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ABSTRACT
Restriction-based governance has recently been proposed as an

alternative to reward shaping for achieving system-level goals in

competitive multi-agent systems. In this work, we apply these

two approaches to the domain of traffic management, specifically

investigating their efficacy and fairness. Our results show that edge

restrictions in congested traffic networks are superior to dynamic

pricing with regard to equity (i.e., equal treatment of agents) while

achieving comparable travel-time improvements. We argue that the

former metric, as an adequate proxy for fairness, can be crucial for

the quality and acceptance of a governance scheme, particularly

when human agents are affected.
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1 INTRODUCTION
In competitive Multi-Agent Systems (MAS), the selfish strategies of

the participating agents (i.e., strategies that maximize the agent’s

utility) often deviate from the socially optimal solution, which max-

imizes the social welfare
1
. This discrepancy is a defining trait of

the class of Social Dilemmas (or Collective Action Problems) [26, 49].
It emerges across diverse application areas, with traffic flow opti-

mization [4] being a notable example: Agents leveraging heuristics

or machine learning to identify the shortest routes on a directed

1
We adopt the widely accepted utilitarian meaning of the term social welfare, which

refers to the aggregate utility of all agents in a system [39].
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weighted graph might inadvertently reduce the social welfare sig-

nificantly below the optimal value [14]. For affine latency functions

on graph edges, this price of anarchy can be as high as 33% [37] and

can rise indefinitely for non-linear latency functions [16].

However, social welfare is not the only benchmark for optimality

in a MAS. Other objectives, like fairness or even goals unrelated to

agents, can influence the design and functioning of such a system.

Within the traffic context, this might manifest as a utility function

for traffic authorities or state administration, aiming to curtail road

erosion, decrease noise, or increase toll revenue, for instance. To

emphasize the universality of such objectives, we use the term Gov-
ernance Utility. AMAS then becomes aGovernance Dilemmawhen a
stable, joint strategy fails to attain the maximum governance utility.

Contrasting with a social dilemma, this broader definition captures

scenarios where the governance objective is not a straightforward

function of agent objectives
2
.

Let us take a closer look at fairness: The prevalent definition of

social welfare does not distinguish between two agents achieving

equal utility (𝑢1 = 𝑢2 = 𝑥) and one agent achieving 𝑢1 = 2𝑥 while

the other gets 𝑢2 = 0. To prevent such disparities, the governance

utility could include a metric that diminishes with increased in-

equality between agents (e.g., variance, entropy, or Gini coefficient).

Illustratively, consider a traffic junction where each car’s utility

inversely corresponds to its waiting time. From a social welfare

viewpoint, a scenario where a hundred cars each wait five seconds

is identical to one where a single car waits 500 seconds while all

others proceed immediately. However, the latter scenario, being

inherently inequitable, would be deemed suboptimal. The term eq-
uity formalizes this intuition as “the absence of unfair, avoidable or

remediable differences among groups of people” [27]; we use this as

a well-defined operationalization of the subjective word “fairness”.

In this work, we investigate two governance paradigms—action-

space shaping and reward shaping—in terms of efficacy (i.e., im-

provement in social welfare) and equity (i.e., equitable treatment).

Specifically, we compare dynamic action-space limitations, as re-

cently proposed by [24], with dynamic marginal tolling [41]. The

traffic management domain serves as an apt backdrop to explore

and compare the effect of both governance schemes.

2Governance in this context is an entity with both an objective function and the

power to interact with the MAS in order to maximize this objective. In particular,

restriction-based governance acts by imposing action space restrictions on the agents

at run-time.
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Remark 1. We will not focus on finding optimal restrictions for a
given traffic network. There exist numerous complexity and inapprox-
imability results for such systems, one being [36]’s proof that barring
P = NP, no algorithm can achieve an approximation ratio < 𝑛

2
to

find optimal edge constraints in a congested network with 𝑛 nodes.
We will therefore use existing knowledge about suitable restrictions
and evaluate their impact relative to a recognized reward-shaping
technique.

