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Abstract

The purpose of this thesis is the scientific investigation of a specific form of gover-
nance for multi-agent systems: The dynamic restriction of action spaces for achiev-
ing a system-level objective.

Governance in multi-agent systems addresses the well-known challenges asso-
ciated with managing and coordinating the behavior of autonomous agents. Partic-
ularly in competitive systems, self-interested individual optimization often leads to
outcomes that deviate from socially optimal results.

There are two major existing approaches to solve this problem: Rewarding or
sanctioning certain behaviors through monetary incentives (called reward shaping)
or providing agents with special capabilities for cooperation (we call this approach
cooperative capabilities). However, both approaches exhibit certain failure modes; re-
ward shaping assumes inter-agent comparability of rewards and unlimited gover-
nance means, while cooperative capabilities require that the agents’ action policy
can be altered and that agents actually want to cooperate. Another crucial factor
that causes difficulties for existing governance approaches is fairness in the face of
heterogeneous agents.

This motivates a novel approach to multi-agent governance, based solely on re-
stricting action spaces in reaction to observations of the system. Such governance
does not need to know about or influence the agents’ inner workings, nor does it
have to hand out rewards to steer agent behavior. As the prime example of “im-
provement through restriction”, Braess’ Paradox—the fact that closing a road can
improve traffic flow in a congested network—, serves as a recurring illustration of
the power of restriction-based governance.

We develop a unified theoretical framework, called Action-Space Restricted Multi-
Agent System (ARMAS), which can be applied to any system modeled as a Partially
Observable Stochastic Game. In this model, we propose various governance learn-
ing mechanisms for subclasses of ARMAS since the general problem of learning
an optimal governance policy—being equivalent to Reinforcement Learning in non-
stationary environments—cannot be expected to admit an efficient solution.

In addition to the learning algorithms, we propose an implementation of AR-
MAS, which is compatible with major multi-agent learning frameworks, and we
evaluate our approach concerning efficacy and fairness in comparison to reward
shaping. Our results demonstrate that restriction-based governance can indeed
manage and coordinate the behavior of autonomous agents, leading to significant
enhancements in social welfare compared to a baseline approach that does not em-
ploy action space restrictions, while avoiding problems associated with reward-
based governance approaches.
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Zusammenfassung

Das Ziel dieser Dissertation ist die wissenschaftliche Untersuchung einer spezifi-
schen Form der Steuerung von Multiagentensystemen: die dynamische Einschrän-
kung von Aktionsräumen zur Erreichung eines systemübergreifenden Ziels.

Governance im Kontext von Multiagentensystemen befasst sich mit den Heraus-
forderungen, die mit der Steuerung und Koordination des Verhaltens autonomer
Agenten verbunden sind. Insbesondere in wettbewerbsorientierten Systemen führt
individuelle eigennützige Optimierung häufig zu Ergebnissen, die von sozial opti-
malen Resultaten abweichen.

Es existieren zwei vorherrschende Ansätze zur Lösung dieses Problems: das Be-
lohnen oder Sanktionieren bestimmter Verhaltensweisen durch monetäre Anreize
(bekannt als Reward Shaping) oder die Ausstattung der Agenten mit speziellen Koor-
dinationsfähigkeiten (wir nennen diesen Ansatz Cooperative Capabilities). Beide An-
sätze weisen jedoch bestimmte Probleme auf; Reward Shaping setzt die Vergleich-
barkeit von Belohnungen zwischen den Agenten sowie unbegrenzte Steuerungsmit-
tel voraus, während Cooperative Capabilities erfordern, dass die Handlungsstrate-
gien der Agenten geändert werden können und dass die Agenten tatsächlich koope-
rieren wollen. Ein weiterer entscheidender Faktor, der bestehende Steuerungsansät-
ze erschwert, ist Fairness im Hinblick auf heterogene Agenten.

Dies motiviert einen neuen Ansatz zur Steuerung von Multiagentensystemen,
der allein auf der Einschränkung von Aktionsräumen als Reaktion auf Beobachtun-
gen des Systems basiert. Eine solche Governance muss die interne Funktionsweise
der Agenten nicht kennen oder beeinflussen, noch muss sie Belohnungen verteilen,
um das Verhalten der Agenten zu steuern. Als Paradebeispiel für „Verbesserung
durch Einschränkung“ dient das Braess-Paradoxon – die Tatsache, dass das Sper-
ren einer Straße den Verkehrsfluss in einem Netzwerk verbessern kann – wiederholt
dazu, das Potential einer einschränkungsbasierten Steuerung zu illustrieren.

Wir entwickeln ein einheitliches theoretisches Framework, genannt Action-Space
Restricted Multi-Agent System (ARMAS), das auf jedes System angewendet werden
kann, das als Teilweise Beobachtbares Stochastisches Spiel (Partially Observable Sto-
chastic Game) modelliert wird. In diesem Modell konstruieren wir verschiedene
Steuerungslernmechanismen für Subklassen von ARMAS, da das allgemeine Pro-
blem des Erlernens einer optimalen Steuerung – äquivalent zu Reinforcement Lear-
ning in nicht-stationären Umgebungen – nicht effizient lösbar sein dürfte.

Neben den Lernalgorithmen zeigen wir eine Implementierung von ARMAS, die
mit wichtigen Multiagenten-Lernframeworks kompatibel ist, und wir evaluieren
unseren Ansatz hinsichtlich Wirksamkeit und Fairness im Vergleich zu Reward Sha-
ping. Unsere Ergebnisse zeigen, dass die einschränkungsbasierte Governance das
Verhalten autonomer Agenten tatsächlich koordinieren kann, was zu signifikanten
Verbesserungen der sozialen Wohlfahrt im Vergleich zu einem Referenzansatz führt,
der keine Handlungsraumeinschränkungen verwendet, und dabei Probleme ver-
meidet, die mit belohnungsbasierten Steuerungsansätzen verbunden sind.
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Chapter 1

Introduction

Interactions between autonomous, self-interested decision-making entities—also
called agents—commonly cause a well-known challenge: Conflicting goals lead to
competitive behavior, which, in turn, often culminates in suboptimal outcomes. This
dynamic, albeit deceptively simple in appearance, has been the subject of active re-
search for at least 70 years, beginning with von Neumann and Morgenstern’s semi-
nal work that laid the foundation of Game Theory: The mathematical study of strate-
gic interactions among rational agents (von Neumann and Morgenstern, 1947).

For an intuitive understanding of the main challenge addressed in this thesis, let
us start with a very generic schema of interaction between autonomous decision-
makers. It is customary to consider a number of agents and an environment as shown
in Figure 1.1. This preliminary conceptualization of a Multi-Agent System (MAS) per-
mits interactions between agents and the environment to unfold in arbitrary ways1.

Environment

Agent 1

Agent 2

Agent 3...

Agent 4

FIGURE 1.1: Generic interaction schema of agents and environment.

However, this initial model leaves much to be desired in terms of precision, given
its vague definitions concerning the types, frequencies, sequence, and consequences
of interactions. To address this, a more refined and sequential model, as illustrated
in Figure 1.2, is commonly used, allowing for a more detailed examination of such
scenarios. In this model, a single cycle of perception followed by action constitutes

1Even though we use technical terms such as agent, utility, or strategy in this introductory chapter,
we defer a rigorous definition to Chapters 2 and 3 and, instead, appeal to the intuition of the reader to
gain a first understanding of the problem statement and the scope of this work.
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a time step. The introduction of time steps instills a sense of synchrony among the
agents; they all make their decisions simultaneously, and the collective impact of
their actions on the environment is assessed in unison2.

AgentAgent

Perception

Environment Agent

Action

FIGURE 1.2: Interaction loop of agents and environment.

Using the terminology of this model, agents are in a continuous loop of perceiving
their environment and then acting based on their observations. The whole sequence
of interaction and communication among the agents happens via the environment,
creating a precise and complete representation of the process in terms of observa-
tions, actions, and the state of the environment.

Given that the changes in the environmental state (the transitions) at every time
step are dictated by the collective actions of all the agents, it becomes crucial for
each agent to consider what the others might do when plotting their own moves
(or sequences of moves) to reach a specific goal. This is where things start to get
tricky, and strategies get complex: Agents constantly adjust their plans based on
their observations and beliefs about their opponents, who are simultaneously doing
the same thing. Often, this intricate interplay settles into a stable state where each
agent has figured out their best strategy, and there is no longer any incentive to
change things up. However, as we will see later, no ironclad convergence guarantee
exists in non-stationary systems where behaviors can shift over time.

The central issue addressed in this thesis is the fact that a stable state resulting
from the interactions of multiple self-interested agents does not inherently equate to
an optimal outcome, especially when evaluated against system-level objectives such
as social welfare3 or fairness. Using the more general notion of a governance utility to
represent the system-level objective, this thesis proposes and critically examines the
incorporation of a governance entity within a multi-agent system. The governance’s
role is to interact with the system, aiming to increase the governance utility to an
optimal level.

From Figure 1.2, it is clear that any governance that is not part of the environ-
ment or part of an agent can only interfere with such a system at two points (see
Figure 1.3): Either it changes the way the agents perceive the environment, or it
changes the way they act on it.

As we will see in Chapter 2 when we look at the commonly used mathematical
models for multi-agent systems, these two interception points translate to a number
of tangible methods of intervention, one of which—restriction of action spaces—is
the main focus of this thesis.

2It is worth noting that different concepts of (a)synchronicity can be captured through various
temporal logics, such as Linear-Time Temporal Logic (LTL) (Pnueli, 1977), Computation-Tree Logic
(CTL) (EMERSON, 1990), or Alternating-time Temporal Logic (ATL) (Alur, Henzinger, and Kupfer-
man, 2002). For a comprehensive overview, the reader is referred to Hoek and Wooldridge, 2012.

3We adopt the widely accepted meaning of the term social welfare, which refers to the aggregate
utility of all agents in a system.
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Governance AgentAgent

Perception

Environment Agent

Action

FIGURE 1.3: Interaction loop of agents, environment,
and governance.

Let us now look closer at the two fundamental building blocks of governed
multi-agent systems: Autonomous agents and the governance entity.

1.1 Autonomous agents and multi-agent systems

1.1.1 Autonomous agents

An agent is any entity that is able to make decisions in a goal-oriented way with
some degree of autonomy while perceiving and interacting with an environment.
Standard definitions from the research literature include “Autonomous agents are
systems capable of autonomous, purposeful action in the real world” (Brustoloni,
1991), “Autonomous agents are computational systems that inhabit some complex
dynamic environment, sense and act autonomously in this environment, and by do-
ing so realize a set of goals or tasks for which they are designed” (Maes, 1995) and
“An autonomous agent is a system situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own agenda
and so as to effect what it senses in the future” (Franklin and Graesser, 1996).

For the problems that we are concerned with in this thesis, it is not relevant
how such an agent observes its surroundings, what its physical nature is, or how
it makes the decision to choose a specific action at a given point in time; all that
counts is that the agent can act and that these actions, in some way, influence the
environment. This implies that humans, as well as artificial devices, can be seen as
autonomous agents in the context of decision-making and action selection: Like au-
tonomous agents in artificial intelligence, humans have the ability to perceive their
environment, reason about their internal state, and make decisions about how to act
in order to achieve their goals. Humans are able to autonomously navigate complex
and dynamic environments, such as cities, workplaces, and social situations, using
a combination of learned and innate behaviors.

One of the critical challenges in designing artificial autonomous agents is devel-
oping effective decision-making algorithms that can handle uncertainty, incomplete
information, and changing environments. Reinforcement Learning (RL) (see Sutton
and Barto, 2018) has emerged as the gold standard for developing such algorithms,
as it allows agents to learn optimal decision-making policies through trial-and-error
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interactions with their environment4. RL has been successfully applied in single-
agent scenarios, where only one agent interacts with the environment, but extending
RL to multi-agent scenarios introduces new challenges.

1.1.2 Multi-agent systems

In their standard work Multi-agent Systems: Algorithmic, Game-Theoretic, and Logi-
cal Foundations (Shoham and Leyton-Brown, 2009), the authors define multi-agent
systems as “those systems that include multiple autonomous entities with either di-
verging information or diverging interests, or both”. Therefore, agents must learn to
make decisions while interacting with other agents, who may have different objec-
tives and strategies. This introduces the potential for cooperation and competition
among agents and the need for agents to reason about the beliefs, intentions, and
strategies of other agents.

Scientific research about multi-agent systems typically models a very restricted
set of characteristics of a real-world system, focusing on a specific aspect while ig-
noring irrelevant noise. This aspect can simply be the agents’ manipulation of an
environment without considering the agents’ inner workings, as in Figure 1.2. It
might also include details of the perception process, an agent’s inner model of its
environment and competitors, or the communication schemes that allow the agents
to exchange information.

Multi-agent Reinforcement Learning (MARL) aims to develop RL algorithms for
multi-agent scenarios, considering the unique challenges and opportunities of these
settings.

1.2 Governance

In its most general form, governance refers to the process of decision-making and
management of a system. It involves establishing rules, policies, and procedures to
guide behavior and ensure the system operates effectively and efficiently. The con-
cept of governance typically applies to systems involving decision-making, control,
and coordination, and it is often discussed in systems with autonomous agents. As
such, it can be applied to social systems like governments and corporations, as well
as to artificial agents like robots and software programs5.

For systems involving humans, whether nations, corporations, or smaller
groups, governance involves establishing systems, structures, and processes that
regulate behavior, coordinate actions, and make collective decisions. One common
aspect of governance is developing and enforcing legal and regulatory frameworks.
These frameworks define rights, responsibilities, and acceptable behavior within the
community, providing a basis for maintaining order and resolving conflicts. Ad-
ditionally, institutional structures play a vital role in governance. Governments,
administrative bodies, and corporate boards are examples of institutions with au-
thority and responsibility for decision-making, policy formulation, and oversight.

4Usually, the number of trials required to learn optimal decisions in any reasonable domain is huge
(or, in other words, the sample efficiency is low). Therefore, RL models are most commonly trained in
simulated environments over thousands or even millions of episodes.

5Governance can also be meaningful in systems without autonomous agents, although the nature
and implementation of governance in such contexts may differ: Examples include centralized control
systems like operating systems, organizational and institutional governance, or technical protocols
which govern networking and communication systems.



1.2. Governance 5

Governance is influenced by social norms, ethics, and unwritten rules that shape be-
havior and interactions within the community. These informal mechanisms promote
cooperation, trust, and shared values.

It is clear that governance in this sense has a much broader scope than in the
context of well-defined artificial agents within a mathematical framework. Never-
theless, governance of artificial systems is ultimately inspired by and borrows fun-
damental concepts and goals from its human counterpart.

For our purposes, two aspects of governance are essential: The governance objec-
tive defines what the governance wants to achieve, while the governance mechanism
defines how it can achieve this objective.

1.2.1 Governance objective

The governance objective describes the goal(s) of the governance, that is, which
states of the system6 are desired or undesired. Just as the agents participating in
a multi-agent system have preferences with respect to the system’s states, allowing
them to decide which actions they want to choose and which ones to avoid, the
governance also needs a way of distinguishing good and bad to steer its behavior.
This objective can depend on the agents’ objectives, include other factors, or be com-
pletely unrelated.

A prevalent principle is that governance should serve the agents—after all, the
governance of a human community is often devised and established by the very
parts of this community. Operationalizing this principle leads to the concept of social
welfare, which refers to the collective well-being or utility of all agents in the system.
It is often measured by a quantitative social utility function that takes into account
the (also quantified) individual utilities of all agents and how they interact with each
other. As a result of conflicting agent goals, the actions of one agent may affect the
well-being of other agents and, therefore, the overall welfare of the system. Social
welfare seeks to optimize the system’s overall well-being rather than just individual
agents’ interests.

The social welfare function can take many different forms, depending on the
system’s context and the agents’ preferences. It may be a linear or nonlinear combi-
nation of individual utilities and incorporate external factors such as environmental
conditions or resource constraints.

Maximizing social welfare is an essential goal in multi-agent systems, as it
can lead to more efficient and equitable outcomes for all agents involved. How-
ever, achieving social welfare may require cooperation and coordination among the
agents, which can be challenging without a central authority or governance mech-
anism. This is why research into multi-agent systems often focuses on developing
mechanisms for incentivizing cooperation and promoting social welfare.

It should be noted that social welfare is an objective that naturally arises from
ethical considerations about multi-agent systems. Still, it is by no means the only
imaginable governance objective. More generally, any assignment of utility values
to system states can be used as a governance objective function.

6As we will see in Chapter 2, usually all information about the system is captured in the environ-
mental state.
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1.2.2 Governance mechanism

The governance mechanism describes how the governance influences the multi-
agent system in order to reach its objective. Therefore, the term includes all be-
haviors of the governance entity that change anything about the system.

Static governance mechanisms, also known as rule-based or predetermined gov-
ernance, involve establishing fixed rules, regulations, or constraints that govern
agents’ behavior within the system. These rules are determined in advance and
remain unchanged during the system’s operation. Static governance mechanisms
prescribe specific actions or behaviors that agents must adhere to, often based on
predefined policies or guidelines. The rules may be designed to ensure fairness,
resource allocation, or coordination among agents. However, static governance ap-
proaches may lack adaptability and struggle to cope with changing environments
or evolving agent dynamics. They do not have the ability to learn from past experi-
ences or adjust their rules in response to observed agent behavior.

Dynamic governance, on the other hand, is a more flexible and adaptive ap-
proach that allows the governance mechanism to evolve and adjust over time based
on the observed behavior of agents and the system’s performance. Dynamic gov-
ernance mechanisms actively monitor and assess the behavior and interactions of
agents and make real-time adjustments to guide or influence their actions. These
adjustments can be based on various factors such as performance metrics, social wel-
fare, or other objectives. Dynamic governance can involve learning algorithms, feed-
back mechanisms, or optimization processes that iteratively refine the governance
strategies in response to the system’s dynamics. This adaptability enables dynamic
governance to handle better changes in agent behavior, environmental conditions,
or system requirements. Within dynamic governance, we can further distinguish
between reactive governance, which operates as a response to some observed be-
havior, and proactive governance, which anticipates agent behavior and acts based
on its predictions.

In economics and game theory, Mechanism Design (Hurwicz and Reiter, 2006) is
the study of suitable governance schemes for a given multi-agent system. It requires
understanding the agents’ preferences, capabilities, and information availability, as
well as the potential conflicts or trade-offs that may arise between individual and
collective goals. Naturally, mechanism design has also been the subject of automa-
tion efforts, using observations and learning capabilities to adapt the governance
mechanism to the situation at hand.

