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Abstract
Climate change compels a reduction of greenhouse gas emissions, yet vehicular traffic
still contributes significantly to the emission of air pollutants. Hence, in this paper
we focus on the optimization of traffic flow while simultaneously minimizing air
pollution using speed limits as controllable parameters. We introduce a framework
of traffic emission models to simulate the traffic dynamic as well as the production
and spread of air pollutants. We formulate a multi-objective optimization problem for
the optimization of multiple aspects of vehicular traffic. The results show that multi-
objective optimization can be a valuable tool in traffic emission modeling as it allows
to find optimal compromises between ecological and economic objectives.

Keywords Traffic flow network · Emission models · Multi-objective optimization ·
Numerical simulations

Mathematics Subject Classification 90B20 · 49K20 · 49M25 · 90B50

1 Introduction

The societal impact of vehicular traffic has increased significantly over the last years
and so have its drawbacks affecting the public’s health, the climate, and the envi-
ronment (D’Amato and Cecchi 2008; Epstein 2005). As vehicular traffic emits air
pollutants, it is directly linked to phenomena like air pollution, climate change, and
global warming (Ramanatha and Feng 2009).
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In this paper, we focus on the speed limit adjustments because (a) studies suggest
that reducing speed limits reduces emissions (Int Panis et al. 2006), and (b) this coun-
termeasure is easy and inexpensive to implement, while also having the added benefits
of reducing traffic noise in urban areas, cf. Brink et al. (2022), and improving road
safety, cf. Aljanahi et al. (1999).

The ubiquity of vehicular traffic has motivated a vast branch of research, namely
the traffic flow modeling. The models developed range from micro- to macroscopic,
and from first to second order, cf. Coclite et al. (2005), Garavello et al. (2016), Gar-
avello and Piccoli (2006), Lighthill and Whitham (1955), Richards (1956), Treiber
and Kesting (2013) for an overview. In particular, much attention has been paid to
economic aspects of traffic such as travel time, ramp metering, or traffic flow and their
optimization, e.g., by controlling speed limits or traffic lights, cf. Cascone et al. (2007),
Goatin et al. (2016), Göttlich et al. (2015), Treiber and Kesting (2013). There is also
a growing interest in modeling traffic emissions (Int Panis et al. 2006) and monitor-
ing concentrations of air pollutants, e.g., by simulating their spread due to advection
and diffusion (Stockie 2011). Recently, the idea of combining these approaches has
been introduced in Alvarez-Vázquez et al. (2017), Balzotti et al. (2022), Berrone et al.
(2012), Pasquier et al. (2023), Zegeye et al. (2011). Their common idea is to couple a
traffic model with a model describing the dispersion of air pollutants. The coupling is
achieved by estimating the emission of air pollutants based on quantities provided by
the traffic flowmodel, and then, using this estimate as a source for the dispersionmodel.
The authors of Alvarez-Vázquez et al. (2018) use this modeling approach to formu-
late an optimization problem aimed at finding the best extension of a road network to
minimize traffic pollution. Furthermore, there is an increasing interest in jointly opti-
mizing economic and environmental aspects of traffic. For example, Vázquez-Méndez
et al. (2019) follows a cooperative approach. Here, the authors minimize traffic pol-
lution while simultaneously minimizing travel times and maximizing the outflow of
the network by controlling the network management, i.e., the incoming capacity of
the roads and the drivers’ preferences. The same problem is studied in García-Chan
et al. (2022), where the authors instead follow a non-cooperative approach by formu-
lating the problem as a bi-level Stackelberg game. The approach of joint optimization
of economic and environmental aspects is also used in different applications such as
wastewater management, cf. Alvarez-Vázquez et al. (2010, 2008), or the management
of industrial plants (Alvarez-Vázquez et al. 2015).

We extend this line of research by addressing the following question: Is it possible
to maximize an economic aspect of traffic, such as traffic flow, while also minimizing
the contribution to air pollution by controlling speed limits? The novelty here lies in
the approach to control the speed limits. We model this problem using multi-objective
optimization.

First, we introduce the framework of speed-limit-dependent traffic emission mod-
els using a traffic, an emission, and a dispersion model where each depends on the
quantities of the previous model. We illustrate this hierarchy in Fig. 1. The particular
choice of these three models follows Alvarez-Vázquez et al. (2017) with an additional
explicit speed limit dependence. Second, we formulate a multi-objective optimization
problem aimed at maximizing traffic flow while simultaneously minimizing air pollu-
tion by controlling speed limits. Our approach to solve the proposed optimization uses
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Fig. 1 Modeling framework of the traffic emission model including the dependence on the speed limits and
the variables corresponding to the individual models

the first-discretize-then-optimize technique because the partial differential equations
(PDEs) involved in the traffic emission model lack a closed-form solution in general.

This article is structured as follows: First, we introduce the framework of so-called
speed-limit-dependent traffic emission models which is split into the traffic model
(Sect. 2) and the emission and dispersion model (Sect. 3). Then, in Sect. 4, we derive
a multi-objective optimization problem capturing the goal of maximizing traffic flow
while minimizing air pollution. We cover the numerical treatment of our traffic emis-
sion model in Sect. 5 and conclude with a proof-of-concept example in Sect. 6.

2 Traffic flow dynamics

The traffic dynamic on a road network consists of two components: the traffic dynam-
ics on the roads, and the coupling at the junctions. The traffic on the roads is described
by a set of hyperbolic conservation laws, while the junctions are modeled by cou-
pling conditions which encode boundary conditions at the end and beginning of each
road (Coclite et al. 2005; Garavello et al. 2016; Garavello and Piccoli 2006).

A road network is a directed graph (V , E) where each edge e ∈ E represents
an unidirectional road associated with an interval Ie = [0, L road

e ] and each vertex
v ∈ V represents a junction. A junction v can also be identified with a (n +m)–tuple
(e1, . . . , en, en+1, . . . , en+m) where the first n–tuple corresponds to the incoming and
the secondm–tuple to the outgoing roads of v, see also Coclite et al. (2005), Garavello
et al. (2016), Garavello and Piccoli (2006). We call a junction an internal junction
if it has roads directed both into and away from the node. Conversely, we refer to a
junction as an external junction, if it has either roads directed into or away from the
node.
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2.1 The traffic dynamic on roads

We describe the traffic dynamic on the roads of a network according to the Lighthill–
Whitham–Richards (LWR) model (Lighthill and Whitham 1955; Richards 1956),
which characterizes it in terms of the traffic density ρe(s, t) for given flux functions
Qe where s ∈ Ie and t ∈ R

+. For each road e ∈ E , the model reads

∂tρe(s, t) + ∂s Qe(ρe(s, t), V
max
e ) = 0, for (s, t) ∈ Ie × (0, T ), (2.1a)

ρe(s, 0) = ρ0
e (s), for s ∈ Ie. (2.1b)

The flux functions Qe are assumed to be dependent on the speed limits Vmax
e . The

speed limits are constant over time and space, but may differ for every road. We set
the flux function according to Greenshields’ model (Greenshields et al. 1935):

Qe(ρ, Vmax
e ):=Vmax

e ρ

(
1 − ρ

ρmax
e

)
,

where Vmax
e > 0 denotes the speed limit. The parameter ρmax

e describes the max-
imal density. In the Greenshields model, the critical density ρc

e := argmax0≤ρ≤ρmax
e

Qe(ρ, Vmax
e ) is independent of the speed limit policy as it is given by ρc

e = ρmax
e /2.