2 RELATEDWORK
Overall, we are concerned with influencing a MAS to enhance

the governance utility of stable results; any actions guiding the

system towards this objective are termed as “governance”. The

interaction loop of the standard Markov Game model [40] and the

more general Partially Observable Stochastic Game (POSG) [32]

allow for governance intervention at four different points or a

combination of them (see Figure 1):

AgentsAgents

Observations , Rewards 

Environment

Actions 

1 2

34

Agents

Figure 1: Partially Observable Stochastic Game (POSG) and
potential governance interventions

(1) Observation: The governance can change what agents ob-

serve, given the environmental state

(2) Reward: The governance can change what rewards agents

receive for a given state/action pair

(3) Action space: The governance can changewhat actions agents
can take

(4) Transition: The governance can change what the next envi-

ronmental state is, given the current state and joint action

While interventions at the observation and transition level are

rather artificial and thus have very limited applicability in real-

world systems, interventions with respect to rewards and action

spaces are common in the literature. Reward shaping [18] is by far

themost widely used paradigm; the rewards can either be defined by

an external entity, as in the game-theoretically grounded Vickrey-

Clarke-Groves (VCG) mechanisms [21] and the related marginal

cost pricing [47], or emerge from the agents themselves as the

ability for cooperation, as defined by Normative Systems [1, 7, 8, 20].

Depending on the definition, normative systems cover both reward

shaping and action space shaping: Norms can be categorized as

soft or hard [42], where the former type means that violations are

punished with negative rewards, while the latter simply prohibits

actions that violate the norm.

Dynamic action-space restrictions have been explored by [31]

using search-based optimization; other techniques are Reinforce-

ment Learning (RL) over a small discrete action space in POSGs

[22], and tree search over one-dimensional continuous spaces for

Normal-Form Games [24]. In general, it is not possible to predict

how (if at all) an action-space restriction influences the equilibria

of a MAS; however, [24] have shown that, to increase the mini-

mum governance utility of a stable joint strategy, at least one of the

actions which were taken by the agents at the worst unrestricted

equilibrium must be removed from the action space.

Braess’ Paradox (described in more detail in Section 4.2) is an

example of social welfare improvement through restriction of multi-

agent systems, and it has been extensively studied from the per-

spectives of network design, graph theory, game theory, and others

after it had been first described by [6]. Most early (and some later)

work focuses on the original four-node network structure, examin-

ing criteria for the occurrence of the paradox in terms of latency

functions and traffic rate [29, 30, 50]. As a second focus area, [37]

show that the price of anarchy, defined as the ratio between the

equilibrium and the social optimum and therefore an upper bound

for the improvement achievable through edge restrictions, is ≤ 4

3

for affine latency functions, regardless of the underlying graph.

For general latency functions, particularly for polynomials of ar-

bitrarily high degree, [16] demonstrate that Braess’ Paradox can

be arbitrarily severe, and [36] prove various inapproximability and

hardness results for the problem of identifying the edges causing

the paradox. A third line of research deals with the occurrence of

Braess’ Paradox in random and real-world networks: [44] derive

a likelihood of 50% via a non-constructive proof, and [48] argue

that for large Erdős-Rényi graphs [10] with certain assumptions on

edge density and latency functions, the paradox occurs with high

probability for some traffic rate. At the same time, [11, 29] provide

evidence suggesting that Braess’ Paradox is less likely to occur with

randomly chosen traffic rates compared to adversarial rates.

Single-commodity networks (i.e., there is exactly one source-

sink pair) with constant traffic rate allow for a static solution, while

changing demand and multiple commodities can require adaptive

strategies (see Section 4.2). The multi-commodity case of Braess’

Paradox, albeit with constant traffic rates, has been examined in

[9, 16, 36, 37], and it turns out that the worst-case behavior of

congested networks can be much worse than in a single-commodity

scenario.

While most of the research on Braess’ Paradox models the traffic

flow on a macroscopic level, it can also be shown to occur in mi-

croscopic [3, 5] and mesoscopic [28] models
3
. In the present work,

we use a microscopic perspective to trace the impact of various

governance mechanisms on individual agents.

The notion of fairness in algorithmic decision-making [2, 19]

has become an important metric next to traditional performance

indicators like reward, loss or prediction error, particularly for

mechanisms whose output directly affects people. While fairness by
unawareness [13] emphasizes the importance of a fair process, this

does not imply a fair (i.e., balanced) outcome. The above-mentioned

concept of equity, defined by the World Health Organization as “the

absence of unfair, avoidable or remediable differences among groups

of people” and widely used in the context of health [33, 38], can

3
In the context of traffic modeling, microscopic refers to modeling individual vehicles

and their behavior, such as acceleration, lane changes, and interactions at a small

scale. A mesoscopic model involves a broader perspective, focusing on groups of

vehicles or traffic flow as a whole, typically without modeling individual vehicle-level

details. Finally, macroscopic means an even broader perspective, considering average

characteristics of traffic such as flow rates, density, and speed over larger sections of a

roadway or an entire network.
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help judge the fairness of an algorithm or a governance mechanism

by evaluating the impact the mechanism has on different groups.