1.2.3 User Equilibrium and Social Optimum

We have initially mentioned the discrepancy in outcome between systems where
agents simply pursue their individual goals through selfish optimization and sys-
tems where social welfare maximization is also taken into account. To make this
dichotomy more crisp, we borrow two terms from transportation networks: User
Equilibrium and Social Optimum. These two concepts are used to describe the behav-
ior of users in a transportation network:

• User equilibrium refers to a situation where each user of the transportation
network selects the shortest or fastest path that minimizes their own travel
time or cost. In other words, each user makes a selfish decision to optimize
their own travel experience without considering the impact of their decision on
other users. However, in a system with many users making similar decisions,
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this can lead to congestion and delays as the network becomes overloaded and
travel times increase.

• Social optimum, on the other hand, refers to a situation where all transporta-
tion network users make decisions that collectively minimize the total travel
time or cost for everyone. This requires users to take into account not only their
own preferences but also the preferences of others and the overall efficiency of
the network. In a social optimum, the resources of the network are used in the
most efficient way possible, minimizing congestion and delays.

More generally, the difference between user equilibrium and social optimum can
be expressed as the trade-off between individual and collective optimization. In the
present context of governance in multi-agent systems, this corresponds to an un-
governed system—where the governance does not act at all—on the one hand, and
an optimally governed system—where the governance pursues its own objective—
on the other hand.

1.2.4 Criteria for successful governance

Using the concept of governance utility (see Section 1.2.1), the primary measure for
the success of a governance mechanism is the utility value it achieves over time. At
the same time, there are a number of other considerations that can also be thought
of as defining a good or successful governance:

• Is the goal of the governance clear?

• Is the governance mechanism transparent, such that the agents or outside ob-
servers can understand it?

• Is the governance (both goal and mechanism) perceived as fair? Does it con-
form to certain ethical standards?

• Can the governance mechanism react to unforeseen changes in the multi-agent
system? If so, how fast can it react?

• Does the governance need to learn from interaction, or is its mechanism inde-
pendent of the system?

• If it learns, how fast does it learn, and is it guaranteed to reach an optimum?

For a formal definition of governance as the optimization process of finding the
best governing actions, it is, of course, necessary to quantify and weigh these crite-
ria. In Chapter 3, we define the governance utility as a mathematical function that
captures all the criteria that determine the success of the governance and, therefore,
serves as the sole performance measure for optimization. As with all mathemati-
cal models, such a function necessarily abstracts away many layers of complexity of
real-world systems, focusing on a small set of well-defined criteria within the con-
text of the MAS model.

1.2.5 Autonomy and restriction

Connected to the fairness and ethics discussion of the previous section is a point that
is particularly pressing when multi-agent systems consist of human agents: What
justifies the governance’s right to restrict the agents’ autonomy by intervening in the
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system? And even if other goals generally justify intervention, how severe should it
be allowed to be?

Apart from ethical concerns, there can also be objective reasons for keeping the
governance influence to a minimum: If agent preferences (and, therefore, their utility
functions) are unknown to the governance, achieving social welfare is impossible
without agent autonomy. Moreover, participating in a system in order to achieve
individual goals (e.g., in a market) might become less attractive when the freedom of
action is restricted. Finally, agent autonomy enables distributed optimization, which
might be hard or impossible for the governance to replicate as a single optimizer,
especially when a large number of agents are involved.

In line with human intuition, it is, therefore, a reasonable assumption that all else
being equal, more agent autonomy and less governance intervention is preferable.
This tenet can be used to inform the governance policy, for example, by choosing
a mechanism that selects the most minor intervention among all utility-maximizing
mechanisms.

1.2.6 Why do we need governance?

It seems at first glance that governance is merely a crutch needed by agents who fail
to find a cooperative joint strategy by themselves that achieves the social optimum.
After all, one could argue that rational agents with unlimited reasoning abilities
should be able to figure out that their current selfish strategy is only resulting in the
(sub-optimal) user equilibrium and then come up with a better solution.

However, this common-sense argument falls apart when we look at a particular
type of multi-agent system: In a Social Dilemma, it is always better for an agent to
defect from the cooperative strategy. Hence, even when an agent knows that every-
one will be worse off if cooperation breaks down, it still pays off to defect, no matter
what the other agents do. The Prisoner’s Dilemma (Rapoport and Chammah, 1965)
is one of the simplest games exhibiting this structure and arguably the most famous
and widely known game-theoretic setting. There are two options for an agent to
achieve cooperation as a dominant strategy in the Prisoner’s Dilemma: Either have
the opportunity for punishment in future games7, or have the ability to agree on
and then enforce a specific behavior. The former requires a credible threat for pun-
ishment, i.e., a strategy that punishes a defector and still gives a higher overall return
than ignoring the defection. The latter requires both a method of agreeing on coopera-
tive behavior and some guarantee for future actions8.

Crucially, both options are not available to the agent in the basic one-off setting: It
can only choose cooperation or defection without being able to learn from repeated
interaction or forcing the opponent to choose the same strategy. It is precisely this
limitation that makes a social dilemma a dilemma, preventing agents from simply
solving it from within.

It is undoubtedly true that human agents, with their innate ability to devise com-
plex interaction schemes—built on concepts like reciprocity, trust, punishment, con-
tracts, and others9—can find ways to make the social optimum the game outcome.

7The immensely fruitful idea of an iterated prisoner’s dilemma (with far-reaching consequences for
the optimal strategy) was investigated in detail by Axelrod, 1984.

8Such a guarantee is sometimes called a commitment device and constitutes a powerful instrument
not only for multi-agent coordination but also for delaying gratification in individual humans.

9It is striking that all these concepts are built around language as their medium; in Section 10.3 we
discuss possible uses of language for our particular governance approach.
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On the other hand, there are many domains in which this has failed, despite decade-
long global efforts and gigantic investments of time and money.

This being said, agents in well-defined, simplified interaction frameworks (see
Section 2.1) do not have the capabilities necessary to align social optimum and user
equilibrium without external support. Therefore, governance can be seen as pre-
cisely a formal term for whatever mechanisms human communities use to coordi-
nate their actions in a way that lets them achieve outcomes beyond selfish optimiza-
tion.

1.2.7 Why do we propose restriction-based governance?

As hinted at in the abstract, there are two major existing paradigms for the gov-
ernance of multi-agent systems: Reward shaping, as a form of centralized gover-
nance10, incentives or disincentivizes certain agent behaviors through artificial re-
wards which are applied to the “natural” rewards provided by the environment
in the standard multi-agent interaction frameworks (see Section 2.1). The other
paradigm, which we call cooperative capabilities, consists of enhancing the agents’
own capabilities so that they can and want to cooperate without any external guid-
ance. As such, it represents a decentralized governance mechanism.

These approaches are capable of aligning user equilibrium and social optimum
of a system, but both of them rely on specific assumptions which, as we argue, are
often not satisfied:

Reward shaping To effectively apply reward shaping, governance rewards need to
be chosen such that (unknown) agents change their behavior. This requires
that agents react (approximately) equally to rewards, a requirement known as
inter-agent reward comparability. Additionally, the governance must have access
to sufficient reward (or sanction) means to maintain or escalate its policy until
the desired behavioral change is achieved. These assumptions are violated in
many relevant application domains, and even when they are satisfied, they
create a high risk of manipulability by agents who anticipate and exploit the
governance policy by behaving strategically.

Cooperative capabilities To overcome selfish optimization (e.g., in a social
dilemma) and achieve a social optimum distinct from the user equilibrium,
agents need additional capabilities. As explained in Section 1.2.6, it is not
enough to see through the user equilibrium as a globally sub-optimal outcome
as long as there is no device to bind the competing agents to a different pol-
icy. If such control or guarantees are absent, it is always preferable for agents
to deviate from cooperation towards individually optimal policies. Therefore,
emergent cooperation can only be achieved if the governance designer has ac-
cess to the agents’ action policies and can control them in a way that guaran-
tees adherence to cooperative strategies even in the face of a (selfishly) better
alternative.

These conditions are intimately tied to the respective mechanisms and are not
necessarily required for other approaches. In particular, restriction-based governance,
as defined and investigated in this thesis, leaves the agents as they are—it does not

10In this context, a centralized governance is a distinct entity which interacts with the MAS, much like
the schema shown in Figure 1.3. Such a governance can, of course, exhibit a distributed architecture
but forms a single logical unit in relation to the MAS. In contrast, a decentralized governance means that
the governance mechanism is distributed among the agents, with no need for such an entity.
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change their inner workings, and does not even require knowledge of their reward
functions or action policies. It therefore seems worth examining in detail the appli-
cability, performance, and scalability of this novel approach to multi-agent gover-
nance.

1.3 The learning problem

A multi-agent system is usually considered from two perspectives at the same time:
First, the descriptive viewpoint states how agents and environment interact, and sec-
ond, the prescriptive viewpoint asks how agents can choose an interaction strategy
that leads to optimal (cumulative) reward. While not explicitly part of the interac-
tion framework (see Figure 1.2 and Section 2.1), the latter perspective—the learning
problem—is crucial for an agent to successfully act in a multi-agent system, and there-
fore has attracted most of the research effort in the field over the last decades11. Illus-
tratively, the agent-environment loop is complemented with a learning (meta-)loop
(see Figure 1.4), designed to alter an agent’s action policy in response to the observed
interactions and the agent’s performance, as measured by its reward function. This
learning loop is not necessarily synchronized with the interaction loop as long as
there is a valid policy for action selection at any time step.

AgentAgent

Perception

Environment Agent

Action

Action policy
improvement

FIGURE 1.4: Illustration of the agent learning loop. Independent of its
interaction with the environment, an agent can change and improve

its strategy based on past observations and future predictions.

This two-level model of interacting and learning is in close analogy with the
governance mechanism with which we are concerned in this work:

As outlined in Section 1.2.2, a governance that is static, i.e., predefined before
the execution of the MAS, cannot react to any unforeseen development but needs
to account for any possible (combination of) agent behavior from the beginning.
Since this is unrealistic for all but the most trivial systems—particularly when agents
themselves improve their action policies through learning—, we mirror the agent
learning paradigm by allowing the governance to change its policy in response to its
own observations, as shown in Figure 1.5.

The resulting model is again both descriptive and prescriptive: On the former
level, it defines the mechanism with which the governance intervenes in a multi-
agent system. On the latter level, it includes the governance learning method, which
improves the governance mechanism over time with respect to its objective and,
therefore, allows it to act purposefully.

11In contrast, the environmental model has not changed much, such that POMDPs (see Section 2.1.2)
are still the most-used model, more than 50 years after their invention by Åström, 1965.
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Governance AgentAgent

Perception

Environment Agent

Action

Governance policy
improvement

FIGURE 1.5: Illustration of the governance learning loop. By observ-
ing how the governance’s current strategy performs in connection
with the agents’ own decisions and the corresponding environmen-
tal effects and learning from these observations, the governance can

change its strategy over time.

1.4 Scope and contribution

On the highest level, this thesis investigates a specific approach of governance for
multi-agent systems: The dynamic restriction of action spaces.

One level deeper, we look at Action-Space Restricted Multi-Agent Systems as a
formal extension of existing MAS models and investigate the governance learning
problem for various settings and solution approaches.

Even more specifically, the content of the thesis is as follows: After having
motivated the problem in the introduction within the context of multi-agent
systems and governance, we next provide the theoretical background of MAS
and the optimization methods that we will apply later to the governance learning
problem (Chapter 2), and we present the restriction-based governance model that
we will use throughout the thesis (Chapter 3). We give a comprehensive overview
of the relevant existing work in Chapter 4, and then use our model to investigate
various facets of restriction-governed multi-agent systems (Chapters 5 to 9). As
a first step, Chapter 5 proposes a heuristic for governance policy optimization in
matrix games via successive elimination of actions. Chapter 6 then uses Reinforce-
ment Learning for governance policy optimization in discrete stochastic games.
Chapter 7 proposes yet another governance policy optimization method, this time
based on tree search for continuous normal-form games. Chapter 8 describes an
integration of governance capabilities into computational multi-agent reinforce-
ment learning frameworks, and Chapter 9 evaluates the efficacy and fairness
of two opposing governance paradigms. We round the thesis off with a discus-
sion of results and limitations (Chapter 10) before concluding the work (Chapter 11).

Our work contributes to the understanding and advancement of governed multi-
agent systems by:

• Defining a formal model for Action-Space Restricted Multi-Agent Systems (AR-
MAS),
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• providing original solution approaches to identify optimal restrictions for dif-
ferent subclasses of MAS,

• proposing a reference implementation for the integration of ARMAS in the
widely used PettingZoo (Terry et al., 2021) MARL framework, and

• demonstrating the potential of restriction-based governance for performance
and fairness.

1.5 Previous publications

Major parts of the contents have been published in peer-reviewed journals and pre-
sented at international scientific conferences. In particular, the following chapters
correspond to specific publications12:

Chapter 5 Michael Pernpeintner, Christian Bartelt and Heiner Stuckenschmidt
(2021). Governing Black-Box Agents in Competitive Multi-Agent Systems. In: Pro-
ceedings of the 18th European Conference on Multi-Agent Systems (EUMAS
2021).

Chapter 6 Michael Oesterle, Christian Bartelt, Stefan Lüdtke and Heiner Stuck-
enschmidt (2022). Self-learning Governance of Black-Box Multi-Agent Systems.
In: Proceedings of the International Workshop on Coordination, Organiza-
tions, Institutions, Norms and Ethics for Governance of Multi-Agent Systems
(COINE 2022).

Chapter 7 Michael Oesterle and Guni Sharon (2023). Socially Optimal Non-
Discriminatory Restrictions for Continuous-Action Games. In: Proceedings of the
37th AAAI Conference on Artificial Intelligence (AAAI 2023).

Chapter 8 Michael Oesterle, Tim Grams and Christian Bartelt (2024). DRAMA at the
PettingZoo: Dynamically Restricted Action Spaces for Multi-Agent Reinforcement
Learning Frameworks. In: Proceedings of the 57th Hawaii International Confer-
ence on System Sciences (HICSS 2024).

Chapter 9 Michael Oesterle, Tim Grams, Christian Bartelt and Heiner Stucken-
schmidt (2024). RAISE the Bar: Restriction of Action Spaces for Improved Social
Welfare and Equity in Traffic Management. To appear in: Proceedings of the 23rd

International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2024).

Other publications with ideas that have been developed and refined throughout
the PhD research and included in this thesis but do not appear here in their original
form are:

• Michael Pernpeintner (2019). Collaboration as an Emergent Property of Self-
Organizing Software Systems. In: 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS*W 2019).

12For each of these publications, I explicitly state my own contributions at the beginning of the
chapter.
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• Michael Pernpeintner (2020). Achieving Emergent Governance in Competitive
Multi-Agent Systems (Doctoral Consortium). In: Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multi-agent Systems (AAMAS
2020).

• Michael Pernpeintner (2021). Self-Learning Governance of Competitive Multi-
Agent Systems. In: Organic Computing Doctoral Dissertation Colloquium (OC-
DDC 2020).

• Michael Pernpeintner (2021). Toward a Self-Learning Governance Loop for Com-
petitive Multi-Attribute MAS (Extended Abstract). In: Proceedings of the 20th

International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2021).

From all publications, the models, related work sections, and general discussions
have been grouped and condensed into the respective chapters of this thesis. Note
that the motivational storylines for the individual chapters, while building upon
each other, have evolved naturally over the course of the PhD work. To make this
process transparent and allow the reader to follow the chronological progress com-
fortably, we have deliberately left the motivation sections of Chapters 5 to 9 essen-
tially unchanged. A more stringent overall motivation—looking backward from the
final product and connecting the dots—is provided in a few paragraphs at the be-
ginning of each chapter.

The code for all experiments, while not constituting a part of the formal submis-
sion, can be found at

https://github.com/michoest/thesis,

allowing for traceability and reproducibility of our results.

https://github.com/michoest/thesis
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Chapter 2

Background

To understand precisely how agents interact in a multi-agent system and how gover-
nance can influence it to achieve its goals, we need to formalize the schematic models
from Chapter 1 and recap existing solution methods. This background chapter in-
troduces existing frameworks and methods widely used in multi-agent research and
relevant to our work; most originate in game theory, machine learning, and mathe-
matical optimization.

2.1 Interaction frameworks

This thesis’s novel content builds upon several frameworks that have been used for
many decades to formally describe decision-making scenarios. In this section, we
provide the necessary models using a unified notation that can easily be extended
in Chapter 3 to incorporate our own contributions. The two main complexities are
(a) the interaction between an agent and an environment and (b) the interaction
among multiple agents. These two challenges are formalized in the concepts of
Markov Decision Processes (MDPs) and Normal-Form Games (NFGs), respectively.
The Stochastic Game (SG) model combines the above frameworks, and the notion of
partial observability provides additional support for incomplete information.

2.1.1 Markov Decision Processes

Decision-making in artificial and real-world scenarios often involves navigating
complex and uncertain environments. Whether it is a robot exploring an unfamil-
iar terrain, a financial investor making investment decisions in a volatile market, or
a healthcare provider determining treatment strategies, the ability to make optimal
decisions in the face of uncertainty is paramount.

Markov Decision Processes (MDPs) offer a structured and formal approach to
tackle such decision problems. By explicitly considering the probabilistic nature of
events and incorporating the consequences of different actions, MDPs enable us to
reason about the long-term implications of decisions and identify optimal strategies.
The power of MDPs lies in their ability to capture the dynamics of a system over
time. By defining states, actions, transitions, and rewards, we can model the sys-
tem’s behavior and study the interplay between decision-making and (uncertain)
outcomes. This allows us, for example, to design intelligent agents that can adapt
their actions based on observed states and thus maximize their expected cumulative
rewards.

MDPs are used in Reinforcement Learning and other decision-making ap-
proaches to formalize and study problems in which the outcome of each decision
is uncertain. They are particularly useful in scenarios where an agent needs to make
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a sequence of decisions over time in a dynamic environment, and the outcome of
each decision is probabilistic and depends on the current state of the environment.

Definition 1. A Markov Decision Process (MDP) is a tuple

(S , A, r, δ) ,

where S is the set of environmental states, A is the agent’s action space, r : S × A×S → R

is the agent’s reward function, and δ : S × A→ ∆S is the (stochastic) transition function1.

State , reward 

Environment Agent

Action 

FIGURE 2.1: Illustration of the agent-environment interaction
in an MDP.