The traffic densities are affected by the full speed limit policy due to the interaction
of traffic at junctions. We denote the speed limit policy on the network by the vector
Vmax = (Vmax

e )e∈E and hence, may write ρe(s, t) = ρe(s, t, Vmax).
Notice, that the Greenshields’ model is only one possible option. The following

considerations can be carried out for strictly concave flux functions.
The model (2.1) is well-posed in the sense that it admits a (weak) solution for every

road e if additional boundary conditions are given. The claim follows directly from
Garavello et al. (2016), Garavello and Piccoli (2006) as for fixed speed limits Vmax

e ,
the model (2.1) coincides with the “classic” LWR model.

2.2 The traffic dynamic at junctions

To characterize the traffic at junctions, we impose suitable boundary conditions. In
particular, we distinguish between two cases: boundary conditions stemming from an
external junction, where we prescribe in- or outflow rates, and boundary conditions
stemming from an internal junction, where the flow rates arise by coupling conditions,
see e.g., Coclite et al. (2005), Garavello et al. (2016), Garavello and Piccoli (2006),
Goatin et al. (2016).

At internal junctions,we suppose that the trafficdynamic obeys a physical condition,
the conservation of mass. We follow Coclite et al. (2005), Garavello et al. (2016),
Garavello and Piccoli (2006) and consider additional rules at a junction besides the
conservation of mass:

(i) At an internal junction, the traffic distributes from the incoming to the outgoing
roads according to fixed, time-independent parameters that encode the drivers’
preferences.
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(ii) At a merging junction, where the number of incoming roads is greater than the
number of outgoing roads, fixed, time-independent parameters determine the
priority among the incoming roads.

(iii) The drivers aim to maximize the flux across the junctions with respect to rule (i)
or (ii), respectively.

These coupling conditions take the form of constrained maximization problems, one
for each internal junction. Their solutions provide the in- and outflow at the boundary
of the roads.

To express the coupling conditions explicitly, we define the demand and supply
function for each road e:

De(ρ, Vmax
e ) =

{
Qe(ρ, Vmax

e ), ρ ≤ ρc
e ,

Qmax
e (Vmax

e ), ρ > ρc
e ,

and Se(ρ, Vmax
e ) =

{
Qmax

e (Vmax
e ), ρ ≤ ρc

e ,

Qe(ρ, Vmax
e ), ρ > ρc

e .

and introduce the abbreviations:

Din
i (t, Vmax):=Dei (ρei (L

road
ei , t, Vmax), Vmax

ei ) for i = 1, . . . , n,

Soutj (t, Vmax):=Se j (ρe j (0, t, V
max), Vmax

e j ) for j = n + 1, . . . , n + m.

Further, we introduce the following notation: The flow arriving at a junction from the
incoming road ei is denoted by Qin

ei . Similarly, we denote flow exiting the junction
via the outgoing road e j by Qout

e j . Then, the coupling condition at a junction at a fixed
time t ∈ [0, T ] takes the form:

max
Qin
ei

(t,Vmax)

n∑
i=1

Qin
ei (t, V

max) (2.2a)

subject to
n∑

i=1

α j,i Q
in
ei (t, V

max)

︸ ︷︷ ︸
=:Qout

e j
(t,Vmax)

≤ Soutj (t, Vmax), (2.2b)

0 ≤ Qin
ei (t, V

max) ≤ Din
i (t, Vmax), (2.2c)

which is a linear optimization problem in finite dimensions. The parameters α j,i ∈
(0, 1) encode the drivers’ preferences among the incoming roads and have to satisfy:∑n+m

j=n+1 α j,i = 1.
Themaximization problem (2.2) admits a solution for fixed speed limits given some

additional assumptions, see e.g., Garavello et al. (2016), making the distribution of
traffic at a junction a well-posed problem. For an in-depth and rigorous discussion on
coupling conditions at junctions, we refer to Garavello et al. (2016) and the references
therein.

In the following, we provide the explicit solution to themaximization problem (2.2)
for the case of the one-to-one, the diverging one-to-two, and the merging two-to-one
junction since our proof-of-concept example in Sect. 6 is solely based on these three
junctions. The solutions are taken from Goatin et al. (2016).
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Fig. 2 In- and out flow rates at the three basis junctions

We start with the one-to-one junction. In this case, the flux across the junction is
given the minimum of the supply of the outgoing and the demand of the incoming
road:

Qin
e1(t, V

max) = Qout
e2 (t, Vmax) = min{Din

1 (t, Vmax), Sout1 (t, Vmax))}. (2.3)

For the diverging one-to-two junction the parameter α j,i describes the percentage
of drivers arriving from road ei at the junction, that take the outgoing road e j . The
fluxes across such a junction is given by

Qout
e2 (t, Vmax) = min{α2,1D

in
1 (t, Vmax), Sout2 (t, Vmax)}, (2.4a)

Qout
e3 (t, Vmax) = min{α3,1D

in
1 (t, Vmax), Sout3 (t, Vmax)}, (2.4b)

Qin
e1(t, V

max) = Qout
e2 (t, Vmax) + Qout

e3 (t, Vmax). (2.4c)

The outflow of the incoming road is given by the sum of the inflow of the two outgoing
roads, i.e., the number of vehicles entering the outgoing roads is the same as leaving
the incoming road. Due to (2.4) the number of vehicles is preserved.

At a merging two-to-one junction the parameters β j,i regulate the priority of the
incoming roads. The parameter β3,i describes the percentage of drives coming from
the incoming road ei that are allowed to take the only outgoing road:

Qin
e1(t, V

max) = min{Din
1 (t, Vmax), γ1}, (2.5a)

where γ1:=max{β3,1S
out
1 (t, Vmax), Sout1 (t, Vmax) − Din

2 (t, Vmax)}, (2.5b)

Qin
e2(t, V

max) = min{Din
2 (t, Vmax), γ2}, (2.5c)

where γ2:=max{β3,2S
out
1 (t, Vmax), Sout1 (t, Vmax) − Din

1 (t, Vmax)}, (2.5d)

Qout
e3 (t, Vmax) = Qin

e1(t, V
max) + Qin

e2(t, V
max). (2.5e)

Next, we discuss the boundary conditions at external junctions. We distinguish
between two cases: roads where vehicles exit the network, and roads where vehicles
enter the network. In the first case, we assume free flow and in the second, we follow
Goatin et al. (2016), Herty et al. (2009) and prescribe an inflow rate q ine and model
a queue in case the desired inflow exceeds available capacity of the road. The queue
can be interpreted as an infinitely long road with no spatial extension, and allows only
feasible flow to be sent onto the network via the access roads. The modeling of a queue
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can redistribute the inflow over time, allowing the flow to enter the network at a later
point in time at which the capacity allows it. Further, we are interested in sending the
maximal possible inflow. Thus, the evolution of the queue length �e obey the following
ordinary differential equation (ODE):

�̇e(t) = q ine (t) − Qout
e (t, Vmax), �e(0) = �0e, (2.6)

The flow rate Qout
e describes the outflow from the queue onto the road and is therefore

speed-limit-dependent. It is determined by the minimum between the capacity of the
road, to ensure feasible flow rates, and the demand Dqueue

e of the queue:

Qout
e (t, Vmax) = min

{
Dqueue
e (t), Se(ρe(0, t, Vmax), Vmax

e )

}
. (2.7)

The demand of the queue is composed of the prescribed inflow rate q ine and the flow
rate qqueuee that describes the flow required to clear the current queue connected to
road e immediately, i.e.,

Dqueue
e (t) = q ine (t) + qqueuee (t). (2.8)

The existence of a solution to the ODE (2.6) follows from Garavello et al. (2016) and
the references therein. Again, we want to highlight that the evolution of the queue
length depends on the fluxes on the roads, making it speed-limit-dependent and we
may write �e(t) = �e(t, Vmax).