In this context, [17] pursue fairness between agents by promot-

ing prosocial norms in dynamic systems, while [45] propose com-

pliance with pre-defined ethical frameworks as the driver of fair

treatment. However, both approaches require agents to possess

bespoke capabilities for compliance with norms or ethical rules.

This strong requirement is not necessary for restriction-based gov-

ernance, where agents are assumed to have their usual objective

function.

3 THEORY
3.1 Multi-Agent System
We model a multi-agent system as a POSG, i.e., a tuple

(𝐼 ,S, O,𝝈 ,𝑨, 𝒓, 𝛿) ,
where 𝐼 is the set of agents, S is the set of environmental states,

O = (O𝑖 )𝑖∈𝐼 are the sets of observations for each agent
4
, 𝜎𝑖 : S →

O𝑖 is agent 𝑖’s observation function, 𝑨 = (𝐴𝑖 )𝑖∈𝐼 are the agents’
action spaces, 𝑟𝑖 : S ×𝑨×S → R is agent 𝑖’s reward function, and

𝛿 : S ×𝑨 → ΔS is the stochastic transition function
5
.

The agents’ action policies (which are not part of the formal

POSG model) are defined as 𝜋𝑖 : O𝑖 → Δ𝐴𝑖
. The interaction be-

tween agents and environment in this model can be succinctly

described by the evolution formula

𝑠𝑡+1 = 𝛿 (𝑠𝑡 , 𝝅 (𝑡 ) (𝝈 (𝑠𝑡 ))) , (1)

where the output of the stochastic functions is sampled according

to the respective distribution
6
.

Remark 2. In reality, the full flexibility of a POSG is often not
exploited; common reductions are statelessness (i.e., |S| = 1), deter-
minism (i.e., ∀𝑠 ∈ S, 𝒂 ∈ 𝑨 ∃𝑠′ ∈ S : P[𝛿 (𝑠, 𝒂) = 𝑠′] = 1), or
uniformity (i.e., 𝐴𝑖 = 𝐴 𝑗 ∀𝑖, 𝑗 ∈ 𝐼 ). We will use uniformity through-
out the paper, and statelessness for some illustrative examples in
Section 4.1.

3.2 Stable action policies
In the following, let 𝚷 denote the space of all joint action policies

for a given MAS.

3.2.1 Best response. Let 𝝅 ∈ 𝚷 be a joint action policy. Then

B𝑖 (𝝅−𝑖 ) := argmax

𝜋∈Π
E(𝑎,𝒂−𝑖 ) [𝑟𝑖 ] ⊆ Π𝑖

denotes the set of all best responses (BRs) of player 𝑖 to the other

players’ given action policies 𝝅−𝑖7.

3.2.2 Nash Equilibrium. A joint action policy 𝝅 ∈ 𝚷 is a Nash
Equilibrium (NE) if each individual action policy in 𝝅 is a best

response to the other players’ policies. N denotes the set of all NE:

N := {𝝅 ∈ 𝚷 : 𝜋𝑖 ∈ B𝑖 (𝝅−𝑖 ) ∀𝑖} .
4
By convention, we use bold face for vectors or sequences of variables.

5Δ𝑋 denotes the set of probability distributions over a (finite or infinite) set 𝑋 , i.e.,

the set of all functions 𝑝 : 𝑋 → [0, 1] with∑
𝑥 ∈𝑋 𝑝 (𝑥 ) = 1.

6
The use of a time step 𝑡 as a subscript or superscript indicates that a variable or

function evolves over time.

7
For a vector 𝒙 ∈ X𝑛

, let 𝒙−𝑖 := (𝑥1, ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑛 ) denote the vector obtained
by removing 𝑥𝑖 . By convention, we also use the concatenation 𝒙 = (𝑥𝑖 , 𝒙−𝑖 ) .

3.3 Governance
Similar to the agent reward functions, the governance utility function
𝔲 is defined as 𝔲 : S ×𝑨 × S → R. This function defines how the

governance interacts with the MAS.

The Nash Equilibria of a MAS can yield different values for

the governance utility. Arguably, the governance has the goal of

achieving a guaranteed high utility 𝔲, so we need to consider the

minimum governance utility of a NE. We call this quantity the

Minimum Equilibrium Governance Utility (MEGU). The MEGU of a

governed MAS is defined as

𝔪 := min

𝝅 ∈N
𝔲(𝝅) .

3.3.1 Reward shaping. The POSG model defined in Section 3.1

is flexible enough to accommodate a governance which acts by

changing the reward functions 𝒓 in order to maximize its utility.

Therefore, there is no need for an extension of the model.

