

Preferences over consumption and labor supply of adults in each period are given by

u(cj, nj) = (cj/q)1−σ

1 − σ
− b

n
1+ 1

γ

j

1 + 1
γ

(2.6)

21See Appendix 2.A.1 for the derivation. Our formulation of learning hence implies that non-linear peer
effects are driven by how the instruction levels are adjusted (as found, for example, in Duflo et al., 2011;
Lavy et al., 2012). Moreover, it provides a micro-foundation for efficiency gains in average learning that
stem from more homogeneous peer groups. We discuss the theoretical consequences of tracking under these
assumptions in Section 2.3.
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where cj denotes household consumption and q is an adult consumption-equivalent scale that
is larger than one whenever there is a child in the household and one otherwise. Risk aversion
is captured by σ. Individuals incur disutility from working nj hours, which is governed by b
and the Frisch elasticity of labor supply, γ. All future values are discounted by β.

2.2.3 Educational Choices

There are two types of educational choices agents make during their life. The first and novel
education choice is the secondary school track parents choose for their children. We assume
that the utility of parents also depends on the track their children attend, through a stochas-
tic academic-track utility cost χ(E) ∼ HE(χ), whose distribution can depend on parental
education E. This will allow us to capture that empirically, the school track decision is signif-
icantly affected by parental socio-economic status, even conditional on school performance,
test scores prior to the track decision, and the track recommended by primary school teach-
ers. Moreover, when parents deviate from the primary school teacher’s recommendation, it
is usually toward their own education path.22

There may be multiple reasons behind these parent-specific academic track costs. For
example, there may be a cost associated with acquiring information about school tracks that
is lower whenever a parent went to that track herself. Similarly, parents may feel better able to
support their child in a track they are more familiar with. Parents may also systematically
over- or underestimate their children’s potential or have strong preferences for their child
following in their footsteps. Whatever their exact reason, deviations in parent’s track choice
from the recommended path may lead to learning inefficiencies. For example, a child with low
skills could be sent to the academic track by parents who have preferences for this track. This
would lead to learning losses not only for the individual child but also create an externality
for all other children as the instruction pace is endogenous to the peer composition.

Second, after finishing school, newly independent adults decide whether to go to college.
In line with the literature (e.g. Daruich, 2022; Fuchs-Schündeln et al., 2022), we assume
that going to college entails a “psychic” utility cost ψ(S, θ5, ν(Ep)) that may depend on the
secondary school track S, the end-of-school skills θ5 and an idiosyncratic college taste shock,

22See Appendix 2.B.2 for some reduced-form evidence on the school track choice and deviations from the
recommended tracks, by parental background. Importantly, children who deviate from the recommended
school track perform differently than the others. Children who deviate from vocational to academic perform
worse than the average kid in the academic track, and the reverse happens for children who deviate from
academic to vocational. The fact that deviating from the recommended track does not seem to benefit
children in terms of their achievements indicates that it is not the case that parents “know” the true
potential of their child better or can support them better.
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ν(Ep) ∼ GEp(ν) , whose distribution may be influenced by the parent’s education level Ep.23

This formulation can accommodate two important features of the transition between
secondary and college education in the data. Firstly, the share of students with an academic
track secondary school degree who get a college degree is significantly higher than those
with a vocational secondary school degree.24 Secondly, independently of the school track,
the likelihood of college education in the data is increasing in the end-of-school skills.Finally,
the random taste shocks reflect heterogeneity in the higher education decision coming from
parental background or channels outside of the model, as is common in this literature.

2.2.4 Adult Human Capital, Labor Income and Borrowing

During the working career (j = 5 to j = 16), human capital grows according to

hj+1 = γj,E hj εj+1, log εj ∼ N (0, σ2
ϵ ) (2.7)

following Yum (2023), where γj,E are age- and education-specific deterministic growth rates
and εj+1 are market luck shocks, which follow an i.i.d. normal distribution in logs, with zero
mean and constant variance σ2

ε , as in Huggett et al. (2011). Human capital remains constant
after retirement. Gross labor income is then given by

yj = wE hj nj (2.8)

where wE denotes the effective wage per unit of human capital paid to workers with higher
education E.

Note that all prices, including wE, implicitly depend on the distribution of agents in the
economy, which we suppress for notational convenience. After retiring, each agent receives
retirement benefits πj(h17, E), which depend on the last education-specific human capital
level before retirement.25 Throughout their life, adult agents can save into a risk-free asset
a, which pays a period interest rate r. As in Lee and Seshadri (2019), we assume that each
agent’s borrowing is constrained by the amount that can be 100% repaid in the next period
using a government transfer g. Moreover, agents cannot borrow against the future income of

23We add the superscript “p” here to indicate that Ep is the college education of the parent of a newly
independent adult who chooses her own college education E.

24In Germany, every graduate from an academic track secondary school automatically obtains a college-
entrance qualification, while graduates from vocational tracks do not. However, there exist a variety of
“second-chance” opportunities to obtain college-entrance qualification for vocational-track graduates, such
as evening schools (see Dustmann et al., 2017).

25As is common in the literature, we let benefits depend on human capital in this way to proxy for lifetime
earnings, which form the basis of pension benefits in reality.
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their children. The per-period borrowing constraint can thus be written as

aj+1 ≥ −g
1 + r

. (2.9)

In the following, we provide a recursive formulation of the agent’s decisions in each life cycle
stage.

2.2.5 Recursive Formulation of Decisions

At the beginning of each adulthood period prior to retirement, individuals learn about their
market luck shock realization and, in case they have a child, about the child skill shock
realization. Based on this information, they decide on consumption (cj), savings (aj+1), and
hours worked (nj). In addition, there are two education choices—the school track and the
college decision—and parents decide on inter-vivos transfers in period j = 13. All decisions
are subject to the human capital growth technology (2.7), the borrowing constraint (2.9), a
working time constraint nj ∈ [0, 1] and a period budget constraint

cj + aj+1 = yj + (1 + r)aj − T (yj, aj) (2.10)

where labor income is defined as in (2.8) and T (yj, aj) gives taxes net of lump-sum transfers,
which consist of labor income and capital taxes.

Parenthood (Age 34-50, periods j = 9, ..., 13)

Parent with a Young Child (j = 9, 10) The state space in these periods consists of
the parent’s education E, her human capital, hj, and her assets aj. Parents observe their
child’s initial ability ϕ at the start of the first period of the child’s life, when she is two years
old, which corresponds to the child’s first school skill at age six, as given by (2.1).

Future skills θj′+1 evolve according to (2.2) given the optimal pace of instruction as defined
in Lemma 1. In particular, primary schools are comprehensive track schools, such that the
evolution of a child’s skills depends on the average skill level of all children in their cohort,
θ̄j′=2. The problem of the parent can then be written as:

Vj(E, hj, aj, ϕ, θj′) = max
cj ,aj+1,nj

{
u(cj
q
, nj) + β EVj+1(E, hj+1, aj+1, ϕ, θj′+1)

}

s.t. θj′+1 = κθj′ + αθ̄Sj′ + g(θj′ , P ∗
j′(θ̄j′)) + ζE + ηj′+1

(2.7) − (2.10)

(2.11)
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where expectations are taken over child skill shocks (ηj′+1), market luck shocks (εj+1), and
in period j = 10 also over school track taste shocks χ(E).

The School Track Decision (j = 11) When the child turns ten, at the beginning
of her third period of life, the parent decides on whether to send her to the vocational or
academic track school, S ∈ {V,A}. The decision of parents is not constrained by any edu-
cation policy (but parents do generally obtain a track recommendation from their children’s
primary school).26 Once a child is tracked, she remains in that track for two periods, until the
end of secondary school, when she turns 18.27 Parents make the track decision by comparing
the value of sending the child to a vocational track school with that of sending her to an
academic track school. These (interim) values are given by

W11(E, h11, a11, ϕ, θ3, S) = max
c11,a12,n11

{
u(c11

q
, n11) + β EV12(E, h12, a12, ϕ, θ4, S)

}
s.t. θ4 = κθ3 + αθ̄S3 + g(θ3, P

∗
3 (θ̄S3 )) + ζE + η4

(2.7) − (2.10)

(2.12)

for each track S. They encode several incentives that influence the track decision. On the
one hand, academic track attendance makes, ceteris paribus, college access more likely, which
results in higher human capital growth and productivity over the life cycle. The returns to
college education depend on the demand for college-type labor. On the other hand, parents
know that her child’s skill formation depends on the average skill level in a school track θ̄S3 ,
both directly through peer interactions but also indirectly through the endogenous optimal
instruction pace P S

3 . Thus, parents need to anticipate the distribution of children across
tracks when making the track decision, which becomes an aggregate state, which we keep
implicit.

On top of that, the track decision is also affected by the stochastic academic track utility

26This has become common practice in Germany, where in the majority of federal states, parents are com-
pletely free in making the secondary school track choice for their children. Only in three states, Bavaria,
Thuringia, and Brandenburg, academic school track access is conditional on a recommendation by the
primary school teachers. These recommendations are often tied to achieving a certain grade point average
in Math and German in primary school. However, even in these states, children without a recommendation
can take advantage of a trial period in an academic track school, after which the child will be assessed
again.

27We abstract from track switches during secondary school, as these are relatively rare in the data. For
example, in 2010/11, only around 2.5% of children in the first stage of secondary school in Germany
switched school tracks (Bellenberg and Forell, 2012). Moreover, this number includes switches among
different tracks that we group into the vocational track, so it is likely an upper bound of the track switches
between the vocational and academic tracks. However, this does not preclude track switches between the
end of secondary school and the beginning of possible tertiary education, which we allow in our model.
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shock, χ(E) ∼ HE(χ). Parents then make the discrete track choice using (2.12) after observ-
ing a draw of χ(E). Thus, we can define the value of a parent after this shock realization at
the beginning of period j = 11 as

V11(E, h11, a11, ϕ, θ3) = max
S∈{V,A}

{W11(E, h11, a11, ϕ, θ3, S = V ),

W11(E, h11, a11, ϕ, θ3, S = A) − χ(E)}.
(2.13)

Remaining Parenthood (j = 12, 13) In period j = 12, when the child is 14 years old
and starts the second period of secondary school, the parent solves the following problem:

W12(E, h12, a12, ϕ, θ4, S) = max
c12,a13,n12

{
u(c12

q
, n12) + β EV13(E, h13, a13, ϕ, θ5, S)

}

s.t. θ5 = κθ4 + αθ̄S4 + g(θ4, P
∗
4 (θ̄S4 )) + ζE + η5

(2.7) − (2.10)

(2.14)

where the child’s school track S, which has been decided in the previous period, is now
included in the parent’s state space.

Just before her child reaches the age of 18 and becomes independent, the parent decides
on a financial inter-vivos transfer that her child receives, a′

5, while taking into account the
child’s future value Vj′=5. As in Daruich (2022), we model this as an interim decision problem
and assume that the parent already knows the realization of her market luck shock and her
child’s final skill shock but does not know the realization of the college taste shock ν ′(E).
The transfer cannot be negative, so parents cannot borrow against the future income of their
child. The strength of parental altruism is governed by the factor Λ. The value at the
beginning of period 13 is then

V13(E, h13, a13, ϕ, θ5, S) = max
a′

5≥0

{
Ṽ13(E, h13, a13 − a′

5) + ΛEν′ Vj′=5(θ5, a
′
5, ϕ, S, E)

}
s.t. ν ′(E) ∼ GE(ν ′)

(2.15)

where Ṽ13 is the value for a parent with savings a13 after the inter-vivos transfer has been
made

Ṽ13(E, h13, a13) = max
c13,a14,n13

{u(c13, n13) + β EV14(E, h14, a14)}

s.t. c13 + a14 + a′
5 = y13 + (1 + r)a13 − T (y13, a13)
(2.7) − (2.9)

(2.16)
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so that the transfer a′
5 enters the budget constraint.

Work Life Without a Dependent Child (Age 18-34 and 50-66, periods j = 5, 6, 7, 8
and j = 14, 15, 16)

Independence (j = 5) After turning 18, the state space of a newly independent adult
comprises the secondary school track she graduated from S, end-of-school skills θ5, initial
assets a5, which she received from her parents, initial ability ϕ and her parent’s education
Ep, which affects the distribution of the stochastic college taste shock ν(Ep). Conditional on
the realization of that shock, the young adult first decides whether to go to college (E = 1)
or not (E = 0) by solving the problem

V5(θ5, a5, ϕ, S, E
p) = max

E∈{0,1}
{W5(E = 0, h5, a5, ϕ),

W5(E = 1, h5, a5, ϕ) − ψ(S, θ5, ν(Ep))}
(2.17)

where W5 denotes the values of college and non-college education, given by

W5(E, h5, a5, ϕ) = max
c5,a6,n5∈[0,n̄(E)]

{u(c5, n5) + β EV6(E, h6, a6, ϕ)}

s.t. (2.7) − (2.10)
(2.18)

and end-of-school skills are transformed into adult human capital h5 according to (2.5).
While agents can work during college education, they only receive the vocational wage rate
w0. Moreover, obtaining a college education reduces the time available for work, as individ-
uals spend part of their total time endowment studying, thus n̄(E = 1) < 1.

Remaining Work Life (6, 7, 8 and j = 14, 15, 16) In periods 6 and 7, which corre-
spond to ages 22 to 30, adults solve

Vj(E, hj, aj, ϕ) = max
cj ,aj+1,nj

{u(cj, nj) + β EVj+1(E, hj+1, aj+1, ϕ)}

s.t. (2.7) − (2.10).
(2.19)

In period j = 8, when they are age 30 to 34, adults know that they will have a child at the
start of the next period. For that reason, they take expectations over the initial ability of
their future child, ϕ′, on top of the expectations over the market luck shock. Thus, we obtain
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that in period 8

V8(E, h8, a8, ϕ) = max
c8,a9,n9

{u(c8, n8) + β EV9(E, h9, a9, ϕ
′)}

s.t. log ϕ′ = ρϕ log ϕ+ ϵϕ, ϵϕ ∼ N (0, σ2
ϕ)

(2.7) − (2.10)

(2.20)

where ϵϕ is an intergenerational shock. For periods j = 14, 15, 16, when they are age 54 to
66, adults are again without a child and solve the standard life-cycle savings problem

Vj(E, hj, aj) = max
cj ,aj+1,nj

{u(cj, nj) + β EVj+1(E, hj+1, aj+1)}

s.t. (2.7) − (2.10)
(2.21)

where the initial ability ϕ has been transmitted to the child and does not enter the state
space anymore. In the last period prior to retirement, j = 16, agents no longer need to take
expectations over market luck shocks, as human capital remains constant during retirement.

Retirement, j = 17, 18, 19, 20

Everybody retires at the beginning of model period 17, corresponding to age 66, and receives
retirement benefits πj(h17, E). After period 20, at age 82, agents die with certainty and exit
the model. The values in these periods are

Vj(E, h17, aj) = max
cj>0,aj+1

{u(cj, 0) + βVj+1(E, h17, aj+1)}

s.t. cj + aj+1 = πj(h17, E) + (1 + r)aj − T (0, aj)
and (2.9).

(2.22)

2.2.6 Aggregate Production, and Government

A representative firm produces output according to the Cobb-Douglas production function
Y = AKαH1−α, where A denotes total factor productivity, K is the aggregate physical
capital stock, and H is human capital defined by:

H = [φHσf
0 + (1 − φ)Hσf

1 ] 1
ϵ . (2.23)

H0 is the aggregate labor supply in efficiency units of non-college workers, and H1 is that of
workers with college education. The physical capital stock depreciates at rate δf .

The government taxes labor income progressively, such that labor income net of taxes
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amounts to ynet = λy1−τn (Heathcote et al., 2017). It also taxes capital income linearly
according to τaraj. All tax revenue is used to finance retirement benefits πj and fixed lump-
sum social welfare benefits g that are paid to every household.

2.2.7 Equilibrium

We solve for the model’s stationary equilibrium and its associated distribution using the
numerical strategy in Lee and Seshadri (2019). Stationarity implies that the cross-sectional
distribution over all states in every age-period j is constant across cohorts. As is standard, the
equilibrium requires that households and firms make optimal choices according to their value
functions and firm first-order conditions, respectively. Moreover, the aggregate prices for
physical capital and both types of human capital r, w0, and w1 are competitively determined
and move to clear all markets. Note that we do not require the government budget to clear
as well. Instead, we assume that all government revenues that exceed the financing of all
social welfare programs result in wasteful government spending (or spending that is linearly
separable in the utility of households).

A special feature of our model is that learning during the school years depends on the
distribution of children across school tracks. Importantly, an equilibrium therefore requires
that parents form expectations over the skill distribution across school tracks, which have
to coincide with the actual distributions in equilibrium. Appendix 2.A.2 gives a detailed
definition of the equilibrium.

2.3 Developing Intuition: Tracking and Skill Forma-
tion

Our formulation of the skill formation technology during the schooling years in (2.2) con-
stitutes the novel cornerstone of our model. We now develop some intuition about what it
implies for skill accumulation with and without school tracking. Our focus in this section is
exclusively on the secondary schooling years (periods 3 and 4), and we ignore transitions to
higher education and the labor market. Moreover, we simplify parents’ preferences, such that
they only care about their child’s expected end-of-school skills and have no other preferences
regarding the school track choice. Finally, we assume for simplicity that κ = 1 and that there
are no direct parental influences, ζ = 0, nor stochastic track costs, χ = 0.

All other assumptions are maintained. In particular, policymakers set the instruction
paces in each school track to maximize expected end-of-school skills, such that the pace-
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setting rule in Lemma 1 holds. Moreover, we assume that the distribution of child skills at
the beginning of secondary school is normal and centered around 0.

2.3.1 Comprehensive School versus Tracking

We start by comparing a comprehensive schooling system (C), in which all children attend
the same school track, to a tracking system (T ) in which all children are tracked into a
vocational or academic track. For simplicity, we consider only one period of schooling here.
Thus, if θ3 are the skills at the beginning of secondary school, θ4 can be considered the skills
at the end of school. A key implication of this simplifying assumption, when combined with
the timing of skill shocks in (2.2), is that skill evolution during secondary school occurs as
if there were no skill shocks during that time. As we will see, this implies that aggregate
end-of-school skills are always greater with tracking than in a comprehensive system.

The Allocation of Children across Tracks

We consider two alternative allocation mechanisms. In the first one, a policymaker (or a
teacher) allocates children across tracks directly. As before, the goal of the policymaker is to
maximize the expected end-of-school skills across all children (maxS E(θ4)).

The second alternative consists of each parent making the track decision unilaterally for
her child i with skill level θi,3. A parent’s only goal is to maximize her child’s expected end-
of-school skill level (maxS E(θi,4)). Parents know the distribution of θ3. We can thus think
of this mechanism as a simultaneous move game played among parents, where each parent’s
strategy set consists of the two tracks she can send her child to, and the next period’s skills
give the payoffs.

Proposition 1 shows that, in both alternatives, the track decision that results in the
optimum or equilibrium is governed by a sharp cut-off skill level. A policymaker would
optimally split the distribution exactly at its mean. Intuitively, this generates the highest
aggregate end-of-school skills as it minimizes the variance of skills in each track, thereby
creating peer groups that are as homogeneous as possible. In doing so, the policymaker
internalizes that any effects coming from the direct peer externality offset each other across
tracks. Thus, all gains achieved from making average peer skills in one track higher are lost
as the average level in the other track becomes smaller.

In contrast, if parents are the decision-makers, they decide regardless of the aggregate
outcomes. The equilibrium of this implied game still features a sharp skill threshold, which
is characterized by the skill level at which a child’s expected end-of-school skills are exactly
equal in both tracks. This threshold is smaller than the optimal threshold a policymaker
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would pick whenever the direct peer effects are positive (α > 0). The reason is that, because
of positive direct peer effects, children with skills just below the policymaker’s threshold
would benefit individually from going to the academic track (with higher average skills). As
parents do not internalize the effect of their decision on average skills in each track, they will
therefore send their children to the academic track.

Proposition 1. The allocation of children across tracks is characterized by a skill threshold
θ̃3, such that all children with initial skills below θ̃3 go to one track and all children with
initials skills above θ̃3 go to the other track.

• If the policymaker does the track allocation, the optimal skill threshold corresponds to
the average initial skill level θ̃∗

3 = E[θ3] = 0.

• If parents do the track allocation, the skill threshold depends on the direct peer exter-
nality α. With α > 0, the threshold is smaller than θ̃∗

3.28

Proof. In Appendix 2.A.1.

Next, we compare the comprehensive and tracking systems in terms of their effects on end-
of-school skills. We refer to an optimal tracking system, when the policymaker makes the
track allocation with the goal to maximize end-of-school skills, as in Proposition 1.