Remark 1. If the MDP is deterministic, i.e.,

∀s ∈ S , a ∈ A ∃s′ ∈ S : P[δ(s, a) = s′] = 1 ,

the notation of reward and transition functions can be simplified by writing r : S × A→ R

and δ : S × A→ S .

The state transition function δ describes the probability of moving from one state
to another given a particular action. Specifically, δ(s, a) represents the probability
distribution of the next state s′ from state s by taking action a. r is a reward function
that maps each triple of state, action, and next state to a numerical reward signal,
indicating the desirability of taking that action in that state2.

The (stochastic) action policy of the agent, i.e., the mechanism used by the agent
to choose an action when given a state, is given as a function π : S → ∆A. Using this
notation, the interaction between agent and environment can be succinctly described
by the evolution formula

st+1 = δ(st, π(st)) , (2.1)

where the output of the stochastic functions is sampled according to the respective
distribution3.

The iterative application of Equation (2.1) to some initial state s0 ∈ S leads to a
trajectory (s0, s1, s2, ..., sT) of states over discrete time steps, from the start (t = 0) to
the end (t = T) of an episode. Adding information about the actions taken and the
rewards received gives a complete description

(s0, a0, r0, s1, a1, r1, ..., st−1, at−1, rt−1, sT)

1For a (finite or infinite) set X, ∆X denotes the set of probability distributions over X, i.e., the set of
all functions p : X → [0, 1] with ∑x∈X p(x) = 1.

2Note that, as the action affects both the reward and the next state, it is not necessarily optimal to
greedily choose the action with the highest (expected) reward at each step.

3The use of a time step t as a subscript indicates that a variable or function evolves over time.
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of an episode, called its history.
The learning behavior of the agent, i.e., the fact that the action policy π can

change over time in order to maximize the agent’s cumulative reward is not de-
scribed by the MDP 4.

From Definition 1, we can immediately see that the Markovian property holds for
an MDP: The future state of the environment depends only on the current state and
the action taken and not on any previous states or actions. This property, which is
often stated as “the future is independent of the past given the present”, is essential
for the applicability of most RL algorithms.

2.1.2 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) extend MDPs by incor-
porating uncertainty in the form of partial observability. In a POMDP, the agent does
not have complete information about the environmental state but instead only has
access to partial observations or noisy signals of the actual state. To represent this, a
set of possible observations and an observation function are added to the model:

Definition 2. A Partially Observable Markov Decision Process (POMDP) is a tuple

(S ,O, σ, A, r, δ) ,

where S is the set of environmental states, O is the set of possible observations, σ : S → O
is the agent’s observation function, A is the agent’s action space, r : S × A× S → R is the
agent’s reward function, and δ : S × A→ ∆S is the transition function.

Observation , reward 

Environment Agent

Action 

FIGURE 2.2: Illustration of the agent-environment interaction in a
POMDP.

Accordingly, the evolution formula analogous to Equation (2.1) is

st+1 = δ(st, π(t)(σ(st))) . (2.2)

2.1.3 Normal-Form Games

In various aspects of life, from economics and politics to social interactions and bi-
ology, we encounter situations where multiple individuals or entities are faced with
choices that impact their own outcomes as well as the outcomes of others. Normal-
Form Games (NFGs), or strategic-form games, offer a structured approach to study-
ing and understanding such strategic interactions. At its core, an NFG represents

4When describing the interaction of agent(s) and environment, we will, from now on, write π(t)

instead of π to emphasize the fact that the action policy does not have to remain the same function
over time.
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a set of players, their possible actions, and the associated payoffs or outcomes. By
mapping out the strategic choices and the resulting outcomes, we can analyze the
game’s dynamics and uncover insights into decision-making strategies, cooperation,
competition, and the overall equilibrium of the system.

By studying NFGs, we can gain valuable insights into various real-world scenar-
ios: Whether analyzing pricing strategies in a competitive market, understanding
the dynamics of political elections, or unraveling the complexities of evolutionary
biology, NFGs offer a versatile tool for modeling and analyzing strategic interac-
tions among rational agents. NFGs are the mathematical representation of one-shot
decision-making problems. They are used to model scenarios where two or more
players make simultaneous decisions, with each player trying to maximize their own
payoff based on all players’ (expected) decisions.

Definition 3. A Normal-Form Game (NFG) is a tuple

(I, A, r) ,

where I is the set of agents, A = (Ai)i∈I are the agents’ action spaces5, and ri : A → R is
agent i’s reward function.

Environment

Ag
en
t

Agent

FIGURE 2.3: Schematic illustration and exemplary payoff matrix of a
two-player NFG. More players can be added by adding dimensions

to the matrix.

In an NFG, each player chooses their action simultaneously without knowing the
actions selected by the other players. The payoff received by each player depends
on the actions chosen by all players, and each player’s goal is to choose the action
that maximizes their expected payoff, given the other players’ choices.

Normal-form games with finite action spaces can be represented in a matrix
form, called the payoff matrix (see Figure 2.3), where each row represents an action
available to the first player, each column represents an action available to the sec-
ond player (and higher-dimensional matrices are used for more than two players),
and the entries in the matrix cells are |I|-tuples representing the payoffs for each
player, given the actions chosen by all players for the respective cell. This matrix
representation is commonly used to analyze and solve normal-form games6.

Remark 2. The terms agent (more common in the multi-agent community) and player
(more common in the game theory community) can be used interchangeably in this context.
By convention, we call the decision-making entities “agents” for the remainder of this work.

5By convention, we write vectors or sequences of variables in boldface.
6For action spaces with infinitely many elements, the reward functions are usually given in analyt-

ical form instead of a matrix (see Chapter 7, where we consider continuous-action games).
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2.1.4 Stochastic Games

Stochastic Games (SGs) are the logical conjunction of Markov Decision Processes and
Normal-Form Games. They describe settings where multiple agents interact with
each other over time in a dynamic and uncertain environment. Stochastic games
can, therefore, be seen as a multi-agent generalization of MDPs, in which the envi-
ronment is influenced by the actions of all agents, and each agent’s reward function
depends not only on the state and action of that agent but also on the actions of the
other agents. Vice versa, they can be seen as “stateful” versions of NFGs, where the
environmental state influences the reward dynamics.

Definition 4. A Stochastic Game (SG) is a tuple

(I,S , A, r, δ) ,

where I is the set of agents, S is the set of environmental states, A = (Ai)i∈I are the agents’
action spaces, ri : S × A× S → R is agent i’s reward function, and δ : S × A → ∆S is
the transition function.

AgentAgent

State , rewards 

Environment Agent

Joint action 

FIGURE 2.4: Illustration of the agent-environment interaction in a
Stochastic Game.

As above, each agent has an action policy πi : S → ∆A defining its behaviour;
the evolution of the system is therefore described by

st+1 = δ(st, π(t)(st)) . (2.3)

Again, the reward and transition functions can be simplified for deterministic
settings.

2.1.5 Partially Observable Stochastic Games

As with MDPs, Stochastic Games can be extended to account for partial observabil-
ity:

Definition 5. A Partially Observable Stochastic Game (POSG) is a tuple

(I,S ,O, σ, A, r, δ) ,

where I is the set of agents, S is the set of environmental states, O = (Oi)i∈I are the sets
of observations for each agent, σi : S → Oi is agent i’s observation function, A = (Ai)i∈I
are the agents’ action spaces, ri : S × A × S → R is agent i’s reward function, and δ :
S × A→ ∆S is the transition function.
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AgentAgent

Observations , rewards 

Environment Agent

Joint action 

FIGURE 2.5: Illustration of the agent-environment interaction in a
POSG.

The essence of a POSG is captured in its evolution function

st+1 = δ(st, π(t)(σ(st))) . (2.4)

Due to the lack of full observability of the environmental state, the agents must
make decisions based on their current observations and beliefs about the true state of
the game, which may be incorrect due to the presence of noise or uncertainty. This
introduces another level of complexity and strategic depth to the game, as agents
must consider not only their current actions but also how those actions might affect
the observations of the other agents and their own beliefs about the state of the game.

POSGs are a powerful generic framework for modeling real-world decision-
making scenarios with inherent uncertainty and incomplete information. They can
be used to study a wide range of applications, including robotics, economics, and so-
cial science. For these reasons, we build our restriction-based governance approach
upon this model.

2.2 Action policies

In the above interaction frameworks, the agents’ part is represented by their action
policies, i.e., their way of mapping an observation to an action, which is then pro-
cessed by the environment, resulting in a transition to another state. An action policy
can be deterministic or stochastic; formally, in the case of a POSG, this means that
the policy of agent i is defined as

πi : Oi → Ai

or
πi : Oi → ∆Ai ,

respectively.
The action policy, as the agent’s only means of interacting with the world, can be

thought of as containing all of its current knowledge, beliefs, and goals. Therefore,
a great deal of research has been dedicated to finding optimal action policies for a
wide range of tasks, particularly to learning optimal action policies from iterative
observation and interaction. The predominant paradigm for agent learning in the
setting of Equation (2.4) is Reinforcement Learning (see Section 2.3).

Remark 3. In the context of a stateless game (e.g., a Normal-Form Game), the action policy
reduces to a probability distribution over the action space and is called a strategy.
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However, before we turn to how agents can learn, let us review some concepts
of rational agents, which are independent of any specific learning approach.

2.2.1 Agent rationality

Agents, by definition, want to achieve a specific goal, expressed as a utility func-
tion7. In a decision process or game, this function is specified as the reward given
by the environment at each step. An agent is said to be rational if its action always
reflects the best choice toward this goal, given its current information. As we will
see in Section 2.3, it is not always easy to define what the best choice is since there
is the inherent trade-off of exploring an unknown environment to gather information
and exploiting this information to make informed decisions. In simple settings like
Normal-Form Games with known utility functions, however, the concept of a best
response is sufficient for rational behavior.

2.2.2 Best response

When an agent knows how the other agents will act in a game (i.e., when the action
policies π−i are fixed and known8), the maximization of its reward function is an
ordinary optimization problem over the agent’s action space. The notion of best
responses in an NFG formalizes this situation without providing any information on
how to find such an action:

Definition 6 (Best Response). Let a ∈ A be a joint action. Then

Bi(a−i) := arg max
a∈Ai

ri(a, a−i) ⊆ Ai

denotes the set of all best responses (BRs) of agent i to the other agents’ given actions a−i.

For a stateful setting, the analogous concept would select the strategies which
yield the highest expected reward, taken over the uncertainty of the transition func-
tion.

2.2.3 Nash equilibrium

A Nash Equilibrium represents a state of a game in which each agent’s strategy is a
best response to the strategies of the other agents. Formally, a Nash Equilibrium is a
set of strategies, one for each agent, such that no agent can improve their payoff by
unilaterally changing their strategy, given the strategies of the other agents.

Definition 7 (Nash Equilibrium). A joint action a ∈ A is a (pure) Nash Equilibrium
(NE) if each individual action ai ∈ a is a best response to the other agents’ actions. N
denotes the set of all Nash Equilibria of a game:

N := {a ∈ A : ai ∈ Bi(a−i) ∀i ∈ I} .

In addition to pure Nash Equilibria, given by a deterministic action for each
agent, the same concept exists for stochastic strategies and dynamic policies. If any

7Depending on the context, the terms reward, preference, or cost function are also used; the name
implicitly defines the direction of optimization.

8For a vector x ∈ Xn over a set X, let x−i := (x1, ..., xi−1, xi+1, ..., xn) ∈ Xn−1 denote the vector
obtained by removing xi. By convention, we also use the concatenation x = (xi, x−i).
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agent were to change their strategy from a Nash Equilibrium unilaterally, their pay-
off would decrease, given the fixed strategies of the other agents. Once all agents
have chosen their strategies according to the equilibrium, no agent is incentivized
to change their strategy unilaterally, making a Nash Equilibrium a “stable” strategy.
However, a game can have multiple Nash equilibria, in which case it may not be
clear which one will actually be played in practice by rational agents.

2.2.4 Optimal policy

In stateful settings, an agent gets a reward for every action it takes, but the actions
also determine (or at least influence) the state where the agent will end up next.
Therefore, a policy needs to take into account both the short-term reward and the
future expected reward. To balance these two goals, the objective function of an agent
is usually defined as the expected return over a given number of steps (also called the
time horizon T):

Definition 8. The return of a policy π is the sum of future rewards when following the
policy, discounted by a factor γ ∈ [0, 1]:

R =
T

∑
t=0

γtrt : at = π(st) (2.5)

When there is uncertainty, e.g., with respect to the stochastic policy π, the transition
function δ, or other agents’ actions, the expected return

R = Eat∼π(st)

[
T

∑
t=0

γtrt

]
(2.6)

is taken instead.

The discount factor γ determines the weight assigned to future rewards relative
to immediate rewards: A discount factor of 0 means that only the reward at the next
step is considered, while a discount factor of 1 means that all future rewards are
given equal importance.

Remark 4. For an infinite time horizon, i.e., T = ∞, the return is only well-defined if γ < 1
since the sum might not converge otherwise.

Naturally, we call a policy optimal if no other policy yields a higher expected
return.

2.3 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 2018) is currently the most popular
paradigm for developing agents that can learn to make decisions based on feedback
from their environment9. RL agents improve their action policy through iterative
interaction with the environment, as defined in Section 2.1.1. Ideally, the policy con-
verges to an optimal value after some training and can then be applied to navigate
the environment without further learning.

There are two main categories of RL algorithms: value-based and policy-based.
Value-based methods learn to approximate the “value” of different actions in a given

9This capability, according to some definitions, already constitutes a form of intelligence.



2.3. Reinforcement Learning 23

state. These methods use a value function to represent the expected reward that an
agent will receive when it takes a particular action in a specific state. The agent
can then choose the action with the highest value in a given state, leading to opti-
mal decision-making. Common value-based methods include Q-learning (Watkins,
1989)—with its deep learning counterpart, Deep Q Networks (DQN) (Mnih et al.,
2013)—, and SARSA (Rummery and Niranjan, 1994). Policy-based methods, in con-
trast, learn to optimize the agent’s policy directly as a stochastic mapping from states
to actions. These methods use a policy function to represent the probability of taking
a particular action in a given state. The agent can then update its policy based on the
rewards it receives, thereby improving its decision-making. Common policy-based
methods are (variations of) REINFORCE (Williams, 1992) and actor-critic (Konda
and Tsitsiklis, 1999).

Since value-based and policy-based methods have their respective strengths and
weaknesses, recent research has focused on combining the two approaches to create
hybrid methods that leverage the benefits of both. These hybrid methods, includ-
ing Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017), have shown promising results in
complex decision-making tasks such as robotics and game playing.

When representing the value function or policy, early RL approaches often used
tables, where each entry corresponds to a state (or state-action pair) and its asso-
ciated value (or policy). However, this tabular representation becomes impractical
for environments with a large number of states or continuous state spaces. Modern
RL methods often use neural networks as function approximators to overcome this
issue. These networks can generalize across similar states, enabling RL to handle
complex, high-dimensional environments, such as those encountered in robotics or
video games. The use of neural networks in RL has given rise to the sub-field known
as Deep Reinforcement Learning (Mnih et al., 2013), which has achieved significant
breakthroughs in various domains in recent years.

For single-agent RL, there are some algorithms that have been proven to con-
verge to an optimal policy (Sutton and Barto, 2018): For example, value iteration
and policy iteration are guaranteed to converge to the optimal policy if (a) the MDP
has a finite number of states and actions, (b) the model, i.e., the transition dynamics
and rewards, is known, and (c) the discount factor γ for the cumulative rewards is
less than one. Q-Learning, on the other hand, is proven to converge to the optimal
Q-values, and consequently, the optimal policy, if (a) every state-action pair is vis-
ited infinitely often, and (b) the learning rate10 α over the training time satisfies the
Robbins-Monro conditions ∑ α = ∞ and ∑ α2 < ∞. Similar conditions hold for the
convergence of SARSA: (a) the policy follows an ε-greedy strategy with decaying ε,
(b) the learning rate conditions of Q-Learning hold, and (c) all state-action pairs are
infinitely explored. In contrast to value and policy iteration, Q-Learning and SARSA
do not require a known model of the environmental dynamics (in other words, they
are model-free).

The details of specific algorithms are not our primary interest here, but we will
make use of the model-free algorithms A3C (Mnih et al., 2016), PPO, and DQN and,
therefore, provide a few key points of interest about them.

A3C, or Asynchronous Advantage Actor-Critic, is a nuanced variant of the actor-
critic approach. In the traditional actor-critic paradigm, both a policy (termed the
actor) and a value function (the critic) are maintained. A3C elevates this setup by in-
troducing an element of asynchrony. It deploys multiple agent instances to explore

10The learning rate of an algorithm generally defines how fast it reacts to new data.
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the environment concurrently. This parallel exploration breaks the usual correlations
arising from single-threaded experience collection. Furthermore, A3C is notable for
its use of the advantage function, which gauges how much better a particular action
is compared to an average action in a given state. This advantage measure guides
policy updates, pushing the agent towards actions yielding higher-than-average re-
wards.

In Proximal Policy Optimization (PPO), we find a method that enhances policy gra-
dient techniques. One of the challenges with traditional policy gradient methods is
the possibility of large policy updates that can destabilize learning. PPO mitigates
this by introducing a clipped objective function. This function penalizes deviations
in the policy that veer too far from a previous iteration, thereby preventing exces-
sively aggressive updates. An additional feature of PPO is its approach to data ef-
ficiency: instead of updating the policy once for each data sample, PPO reuses each
sample across multiple epochs.

On the other end of the spectrum lies DQN, or Deep Q-Network, which is rooted in
value-based RL. Here, the focus is on approximating the Q-values, representing the
expected cumulative reward for taking a specific action in a particular state. Deep
neural networks handle this approximation of the value function. DQN incorpo-
rates two primary mechanisms to stabilize the learning process: experience replay
and a target network. Experience replay involves storing history snippets (com-
prising state, action, reward, and next state) in a buffer. During learning, random
batches from this buffer are sampled, ensuring that updates are not biased by recent
experiences and thus breaking harmful temporal correlations. The target network, a
separate neural network that updates more slowly than the primary network, aids
in calculating expected Q-values, further contributing to stable learning.