3 Modeling air pollution caused by vehicular traffic

In this section, we cover the emission and dispersionmodel which simulate the traffic’s
contribution to air pollution. Our modeling approach is the following:

(i) The emission model estimates the emission rate of air pollutants on a given road
based on the quantities the traffic model provides.

(ii) The dispersion model describes the spread of the pollutants in a two-dimensional
domain � representing the simulated city. We include traffic’s emission of pol-
lutants by employing the estimate from (i).

3.1 The emissionmodel

For the estimation of the emission rate, we follow Alvarez-Vázquez et al. (2018) and
use a linear combination of the traffic density and traffic flow. Therefore, we introduce
a weighting parameter θ ≥ 0 which represents the relative influence of the traffic
density to the emission rate compared to the traffic flow. Also considering the speed-
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Fig. 3 Influence of the speed
limit on the emission rate (3.1)
for a fixed parameter θ > 0. The
corresponding speed limits are
ordered as follows:
Vmax
e (red) <

Vmax
e (lightblue) <

Vmax
e (darkblue)

limit dependence of the traffic density and flux function, the estimate of the emission
rate ξe on road e reads:

ξe(s, t, Vmax) = Qe(ρe(s, t, Vmax), Vmax) + θρe(s, t, Vmax) for (s, t) ∈ Ie × (0, T ).

(3.1)

For a fixed weighting parameter θ > 0, we visualize the emission rate of road e in
dependence on the traffic density in Fig. 3.

Furthermore, we assume that the road network represented by the graph (V , E),
is contained in a domain � ⊂ R

2. To model the spread of air pollutants, which are
emitted by vehicular traffic on the roads of a network, we introduce a source term that
defines the emission rate at each point in �. Therefore, we parameterize each edge
e ∈ E by a curve σe : Ie → �. Its starting and end point are given by σe(0) and
σe(L road

e ), respectively to preserve the direction of e. See Fig. 4 for an illustration.
As the curves σe allow to identify a point s ∈ Ie with a point x ∈ �, we map the

values of the emission rates ξe to the two-dimensional domain �. Further, we assign a
positive width we to each road and distribute the emission of air pollutants along the
width we. Then the emission rate of road e within the domain � is:

ξ̃e(x, t, Vmax) =
{

1
we

ξe(s, t, Vmax), if x ∈ Re(s),

0, otherwise,
(3.2)

where the set Re(s) describes the points along the width of the road e:

Re(s):=
{
x ∈ �

∣∣∣ ‖σe(s) − x‖2 ≤ we

2
and 〈σ ′

e(s), σe(s) − x〉 = 0

}
.

In Fig. 4b, we provide a visualization of this set for a road which is parallel to the
y-axis. This example reveals one problem: Based on our modeling approach, for two
roads e �= ẽ the following relation can hold:

Re(s) ∩ Rẽ(s̃) �= ∅ where s ∈ Ie and s̃ ∈ Iẽ.
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Fig. 4 Points belonging to the grey shaded area are not associated to any road, while points belonging to
the light blue shaded area are associated to a single road, and points belonging to dark blue shaded area are
associated to two roads simultaneously. (color figure online)

This relation implies that there might exist points x ∈ � to which multiple emission
rates are assigned, see Fig. 4 for an illustration. This phenomenon also occurs when
considering multiple, pairwise different roads, e.g., at junctions where more than two
roads meet.

We resolve this problem by taking the average of the emission rates which are
assigned to a point x based on the model given in Eq. (3.2). Therefore, we define the
set E(x) that contains the roads to which the point x can be associated given {σe}e∈E
and the width’ {we}e∈E of the roads:

E(x):={e ∈ E | x ∈ Re} with Re:=
⋃
s∈Ie

Re(s).

Thus, |E(x)| describes the number of roads assigned to x. Finally, the joint emission
rate defined on �, which is called emission model in the following, is given by:

ξ(x, t, Vmax):=
{

1
|E(x)|

∑
e∈E(x) ξ̃e(x, t, Vmax), if E(x) �= ∅,

0, otherwise.
(3.3)

3.2 The dispersionmodel

After having established an estimate for the emission of air pollutants, we now intro-
duce the dispersion model to simulate the spread of these pollutants within the domain
� due to wind and horizontal diffusion. We follow the ideas of Alvarez-Vázquez
et al. (2017), Balzotti et al. (2022), Parra-Guevara and Skiba (2003), Skiba and Parra-
Guevara (2000), Stockie (2011) and invoke an advection–diffusion equation with
suitable boundary conditions and make two assumptions: vehicular traffic is the only
source of pollution in our model, i.e., pollutants cannot enter the domain from outside,
but they can leave it due to wind and diffusion.

To formally represent these assumptions, we introduce the in- and outflowboundary
of � for a given wind field. A wind field is a space- and time-dependent vector field
v = (vx , vy)

� and describes the wind dynamic in �. Additionally, we assume that �
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is bounded, and its unit outward normal is denoted by �η. Then, the inflow boundary
is defined by

S−(v):={(x, t) ∈ ∂� × [0, T ] | v(x, t) · �η(x) < 0},

which describes the boundary through which pollutants enter the domain from outside
due to the wind dynamic. Conversely, the outflow boundary describes the boundary
where pollutants leave the domain due to the wind dynamic. Therefore, it is given by

S+(v):={(x, t) ∈ ∂� × [0, T ] | v(x, t) · �η(x) ≥ 0}.

Finally, given an initial concentration distribution φ0 of the air pollutants in �, the
following advection–diffusion equation describes the evolution of the concentration
φ over time:

∂tφ(x, t) − μ�φ(x, t) + v · ∇φ(x, t)+κφ(x, t) = ξ(x, t, Vmax), (x, t) ∈ � × (0, T ),

(3.4a)

μ∇φ(x, t) · �η(x) − φ(x, t)v · �η(x) = 0, (x, t) ∈ S−(v), (3.4b)
∇φ(x, t) · �η(x) = 0, (x, t) ∈ S+(v), (3.4c)

φ(x, 0) = φ0(x), x ∈ �, (3.4d)

where the constant μ > 0 describes the diffusion coefficient of the air pollutants and
the constant κ their extinction rate to account for (chemical) interactions with other
substances in the air. The boundary condition (3.4c) allows air pollutants to stream
over the outflow boundary, whereas the boundary condition (3.4b) guarantees that
the combined diffusive and advective flow is zero on the inflow boundary. The later
condition enforces that pollutants cannot enter from outside.

The existence and uniqueness of a weak solution to the dispersion model (3.4)
follows from Skiba and Parra-Guevara (2000, Theorem 1), which makes it a well-
posed problem.