The End-of-School Distribution

Proposition 2 shows that independently of the sorting mechanism, expected end-of-school
skills in an optimal tracking system are always larger than in a comprehensive system, pro-
vided that γ ̸= 0 and δ > 0. Intuitively, this advantage comes from more homogeneous peer
groups in each track in terms of their skills. Since learning decreases with the variance of
skills among children in a track, more homogeneity on average increases end-of-school skills.
Therefore, the gain from tracking increases the smaller the conditional variance of skills across
tracks, as given in equation (2.24). The gain from tracking further increases in the comple-
mentarity between own skills and instruction pace, γ. The stronger the complementarity,
the more it pays to stratify children by their skills. Moreover, the advantage increases in the
variance of initial child skills σ2

θ3 but decreases in δ, which ultimately governs the concavity
of learning with respect to the instruction pace.

A full tracking system may lead to larger inequality in end-of-school skills. In particular,
condition (2.25) states that the variance of end-of-school skills might be larger in a tracking
28We rule out an (uninteresting) equilibrium of the track choice game in which parents randomly allocate

their child into one of the two tracks, leading to the same distribution of skills in both tracks and, hence,
the same pace of instruction.
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system with positive peer externalities if tracking occurs at the optimal skill threshold. This
is more likely to hold the larger the direct peer externality α.

Similarly, an optimal tracking system necessarily leaves some children worse off compared
to a comprehensive system. These children have initial skills around the tracking threshold
and would be closer to their optimal instruction pace in a comprehensive system. In an
optimal tracking system with θ̃3 = 0, these children thus occupy the center of the distribution
and would, given a choice, prefer a comprehensive system. If there are no direct peer effects,
an equal share of children in both tracks lose relative to the comprehensive counterpart.
However, with positive peer effects, the losses are concentrated among the track with the
lower average peer level. This reflects a robust finding of the empirical school tracking
literature that the children at the bottom of the skill distribution suffer from a tracking
system (e.g. Matthewes, 2021).

Proposition 2.

• Expected end-of-school skills in a full tracking system are larger than in a fully compre-
hensive system. This holds regardless of who makes the track decision, i.e., regardless
of the tracking skill threshold θ̃3. The gain from tracking is given by

E(θ4|T ) − E(θ4|C) = γ2

2δ
(
σ2
θ3 − E(V ar[θ3|S])

)
. (2.24)

• The end-of-school skill distribution in a full tracking system has a “fatter” right tail. In
case of tracking at the optimal skill threshold θ̃3 = E(θ3), the variance of end-of-school
skills in a full tracking system is larger than the variance in a fully comprehensive
system iff

α2 + 2α
(

1 + βγ

δ

)
− (8 − π) γ

4

πδ2σ
2
θ3 > 0. (2.25)

• Children with initial skills inside a non-empty interval lose from a full tracking system
in terms of their end-of-school skills relative to a fully comprehensive system. With
α = 0, the losses are symmetric in both tracks. With α > 0, the losses are concentrated
in the track with the lower average skill level.

Proof. In Appendix 2.A.1.

The main reason why T always beats C here in terms of aggregate skills is the simplifying
assumption of no skill shocks during students’ time in school. As a result, the tracking
decision made at the start of secondary school is optimal throughout secondary school.
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2.3.2 Early versus Late Tracking

Let us now consider a two-period secondary schooling system, like in our full model, where
there can be skill shocks during the time students are in secondary school. In this case,
the skills at the end of school are θ5. We are interested in a comparison between the end-
of-school skill distribution in an early tracking system, ET , and a late tracking system,
LT . In both cases, the allocation of children to tracks is done optimally by a policymaker,
maximizing the expected aggregate end-of-school skills (maxS E(θ5)). The early tracking
system is characterized by a track allocation in j = 3 that is maintained throughout secondary
school. The late tracking system is characterized by all children going to a comprehensive
school in the first period, followed by tracking at the beginning of the second secondary
school period (j = 4). Hence, in the case of LT , children are allocated to school tracks after
the skill shocks η4 are realized, while in the case of ET , the school track decision was made
before the realization of these shocks.

Proposition 3 says that expected end-of-school skills in an optimal LT system can be larger
than in an optimal ET system if the variance of the skill shocks is large enough. Intuitively,
this represents the key disadvantage of early tracking. Since the first track allocation is
maintained throughout secondary school, it does not correct for skill shocks during that
time. As a result, some students are mismatched in the second period of secondary school
(j = 4). The LT system avoids this mismatch by making the track allocation later. But
this comes at the cost of less aggregate skill accumulation during the C stage. Hence, when
students are subject to skill shocks during secondary school, there is a trade-off between the
pace of learning in the first stage of secondary school and the quality of the student-track
match in the second stage of secondary school.

Proposition 3. Expected end-of-school skills in the two-period model are larger in an opti-
mal late tracking system than in an optimal early tracking system iff

σ2
η4

σ2
θ3

> 1 + α + α2 + β + β2

2 + 2α(1 + β) + γ2

2πσ
2
θ3 . (2.26)

Proof. In Appendix 2.A.1.

These results illustrate that the skill technology alone entails non-trivial theoretical implica-
tions for the effects of school tracking on end-of-school skills. In particular, even when the
track allocation is performed optimally, the timing of tracking balances a trade-off between
efficiency gains from learning in more homogeneous peer groups and those from the ability
to react to child skill shock realization.
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In sum, our parsimonious skill technology can therefore accommodate the ambiguous
empirical findings on the effects of tracking on the level of educational achievements, in
addition to the estimated association of tracking with higher inequality and disproportional
disadvantages among the lower-skilled groups. However, this alone does not allow us to
quantify the macroeconomic effects of school tracking policies. Indeed, the quantitative
importance of these forces for economic outcomes within and across generations not only
depends on the estimates of the child skill technology parameters and the size of the skill
shock variances but also on how they interact with other essential features of the model
(and reality). For example, second-chance opportunities at the time of the college decision
may make the effect of the (early) track choice less consequential for labor market outcomes.
On the other hand, asymmetric parental preferences over school tracks may reinforce inter-
generational persistence of education, while harming learning efficiency during the school
years. Finally, the track decision is not just concerned with purely maximizing skills but
takes into account future labor market prospects, which also depend on the share of children
attending each track. To quantify these channels through the lens of our model, we now
describe the calibration procedure.

2.4 Model Calibration

We calibrate the model to the German Education System (described in detail in Appendix
2.B.1) following a two-step approach. In the first step, we estimate the parameters of the child
skill formation technology during the school years, as well as other selected model parameters
directly from the data. In the second step, the remaining parameters are estimated using
the simulated method of moments by matching the moments from the stationary equilibrium
distribution of the model to their empirical counterparts. Table 2.4 summarizes the externally
calibrated parameters, and Table 2.5 presents the internally estimated ones.

2.4.1 Data and Sample Selection

The calibration is based on two data sources, and complemented by official statistics on
education in Germany.29 The first source is the German National Educational Panel Study
(NEPS), which comprises detailed longitudinal data on the educational process, acquired
competencies, as well as the learning environment, and context persons of six cohorts of par-
ticipants in nationally representative samples in Germany, starting in 2010 (Blossfeld et al.,

29See Bildungsberichterstattung (2018) and Appendix 2.B.5 for details on these statistics and the sources of
our target moments.
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2019).30 A key component of the information collected is regular standardized assessment
tests of school children’s competencies in areas such as mathematics, reading, sciences, or
grammar.31 In addition, there is information about school track recommendations by pri-
mary school teachers and the final school track choices. We restrict the sample to individual
observations containing information on the school and class of a child in a given year.

The second data source is the German Socioeconomic Panel (SOEP), an annual represen-
tative household survey from which we use the 2010-2018 waves (Goebel et al., 2019). The
data contains rich information on labor supply, income, and education on the individual level.
We use this data source primarily to construct empirical moments for the working stage of
the life cycle, as will be detailed below. For this reason, the only sample selection we do is
dropping those workers with hourly wages below the first and above the 99th percentile while
keeping both workers and non-workers. We convert all income data to 2015 Euros using a
CPI index for inflation adjustment.

We begin by detailing how we measure, identify, and estimate the parameters of the skill
formation technology, as these constitute the most critical ingredient of our model. Then,
we describe the functional forms and estimation strategies for all remaining parameters.

2.4.2 Estimation of the the Child Skill Formation Technology

We specify the empirical analog of the production technology of (the logarithm) of child i’s
skills that we take to the data as follows:32

θi,j+1 = ω0,j + ω1,jθi,j + ω2,j θ̄
S
−i,j + ω3,jθ

2
i,j + ω4,j(θi,j − θ̄Sj )2 + ω5,jEi + ηi,j+1, (2.27)

30The NEPS is carried out by the Leibniz Institute for Educational Trajectories (LIfBi, Germany) in coop-
eration with a nationwide network. We use data from Starting Cohorts 2,3, and 4, survey waves 2011-2018
(NEPS Network, 2022).

31See also Appendix Section 2.B.3 for more details on the tests as well as the scaling procedure adopted by
the NEPS.

32Following the work in Cunha et al. (2010), much of the empirical and quantitative literature using child skill
formation technologies employs parametric specifications of the constant elasticity of substitution (CES)
form. As noted in Agostinelli and Wiswall (2016), this requires, under standard parameter restrictions,
that all input factors are static complements. An alternative is to use a nested CES structure as in Fuchs-
Schündeln et al. (2023); Daruich (2022). To retain tractability, we follow Agostinelli and Wiswall (2016) and
opt for the trans-log approach. In our formulation, all inputs into child skill formation, and in particular
school inputs and parental inputs, are therefore substitutes, which is in line with the literature (Kotera
and Seshadri, 2017). We also experimented with relaxing this assumption by including interaction terms
between school inputs and parental education, which were, however, insignificant.
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Note that (2.27) is a rearranged version of the skill technology (2.2) after substituting in (2.3)
and the optimal pace of instruction in each school track as given by Lemma 1.33 Moreover,
in principle, we allow all parameters to be specific to the period j.

In the estimation, we also distinguish between θ̄S−i,j, which denotes the average skill level
of the child i’s classroom peers, and θ̄Sj , which refers to the average skill level of all children
in a school that belongs to track S. Note that in the model, θ̄S−i,j = θ̄Sj , since we assume
a representative school and class per track (or alternatively, identical classes conditional
on school tracks). In the data, however, there is heterogeneity across classes, even within
schools and tracks. Since we are interested in capturing skill development effects that arise
from direct interactions with peers, which are likely occurring in a specific classroom, we
exploit this heterogeneity in the estimation.34 Finally, the intercept ω0,j can be a function
of age and gender in the empirical estimation, and the parental educational attainment E is
a time-constant dummy that equals one if child i comes from a household in which at least
one parent is college educated.

As is common in the child skill formation literature (Cunha et al., 2010; Agostinelli and
Wiswall, 2016), we think of skills θj as latent variables that are only imperfectly measured
in the data. Therefore, we employ a log-linear measurement system for latent skills, using
a series of achievement test scores as noisy measures of child skills in each period. The
identification strategy of the scales and loadings of each measure using their covariances
follows Cunha et al. (2010). We aggregate the individual measures into a composite unbiased
index using Bartlett factor scores, as in Agostinelli et al. (2023), to account for measurement
error. Appendix 2.B.4 details skills measurement and the estimation procedure.

We present our preferred estimates of the skill production technology parameters in Ta-
ble 2.1 and provide robustness checks with different specifications in Appendix 2.B.4. These
estimates are based on the NEPS Starting Cohort 3 data, between school grades 5 and 9,
which corresponds to period 3 in our model. Since children are in a comprehensive primary
school track before grade 5, we cannot estimate the age-, and track-specific coefficients for
period 2. In addition, in grade 12, some parts of the tests are track-specific, which makes
the estimates unreliable for period 4. For those reasons, we assume that the estimates of the

33The coefficients ωn,j , n = 0, ..., 5 relate to those in (2.2) and (2.3) as follows: ω0 = β2

2δ , ω1 = (κ+ β
γ δ), ω2 =

α, ω3 = −ω4 = γ2

2δ , and ω5 = ζ for all j. We formally test the restriction ω3 = −ω4 after the estimation.
34Given that we control for school fixed effects in the estimation, our identification of the direct peer effects

is therefore close to the literature on estimating peer effects using classroom-fixed-effects methods (see the
discussion in Epple and Romano, 2011). This also has the added benefit that we can identify a model
that includes θ̄S

−i,j , (θ̄S
j )2, and the interaction θθ̄S

j , even if we consolidate schools into a maximum of two
school tracks in the data, which, as discussed in Appendix 2.B.1 resembles reality in Germany over the
past decade.
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Table 2.1: Child Skill Technology Parameters Estimates

Dependent Variable: θi,j+1
Grade 9 on Grade 5

Coefficient Variable

ω̂1,3 θi,j 0.664***
(0.022)

ω̂2 θ̄S−i,j 0.003
(0.020)

ω̂3 θ2
i,j 0.008*

(0.004)

ω̂4 (θi,j − θ̄Sj )2 -0.011*
(0.006)

ω̂5,3 E = 1 0.034***
(0.010)

Obs. 1,847

Notes: This table presents the coeffi-
cients of regressions of skills in grade 9
on skills in grade 5, skills squared, the av-
erage skill level of peers, distance to the
average skill in the track squared, and par-
ent’s education dummy. Standard errors
are clustered at the school level. We con-
trol for year of birth, gender, and school-
fixed effects. Source: NEPS.



2.4. MODEL CALIBRATION 101

skill technology parameters ω2, ω3, and ω4 between school grades 5 and 9 are representative
of the entire schooling career. That is, we drop the j index on those technology parameters.

Recall that θi,j is the logarithm of child skills. Hence, we can interpret the coefficients
as elasticities. Thus, ω̂1 = 0.66 means that a 1% increase in latent skills at the beginning
of primary school is associated with a 0.66% increase in end-of-primary school skills. This
own-skill productivity is close to the literature’s common values (see estimates in Cunha
et al., 2010; Agostinelli et al., 2019). During secondary school, the estimated coefficient ω̂2 is
positive but rather small and statistically insignificant. Existing estimates of linear-in-means
peer effects models range from small negative effects to large positive effects of a one-unit
increase in average peer test scores on student achievement.35 Translating our estimates
into such an effect, we find that a one-unit increase in average peers’ test scores raises own
future tests by around 0.01. As such, we are at the lower end of typical estimates during
primary and secondary school, which is in line with other research that uses within-school
classroom variation (see Epple and Romano, 2011) that typically arrive at lower estimates
compared to studies that use some form of random assignment of peers. Finally, the estimated
coefficient ω̂4 is negative and statistically significant at 10%. It indicates that a 1% increase
in the squared distance to the average skill level in a track is associated with an up to
0.011% decrease in the next period’s skills. This lends empirical support to the idea that the
instruction pace in every track is tailored to the average skill level, and deviations, in both
directions, from this level can hurt individual skill development. Importantly, we cannot
reject the hypothesis that ω̂3 = −ω̂4, which is in line with our assumptions.36

The parameters we use in the skill formation technology in the model are then ω2 = ω̂2,
and ω4 = ω̂4 as reported in Table 2.1. Moreover, we set −ω3 = ω4 = ω̂4. The parameters ω1,3

and ω5,3 also come from Table 2.1, while ω1,2, ω1,4, ω5,2, and ω5,4 are estimated internally to
match the own-skill elasticities from a regression of future skills on past skills and parental
education, as reported in Table 2.2. Finally, the constant parameter ω0 is set to zero.

35Table 4.2. in Sacerdote (2011) provides an overview about existing estimates using a variety of identification
strategies.

36The estimated negative effect ω̂4 is therefore conform with findings in the literature, which test the effects
of skill-based tracking on later achievement directly (for example Duflo et al. (2011) argue that the large
achievement gains of tracked students relative to non-tracked students are the result from indirect effects
of peers that operate through the adjustment of teaching behavior) or test the effects of classroom hetero-
geneity on achievement. As summarized in Sacerdote (2011), many, but not all, findings in this literature
point to the fact that classroom heterogeneity reduces test scores, which is consistent with the idea that
tracking raises outcomes in both tracks. In terms of effect sizes, it is difficult to compare our estimates to
existing ones as we are measuring the heterogeneity across tracks directly and not across classrooms.
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Table 2.2: Evolution of Child Skills

Grade θi,j+1 on Grade θi,j and E
Dependent Variable: Grade 4 Grade 9 Grade 12

(Cohort 2) (Cohort 3) (Cohort 4)

Panel A: All students
θi,j 0.649*** 0.811***

(0.011) (0.016)

E = 1 0.072*** 0.044***
(0.007) (0.009)

Obs. 4,023 2,070
Panel B: Academic students

θi,j 0.566*** 0.745*** 0.825***
(0.019) (0.025) (0.019)

E = 1 0.049*** 0.035*** 0.033***
(0.011) (0.012) (0.009)

Obs. 1,371 1,195 2,327

Notes: This table presents the coefficients of regressions of current skills on
past skills and parents’ education dummy. Standard errors are clustered at the
school level. Models control for year of birth, gender, and school-fixed effects.
Source: NEPS.

2.4.3 Remaining Parameters

Preferences

We set the inverse elasticity of intertemporal substitution to σ = 2, a value that is common
in the literature. The Frisch elasticity of labor supply is set to 0.5. The disutility shifter b is
estimated internally to match the average time worked in the SOEP data, which is 0.36 when
the total time available after sleep and self-care is assumed to be 13 hours on a weekday and
normalized to 1.

We internally calibrate the time discount factor β, so the equilibrium interest rate amounts
to 4% annually. The altruism parameter Λ is calibrated such that the ratio of average inter-
vivos transfers to average labor income in the model corresponds to average higher education
costs of children to average four-year labor income in the data. According to a 2016 survey
by the German Student Association, the monthly costs of living during the higher education
stages for a student without children are, on average, 830 Euros per month (Dohmen et al.,
2019). We expect the parents to bear the bulk of these costs and assume that they support
their child for an average of four years (the length of time it takes on average to complete
higher education studies). Then, the ratio of total costs to average 4-year labor income is
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approximately 0.49, which we take as our target moment.

Academic School Track Costs

The stochastic school track costs χ(E) are assumed to follow the distribution χ(E) ∼
HE(χ) ≡ N (µχ,E, σ2

χ). We parameterize the mean µχ,E as follows:

µχ,E = µχ,A +

χ1 if E = 1

χ0 if E = 0,
(2.28)

so that µχ,A > 0 represents a uniform utility cost of academic-track attendance (for example,
stemming from the academic track being more demanding and psychologically taxing), and
the parameters χ0 and χ1 represent asymmetric preferences or costs for the academic track
by parental college education. We calibrate χ0 and χ1 to match the share of deviations
from secondary school track recommendations by parental education in the data, while µχ,A
is calibrated to match the overall share of academic track recommendations (0.44).37 The
variance of the track tastes σ2

χ is calibrated to match the variance of the residuals coming
from a regression of school track on end-of-primary-school skills, which is 0.166.

Initial Child Skills, and Child Skill Shocks

The transmission of initial ability ϕ, which equals the initial child skill level, across gener-
ations follows an AR(1) process with persistence coefficient ρϕ and variance σ2

ϕ. Since the
initial ability is designed to capture any residual correlation in economic outcomes across
generations, we calibrate it to match the intergenerational elasticity of incomes in Germany.
Kyzyma and Groh-Samberg (2018) estimate an elasticity between the income rank of indi-
vidual labor earnings between children and parents using the SOEP data of 0.24, which we
take as our target statistic.38 The variance σ2

ϕ is then estimated to match the variance of

37Primary school teachers typically give these recommendations before the transition to secondary school.
They are based on both a reflection of the child’s achievement during primary school and the teachers’
assessment of the academic potential and success probability of the child in an academic track school.
Thus, we argue that the recommendations are forward-looking and, since primary school teachers typically
observe the children over multiple years every day during the week, based on a similar information set as
the parents. Therefore, we consider the recommended school track in the model as the one a parent would
have chosen without any specific school track taste (χ1 = χ0 = 0). Then, deviations from that unbiased
track choice by parental education map into deviations from teacher recommendation. Details on these
moments are given in Appendix 2.B.2.