2.3.1 Multi-Agent Reinforcement Learning

Unlike traditional single-agent RL, where an agent interacts with a stationary11 en-
vironment, in Multi-Agent Reinforcement Learning (see Canese et al., 2021 for a
recent survey), agents interact with environments that are also affected by other
learning agents, leading to non-stationarity in the observed environment dynam-
ics. Non-stationarity implies that past learnings cannot simply be extrapolated to
guide future behavior since the learned connection between actions, environmental
transitions, and rewards can change unpredictably over time. MARL approaches,
therefore, concentrate on two core issues, compared to classical RL: Non-stationarity,
by force of unknown and dynamic agents, and scalability, since joint action spaces
usually grow exponentially in the number of agents.

If an agent simply sees all other agents as part of the environment without fur-
ther distinguishing them from the “true” environmental dynamics, non-stationarity
prevents guaranteed convergence: There is currently no Reinforcement Learning al-
gorithm that always converges in non-stationary environments (Padakandla, K. J.,
and Bhatnagar, 2020), and consequently no optimality guarantee for independent re-
inforcement learners in multi-agent settings (Lee, Subramanian, and Crowley, 2021).

MARL algorithms can still improve learning by considering multiple agents si-
multaneously, i.e., by sharing, for example, observations, episodes, or learned poli-
cies (Tan, 1997). Some common paradigms have evolved with regard to information

11In this context, stationary refers to an environment where the probabilities of transitions and the
rewards for each state-action pair remain constant over time.
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shared between agents at training and execution time: Centralized training with decen-
tralized execution (CTDE) involves training a single agent that has access to the obser-
vations and actions of all agents during training, but each agent executes its own pol-
icy independently during execution. Decentralized training with centralized execution
(DTCE) means training each agent independently but using a centralized controller
to select actions during testing. In contrast, fully decentralized (i.e., conventional)
learning does not allow any coordination or communication between agents during
training or execution.

To name a few specific algorithms, Value-Decomposition Networks (VDN)
(Sunehag et al., 2018) decompose a joint value function into individual value func-
tions and train agents with a joint Q-function while acting with decentralized poli-
cies. Multi-Agent Deep Deterministic Policy Gradient (MADDPG) (Lowe et al.,
2017) is a CTDE extension of the DDPG algorithm to multi-agent environments,
while COMA (Counterfactual Multi-Agent Policy Gradients) (Foerster et al., 2018)
trains decentralized policies with a centralized critic, using counterfactual reward
baselines.

2.4 Governance

All MARL approaches have in common that they try to minimize the divergence
between user equilibrium and social optimum by enabling cooperation within the
agents, without resorting to an external entity.

In contrast, the governance approach aims at influencing a MAS to maximize the
governance utility of stable results (therefore generalizing the social welfare objec-
tive of cooperative MARL) while the agents keep maximizing their own reward.
By convention, any actions guiding the system towards this objective are termed as
“governance”, no matter how they influence the MAS.

The interaction loop of the POSG model allows for governance intervention at
four different points or any combination of them (see Figure 2.6):
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FIGURE 2.6: Potential governance intervention points in a POSG

1. Observation: The governance can change what agents observe, given the envi-
ronmental state

2. Reward: The governance can change what rewards agents receive for a given
state/action pair

3. Action space: The governance can change what actions agents can take
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4. Transition: The governance can change what the next environmental state is,
given the current state and joint action

While interventions at the observation and transition level are somewhat artifi-
cial and thus have minimal applicability in real-world systems and research, inter-
ventions with respect to rewards and action spaces are common in the literature.
Chapter 4 will provide details about existing governance approaches on both inter-
vention points—action-space interventions are the base of our own work, whereas
reward interventions are a natural comparison for the performance of a restriction-
based governance.
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Chapter 3

Action-Space Restricted
Multi-Agent Systems (ARMAS)

The POSG model (Definition 5) defines a fixed action space for each agent, and the
system dynamics of such a MAS are based on the fact that all agents optimize their
strategies with respect to these available actions.

This chapter introduces an extension of the model, allowing us to describe the
interaction between agents, environment, and a governance with the ability to (dy-
namically) restrict the set of actions available to each agent in the system.

3.1 Model

Our overall goal is to allow a governance entity to influence the MAS to achieve its
objective. Specifically, we propose a governance that can restrict the agents’ action
spaces such that the system dynamics in the restricted MAS lead to higher values of
the governance utility function. To do so, we extend a POSG with two components,
as motivated in Section 1.2: The governance utility function and a restriction policy
as its mechanism. Restrictions, in this context, are simple subsets of an action space;
they are defined by the governance and communicated to the agents.

Definition 9. A restriction is any subset R ⊆ A of an action space A, denoting the set of
allowed actions1.

Definition 10. An Action-Space Restricted Multi-Agent System (ARMAS) is a tuple

(I,S ,O, σ, A, ρ, r, u, δ) ,

where (I,S ,O, σ, A, r, δ) is a POSG, ρ = (ρi)i∈I with ρi : S → 2Ai are the restriction
functions (or restrictors) that are applied to each agent, respectively2, and u : S → R

is the governance utility function. Accordingly, agents’ action policies are now defined as
πi : Oi × 2Ai → ∆Ai with the requirement that supp(πi(o, R)) ⊆ R for any observation
o ∈ Oi and restriction R ⊆ Ai

3. This requirement ensures that any action not in R (i.e.,
any forbidden action) is taken with probability zero4.

1Since restrictions for individual agents are mutually independent, the joint restriction R has the
form of a cartesian set R = ∏i∈I Ri; we write its relation to the full joint action space A as R ⊑ A.

2We denote with 2S := {S′ : S′ ⊆ S} the power set (i.e., the set of all subsets) of an arbitrary set S,
both finite and infinite.

3For a real-valued function f : X → R, supp( f ) := {x ∈ X : f (x) ̸= 0} denotes the support of f .
4In other words, we assume restrictions to be hard constraints in the terminology of Shoham and

Tennenholtz, 1995 (see Chapter 4).
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The evolution function in this model is

st+1 = δ
(

st, π(t)
(

σ(st), ρ(t)(st)
))

.

As with the action policy in an MDP, the evolution and optimization of the
restriction policy is not part of the model; we will return to this crucial part of
governance-based MAS in Section 3.1.1. For now, the governance restriction func-
tions are simply a static canvas on which the multi-agent system is executed (see
Figure 3.1).

AgentAgentEnvironment Agent

Restrictors 

FIGURE 3.1: Agent-Restrictor-Environment loop of ARMAS.

The ARMAS approach does not directly alter the action spaces but instead de-
fines subsets of the action spaces as allowed actions. This design choice ensures
compatibility with neural network architectures that rely on fixed input and output
shapes. In Chapter 8, where an integration of ARMAS with existing MARL imple-
mentations is showcased, the advantages will become evident.

As opposed to other authors (Balke et al., 2013), we do not distinguish between
legal and physical power5: An agent can, as a matter of fact, only choose from the set
of currently allowed actions, which might change from step to step. From an agent’s
viewpoint, an ARMAS is a regular MAS, with the difference that not all actions are
available at each time step.

3.1.1 Governance learning

There is an intentional analogy between agent learning (see Figure 1.4) and our ap-
proach to governance learning: Just like an agent acting in a MAS can alter its action
policy to maximize its reward, the governance in an ARMAS can alter its restriction
policy to maximize its utility. The overall learning scheme, being agnostic about the
kind or frequency of policy changes, is shown in Figure 3.2. Given a concrete defi-
nition of the observation and action space of the governance, this architecture lends
itself well to trail-and-error optimizers like RL; Chapter 6 exploits this by training
an end-to-end RL algorithm as the governance of a discrete-action MAS. However,
other learning algorithms can also be used to update the governance’s restriction
policy.

5This distinction has been the subject of much debate, especially in the field of normative systems;
the different viewpoints are described in Chapters 4 and 6, respectively.
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FIGURE 3.2: Generic governance learning scheme based on the AR-
MAS model. Note that the time steps of the inner and outer loops are
not necessarily linked; in fact, it seems plausible that the governance
should only act (i.e., change the restrictors ρ) after observing the ef-
fect of the current restriction policy for a sufficient number of steps.

3.2 Notable subclasses

In many cases, the full feature set of ARMAS is not exploited. Accordingly, there are
a number of common simplifications of the model; we will make use of the following
reductions in later chapters:

3.2.1 Statelessness

A stateless ARMAS is basically a “governed normal-form game” (see Section 2.1.3):
|S| = 1, and therefore the environmental state, observations and transition function
can be omitted.

3.2.2 Determinism

Determinism in an ARMAS refers to the transition function, meaning that the cur-
rent environmental state and the joint action uniquely define the next state:

∀s ∈ S , a ∈ A ∃s′ ∈ S : P[δ(s, a) = s′] = 1 .

However, the agents’ action policies can still be stochastic.

3.2.3 Uniformity

In a uniform ARMAS, the restriction functions of all agents are equal: ρi = ρj ∀i, j ∈
I, implying that Ai = Aj ∀i, j ∈ I6.

3.2.4 Conditionality

A conditional ARMAS has uniform action spaces and observation functions, and a
(uniform) restriction policy ρ which is conditioned on an agent’s observation: Ai =
Aj = A ∀i, j ∈ I, Oi = Oj = O ∀i, j ∈ I and ρ : S ×O → 2A.

6In case of uniform action spaces, restrictions and observations, we use a simplified notation: For
example, A (without an index) denotes the action space of any single agent, while A := AI denotes
the joint action space.
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Chapter 4

Related Work

Addressing the governance learning problem in multi-agent systems can draw in-
spiration from a variety of existing research. Just like multi-agent learning mainly
derives its methods from single-agent learning and adapts them to address the spe-
cific challenges of agent interaction, our governance learning approach builds on
both agent learning and traditional optimization techniques.

This chapter gives an overview of the literature, limited to work relevant to any
of the subsequent chapters of the present work. Containing theoretical, conceptual,
and domain-specific work, it is divided into three major parts: Agent learning, gov-
ernance, and the research of “improvement by restriction” in Braess’ Paradox.

4.1 Agent learning

The study of agents who learn to act optimally in an unknown environment is al-
most entirely dominated by the Reinforcement Learning (RL) paradigm (Sutton and
Barto, 2018). Designed as a framework to optimize the selection of actions in an
MDP (Section 2.1.1), RL serves as an umbrella term for a wide variety of algorithms
and is still heavily researched. As the name indicates, the basic intuition behind RL
is that, by interacting with the environment and learning from these interactions,
historically successful actions should be reinforced over time, eventually leading to a
policy that always selects the optimal action for any given state.

For our purposes, the relevant topics in the learning literature are the adherence
to action-space restrictions in RL algorithms, as well as the agent-interaction chal-
lenges in Multi-Agent Reinforcement Learning, which appear in a similar form in
the governance learning problem.

4.1.1 Learning with restricted action spaces

Almost all state-of-the-art RL algorithms, including the three algorithms described
in Section 2.3, rely on fixed neural architectures that can only process flat input vec-
tors and output arrays of constant size (notably, algorithms without function ap-
proximators, like tabular Q-learning, do not have this restriction). Although pre-
processing techniques can be employed to flatten complex spaces, they also require
data of fixed shape.

However, RL environments often possess complex space structures, rang-
ing from simple discrete and continuous spaces (Brockman et al., 2016) to
mixed discrete-continuous variants (Neunert et al., 2020) and parametric spaces
(Hausknecht and Stone, 2016; Fan et al., 2019). Several solutions have been pro-
posed to reconcile fixed input and output for RL agents and variable action spaces
for RL environments. These solutions can be categorized as masking, where the agent
is first informed of valid actions and then selects from this set, or replacement, where
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(A) Masking: The subset of valid actions is given
to an agent before it chooses its action.
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(B) Replacement: Invalid actions are replaced by
valid ones after an agent has chosen its action.

FIGURE 4.1: Intervention points for action space restrictions
(cf. Krasowski et al., 2023).

an invalid action chosen by the agent is later replaced with a valid one (following
some replacement strategy), as discussed by Krasowski et al., 2023 and illustrated in
Figure 4.1. Note that we only consider the environment perspective here; of course, an
agent can also mask or replace actions internally before outputting an action to the
environment.

The most commonly used masking approach for discrete action spaces is invalid
action masking, which employs a Boolean masking vector to provide the mask from
the environment (Vinyals et al., 2017; Huang and Ontañón, 2022). There is, to the
best of our knowledge, no analogous method for infinite or continuous spaces, such
that continuous environments need to be discretized for masking (Uther and Veloso,
1998; Sinclair et al., 2020). As for replacement approaches, various alternatives have
been proposed, including random replacement and projection (see Krasowski et al.,
2023), and penalization (Dietterich, 2000). However, penalty-based RL methods
have been shown not to scale well for a large number of invalid actions (Huang
and Ontañón, 2022).

Numerous methods exist for handling irregular action spaces within an agent’s
action policy. Actor-critic methods (Konda and Tsitsiklis, 1999) can internally pe-
nalize the choice of invalid actions while ensuring that the final selected actions are
valid. Dulac-Arnold et al., 2016 propose embedding discrete action spaces into con-
tinuous spaces using nearest-neighbor methods. Conversely, Tang and Agrawal,
2020 suggest discretizing continuous spaces for masking purposes. Zahavy et al.,
2018 train an Action Elimination Network (AEN) to reduce the set of feasible ac-
tions, and Kanervisto, Scheller, and Hautamäki, 2020 enhance learning through ac-
tion space shaping. Discarding invalid actions and re-sampling is another straight-
forward method that can be implemented either within an agent’s action policy or
as a feature of the environment (by setting δ(s, a∗) := s for any invalid action a∗).
However, this method scales poorly when the ratio of invalid actions is high.

Recently, Grams, 2023 have proposed steps toward built-in consideration of
action-space restrictions in RL algorithms. They use interval-union restrictions (see
Equation (7.1) in Chapter 7) as part of the agent’s observation and exploit this in-
formation in two distinct model architectures, called Parameterized Action Mask-
ing (PAM), based on the Parameterized DQN algorithm (Xiong et al., 2018), and
Multi-Pass Scaled TD3 (MPS-TD3), based on TD3 (Fujimoto, Hoof, and Meger, 2018).
However, this approach is quite restrictive with respect to the shape of action spaces,
and its performance does not yet allow for the problem of restricted RL to be con-
sidered solved.

Existing RL libraries typically have limitations in supporting dynamic observa-
tion and action spaces due to the aggregation of trajectories into batches, which re-
quire homogeneous tensors (as explicitly mentioned, for example, in the documen-
tations of Tianshou (Weng et al., 2022) and RLlib (Liang et al., 2018)). Padding is
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often the only method used to handle heterogeneous data. Chapter 8 deals with the
problem of integrating ARMAS with commonly used libraries, showing a flexible
workaround for these limitations.

4.1.2 Multi-agent learning

Most of the MAS literature focuses on the agents’ perspective, attempting to im-
prove their cooperative learning behavior (see, e.g., the surveys of Nowé, Vrancx,
and De Hauwere, 2012; Rizk, Awad, and Tunstel, 2018). As shown in Section 2.1,
the underlying model, the Stochastic Game, can be derived as an extension of an
MDP to multiple agents and as an extension of a Normal-Form Game to multiple
states. Hence, methods from both Stochastic Processes and Game Theory have been
adapted to this setting, mostly with additional assumptions that the proposed algo-
rithms can exploit.

When agents have a common reward function—in other words, under a strong
assumption of intrinsic cooperation—, Claus and Boutilier, 1998 show convergence
to (optimal and suboptimal) Nash equilibria through suitable exploration strategies
in (a simple form of) Q-learning. However, they do not provide any guarantees
or theoretical bounds but instead, propose optimistic exploration strategies to “in-
crease the likelihood of convergence to an optimal equilibrium”. Doan, Maguluri,
and Romberg, 2019 provide a finite-time analysis for the convergence of the dis-
tributed TD(0) algorithm when the communication network between the agents is
time-varying. They obtain an explicit upper bound on the convergence rate as a
function of the network topology and the discount factor.

In another cooperative setting with jointly observed state-action pairs and pri-
vate local rewards, Wai et al., 2018 propose a double averaging scheme, where each
agent iteratively performs averaging over both space and time to incorporate neigh-
boring gradient information and local reward information, respectively. They prove
that the proposed algorithm converges to the optimal solution at a global geometric
rate.

For competitive multi-agent learning, Hoen et al., 2006 and Hernandez-Leal,
Kartal, and Taylor, 2019 identify two main research streams: Game theoretical
approaches, including auctions and negotiations, and Multi-Agent Reinforcement
Learning. The latter adds a layer of complexity to classical Reinforcement Learn-
ing since competitive agents all evolve at the same time and, therefore, disturb the
learning process of their opponents (moving-target problem) (Nowé, Vrancx, and De
Hauwere, 2012).

Mazumdar and Ratliff, 2018 show that competitive agents can get stuck in pe-
riodic orbits. They introduce a new subclass of MAS, called Morse-Smale games, for
which they can provide guarantees that competitive gradient-based learning almost
surely does not get stuck at critical points.

Game theory for multi-agent learning often deals with small, well-defined (and
mostly contrived) scenarios (Bade, 2005; Stirling and Felin, 2013; Gutierrez, Perelli,
and Wooldridge, 2018) like two-player games with a fixed payoff matrix, which can
be formally examined and sometimes also completely solved in terms of optimal
responses and behavioral equilibria. What these solutions lack is widespread appli-
cability to real-world settings where environments are large, information is incom-
plete, and agents do not behave nicely. Therefore, the gap between academic use
cases, on the one hand, and industrial and societal applications, on the other hand,
is still significant.
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Again, there is vast literature for multi-agent learning from an agent’s perspec-
tive (Sutton and Barto, 2018). Durugkar, Liebman, and Stone, 2020 specifically look
at the balance between individual preferences and shared objectives but only con-
sider cooperative agents.

When only a single agent in a multi-agent setting is considered, we must deal
with non-stationarity (see Section 2.3.1). Facing a lack of stationary transition proba-
bilities, multiple methods for model-free learning have been proposed, for example,
Q-learning (Watkins, 1989), DQN (Mnih et al., 2015) and A3C (Mnih et al., 2016), but
none of them comes with a convergence guarantee. In contrast, Lecarpentier and
Rachelson, 2019 employ a model-based approach for non-stationary environments,
assuming a continuous, bounded evolution of both transition and reward.