3.3.2 Action-space shaping. To incorporate the possibility of action-
space restrictions, we extend the POSG model (Section 3.1) by

adding a set of restriction functions 𝝆 = (𝜌𝑖 )𝑖∈𝐼 with 𝜌𝑖 : S → 2
𝐴𝑖

that are applied to each agent, respectively
8
. Accordingly, agents’

action policies are now defined as 𝜋𝑖 : O𝑖 × 2
𝐴𝑖 → Δ𝐴𝑖

with the

requirement that supp(𝜋𝑖 (𝑠, 𝑅)) ⊆ 𝑅 for any restriction 𝑅 ⊆ 𝐴𝑖
9
.

This requirement ensures that any action not in 𝑅 (i.e., forbidden

actions) is taken with probability zero
10
.

The evolution formula from Equation (1) thus becomes

𝑠𝑡+1 = 𝛿

(
𝑠𝑡 , 𝝅

(𝑡 )
(
𝝈 (𝑠𝑡 ), 𝝆 (𝑡 ) (𝑠𝑡 )

))
.

4 THE EFFECT OF RESTRICTIONS
4.1 Static restrictions
The most simple and extensively studied social dilemmas are two-

player, two-action matrix games such as the Prisoner’s Dilemma

[34], StagHunt [43] and the ChickenGame [35]. Clearly, a restriction-

based governance is inappropriate in such cases: Forbidding even a

single action would result in fully prescribed strategies, simplifying

agent behavior to the point of triviality.

Let us therefore consider a two-player, three-action matrix game

with symmetric payoffs, and assume the governance utility 𝔲 to be

the social welfare. The following examples offer an initial insight

into the possible impacts of restrictions:

Example 4.1. Given the game payoffs in Figure 2a, where both

players possess the action space 𝐴 = {𝑎, 𝑏, 𝑐}, the unique (pure) NE
in an unrestricted scenario is the joint strategy (𝑐, 𝑐) with agent

utilities 𝑢1 (𝑐, 𝑐) = 𝑢2 (𝑐, 𝑐) = 1 and 𝔲(𝑐, 𝑐) = 2. The unique social

optimum (SO) is (𝑏,𝑏) with 𝔲(𝑏, 𝑏) = 4.

By excluding action 𝑐 for both players, we can align the unique

NE with the SO at (𝑏,𝑏). As a result, the action space restriction

increases the MEGU from 2 to 4.

8
We denote with 2

𝑆
:= {𝑆 ′ : 𝑆 ′ ⊆ 𝑆 } the power set (i.e., the set of all subsets) of an

arbitrary set 𝑆 , both finite and infinite.

9
For a real-valued function 𝑓 : 𝑋 → R, supp(𝑓 ) := {𝑥 ∈ 𝑋 : 𝑓 (𝑥 ) ≠ 0} denotes
the support of 𝑓 .
10
In other words, we assume restrictions to be hard constraints in the terminology of

[42] (see Section 2).
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Player 2

𝑎 𝑏 𝑐

P
l
a
y
e
r
1

𝑎 0, 0 0, 1 0, 0

𝑏 1, 0 2, 2 0, 3

𝑐 0, 0 3, 0 1, 1

(a) Restricting action 𝑐

increases the MEGU.

Player 2

𝑎 𝑏 𝑐

P
l
a
y
e
r
1

𝑎 1, 1 1, 0 0, 0

𝑏 0, 1 2, 2 3, 6

𝑐 0, 0 6, 3 4, 4

(b) Restricting actions never
increases the MEGU.

Figure 2: Payoff matrices for exemplary matrix games where
action-space restrictions have different effects. Following
conventional notation, the first number in each cell is the
utility of Player 1, and the second one of Player 2.

Example 4.2. Conversely, if the payoffs are given by Figure 2b,

the unique unrestricted NE is (𝑐, 𝑐), where 𝑢1 (𝑐, 𝑐) = 𝑢2 (𝑐, 𝑐) = 4

and 𝔲(𝑐, 𝑐) = 8. The SOs are (𝑏, 𝑐) and (𝑐, 𝑏), both with 𝔲(𝑏, 𝑐) =
𝔲(𝑐, 𝑏) = 9.

If we were to eliminate action 𝑐 , both the NE and the SO become

unattainable. The new NE evolves to (𝑏,𝑏), with utilities 𝑢1 (𝑐, 𝑐) =
𝑢2 (𝑐, 𝑐) = 2 and 𝔲(𝑐, 𝑐) = 4. Even though this NE now matches the

new SO, its governance utility is less than its original value.

Example 4.3. Revisiting the payoffs from Figure 2a, but this time

restricting action 𝑎, we observe no governance effect since this

limitation does not impact either the SO (𝑏,𝑏) or the NE (𝑐, 𝑐).