38As is common in the literature, Kyzyma and Groh-Samberg (2018) compute the correlation of income ranks
using average labor earnings over five years. We compute rank-rank correlations of four-year labor income,
according to the period length of our model, and then compare the ranks of 30-34-year-old children to
those of their parents when they were 46 to 50 years old, which is similar to the sample used by Kyzyma
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pre-school skills in the data, which we normalize to 0.1.
As discussed in Section 2.3, the size of shocks to child skills has important implications

for the effects of school tracking policies as they can give rise to efficiency losses from early
tracking. To quantify the importance of child skill shocks in our model, we internally estimate
the shock variance σ2

η,j+1, for j = 2, 3, 4. As target moments, we choose the correlation of a
child’s skill percentile rank across periods. In this way, we capture all changes in a child’s
relative position in the skill distribution in a given period that cannot be accounted for by
the deterministic components of the skill formation technology or by track choices.

College Costs

We parameterize the “psychic” college cost function following Daruich (2022):

ψ(S, θ5, ν(Ep)) = exp(ψ0 + ψS=V + ψθθ5 + ν(Ep))
ν(Ep) ∼ GEp(ν) ≡ N (µν,Ep , σ2

ν).
(2.29)

We estimate the two parameters ψ0 and ψS=V to match the share of graduates from an
academic secondary school who follow up with a college education and the share of vocational
secondary school graduates who obtain a college education. We discipline the coefficient ψθ
that multiplies end-of-school skills by matching the regression coefficient on test scores from
a regression of a college graduation dummy on end-of-school test scores, controlling for the
secondary school track.

We calibrate the two parental education-specific means of the college taste shock pa-
rameters to be symmetric deviations from 0, such that µν,Ep=1 = ∆(µν,Ep) and µν,Ep=0 =
−∆(µν,Ep) to match the ratio of the share of children from college-educated parents who
themselves go to college (0.63) and the share of children from non-college-educated parents
who go to college (0.20) in the data. Finally, we calibrate the variance of these shocks, σ2

ν ,
to match the variance of the residuals from the above regression of college education on
end-of-school skills and school track.

The final component of college costs is not a part of the “psychic” costs but reflects the
time cost of obtaining a college education. We assume that studying for a college degree
takes away around 60% of the total time available for work for four years or one model
period.39 Thus, we set the maximum remaining time during the higher education stage to

and Groh-Samberg (2018). As in Lee and Seshadri (2019), we normalize average labor income across the
entire working population to be one in the data and in the model. In the latter, we do this by setting the
technology parameter A in the firm production function.

39A standard estimate is that full-time studying takes around 40 hours per week, which amounts to around
60% of the maximum weekly work hours, which we set to 65. Moreover, the average study length in
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n̄(E = 1) = 0.40.

Human Capital Growth

We estimate the deterministic human capital growth profiles for both types of education,
γj,E, for j = 5, ..., 16, using wage regressions in the SOEP data, following the approach in
Lagakos et al. (2018).40 The resulting experience-wage profiles for four-year experience bins
are shown in Table 2.3, expressed in growth relative to the previous bin. We set the {γj,E}16

j=5

parameters to these values.
Finally, we calibrate the variance of the market luck shocks, σ2

ε , such that our model repli-
cates the standard deviation of (normalized) labor income across the working-age population
in the data, which is around 0.86.

Firms and Government

Following large parts of the literature, we set the capital share in the aggregate production
function to α = 1/3. Moreover, we set σf = 1/3 such that the elasticity of substitution
between college and non-college human capital in the firm production equals 1.5 (Ciccone
and Peri, 2005). The weight on non-college human capital in the CES aggregator, φ, is
estimated internally. Following the arguments in Lee and Seshadri (2019), we calibrate it to
match the share of college-educated workers in the SOEP data. The TFP parameter A is
calibrated such that the model produces average earnings of 1.

Regarding the tax and transfer system, we set the labor income tax scale to λ = 0.679
and the labor tax progressivity parameter to τl = 0.128 following estimates in Kindermann
et al. (2020). The linear capital tax is set to τa = 0.25, corresponding to the final withholding
tax rate on realized capital gains, interest, and dividends in Germany. The size of the lump

Germany is eight semesters or four years.
40Concretely we create, separately for each education group, four-year work experience bins. We then estimate

Mincer regressions of wages on years of schooling and potential work experience, controlling for time and
cohort effects of the form:

logwict = α+ βsict + δxict + γt + ζc + ϵict,

where wict is the wage of individual i, who belongs to birth cohort c and is observed at time t. Wages are
defined as total annual labor earnings divided by hours worked. We denote by sict the years of schooling
and by xict work experience, which is defined as

xict = ageict − 18 if sict < 12
xict = ageict − sict − 6 else.

We assume no experience effect on wage growth in the last eight years of work to disentangle time from
cohort effects, following the HLT approach in Lagakos et al. (2018).
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Table 2.3: Human Capital Growth Profiles

Experience Wage Growth
(Years) Non-College College

0 1.00 1.00
4 0.96 1.15
8 1.09 1.19

12 1.10 1.11
16 1.04 1.06
20 1.02 1.01
24 1.00 0.99
28 1.01 0.97
32 0.99 0.98
36 1.01 0.99
40 0.99 1.01

Notes: This table provides wage growth
estimates by year of experience and edu-
cational attainment. Source: SOEP

sum government transfers is set to g = 0.06, which in equilibrium amounts to 6% of average
labor earnings. Finally, we set pension benefits to πj(h17, E) = Ωh17wE during retirement and
calibrate the scale parameter Ω internally, such that the average replacement rate corresponds
to 40% (Mahler and Yum, 2023).

2.4.4 Method of Simulated Moments Estimation Results

In total, we calibrate 26 parameters internally using the method of simulated moments to
match 26 target data moments. The parameters, their estimated values, model-implied
moments, and target data moments are presented in Table 2.5.

The model fits the data well, both in terms of aggregate moments and concerning the
distribution of child skills, school tracks, and higher education. For example, the share of
college graduates in the simulated economy is 35%, which is in line with the German data
in the 2010s. The share of children in an academic track school is 44%. The model also
matches the transition rates from academic and vocational secondary school into college (at
around 66% and 11%) and the effect of secondary school skills on college attendance, while
it slightly overestimates the share of college graduates from non-college households.

Parental school track preferences significantly affect the school track decision, both in
the model and the data. In particular, around 23% of college-educated parents overrule a
recommendation for their child to go to a vocational track school, while 16% of non-college
parents overrule an academic track recommendation in favor of a vocational track school.
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Table 2.4: Parameters calibrated externally

Parameter Value Description Source

Household
σ 2.0 Inverse EIS Lee and Seshadri (2019)
γ 0.5 Frisch Elasticity Fuchs-Schündeln et al. (2022)
q 1.56 HH Equiv. Scale Jang and Yum (2022)
n̄(E = 1) 0.40 Time Cost of College 40 hours/week for 4 years

Firm
σf 1/3 E.o.S (H0, H1) Ciccone and Peri (2005)
δf 6% Annual Depreciation Kindermann et al. (2020)

Government
τn 0.128 Labor Tax Progressivity Kindermann et al. (2020)
λ 0.679 Labor Tax Scale Kindermann et al. (2020)
τa 0.25 Capital Tax Rate Tax Rate on Capital Gains in Germany
g 0.06 Lump-sum Transfers 6% of Annual Labor Income

Notes: This table presents the externally calibrated parameters and their corresponding
sources.

To match the correlation between child skill ranks across school periods, the model re-
quires large child skill shocks, especially during primary school, with a standard deviation of
0.052. The estimated own skill elasticity increases between primary school ages (0.65) and
end-of-secondary school ages (0.81). At the same time, the parental education intercept in
the child skill technology decreases from 0.072 to 0.032.

2.4.5 Validation Exercises

We assess the model’s validity using two approaches. First, as is standard in the literature,
we compare non-targeted moments from our model simulated data to their counterparts in
the NEPS data or using estimates from other research papers. Second, we investigate the
effects of school track choice on later-in-life economic outcomes for a set of marginal students
and compare the results to the null effects reported in Dustmann et al. (2017) for Germany.

Non-targeted Moments
We summarize selected non-targeted moments and their data or external counterparts in
Table 2.6. The first set of moments pertains to child skills. Our model features slightly
smaller differences in average child skills by parental education and comparable differences
in average skills by school track. In both data and model, these differences increase between
primary and secondary school, before staying relatively constant.41 In general, differences

41See for instance Passaretta et al. (2022); Nennstiel (2022); Schneider and Linberg (2022) who investigate
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Table 2.5: Internally Calibrated Parameters

Parameter Value Description Target Data Model

Preferences
β 0.935 Discount Factor Annl. Interest Rate 0.04 0.04
b 20.7 Labor Disutility Avrg. Labor Supply 0.36 0.36
Λ 0.31 Parental Altruism Transfer/Income 0.49 0.49

School Track Tastes
µχ,A 0.048 Uniform A-Track Costs Share A-Track Recommend. 0.44 0.44
χ0 0.0020 Mean A-Track Cost if E = 0 Share of Dev. from A if E = 0 0.16 0.16
χ1 -0.0036 Mean A-Track Cost if E = 1 Share of Dev. from V if E = 1 0.23 0.23
σχ 0.17 ·10−3 Std. A-Track Cost Shock Reg. S on θ: var(residuals) 0.166 0.168

Child Skill Technology
ω1,2 0.65 Own Skill Elasticity (j = 2) Reg. θ3 on θ2 & E: coef. θ2 0.649 0.649
ω5,2 0.072 Coefficient on E (j = 2) Reg. θ3 on θ2 & E: coef. E 0.072 0.072
ω1,4 0.81 Own Skill Elasticity (j = 4) S = 1, Reg. θ5 on θ4 & E: coef. θ4 0.825 0.812
ω5,4 0.032 Coefficient on E (j = 4) S = 1, Reg. θ5 on θ4 & E: coef. E 0.033 0.032

Transmission of Initial Skills (Ability)
σϕ 0.032 Std. of Intergen. Shock Variance of initial skills 0.10 0.12
ρϕ 0.9 Persistence of Ability IGE (income rank) 0.24 0.23

College Costs
ψ 0.77 Intercept Share in CL from A-Track 0.66 0.65
ψV 0.16 Add. Costs for V-Track Share in CL from V-Track 0.11 0.11
ψθ -0.35 Coefficient on θ5 Reg. E on θ4 & S: coef. θ4 0.40 0.50
∆(µν,Ep) 0.034 Diff. in Means by Ep Share in CL from Non-CL HH 0.20 0.28
σν 0.008 Std. Taste Shock Reg. E on θ4 & S: var(residuals) 0.137 0.138

Idiosyncratic Shocks
σε 0.011 Std. Market Luck Shock Std(Log Labor Income) 0.86 0.84
ση3 0.052 Std. Learning Shock j = 3 Rankj=2-Rankj=3 0.72 0.73
ση4 0.030 Std. Learning Shock j = 4 Rankj=3-Rankj=4 0.79 0.80
ση5 0.032 Std. Learning Shock j = 5 Rankj=4-Rankj=5 if S = 1 0.74 0.75

Miscellaneous
Ω 0.1 Pension Anchor Replacement Rate 0.40 0.40
A 3.31 TFP Avrg. Labor Earnings 1.0 1.0
φ 0.543 Weight Non-CL H0 College Share 0.35 0.35

Notes: This table presents the internally calibrated parameters, targeted moments, and their model-generated
counterfactuals. See Appendix 2.B.5 for details on the sources of the target moments.
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across school tracks are larger than differences across parental education. Our model also
produces realistic child skill rank-rank correlations within school tracks.

Table 2.6: Non-targeted Moments

Moment Data Model

Child Skill Moments
Differences in average skills by parental education (in standard deviation)

Primary School 0.53 0.44
Beginning Secondary School 0.66 0.53
Middle Secondary School 0.71 0.54

Differences in average skills by school track (in standard deviation)
Beginning Primary School* 0.84 0.80
Beginning Secondary School 1.10 1.14
Middle Secondary School 1.11 0.95

Rank-rank coefficients
Rankj=2 − Rankj=3 if S = 1* 0.62 0.66
Rankj=3 − Rankj=4 if S = 1 0.68 0.73
Rankj=2 − Rankj=3 if S = 0* 0.64 0.67
Rankj=3 − Rankj=4 if S = 0 0.74 0.74

Skill evolution during secondary school
Reg. θ4 on θ3 and E: coef. θ4 0.81 0.66
Reg. θ4 on θ3 and E: coef. E 0.04 0.04

Intergenerational Mobility and Inequality
Parental Income Gradient (Dodin et al., 2024) 0.52 0.32
Q5/Q1 A-track on income (Dodin et al., 2024) 2.13 1.82
Q1 A-track on income (Dodin et al., 2024) 0.34 0.30
Gini Coefficient of Income 0.29 0.26
College Wage Premium 1.35 1.46

Notes: This table presents non-targeted moments and their model-generated
counterfactuals.
* We exploit the panel structure of the datasets and group students by future
school track assignation.

The second set of moments relates to further measures of intergenerational mobility and
cross-sectional inequality. To assess the model’s validity here, we compare its implications
vis-à-vis the estimates on social mobility in Germany reported in Dodin et al. (2024). Using
a different data set than we, they regress academic-track school graduation of a child on the
percentile income rank of her parents, finding that a ten-percentile increase in the parental
rank is associated with a 5.2 percentage point increase in the probability of graduating from
an academic track school. In our model, a comparable estimate yields a 3.2 percentage point
increase. Moreover, Dodin et al. (2024) report absolute graduation rates for children from
the first quintile of the income rank distribution (Q1) of 34% and a ratio of the fifth income
rank quintile over the first quintile of 2.13. Our model-generated data squares well against

the NEPS data and find stable or growing socioeconomic status gaps in children’s skills.
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these external estimates (30% and 1.82, respectively).
We also investigate the model fit regarding the non-targeted determinants of the school

track choice in relation to parental education and end-of-primary school skills. We delegate
this discussion to Section 2.5.1, where we decompose the track determinants quantitatively.

Long-term effects of Track Choice for Marginal Students
Dustmann et al. (2017) analyze the long-term labor market effects of early school track choice
in Germany using a quasi-experimental setting. Their identification strategy makes use of
the existence of a (fuzzy) cut-off age for school entry in the German system. Children born
just before the cut-off age are less likely to go to an academic track secondary school simply
because they are younger and, therefore, less developed than their class peers at the time of
the track decision. This induces a quasi-randomness in secondary school track choice based
on the date of birth. The authors then investigate the effect of that date of birth on later-
in-life wages, employment, and occupation. They find no evidence that the track attended
in secondary school affects these outcomes for the marginal children around the school entry
cut-off.42

We use our model-simulated data to perform a similar exercise. In particular, we compare
the later-in-life outcomes of children who are very similar in terms of their state variables
at the time of school track choice but end up going to different school tracks. To that end,
we calculate the average present values of lifetime income and lifetime wealth conditional on
all states prior to entering secondary school—parental human capital, assets, education, and
initial ability and skills—of children who go to an academic track school and children who
go to a vocational track school.43 Conditional on all other states, differences in the track
allocation can only arise due to the stochastic track utility shock, which we can also interpret
as arising from age-at-school-entry effects.

We find that going to the academic track instead of the vocational track is associated
with a 6.6% higher present value of lifetime labor income, and a 4.4% higher present value
of lifetime wealth for these, otherwise very similar children. While not zero, these differences
seem relatively small in relation to overall inequality in these outcomes. For example, the
6.6% higher present value of lifetime labor income is around 1/10th of a standard deviation of
lifetime labor income. Moreover, in our model, the track choice is only between one vocational

42Note that Dustmann et al. (2017) control for the effect that being born after the cut-off age directly harms
a child’s later wages since it means that her labor market entry is later so that at any given age, she will
have accumulated less work experience.

43Concretely, we partition all continuous states into 10 groups of equal size each. Lifetime labor income is
computed as the discounted sum of all labor income during the adult periods, and lifetime wealth is that
sum plus the initial monetary transfer from the parent to their independent child.



2.5. QUANTITATIVE RESULTS 111

and one academic track, whereas Dustmann et al. (2017) consider three tracks, of which two
can be classified as vocational. We would generally expect children at the margin of these
two vocational tracks to show fewer differences in lifetime outcomes. In sum, we conclude
that the implications of model with respect to the effect of tracking on marginal children are
not at odds with the reduced-form evidence presented in Dustmann et al. (2017).

2.5 Quantitative Results

Our model allows us to understand the effects of school tracking not only for marginal children
but for the whole distribution of children, their educational and labor market outcomes, as
well as their economic mobility relative to their parents. To that end, we first quantify the
main determinants of the secondary school track and the importance of skill accumulation
during secondary school for lifetime inequality. We then use the model to study the effects
of reforms of the timing of school tracking. Finally, we perform counterfactual analyses of
economies in which we reduce the parental influence on the school track choice.

2.5.1 The School Track Choice and Sources of Lifetime Inequality

Determinants of the School Track Choice

Our calibrated model predicts that children’s skills largely determine the school track choice.
Figure 2.2 shows the relationship between skills and the academic track choice, separately
by parental education. The model-generated data matches remarkably well the increasing,
S-shaped probability of academic-track attendance in skills observed in the NEPS data.
Parental education is another important independent driver of the school track choice as
can be seen in Figure 2.2. Even for the same end-of-primary school skills, children from
college-educated parents are significantly more likely to go to an academic track school than
children from non-college parents, both in the data and the model.

In the model, parental education can influence the track choice, net of the effects coming
through child skills, human capital, or wealth, in three ways. First, college-educated parents
know their children learn faster than their non-college-educated counterparts. This comes
from the estimated direct parental education effect in the child skill production technology,
ω5. This knowledge may prompt college parents to send their child to the academic track
even if their child’s skills are lower than those of a child from a vocational parent. Second,
parents know their child will receive a college taste shock that depends on their parent’s
education, governed by µν,Ep . In anticipation of this, college parents, for instance, may have
a stronger incentive to send their child to an academic track school as this, everything else
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Figure 2.2: Probability of attending the Academic School Track
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Notes: This figure shows the share of children attending the academic school track as a function
of their skills. The triangles and dots are data moments and stand for children from college and
non-college backgrounds, respectively; the baseline model simulated analogs are in dashed and
solid lines. Data source: NEPS, cohort 3. All observations are weighted so that the shares of
children in each track correspond to the targeted ones.
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equal, increases the likelihood of college admission. Thirdly, even net of college tastes, parents
face asymmetric academic track utility costs χ(E).

Table 2.7: School Track Choice Determinants

Dependent Variable: S = A
(1) (2) (3) (4)

Baseline ω5,j=3,4 = 0 ∆(µν,Ep) = 0 χ0 = χ1 = 0

θ3 0.78 0.79 0.86 0.82
E = 1 0.42 0.38 0.18 0.32

Notes: This table reports the coefficient estimates of regressions of an
academic school track dummy on beginning of primary school skills
and parental education, controlling for all other states at the time
of the tracking decision and a constant. Column (1) corresponds to
the baseline economy. In Column (2), we shut down the channel of
differential parental inputs in periods 3 and 4. Column (3) considers
the case of identical college taste shock by parental education. In
Column (4), we remove the parental preference bias for education.

To understand how important each of these channels for the school track choice is, we
perform a series of three counterfactual experiments (Columns (2)-(4) in Table 2.7), in which
we isolate each effect by setting to zero the parental education effect parameter ω5,j=3,4,
the means in college taste shocks across parental education ∆(µν,Ep), or the asymmetry in
academic track costs χE.44

In all cases, the coefficient on parental education drops, and the coefficient on skills before
the track decision increases relative to the baseline economy (in Column (1)). The magnitude
of the effects, however, varies across the counterfactual scenarios. While shutting down the
parental education parameter has little effect (Column (2)), shutting down the college taste
shocks across parental education approximately halves the coefficient on parental education
(Column (3)). Asymmetric academic school track costs also matter as shutting them down
reduces the coefficient on parental education by around 24% (Column (4)).

Sources of Lifetime Inequality

In the spirit of Huggett et al. (2011) and Lee and Seshadri (2019), we can decompose how
much of the variation in lifetime economic outcomes of our model agents can be explained by

44In doing so, we again solve for the stationary general equilibrium, allowing prices to clear the markets and
average child skills across tracks to be consistent with the parents’ track decision. In Column (2) in Table
2.7, we isolate the effects of the first channel by solving the model with ω5,j=3,4 = 0 yet leaving ω5,j=3,4 > 0
in the simulation of the distribution. That is, we assume that parents do not take into account the direct
effect of their own education on child skill development during secondary school when making the track
decision. The skills, however, still evolve as in the baseline model.
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various factors at various ages. As before, we focus on (the present value of) lifetime labor
income and wealth as our economic outcomes of interest.