4 Themulti-objective optimization approach

After introducing the traffic emission model in Sects. 2 and 3, our next goal is to
maximize the economic efficiency of vehicular traffic while also minimizing the envi-
ronmental impact by adjusting the speed limits on the roads. The formulation of the
corresponding optimization problem is divided into two steps:

(i) The description of economic efficiency and the environmental impact by scalar-
valued and speed-limit-dependent functions. Here, we use ideas already estab-
lished in the literature.

(ii) The derivation of a multi-objective optimization problem where the functions
obtained from (i) are optimized simultaneously. The approach of optimizing two
aspects of traffic at the same time by controlling speed limits is unique in the
traffic literature, at least to the best of our knowledge.
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4.1 Quantification of economic and ecological aspects

The main concern of this section is the discussion on indicators in the form of scalar-
valued, speed-limit-dependent functions to measure the economic and ecological
aspects of vehicular traffic. The idea is to utilize the quantities provided by the traffic
emission model, which include the traffic density and flux, or the concentration level
of air pollutants.

The economic efficiency of vehicular traffic can be quantified by various aspects—
for example, the travel time or the traffic flow, cf. Göttlich et al. (2015), Treiber and
Kesting (2013). We maximize traffic flow by considering accumulated traffic flow:

Jflow(Vmax):=
∑
e∈E

∫ T

0

∫
Ie
Qe(ρe(s, t, Vmax), Vmax

e ) ds dt . (4.1)

To determine the influence of vehicular traffic on the environment we measure its
contribution to air pollution. Our modeling admits two sources: The active traffic on
the road network and the idle traffic in the queues. The vehicles waiting in queues to
enter the road network can contribute to air pollution since their engines may remain
idle instead of being turned off. We measure the air pollution caused by the active
traffic on the network by the average mass of air pollutant in a given control area �

until a final time T > 0, cf. Alvarez-Vázquez et al. (2018):

Jdiff(Vmax):= 1

T |�|
∫ T

0

∫
�

φ(x, t, Vmax) dx dt, (4.2)

where |�| denotes the area of �. We measure the air pollution caused by idle traffic
by the average amount of air pollutants emitted by idling vehicles waiting in queues.
Assuming that all vehicles have the same emission rate when idle, we compute the
pollution caused by idling vehicles based on the average queue length:

Jqueue(Vmax):= 1

T

∑
e∈Ein

∫ T

0
�e(t, Vmax) dt, (4.3)

where set Ein contains all access roads of the road network, i.e., roads at which we
impose an external inflow rate q ine . Thus, an indicator for the influence of vehicular
traffic on the environment based on air pollution is:

Jpoll(Vmax; δ):=Jdiff(Vmax) + δJqueue(Vmax), (4.4)

where δ ≥ 0 describes the emission of air pollutants per time unit of an idle engine.
Besides the expression 4.2 for Jdiff , we can employ another, equivalent one that

allows us to solve a suitable PDE once, and then requires only a re-evaluation of
the traffic model for each new speed limit policy, eliminating the need to solve the
dispersion model. The derivation of the alternative expression is inspired by Alvarez-
Vázquez et al. (2018) and involves integration by parts and some adjoint calculus. The
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result reads:

Jdiff(Vmax) =
∫ T

0

∫
�

ξ(x, t, Vmax)p(x, t) dx dt +
∫

�

φ0(x)p(x, 0) dx, (4.5)

where φ0 is the initial data of the dispersion model (3.4), ξ is computed based on the
emission model (3.3), and the adjoint p is the weak solution to the following adjoint
equation:

−∂t p(x, t) − μ�p(x, t) − v · ∇ p(x, t)+κ p̃(x, t) = 1

T |�| for (x, t) ∈ � × (0, T ),

(4.6a)

μ∇ p(x, t) · �η(x) + v · �η(x) p(x, t) = 0 for (x, t) ∈ S+(v),
(4.6b)

∇ p(x, t) · �η(x) = 0 for (x, t) ∈ S−(v),
(4.6c)

p(x, T ) = 0 for x ∈ �. (4.6d)

Again, the existence and uniqueness of a solution to the adjoint equation (4.6) follows
from Skiba and Parra-Guevara (2000, Theorem 2), making the adjoint equation well-
posed.

4.2 Multi-objective optimization involving traffic emissionmodels

After having introduced functions to measure the economic efficiency and environ-
mental impact of vehicular traffic, we now formulate an optimization problem that
optimizes both aspects simultaneously. In other words, we try to optimize multiple
objectives at the same time which leads us to the concept of multi-objective optimiza-
tion.

The key components of a multi-objective optimization problem are the same as
those of a classic, single-objective one: Controls V ∈ R

d , a feasible set S ⊆ R
d

encoding the constraints of the optimization if there are any, and m ≥ 2 objectives
Ji : S → R to be minimized. The main difference to classical optimization is that
we have multiple scalar-valued objectives Ji instead of a single one and we want to
minimize all of them at once. The correspondingmulti-objective optimization problem
reads:

min
V∈S

J (V ):= (J1(V ), . . . ,Jm(V )) . (4.7)

The objectives Ji are typically conflicting which means that there exists no control
Ṽ such that Ji (Ṽ ) = minV∈S Ji (V ) for all i = 1, . . . ,m. Hence, we characterize
solutions to Eq. (4.7) with the help of Pareto optimality. For a comprehensive overview
on multi-objective optimization and the concept of Pareto optimality see Branke et al.
(2008), Ehrgott (2005) and the references therein.
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A control V ∗ is called Pareto optimal if no component ofJ (V ∗) can be improved
without deteriorating at least one of the others. The corresponding objective value
J (V ∗) is called efficient and the set of all efficient points is called Pareto front. Thus,
solving a multi-objective optimization problem correspond to the following task:

min
V∈S

J (V ) :⇔
{
Find all Pareto optimal controls V ∈ S,

and compute the Pareto front of J .

Now, we can formulate suitable multi-objective optimization problems that reflect
our set goal of optimizing economic and environmental aspects of vehicular traffic at
the same time by adjusting the speed limits on the roads. Our first ansatz is to measure
economic efficiency by the accumulated traffic flow and the environmental impact by
the average mass of air pollutant emitted by active and idle traffic. Altogether, this
yields the following multi-objective optimization problem:

min
Vmax∈S

(−Jflow(Vmax), Jpoll(Vmax; δ)
)

(4.8a)

where S =
{
Vmax ∈ (0,∞)d

∣∣ Ve ≤ Vmax
e ≤ V e

}
. (4.8b)

The scalar d denotes the number of roads within the road network. We also assume
that the speed limit on each road is bounded from below and above by Ve > 0 and
V e < ∞, respectively to avoid Vmax

e = 0 and to mirror that traffic cannot be infinitely
fast. Another ansatz is to minimize the environmental impact of active and idle traffic
individually, i.e., splitting the objective Jpoll into two, resulting in the multi-objective
optimization problem:

min
Vmax∈S

(−Jflow(Vmax), Jdiff(Vmax),Jqueue(Vmax)
)

(4.9a)

where S =
{
Vmax ∈ (0,∞)d

∣∣ Ve ≤ Vmax
e ≤ V e

}
,

with three objectives instead of two compared to the problem in (4.8).
The remainder of this paper focuses on solving the proposed multi-objective opti-

mization problems, i.e., the computation of their Pareto fronts. We approach this in a
first-discretize-then-optimize manner.