4.2 Dynamic restrictions
Braess’ Paradox, depicted in Figure 3a, is a frequently referenced

illustration of the effectiveness of restrictions in stateful MAS
11
. In

the present work, we use edge latency functions of the form

𝑙 (𝑓 ) = 𝑎 + 𝑏
(
𝑓

𝑐

)𝑑
(2)

with parameters 𝑎 > 0, 𝑏 ≥ 0, and 𝑐, 𝑑 ≥ 1. This model is based on

the Bureau of Public Roads’ (BPR) proposal [25] and is a common

choice in literature. The latency functions suggested by Braess,

𝑙 (𝑓 ) = 0 and 𝑙 (𝑓 ) = 𝑓 , do not fit this model since their free-flow

time 𝑙 (0) is zero. Hence, we use a slightly modified version of

the paradox that retains its essential characteristics but ensures

𝑙𝑒 (0) > 0 ∀𝑒 ∈ 𝐸.

The original network has a well-known static solution for the

problem of finding the best restriction: Closing the edge (1, 2) is so-
cially optimal. Thus, a one-off analysis might suggest a permanent

road closure, deeming dynamic restrictions redundant. However,

when this network is superposed with a similar structure, the re-

striction’s effect becomes demand-dependent:

Example 4.4. Consider the traffic network shown in Figure 3b.

When all (or most) agents travel from node 0 to node 3, the optimal

restriction is to close road (1, 2); however, when demand between

𝐴 and 𝐵 dominates, closing both (0, 2) and (1, 2) is optimal
12
. It is

therefore not possible to find the optimal restriction without taking

11
The formal definition of graph and latency functions is provided in Section 5.

12
See Appendix B in the supplementary material for more details about this setup.

(a) Original Braess Paradox (b) Double Braess Paradox

Figure 3: Each edge of these traffic networks has a latency
function 𝑙𝑒 (𝑓 ), indicating the length (i.e., travel time) of the
edge for a given flow 𝑓 ∈ N0 (𝑐 is a capacity parameter). For
agents traveling from node 0 to 3, social welfare is increased
from −17 to −15 by closing the road between nodes 1 and 2. If
two Braess Paradoxes are combined (as shown on the right),
different road closures result in the optimal social welfare,
depending on the dominating demand.

Table 1: Travel times at equilibrium for the Double Braess
Paradox (optimal values underlined for each demand pat-
tern).

(0, 2), (1, 2) (0, 2),���(1, 2) (0, 2),���(1, 2) ���(0, 2),���(1, 2)

(0, 3) 17 15 17 18

(𝐴, 𝐵) 25 26 25 24

into account the real-time behavior of the agents, and adapting the

governance policy when the behavior changes.

Example 4.4 illustrates the importance of dynamic restrictions,

which rely on real-time MAS observations. This perspective con-

trasts with much of the existing Braess Paradox research and related

problems, where a static flow is the basis for determining the opti-

mal edge subset.

4.3 Limitations
It is evident that action space restrictions cannot improve the social

optimum, as the maximum is taken from a strictly smaller joint

strategy space. As for stable strategies, [24] show that the MESU

can only rise if the relevant NE is eliminated, i.e., if at least one

action present in the lowest-welfare equilibrium is restricted.

Applying restrictions to individual agents can achieve the SO

by dictating specific actions for all agents, thereby removing their

decision-making autonomy. However, transforming a MAS into a

single-agent optimization problem by centralizing all decisions is

typically not feasible, for reasons ranging from ethical and legal

concerns to issues of resilience and scalability.

Viewing restrictions through a fairness lens (as discussed in

Section 6.2), it becomes apparent that restrictions often need to

be uniform, that is, 𝐴𝑖 = 𝐴 𝑗 := 𝐴 and 𝜌𝑖 = 𝜌 𝑗 := 𝜌 ;∀𝑖, 𝑗 ∈ 𝐼 . This

ensures all agents are treated equitably and have the same actions
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available at each time step. However, the uniformity of restrictions

might reduce the SO, as observed in Example 4.2.

5 EXPERIMENTS
In this section, we use a microscopic multi-step traffic model (see

Appendix A.1) to simulate agent behavior across a number of net-

works, both with and without governance. We analyze the impact

of governance mechanisms, as outlined in Section 3.3, on agent

behavior and overall system outcomes by varying parameters such

as traffic rate, latency functions, demand, and value of money (see

Section 5.3).

Remark 3. As our focus is on the observed interaction between
agents, their environment, and the governance, there is only one equi-
librium: The joint strategy which is achieved experimentally after a
sufficient number of steps. This simplifies the MEGU concept from
Section 3.3, which is based on a larger set of NE. Our experiments
indicate sufficient convergence for us to consider joint strategies as
stable after a few thousand time steps.