Table 2.8: Contributions to Lifetime Inequality

Share of Explained Variance
Life Stage States Lifetime Earnings Lifetime Wealth

Independence (age 18) (S, ϕ, h5, a5, E,E
p) 69% 65%

(S, ϕ, h5, E
p) 60% 61%

(S, ϕ, a5, E,E
p) 49% 42%

School Track Choice (age 10) (S, ϕ, θ3, h11, a11, E) 30% 33%
(S) 16% 15%

Pre-Birth (parent age 30) (E, ϕ, h8, a8) 14% 21%

Notes: This table shows how much of the variation in lifetime economic outcomes is explained by
different factors at different ages.

Row 1 of Table 2.8 summarizes that 69% of the variation in lifetime labor income can be
accounted for by all states at the age of 18. These states are the school track in secondary
school S, human capital h5, transfers received from the parent a5, the college choice E,
parental college education Ep, and the initial ability ϕ. In terms of lifetime wealth, this
number is around 65%.45 Thus, our model suggests that lifetime outcomes are already
largely predetermined when agents become independent and can enter the labor market.
Note that all uncertainty regarding school skills has resolved and the college decision has
been made at this stage. The remaining unresolved uncertainty over human capital (market
luck) shocks during the working years has, therefore, more minor effects on lifetime inequality.
The explained share of variation in lifetime outcomes remains high if we only condition on
the states before the college decision has been made and the inter-vivos transfers have been
realized (Row 2). This suggests that these states are not major sources of lifetime inequality.
On the contrary, if we only exclude human capital h5 (Row 3), the share of explained variance
in lifetime earnings drops by 20 percentage points, and the share of explained variance in
lifetime wealth by 23 percentage points. This highlights the importance of variation in initial
human capital, and therefore of end-of-school skills, as a driver of lifetime inequality.

Using the same methodology, we can also evaluate how much lifetime inequality is al-
ready determined at the time of the school track choice. Conditioning on all states at that
age, around a third of lifetime earnings and wealth variation is explained (Row 4). Yet
the explained share is significantly smaller than after school, suggesting that the learning

45These numbers are comparable with estimates for the U.S. (Lee and Seshadri, 2019; Huggett et al., 2011;
Keane and Wolpin, 1997).
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outcomes during secondary school play an important role in shaping later-in-life inequality.
Conditioning on the initial school track choice alone can account for 16% of lifetime earnings
variation and 15% of lifetime wealth variation. However, this should not be interpreted as
the marginal effect of school track choice on lifetime outcomes, as the initial school track
choice is, for example, highly correlated with child skills at that age.

The last row of Table 2.8 shows the contribution of parental states prior to the birth of
their children to their children’s lifetime outcomes. At this stage, all uncertainty regarding
child skills and human capital has not yet been realized (i.e., ϕ denotes the parent’s ability).
Around 14% of the variance in lifetime earnings of the yet-to-be-born child is predetermined
by parental education, ability, human capital, and wealth. For lifetime wealth, this share is
higher at 21%, pointing to the critical role of wealth transfers. For example, using the same
decomposition of the unconditional variance of transfers into parental states pre-birth, we
find that more than a third of the variation in transfers (35%) is predetermined before the
child’s birth. In contrast, only around 23% of the variation in human capital at age 18 is
predetermined before birth, highlighting the role of the schooling years and shocks in shaping
adult human capital.46

2.5.2 The Timing of School Tracking

In countries with an early tracking system, such as Germany, it is often argued that postpon-
ing the tracking age will improve social mobility without incurring efficiency losses. While
some reduced-form estimates, exploiting cross-country, federal-state level, or time differ-
ences in tracking policies exist, little is known about the aggregate, distributional, and inter-
generational consequences or welfare effects of a large-scale reform that changes the timing
of school tracking.

To evaluate such a reform in the context of Germany, we conduct a series of counterfactual
experiments using our calibrated model, in which we postpone the tracking age from ten to
fourteen or abolish tracking during secondary school altogether. In each experiment, we
assume that in the periods preceding tracking, all children attend a school that belongs to
a comprehensive school track, just like during primary school in j = 2. All parameters,
including those governing school academic track costs and college costs, remain the same as

46In comparison to Lee and Seshadri (2019) in the U.S. case, our estimated contribution of parental states
prior to the birth of a child to her eventual lifetime outcomes is somewhat smaller (in particular they find
that almost half of the lifetime wealth variation is pre-determined at that stage. These differences may
reflect that firstly, intergenerational mobility estimates in Germany tend to be smaller than in the U.S.
Secondly, we incorporate explicitly the uncertainty in child skill realizations over the childhood years, while
Lee and Seshadri (2019) focus on endogenous parental investments that could explain in particular the
large explanatory power of pre-birth parental states for child human capital.
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in the baseline economy.47 We then compare steady-state equilibrium outcomes, which can
be considered long-run outcomes of the policy change.

We present the effects of the counterfactual experiments on aggregate, distributional, and
social mobility outcomes in Panel A of Table 2.9. In addition, we calculate the relative
changes in average welfare, defined as the percent change in consumption that a newborn in
the baseline economy would require in every period to be equally well off as in the policy
counterfactual. Following the literature, we calculate this consumption equivalence welfare
measure under the veil of ignorance, meaning that all policy functions remain unchanged.48

Postponing School Tracking by Four Years

Columns (1) and (2) present the results of postponing tracking from age ten to age fourteen,
corresponding to the average tracking age in OECD countries (OECD, 2020b). In Column
(1), wages (w0, w1) and the interest rate r remain at the same values as in the baseline
case. That is, we compare the partial equilibrium outcomes of the policy counterfactual. In
Column (2), prices adjust; that is, we compare the general equilibrium outcomes of the policy
counterfactual. As before, the instruction paces during all school stages are set to the level
that is optimally chosen by a policymaker given the allocation of children across tracks.

We find an efficiency-equity trade-off of postponing tracking in general equilibrium but
not in partial equilibrium. In partial equilibrium, Column (1), both aggregate output Y and
aggregate human capital H increase by 0.2%.49 At the same time, cross-sectional inequality,
as measured by the Gini coefficient of labor income, drops by 0.4%. Similarly, the college
wage premium decreases, and the ratio of the 90th to 10th percentile of income decreases.
Mobility is improved, as indicated, for example, by the intergenerational elasticity of income,
which drops by 3.5%. In a similar vein, the dependence of going to an academic track school
on parental income drops by 15%. These effects translate into an improvement in average
welfare from postponing tracking, in the range of 0.18% consumption equivalent units.

In contrast, the model-predicted effects of postponing tracking change, once we allow for
the adjustment of wages on the labor market and, therefore, general equilibrium effects of
the human capital changes in the economy. Column (2) of Table 2.9 reports that, while the
gains in terms of inequality and social mobility persist, albeit at a smaller level, the effects
on aggregate human capital and output reverse as both decrease by 0.1%. Our quantitative

47In the case of no tracking, we assume that the fixed college utility costs (ψ+ψv) are a weighted average of
the baseline economy.

48Appendix Section 2.A.3 provides our welfare definition.
49Given that aggregate production is Cobb-Douglas in both physical capital and human capital, this implies

that also aggregate physical capital increases.
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Table 2.9: Timing of Tracking Counterfactual Experiments - Results

Changes in %
(1) (2) (3)

Economy PE GE GE
Tracking Age 14 14 Never

Panel A - Aggregate, Distributional and Intergenerational Outcomes

Efficiency
Output (Y ) +0.2 -0.1 -0.2
Human Capital (H) +0.2 -0.1 -0.4

Cross-sectional Inequality
Gini of earnings -0.4 -0.4 -0.8
College wage premium -4.0 -0.2 -2.8
90th/10th percentile of income -0.1 -0.4 -0.8

Mobility
Intergenerational income mobility (−income rank-rank coef.) +3.5 +2.2 +23.9
Parental income on academic track (Dodin et al., 2024) -15 -6.8 -

Welfare (CEV) +0.18 -0.05 -0.08

Panel B - Educational Outcomes

% Academic track +5.4 +2.0
. . . if college parents +2.2 +1.5
. . . if non-college parents +6.8 +2.4

% College +3.9 -0.3 -0.2
. . . if college parents +2.9 +0.5 -18.1
. . . if non-college parents +3.4 -0.9 +16.7
. . . if academic track -0.4 -1.7
. . . if vocational track +3.0 +0.5

Average end-of-school skills (θ̄5) +4.3 -1.6 -2.7
Average middle-of-school skills (θ̄4) +7.5 -2.1 -1.8
Variance of end-of-school skills (V ar(θ5)) -0.3 -0.2 -2.1
Variance of middle-of-school skills (V ar(θ4)) -0.7 -0.9 -2.7

Correlation between academic track and initial skills -20 -14
Correlation between end-of-school skills and initial skills -0.5 -0.1 -3.3
Correlation between college graduation and initial skills -18 -12.6 -69.5
Correlation between college parents and end-of-school skills -6.0 -6.0 -26.2
Correlation between college graduation and end-of-school skills -4.1 -3.5 -12.9

Notes: This table presents changes in outcomes in % due to postponing the school tracking choice
by four years (from the age of ten to the age of fourteen) or abolishing tracking altogether. Column
(1) displays percentage changes due to postponing tracking in partial equilibrium, that is, if prices
are unchanged. Column (2) shows the effects of postponing tracking in general equilibrium. Column
(3) presents the effect of abolishing school tracking in general equilibrium.
Intergenerational mobility is measured as the negative of the income rank-rank coefficient.
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results therefore indicate that postponing tracking incurs a trade-off between equality and
mobility improvements on the one hand, and aggregate efficiency losses on the other hand,
once general equilibrium effects are taken into account.50 Moreover, average welfare when
measured in terms of consumption equivalent units slightly decreases relative to the early
tracking benchmark.51

Understanding the sources of the efficiency-mobility trade-off

In our model, aggregate efficiency in terms of output and human capital is driven by the
level of skills learned during school as they translate into adult human capital. As we argued
in Proposition 3 in Section 2.3, the effect of postponing tracking on end-of-school skills
for one cohort of children is theoretically unclear even when the track decisions are made
optimally, and depends in particular on the degree of uncertainty about the skill evolution.
On top of that, over multiple generations, aggregate human capital also depends on the
share of college-educated workers in the economy. This is because, on the one hand, college-
educated workers mechanically experience steeper productivity growth over their working
career (through γj,E), and on the other hand, college-educated parents provide higher inputs
into the skill development of the next generation of children, which increases end-of-school
skills and human capital.52

In partial equilibrium, when the college wage premium remains high, our model predicts
that these effects lead to efficiency gains. As indicated in Panel B of Table 2.9, the share of
college parents in the new steady state increases by 4.1%, and so does the share of children in
academic track schools (+5.4%) and average end-of-school skills (+4.3%). In fact, because of
the higher parental inputs, average child skills already before tracking at age ten are higher
in the partial equilibrium late tracking case compared to the early tracking economy. This
can be seen in Figure 2.3, where we plot the evolution of average child skills in the early
tracking economy (red), the late tracking economy in partial equilibrium (green), and the
late tracking economy in general equilibrium (blue).

50This result can be viewed in a similar spirit to the efficiency-mobility trade-off in Bénabou (1996), who has
shown that policies aimed at improving mobility may entail penalties in terms of growth, or more recently
in Arenas and Hindriks (2021), who argue that more equal school opportunities by parental income raises
social mobility but come at the cost of modest efficiency losses in terms of human capital.

51It should be noted that the standard consumption equivalent welfare measure used by us and in the related
literature does not take into account improvements of intergenerational mobility that occur across cohorts.
Rather, the standard welfare measure (see definition in Appendix Section 2.A.3) only captures the trade-
off between efficiency and redistribution within cohorts. Whether our welfare conclusions regarding a
postponement of the school tracking age hold also if a planner takes into account mobility is an interesting
question that requires future research.

52Labor supply can also affect aggregate human capital, but it stays approximately constant across the policy
counterfactual experiments.
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In the general equilibrium case, however, the college share remains approximately at its
baseline level as college wages (in efficiency units) adjust downwards and non-college wages
upwards. For that reason, parental inputs are approximately the same as in the baseline,
early tracking case, which results in very similar average child skills at age 10 in steady state
(see Figure 2.3). Our calibrated model then predicts that postponing tracking leads to losses
in average skills. Concretely, average skills in period j = 4, that is right before late tracking,
drop by 2.1%, and end-of-school skills, drop by 1.6%, on average. As explained in Section 2.3,
these learning losses intuitively arise from the prolonged period of comprehensive school,
during which instruction becomes less efficient. Moreover, our model predicts that these
losses cannot be recuperated by learning efficiency gains that arise when more uncertainty
about child skills is resolved in the late tracking case (see Figure 2.3).53 The learning losses
from longer comprehensive schooling also serve as an explanation for the raised incentive to
send a child to an academic track school (+2% relative to early tracking), where average peer
skill levels are higher, which partially compensates for less efficient learning.54

The effects of later tracking on inequality and mobility are fundamentally also rooted in
the consequences of the policy change on the skill distribution. As reported in Panel B of
Table 2.9, one more model period of comprehensive school decreases the overall heterogeneity
in skills in the middle of secondary school (i.e. V ar(θ4) drops by 0.9%.). Intuitively, this
is because children who would have gone to a vocational track school in the early tracking
economy are now exposed to, on average better peers, while children who would have gone
to an academic track school are now surrounded by, on average, lower skills.55 On top of
that, one more period of comprehensive school in the late tracking case harms relatively
more children from college-educated households as they would have been more likely to go to
an academic track school and benefits relatively more children from non-college households,
who would have been more likely to go to the vocational track. Moreover, these children
are more likely to occupy the center of the skill distribution, who, as we have argued before,
are the children that gain most from comprehensive schooling. As a result, differences in

53The skill growth between the middle and end of secondary school in both the early and late tracking cases
is quite similar. This is a consequence of the fact that the heterogeneity of skills in each track also remains
at a similar level in both cases. As argued in Section 2.3, the conditional variances of skills in each track
are necessarily smaller in the late tracking case when skill shocks are present and the track decision is made
optimally. However, in our counterfactual experiment, parents make the late track decision, subject to the
same asymmetric preference shocks as before. Quantitatively, this results in slightly larger deviations of
the track choices from the recommended tracks compared to the baseline early tracking case (+2%).

54This also explains why, in the partial equilibrium case, the share of college workers increases in the first
place. When learning becomes less efficient, more parents send their child to the academic track. This in
turn, makes college education more likely, even when skills are lower, which raises the college share.

55As we have shown in Proposition 2 in Section 2.3, the effect of tracking on the overall variance of skills
depends crucially on the presence of these direct peer effects.
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Figure 2.3: Evolution of Average Child Skills in Counterfactual Experiments
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Notes: This figure shows the evolution of average child skills from age 10 to 18. The baseline
model simulated data is a red-solid line; the late tracking economy in partial equilibrium in a
green-dotted-dashed line; and the late tracking economy in general equilibrium in a blue-dashed
line.

skills between parental backgrounds decrease, and relatively more children from a non-college
parental background go to an academic track school once they are tracked in the late tracking
case (+2.4%) relative to children from college parents (+1.5%). This can explain the increase
in mobility as measured by the dependence of academic track graduation on the parental
background.

The lower inequality in skills after one more period of comprehensive school translates
into smaller differences in average skills between children in the academic and vocational
track, once they are tracked. This is reinforced by the reduced differences between parental
backgrounds in the track choice, and the fact that the track decision itself becomes less
dependent on skills. The overall effect of postponing tracking on the child skill differences
between tracks is plotted in the left panel of Figure 2.4, comparing the early tracking baseline
economy (red) and the late tracking GE economy (blue). Smaller differences in skills across
school tracks then entail smaller differences in adult human capital across college and non-
college workers, which is again aided by the fact that relatively more children from the
vocational school track go to college after the policy change. Given that college education
and end-of-school skills and, thereby, human capital are the main determinants of income,
overall earnings inequality therefore declines.

A consequence of these effects is that not only the school track but also the end-of-school
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Figure 2.4: Differences in Average Child Skills in Early and Late Tracking Economy
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Notes: These figures show the standardized differences in average skills between school tracks (left panel)
and parental education (right panel) from age 6 to 18. The baseline model simulated data is a red-solid
line, and the late tracking economy in general equilibrium is in a blue-dashed line.

skills, and the probability of going to college becomes less dependent on the initial skills,
which are transferred from parents to children (see bottom rows of Panel B in Table 2.9).
For that reason, intergenerational mobility, if defined as the dependence of economic outcomes
of the child on parental economic outcomes, decreases. Interestingly, our model predicts that,
in steady state, college attainment of children from college parents is still as likely or even
slightly more likely than in the baseline, early tracking case. However, since college- and
non-college parents become more similar in terms of their human capital, mobility in terms
of income still improves.

Finally and importantly, the effects on inequality and mobility (as on efficiency) are rein-
forced through intergenerational linkages. For example, as college and non-college-educated
parents become more similar in terms of their skills, and so do their children who inherit these
skills. The differences in skills in terms of standard deviations between parental backgrounds
are shown in the right panel of Figure 2.4. Notably, the relative differences between children
of different parental backgrounds in the late-tracking GE case are reduced already at age 6.
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We provide a comparison of our model’s predictions regarding the effects of later tracking on
learning outcomes to related findings from the empirical literature in Appendix 2.C. Overall,
we maintain that our estimated effects are not at odds with existing empirical evidence. In
particular, our model predicts learning gains for children from lower socioeconomic back-
grounds and a decreased dependence on educational outcomes in secondary school on family
background, which are among the most robust empirical findings in the literature. The fact
that we estimate average learning losses from such a pervasive school tracking age reform
can, in our eyes, not be refuted by existing evidence (nor can it be corroborated). It ul-
timately rests on the assumption of complementarity between child skills and the teaching
practices in school, as highlighted in Section 2.3, which is itself based on empirical evidence
(e.g. Duflo et al., 2011; Aucejo et al., 2022). The strength of our model-based approach is
that it informs not just the short-term effect of school tracking on learning and educational
outcomes of school children, but how these translate into higher education and labor market
outcomes over multiple generations.

Abolishing School Tracking

Column (3) of Table 2.9 reports the results of a counterfactual economy, in which we abolish
tracking altogether while allowing wages and the interest rate to adjust. All children go to
comprehensive schools for the entirety of their schooling years, and instruction occurs at the
same pace that is optimal for the overall average skill level. As a consequence, child skills
become significantly more equal (i.e. V ar(θ5) drops by 2.1%). Moreover, as parents can
no longer influence their children’s skill evolution by choosing a specific school track, the
correlation between parental background and end-of-school skills drops sharply (-26.2%). As
a result, and despite college-specific preferences, mobility in higher education also increases.
In particular, children from non-college parents are 16.7% more likely to graduate from college
than in the baseline economy, and children from college parents are 18.1% less likely to do
so. Overall, mobility as measured by the (negative of the) intergenerational income elasticity
improves significantly (+23.9%).

Similarly, a completely comprehensive school system reduces cross-sectional inequality
markedly. For example, the Gini coefficient of earnings drops by 0.8%, as does the ratio of
the 90th to 10th percentile of income. In addition, the differences in human capital across
college and non-college workers become smaller, which decreases the college wage premium
by 2.8%. On the other hand, abolishing tracking altogether makes learning even less efficient
relative to the late tracking economy. On average, end-of-school skills are around -2.3%
smaller in this economy. This leads to losses in aggregate human capital (-0.4%) and output
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(-0.2%). Similarly and despite considerable equality gains, a completely comprehensive school
system worsens average welfare in consumption equivalent units by 0.08%.

2.5.3 Limiting Parental Influence in the School Track Choice

In this section, we evaluate the effects of reducing parental influence on the school track choice
without modifying the timing of school tracking. As discussed before, any force that impacts
the school track allocation net of child skills is, in theory, detrimental to the efficiency of
teaching and thus skill development in secondary school, if it dilutes the homogeneity of peer
groups in each track. An interesting question is whether the consequences of such “misallo-
cation” effects are visible not only in terms of child skill outcomes but also in the aggregate
and distributional outcomes of the economy. Our model provides a suitable environment to
investigate such effects.