5 Numerical discretization

In this section, we derive discrete counterparts to our optimization problems (4.8)
and (4.9). This requires the discretization of the traffic model (2.1), the emission
model (3.3), and the adjoint equation (4.6) (as we invoke the expression (4.5) for
Jdiff ). With the discretization of the above, we can derive the discrete formulations
for the objectives Jflow, Jdiff , Jqueue, and Jpoll.

Because the emission model depends on the solution to the traffic model and the
spatial domain of the adjoint equation, we cover its discretization after having intro-

123



212 S. Göttlich et al.

duced the numerical treatment of the traffic model and the adjoint equation. Further,
we omit the dependence on the speed limit policy Vmax in the following to improve
the readability.

5.1 The traffic model

Beforewe discretize the trafficmodelwith a finite volume scheme, cf. LeVeque (1992),
we require a discretization of its temporal and spatial domain first. Therefore, we
approximate the time horizon [0, T ] by an equidistant grid with Nt grid points and
denote them by

tk :=k�t with �t := T

Nt
, (5.1)

where �t is called temporal step size. For the discretization of the roads, we assume
that all roads have the same length, i.e., the interval corresponding to the road e is
given by Ie = I where I = [0, L road]. Then, we divide I into Ns cells In of equal
length �s which means

In :=[sn−1, sn) where sn = n�s, and �s = L road

Ns
. (5.2)

Now, we can use a first-order finite volume scheme on each road to approximate
the cell averages of the traffic densities on the cells In . For road e, we approximate the
cell average of cell In at time tk by ρk

e,n , i.e.,

ρk
e,n ≈ 1

�s

∫
In

ρe(s, t
k) ds.

Under the additional assumption that the real solution ρe is constant on each cell, we
obtain the relation ρe(s, tk) ≈ ρk

e,n if s ∈ In . Then, a finite volume scheme applied to
the conservation laws of the traffic model (2.1) reads:

ρk+1
e,1 = ρk

e,1 − �t

�s

[
Qnum

e (ρk
e,1, ρ

k
e,2) − Qout,k

e

]
, (5.3a)

ρk+1
e,n = ρk

e,n − �t

�s

[
Qnum

e (ρk
e,n, ρ

k
e,n+1) − Qnum

e (ρk
e,n−1, ρ

k
e,n)

]
for 1 < n < Ns,

(5.3b)

ρk+1
e,Ns

= ρk
e,Ns

− �t

�s

[
Qin,k

e − Qnum
e (ρk

e,Ns−1, ρ
k
e,Ns

)

]
, (5.3c)

where Qnum
e is the so-called numerical flux function and estimates the flow between

two neighboring cells based on their cell averages.We use the Godunov schemewhere
the corresponding flux function reads:

Qnum
e (u, v) = min{De(u), Se(v)}. (5.4)
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The quantities Qout,k
e and Qin,k

e describe the in- and outflow rates at the boundary of
road e at time tk , respectively and in the context of the traffic model are either given
through external flow rates or internal coupling conditions. Notice, that we view the
in- and outflow from the view of the connecting junctions, i.e., the outflow from the
junction to an outgoing road e j is equal to the inflow at the beginning of e j and the
inflow from an incoming road ei to the junction is equal to the outflow at the end of
ei .

Remark 5.1 The temporal step size �t of the numerical scheme (5.3) has to satisfy a
CFL condition for every road e. For the numerical flux function (5.4) theCFL condition
reads:

�t

�s
amax
e ≤ 1 where amax

e :=max

{
|Q′

e(ρ)|
∣∣∣ min

s∈I ρe(s, t
k) ≤ ρ ≤ max

s∈I ρe(s, t
k)

}
.

(5.5)

Thus, we may need to take additional, intermediate time steps to advance from tk to
tk+1 where each step satisfies the CFL condition (5.5).

We provide a time-dependent inflow rate q ine for each access road e and model the
corresponding queue by the ODE (2.6). To solve this ODE, we employ the explicit
Euler scheme which results in the following equation:

�k+1
e = �ke + �t

[
q ine (tk) − min

{
q ine (tk) + �ke

�t
, Se(ρ

k
e,1)

}]
, (5.6)

with initial condition �0e = 0. To discretize the queue’s demand Dqueue
e , cf. Equa-

tion (2.8), we use qqueuee (tk) ≈ �ke/�t . The computation of the outflow of the queue
Qout,k

e to an access road then requires the evaluation of Eq. (2.7) while using the rela-
tions �e(tk) ≈ �ke and ρe(0, tk) ≈ ρk

e,1. In case e is an exit road, we obtain Qin,k
e by

recalling that we assume free flow at the end of the exist roads and utilizing the rela-
tion ρe(L road, tk) ≈ ρk

e,Ns
. Similarly, we compute the in- and outflow rates at internal

junctions where we need to evaluate the Eqs. (2.3), (2.4) and (2.5).

5.2 The formal discrete adjoint equation

We require the solution to the adjoint equation (4.6) to evaluate Jdiff according to
Eq. (4.5). In order to utilize standard numerical methods for advection–diffusion-type
equations, we transform t �→ T − t to obtain the time-reversed adjoint equation which
is formulated forward in time and which we solve by using finite differences.

We exemplify the numerical treatment by restricting the spatial domain to squares,
i.e., for a fixed length L we have� = [0, L]×[0, L] and by assuming that the diffusion
coefficient μ and the wind field v are constant over time. This implies that the in- and
outflow boundaries of � remain unchanged. Further, we denote the time-reversed
adjoint by p̃.
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First, we discretize the temporal and spatial domain, before delving into the numer-
ical scheme in more detail. Since the spatial domain� is two-dimensional, we assume
the number of grid points is the same in both directions. Therefore, we fix a number
Nh of grid points and introduce the notation

xi :=ih, y j := jh with h:= L

Nh
, (5.7)

where h is called spatial step size. This leads to the discrete and equidistant spatial
domain �h which is defined as follows

�h :={(xi , y j ) | 0 ≤ i, j ≤ Nh}.

The temporal domain [0, T ] is discretized in the same fashion as for the traffic model,
cf. Eq. (5.1).

5.2.1 Discretization of the time-reversed adjoint equation

The idea of finite differences is to approximate the solution of an PDEat the grid points.
Hence, we introduce the notation p̃(xi , y j , tk) ≈ p̃ki, j where p̃ki, j is the numerical
solution of the time-reversed adjoint equation which approximates the actual solution
p̃. An approximation of the adjoint state p is then given through the relation:

pki, j ≈ p(xi , y j , t
k) = p̃(xi , y j , T − tk) ≈ p̃Nt−k

i, j .