To solve the scalability issue, Majeed and Hutter, 2020 apply sequentialization to
RL problems with large action spaces at the expense of an increased time horizon.
Their technique of binarizing the action space into sequential decisions lends itself
particularly well to spaces that are binary themselves, for example, all subsets of a
fixed set. As we will see, this is the structure that we face in the governance learn-
ing problem if action spaces are discrete. Other methods for the reduction of state
spaces or action spaces include ϵ-reduction (Dean, Givan, and Leach, 1997; Asadi
and Huber, 2004) as well as exploitation of symmetry (Lüdtke et al., 2018) and pol-
icy structure (Liu, A. Chattopadhyay, and U. Mitra, 2019). Kim, M. E. Lewis, and
C. C. White, 2005 apply such techniques to the problem of stochastic shortest paths,
while Relund Nielsen, Jørgensen, and Højsgaard, 2011 use them for embedding bi-
ological state space models into an MDP.

An alternative is provided by many successful approaches to the multi-agent
learning problem, which introduce new concepts for equilibria (e.g., correlated equi-
libria (Greenwald and Hall, 2003) and cyclic equilibria (Zinkevich, Greenwald, and
Littman, 2005)) or make additional assumptions: Among others, agents can learn
optimal strategies if all agents receive the same rewards (Team Markov Games
(Wang and Sandholm, 2002)), if the game is a Zero-Sum Game (Littman, 1994), if
all opponents are stationary (Conitzer and Sandholm, 2003), or if the “rate of non-
stationarity” is bounded by a variation budget (Cheung, Simchi-Levi, and Zhu, 2020).

The general problem of finding an optimal strategy in a model-free, general-
sum Stochastic Game, however, is still an open challenge (Zhang, Yang, and Basar,
2019). As a consequence, researchers have introduced additional support for the
learning agents. This support can either directly apply to the interaction between
the agents or involve another entity besides the agents. For the first type, agents are
usually allowed to exchange additional information in order to find optimal strate-
gies (Hwang, Jiang, and Chen, 2015; Cacciamani et al., 2021) (see also the recent
MARL surveys of Zhang, Yang, and Basar, 2019 and Gronauer and Diepold, 2021).
The second type is part of the next section.

4.2 Governance

Multi-agent learning, particularly MARL, is concerned with distributed agents
achieving a common goal, which can either be given as a shared reward function or
as a set of related reward functions. The learning and cooperative behavior resides
within the agents or a specialized training process (e.g., training with a centralized
critic who ensures cooperation and mitigates conflicts).
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The concept of governance contrasts this approach, introducing an additional
agent or supervisor in the multi-agent system1.

4.2.1 The general governance problem

We have defined governance in Chapter 1 as any interference with a multi-agent sys-
tem with the goal of achieving some system-level objective in addition to the agent
objectives. This general idea has been brought up in the literature multiple times:

• Shoham and Tennenholtz, 1995 see the governance goal as “guaranteeing the
successful coexistence of multiple programs”, and note that it requires both
a measure for “success” and an instance which can evaluate and possibly in-
fluence the degree of success. The authors make the point that designers of
multi-agent systems can use social laws to make agents cooperate without for-
mally controlling them. They describe an approach to defining such laws of-
fline and keeping them fixed for the entire run-time of the system and mention
the possibility that the agents do not always obey their laws.

• Weyns, Brückner, and Demazeau, 2007 pose the problem in the following way:
“When designing a system that is based only on local interactions in the en-
vironment and the emergent properties resulting from these interactions, it
is a difficult research problem on the one hand to obtain the required global
behavior of the system and on the other hand to avoid undesired global prop-
erties”. As a solution, they suggest to “off-load some of the agent complexity
into the processes of the dynamic agent environment”, calling their approach
Environment-Mediated Multi-Agent Systems (EMMAS).

• Noriega and Jonge, 2016 propose Electronic Institutions (EI) as “coordination
artefacts that serve as an interface between the internal decision making of in-
dividuals and their (collective) goals.”. In contrast to conventional institutions,
they envision electronic institutions “to work on-line and [...] involve the par-
ticipation of humans as well as software agents”.

None of these approaches necessarily requires a physically separate governance
component; instead, they all propose a logical unit with governance capabilities to
be added to a multi-agent system. Those capabilities can sit in a separate entity or
be distributed to the agents, e.g., via norm-awareness within the agents’ models (see
Section 4.2.2 below).

The literature on multi-agent governance, based on the above problem state-
ments, is marked by a number of related ideas and paradigms that are not mutu-
ally exclusive: Normative Multi-Agent Systems (NorMAS) focus on norms (or “social
conventions”) which guide agent behavior and can be violated by agents. Mech-
anism Design creates static rules, thereby defining the playing field on which the
agents interact. Self-organization aims to equip agents with emergent coordination
or self-governance capabilities. Electronic Institutions, as mentioned above, propose
a multi-faceted regulation instance, which includes both normative and restrictive
features. Reward shaping addresses the agents’ rewards to change their behavior. Fi-
nally, restrictions define hard constraints on the agents’ behavior without room for
violations.

1We call the governance entity an agent because it satisfies the characteristics of an autonomous
agent as defined in Chapter 1. However, its actions have a particular structure and meaning; namely,
it governs the MAS by intervening in the agent-environment loop.
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Many works touch more than one of these paradigms, bridging gaps between
some and clearly separating others. Therefore, we follow here the structure of the
broad research streams, pointing out connections and differences.

4.2.2 Norms and normative systems

Norms are a very common approach for achieving system goals in MAS. The dis-
tinction between norms and rules—for example, Balke et al., 2013 state that “[norms]
are a concept of social reality [...] Therefore, it is possible to violate them”—has been
made many times in the literature. They have been called “social conventions” and
“explicit prescriptions” (Conte, Falcone, and Sartor, 1999), “legalistic view of norms”
and “interactionist view of norms” (Boella, Torre, and Verhagen, 2008), “norms” and
“regimented norms” (Balke et al., 2013), “norms” and “hard constraints” (Frantz
and Pigozzi, 2018; Mellema, Jensen, and Dignum, 2021), or “hard norms” and “soft
norms” (Rotolo, 2011; Rotolo and Torre, 2011).

Normative Multi-Agent Systems (Conte, Falcone, and Sartor, 1999; Boella, Torre,
and Verhagen, 2006; Andrighetto et al., 2013) embrace the idea that agent commu-
nities can self-regulate their interactions without a controlling force. Therefore, the
field focuses on (violable) norms, their creation or emergence, observation, revision,
adherence or violation, and sanctioning mechanisms. Rotolo and Torre, 2011 argue
that “achieving compliance by design can be very hard” due to various reasons,
among them norm consistency and enforcement complexity. In their view, NorMAS
are therefore more suitable for open and distributed environments. The lack of hard
obligations requires alternative concepts like sanctions, norm revision, norm conflict
resolution, and others. NorMAS have been researched from various perspectives
and with a host of theoretical frameworks, among them formal languages and log-
ics (García-Camino et al., 2006; Bulling and Dastani, 2016; Perelli, 2019), Bayesian
networks for the analysis of effectiveness (Dell’Anna, Dastani, and Dalpiaz, 2019),
bottom-up norm emergence (Morris-Martin, De Vos, and Padget, 2019) and on-line
norm synthesis (Morales, 2016). Whether normative rewards and sanctions are im-
posed onto the agents from an outside entity (Morales et al., 2013; Neufeld et al.,
2021) or emerge from within the agent community (Morris-Martin, De Vos, and
Padget, 2021), there is always a need for the agents to be norm-aware and to use
normative capabilities in their action policy (Cramton, 2006).

Most authors working on NorMAS follow the convention that norms are “a con-
cept of social reality [which does] not physically constrain the relations between
individuals. Therefore it is possible to violate them.” (Balke et al., 2013). However,
this convention is far from being unambiguous; for instance, Perelli, 2019 use the
term “Normative Synthesis” for the enforcement of certain equilibria.

Like general multi-agent learning capabilities, normative capabilities in MAS can
either be part of the agents (Riad and Golpayegani, 2021), or part of an additional en-
tity (Aires and Meneguzzi, 2017), or both. While early work defined static norms at
design-time (Shoham and Tennenholtz, 1995; Barbuceanu, 1997), the field has since
evolved towards run-time norm creation, synthesis and adaptation (Morales, 2016),
applying methods like Automated Theorem Proving (Neufeld et al., 2021) or Deep
Learning (Aires and Meneguzzi, 2017) to NorMAS.

4.2.3 Electronic Institutions

Electronic Institutions (EI) (Noriega, 1997; Esteva et al., 2001) propose an institution
as the entity which regulates agent interactions, among many other features. They
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do not commit themselves to using either norms or rules but provide support for
both approaches, described as an “implementation of the control functionality of
the institution infrastructure [which] takes care of the institutional enforcement”.

The EI framework itself does not only describe rule-setting capabilities but also
agents, roles, a performative structure, and normative rules, and other features (Esteva et
al., 2001). The same holds for alternative models for social coordination, e.g., ANTE
(Lopes Cardoso et al., 2016), or INGENIAS (Gomez-Sanz and Fuentes Fernandez,
2016); details of all these frameworks can be found in Aldewereld et al., 2016.

The original implementation of EI and its development environment EIDE (Nor-
iega and Jonge, 2016) envisaged a clear distinction between rule/norm creation at
design-time and agent interaction at run-time (i.e., all rules/norms are given inde-
pendently of the agents and do not change during execution). A logical next step
was the Autonomic Electronic Institutions (AEI) approach (Bou, López-Sánchez, and
Rodríguez-Aguilar, 2007; Arcos, Rodríguez-Aguilar, and Rosell, 2008): Acknowl-
edging the fact that static norms are not always sufficient for dealing with self-
adapting agents, it moved norm creation from the design time to the run-time and
allowed for dynamic changes. EI was therefore extended to include an evolutionary
norm adaptation mechanism (e.g., a genetic algorithm).

4.2.4 Reward shaping

Normative systems and reward shaping are closely connected by NorMAS’ tenet
that norms can be violated and, therefore, require a structure of rewards and sanc-
tions as the consequences for obeying and disregarding a norm, respectively.

In general, reward shaping (Mataric, 1994) addresses the agents’ rewards to
change their behavior, relying on the fact that maximizing the expected new reward
will result in a different action policy. Centralized reward shaping can follow the
structure of, for example, a Vickrey–Clarke–Groves (VCG) mechanism (Nisan and
Ronen, 2004). However, instead of letting the agents optimize their policies, a VCG
mechanism performs the outcome selection itself, computing concrete best actions
for the agents. This leads to well-known computability issues, for example, when
solving the NP-hard problem of optimal allocation in a combinatorial auction. The
VCG-based method of Marginal-Cost Pricing (MCP) (Turvey, 1969) has been suc-
cessfully applied to Braess’ Paradox (Ding and Song, 2012) and real-world traffic
networks (Sharon et al., 2017b; Sharon et al., 2017a; Sharon et al., 2018; Sharon et
al., 2019; Hanna et al., 2019). While presenting promising theoretical and experi-
mental results, these solutions rely on the assumption that agents’ utility functions
can be manipulated in a discriminatory way. Moreover, the effectiveness of rewards
and sanctions fundamentally depends on the agents’ susceptibility to this kind of
(dis-)incentives, rendering the approach useless when agents simply do not react to
sanctions whatsoever.

4.2.5 Restrictions

The ability to restrict the space of available actions for the participating agents has
been described as an essential part of an Electronic Institution: “An electronic in-
stitution defines a set of rules that structure agent interactions, establishing what
agents are permitted and forbidden to do” (Esteva et al., 2008). Aldewereld et al.,
2016 emphasize that “organisational objectives are not necessarily shared by any of
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the individual participants, but can only be achieved through their combined ac-
tion”, and that “one cannot make any assumptions about the inner workings of par-
ticipants. [...] Rather, external aspects of the participants (actions, interactions, etc.)
have to be leveraged to create the required coordination structures”.

Mittelmann et al., 2022 propose a logic-based method (Automated Synthesis of
Mechanisms) for automated mechanism design but focus on optimizing the transition
function while keeping the action space fixed. This is, in a way, a complementary ap-
proach to restriction-based governance. Kanervisto, Scheller, and Hautamäki, 2020
use action space shaping to improve learning, focusing on a single agent’s observa-
tion and action spaces in video games such as Atari, StarCraft, and Dota. Kalweit et
al., 2021 shape the action space of a DQN agent in the domain of autonomous driv-
ing by defining a cost function for actions and then restricting the action space to
those whose cost is below a fixed threshold. A similar approach is used by Achiam
et al., 2017 to directly shape the policy space of an RL agent. Tang, 2017 and Cai
et al., 2018, on the other hand, use Reinforcement Mechanism Design to automate the
design of e-auctions, restricting bidders’ actions based on past behavior. Therefore,
their restrictions are imposed from an outside entity (as in our approach) but not
optimized over a utility function.

The development in NorMAS towards dynamic, objective-driven norm creation
and adaptation has, to our knowledge, not yet taken place for rules (i.e., hard con-
straints): Prior to our own work (Pernpeintner, Bartelt, and Stuckenschmidt, 2021,
see Chapter 5), we are not aware of any work on action space shaping as a means of
aligning user equilibria and social optima in a multi-agent setting.

4.2.6 Fairness

The notion of fairness in algorithmic decision-making (Barocas, Hardt, and
Narayanan, 2019; Mehrabi et al., 2021) has become an important metric next to tra-
ditional performance indicators like reward, loss, or prediction error, particularly
for mechanisms whose output directly affects people. It emerged as an important
requirement to guarantee that ML predictive systems do not discriminate against
specific individuals or entire sub-populations, particularly minorities (Makhlouf,
Zhioua, and Palamidessi, 2020).

While fairness by unawareness (Grgic-Hlaca et al., 2016) emphasizes the impor-
tance of a fair process, this does not imply a fair (i.e., balanced) outcome. The con-
cept of equity, defined by the World Health Organization (WHO) as “the absence of
unfair, avoidable or remediable differences among groups of people” (World Health
Organization, 2023) and widely used in the context of health (Rajkomar et al., 2018;
Rychetnik et al., 2002), can help judge the fairness of an algorithm or a governance
mechanism by evaluating the impact the mechanism has on different groups.

Oneto and Chiappa, 2020 discuss the limitations of current methods for ensuring
fairness in machine learning and propose using causal Bayesian networks and op-
timal transport theory to address these limitations. Corbett-Davies and Goel, 2018
argue that formal definitions of fairness, such as anti-classification and classification
parity, suffer from statistical limitations and propose treating similarly risky people
in a similar way based on accurate risk estimates. Barrio, Gordaliza, and Loubes,
2020 review fairness definitions and methodologies from a mathematical perspec-
tive, focusing on the performance degradation in fair algorithms compared to possi-
bly unfair ones. Joseph et al., 2016 propose a technical definition of fairness modeled
after Rawls’ notion of “fair equality of opportunity” and present an algorithm that
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satisfies this constraint while still being able to learn at a comparable rate to non-fair
algorithms.

4.3 Braess’ Paradox

Restrictions as a means of improving social welfare are widely found in traffic man-
agement and, more specifically, traffic routing in congested graph networks. Braess’
Paradox is the example of social welfare improvement through restriction of multi-
agent systems, and it has been extensively studied from the perspectives of network
design, graph theory, game theory, and others after it had been first described by
Braess, 1968. Most early (and some later) work focuses on the original four-node
network structure, examining criteria for the occurrence of the paradox in terms of
latency functions and traffic rate (Pas and Principio, 1997; Penchina, 1997; Zverovich
and Avineri, 2012). As a second focus area, Roughgarden and Tardos, 2002 show that
the price of anarchy, defined as the ratio between the user equilibrium and the social
optimum and therefore an upper bound for the improvement achievable through
edge restrictions, is ≤ 4

3 for affine latency functions, regardless of the underlying
graph. For general latency functions, particularly for polynomials of unlimited de-
gree, Lin et al., 2011 demonstrate that Braess’ Paradox can be arbitrarily severe, and
Roughgarden, 2006 prove various inapproximability and hardness results for the
problem of identifying the edges causing the paradox. A third line of research deals
with the occurrence of Braess’ Paradox in random and real-world networks: Stein-
berg and Zangwill, 1983 derive a likelihood of 50% via a non-constructive proof, and
Valiant and Roughgarden, 2010 argue that for large Erdős-Rényi graphs with certain
assumptions on edge density and latency functions, the paradox occurs with high
probability for some carefully chosen traffic rate. At the same time, Pas and Principio,
1997; Friedman, 2004 provide evidence suggesting that Braess’ Paradox is much less
likely to occur with randomly chosen traffic rates compared to adversarial rates.

Single-commodity networks (i.e., there is exactly one source-sink pair) with con-
stant traffic rates allow for a static solution while changing demand and multiple
commodities can require adaptive strategies. The multi-commodity case of Braess’
Paradox, albeit with constant traffic rates, has been examined in Roughgarden and
Tardos, 2002; Roughgarden, 2006; Lin et al., 2011; Eickmeyer and Kawarabayashi,
2013. It turns out that the worst-case behavior of congested networks can be much
worse than in a single-commodity scenario: The price of anarchy for the maximum
latency objective can grow exponentially with the network size (Lin et al., 2011).

While most of the research on Braess’ Paradox models the traffic flow on a macro-
scopic level, it can also be shown to occur in microscopic (Bazzan and Klügl, 2005;
Bittihn and Schadschneider, 2021) and mesoscopic (Pala et al., 2012) models.





41

Chapter 5

Finding optimal restrictions via
action elimination

In this chapter, we look at a MAS with discrete action spaces and learn a gover-
nance policy using a frequentist approach: The governance observes the joint ac-
tions taken by the agents, takes this distribution as a predictor for future actions,
and successively eliminates low-utility actions from the joint action space until the
(probability-weighted) expected utility exceeds a given threshold.

Personal Contribution. I defined the model, built the algorithm, designed and conducted
the experiments, and was the sole author of the text. The definition of the research question
and the experimental domain selection were undertaken jointly with Christian Bartelt and
Heiner Stuckenschmidt.

5.1 Motivation

One of the most intriguing and challenging characteristics of a MAS is the fact that
its environmental changes depend simultaneously on the actions of all agents, such
that a single agent can never simply choose an action and confidently predict the
resulting transition. This mutual influence leads to strategic and sometimes even
seemingly erratic agent actions—particularly when human agents are involved—,
and at the same time decouples intended and observed system behavior:

Example 1. Consider a MAS consisting of two agents X and Y, two states A (the initial
state) and B, and two actions 0 and 1 for each agent. This results in the joint action space
A = {00, 01, 10, 11}, where the joint action 10 means that the first agent, X, takes action 1,
while the second agent, Y, takes action 0. The transition function of this MAS is shown in
Figure 5.1.

FIGURE 5.1: Transition graph of the MAS defined in Example 1.