We evaluate two counterfactual scenarios: first, we shut down the asymmetry in academic
track utility costs faced by parents of different education levels (χ0 = χ1 = 0). As we argued
before, this asymmetry is a parsimonious way of capturing multiple reasons why parents
systematically bias the school track choice toward their own educational path.56 Second, we
enforce that the school track allocation is governed exclusively by a sharp skill threshold,
such that all children with skills below the threshold are allocated to the vocational track,
while all children with skills above the threshold go to the academic track, regardless of the
parental background. This threshold is chosen, such that the overall share of children in the
academic track is constant relative to the baseline economy.57

Table 2.10 shows that shutting down the asymmetry in academic track utility costs or en-
forcing a tracking threshold improves aggregate output. As before, this is mirrored by an

56We focus on this experiment as we view this as being the easiest to address by policies. For example, if
the asymmetric school track costs are coming from information frictions, mentoring programs have proven
very effective and almost cost-free in alleviating some of these frictions, as argued by Resnjanskij et al.
(2024). While in the counterfactual scenario, we diminish parental influence from all socioeconomic groups,
mentoring programs mostly target at-risk youths. Interventions that target all socioeconomic groups are
rarer. An exception is Hakimov et al. (2022) who provide information about their chances of success at
graduating college to all children, independently of their socioeconomic backgrounds. They find a reduction
in the social elite college admission gap mostly driven by an increase in the admission of high-achieving
low SES students to elite colleges.

57As derived in Section 2.3, the optimal tracking policy from the point of view of a policymaker who is only
interested in maximizing aggregate end-of-school skills and cannot condition on the parental background,
would be to track children at a threshold that is exactly equal to the average child skill level prior to
the track decision. Given that the distribution of child skills is quite symmetric, this would result in a
roughly equal split of children between tracks, which ensures that the variance of child skills in each track
is minimized. However, to be comparable to the baseline economy, we select a threshold that will result in
the top 44% of children in terms of their skills being allocated to the academic track and the rest to the
vocational track.
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Table 2.10: Effects of School Track Choice Counterfactuals

Changes in %
(1) (2)

χ0 = 0 Skill
χ1 = 0 Threshold

Panel A - Aggregate, Distributional and Intergenerational Outcomes

Output (Y ) +0.04 +0.12
Human Capital (H) +0.05 +0.15
Gini of earnings 0.0 +0.8

Intergenerational income mobility (− Income rank-rank coef.) +0.9 -6.5
Parental Income on Academic Track (Dodin et al., 2024) -25 +34

Welfare (CEV) +0.04 -0.01

Panel B - Educational Outcomes

% Acadmic track -0.7 0.0
. . . if college parents -8.6 -12
. . . if non-college parents +9.6 +15.6

% College 0.3 0.0
. . . if college parents -3.5 -8.8
. . . if non-college parents +3.9 +7.2
. . . if academic track +0.5 -3.5
. . . if vocational track 0.0 +14.4

Average end-of-school skills (θ̄5) +0.8 +3.0
Average middle-of-school skills (θ̄4) +0.2 +4.9
Average skills in V -Track upon tracking (θ̄3|S = V ) -0.4 -50.0
Average skills in A-Track upon tracking (θ̄3|S = A) +1.2 +38.5
Variance of end-of-school skills (V ar(θ5)) +0.2 +1.9
Variance of middle-of-school skills (V ar(θ4)) -0.2 +0.9
Variance in V -Track upon tracking (V ar(θ3|S = V )) -0.4 -39.1
Variance in A-Track upon tracking (V ar(θ3|S = A)) -0.4 -18.1

Correlation between A-Track and Skills in period 3 +5.7 +59.4
Correlation between academic track and initial skills +5.4 +79.5
Correlation between end-of-school skills and initial skills -0.6 +0.9
Correlation between college graduation and initial skills +0.9 +54.1

Notes: Column (1) displays percentage changes relative to the baseline economy entailed by
the absence of parental preference for education, and Column (2) displays percentage changes
entailed by skill treshold-rule for school tracking. All results are coming from the new general
equilibrium distribution.
Intergenerational mobility is measured as the negative of the income rank-rank coefficient.
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increase in aggregate human capital in the economy, in both cases. Note that both the share
of college-educated agents and the share of children in academic track schools remain con-
stant relative to the baseline case (see Panel B of Table 2.10). Both counterfactual scenarios
lead to an increase in average skills at the end of secondary school. This increase arises from
the fact that the variation in child skills within the school tracks becomes smaller, both when
eliminating parental track preferences and especially when enforcing a tracking threshold.
Since lower heterogeneity in skills within a school track improves learning efficiency, as de-
rived in Section 2.3, this leads to higher end-of-school skills and thus higher adult human
capital. This is consistent with the explanation of the learning efficiency-reducing misalloca-
tion effects that arise when parental background or any other factors drive the school track
choice independently from skills. Unsurprisingly, without asymmetry in parental academic
track costs and even more so with a sharp, purely skill-based allocation rule, the correla-
tion of school track with parental education decreases, and skills themselves become more
important in explaining the track choice.

However, while mobility, as measured by the negative of the intergenerational income
elasticity, increases in the first counterfactual experiment (Column (1)), it decreases sub-
stantially when introducing a strict skill threshold (Column (2)). The reason for this is that
purely skill-based tracking also increases the overall heterogeneity in skills markedly (i.e.
V ar(θ5) increases by around 2%). In particular, while it increases learning on average, a
cut-off-based school track allocation predominantly benefits the children in academic track
schools. The argument is similar to Proposition 2 in Section 2.3: When factors other than
skills determine the track choice, child skills in each track become more heterogeneous. In
some sense, each track is thus more like a comprehensive school. As argued in Proposition 2,
the learning losses from moving towards a stricter tracking system relative to a more com-
prehensive system are asymmetric and concentrated in the lower track, whenever the direct
peer effects are positive, which is the case. Quantitatively, this effect can be seen in Panel B.
in Table 2.10, where average skills in the vocational track at the point of the track decision
decrease while they increase in the academic track.

As a result, cross-sectional inequality as measured by the earnings Gini coefficient rises by
0.8% in the case of a skill threshold compared to the baseline economy. Furthermore, larger
inequality among college and non-college parents feeds into larger inequality in skills of their
children. Consequently, the school track, end-of-school skills and college outcomes become
significantly more dependent on the initial skill level in an economy with a strict skill-based
separation, explaining lower mobility even though both education choices are less dependent
on parental education (see Panel B of Table 2.10).

Perhaps surprisingly, overall welfare in terms of consumption equivalence variation in this
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counterfactual economy is slightly lower than in the baseline, despite increased output. On
the one hand, this is due to the fact that cross-sectional inequality increases, which lowers
welfare. On the other hand, when tracking is based on a skill threshold some parents no longer
receive utility from being able to send their child to their preferred track. In contrast, when
shutting down these parental track preferences directly, income inequality does not increase,
as end-of-school skills are only slightly more dispersed. Given that aggregate human capital
and output are higher, welfare is also increased by around 0.04% in this scenario.

In sum, these results point to an important role that measures such as mentoring pro-
grams, which have been shown to alleviate the influence of family background on school track
decisions that is not justified by skill selection, can play in improving both aggregate efficiency
and mobility at the same time. In contrast, reverting to a purely merit-based school track
selection is, according to the predictions of our model, not welfare-enhancing and dampens
equality and social mobility.

2.6 Conclusion

What is the role of education policies for aggregate productivity, inter-generational mobility,
and inequality? We focus on the role of school tracking, a common—and controversial—
education policy that has not been studied so far in the macroeconomic literature. As
the long-run macroeconomic effects of school tracking involve the interaction of different
markets and play out across generations, our analysis relies on a rich dynamic GE model
with overlapping generations.

The key ingredient in our model is a parsimonious theory of skill formation in school. Skills
are accumulated at a speed that depends on parental background, the pace of instruction in
school, and the skills of classroom peers. The pace of instruction and the skills of classroom
peers are, in turn, shaped by whether and when there is school tracking. We find that the
theoretical implications of the model align with the empirical findings of the effect of tracking
on educational achievements, as well as arguments in the public debate about tracking.

We tailor the model to fit the German Education System, where the track decision occurs
when children are ten years old, and calibrate it using a variety of micro and macro data
on child achievements, schools, and labor market outcomes. Our calibrated model predicts
that the timing of school tracking involves a macroeconomic trade-off between efficiency and
social mobility. Concretely, a policy reform that postpones school tracking by four years,
which implies that children are in comprehensive school until age fourteen, decreases long-
run GDP by 0.1% and lowers the inter-generational income elasticity by around 2.2%. Key
in the evaluation of this trade-off is the consideration of general equilibrium effects in the
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labor market that affect the incentives governing the school track choice. The GDP loss
mostly stems from lower learning efficiency due to more heterogeneous classrooms during
the (prolonged) time in comprehensive school. The gain in social mobility is the result of
comprehensive school reducing heterogeneity in skills, which implies that the school track
depends less on parental background, and skill differences across tracks become smaller once
the track decision is made.

Consistent with previous findings in the literature, our calibrated model also yields that
parental background matters for the school track decision even when child skills are accounted
for. We find that reducing this direct influence of parental background on the school track
leads to improvements in both social mobility and economic output. Mentoring programs
reducing the direct role of parental background (e.g. Raposa et al., 2019; Resnjanskij et al.,
2024), can therefore simultaneously improve macroeconomic efficiency and social mobility.
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Appendices to Chapter 2

2.A Model Appendix

2.A.1 Proof of Propositions

Proposition 1

For the proof of this proposition, we denote by θ3 the child skills at the beginning of secondary
school and by θ4 the skills at the end of secondary school. Moreover, we have assumed κ = 1,
ζ = 0, and χ = 0 and that skills at the beginning of secondary school are normally distributed
with mean zero and variance σ2

θ3 . First, we show that maximizing the aggregate end-of-school
skills in a tracking system implies a threshold skill level θ̃3, such that all θ3 < θ̃3 go to one
track, call it S = V and all θ1 > θ̃3 go to the other track, S = A (and those with θ3 = θ̃3 are
indifferent). That is, the existence of a skill threshold is a necessary condition for optimal
end-of-school skills. We restrict ourselves to the case with different instruction paces across
school tracks.

To that end, it is useful to rewrite θ4 in (2.2) of a child in a given school track S with
instruction pace P S using Lemma 1 as:

θ4 = θ3 + αθ̄S3 + β2

2δ + βγθ3

δ
+ γ2θ3θ̄

S
3

δ
− γ2(θ̄S3 )2

2δ + η4. (2.30)

After adding and subtracting γ2

2δ θ
2
3, this can be expressed as

θ4 = θ3 + αθ̄S3 + β2

2δ + βγθ3

δ
+ γ2θ2

3
2δ + η4 − γ2

2δ
(
θ2

3 − 2θ3θ̄
S
3 + (θ̄S3 )2

)
= θ4(P ∗

θ3) − γ2

2δ (θ3 − θ̄S3 )2,

(2.31)

where θ4(P ∗
θ3) denotes end-of-school skills if the child with skills θ3 is taught at her individually

optimal teaching pace P ∗
θ3 (we suppress the j-index of P as we consider only one period in

this case). Thus, in a given track, end-of-school skills are a strictly decreasing function of
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the distance to the average skill level θ̄S3 in that track. This is intuitive given Lemma 1, as it
is solely the average skill level to which the instruction pace is optimally targeted.

Next, assume for contradiction that the expected value of end-of-school skills across tracks
E[θ4] is maximized under a track allocation mechanism that does not feature a skill thresh-
old. Suppose that P V < PA without loss of generality. By Lemma 1, these are the op-
timal instruction paces for the average skill level in track V and A, respectively. There-
fore, E(θ3|S = V ) < E(θ3|S = A). Then, because there is no strict threshold, this means
that for any initial skill level θ3, there must be at least two children with initial skill lev-
els smaller or equal to θ3 that go to different tracks or at least two children with initial
skill levels larger or equal than θ3 that go to different tracks. This implies that there
exists a child with θ′

3 ≤ E(θ3|S = V ) that goes to track S = A, and/or a child with
θ′

3 ≥ E(θ3|S = A) that goes to track S = V , and/or two children with skills θ′
3 < θ′′

3 , with
θ′

3, θ
′′
3 ∈ [E(θ3|S = V ),E(θ3|S = A)], where the child with the smaller skill level goes to track

A and the child with the larger skill level to track V .
However, given the condition in (2.31), this child with θ′

3 would always benefit from being
in the other track as the distance between her skill level and the average skill level in that
track is smaller than in the track she is in. Note that moving just one child to another
track does not change the average skills in both tracks. Thus, the policymaker can improve
aggregate end-of-school skills by moving this child. The same line of argument holds in the
implied game that parents play when they endogenously sort their children into two tracks.
If no skill threshold level exists, there is always a child that would unilaterally gain if sent to
a different track.

Thus, we have established that the existence of a skill threshold is necessary for optimal
end-of-school skills both if a policymaker makes the track allocation directly and when parents
play a sorting game. Next, we characterize the thresholds for both cases. Let θ̃3 be the skill
threshold and let S again indicate to which track a child is allocated, now with S = V for
all θ3 ≤ θ̃3 and S = A for all θ3 > θ̃3.

A policymaker solves

max
θ̃3

E(θ4)

⇐⇒ max
θ̃3

E(E(θ4|S))

subject to
P S chosen optimally given Lemma 1.

(2.32)

Using (2.30) and the law of iterated expectations, this maximization problem boils down
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to

max
θ̃3

β2

2δ + γ2

2δ E
(
E(θ3|S)2

)
⇐⇒ max

θ̃3

β2

2δ + γ2

2δ
(
F (θ̃3)E(θ3|θ3 ≤ θ̃3)2 + (1 − F (θ̃3))E(θ3|θ3 > θ̃3)2

)
,

(2.33)

where F (.) denotes the cumulative distribution function of the normal distribution. Note that
the right term is just the expected value (across tracks) of the conditional expected values of
initial skills squared, conditional on the school track. This corresponds to the variance of the
conditional expected values, which depend on the skill threshold θ̃3. Using the law of total
variance, the maximization problem can thus be rewritten as (dropping the constant term)

max
θ̃3

E(θ4)

⇐⇒ max
θ̃3

γ2

2δ
(
σ2
θ3 − E(V ar[θ3|S])

)
.

(2.34)

Thus, the policymaker chooses optimally a threshold such that the expected variance of skills
in each track is minimized. The unique solution is then to set θ̃∗

3 = E θ3 = 0, that is, to split
the distribution exactly in half. This makes the peer groups in each track as homogeneous
as possible, which maximizes average and aggregate learning.

Next, we characterize the threshold that arises endogenously from the sorting game played
by the parents. The equilibrium condition maintains that at this threshold, a parent is just
indifferent between tracks as her child’s skills would be equivalent in both tracks. A parent
of a child with skill θ̂3 is indifferent between tracks V and A iff

(
α + θ̂3

γ2

δ

)
E(θ3|θ3 ≤ θ̂3) − γ2

2δ E(θ3|θ3 ≤ θ̂3)2

=
(
α + θ̂3

γ2

δ

)
E(θ3|θ3 > θ̂3) − γ2

2δ E(θ3|θ3 > θ̂3)2

⇐⇒
(

−α− θ̂3
γ2

δ

)
σθ3

f(θ̂3/σ)
F (θ̂3/σ)

− γ2

2δσ
2
θ3

f(θ̂3/σ)2

F (θ̂3/σ)2

=
(
α + θ̂3

γ2

δ

)
σθ3

f(θ̂3/σ)
1 − F (θ̂3/σ)

− γ2

2δσ
2
θ3

f(θ̂3/σ)2

(1 − F (θ̂3/σ))2

(2.35)

where F (·) denotes the CDF of a standard normally distributed random variable, and f(·) is
its density function. We solve for the root θ̂3 that solves (2.35) numerically. In all cases with
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reasonable parameter values, (2.35) is a monotone function, such that the root is unique if it
exists. In the special case without direct peer externality, i.e., α = 0, the solution is θ̂3 = 0,
as can be directly seen from (2.35). When α > 0, the root is smaller than 0, i.e. θ̂3 < 0.

Proposition 2

The proof of this Proposition follows directly from (2.34). In a comprehensive system, the
variance of initial skills across tracks is just equal to the overall variance since there is only
one track. In a tracking system, the expected value of the conditional variances of skills
across tracks is smaller than the overall variance, by the law of total variance and provided
that the instruction paces are different across tracks. This holds for every skill threshold, not
just for the optimal one. Thus average learning is higher.

Next, we show that a full tracking system leads to a “fatter” right tail of the end-of-school
skill distribution compared to a comprehensive system. To see this, consider the child who,
in expectation, has the highest end-of-school skill in a comprehensive system. Since θ4 is
monotonically increasing in θ3 in a given track (see (2.30)), this is the child with the highest
initial skill, say θ3,max. Moreover, from the properties of a truncated normal distribution,
we know that, for any skill threshold θ̃3, average skills in the A track, θ̄3,A are larger than
the unconditional average, θ̄3,C = 0. Thus, the squared distance between θ3,max and θ̄3,A in
a tracking system is smaller. Taken together, (2.31) implies that the child with initial skill
θ3,max ends up with larger end-of-school skills compared to a comprehensive system, which
skews the distribution positively.

Finally we derive the range of winners and loser from a tracking system relative to a com-
prehensive system. Given that θ4 are monotonically increasing in θ3 in every track, the range
is characterized by the intersection of the linear function θ4,C(θ3, θ̄3,C) with θ4,V (θ3, θ̄3,V ) and
θ4,A(θ3, θ̄3,A), which are just (2.30) if everyone was taught at the comprehensive, academic,
or vocational pace. For any skill threshold, the lower intersection θ3,L hence solves

θ3,L + αθ̄3,C + β2

2δ + βγ

δ
θ3,L + γ2

δ
θ̄3,Cθ3,L − γ2

2δ θ̄
2
3,C + η4

= θ3,L + αθ̄3,V + β2

2δ + βγ

δ
θ3,V + γ2

δ
θ̄3,V θ3,L − γ2

2δ θ̄
2
3,V + η4

⇐⇒ θ3,L = 1
2 θ̄3,V − αδ

γ2 .

(2.36)

Similarly, the upper intersection is given at

θ3,U = 1
2 θ̄3,A − αδ

γ2 . (2.37)
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For any skill threshold θ̃3, the interval [θ3,L, θ̄3,U ] is non-empty. Hence, there are always
children with initial skill levels inside this interval who lose in terms of end-of-school skills in
a full tracking system relative to a comprehensive system. Every child outside of this interval
gains relative to the comprehensive system.

With α = 0, the tracking skill threshold is at θ̃3 = 0 even if parents endogenously sort their
children. Hence, children with initial skills inside a symmetric interval around 0, [1

2 θ̄3,V ,
1
2 θ̄3,A],

lose relative to a comprehensive track, since θ̄3,V = −θ̄3,A if θ̃1 = 0. The average loss of a
child in this interval is equal to γ2

2δ θ̄
2
3,V = γ2

2δ θ̄
2
3,A.

If α > 0, and the policymaker enforces the tracking skill threshold θ̃3 = 0, the losses from
tracking are concentrated among children in the V track. To see this, note that every child
with initial skill in the interval [θ3,L, 0] is allocated into the V track but loses relative to a
comprehensive system. Similarly, every child with an initial skill inside [0, θ3,U ] is allocated
to track A but loses relative to a comprehensive system. With α > 0, |θ3,U | < |θ3,L| and
hence, the range of children in the A track that lose is smaller. The interval [0, θ3,U ] may
even be empty in which case only children in the V track lose from tracking.

Proposition 3

For the proof of this proposition, we denote by θ3 the child skills at the beginning of secondary
school, by θ4 the skills at the intermediary stage of secondary school and by θ5 the skills at
the end of secondary school. All other assumptions are maintained. First, we characterize
the variance of θ4. We start by collecting expressions for conditional and unconditional first
and second moments.

The unconditional expected value of θ4 in track V , if everyone went to V is

E(θ4,V ) = β2

2δ + αθ̄3,V − γ2

2δ θ̄
2
3,V

= β2

2δ − ασθ1

f(θ̃3/σθ3)
F (θ̃3/σθ3)

− γ2

2δσ
2
θ3

f(θ̃3/σθ3)2

F (θ̃3/σθ3)2
.

(2.38)

The unconditional expected value of θ4 in track A, if everyone went to A is

E(θ4,A) = β2

2δ + αθ̄3,A − γ2

2δ θ̄
2
3,A

= β2

2δ + ασθ3

f(θ̃3/σθ3)
1 − F (θ̃3/σθ3)

− γ2

2δσ
2
θ3

f(θ̃3/σθ3)2

(1 − F (θ̃3/σθ3))2
.

(2.39)
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The variance of θ4 in a comprehensive system is

V ar(θ4,C) = E(
(
θ4 − E(θ4))2

)
= (1 + β)2σ2

θ3 + σ2
η4

σ2
θ4,C + σ2

η4 ,

(2.40)

where we define σ2
θ4,C to be the variance of θ4 net of the additive skill shock variance.