5.1 Traffic model
Let 𝐺 = (𝑉 , 𝐸, 𝒍) be a directed graph with a BPR latency function

𝑙𝑒 : N0 → R+ as in Equation (2) for each edge 𝑒 ∈ 𝐸. These

functions map a flow value (i.e., the number of agents currently

using the edge) to a latency value, which indicates the number of

time steps required to traverse the edge (see Figure 3). Each agent 𝑖

has a starting node 𝑠𝑖 , a current position 𝑝𝑖 ∈ [0, 1] along an edge

𝑒𝑖 ∈ 𝐸 and a designated destination node 𝑑𝑖
13
. At any time step,

the flow 𝑓𝑒 of an edge 𝑒 is defined as 𝑓𝑒 = |{𝑖 ∈ 𝐼 : 𝑒𝑖 = 𝑒}|, and the

corresponding latency on 𝑒 is 𝑙𝑒 (𝑓𝑒 ). The graph, together with the

tuple (𝑝𝑖 , 𝑒𝑖 , 𝑑𝑖 ) for all agents, represents the system’s current state.

An agent 𝑖 can only decide its next move (i.e., select its next

edge) upon reaching a node, specifically when 𝑝𝑖 = 1. Therefore,

the agent needs to observe only its current node 𝑣𝑖 , destination

node 𝑑𝑖 , and the current latency values of all edges. As described

in Section 3.3.2, the set 𝐴′ ∈ 2
𝐸
of currently permissible actions is

also provided as an input.

5.2 Δ-tolling
Δ-tolling, introduced by [41], is a dynamic reward-shaping strat-

egy for congested networks. It updates per-edge tolls based on the

difference between free-flow time and actual latency. This method

has been proven to be equivalent to marginal-cost tolling for BPR

latency functions, ensuring optimal system performance. Its adapt-

ability, scalability, and straightforward implementation make it a

suitable benchmark, representing the reward-shaping paradigm of

multi-agent governance.

The toll update in Δ-tolling is expressed as

𝜏
(𝑡 )
𝑒 := 𝑅 [𝑑𝑒 · (𝑙𝑒 (𝑓𝑒 ) − 𝑙𝑒 (0))] + (1 − 𝑅)𝜏 (𝑡−1)𝑒 , (3)

where 𝑑 is the exponent of the latency function (see Equation (2)),

and 𝑅 is a responsiveness parameter. Intuitively, Δ-tolling assigns

a toll to each edge in proportion to its congestion, while using

exponential smoothing to prevent abrupt updates.

13
In this context, each source/sink pair that is used by an agent as starting and desti-

nation nodes is called a commodity.

5.3 Setup
We evaluate the travel time of agents in unrestricted traffic (“Base”),

edge restrictions (“Restriction”) and edge tolls (“Tolling”) across

two distinct network types, as depicted in Figure 4:

Random Erdős-Rényi (𝑮𝒏,𝒑 ) graphs Braess’ Paradox was

shown to occur very likely on random graphs as the number

of nodes tends to infinity [48], but this result comes with

some caveats; most notably, the edge likelihood and the traf-

fic rate need to be chosen carefully in order to generate the

paradox. We have thus selected a graph (Figure 4a) with

𝑛 = 59 via random search where restricting a single edge im-

proves social welfare
14
. More details and graphs are shown

in Appendix C, along with the results of the analysis.

Generalized Braess graphs The family 𝐵𝑛, 𝑛 ∈ N+ (see Fig-

ure 3) generalizes the original network and the “Double

Braess” structure from Figure 3b. It allows to route 𝑛 differ-

ent commodities (i.e., source/sink pairs) on the graph 𝐵𝑛 ,

each commodity with a different optimal restriction.

For the Braess-based graphs, the optimal edges to close for im-

proved latency are already known; as previously mentioned in

Section 1, our aim is not to provide new results on the Braess

Paradox’s occurrence or detection.

Agents in the MAS employ a simple shortest-path algorithm

to select the optimal edge upon reaching an intersection. This ap-

proach is well-defined for both unrestricted and restricted scenarios.

However, for the Δ-tolling scenario, a relative weighting between
travel time and tolls is necessary: Each agent 𝑖 ∈ 𝐼 has a value of
money 𝑣𝑖 ∈ R+

0
, which defines the time-equivalent worth of one unit

of tolls. In other words, the agent minimizes

∑
𝑒∈𝑃

(
𝑙𝑒 (𝑓𝑒 ) + 𝑣𝑖𝑡𝑒

)
over all paths 𝑃 from its current position to its target node and

selects one of the optimal paths. To see the effect of the value of

money on the agents’ behavior and treatment, we assign to each

agent some 𝑣𝑖 , uniformly drawn from the set {0, 1, 2, 5}.