Imagine now an observer who sees the following sequence of actions and transitions:

A 10−→ A 01−→ A 00−→ B

Suppose the observer does not know anything about the inner workings of X and Y. In
this case, it cannot distinguish whether X wanted to stay at state A and changed its ac-
tion from 1 in the first step to 0 in the second step because it anticipated Y’s second action
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or X wanted to reach state B, observed the uselessness of its first action and then tried an-
other strategy to reach B (and failed again). This shows that intentions are not immediately
linked to observable behavior, and no preference order over the environmental states can be
concluded with certainty.

Several existing methods like, for instance, preference elicitation using CP-nets (Koriche
and Zanuttini, 2010), rely on the fact that preferences can be observed. However, this re-
quires additional assumptions about the link between actions and preferences.

In this chapter, we propose a governance approach that uses action space restric-
tions to achieve a system goal, only basing its policy on observed (joint) actions with-
out trying to deduce the agents’ goals or preferences. By assumption, the agents are
purely self-interested and strategically pursue their (confidential) individual goals
without an inherent desire for cooperation.

Throughout the chapter, we use a smart home scenario for both illustration and
evaluation. In the simplest case (Example 2), we only observe the agents’ behavior,
while later on we show how the governance can intervene in this system (Examples 3
to 5).

Example 2. Consider a smart home environment consisting of seven binary variables that
fully describe the system’s state:

S = T ×O×W × B× H × L× A ,

where the variables denote Time (day/night), Occupancy (occupied/empty), Window (open/-
closed), Blinds (open/closed), Heating (on/off), Lights (on/off), and Alarm (on/off), respec-
tively. The agents, who each have their individual preferences over the environmental state,
can now choose to change at most one of the variables W, B, H, L or A at each step (they
cannot, however, influence the Time or the Occupancy of the house).

Assume that there are three agents acting upon the environment with identical action
sets Ai = {∅, w, b, h, l, a} ∀i ∈ I. Time and Occupancy would, of course, be controlled by
external forces, but this is omitted here for simplicity.

An exemplary progression of this system could be

1100101 wa∅−−→ 1110100 blb−→ 1111110
∅∅h−−→ 1111010 hlb−→ 1110100 bwl−→ 1101110 ,

where states are written as binary numbers, and transitions, together with the respective
chosen actions, connect subsequent states.

While total control on the part of an outside authority contradicts the multi-
agent property of such a system, some level of control and cooperation can still
be achieved by a suitable governance approach. Under the assumption that there
are some “global desirable properties” (Rotolo and Torre, 2011) which are to be ful-
filled in addition to the natural, uncontrolled agent behavior, the governance works
toward this objective without destroying the multi-agent property of the system.

The simplest way of achieving a system objective would be, of course, to set fixed
rules that have to be obeyed by all agents, as in off-line rule design (Shoham and
Tennenholtz, 1995). While this can be an effective approach, it necessarily suffers
from at least one of two drawbacks: Either the agents are so heavily constricted that
they lose their autonomy altogether (Fitoussi and Tennenholtz, 2000), or the system
is unable to cope with unforeseen strategies dynamically. Therefore, we propose to
make use of the knowledge that can be collected by observing how agents behave in
the system in order to update and refine the governance interventions successively.
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Following the line of thought given in Example 1, we do not reason in terms
of agent preferences or utilities, but rather in terms of actions and transitions.
Naturally, there is a conflict between control and autonomy, requiring a relative
weighting of the two objectives. We strive here for minimal restriction, subject to a
constraint on the expected value of the system objective.

This chapter proposes a first solution method for the governance learning prob-
lem in an ARMAS, i.e., for optimizing the restriction function ρ with respect to the
governance utility u. The high-level approach is shown in Figure 5.2: The gover-
nance component observes agent actions and subsequent state transitions to refine
its predictions about future agent actions in real time. The current prediction is
stored as an internal governance state, which, at each time step, is used to compute
the optimal restriction. By looking only at the observable behavior, we avoid the
fallacies described in Section 5.1, which arise when directly concluding preferences
over the environmental states.

AgentAgentEnvironment Agents

Governance

Governance

learns from
actions

restricts
actionsmakes a

transition

choose
actions

FIGURE 5.2: Governance loop, showing the sequence of acting (i.e.,
restricting) and learning intertwined with the MAS.

We present a practical approach and corresponding algorithm to immediately
turn observations about the history of the MAS into suitable restrictions, such that
the governance utility is maximized while agent autonomy is preserved as much
as possible. Our proposed algorithm focuses on multi-attribute MAS with binary
attributes, but the results carry over quite naturally to attributes with arbitrary finite
domains since the model does not assume any particular structure of agents and
environment.

The experimental evaluation in Section 5.3 indicates that the approach yields an
effective governance and indeed avoids the problem mentioned above induced by
“observing preferences”.
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5.2 Governance approach

5.2.1 Model assumptions

We limit our investigation here to binary multi-attribute environments, i.e., S = Bm1

for some fixed m ∈ N. For consistency reasons, each agent i has a neutral action
∅i ∈ Ai which cannot be deleted from the set of allowed actions. Agents can change
one attribute per time step (or choose the neutral action), and an attribute is toggled
when at least one agent chooses to change it2.

5.2.2 Governance utility

There are two common types of system objectives: Either minimize (or maximize) a
numerical value, which can directly be expressed by u, or distinguish between valid
states S+ and invalid states S− := S \ S+. In the latter case,

u(s) := −1S−(s) =
{

0 if s ∈ S+
−1 if s ∈ S−

(5.1)

describes a system objective that strictly prefers all valid states over all invalid states
but makes no further distinction.

In addition to this governance utility function, we make one more assumption
which relates to the discussion of autonomy and restriction from Section 1.2.5:

Assumption 1. Between policies that yield the same (expected) governance utility, it is
desirable to choose one that imposes minimal restrictions on the agents.

In adherence to this assumption, the governance we propose will pursue a valid
state with minimal restriction of the agents.

Example 3. As a continuation of Example 2, consider an ARMAS where u is defined as in
Equation (5.1) with

S+ =
{

s ∈ S :
(

w(s) ∨ h(s)
)
∧ (a(s) ∨ o(s)) ∧

(
l(s) ∨ o(s)

)}
,

meaning that the governance wants to make sure that (a) the window is not open while the
heating is turned on, (b) the alarm is on when the house is empty, and (c) the lights are off
when there is nobody at home.

It is now the task of the governance to impose minimal restrictions on the agents while
keeping st ∈ S+ ∀t ≥ 0.

5.2.3 Governance state

The governance’s knowledge about past agent behavior is stored in a data structure
similar to a Q-table (Watkins, 1989), such that acquisition of new knowledge from
observations as well as conclusions about conflicts and optimal action restrictions
can be performed as part of an on-line governing cycle.

Let n be the number of agents, m the number of binary attributes, and k the
number of actions for each agent (we assume the same fundamental action space for
all agents). Then the governance state space is S := Nn×2m×k

0 , i.e., a simple counter
of observed actions per agent per environmental state. Note that the second index of

1B := {0, 1} denotes the Boolean field.
2This setup corresponds to the deterministic subclass of ARMAS, as defined in Section 3.2.2.
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the governance state can naturally be identified with an environmental state s since
S = Bm ∼= {0, ..., 2m − 1}.

This gives rise to an (observed) probability distribution

P(t)
i (s) :=

(
s(i,s,1)

s(i,s)
, ...,

s(i,s,k)

s(i,s)

)
∈ Pk , where s(i,s) =

k

∑
j=1

s(i,s,j)

for each agent i and environmental state s, which reflects the knowledge about
the agents’ past actions up to step t and thus contains the governance’s best guess
for the actions at step (t + 1). It is customary to set Pi(s) :=

( 1
k , ..., 1

k

)
if s(i,s) = 0, or

to use another initial distribution3.

Example 4. In the setting of Example 3, the governance state s is a three-dimensional matrix
of size 3× 27 × 6 (i.e., agents × states × actions). Slicing this matrix along its second axis,
i.e., at a specific environmental state, gives a (3× 6) matrix; at step t = 5, the transition
sequence from Example 2 would result in

s(5) (□, 1110100,□) =

0 0 2 0 0 0
0 1 0 0 1 0
0 0 1 0 1 0


and consequently

P1(1110100) =
(
0 0 1 0 0 0

)
P2(1110100) =

(
0 1

2 0 0 1
2 0

)
P3(1110100) =

(
0 0 1

2 0 1
2 0

)
.

5.2.4 Observation and learning

As soon as all agents have made their choice of action a(t) = (a(t)i )i ∈ R(t) = ρ(t)(st)
and the environment has proceeded to the next state st+1, the governance can use
the newly observed transition (st, a(t), st+1) to learn about the agents and the effec-
tiveness of the restrictors ρ(t). This learning step is expressed as an update of the
governance’s internal state s, which, in turn, will be used by ρ in the next step.

Writing the governance learning function as λ : S× S× A→ S, we have

s(t+1) = λ
(
s(t), st, a(t)

)
.

Specifically, λ tracks the actions chosen by the agents by incrementing the respec-
tive elements of the governance state after observing the tuple (st, a(t)):

λ(s, st, a(t)) = s′, where s′(i,s,j) :=

{
s(i,s,j) + 1 if a(t)i = j ∧ st = s
s(i,s,j) else

.

3Pk :=
{

x ∈ Rk, 0 ≤ xi ≤ 1, ∥x∥1 = 1
}

denotes the set of probability vectors with k elements. Simi-
larly, let Pn

k be the set of n-dimensional matrices with size k in each dimension, whose entries lie within
[0, 1] and sum up to 1.
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5.2.5 Restriction of action spaces

We make two independence assumptions regarding the probability of choosing an
action: First, the relative probability of choosing an action ai over another action bi
does not change when a third action is forbidden:

Assumption 2. Let Ri, R′i ⊆ Ai be two restrictions. Then

∀ai, bi ∈ Ri ∩ R′i :
PRi(ai)

PRi(bi)
=

PR′i
(ai)

PR′i
(bi)
∈ R∪ {∞} .

Therefore, we can remove individual actions from Pi(s) and still have a valid
distribution (up to normalization) for the remaining actions.

Second, agents exclusively communicate by observing each other’s actions, such
that their actions are independent of each other at a single time step. Interactions
between agents, therefore, require at least one step between an action and the corre-
sponding reaction.

Assumption 3. Let P(t)
i (s) be agent i’s action probability distribution for state s at time t.

Then
P(t)(s) = ∏

i
P(t)

i (s) ∈ Pn
k

is the probability distribution for the joint action of all agents.

This product rule holds for accurate knowledge about the probabilities as well
as the governance’s estimate thereof.

5.2.6 Algorithm

Putting the above considerations into action, we can now present and analyze an
algorithm to integrate observations into the current knowledge (learning step) and
then turn this knowledge into a minimal restriction of action sets (restriction step).

The governance loop (see Algorithm 1) works as follows: The n-dimensional
matrix P(s) of state s ∈ S represents a function P(s) : A → R which assigns to
each joint action a ∈ A the (expected) probability of being chosen. Element-wise
multiplication of the matrix with the utility values of the resulting states gives an
expected cost matrix C(s) ∈ Rkn

with entries

C(s)a := u (δ(s, a)) ·∏
i∈I

Pi(s)ai ∀a ∈ A ,

where an action a is identified with its n-dimensional position in C(s).
Each hyperplane of C(s) along axis i corresponds to an action of agent i, and

the sum of entries at this hyperplane is the expected cost of agent i taking the re-
spective action. We can, therefore, see from the expected cost matrix which actions
from which agents have the highest expected costs. The matrix C(s) can now be
reduced by successively removing maximum-cost hyperplanes (each corresponding
to an action by an individual agent) until the sum of all remaining entries drops be-
low a given cost threshold α ∈ R. Forbidding the removed actions ensures that the
expected cost in the next step is less or equal to α and that no unnecessary restric-
tions are made. Note that α can be chosen arbitrarily, as long as it is large enough to
allow the neutral action to be selected (see Section 5.2.1). The value of α defines the
balance between optimizing restriction and cost.
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For an expected cost matrix C and a subset R ⊑ A of joint actions, we write
∥C∥R := ∑a∈R Ca for the cumulative cost of actions in R (this is equivalent to the
element-wise sum norm of C, restricted to entries corresponding to actions in R). As
a shorthand for the full matrix, we use ∥C∥ := ∥C∥A. Moreover, we use the element-
wise product X ◦ Y := (Xi · Yi)i for matrices X, Y with the same shape, and the
component replacement (x−i, yi) := (x1, x2, ..., xi−1, yi, xi+1, ..., xn) for vectors x, y.

Algorithm 1: Restricting agent actions via successive elimination
Data: Governance utility function u, joint action space A, cost threshold α
Input: Probability distributions Pi(st) for the actions of all agents at the

current state st
Output: Restricted action space R

1 P(st) := ∏i Pi(st) ∈ Pn
k ;

2 C := P(st) ◦ u(st) ∈ Rkn
;

3 R := A;
4 while ∥C∥R > α do
5 (i, j) := arg maxa∈R,aj∈Ri\{∅} C(a−i ,aj);

6 Ri := Ri \ {aj};
7 Slice C to remove the corresponding hyperplane;
8 end

Theorem 1. Let C be an expected cost matrix, and assume that ∥C∥{∅∅∅} ≤ α for some
α > 0. Then Algorithm 1 produces a joint restriction R ⊑ A of actions such that

∥C∥R ≤ α . (5.2)

This restriction is Pareto minimal, i.e., ∄R′ ⊐ R with the same property.

Proof. Termination and threshold: At each step of the while loop, an action (which
is not the neutral action) is removed for one of the agents. Therefore, the loop exits
after at most n · (k − 1) passes. Since α ≥ ∥C∥{∅∅∅}, the cost is guaranteed to fall
below α at some point, and the loop does not break until this has happened. Hence,
Equation (5.2) is satisfied at the end of the algorithm.

Minimality: Let C∗ be the cost matrix corresponding to R as returned by Algo-
rithm 1, and assume that C∗ ̸= C. Then C∗ was derived from C by successively
deleting hyperplanes, i.e., individual actions aj ∈ Ai. Let such a deleted action be
denoted by the two defining indices (i, j) (the j-th action of agent i). Then, the se-
quence of deletions can be written as

C = C0
(i1,j1)−−−→ C1 → · · · → Cx−1

(ix ,jx)−−−→ Cx = C∗ ,

where x > 0, ∥Cx−1∥ > α and ∥Cx∥ ≤ α.
Assume now that there is a restriction R′ ⊐ R whose expected cost matrix C′

satisfies ∥C′∥ ≤ α. Then ∃y ≤ x such that action (iy, jy) lies in R′. From ∥Cx−1∥ >
α we can conclude that y ̸= x (otherwise C′ would be equal to Cx−1, which is a
contradiction) and therefore y < x.

This means that (iy, jy) was removed from C before (ix, jx), thus C(iy,jy) ≥ C(ix ,jx)
and consequently

∥C∥R =
∥∥C′
∥∥ > ∥Cx−1∥ > α ,

contradicting the above assumption.
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If u has the structure of Equation (5.1)—valid states have utility 0, invalid states
have utility −1—, then α is precisely an upper bound for the probability of ending
up at an invalid state.

Example 5. Coming back to Example 4 one last time, we see that s1 = 1110100 incurs
utility u(s1) = −1 since s1 /∈ S+. While the governance probably cannot anticipate and
prevent this transition between t = 0 and t = 1 due to lack of experience, it might be able to
do so at a later time when enough information has been gathered. For example, at t = 3, the
governance could forbid action h ∈ A1 such that the joint action hlb cannot be taken. If agent
1 now chooses action w instead, s4 = δ(s3, wlb) = 1100000 ∈ S+, and the governance has
successfully prevented an undesirable transition with this restriction.

5.2.7 Computational complexity

The time complexity of Algorithm 1 with regard to the input sizes n, m and k can be
straightforwardly derived from the pseudo-code:

• Initialization of P, C, and R: O(kn) +O(kn) +O(kn)

• while loop: O(kn) passes

– Checking the break condition: O(kn)

– Finding the arg max: O(kn · kn)

– Reducing R: O(1)
– Reducing C: O(kn)

Altogether, this results in a worst-case time complexity of O
(

n2 · k(n+2)
)

.

5.3 Evaluation

To test the validity and efficacy of our approach, we compare unrestricted and re-
stricted runs of the smart home use case from Examples 2 to 5: In the unrestricted
case, agents simply act according to their action policies, having the full range of
actions at their disposal all the time. The restricted case adds a governance that
employs the governance loop from Section 5.2.

5.3.1 Evaluation metrics

There is a natural trade-off between achieving the system objective and preserving
agent freedom: The more actions the governance forbids, the higher its level of con-
trol over the agents—in the extreme case, only a single action is allowed for any
given observation, resulting in a fully deterministic trajectory4. On the other end
of the spectrum, the governance always allows all actions, which means there is no
improvement of the governance utility.

In addition to the change in governance utility with and without restrictions, it
is therefore reasonable to measure the degree of restriction, i.e., the relative number of
forbidden actions:

4If the restriction policy is optimal, the prescribed joint action is indeed a governance optimum.
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Definition 11. For an individual agent i ∈ I and time step t ∈ N0, the degree of restric-
tion is defined as

r
(t)
i := 1−

∣∣∣ρ(t)i (st)
∣∣∣

|Ai|
∈ [0, 1] .

The overall degree of restriction r(t) := 1
|I| ∑i∈I r

(t)
i is simply the mean over all

agents. The higher the degree of restriction, the lower the agents’ autonomy.

Remark 5. For finite action spaces, as in the present setting, the function |□| in Defini-
tion 11 can simply be the cardinality (i.e., the number of elements) of the respective sets.
In Chapter 7, we will consider continuous action spaces and, therefore, need to redefine the
degree of restriction, using a suitable measure on these spaces.

Remark 6. It should be noted that real-world agents sometimes cannot choose every action
at every step due to physical or other environmental constraints. Instead, only a subset of
actions is feasible, depending on the environmental state (parametric action spaces). In
this case, the degree of restriction should be defined as the ratio between forbidden and feasible
actions.

The average cost over time is shown for unrestricted and restricted simulations,
while the degree of restriction only applies to the restricted case.

5.3.2 Setup

We consider two scenarios with different types of randomly chosen but fixed agent
action policies: In the deterministic case, each agent i has a fixed mapping of states
and actions, i.e., an action policy πi : S → Ai. In the stochastic case, each agent
has a probability distribution for its actions for every state, i.e., an action policy
πi : S → ∆Ai .