Second, we can derive the expected value of end-of-school skills in the 2-period model in
a late tracking system as

E(θ5,LT ) = E(E(θ5,LT |SLT ))

= E(θ4,LT ) + β2

2γ + (α + β)E(E(θ4,LT |SLT )) + γ

2 E(E(θ4,LT |SLT )2)

= (2 + α + β)β
2

2γ + γ

2 [σθ4,LT − E(V ar(θ4,LT |SLT ))],

(2.41)

where E(θ4,LT ) and σ2
θ4,LT are just equal to the mean and variance of the comprehensive

system in the one-period model (see equation (2.40)). The variable SLT indicates the track
selection in period 2, which follows the cut-off rule SLT = V if θ4,LT ≤ θ̃4,LT and SLT = A

otherwise. The cut-off that maximizes (2.41) is θ̃∗
4,LT = E(θ4,LT ) = β2

2γ . This follows as (2.41)
mirrors that of average end-of-school skills in the full tracking system of the one-period model
in that average and aggregate θ5,LT decrease in the expected variance of skills in period 2
across tracks.

Similarly, we find the expected value of end-of-school skills in the 2-period model in an
early tracking system as

E(θ5,ET ) = E(E(θ5,ET |SET ))

= β2

2γ + (1 + α + β)E(E(θ4,ET |SET )) + β
γ

2 E(E(θ4,ET |SET )2)

= β2

2γ + (1 + α + β)
(
β2

2γ + β
γ

2 [σ2
θ3 − E(V ar(θ3,ET |SET ))]

)
+ β

γ

2 E(E(θ4,ET |SET )2

= β2

2γ + (1 + α + β)
(
β2

2γ + β
γ

2 [σ2
θ3 − E(V ar(θ3,ET |SET ))]

)

+ β
γ

2 [σ2
θ4,ET − E(V ar(θ4,ET |SET ))].

(2.42)
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Comparing (2.41) and (2.42), the condition that governs if average end-of-school skills in
a late tracking system are larger than in an early tracking system reads

E(θ5,LT ) − E(θ5,ET )

= β
γ

2
(
E(E(θ4,LT |SLT )2) − E(E(θ4,ET |SET )2)

)
− (1 + α + β)βγ2 E(E(θ3|SET )2) > 0.

(2.43)

The last term of (2.43) represents the advantage of early tracking in the first stage of the
schooling years. It stems from the smaller expected conditional variances of initial skills
among children that are tracked relative to the overall variance. The conditional expected
value of θ2 in a late tracking system is given by

E(θ4,LT |SLT = V ) = β2

2γ − σθ4,LT
f(θ̃4,LT/σθ4,LT )
F (θ̃2,LT/σθ4,LT )

(2.44)

and
E(θ4,LT |SLT = A) = β2

2γ + σθ4,LT
f(θ̃4,LT/σθ4,LT )

1 − F (θ̃4,LT/σθ4,LT )
, (2.45)

where the unconditional variance of θ4 in a late tracking system is given by σ2
θ4,LT = σ2

θ4,C+σ2
η4 ,

i.e. by the one computed in equation (2.40). Since late tracking occurs after the realization
of skill shocks in period 4, this variance additively includes the variance of these shocks.

Condition (2.43) is generally ambiguous and hard to interpret for arbitrary skill thresh-
olds. We focus again on the optimal tracking case, that is, the case with skill threshold
θ̃3 = E(θ3) = 0 and θ̃4 = E(θ4,LT ) = β2

2γ . In that case, we can write the expressions for the
various expected square conditional expected values as follows:

E(E(θ3|SET )2) = 2χσ2
θ3

E(E(θ4,LT |SLT )2) = β4

4γ2 + 2χ(σ2
θ4,LT

+ σ2
η4)

E(E(θ4,ET |SET )2) = β4

4γ2 + 2χσ2
θ3

(
α2 + γ2f(0)2σ2

θ3 − β2

2

)
+2f(0)σ2

θ3

(
β2 + 2α(1 + β) − (2γf(0)σθ3)2

)
+ 2χ(σ2

θ4,LT
+ 2χγ2σ2

θ3).

Condition (2.43) then becomes
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E(θ5,LT ) − E(θ5,ET )

= β
γ

2

2χσ2
η4 − 2χσ2

θ3

α2 + γ2f(0)2σ2
θ3 − β2

2

+ β2 + 2α(1 + β) − 4γ2f(0)2σ2
θ3 + 2χγ2σ2

θ3 + 1 + α + β


= γ

π

σ2
η4 − σ2

θ3

1 + α + α2 + β + β2

2 + 2α(1 + β) + γ2

2πσ
2
θ3

 > 0.

(2.46)

From this, Proposition 3 follows.

2.A.2 Equilibrium Definition

We introduce some notation to define the equilibrium more easily. Let xj ∈ Xj be the age-
specific state vector of an individual of age j, as defined by the recursive representation of
the individual’s problems in Section 3.2. Let its stationary distribution be Θ(X) . Then, a
stationary recursive competitive equilibrium for this economy is a collection of: (i) decision
rules for college graduation {dE(x5)}, for school track {dS(x11)}, consumption, labor supply,
and assets holdings {cj(xj), nj(xj), aj(xj)}, and parental transfers {a5 (xj)}; value functions
{Vj (xj)} ; (iii) aggregate capital and labor inputs {K,H0, H1}; (iv) prices {r, w0, w1} ; and
(v) average skill levels among children in school track S {θ̄j,S} for j = 2, 3, 4 such that:

1. Given prices and average skill levels among children in each school track, decision
rules solve the respective household problems and {Vj (xj)} are the associated value
functions.

2. Given prices, aggregate capital and labor inputs solve the representative firm’s problem,
i.e. it equates marginal products to prices.

3. Given average skill levels among children in each school track, allocation of children in
school track solves the parent’s problem, i.e. actual average skill levels are consistent
with parents’ prior.

4. Labor market for each education level clears.
For high-school level:

H0 =
Jr∑
j=5

∫
Xj
nj(xj) hj (xj) dΘ(X | E = 0) +

5∑
j=5

∫
Xj
nj(xj) hj (xj) dΘ(X | E = 1)
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where the first summation is the supply of high-school graduates while the second is
that labor supply of college students while studying in j = 5.
For college level:

H1 =
Jr∑
j=6

∫
Xj
nj(xj) hj (xj) dΘ(X | E = 1).

5. Asset market clears
K =

Jd∑
j=Je

∫
Xj
aj(xj)dΘ(X),

which implies that the goods market clears;

6. The distribution of X is stationary: Θ(X) =
∫

Γ(X)dΘ(X).

2.A.3 Welfare Measure

Our analysis centers on evaluating aggregate welfare under different policy scenarios. Welfare
is defined by the consumption equivalence under the veil of ignorance in the baseline economy
relative to the economy with the counterfactual policy in place. Formally, let C ∈ {0, 1, 2, ...}
denote the set of counterfactuals, with C = 0 being the baseline economy (early tracking)
in a steady state. We refer to the consumption equivalence as the percentage change in
consumption ∆ in the baseline economy that makes individuals indifferent between being
born in the baseline economy (C = 0) and the one in which the counterfactual policy C ̸= 0
is in place. Denote by VC

5 (θ5, a5, ϕ, S, E
p,∆) the welfare of agents in the initial state of the

economy (j = 5) if their consumption (and that of their descendants) were multiplied by
(1 + ∆):

VC(θ5, a5, ϕ, S, E
p,∆) = EC

j=20∑
j=5

βj−5vj
(
c∗C
j (1 + ∆), n∗C

j , E∗C , θ5, S, E
p
)

+ β13−5δVC
j5

(
θ′

5, a
′
5, ϕ

′, S ′, E∗C ,∆
)
,

where Ep is the education of the parent, and for j = 6, ..., 10, 12, ..., 20

vj(cj, nj, E, θ5, S, E
p) = (cj/q)1−σ

1 − σ
− b

n
1+ 1

γ

j

1 + 1
γ

, (2.47)

for j = 5
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vj(cj, nj, E, θ5, S, E
p) = (cj/q)1−σ

1 − σ
− b

n
1+ 1

γ

j

1 + 1
γ

− 1{E = 1} ψ(S, θ5, ν(Ep)), (2.48)

and for j = 11

vj(cj, nj, E, θ5, S, E
p) = (cj/q)1−σ

1 − σ
− b

n
1+ 1

γ

j

1 + 1
γ

− 1{S = A} χ(E). (2.49)

Note that the policy functions are assumed to be unchanged when ∆ is introduced. The
average welfare is:

V̄C(∆) =
∑
S,Ep

∫
θ5,a5,ϕ

VC(θ5, a5, ϕ, S, E
p,∆)µC(θ5, a5, ϕ, S, E

p)

where µC is the distribution of initial states {θ5, a5, ϕ, S, E
p} in the economy C.

We define ∆C as the consumption equivalence that makes individuals indifferent between
being born in the baseline economy C = 0 and one in which policy C ̸= 0 is in place, such
that:

V̄0(∆C) = V̄C(0).

2.B Empirical and Calibration Appendix

2.B.1 German Education System

In this section, we provide an overview of the most important features of the German Ed-
ucation and School System. A more extensive description can be found, for example, in
Henninges et al. (2019) or OECD (2020a). Figure 2.B.1 illustrates a simplified structure of
the system, starting in Grade 4 and ending with tertiary education.

Generally, schooling is compulsory in Germany for every child starting at age six and
lasting until age 18. However, the obligation to go to school typically lasts until grade 9 or
10, after which it shifts to a vocational training obligation if no upper secondary school is
attended. At age six, all children visit a comprehensive primary school that lasts the first
four grades.58 After that, children are allocated into traditionally three different secondary
school tracks: A lower vocational track, a medium vocational track, and an academic track.

58In two federal states, Berlin and Brandenburg, comprehensive primary school lasts the first 6 grades.
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However, triggered by the so-called PISA shock in the early 2000s, federal states in Germany
have started reforming their secondary school system. In particular, the two vocational tracks
have often been combined into one, resulting in a two-track system in the majority of federal
states (Bellenberg and Forell, 2012). For that reason, and because even if still two vocational
tracks exist, they are much more similar in comparison to the academic track schools, we opt
to restrict our analysis in this paper to two school tracks.

Generally, the school tracks differ in the curricula taught, the length of study, and the
end-of-school qualifications that come with graduation. In particular, only the academic
track schools end with a university entrance qualification that directly allows children to go
to college. This requires the completion of the second stage of secondary school, typically
grades 10/11 to 12/13. Graduating from a vocational track occurs after Grades 9 and 10 and
allows children to take up vocational training in blue-collar jobs or proceed to a professional
school that prepares for entry into white-collar, business, or skilled trade occupations. At this
stage, there is considerable scope for mobility between tracks. Firstly, professional degrees
often allow access to university studies in selected fields. Secondly, children can directly switch
to an academic track school if their school marks and achievements admit that. Finally, after
having worked for a number of years in vocational jobs, access to some college degrees can
be possible. At the same time, it is, of course, possible to switch from an academic track
school to a vocational training or job after the mandatory education has been completed.

The public expenditure per student does not differ significantly across school tracks.
Table 2.B.1 lists average per-student expenditures across the various school types in the
years 2010 to 2020. Across these years, public expenditures by student were highest in pure
lower vocational track schools. Expenditures in academic track schools were roughly equal
compared to expenditures in joint vocational track schools. The bulk of these expenditures
is attributable to teacher pay (around 80%) and the rest for investments into buildings,
equipment etc. This suggests that resource differences across school tracks should not be a
main driver behind achievement differences, on average.

A remaining driver behind achievement differences across school tracks could be the teach-
ing quality. In particular, higher-quality teachers could select into academic track schools.
However, regardless of the secondary school track, becoming a teacher requires university
studies in the range of 7 to 10 semesters and a similar university degree. On top of that, the
differences in wages across school tracks are no longer significant in many federal states. For
example, both tenured teachers at vocational track schools and teachers at academic track
schools are eligible for the same public pay grade in most northern and eastern federal states
already.
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Figure 2.B.1: Simplified Structure of the German Education System

Table 2.B.1: Per-Student Public Expenditures across School Types and Years

Year Primary Lower Voc. Upper Voc. Joint Voc. Acad. Compr.

2010 5,200 7,100 5,300 8,000 6,600 6,600
2011 5,500 7,300 5,600 8,000 7,100 7,100
2012 5,400 7,900 5,700 7,700 7,200 7,200
2013 5,600 8,200 5,900 7,700 7,500 7,500
2014 5,900 8,700 6,200 8,000 7,800 7,800
2015 6,000 8,900 6,400 8,000 7,900 8,000
2016 6,200 9,300 6,700 8,100 8,100 8,200
2017 6,400 9,800 7,000 8,300 8,500 8,600
2018 6,700 10,400 7,400 8,700 8,800 9,100
2019 7,100 11,200 7,900 9,200 9,300 9,500
2020 7,400 12,200 8,200 9,500 9,600 10,000

Source: Statistisches Bundesamt (Bildungsfinanzbericht, Bildungsausgaben - Aus-
gaben je Schüler, Sonderauswertung). All amounts in euros.
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2.B.2 Empirical Evidence on School Track Selection

In this section, we present reduced-form evidence on the effect of parental background on the
school track choice for their children.

Table 2.B.2 shows that parents frequently deviate from teacher recommendations toward
their own education. Research on school tracking has found that parents with higher socioe-
conomic status are more likely to send their child to an academic track school than parents
with a lower socioeconomic status, even conditional on school performance or achievement
test scores before the track decision. Consistently, we find that 54% of children from college-
graduated parents receive a teacher recommendation for the academic track versus 39% of
children from non-college-graduated parents.59 In addition, Table 2.B.2 shows that while
around 23% of parents who themselves have a college education overrule a vocational rec-
ommendation, only 4% of them overrule an academic recommendation. At the same time,
while 16% of non-college graduated parents overrule an academic recommendation, only
12% of them overrule a vocational recommendation. As argued before, one reason for these
deviations may be that parents may have more information about their child’s skills than
teachers. However, the deviations are not symmetric across tracks, and parents are more
likely to deviate from teachers’ recommendations for their own education.

Parents may have several reasons for frequently overruling teachers’ recommendations
when they differ from their own education. For instance, they may be better equipped
to support their child in a track with which they are more familiar. However, the last
columns of Table 2.B.2 show that children of college-educated parents who deviate from
the recommended vocational track do relatively poorly compared to those who received the
academic recommendation. In fact, only 6% of children of college-educated parents who
deviated from the vocational track recommendation belong to the top quartile of skills in the
academic track four years later in Grade 9. In contrast, the same number reaches 34% among
those who received an academic track recommendation and followed that recommendation.
This suggests that the support provided by college-educated parents who deviate from a
vocational track recommendation and send their child to an academic track school does not
fully compensate for relatively low skill levels. Conversely, children from non-college-educated
parents who deviate toward the vocational track do remarkably well in Grade 9, with almost
half of them belonging to the top quartile of skills in the vocational track. As a comparison,
22% of those with a vocational recommendation reached the top quartile in Grade 9. Those
numbers indicate that these students might have succeeded in the academic track as well.
Thus, we argue that the relatively high number of deviations towards parents’ education is

59We define children from college parents if they have at least one of the parents with a college education.
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Table 2.B.2: School Track Choice

% in the top 25% by
track in G9

Recommendation Shares % deviate if followed if deviated

College Parents
Academic 56% 4% 34% 68%
Vocational 44% 23% 34% 6%

Non-college Parents
Academic 38% 16% 21% 44%
Vocational 62% 12% 22% 14%

Notes: This table provides information on school track choice by parental education
and teacher recommendation. Source: NEPS, Cohort 3.

partly driven by a parental bias towards their own education, which is not only motivated
by parents’ ability to support the child or their intrinsic knowledge of their skills.

Moreover, Figure 2.B.2 plots the relationship between skills at the beginning of grade 5,
that is right after the track decision and skills in grade 9, when children are typically 15 years
old. The red and green lines are fitted values of grade 9 skills among the children who went
to an academic or vocational track school, following the track recommendation they received
from their primary school teacher. The triangles are the (grouped) learning outcomes of
children who received a vocational track recommendation but go to an academic track school,
the dots are the outcomes of children who received an academic track school recommendation
but deviated to a vocational track school, instead. Visually, the learning outcomes of the
deviators in academic track schools are on average below the predication of outcomes of
children with similar skill levels in grade 5. The learning outcomes of children who deviated
to vocational track schools are visually in line with or slightly above the prediction of what
one would have expected a child with that skill level to learn in a vocational track school.

This is confirmed more formally by the regression results of grade 9 skills on grade 5 skills
of children in academic or vocational track schools, when including a dummy variable that
equals one whenever a child goes to that track against the recommendation of the primary
school teacher, as shown in Table 2.B.3. When deviating to an academic track school,
children incur statistically significant learning penalty. When deviating to a vocational track
school despite an academic track school recommendation, children learn on average more,
even though the effect is smaller and statistically insignificant. These results suggest that
going against the track recommendation of the primary school teachers does not seem to
benefit children’s skill formation, underpinning our argument that it is likely not the fact
that parents on average know better about the skills of their children than teachers and
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Figure 2.B.2: Past and Future Skills by School Track and Deviator Status
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Notes: This figure shows the skills of children in grade 9 by school track and deviation status from
the recommended track as a function of their skills in grade 5. Non-deviating children are grouped
in 30 bins by school track and represented in ’×’ and ’+’ symbols for those in the academic and
vocational tracks, respectively. The lines show the quadratic prediction of grade 9 skills using
grade 5 skills and grade 5 skills squared for non-deviating students in each school track. Deviating
children are grouped in 5 bins by school track and represented in triangles and circle symbols for
academics and vocational, respectively —data source: NEPS, Cohort 3.

that there are other reasons, perhaps preferences, that drive the decision to deviate from the
recommended track.

2.B.3 Measuring Child Skills in the NEPS

In this section, we provide an overview of our measures of child skills. One of the main goals
of the NEPS project is to document the development of competencies of individuals over their
lifespan (Blossfeld et al., 2019). To that end, the NEPS carefully designs and implements
regular tests of the respondents’ competencies along several domains, including reading com-
prehension, mathematical competence, and scientific literacy, which we use for the estimation
of the child skill technology, but also domains such as information and communication tech-
nologies (ICT) literacy. In line with the guidelines set by the Program for International
Student Assessment (PISA), the tests are generally designed to assess the extent to which
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Table 2.B.3: Current Skills on Past Skills and Deviator Status

Dependent Variable: Grade 9 Skills

Panel A: Cohort 3 - Academic Track Recommendations
Grade 5 Skills 0.757***

(0.026)
Downward Deviators (n = 84) -0.062***

(0.023)
Obs. 1,101

Panel B: Cohort 3 - Vocational Track Recommendations
Grade 5 Skills 0.760***

(0.033)
Upward Deviators (n = 84) 0.031

(0.022)
Obs. 591

Notes: This table presents the coefficients of regressions of skills
in grade 9 on past skills in grade 5 and deviation status for chil-
dren with academic track teacher recommendations (Panel A)
and for children with vocational track teacher recommendations
(Panel B). Models control for parental education. Source: NEPS,
Cohort 3.

children have learned the content of school curricula but also to judge a child’s ability to use
domain-specific knowledge to constructively engage with real-life problems (Neumann et al.,
2013). The math test, for example, includes items related to “overarching” mathematical
content areas that are consistent across all ages, such as quantity, change & relationships,
space & shape, as well as several cognitive components, such as mathematical communica-
tion, argumentation, or modeling. The age-specific test items include for the majority simple
multiple-choice questions with four response options. In addition, the sometimes include
more complex multiple-choice questions, as well as short-constructed responses.60 Each do-
main is tested using between 20 and 25 items, which usually takes around 30 minutes (Pohl
and Carstensen, 2013).

In order to use these questions for the analysis of latent competencies, they need to be
scaled. For reading comprehension, mathematical competence, and scientific literacy, the
NEPS (similar to the PISA) uses a scaling procedure that is based on item response theory
(IRT). IRT is a popular instrument in psychometrics to extract latent ability or other factors
from test data. To quote the NEPS: “IRT was chosen as scaling framework for the newly

60A simple multiple choice question consists of one correct out of four answer categories, and complex
multiple choice questions consist of a number of subtasks with one correct answer out of two options.
Short-constructed responses typically ask for a number (Pohl and Carstensen, 2012).
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developed tests because it allows for an estimation of item parameters independent of the
sample of persons and for an estimation of ability independent of the sample of items. With
IRT it is possible to scale the ability of persons in different waves on the same scale, even
when different tests were used at each measurement occasion” (Pohl and Carstensen, 2013).