We discretize the time-reversed adjoint equation componentwise by approximating
the temporal derivative with a forward difference:

∂t p̃(xi , y j , t
k) ≈ 1

�t

(
p̃k+1
i, j − p̃ki, j

)
,

the Laplace operator μ� p̃ with the standard five-point stencil:

μ� p̃(xi , y j , t
k) ≈ �diff p̃

k
i, j :=

μ

h2

[
p̃ki, j+1 + p̃ki, j−1 − 4 p̃ki, j + p̃ki+1, j + p̃ki−1, j

]
,

and the advection term −v · ∇ p̃, with the upwind scheme for both, the derivative with
respect to x and with respect to y. We apply the scheme to ṽ · p̃, where ṽ = −v to
depict the correct direction of advection in the discrete equation, i.e.,

ṽ · ∇ p̃(xi , y j , t
k) ≈ �adv p̃

k
i, j :=

1

h

[
ṽ−
y p̃ki, j+1 − ṽ+

y p̃ki, j−1 + ‖ṽ‖1 p̃ki, j + ṽ−
x p̃ki+1, j − ṽ+

x p̃ki−1, j

]
,

where for a scalar a, the identities a+:=max{a, 0} and a−:=min{a, 0} hold. Alto-
gether, by combining the discretization of these different components, we obtain an
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Fig. 5 The black dots represent the grid, the red and blue dots a (reduced) five-point stencil and the stencil
of a central difference respectively. The grey dots indicate the ghost points. (color figure online)

equation to compute the numerical solution for the next time step tk+1 provided the
numerical solution at the current time step tk is known:

1

�t

(
p̃k+1
i, j − p̃ki, j

)
− �diff p̃

k
i, j + �adv p̃

k
i, j + κ p̃ki, j = 1

T |�| . (5.8)

Remark 5.2 Under the assumption that κ = 0, and that the wind field v = (vx , vy)
�

and the diffusion coefficient μ in (3.4) are constant over time, the CFL condition cor-
responding to the discretization (5.8) follows directly from (Wesseling 1996, Theorem
3.1 and Section 4) and reads:

�t ≤ h2

4μ + ‖v‖1h and �t

[
v2x

2μ + |vx |h + v2y

2μ + |vy |h

]
≤ 1.

However, this CFL condition is invalid for κ �= 0. Hence, we tighten the CFL condition
to:

�t ≤ 1

3

h2

4μ + ‖v‖1h and �t

[
v2x

2μ + |vx |h + v2y

2μ + |vy |h

]
≤ 1

3
. (5.9)

We found that for our numerical experiments, the discretization (5.8) is stable given
the tightened CFL condition (5.9). As this condition is independent of κ , one should
not expect that it holds for all κ .

5.2.2 Discretization of the boundary conditions

The numerical scheme (5.8) suffers from a shortcoming: the stencils �diff and �adv
applied to boundary values demand values of the numerical solution at inadmissible
points, so-called ghost points, outside the domain � as illustrated in Fig. 5a. In the
following, we provide a brief description of how to resolve this problem.

The (time-reversed) adjoint equation involves two types of boundary conditions:
Neumann boundary conditions and Robin boundary conditions. Both determine the
value of the solution implicitly through a differential equation.

The key idea to resolve the problem, is to utilize the ghost points when discretizing
the Neumann and Robin boundary condition. We illustrate the method for the case
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that the right boundary of � is a Robin boundary and discretize the corresponding
Robin boundary condition as follows:

μ
p̃kNh+1, j − p̃kNh−1, j

2h︸ ︷︷ ︸
≈∂x p̃(xNh ,y j ,tk )

+vx
p̃kNh+1, j + p̃kNh−1, j

2︸ ︷︷ ︸
≈ p̃(xNh ,y j ,tk )

= 0.

The corresponding stencil is visualized in Fig. 5c. Now, we can express the value
p̃kNh+1, j at a ghost point by an admissible value of the numerical solution:

p̃kNh+1, j = μ − vxh

μ + vxh
p̃kNh−1, j . (5.10)

Finally, we can use the relation (5.10) to eliminate the inadmissable values from the
stencils �diff p̃kNh , j

and �adv p̃kNh , j
which results in a reduced five-point stencil as

illustrated in Fig. 5b. The approach in case the right boundary is a Neumann boundary
is analogous and yields:

p̃kNh+1, j = p̃kNh−1, j .

5.3 The emissionmodel

After having established the numerical treatment of the traffic model (2.1) and the
adjoint equation (4.6), we proceed with approximating the emission rate ξ on �h

at given times tk . Under the additional assumption that the traffic densities ρe are
piecewise constant on the cells In , we approximate the emission rate of road e at time
tk by

ξe(s, t
k) ≈ ξ̃ ke,n :=Qe(ρ

k
e,n) + θρk

e,n if s ∈ In .

Given these approximations, we invoke Equation (3.3), which directly yields an
approximation of the emission rate ξ at a point x ∈ � where E(x) �= ∅ holds:

ξ(x, tk) ≈ ξ h(x, tk):= 1

|E(x)|
∑

e∈E(x)

1

we
ξ̃ ke,n if x ∈ Re(s) and s ∈ In .

Then, at a grid point (xi , y j ) of the discrete control area, the approximation of the
emission rate reads:

ξ(xi , y j , t
k) ≈ ξ ki, j :=

{
ξ h(xi , y j , tk), if E(xi , y j ) �= ∅,

0, otherwise.
(5.11)

Remark 5.3 The spatial step size of the advection–diffusion-type equation cannot be
set arbitrarily. If, for example, the step size is too large, the road network is invisible
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Fig. 6 Illustration of suitable and unsuitable discretizations of � for a single-roaded network

to the discrete control area. We visualize the issue for a road network consisting of a
single road in Fig. 6 including a discretization that is consistent with the length and
width of the road as well as its positioning.

5.4 The objectives and the discrete optimization problem

Now given numerical solutions of the traffic model (2.1), the emission model (3.3),
and the adjoint equation (4.6) with the schemes introduced above, we derive discrete
versions of the objectives Jflow, Jdiff , Jqueue, and Jpoll based on the extended right
rectangular rule for integrals.

Recall that the continuous variables depend on the speed limits, except for the
adjoint state. Thus, the discrete variables inherit this dependence, which means we
can write ρk

e,n = ρk
e,n(V

max), �ke = �ke(V
max), and ξ ki, j = ξ ki, j (V

max). This leads to
the following discrete functions indicated by the superscript h:

J h
flow(Vmax) = �th

∑
e∈E

Nt∑
k=1

Ns∑
n=1

Qe(ρ
k
e,n(V

max), Vmax), (5.12a)

J h
diff(V

max) = �th2
Nt∑
k=1

Nh∑
i, j=1

ξ ki, j (V
max)pki, j + h2

Nh∑
i, j=1

φ0(xi , y j )p
0
i, j (5.12b)

J h
queue(V

max) = �t

T

∑
e∈Ein

Nt∑
k=1

�ke(V
max) (5.12c)

J h
poll(V

max; δ) = J h
diff(V

max) + δJ h
queue(V

max). (5.12d)

Given the discrete counterparts of the objectives, we can finally derive the discrete
optimization problems by replacing the continuous objectives with the discrete ones.
The optimization problem (4.8), where the goal is to maximize the traffic flow while
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simultaneously minimizing the environmental impact, then becomes:

min
Vmax∈S

(
−J h

flow(Vmax),J h
poll(V

max; δ)
)

, (5.13)

while the optimization problem (4.9) which involves three objectives, becomes:

min
Vmax∈S

(
−J h

flow(Vmax),J h
diff(V

max),J h
queue(V

max)
)

. (5.14)

The discrete optimization problems (5.13) and (5.14) can be solved by standard
methods to solve multi-objective optimization problems as the discrete objectives
allow a direct evaluation by invoking the numerical schemes introduced previously.