For each of the two scenarios, we run the simulation with three different num-
bers of agents n ∈ {2, 3, 5}, and with a random initial state. To mitigate the risk of
outliers, the data shown in the charts is calculated as the mean of 10 independent
runs with identical parameters.

The cost threshold α was chosen as α := 3
2 · 1

kn , such that the cost associated with a
uniform probability distribution (i.e., no observation) lies within the allowed margin
of error.

As the set of valid states for the governance utility function, we have chosen
S+ := {s ∈ S : w(s) ∨ h(s)}; in other words, the windows cannot be open when the
heating is on. Note that this set includes 75% of the state space.

5.3.3 Results

As can be seen in Figure 5.3 for the deterministic case and in Figure 5.4 for the
stochastic case, the intervention of the governance succeeds in reducing the average
cost substantially in all cases. If the governance does not act, the prior probabil-
ity of being in a violating state s ∈ S− is 25% (and the expected governance utility
consequently is −0.25), which is confirmed by the unrestricted cases (dashed lines).

Moreover, both the average cost and the degree of restriction decrease over time
in the governed case, indicating that the governance indeed learns to predict agent
actions and fine-tune its corrective action. Notably, this learning process is indepen-
dent of an estimated agent preference order: The action policies were created ran-
domly, which implies that they most likely do not correspond to a consistent order
over the environmental states.
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FIGURE 5.3: Results of the experiment with deterministic agent poli-
cies. Top: For each number of agents (i.e., color), we compare the
governance utility with (solid line) and without (dashed line) restric-
tions. Center and bottom: The (relative) improvement achieved by
the governance, as well as the degree of restriction required to achieve

this improvement, are shown for each number of agents.

The effect of governance tends to drop with increasing number of agents. This
might be due to the more widespread probability distribution, which prevents the
governance from finding clear “dangerous” joint actions that it can easily forbid. Of
course, this conjecture must be scrutinized with further experiments or supported
by theoretical findings before conclusions are drawn.

5.4 Summary

In this chapter, we have provided a first governance learning approach for attribute-
based multi-agent systems with unknown agent goals and policies. The governance
is given a utility function over the environmental states and restricts the agents’
action spaces in a way that increases the governance utility. Crucially, publicly ob-
servable actions and transitions are the only input the governance can use to define
and optimize its restriction policy.
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FIGURE 5.4: Results of the experiment with stochastic agent policies.
The meaning of the graphs is identical to that of Figure 5.3.

We have presented, analyzed, and tested an algorithm that creates a minimal
restriction for a given margin of error and thereby prevents transitions into undesir-
able environmental states.

The two primary success criteria—both shown to be satisfied in the
experiments—are a substantial utility improvement and the fact that the degree of
restriction decreases over time. The latter finding shows that the governance learns
to achieve its utility improvement without being overly restrictive.

Unlike other work that assumes a transparent decision and reasoning process
from its agents or even requires fixed and known agent preferences, this approach
is applicable whenever actions can be observed and restricted by the governing in-
stance.

The most evident limitation is that, while the algorithm is functional, it lacks
(polynomial) scalability in terms of the number of agents and attributes, and it fully
re-evaluates the minimal restriction at every step, thereby reducing the continuity
of allowed actions over time. This naturally raises questions about a more efficient
representation of knowledge (e.g., attribute dependencies and conditional probabil-
ities) as well as environments with continuous attributes, irregular shapes, or more
complex transitions.
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Finally, the current approach applies two consecutive governance steps where
the value of actions is determined before deriving a suitable restriction policy from
this knowledge. In analogy to policy-optimization methods in classical RL, it seems
promising to merge these two steps into an immediate policy generation from raw
observations. By doing so, Assumptions 2 and 3 could be relaxed, resulting in a
more general solution approach.
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Chapter 6

Finding optimal restrictions via
Reinforcement Learning

This chapter builds upon an idea raised in the summary of the last chapter: Instead
of maintaining an explicit tabular knowledge base that contains the agents’ past be-
havior and then deriving restrictions (heuristically) from this knowledge, we apply
end-to-end Reinforcement Learning to learn an optimal restriction policy directly.

Personal Contribution. I defined the model, built the algorithm, designed and conducted
the experiments, and was the sole author of the text. The introductory example and the
discussion of the results were jointly developed with Stefan Lüdtke, Christian Bartelt and
Heiner Stuckenschmidt.

6.1 Motivation

Multi-agent systems are widely used as a general model for the interaction of au-
tonomous agents and have been applied to a vast range of real-world settings
(Zhang, Yang, and Basar, 2019), for example, algorithmic trading (Abdunabi and
Basir, 2014), traffic management (Padakandla, K. J., and Bhatnagar, 2020), and multi-
player video games (Marín-Lora et al., 2020).

Example 6. Consider a stock market where high-frequency trading algorithms typically
generate the vast majority of orders. Agents in this setting act autonomously and in a self-
interested manner in order to maximize their profit. As is known, this behavior can lead
to problems like high volatility and extreme stock price behavior (McGroarty et al., 2019).
It is, therefore, crucial that regulators provide both stability (i.e., ensure that extreme price
movement flash crashes will not occur) and opportunity (i.e., ensure that investors can still
use complex proprietary strategies to make a profit).

In this example—as in many other application areas—the agents cannot (or
should not) be fully controlled but must have a sufficient degree of freedom regard-
ing their actions. At the same time, some level of control needs to be imposed on the
agents so that a system objective can be achieved.

Our scope is thus a special class of MAS with three assumptions, inspired by the
concept of Electronic Institutions as described in Chapter 4:

(a) The agents are truly autonomous entities whose goals and strategies cannot be
known (“black-box agents”), but only observed through their actions,

(b) in addition to the agents’ individual goals, there is a system objective that does
not necessarily coincide with or relate to any of the former goals, and
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(c) agent actions can be restricted by a governance that has the power to enforce
such restrictions.

We propose a novel approach to governing a MAS that combines the restriction
concept of an EI with dynamic rule-setting, provided by a Reinforcement Learn-
ing component. This governance observes the public information of the MAS, i.e.,
actions and state transitions, and learns optimal restrictions, which depend on the
system state and the respective agent’s observation1.

A common method for governing agents in an EI is the use of norms with a fo-
cus on rewards and sanctions as the means of influencing agent behavior, while the
action space itself is not affected. This makes two essential assumptions about the
agents: First, “the effectiveness of these norms depends heavily on the importance of
the affected social reality for the individual” (Balke et al., 2013), and second, the nor-
mative awareness needs to be comparable for all participating agents (interpersonal
utility comparison). For unknown agents, we argue that these assumptions cannot be
expected to hold, which is why we base our governance on (mandatory) restrictions
of the agents’ action sets. The dynamic nature of the rule-setting process (rule synthe-
sis) is due to the fact that agents themselves can act strategically and are, therefore,
able to exploit any static rule set.

Of course, the governance’s “power to restrict” requires some sort of physical
control over the MAS. This requirement is satisfied in a wide range of applications,
for example, by any digital platform where agents are software components and
actions are chosen by exchanging messages. Therefore, we assume the adherence to
restrictions to be given.

6.2 Governance approach

The simultaneous execution and learning of a governed multi-agent system is shown
in Figure 6.1. The governance is used (i.e., its restriction policy is queried) before ev-
ery execution step of the MAS to determine the set of allowed and forbidden actions,
whereas the learning takes place in between those execution steps.

At each learning step, the governance optimizes its restriction policy in order to
maximize the system objective, given the observation of the last step. At the same
time, the agents can update their own action policies, but this is not part of the
ARMAS model (as mentioned above, we assume agents to be opaque).

As in the last chapter, and in accordance with ARMAS, the governance dynami-
cally learns to optimize its restriction policy ρ during the interaction with agents and
the environment.

We show in this chapter how a self-learning RL governance with the ability to
restrict action spaces can add value to a MAS. This is demonstrated by comparing
its performance to two natural alternatives (see also Shoham and Tennenholtz, 1995):

• Ungoverned MAS (UMAS), in which the agents alone decide on their actions,
such that coordination or cooperation (if any) can only emerge on its own, and

• Fully Controlled MAS (FMAS), where the governance prescribes all agent ac-
tions, leaving no room for autonomous decisions.

To make this comparison, we conceptualize an RL governance (henceforth called
Governed MAS (GMAS)) for the ARMAS model, analyzing the assumptions made in

1This form of restriction policy is described by a conditional ARMAS (see Section 3.2.4).
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Agents update their
action policies

Governance updates
its restriction policy

Agents update their
action policies
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its restriction policy

......
1. Governance defines allowed
    actions using restriction policy 
2. Agents choose their actions
3. Environment changes its state

1. Governance defines allowed
    actions using restriction policy 
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Learning step Execution step Learning step

FIGURE 6.1: Sequence of execution and learning steps in a
Governed Multi-Agent System

the model and describing the governance’s learning behavior (Section 6.2), and we
present experiments (Section 6.3) to demonstrate that this method can significantly
outperform both alternatives.

The governance is a centralized controller insofar as it observes the entire MAS and
defines restrictions in a centralized way. However, the fundamental difference to
the usual notion of “centralized control” is that the governance leaves a substantial
amount of autonomy to the agents. This is not enforced by its design, but—as the
experiments will show—emerges naturally: The synergy between the governance’s
and the agents’ capabilities gives a performance advantage over full control, causing
the governance to allow multiple actions at most times.

6.2.1 Utility function

The system objective is given as a reward function (i.e., higher is better) used as the
governance utility u : S × A → [0, 1], allowing the governance to directly measure
the success of its restrictions after each environment step. The normalized range of
u between 0 and 1 is chosen for ease of comparability.

6.2.2 Restriction policy

We use in this chapter a conditional restriction policy as defined in Section 3.2.4, im-
plying uniformity of the MAS. As a consequence, agents who make the same ob-
servation o ∈ O at a time step t are always allowed to perform the same actions
ρ(st, o). This is in line with a common-sense definition of fairness: The governance
treats all agents the same way, independent of their identity but depending on their
current situation. To achieve this, learning (i.e., a change of the governance policy)
cannot take place within a time step, but only after all agents have been given their
restrictions.

6.2.3 Learning

The ARMAS model does not specify any particular learning algorithm but only re-
quires a restriction policy ρ to be available for querying at all times. This policy can
be any function S × O → 2A, but, of course, the goal of the governance is to find
a restriction policy that maximizes the reward u, given the agents’ behavior. Since
the governance interacts with the ungoverned MAS in a cycle of information, re-
ward, and action, RL is a natural way to optimize this policy: As agents update their



56 Chapter 6. Finding optimal restrictions via Reinforcement Learning

AgentAgent

Observations , rewards 

Environment Agent

Joint action 

Governance

Observation, reward

Restriction policy

FIGURE 6.2: Illustration of the agent-environment interaction in the
governance MDP, where the ungoverned MAS plays the role of the

environment.

action policy while interacting with the environment, the governance updates its re-
striction policy according to the policy’s effect on the evolution of the MAS, such
that the expected cumulative governance utility is maximized.

From this perspective, the governance itself is an RL agent that acts on the entire
MAS as its environment: The governance interacts with the MAS environment and
the agents, but only sees how its own actions (i.e., defining sets of allowed actions
for the agents) influence its reward and the environmental state. Therefore, it can be
treated as a reinforcement learner with action policy ρ and reward u. Its environment
has the transition function δ′ : S × 2A → ∆S with

δ′(s, R) := δ (s, π(σ(s), R)) , (6.1)

which is a composition of observation functions σ, agent action policies π and MAS
transition function δ.

δ′ is not explicitly known to the governance, such that a model-free algorithm like
A3C, DQN, or PPO must be used to learn the governance policy as the action policy
of the governance agent. The governance is structurally equivalent to a multi-label
classifier: Its policy outputs a subset of the (finite) fundamental action set. Thus,
specialized network architectures for this type of classifier could also be applied in
order to build a more effective governance policy2.

Since agents can (and probably will) change their behavior in response to the
current restriction policy, an ARMAS is inherently dynamic and therefore an on-line
learning problem: Both sides (agents and governance) react to the other side’s ac-
tions and strategies by continuously adapting their own action policies. The initial
restriction policy can be a random function, or it can be set to simply allow all ac-
tions, i.e., ρ(0)(s, o) := A ∀s ∈ S , o ∈ O. At run-time, the governance needs to learn
continuously in order to keep up with changing agent behavior. Therefore, there is
no distinction between training and evaluation as in classical RL, but the governance
learning process continues throughout the lifecycle of the ARMAS.

6.2.4 Stationarity

It is known that, for a stationary MDP, near-optimal regret bounds can be achieved
via RL (Cheung, Simchi-Levi, and Zhu, 2020). The situation is more complicated in
the non-stationary case, depending on whether non-stationarity occurs in discrete
steps (piece-wise stationarity) or continuously, among other criteria.

2We use a vanilla algorithm for our experiments, but one could, for example, adapt the network
architecture of Backpropagation for Multilabel Learning (BP-MLL) (Zhang and Zhou, 2006) for an RL
setting.
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The transition function δ is assumed to be stochastic, but stationary. Therefore,
the defining factor for the stationarity of an ARMAS, seen from the governance’s
view, is the set of agent policies π: δ′ is stationary if and only if all agent policies are
static, as can be seen from Equation (6.1).

While using static pre-trained models is very common for NLP, Computer Vi-
sion, and Speech Recognition (Zaib, Sheng, and Zhang, 2021), this is unusual for
agent models since online learning lies at the heart of useful action selection in
an unknown world. Nevertheless, safety-critical agent-based systems like fully au-
tonomous cars will most likely require some sort of certification ensuring that they
behave (exactly or approximately) in a certain way, which means that their policy
should not, even when learning how to deal with unforeseen situations, be allowed
to deviate too far from the approved policy.

Hence, we cannot generally assume that an ARMAS is stationary, but in some
domains, there can be (quasi-)stationary agents, which means that the governance is
likely to perform better than in a setting where the agents can adapt their strategies
at an arbitrary rate.

6.3 Evaluation

The goal of the experimental evaluation is to investigate the effect of the governance.
For this purpose, we define a game in which the agents need to agree on an action to
get a reward, and then compare three types of systems: Ungoverned MAS (UMAS),
which does not have a governance component at all, Fully Controlled MAS (FMAS),
and our proposed approach, Governed MAS (GMAS).

6.3.1 The Dining Diplomats’ Problem

Consider a MAS with agent set I = {1, ..., n} and uniform action set A = {1, ..., k}.
The agents are positioned in a circle such that each agent can only see their imme-
diate neighbors (see Figure 6.3). At each step, the agents play a card corresponding
to one of their available actions. The environmental state represents the currently
played cards on the table, i.e., S = An and O = A3.

Agents

Actions

FIGURE 6.3: The dining diplomats’ problem

The agents’ goal is to learn to coordinate their actions in order to play the same
cards at the same time. In the style of the famous dining philosophers’ problem, we call
this problem the dining diplomats’ problem, requiring the participating agents to come
to an agreement under imperfect information.
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6.3.2 Reward functions

Consider two reward functions—a state-based reward and an observation-based re-
ward:

rs : S → R, rs(s) =

{
1 if s1 = · · · = sn

0 else

ro : O → R, ro(o) =

{
1 if o1 = o2 = o3

0 else

The state-based reward function only differentiates between “no coordination”
and “full coordination”, while the observation-based reward also shows local coor-
dination between three agents (i.e., the observation space of one agent). The three
system types, UMAS, FMAS, and GMAS, are then defined by different combinations
of the reward functions rs and ro for agents and governance. These combinations are
as follows:

Agents Governance

UMAS ro -

FMAS rs rs

GMAS ro rs

In a UMAS, there is simply no governance. In the FMAS type, agents and gov-
ernance have the same information about achieving their goals, so the governance
cannot use the agents as an additional source of intelligence. In GMAS, however,
the agents have access to more detailed information through ro. Hence, the two piv-
otal dimensions are (a) access to low-level/high-level information and (b) dense and
sparse rewards.

6.3.3 Configurations

We compare the three types of governance for four different problem sizes: Tiny
(n = 5, k = 3), small (n = 10, k = 5), medium (n = 15, k = 7), and large (n =
20, k = 10). This allows us to see clearly at which complexity the different types fail
to achieve coordination and, therefore, highlights the value added by GMAS.

Note that the size |S| = kn of the state space grows polynomially in the number
of actions, but exponentially in the number of agents: In the tiny configuration, there
are 35 = 243 states, while this number is 510 ≈ 107 for the small configuration,
715 ≈ 4 · 1012 for the medium configuration, and 1020 for the large configuration.

6.3.4 Frameworks and algorithms

For our experiments, we use the RLlib library (Liang et al., 2018) for multi-agent
learning, which is based on the Ray distributed computing framework. Both agents
and governance use a standard configuration of the PPO algorithm.

The interaction between agents, governance, and environment requires a sequen-
tial MAS execution: The governance needs to act (i.e., produce a set of allowed ac-
tions) before an agent can choose from this set. All agent actions, in turn, cause the
environment to proceed to the next state. Therefore, the governance is queried n
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times for each environmental step, while the agents each only act once during the
same period.

All experiments were run in ten independent samples for 5 · 106 steps each (this
number was empirically determined to ensure sufficient convergence of the action
policies).

6.3.5 Results

The results of the experiments can be found in Figure 6.4. The governance utility
u, as the main performance indicator, is shown on the left side, while the graphs on
the right depict the corresponding degree of restriction r (see Definition 11 in the
previous chapter).

Since the governance reward at every step is either 0 or 1, we show the average
reward over time, i.e., the percentage of steps where full coordination of all agent
actions has been achieved.

In each graph, the mean of the ten samples (thick line) and the individual sam-
ples (thin lines) are plotted. The numbers vary strongly between samples, i.e., the
mean should be seen as a general trend, not as the “average run”.

Since the governance policy is initialized randomly, all governed types start with
r(0) ≈ 1

2 . The progression of r depends on whether the governance is able to learn
a “fully controlling” way to create a high reward. If it succeeds, r goes up to k−1

k
(i.e., allowing exactly one action) and stays there. Otherwise, the governance must
utilize the agents’ freedom and, therefore, allow more than one action. Notably, the
degrees of restriction turn out to be roughly equal in the FMAS and GMAS types.

The detailed results are:

Tiny Configuration Both FMAS and GMAS achieve an almost perfect reward.
While the FMAS solves the task by simply allowing a single action for each
observation (r(t) → k−1

k = 2
3 ), the GMAS uses a slightly lower degree of re-

striction. The problem is relatively easy, so the agents in the UMAS can also
find a solution, albeit not a perfect one.