The scaling model used by the NEPS for dichotomous items is the Rasch model (Rasch,
1960).61 This model assumes that the right answers given to a set of questions by a number
of respondents contain all information needed to measure a person’s latent ability as well as
the question’s difficulty. It does so by positing that the probability that person v gives the
right answer to question i is given by:

p(Xvi = 1) = 1 − p(Xvi = 0) = exp(θv − σi)
1 + exp(θv − σi)

, (2.50)

where θv denotes the latent ability of person v and σi is a measure of the question’s difficulty.
Thus, this model maps the total sum score of an individual into an ability parameter estimate.
The scale is arbitrary. However, the ability estimate is cardinal.62 This model is estimated via
(weighted) conditional maximum likelihood under a normality assumption on latent ability.

There are several challenges that arise when scaling the test items: These include dealing
with different response formats, the treatment of missing responses, adaptive testing, and
linking tests across cohorts. An overview about the approaches undertaken by the NEPS to
overcome these challenges is given in Pohl and Carstensen (2013). Table 2.B.4 exemplary
describes our available NEPS samples of mathematics assessments by starting cohort and
grade level.

2.B.4 Details on Child Skill Technology Estimation

Following the literature on child skill formation, we employ a linear measurement system for
the logarithm of latent skills in each period that is given by

Mi,k,j = µk,j + λk,jθi,j + ϵi,k,j, (2.51)

where Mi,k,j denotes the kth measure for latent log skills of child i in period j. In each period,
we have at least 3 different measures in our data, which typically constitute the achievement
(item response theory) test scores of each child in the domains of reading, maths and scientific
literacy. The parameters µk,j, and λk,j denote the location and factor loading of latent log
61For polytomous items, the Partial Credit Model is used, which is a generalization of the Rasch model

(Masters, 1982).
62It is interval-scaled as Ballou (2009) puts it. That means an increase of 5 points from 15 to 20 represents

the same gain in achievement as from 25 to 30.
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Table 2.B.4: NEPS Mathematic Assessment Samples

Information on Par-
ents’ Education

Information on
School Track

Obs. Obs. % College
Parents

Obs. % Ac.
Track

Cohort 1 K1 2,014 1,709 51%
Cohort 2 G1 6,352 5,784 46% 2,731 63%

G2 5,888 5,425 47% 2,651 62%
G4 6,610 6,068 46% 3,229 63%
G7 2,479 2,410 51% 2,208 58%

Cohort 3 G5 5,193 3,856 38% 4,369 52%
G7 6,191 4,214 38% 5,525 49%
G9 4,888 3,387 38% 4,356 47%
G12* 3,785 2,830 41% 3,331 58%

Cohort 4 G9 14,523 8,474 35% 14,215 40%
G12* 5,733 3,767 24% 5,530 23%

Notes: This table describes NEPS mathematics assessments by cohort. Note that in Grade
12, the assessments are different by school track, which makes the comparison of test scores
by parental education or school track impossible. Source: NEPS.

skills, respectively. By ϵi,k,j, we denote the measurement error. The parameters and measures
are defined conditional on child’s age and gender, which we keep implicit.

Following Cunha et al. (2010), we normalize E(θj) = 0 and λ1,j = 1 for all j. That is, the
first-factor loading is normalized to 1 in all periods.63 We further normalize the measurement
errors, such that E(ϵk,j) = 0 for all j. Given that, the location parameters µk,j are identified
from the means of the measures. In order to identify the factor loadings, we further assume
that the measurement errors are independent of each other across measures and independent
from latent skills. Under these assumptions and given that we have at least three measures
of latent skills available in each period, we can identify the loadings on each measure in each
period by ratios of covariances of the measures (as in Agostinelli et al., 2019):

λk,j = Cov(Mk,j,Mk′,j)
Cov(M1,j,Mk′,j)

(2.52)

for all k, k′ > 1 and k ̸= k′. Rescaling the measures by their identified location and scale

63We are aware of the potential bias that can arise from this assumption (see Agostinelli and Wiswall (2016)).
However, contrary to their case, we measure three different stages of child development, where each stage
comes with a new cohort of children (see below). Thus we cannot follow children over multiple periods.
Moreover, even if we could, the data we use does not contain age-invariant measures according to their
definition.
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parameters then gives us error-contaminated measures of latent skills for each period as

θi,j = Mi,k,j − µk,j
λk,j

− ϵi,k,j
λk,j

= M̃i,k,j − ϵi,k,j
λk,j

. (2.53)

Equipped with identified latent variables up to measurement error for all periods, we can
plug these into the empirical analogue of the child skill technology (2.27), which yields

M̃i,k,j+1 = κ0,j + κ1,jM̃i,k,j + κ2,jM̃
2
i,k,j + κ3,jM̃−i,j,S

+ κ4,j(M̃i,k,j − M̃ j,S)2 + κ5,jEi + ζi,k,j+1,
(2.54)

where M̃−i,j,S refers to the average value of the kth transformed measure across all children
other than i in a classroom in track S and M̃ j,S to that of the average value of the measures
across all children in a school that belongs to track S.

Importantly, the residual ζi,k,j+1 now contains not only structural skill shocks, ηi,j+1, but
also the measurement errors, ϵi,k,j as well as interactions of the measurement error with the
rescaled measures and even the variance of the measurement errors. For that reason, even
if a standard assumption of mean independence of the structural shocks η conditional on all
independent variables holds, an OLS estimator of (2.54) will be biased. To account for that,
we follow the literature and use Bartlett factors scores to aggregate the different measures
into an unbiased score (Agostinelli et al., 2023). As indicated before, we use maths, reading,
and science test scores, which we have available across different cohorts and grades (years)
in school: We use Cohort 2 for grades 1 and 4, corresponding to the primary school stage
in our model (i.e. period j = 2); Cohort 3 for grades 5 to 9, which correspond to the first
stage of secondary school in the model (i.e. period j = 3); and Cohort 4 for grades 9 to 12,
corresponding to the second stage of secondary school in the model (i.e. period j = 4). Note
that in grade 7, children only take two tests, which is why we cannot construct the latent
skills. In addition, in grade 12, the maths test differs by track, and only children in the
academic track take the science test. Consequently, in grade 12, we can only create latent
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skills for children in the academic school track. 64

Table 2.B.5 summarizes the estimated coefficients of the child skill technology (2.27) using
the identified latent variables as describes above in columns (1) and (2), or using math test
scores directly in columns (3) and (4). The estimates differ slightly depending on whether we
use longitudinal weights or not, but overall are quite consistent. Table 2.B.6 performs the es-
timation where the squared distance to track average term in (2.27) is distributed, such that
we include directly the interaction between own skill and track average. The estimated coef-
ficient is positive, statistically significant in most specifications and not statistically different
from −2ω̂4, lending support to our modeling assumptions.

Table 2.B.5: Robustness Checks: Child Skill Technology Parameters Estimates

Grade 9 on Grade 5 Skills Math scores

Dependent Variable: θi,j+1 (1) (2) (3) (4)

ω̂1,3 θi,j 0.664*** 0.647*** 0.519*** 0.517***
(0.022) (0.025) (0.025) (0.030)

ω̂2 θ̄−i,j,S 0.003 0.028 0.022 0.025
(0.020) (0.021) (0.024) (0.031)

ω̂3 θ2
i,j 0.008* 0.006 0.010** 0.015**

(0.004) (0.005) (0.005) (0.006)
ω̂4 (θi,j − θ̄j,S)2 -0.011* -0.013** -0.012* -0.020**

(0.006) (0.006) (0.007) (0.008)
ω̂5,3 E = 1 0.034*** 0.033*** 0.033*** 0.045***

(0.010) (0.012) (0.012) (0.014)

Obs. 1,847 1,676 2,084 1,708
Weights No Yes No Yes

Notes: This table presents the coefficients of regressions of skills in grade 9 on skills
in grade 5, skills squared, the average skill level of peers, distance to the average skill
in the track squared, and parent’s education dummy. In Columns (2) and (4), all
observations are weighted using longitudinal weights, while in Columns (1) and (3),
they are not. Standard errors are clustered at the school level. Columns (1) and (2)
present the results for latent skills corrected for measurement errors, while columns
(3) and (4) present the results for uncorrected latent skills of maths grades. Models
control for year of birth, gender, and school-fixed effects. Source: NEPS.

64In Germany, the vocational track schools typically end after grade 9 or grade 10 and so-called upper
secondary schooling only happens in academic track schools. However, the NEPS data keeps track of the
students even if they are no longer enrolled in a school and tests them at the same age. A remaining issue
is, of course, that even though we know the classroom compositions in grade 9, we do not know how long
learning in that classroom continues in a vocational track school. For that reason, we make the assumption
that children who went to a vocational track school that finished before they are 18 years old continue to
learn in an environment that is the same as if the vocational school had continued. In reality, students
who graduate from vocational schools often continue with an apprenticeship, where we think it reasonable
to assume that the peer composition is similar to the one in school.
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Table 2.B.6: Robustness Checks: Alternative Child Skill Technology Parameters Estimates

Grade 9 on Grade 5 Skills Math scores

Dependent Variable: θi,j+1 (1) (2) (3) (4)

ω̂1,3 θi,j 0.657*** 0.626*** 0.515*** 0.505***
(0.021) (0.024) (0.023) (0.028)

ω̂2 θ̄−i,j,S 0.001 0.024 0.020 0.018
(0.020) (0.021) (0.024) (0.030)

−2 ∗ ω̂4 θi,j ∗ θ̄j,S 0.018** 0.014 0.022** 0.029**
(0.009) (0.010) (0.010) (0.012)

ω̂5,3 E = 1 0.034*** 0.034*** 0.033*** 0.048***
(0.010) (0.012) (0.012) (0.014)

Obs. 1,847 1,676 2,084 1,708
Control for θ̄2

j,S Yes Yes Yes Yes
Weights No Yes No Yes

Notes: This table presents the coefficients of regressions of skills in grade 9 on skills
in grade 5, the average skill level of peers, the interaction between child skills and
the average skill in the track, the average skill in the track squared, and parent’s
education dummy. In Columns (2) and (4), all observations are weighted using
longitudinal weights, while in Columns (1) and (3), they are not. Standard errors
are clustered at the school level. Columns (1) and (2) present the results for latent
skills corrected for measurement errors, while columns (3) and (4) present the results
for uncorrected latent skills of maths grades. Models control for year of birth, gender,
and school-fixed effects. Source: NEPS.

2.B.5 Details on the Data Moments used in the MSM Estimation

In this section, we present details of the data moments that we use as calibration targets in
the method of simulated moments estimation.

Table 2.B.7 presents the distribution of students across school tracks and education levels.
We use two main sources to compute those shares. First, whenever available, we use official
statistics that are reported in the education report: 44% of students are in the academic
track, and children from college parents are 2.27 more likely to graduate from college than
students from non-college parents (p. 156 in Bildungsberichterstattung, 2018). Second, we
complement this data using Cohort 4 of the NEPS dataset: 35% of the parents graduated
from college, children from college parents are 1.95 more likely to attend the academic school
track than children from non-college parents and students in the academic track are 5.23 more
likely to attend college than students in the vocational track.65 In addition, 23% of college

65In the NEPS dataset, we only have college attendance and not graduation. We use the ratio of college
attendance by groups as a proxy for the ratio of college graduation.
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parents deviate from the vocational recommendation, and 16% of non-college parents deviate
from the academic recommendation as argued above. Finally, the model is in stationary
equilibrium, which implies that 35% of students graduate from college, the same share as the
share of college parents. All the remaining shares are computed so that the model distribution
is internally consistent.

Table 2.B.8 describes the evolution of child skills over time and across groups using the
identified latent variable (Columns (1) and (2)) or maths scores directly (Columns (3) and
(4)). As before, we use different cohorts of NEPS for the estimation: Cohort 2 for grades
1 to 4, Cohort 3 for grades 5 to 9, and Cohort 4 for grades 9 to 12. We also report the
results for grade 12 using Cohort 3, but we prefer the results from Cohort 4 as the number
of observations is greater (see Table 2.B.4). For a given individual, the correlation across
skills increases over time, from 0.61 between grades 1 and 4 to 0.74 between grades 9 and 12
(Table 2.B.8 Column (1), using the latent skill and longitudinal weights). The differences in
average skills across groups are also increasing over time: from 0.541 SD in grade 1 to 0.677
SD in grade 9 by parents’ education, and from 0.847 SD in grade 1 to 1.036 SD in grade 9
by school track (Table 2.B.8 Column (1), using the latent skill and longitudinal weights).66

Tables 2.B.9 and 2.B.10 report details on the estimation of academic school track atten-
dance on child skills at the beginning of secondary, or end of primary school, as well as the
estimation of college attendance on past skills and school track. We use the latter estimates
to calibrate the college costs in our model, while the former serve as untargeted tests.

2.C Comparison of Model-predicted Effects with Em-
pirical Estimates

Generally, empirical estimates of the effects of between-school tracking policies on the average
learning outcomes of children offer no clear consensus, as identification of causal effects is
made difficult by severe endogeneity issues (Hanushek and Wößmann, 2006). Using the same
dataset as we do, Matthewes (2021) compares the mathematics and reading achievement
outcomes of school children in non-academic school tracks in Germany who benefit from
two more years of comprehensive school in some federal states versus those that are already
tracked in these years in a difference-in-differences framework. He finds that later tracking
even improves average achievement outcomes. However, in contrast to our setup, his analysis
does not consider children in academic track school who are already separated but compares

66To compute the difference by school track in grade 1, we use the panel structure of NEPS, and allocate
students in grade 1 to school track according to their actual school track in grade 7.
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Table 2.B.7: Distribution of Students, School Tracks and Parental Education

Statistics Value Source Comment

% of college parents 35% NEPS Cohort 4
Track choice

% in ac. track 44% Education report p.110 42% in NEPS Cohort 4
Ratio % ac. track if college
parents to % if non-college
parents

2.06 NEPS Cohort 4

% in ac. track if E = 1 66% Implied
% in ac. track if E = 0 32% Implied

Track recommendation
Deviation if recom. S = 0 and
E = 1

23% NEPS Cohort 4

Deviation if recom. S = 1 and
E = 0

16% NEPS Cohort 4

% ac. recom. 44% Implied
% ac. recom. if E = 1 56% Implied
% ac. recom. if E = 0 38% Implied

College graduation
% who graduate from college 35% Model assumption
Ratio % college if academics
to % if vocational

6.27 NEPS Cohort 4

% college if academics 66% Implied
% college if vocational 11% Implied
Ratio % college if college par-
ents to % if non-college par-
ents

3.20 Meyer-Guckel et al.
(2021)

Ratio computed from Fig-
ure 1, where 64% of chil-
dren from college parents
are bachelor graduates ver-
sus 20% of children from
non-college parents.

% college if college parents 63% Implied
% college if non-college par-
ents

20% Implied

Notes: This table provides information on the distribution of students by school track, college education,
and parental education with corresponding sources.
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Table 2.B.8: Evolution of Skills

Skills Math grades

Statistics (1) (2) (3) (4) Source

Group Differences
Differences in average skills by parental education (in standard deviations)
Grade 1 0.530 0.541 0.459 0.462 NEPS Cohort 2
Grade 5 0.658 0.647 0.605 0.579 NEPS Cohort 3
Grade 9 0.672 0.774 0.598 0.697 NEPS Cohort 3
Grade 9 0.710 0.677 0.659 0.623 NEPS Cohort 4
Differences in average skills by school track (in standard deviation)
Grade 1 0.840 0.847 0.767 0.769 NEPS Cohort 2
Grade 5 1.104 1.022 1.067 0.986 NEPS Cohort 3
Grade 9 1.058 1.089 1.040 1.113 NEPS Cohort 3
Grade 9 1.110 1.036 1.062 0.998 NEPS Cohort 4
Rank-Rank correlations
Panel A: All students
Grades 1 to 4 0.72 0.72 0.59 0.58 NEPS Cohort 2
Grades 5 to 9 0.79 0.79 0.71 0.71 NEPS Cohort 3
Panel B: Academic students
Grades 1 to 4 0.62 0.61 0.46 0.45 NEPS Cohort 2
Grades 5 to 9 0.68 0.69 0.57 0.59 NEPS Cohort 3
Grades 9 to 12 0.74 0.72 0.65 0.66 NEPS Cohort 3
Grades 9 to 12 0.74 0.74 0.66 0.59 NEPS Cohort 4
Panel C: Vocational Students
Grades 1 to 4 0.64 0.64 0.53 0.50 NEPS Cohort 2
Grades 5 to 9 0.74 0.75 0.63 0.64 NEPS Cohort 3

Weights No Yes No Yes

Notes: This table provides information on average differences in skills in one standard
deviation unit by parental background and school track over time as well as skill rank-rank
correlations. In columns (2) and (4), all observations are weighted with longitudinal weights,
while in columns (1) and (3), they are not. Columns (1) and (2) present the results for
latent skills corrected for measurement errors, while columns (3) and (4) present the results
for uncorrected latent skills of maths grades. Sources are mentioned in the last column.
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Table 2.B.9: School Track on Past Skills

Dependent Variable: Academic School Track

Panel A: Cohort 3 - Grade 5
θi,j−1 0.877***

(0.019)
Obs 3,888

Panel B: Cohort 2 - Grade 4
θi,j−1 0.745***

(0.027)
Obs 2,299

Notes: This table presents the coefficients of regres-
sions of the academic school track on past skills in
grade 4 (Panel A) or in grade 5 (Panel B). Mod-
els control for year of birth and gender fixed effects.
Source: NEPS.

Table 2.B.10: College on Past Skills and School Track

Dependent Variable: College Attendance

Panel: Cohort 4 - Grade 9
θi,j 0.395***

(0.015)
S 0.407***

(0.011)
Obs 10,074
Variance of residuals 0.137

Notes: This table presents the coefficients of
regressions of college attendance on past skills
(grade 9) and school track. We control for year
of birth and gender fixed effects. Source: NEPS.
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children in two different non-academic tracks.67 The results in Matthewes (2021), therefore,
are not directly informative about the effects of a broad comprehensive school reform, which
places all school children in schools of the same track for a longer period of time. However,
they suggest that the effects of tracking may be heterogeneous in the sense that it could be
particularly children from lower socio-economic backgrounds that benefit from de-tracking
reforms.

This is corroborated by empirical evidence from Scandinavian countries, who have all
undergone comprehensive school reforms in the last 60 years and often find that longer
comprehensive schooling decreases the effect of family background on educational attainment
(see, for instance Meghir and Palme, 2005; Aakvik et al., 2010; Pekkala Kerr et al., 2013).68

Similarly to Meghir and Palme (2005), who study an increase of compulsory schooling to
nine years from seven or eight years in Sweden, we find a negative effect of our policy on
attainments for children from college parents (-3% in end-of-school skills) but a positive
effect for children from non-college parents (+5% in end-of-school skills). Our results are
also in line with evidence that attendance at academic track schools becomes less dependent
on the parental background when tracking occurs later. In particular, we find an increase
in academic shares for college and non-college parents’ children, but relatively more so for
non-college parents’ children.

In terms of the effects of school tracking policies on inequality in learning outcomes, most
existing evidence comes from comparisons of early and late tracking systems across countries
(Hanushek and Wößmann, 2006; Brunello and Checchi, 2007).69 They consistently find that
tracking raises educational inequality as measured by child achievement test scores. Our
result of lower heterogeneity in child skills during secondary school is thus in line with these
findings.

Finally, while the reduced impact of the family background on educational attainment in
secondary school is often already interpreted as evidence for improvements in social mobility
following de-tracking reforms, it does not necessarily follow that such improvements lead to

67Traditionally, the school system in many federal states in Germany consisted of three tracks. One academic
track (Gymnasium) and two non-academic tracks that differ much less in terms of their curriculum than
between academic and non-academic tracks.

68Since the reforms in these countries came together with other education policy changes, in particular with
more mandatory schooling years, the estimated effects can often not be unequivocally attributed to the
tracking regime change. Studies about de-tracking reforms in Britain (e.g. Pischke and Manning, 2006)
also often arrive at mixed results. Piopiunik (2014), who study an increase in tracking in one of the federal
states in Germany, Bavaria, also led to learning losses for the lower-skilled children.

69As pointed out by Waldinger (2006) or Betts (2011), these studies often come with significant identification
challenges given the unclear classification of countries in early and late tracking systems or the possibility
of unobserved differences driving the results.
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a lower association between child and parental outcomes later in life.70 Similarly, smaller
inequality in test scores does not necessarily need to translate into lower cross-sectional
inequality in terms of labor market outcomes. As argued before, an assessment of the effects
of school tracking policies on these outcomes is challenging as it requires the consideration of
general equilibrium effects that a change in the skill composition of students may entail on the
labor market. Most existing empirical evidence, however, comes from relatively short-term
evaluations of tracking reforms that cannot consider such effects.