6 Numerical experiments

In this section, we aim to gain an insight into the trade-off between maximizing
economic efficiency and minimizing the environmental impact. To achieve this, we
solve the discretized multi-objective optimization problems (5.13) and (5.14) with
fixed coefficients and step sizes, providing a proof-of-concept example. Furthermore,
we study the impact of the presence of idle traffic on the solution of the optimization
problem (4.8). We distinguish between two cases: when the function Jpoll, measuring
air pollution, only considers the active traffic in the network (δ = 0), and when it also
takes the idle traffic in the queues into account (δ > 0), cf. Eq. (5.12d).Additionally,we
compare the results to the solution of the optimization problem (4.9) which minimizes
the contribution of active and idle traffic to air pollution individually.

We solve the resulting multi-objective optimization problems using the
paretosearch function fromMatlab’sOptimization Toolbox (MATLAB andOpti-
mization Toolbox Release 2022). This function is based on pattern search on a set of
points. It iteratively searches for efficient points that are close to the true Pareto front.

6.1 Definition of the proof-of-concept example

In this section, we present an overview of our model and discretization parameters
(Table 1). The road network along with the initial data is shown in Figs. 7a, b and the
spatial discretization of the traffic model is illustrated in Fig. 7c.

In the following, we also comment briefly on the choice of the essential parameters.
For the traffic model, we opt for the common academic parameters. This means all

roads have a unit length of L road
e = 1 and the same maximal capacity of ρmax

e = 1.
For the initial density distribution, we assume that the initial densities are constant
along each road. Motivated by the academic scenario where typical speed limits are
Vmax
e = 1, we impose box constraints that bound the minimal and maximal allowed
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Table 1 Overview of the
parameter values defining the
proof-of-concept example

Parameter Value

Traffic model

T 5

Ie [0, 1]

ρmax
e 1

q ine 0.25

ρ0e cf. Fig. 7b

σe cf. Fig. 7a

α j ,i , 0.5

β j ,i 0.5

Emission model

� [0, 3] × [0, 3]
we 0.1

θ 0.5

Dispersion model

v (1, 1)�
κ 0

μ 10−6

φ0 0

Optimization

Ve 0.25

Ve 2

Discretization

�s, h 0.05

Ns 20

Nh 60

�t 0.0083

Nt 601

speed limit on a road as follows:

S =
{
Vmax ∈ R

6
∣∣∣ 1

4
≤ Ve ≤ 2 for all e ∈ E

}
.

Next, we suppose that in the dispersion model, the advection dominates the spread
of air pollutants. This assumption is reasonable because for gases a diffusion coefficient
of around 10−6m2 s−1 is typical, which is significantly smaller than a wind velocity
of around 1ms−1 that indicates calm air conditions.

Further, we assume that the control area � is initially free of air pollutants, which
implies

φ(x, 0) = φ0(x) = 0 for all x ∈ �.
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Fig. 7 The road network of the proof-of-concept example. The schematic spatial discretization includes the
width of the roads

Notice that this does not depict the realworld.However, the alternative expression (4.5)
of the objective Jdiff reveals that the term involving φ0 is independent of the speed-
limits. In other words, the choice of φ0 only results in a constant shift in Jdiff and
thus has no effect on the minimizers of Jdiff and Jpoll. Therefore, this assumption is
unrestrictive.

To close the discussion on parameter selection, it is worth noting that the temporal
step size �t and the spatial step size h have to satisfy a CFL condition for the time-
reversed adjoint equation, cf. Remark 5.2, to ensures the stability of the numerical
scheme.

After we have established the parameter choices, we analyze the solution of the
optimization problem (4.8) for different values of δ next. Afterwards, we compare
these optimal solutions to the one of (4.9).

6.2 Results of the numerical experiments

Before we continue with a detailed discussion of the results, let us comment on the
choices of δ which are used to showcase and compare optimal solutions.

The parameter δ regulates the influence of idle traffic on the caused air pollution. The
choice δ = 0 represents the case where idle traffic has no effect on the environment,
while for δ > 0 idle traffic also contributes to air pollution, cf. Eq. (5.12d). Hence,
we consider δ ∈ {0, 1

2 } to showcase the influence of idle traffic on air pollution and
optimal speed limits.

We begin by solving the proof-of-concept example with δ = 0. In this scenario the
presence of a queue with idle vehicles has no impact on the environment.

In Fig. 8, we visualize the resulting optimal solution, including the Pareto front
in Fig. 8a. Notice that the ideal vector and the Pareto front are located in the lower
right corner of the plot instead of the lower left corner because we maximize J h

flow.
Furthermore, the axes of Fig. 8a are normalized by the optimal values of the objectives,
i.e., the accumulated traffic flow and the indicator to measure the caused air pollution
are divided by

max
Vmax∈S

J h
flow(Vmax) and min

Vmax∈S
J h
poll(V

max; δ),
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Fig. 8 The optimal solution of the proof-of-concept examplewith δ = 0, i.e., air pollution is sorely estimated
by active traffic on the road network

respectively. Hence, the axes represent the relative difference of the function values
compared to the optimal value, which is given by one as the ideal vector becomes
(1, 1)� for the normalized objectives.

For example, Fig. 8a shows that sorely minimizing the contribution to air pollution
results in the efficient point (0.37, 1)�. This point translates to: while the contribution
to air pollution is minimal, the accumulated traffic flow decreases by 63% compared
to its ideal value. The reversed case yields the efficient point (1, 1.6)� where we
maximize the economic efficiency. Here the environmental impact increases by 60%
compared to its ideal value while the accumulated traffic flow attains its maximum.

An example for an efficient pointwhere neither of the objectives attains its optimum,
is the point (0.8, 1.34)�. Here the environmental impact is increased by 34% while
the economic efficiency decreases by 20%.

Because each efficient solution of the Pareto front corresponds to a Pareto-optimal
speed limit policy, we investigate the Pareto-optimal speed limit policies inmore detail
now.

Figure 8b shows the computed Pareto-optimal speed limits of the individual roads.
Notice this provides information on the range of the optimal speed limits of a road but
not on the concrete optimal policies since those are vectors, i.e., randomly connecting
the optimal speed limits of the individual roads illustrated in Fig. 8b, does not yield
an optimal policy. Nevertheless, Fig. 8b reveals that the two objectives are conflicting
as the range of the optimal speed limits nearly covers the entire interval [0.25, 2] for
each road, except for the exit road e = 6. At the exit road, the two objectives “agree”
on an optimal speed limit, i.e., Vmax

6 = 2. A possible explanation may be that, as we
impose free flow at the exit road and the initial density of this road is relatively low,
the vehicles should and can leave the network as fast as possible because then they do
not contribute to the air pollution anymore—at least from the modeling point of view.
Further, the flux function scales linearly with the speed limit, i.e., for a fixed density,
the traffic flow increases as the speed limit increases, resulting in a higher traffic flow.