Remark 4. As highlighted by [29] and [36], traffic rate plays a
pivotal role in the occurrence and severity of Braess’ Paradox. In
relation to this parameter, our choices are:

𝑮𝒏,𝒑 Using random search, we found a traffic rate of 𝑓 = 56 to
be adequate for the selected graph.

Braess A rather generic traffic rate of 𝑓 = 5

2
𝑐 for edge capacity

𝑐 is sufficient15.

5.4 Performance metrics
The mean travel time of all agents (representing social welfare) is
presented as the main performance indicator for the respective

governance methods. As a measure for equity, we examine the

correlation between travel time and value of money for all agents.

Specifically, we assess the slope of the closest linear regression

between these two variables
16
. This evaluation is vital as it probes

14
However, efficacy compared to Δ-tolling was not considered in the selection process,

nor was the fairness metric defined in Section 5.4.

15
Intuitively, this can be explained by the fact that the routes on these graphs consist

of either 3 or 4 edges, two of which are dominating in latency. Therefore, cars are

randomly distributed along a route whose length is ≈ 5

2
times the latency of a “long”

edge.

16
A correlation coefficient like Pearson or Spearman is not suitable since it only

measures the strength of the connection, but not its direction; in particular, if all agents
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(a) 𝐺𝑛,𝑝 graph with Braess’ Paradox. For this graph, we have
chosen 𝑛 = 59 and 𝑝 = 0.07, in accordance with [48]’s assumption
that 𝑝 = Ω (𝑛−1/2+𝜀 ) for some 𝜀 > 0.

(b) Generalized Braess graph 𝐵4. Solid lines denote constant-
latency edges, while dashed lines are edges with affine latency
functions (details and the construction schema for 𝐵𝑛 are pro-
vided in Appendix D).

Figure 4: Network structures used for the experiments. Start nodes are marked blue, while target nodes are green. For each
graph, we measure travel times, improvement and fairness for unrestricted traffic, edge restrictions and Δ- tolling.
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Figure 5: Results of the 𝐺𝑛,𝑝 graph experiment. First, we measure travel times and improvement for the Base, Restriction, and
Tolling scenarios as described in Section 5.3. In addition, we investigate the dependency of the travel time on the value that an
agent assigns to money compared to time.

the governance mechanism’s fairness, i.e., the treatment equality

towards agents from different groups.

5.5 Reproducing the experiments
The supplementary material, including a code package with all

experiments as Jupyter Notebook files, as well as an appendix with

have the same travel time (i.e., the mechanism is perfectly fair), these coefficients are

not zero, but one.)

more details about the experimental setup, have been published

at https://github.com/michoest/aamas-2024. Using this code and

the seeds listed in Appendix E, the reported results can be fully

reproduced. Different seeds, of course, can give slightly different

results, but will confirm that all claims are robust with respect to

randomization.
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5.6 Results
5.6.1 Random Erdős-Rényi (𝐺𝑛,𝑝 ) graphs. Figure 5 shows the per-
formance metrics for ten independent runs on the graph from

Figure 4a (the mean is drawn as a solid line, while the shaded

area denotes the standard deviation of the results). With respect

to travel times, both Restriction and Tolling outperform Base by
approximately 3%. The fairness metric, however, shows a substan-

tial difference between the governance paradigms: While agents

with different values of money are treated largely equally in the

Base and Restriction scenarios, their travel times differ significantly

(𝑝 ≤ 0.01) for Tolling, such that agents with higher value of money

𝑣𝑖 have longer travel times.

5.6.2 Generalized Braess Graphs 𝐵𝑛 . The performance metrics for

the graphs 𝐵𝑛 with the single commodity (𝑠𝑛, 𝑡𝑛) are shown in

Figure 6 for 𝑛 ∈ [0, 20] and five independent runs. Similarly to the

results on the 𝐺𝑛,𝑝 graph, both Restriction and Tolling improve the

Base case, and this time Restriction (using optimal road closures)

outperforms Tolling by a few percentage points. Regarding fairness,

Figure 6b displays the regression lines’ slopes (see Figure 5b for a

single graph) in an aggregated way for all graphs 𝐵𝑛 . This fairness

metric shows that Base and Restriction are nearly unbiased across all
commodities. For Tolling, the correlation between value of money

and travel time in this particular setup shifts from disadvantaging

high values of money for small values of 𝑛 to disadvantaging low

values of money for larger 𝑛.