To the best of our knowledge, the only empirical estimates on the effect of a broad
comprehensive school reform on the intergenerational elasticity of income come again from
the Nordic countries (Holmlund, 2008; Pekkarinen et al., 2009). In particular, the reform
in Finland, undertaken subsequently across regions in the 1970s, is similar in scope to our
experiment as it postponed the track allocation from age 11 until age 16. Pekkarinen et al.
(2009) find that the elasticity between fathers’ and sons’ relative earnings declined by seven
percentage points due to the reform (from 0.3 to 0.23). Our model also predicts a decrease
in the intergenerational income elasticity, yet the effect is quantitatively smaller. Some of
this difference is likely due to the fact the reform in Finland simultaneously also changed
the average length of schooling, and the content of the curriculum in schools towards a more
academic orientation and went from a largely private to a public school system.

2.D Discussion on Child Skill Shocks

As for the adult human capital, we assume child skills are subject to idiosyncratic shocks.
These shocks represent unexpected heterogeneity in child development speeds (such as late-
bloomers) and any shock that can arise during childhood and affect the child’s learning, such
as health issues, a move, parents’ divorce, meeting an influential mentor, etc.

An alternative model would assume child skills are not subject to shocks but imperfectly
observed by parents. In this section, we elaborate on an alternative model based on our
baseline model that introduces this feature and compare it to our baseline model.

Specifically, in this alternative modeling, θ would be the true (log) skills that matter
for the child skill evolution and future earnings and evolve according to the stage-specific
70For example, Malamud and Pop-Eleches (2011) analyses the effects of a school-tracking age postponement

in Romania. While they find that children from disadvantaged backgrounds were significantly more likely
to attend and graduate from academic track schools following the reform, this did not lead to an increased
share in the college graduation probabilities of these disadvantaged children, which they attribute to the
same overall share of college slots available pre- and post-reform. The quantitative results of our model
similarly predict, that while postponing tracking increases mobility in school track choice, this does not
lead to higher mobility in college attainment. This effect is driven by parental-education-specific college
tastes.
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function f , defined by:

θj+1 = f(θj, P S
j , θ̄

S
j , E) (2.55)

= κθj + αθ̄Sj + + β P S
j + γ θj P

S
j − δ

2 P S
j

2 + ζE, (2.56)

where, similarly to the baseline model, P S is the instruction pace in track S, the average
peer skills is denoted by θ̄S and E stands for parental background. However, in this alternative
version, parents would not directly observe their child’s skills θj. Instead, in every period,
they would receive an unbiased signal θ̂j about their child skills, with:

θ̂j = θj + ϵθ,j

ϵθ,j ∼ N (0, σ2
ϵθ

).
(2.57)

Given the parents’ initial prior θ̃j−1, that is unbiased and follows a normal distribution
N (θj−1, σj−1), parents update their perception of their current child’s skills θ̃Pj = f(θ̃j−1, P

S
j , θ̄

S
j , E)

using Bayesian updating:71

θ̃j = k θ̂j + (1 − k)θ̃Pj
σ2
j = σ2

j−1 − kσ2
j−1

k =
σ2
j−1

σ2
j−1 + σ2

ϵθ

,

(2.58)

where k is the Kalman gain and is increasing in the precision of the signal ( 1
σ2
ϵθ

).
Since the perception of child skills is unbiased, the perception of the peer skills is equal to

the truth in the limit. Consequently, θ̄Sj is assumed to be perfectly observed by the parents
and stable in equilibrium. Similarly, in the limit, the policymaker perfectly observed the
average child skills in every school track and set the pace of instruction P S

j according to
Lemma 1. Then, we can define the child skill production function as

θj+1 = f(θj, θ̄Sj , E)

= β2

2δ + (κ+ βγ

δ
)θj + (α)θ̄S − γ2

2δ θ̄
S2 + γ2

δ
θj θ̄

S + ζ E

71We could assume the first initial prior to be equal to the signal they receive in j = 1.
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= ω0 + ω1 θj + ω2 θ̄
S + ω4 θ̄

S2 − 2ω4 θj θ̄
S + ω5 E.

Notice that the child skill evolution is identical to one in the baseline model but for
the idiosyncratic shock η that are here absent. As a result, the average skill threshold
that determines the school track allocation would be identically determined in both model
versions. Indeed, in the baseline model, the expected future child skills are independent of
the shocks η that are assumed to be normally distributed and centered to zero. To see this,
notice that in both models, the average skill threshold θ∗ for a given parental background E
and current (perceived) skills θ3, is determined by the following equation:

E(θ5, E
′|S = A,E) = E(θ5, E

′|S = V,E)
E(f(θ4, θ̄

A
4 , E), E ′|E) = E(f(θ4, θ̄

V
4 , E), E ′|E)

E(ω1 θ4 + ω2 θ̄
A
4 + ω4 θ̄

A
4

2 − 2ω4 θ4θ̄
A
4 , E

′|E) = E(ω1 θ4 + ω2 θ̄
V
4 + ω4 θ̄

V
4

2 − 2ω4 θ4θ̄
V
4 , E

′|E).

Assuming θ̄Aj and θ̄Vj for j = 3, 4 are known and fixed, by the linearity of the function,
we can replace θ4 in the expectation by its expected value E(θ4|S,E) = f(θ3, θ̄

S
3 , E). So θ∗

is independent of η in the baseline model and identically determined as in this alternative
model.

Conceptually, misallocation sources, however, differ between the two models. In the
alternative model, at the time of the school track choice j = 3, parents make their decision
based on their perception of their child’s skills θ̃3 ∼ N (θ3, σ

2
3). Part of the misallocation will

be driven by σ3, which governs how imprecise the parental perception of the skills is. In the
baseline model, parents perfectly observed their current child’s skills, but skills are subject to
shocks. Part of the misallocation is then governed by η4 ∼ N (0, σ2

η4), and more precisely by
its variance ση4 . While allowing for re-tracking would solve the issue of misallocation driven
by skill uncertainty in the baseline model, it would not completely solve the issue driven
by imperfectly observed skills in the alternative model. Indeed, skills are still imprecisely
observed in period 4—even though the precision is greater than in period three due to the
learning process.

Finally and crucially, earnings variance would be entirely determined at the earliest age
without child skills shocks. As a result, comparing early and late tracking in the two model
versions leads to different results. While in the baseline model, late tracking versus early
tracking makes the school track choice less dependent on early skill conditions, it is the
reverse in the alternative model. Postponing tracking allows parents to make a more informed
decision about the school track choice, strengthening the relationship between early (true)
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skill conditions and the school track. Still, the effect on mobility is ambiguous as late tracking
shrinks the difference in skills across socioeconomic groups.

In reality, it is probably a mix of both modeling versions. However, the data does not
allow us to differentiate between the two mechanisms. We use latent skills for calibration
purposes and don’t have information on parents’ perceptions of their child’s skills. Since we
think skills are likely subject to shocks during childhood, as human capital is likely subject
to shocks during adulthood, we favor the modelization with child skill shocks. The noise in
the preference shifter can be regarded as a reduced form of capturing the imprecision in the
parents’ perception of their child’s skills.



Chapter 3

Aggregate and Distributional Effects
of School Closure Mitigation Policies:
Public versus Private Education1

with Minchul Yum2

Abstract: Recent studies highlight the adverse effects of school closures in terms of average
lifetime income loss, cross-sectional inequality, and intergenerational mobility. We use a
simple model of human capital formation to compare two policy instruments that can address
these negative consequences: direct public provision, such as through an extension of school
time, and the provision of private education subsidies. We demonstrate that the effects of
these policies on inequality and mobility depend crucially on the degree of substitutability
between private and public inputs in the production of human capital.

1 We thank Youngsoo Jang for useful discussions. Financial support from the German Research Foundation
(DFG) through CRC TR 224 (Project A04) is gratefully acknowledged.

2 Department of Economics, University of Southampton
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3.1 Introduction

During the COVID-19 pandemic, many governments unprecedentedly closed schools for ex-
tensive periods. This not only incurs considerable learning losses among affected children in
the short run (Blanden et al., 2023; Werner and Woessmann, 2023), but may also entail signif-
icant adverse long-run consequences in terms of future income and welfare losses (Agostinelli
et al., 2022; Fuchs-Schündeln et al., 2022; Jang and Yum, forthcoming). Moreover, as the
learning losses and parental behavioral responses are heterogeneous across the income dis-
tribution, the school closures may lead to higher inequality and impair intergenerational
mobility (Jang and Yum, forthcoming).

Against this backdrop, various policy interventions have been discussed to counteract
the detrimental consequences of school closures (Zviedrite et al., 2021). To highlight the
potential long-run implications of such mitigation policies, we present a model, which is
simple yet considers the sophisticated nature of how private and public education investments
interact as inputs into the production of human capital. We explore two mitigation policies:
extending public schooling time, such as during the summer, and implementing means-tested
subsidies for private education. Our results suggest that the elasticity of substitution between
private and public inputs plays an important role in shaping the effects of these policies. In
particular, if private and public inputs are highly substitutable, both mitigation policies
can bring down inequality and improve intergenerational mobility. If the two inputs are
complementary, however, extra public schooling can aggravate inequality and harm mobility,
which is in contrast to government subsidies to private education.

This is informative, as even though much of the existing macro literature assumes that
the degree of substitutability between public and private is very large, empirical evidence on
their elasticity is far less clear. For example, Gelber and Isen (2013) find evidence that larger
public investments crowd in parental investments into their children, which is incompatible
with a model in which public and private investments are substitutes (e.g., Becker and Tomes,
1979). Generally, the degree to which private investments can replace public schooling in the
production of child human capital likely depends, among other things, on the period length,
the age and education stage of the child, and the presence and quality of private education
markets.

The contribution of our paper is thus to offer a novel policy insight as to the importance of
substitutability between public and private education for the long-term effects of mitigation
policies on inequality and mobility. We thereby complement the analysis in Fuchs-Schündeln
et al. (2023), who consider a school-time extension mitigation policy using a rich quantitative
model, but do not consider mobility consequences and the role of substitutability between
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public and private education.

3.2 Model

The model consists of three periods, indexed by t = 0, 1, 2. A household consists of an
adult parent and a child and draws a time-constant endowment m ∈ {ml,mh} with an equal
probability, such that we have low- and high-income households. We abstract from savings.

At the beginning of t = 0, the child draws a learning ability ϕ ∈ {ϕl, ϕh}, which is
correlated with m. Specifically, for k = l, h, households holding mk draw ϕk with a probability
of pϕ. The learning ability affects the production of a child’s human capital over time, ht.3

The initial human capital level h0 is set to one. Human capital then evolves as a function
of past human capital, learning ability, and private parental-, as well as public schooling
inputs. We think of the initial period t = 0 as capturing the early education stage of a child
(e.g., pre-and primary school), and of period t = 1 as the second education stage of a child
(e.g., secondary school). The final period t = 2 then captures the adult period of the child
generation, where the final human capital level h2 realizes.

In t = 0, a household with endowment m and child learning ability ϕ then solves:

V (ϕ,m, t = 0) = max
ct,et≥0

{log ct + V (ht+1, ϕ,m, t = 1)}

subject to
ct + et = m

ht+1 = ϕ
{
(et/ē)ψ + (ςg)ψ

}α
ψ h1−α

t ,

(3.1)

where ct denotes consumption and et denotes all private investments into the production
of human capital, divided by its mean.4 Private investments and time-invariant public in-
vestments, which we denote by g, are aggregated using a CES aggregator. The elasticity of
substitution between the two investments is shaped by ψ ≤ 1. The parameter ς < 1 cap-
tures the productivity loss of public schooling due to school closures and is used to simulate
(unexpected) school closure shocks later (Fuchs-Schündeln et al., 2022; Jang and Yum, forth-
coming). As is common, the production of human capital is then of the Cobb-Douglas form,
where total investments and past human capital are the input factors with unit elasticity of

3 The correlation of the learning ability of children and their parents’ endowments allows us to parsimoniously
capture various sources of intergenerational persistence not due to endogenous investments.

4 Private investments may also include the time parents spend with their children, which we can think of as
incurring an opportunity cost measured by foregone wages.
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substitution and the factor shares are given by α.5 Finally, the learning ability ϕ plays a role
of total factor productivity. We abstract from future discounting.

The decision problem in t = 1 is similar,

V (ht, ϕ,m, t = 1) = max
ct,et≥0

{log ct + η log ht+1}

subject to
ct + (1 − s(m))et = m

ht+1 = ϕ
{
(et/ē)ψ + (γg)ψ

}α
ψ h1−α

t ,

(3.2)

where we assume a warm-glow altruism motive for parents governed by η > 0. Moreover, we
introduce two policy tools that have been discussed as measures to counteract the learning
losses induced by school closures: (i) prolonged school periods that make up for (some) of
the lost time in public schools as governed by γ > 1 (Fuchs-Schündeln et al., 2023); and
(ii) means-tested subsidies to private education (Yum, 2023), given by s(ml) = s ≥ 0 and
s(mh) = 0.

3.3 Results

3.3.1 Calibration of Two Baseline Model Economies

In light of the unclear evidence on the elasticity of substitution between private and public
investments in the human capital formation of children in the literature, we calibrate two
versions of the baseline model: In Model 1, we set ψ = 0.6, such that the substitution
elasticity is 2.5, so that private and public investments are gross substitutes, albeit imperfect
ones.6 In Model 2, we set ψ = −1 (so that the elasticity is 0.5), implying that both inputs
are gross complements, reflecting pertinent findings in the micro literature (Gelber and Isen,
2013).

In both versions of the baseline model, there are no school closures, such that ς = 1, and no
government interventions (i.e., γ = 1 and s(m) = 0). Moreover, we set α = 0.25 throughout,
but our qualitative results are robust to this parameter. We parameterize ml = 1 − mδ,
mh = 1 + mδ, and ϕl = ϕµ(1 − ϕδ) and ϕh = ϕµ(1 + ϕδ). We then have five parameters,
{pϕ, η,mδ, ϕδ, ϕµ}, which we internally calibrate to ensure that the equilibrium distribution

5 We have explored a specification that allows for strong dynamic complementarity, and our qualitative
findings remain robust to this consideration.

6 For example, Kotera and Seshadri (2017) estimate an elasticity of substitution of 2.43, and Arcalean and
Schiopu (2010) one of 1.31 for primary and secondary education stages.
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Table 3.1: Internally Calibrated Parameters

Model 1 Model 2
ψ = 0.6 ψ = −1.0 Target Statistics

Parameter (ES = 2.5) (ES = 0.5) Description Value
pϕ 0.567 0.604 IGE 0.34
η 0.920 1.251 Avg e/income 0.10
mδ 0.800 0.800 Gini Adult 0.40
ϕδ 0.419 0.449 Gini Child 0.40
ϕµ 0.723 1.140 Avg h2 1.00

in both baseline model versions exactly matches the intergenerational elasticity, the ratio of
average monetary investments to average income, and the Gini coefficient of incomes in the
US, as summarized in Table 3.1. The last parameter, ϕµ, determines the scale of ϕ, which is
used to normalize the average h2 to one.

3.3.2 Aggregate and Distributional Effects of School Closures

We first assess our simple model’s predictions regarding the aggregate and distributional
effects of school closures in t = 0 by varying the parameter ς ≤ 1, which lowers the public
(schooling) input into the human capital formation in t = 0. We focus on three outcomes: (i)
average final human capital of the child generation in t = 2, h2, which serves as our measure
of long-run efficiency; (ii) the intergenerational elasticity, the slope coefficient from regressing
log(h2) on log(m), which we take as our measure of intergenerational mobility; and (iii) the
Gini coefficient of h2, serving as our measure of long-term cross-sectional inequality for the
child generation.

As shown in Figure 3.1, Model 1 (blue solid line) predicts that school closures lead to
aggregate losses in terms of human capital, lower intergenerational mobility, and larger cross-
sectional inequality. Thus, this simple model qualitatively replicates the findings of Jang and
Yum (forthcoming). In contrast, Model 2 (red dotted line) predicts that, when the elasticity
of substitution between private and public inputs in the production of human capital is very
low, school closures can even lead to higher mobility and lower inequality, while average
human capital still drops at a faster rate than in Model 1.7

Fundamentally, the different results arise because when private investments are good
substitutes for lower public investments, richer parents can more easily offset the effects of
lost schooling time by increasing their private investment than less wealthy parents. Thus,
7 Jang and Yum (forthcoming) do not explore the case where public and private education investments are

gross complements, as investigated in Model 2 in this study.
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Figure 3.1: Effects of School Closures without Mitigation Policies
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the human capital of children from different parental backgrounds diverges, which increases
inequality and reinforces the correlation between child and parental economic outcomes in
Model 1. If private and public inputs are more complementary in producing child human
capital, however, this mechanism reverses. That is, the higher private inputs of richer parents
become less effective when schools close as they are only productive when complemented with
public inputs. Thus, differences between children from different parental backgrounds can
even decrease, resulting in lower inequality and higher intergenerational mobility.

3.3.3 Mitigating the School Closure Effects

As our main exercises, we now explore the effects of two school closure mitigation policies:
extra public schooling and means-tested private education subsidies. To that end, we consider
different degrees of each mitigation policy in t = 1 in both model versions, after all decisions
in t = 0 with school closures are made.8 We focus on the case with ς = 0.8.

In the first exercise, we increase γ ≥ 1 in t = 1. Analogously to the school closures, this
can be interpreted as prolonged schooling during the second education stage, for example by
leaving schools open during the holidays, or by extending regular schooling days. As shown in
the left panel of Figure 3.2, such policies indeed succeed in alleviating the human capital losses
associated with school closures. This is true for both Model 1 and 2. However, while make-up
schooling raises intergenerational mobility and lowers cross-sectional inequality in Model 1,
it does the opposite in Model 2. This again reflects the argument that when private and

8 Note that, under our logarithmic assumptions on the utility from h2 in (3.2), optimal private investments
e1 are independent of h1. For that reason, even if the policy interventions were anticipated, our results
remain unchanged.
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Figure 3.2: Mitigation Policy 1: Prolonged Schooling
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public investments are substitutable, as in Model 1, children from poorer households benefit
relatively more from make-up public schooling, as their parents could not compensate the
learning losses resulting from closures through private inputs as effectively as richer parents.
Thus, the differences in human capital between rich and poor children decrease, and the
correlation between parental and child outcomes drops. In contrast, when the two inputs
are complementary, children from richer households disproportionately gain from prolonged
schooling as they also benefit from higher private inputs that make schooling productive. In
Model 2, universal make-up schooling can therefore aggravate inequalities and hamper social
mobility.

In the second exercise, we raise s ≥ 0 in t = 1, the subsidy rate for private education
spending such as coupons for purchasing a tablet or online courses, given to parents of the
low-endowment type. The effects are shown in Figure 3.3. In both Model 1 and Model 2, the
policy successfully mitigates the average human capital losses resulting from school closures.
At the same time, intergenerational mobility increases and cross-sectional inequality falls,
regardless of the substitutability between public and private investments in human capital
production. Thus, a means-tested private education subsidy can potentially prevent the
exacerbation of inequality and adverse effects on mobility, in cases where the elasticity of
substitution is especially low. Of course, in such a world, inequality and immobility after
school closures would already be lower to begin with.
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Figure 3.3: Mitigation Policy 2: Means-tested Private Education Subsidy
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3.4 Conclusion and Discussion

This paper demonstrates that the long-term consequences of school closure mitigation poli-
cies in terms of inequality and intergenerational mobility depend crucially on the elasticity
of substitution between public and private investments in the human capital formation of
children.9 Our results illustrate that in a stark case when both inputs are complementary,
untargeted mitigation policies such as universal schooling extensions may lead to the perhaps
unintentional consequences of increasing inequality and lowering mobility. An important task
for researchers and policymakers in the design of such policies is thus to consider how pri-
vate, parental, and public schooling investments interact across different contexts, such as in
the short- or long run, at different ages and educational stages of children, across different
domains of skills like cognitive and non-cognitive, or in the presence of professional private
education and tutoring markets.

Finally, despite our calibration, our analysis here serves the purpose of delivering these
arguments mostly qualitatively. A serious quantitative evaluation of school closure mitigation
policies would require a richer overlapping generations model that incorporates several further
potentially important aspects. For example, a more accurate comparison of policies should
take into account the financing costs of policies. In addition, a combination of the two policies
we consider or a targeted prolongation of public schooling just for disadvantaged children is
conceivable. These interesting and important investigations are left for future work.

9 See Glomm and Kaganovich (2003) and Aliprantis and Carroll (2018) who make related points about the
sensitivity of distributional or sorting outcomes to this elasticity in different contexts.
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