On the other hand, we visualize certain speed limit policies along the two routes of
the road network in Fig. 9 to gain an impression of what optimal speed limit policies
look like and if they impose any difficulties considering real-world applications. The
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Fig. 9 Pareto-optimal speed limit policies along the two routes of the sample road network. The correspon-
dence between efficient solutions and the Pareto-optimal speed limit policies is color-coded (in red, dark
blue and light blue)

two routes a driver can take are the “lower” and “upper” route, which are given by

I1 → I3 → I4 → I6 and I1 → I2 → I5 → I6,

respectively, see Fig. 7a.
The speed limits policy corresponding to the efficient solution, where J h

poll attains
its minimum, is a bang-bang control, i.e., the speed limits are either given by the lower
or upper bound of the inequality constraint. Along the upper route, the speed limits
alternate between the lower and upper bound. Even though this is unproblematic from
the mathematical point of view, it may be in real-world applications because in reality,
drivers may violate the lower speed limit when coming from a high-speed-limit road.

A similar problem occurs at the diverging junction, where the speed limits of the
outgoing roads are Vmax

2 = 0.25 and Vmax
3 = 2. Again, this does not impose a math-

ematical problem, but in the real world, drivers can “choose” between the outgoing
roads, and hence, a majority may opt for road e = 3 because it allows higher speeds.
However, at each diverging junction, we prescribe speed-limit-independent distribu-
tion rates to describe the percentage of incoming drivers accessing an outgoing road.
Hence, a higher speed limit creates an incentive to opt for the corresponding road,
which then results in a violation of the modeled distribution rates, i.e., the model
does not depict the reality anymore. Both issues present a subject of future research:
adjusting the constraints on the speed limit policies to avoid a big difference between
consecutive speed limits or speed limits of outgoing roads at a junction.

Another speed limit policy in Fig. 9 is marked in dark blue, where neither of the
objectives attains its optimum. This speed limit policy shows a similar behavior com-
pared to the one corresponding to minimal environmental impact, but the increase
of the speed limits along the lower route is shallower. Further, the lowest speed limit
along the upper route is around Vmax

e ≈ 0.6 compared to Vmax
e = 0.25 for the example

of minimal environmental impact.
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Fig. 10 The optimal solution of the proof-of-concept example with δ = 1/2, i.e., air pollution is estimated
by active traffic on the road network and idle traffic due to the queues

Next, we solve the proof-of-concept example with δ = 1/2, i.e., the indicator
measuring the environmental impact of vehicular traffic also accounts for idle traf-
fic. Figure10 visualizes the resulting optimal solution consisting of the Pareto front
(Fig. 10a) and the Pareto-optimal speed limit policies (Fig. 10b). Again, the axes of
the Pareto front are normalized by the optimal values of the objectives.

The Pareto front reveals that for this modeling approach maximizing the accumu-
lated traffic flow results in an increase of the environmental impact by around 20%
while minimizing the environmental impact decreases the flow by around 50% com-
pared to its optimal value. An efficient point where neither of the objectives is ideal
is, for example, the point (0.8, 1.1)�.

The Pareto-optimal speed limits policies are similar in terms of the range compared
to the modeling approach where δ = 0, i.e., they also indicate that the objectives are
conflicting. However, we observe a subtle change in the range of the speed limits of
the access road: The lowest set speed limit is Vmax

1 ≈ 1 compared to Vmax
1 = 0.25 for

δ = 0. We can attribute this phenomenon to the idle traffic accounted by the indicator
to measure air pollution caused by vehicular traffic. The indicator accounts for the idle
traffic by adding the average accumulated queue length to J h

diff , which then creates an
incentive to reduce the queue length. The correspondence between the queue length
and the speed limits is the following: The supply of a road scales linearly with its speed
limit, i.e., an increased speed limit results in a higher flow that can access the road.
The more flow can access the road network, the less excess accrues, which results in
a shorter queue.

We omit a discussion on specific speed limits policies if δ = 1/2 as this would
reveal the same issues that can be observed in Fig. 9b, where the modeling neglects
the contribution of the idle traffic to air pollution.

At last, we compare the optimal solutions to the two modeling approaches (4.8)
and (4.9). Therefore, we display the computed Pareto fronts in (J h

flow,J h
poll(·; δ))

coordinates for δ ∈ {0, 1/2}, see Fig. 11, and in (J h
diff ,J h

queue) coordinates, see Fig. 12.

Notice, that we do not normalize the axis J h
queue as the minimal value of J h

queue is in
fact zero.
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Fig. 11 Comparison of the Pareto fronts of the optimization problem (4.8) for different values of δ, and
of (4.9) by representing them in different coordinate systems. (color figure online)

Figure 11 shows that each Pareto front is Pareto-optimal in “its” coordinate system.
If the accumulated traffic flow attains values close to its maximal value, the two fronts
coincide for δ = 0 and δ = 1/2. Furthermore, we observe that the optimal solution
to the optimization problem (4.9) involving three objectives, (a) lies between the two
Pareto fronts involving only two, and (b) seems to have a tendency to share more
efficient points with the solution to the problem (4.8) with δ = 0. In Fig. 11a, we
observe that the optimal solution corresponding to δ = 1/2 allows a higher traffic
flow in general and that the active traffic contributes more to air pollution compared
to the optimal solution corresponding to δ = 0. A possible cause may be the penalty
for the presence of idle traffic in the case δ = 1/2, which then allows “more” active
traffic on the network in the attempt to reduce the contribution of idle traffic.

Further, in Fig. 11b, we see that the combined contribution of active and idle traffic
to air pollution is higher in case δ = 0 compared to the case δ = 1/2. Again, a
possible explanation may be that the indicator measuring the environmental impact
also accounts for the idle traffic if δ = 1/2, while the case δ = 0 neglects it. Thus, to
minimize the objective J h

poll(·; 1/2), the components corresponding to active and idle

traffic both have to be reduced, while the minimization of J h
poll(·; 0) only requires a

reduction of the contribution of active traffic.
Figure 12 plots the average mass of air pollutants in � against the average queue

length and supports these findings. Among the three scenarios, the Pareto front to the
problem (4.9) yields the lowest, individual contribution of active and idle traffic to air
pollution. An explanation for this observation is that the optimization problem (4.9)
tries to optimize three objectives: the traffic flow, the pollution caused by active, and
the one caused by idle traffic. Hence, contribution of active and passive traffic to air
pollution has to be as low as possible instead of its sum compared to problem (4.8)
with δ = 1/2. Furthermore, it becomes evident that δ = 1/2 allows a higher traffic
flow and shorter queues, while δ = 0 allows a lower average mass of air pollutants in
�. The reasoning is analogous to the discussion of the results presented in Fig. 11.
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Fig. 12 Comparison of the contribution to air pollution caused by active traffic (measured byJ h
diff ) and idle

traffic (measurement based on the average queue length). Both plots show the same image but the y-axis is
scaled differently

7 Conclusions

Wepresented the framework of speed-limit dependent traffic emissionmodels to simu-
late the air pollutant emission caused by vehicular and their spread given a fixed speed
limit policy. Further, we used this framework together with the tool of multi-objective
optimization to model our goal of achieving minimal air pollution while maximizing
the traffic flow by adjusting the speed limit policy. The proof-of-concept example pre-
sented in Sect. 6 revealed that the two objectives of minimal air pollution and maximal
traffic flow are conflicting, which means they are realized for different speed limit
policies. The conflict between these objectives makes multi-objective optimization a
valuable tool to determine optimal compromises in the sense of Pareto where neither
of the objectives is optimal.

In future work, we aim to test the framework for more complex and realistic scenar-
ios, possibly incorporating a second-order traffic model as presented in Balzotti et al.
(2022) because these models allow to estimate the emissions based on the vehicles’
speed and acceleration.
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