6 DISCUSSION
6.1 Efficacy
The declared objective of the governance is maximizing social wel-

fare, i.e., minimizing the travel time of all agents. To this end, both

approaches succeed in improving the status quo (the unrestricted

Base scenario), and the improvements are comparable in magnitude.

The results in Figures 5 and 6 show the mean travel time, but not

the mean total cost, i.e., the weighted combination of travel time and

tolls which reveals the additional reward that the toll-based gover-

nance has to invest. As can be seen in Figure 7 for the generalized

Braess graphs, including the tolls results in a much lower efficacy

of the reward-shaping scheme. This can be an additional argument

for restrictions, where no monetary rewards are involved.

Remark 5. Marginal-cost tolling, by definition, targets edges where
heightened demand results in latency spikes. However, in situations
such as Braess’ Paradox, it is the “constant-low-latency edges” that
need to be closed to attain optimal flow. Such edges, by definition
of the tolling scheme, can never be tolled. As a result, the tolling
strategy must reduce demand for these roads by imposing higher tolls
on connecting roads. This culminates in a “proxy-tolling” outcome
where certain high-demand edges remain toll-free, while others bear
the brunt with exorbitant tolls.

6.2 Fairness
Reward-shaping strategies inherently differentiate between agents

based on how additional rewards influence them. In essence, an

agent with a minimal value of money might remain largely unaf-

fected by rewards or penalties, while others might drastically alter

their behavior. Given that rewards and penalties often manifest

as monetary values, this can inadvertently compromise fairness,

especially in scenarios where an agent’s wealth should not dictate

their actions. Our experiments reveal that while Δ-tolling effec-

tively reduces average travel time, it simultaneously introduces

significant variance. Notably, the relationship between the value

of money and travel time isn’t straight-forward but varies with

the network structure. Restriction-based governance, in contrast,

offers comparable travel-time efficiency but ensures a distribution

of travel times which is close to equity.

6.3 Resource restrictions
To conclude the discussion of restriction-based governance and

reward shaping, we outline resource restriction as a hybrid gov-

ernance paradigm, combining elements of restriction-based and

reward-based governance:

Restrictions, as they have been defined so far, directly limit the

action spaces of the agents, thereby generating new equilibria. An-

other way restrictions can be used in multi-agent systems is to

restrict resources in order to change incentives. The restrictions

therefore serve to indirectly shape the rewards by encouraging or

discouraging actions which relate to the restricted resources. In

Appendix F of the supplementary material, we outline a parking

management scenario based on existing work for dynamic pricing

[15] and show that closing some of the parking spaces can increase

social welfare. Without restricting any actions, the restriction of re-

sources (in this case, parking spaces) affects how the agents valuate

their options, which, in turn, steers their behavior in the desired

direction.

In contrast to “pure” reward shaping approaches, this method

avoids monetary incentives and therefore maintains some of the

mentioned advantages of action-space shaping. On the other hand,

it does not lend itself to direct calculation of equilibrium strategies

without explicit knowledge of the connection between resource

restriction and corresponding changes in agent utility.

7 CONCLUSION
Action-space restrictions seem to be inferior to reward shaping at

first glance, as they only allow a binary distinction between allowed

and forbidden actions (similar to a reward of 0 and −∞ for choosing

an action, respectively). However, as we have shown in the present

work, the actual comparison is more complex, and restrictions come

with a considerable advantage regarding fairness.

The study of action-space restrictions as a means of governing

multi-agent systems is far from exhausted: Only recently have

common multi-agent learning environments like PettingZoo [46]

been equipped with governance capabilities [23], and there is still

scarce consideration of restrictions for Reinforcement Learning

algorithms (first steps are described in [12]). It has been shown that

finding optimal restrictions for dynamic systems can be hard, but

the dependency of their effect on the (a priori unknown) behavior of

the agents makes real-time adaptation and optimization necessary.

Despite these challenges, its unique way of interacting with

agents and environment makes action-space shaping a valuable tool

for governance entities, both in abstract game-theoretic settings and

in real-world systems. We want to emphasize that the acceptance
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Figure 6: Results of the generalized Braess graph experiment, showing the performance metrics in relation to the demand
pattern. Both Restriction and Tolling improve the Base case, but the fairness measure is very different: In Tolling, the value of
money has a major influence on the travel time.
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Figure 7: Total cost of travel (including tolls) for the general-
ized Braess graphs.

of governance mechanisms, be it reward shaping or restrictions,

crucially depends on their (perceived and objective) fairness. With

respect to this condition, restriction-based governance, together

with equity considerations, has the potential to substantially push

the applicability of governance schemes for systems consisting of

human or artificial agents.
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