Small Configuration This is challenging for the UMAS, but FMAS and GMAS both
achieve similar, good results. Sometimes, the GMAS uses the maximum degree
of restriction, but mostly, agents are given two or three (out of five) allowed
actions.

Medium Configuration The difference becomes larger: The UMAS cannot find a
system state that results in a nonzero reward at all, and the FMAS performs
approximately half as well as the GMAS. We can see from r that even the FMAS
governance does not use a maximally restrictive policy, since it cannot find the
optimal actions for each observation.

Large Configuration Finally, both UMAS and FMAS are not able to get any rewards.
In contrast, the GMAS still achieves a reward of more than 15-20% in four out
of ten runs, using a degree of restriction around 50%.

The results show that the GMAS type succeeds in achieving full coordination of
the agent actions in a substantial fraction of the time steps. As expected, the average
reward decreases with increasing complexity of the setting, but it can handle systems
where neither UMAS nor FMAS is able to get any rewards.
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Governance utility u(t) Degree of restriction r(t)
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FIGURE 6.4: Experimental results. Thick lines show the mean of u(t)

and r(t) over ten independent samples, while thin lines are the results
of the individual samples.
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6.3.6 Discussion

Qualitatively, we make the following observations for the solution capabilities of the
three types of governance:

Tiny Small Medium Large

UMAS ✓ ✓

FMAS ✓ ✓ ✓

GMAS ✓ ✓ ✓ ✓

The hypothesis indeed holds that the synergy of agents and governance signifi-
cantly outperforms the conventional approaches of ungoverned agents and central-
ized control. Notably, in all three cases, the agents simply apply their own selfish
strategies, have no normative awareness, and their rewards are not influenced by
the governance.

In this section, we give an interpretation of the observed results:

System objective and degree of restriction

The governance in the GMAS type does have the power to fully control the MAS—it
could simply allow only one action for any state and observation. Therefore, the cru-
cial observation in the experiments is that the degree of restriction does not generally
converge to k−1

k for t→ ∞.
Instead, the right side of Figure 6.4 clearly shows that the governance leaves a

substantial amount of freedom to the agents and that this freedom causes the gover-
nance reward to be much higher than using full control (i.e., the FMAS type).

The balance between governance control and agent freedom is constantly chang-
ing, depending on how well the system objective (as measured by the governance
reward function) is achieved. It is an essential feature of our approach that the opti-
mal balance is determined via RL and not defined in advance.

Micro-level and macro-level knowledge

There are different types of knowledge in a GMAS: The governance can see the entire
environmental state and knows which states are most desirable but does not know
effective actions to get there since its reward function only indicates whether the
system objective has been fully achieved or not. The agents, on the other hand, lack
a view of the big picture but have a better grasp of how to act on a lower level since
their reward function tells them when they are locally coordinated.

In the UMAS, the overall state is not available to the agents at all, not even
through the governance. This prevents the agents from finding a globally coordi-
nated solution, even though they can coordinate locally. In the FMAS, the gover-
nance sees the big picture but cannot figure out the necessary actions for the agents
to move in the right direction, and does not get support from the locally coordinated
agents.

The combination of these two levels allows the GMAS to reach global
coordination—without ever being instructed on how to combine agent and gover-
nance knowledge. This setting was chosen since it represents a common pattern in
MAS: Individual agents are situated at a specific location in the environment and are
only able to perceive their surroundings, i.e., a small part of the environment. At the
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same time, this small part is where their actions have the biggest impact. The system
designer or operator, in contrast, sees the environment as a whole but does not have
micro-level knowledge about optimal or even useful agent actions. Therefore, the
goal is clear, but the way to get there is unknown.

Incentives for autonomy and restriction

The governance can freely choose the restrictions without being penalized for high
degrees of restriction. Consequently, there is no real incentive for the governance to
allow multiple actions: The chosen degree of restriction directly reflects the highest
expected reward. In the small scenarios, we observe that allowing only one action
per observation is a feasible strategy that leads to high rewards. As the scenarios
get more complex, however, the governance policy is not maximally restrictive any-
more: The governance learns that the autonomous decisions of the agents are more
helpful than centralized control. Still, by selectively forbidding actions, the gover-
nance can support the agents’ action policies.

Penalties for restrictions

A reasonable goal for the governance is to use the least amount of restrictions
to achieve its objective and, therefore, strive to reduce the degree of restriction
whenever this does not counteract the system objective (see our discussion in Sec-
tion 1.2.5). To this end, we also experimented with giving the governance a penalty
in proportion to the current degree of restriction by redefining its utility function as
u′ := u−ω · r with a constant weighting hyperparameter ω. This resulted in a much
lower utility (even when looking at the utility without penalty), making the gover-
nance drop nearly all restrictions early in the training before it then defined new,
more effective restrictions. However, the penalty often prevented the governance
from sufficiently exploring the possible restrictions, so there were many samples
where there was never any reward, even in small scenarios.

6.4 Summary

This chapter re-defined governance within the ARMAS approach of Chapter 3 as an
RL agent acting on a complete MAS, including agents and environment. By acting
through action space restrictions, this governance agent can use a standard RL ap-
proach to find an optimal restriction policy, as measured by its governance utility
function.

The main claim, supported by the experiments, is that such a governance outper-
forms the two extreme cases on the scale from ungoverned MAS to fully centralized
control. We have demonstrated that full control as well as ungoverned learning
agents fail to achieve their goals even in simple scenarios; a challenge solved con-
siderably better by a self-learning restriction-based governance.

An obvious limitation of this approach is that the governance’s action space con-
sists of all possible restrictions of a discrete action space. As such, there is the well-
known curse of dimensionality when dealing with larger agent action spaces and
more agents. Additionally, we see the following open questions and directions for
future work:

• In the experiments presented here, the objectives of agents and governance
were strongly correlated. How can the approach be applied to an arbitrary
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combination of goals, and how do conflicts in the objective functions influence
governance learning?

• What would an extension of the restriction policy to continuous action spaces
look like?

• How do action space restrictions compare (empirically and theoretically) to
other forms of governance, e.g., norms or inter-agent communication?
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Chapter 7

Finding optimal restrictions via
exhaustive search

The approach proposed in the previous chapter is, as mentioned in the summary
(Section 6.4), only feasible for discrete action spaces. In this case, the governance can
be modeled as an RL agent whose actions are subsets of the agents’ action space,
defining precisely their allowed actions. For continuous action spaces, it is not clear
how to canonically represent subsets and, therefore, how to build and train a gover-
nance to find an optimal restriction policy.

In this chapter, we thus investigate continuous agent action spaces, proposing a
third governance approach: Our governance applies a breadth-first search over pos-
sible restrictions, using an oracle function for equilibrium strategies under a specific
restriction.

There are a few additional assumptions on the general ARMAS model for this
investigation: First, we only consider stateless systems, particularly NFGs (see Sec-
tion 2.1.3). Second, the continuous action spaces are assumed to be one-dimensional.
Finally, the same restriction is applied for all agents; in other words, restrictions are
non-discriminatory as defined in the uniform subclass of ARMAS (Section 3.2.3).

Personal Contribution. I defined the model, built the algorithm, designed and conducted
the experiments, and was the primary author of the text. The definition of the research
questions, the focus on continuous action spaces, and the final version of the paper were
jointly developed with Guni Sharon.

7.1 Motivation

Consider a multi-agent game with an additional governance utility function over the
joint actions. Assuming that the agents are self-interested and learn independently,
they might converge to joint actions (“user equilibria”) which are sub-optimal, both
from their own perspective (e.g., with respect to Pareto efficiency) and from the
viewpoint of social welfare (Cigler and Faltings, 2011). This can be demonstrated
in minimal setups (see Examples 7 and 8 in Section 7.2.4), but it is also common
in real-world settings (Ding and Song, 2012; Acemoglu et al., 2016; Memarzadeh,
Moura, and Horvath, 2020).

While the challenge of reconciling selfish optimization and overall social util-
ity in multi-agent settings has long been known (Roughgarden and Tardos, 2002;
Andelman, Feldman, and Mansour, 2009), it has become increasingly relevant with
the rise of ubiquitous autonomous agents and automated decision-making in re-
cent years. Advancements in deep reinforcement learning have enabled agents to
learn very effective (but still selfish) policies not only in well-defined games but also
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in multi-agent systems with large, complex, and unknown environments (Du and
Ding, 2021; Gronauer and Diepold, 2021).

A common solution method for this problem involves reward shaping, where the
agents’ utility functions are altered by giving them additional positive rewards for
socially desirable behavior and negative rewards (i.e., sanctions) for undesirable be-
havior. Normative Systems (Andrighetto et al., 2013) derive such rewards and sanc-
tions from norms, while Vickrey–Clarke–Groves (VCG) mechanisms (Nisan and Ro-
nen, 2004) attribute to each agent the marginal social cost of its actions.

Reward-shaping methods generally make two assumptions which limit their ap-
plicability:

1. Rewards can be changed at will, and agents simply accept the new reward func-
tion. This assumption is feasible in stylized settings but involves an arbitrary
amount of additional incentives (in other words, money) when applied in real-
world settings.

2. It is both possible and ethically justifiable to discriminate between agents by shaping
their reward functions differently. On top of ethical issues, this approach might
not be applicable whenever agents are not identifiable or distinguishable.

As in Chapters 5 and 6, we want to close the gap between user equilibrium and
governance optimum, based on shaping the action space available to the agents at
any given time (as commonly done by regulating governmental entities). Therefore,
agents continue to optimize their own objective function over the restricted action
space. This motivates the problem of finding an optimal non-discriminatory restric-
tion of the agents’ action space, i.e., a restriction that is identical for all agents and
maximizes the governance utility of a stable joint action.

In this chapter, we analyze the problem of finding socially optimal restrictions
for normal-form games with continuous action spaces. We define the concept of a
Restricted Game (RG), which is a subclass of ARMAS, and present a novel algo-
rithm denoted Action-Space Restrictor for Optimal Governance Utility (AROGU) which
finds optimal restrictions via an exhaustive Breadth-First Search (BFS) over the re-
striction space, assuming that (a) there is always a Nash Equilibrium, and (b) there
is an oracle function which provides such a Nash Equilibrium for a given restriction.
We then demonstrate the algorithm’s performance using two well-known game-
theoretic problems—Braess’ Paradox and the Cournot Game. Our experiments show
that applying AROGU can find favorable outcomes even when we relax the assump-
tions. Finally, we outline how the approach developed for (stateless) multi-agent
Normal-Form Games is also applicable to Stochastic Games with state transitions.
This extension, however, is far from trivial due to combinatorial explosion and gen-
eralization over the state space (see also Section 10.2.1).

7.2 Restricted NFGs over continuous action spaces

Restrictions of finite discrete action spaces have a canonical representation, given
by a list of the allowed actions; since there is only a finite number 2|A| of potential
restrictions, it is possible (at least in theory) to list them all and select the optimal one.
For continuous action spaces, such a representation does not exist, which means that
finding and even defining an optimal restriction requires a more elaborate approach.
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7.2.1 Restrictions

Here, we limit our discussion to real-valued interval action spaces A. By doing so,
we can consider restrictions that are finite unions of half-open intervals in A. Note
that it is not clear how to efficiently represent subsets of a multi-dimensional action
space; moreover, action spaces with more than one dimension require a different ap-
proach for defining tentative restrictions (see Section 7.3), which respects the space’s
topology and possible correlations between dimensions.

Assumption 4 (Interval-Union Restrictions). We assume in this chapter that the uniform
(i.e., equivalent for all agents) action space, A, is a one-dimensional interval [a, b) (using
±∞ for unbounded spaces), and that the governance can define restrictions of A which are
finite unions of half-open intervals:

R =
⋃

i

[li, ui) (7.1)

with interval bounds li, ui ∈ A ∀i ∈ I1.
A unique representation of such a restriction can be achieved by additionally demanding

that ui−1 < li < ui < li+1 for all i.

A joint action a ∈ A is allowed if all components of a are in R (i.e., ai ∈ R ∀i ∈ I),
or equivalently, if a ∈ R = RI , since the restriction R applies equally to all agents.

It is important to note that adding or removing an interval [l, u) ⊆ A to or from
R—which is what the AROGU algorithm will do—does not violate Equation (7.1)
since this family of restrictions is closed under finite unions and set differences. We
call a restriction R′ more constrained than R if R′ ⊂ R. Finally, for a restriction R of
form (7.1), let |R| := ∑i (ui − li) denote the size of R.

7.2.2 Restricted normal-form games

A stateless, uniform ARMAS (see Section 3.2.1) can be written as the tuple
(I, A, ρ, r, u), with the (trivial) environmental state and observation functions omit-
ted. For a fixed restriction R = ρ(A) ⊆ A, we have a new, restricted normal-form
game with optimal strategies and equilibria that can deviate arbitrarily from the
“original” game with action space A.

Therefore, it makes sense to consider a function that maps a restriction to the
Nash equilibria under the restriction. We first define a restricted game:

Definition 12. Let G = (I, A, r, u) be a uniform normal-form game together with a gov-
ernance utility function2. For a restriction R ⊆ A, we define the Restricted Game (RG)
G|R = (I, R, r, u) such that the agents are only allowed to use actions in R instead of the full
action space A. The domain of the utility functions is hence restricted to R := RI .

The definitions of best responses and Nash equilibria (Definitions 6 and 7) can
be applied to restricted games, and are denoted as Bi|R and N |R, respectively. It
is noteworthy that they can, in general, change arbitrarily (for better or worse) by
restricting a game.

1Technically, the upper bounds of intervals only need to lie in the closure of A, not in A itself.
2We call this tuple a governed game.
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7.2.3 Governance utility of equilibria

The Nash Equilibria of a MAS can yield different governance utility values. Ar-
guably, the governance has the goal of achieving a guaranteed high utility u, so we
need to consider the minimum governance utility of a NE.

Definition 13. A minimum Nash Equilibrium

N− := arg min
a∈N

u(a)

is an equilibrium with the lowest governance utility (i.e., the worst NE from the governance’s
perspective)3.

We focus on the minimum NE in this definition, since the governance cannot de-
cide which one of the equilibria the agents converge to in a restricted game G|R. The
governance utility of the minimum Nash equilibrium is therefore an important mea-
sure for the evaluation of a restriction algorithm. Since we assume the governance
utility to be the social welfare in this chapter, we define this measure as follows:

Definition 14 (Minimum Equilibrium Social Utility). Let R be a restriction of A. Then

S(R) := min
a∈N |R

u(a) = u(N−|R)

denotes the Minimum Equilibrium Social Utility (MESU) of the restricted game G|R as a
function of the restriction R.

7.2.4 Examples: Braess’ Paradox and the Cournot Game

To illustrate our governance approach, we start with the discrete case of Braess’ Para-
dox (Braess, 1968, see also Section 4.3). Nonetheless, our main contribution applies
to the more general case of continuous action spaces.

Example 7 (Braess’ Paradox). Braess’ Paradox can be translated from its original domain
of traffic routing into a two-agent matrix game as shown in Figure 7.1, where the row action
is controlled by agent 1, and the column action by agent 2. By convention, both agents want
to maximize their respective payoffs.

10 2 3

 total number of agents 
 number of agents using edge 

FIGURE 7.1: Braess’ Paradox as a routing problem with n agents (left)
and an equivalent two-agent Matrix Game (right).

The best response for both agents is always b. Selfish agents will converge to the user
equilibrium (b, b) and, therefore, end up with a payoff of 1. Let us now forbid action b, i.e.,

3Like the set N of Nash equilibria, N− is obviously a property of a specific game G. When this is
unclear, we will write NG and N−G , but otherwise omit the subscript.
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restrict the action space to {a, c}. The user equilibria become (a, c) and (c, a) with a payoff
of 2 each.

There is a vast amount of theoretical and applied work on Braess’ Paradox (see
Section 4.3), showing that Braess-like scenarios are not only technical cases but ap-
pear often in random networks (Valiant and Roughgarden, 2006; Chung and Young,
2010).

Apart from illustrating the efficacy of a restriction-based governance approach,
this example also shows the “meta challenge” of restrictions: if we allowed for indi-
vidual restrictions of the agents’ action spaces, it would be straight-forward for the
governance to achieve any possible outcome (i.e., combination of actions) by allow-
ing each agent to use exactly one action. This procedure reduces the (multi-agent)
game to a (single-agent) optimization problem, where the governance computes the
socially optimal matrix cell maxa∈A u(a) with A = ∏i∈I Ai, and then simply assigns
the respective actions to the agents.

Things become more challenging when only considering non-discriminatory re-
strictions, as we have done in Example 7. This also satisfies an extremely desirable
property for any form of governance: All agents are treated fairly by having the
same space of allowed actions. In the example, the governance could enforce the
(socially optimal) solutions (a, b), (b, a), (b, c), or (c, b) with governance utility 5 by
using individual restrictions. This is not possible with uniform restrictions, but we
can still improve the game’s MESU from 2 to 4.

Let us now consider a game with a continuous action space where rewards are
given as individual utility functions over the joint action space: The Cournot Game
(Cournot, 1838) is a classical example of a NFG with one-dimensional continuous ac-
tion spaces and one of the fundamental economic models for establishing produced
quantities and prices on a market.

Example 8 (Cournot Game). Let two agents decide on the produced quantities q =
(q1, q2) ∈ R2 of a good whose price is defined as p(q) = max(pmax − q1 − q2, 0) with
pmax > 0. Both agents produce at a constant cost of c ≥ 0 per unit. The agents’ rewards
(i.e., their profits) are therefore given as ri(q) = qi · (p(q)− c).

Choosing pmax = 120 and c = 12, the BR of agent i to action qj is Bi(qj) = 54− qj
2 ,

which leads to a unique NE of q∗ = (36, 36) and a payoff of r1(q∗) = r2(q∗) = 1296. By
restricting the quantities produced by each agent to the range qi ≤ 27, it would be possible
to improve the equilibrium payoff to 1458 per agent.

In these examples, we have the particular situation that the restriction improves
the rewards of all agents, which makes a very strong case for using such restrictions.
In general, it is not the case that all agents will be better off, so the governance’s goal
is simply to maximize the governance utility u4.

We revisit the examples in the experiments, using our AROGU algorithm (see
Section 7.3) to find optimal restrictions.

7.3 Governance approach

In this section, we present the Action-Space Restrictor for Optimal Governance Utility
(AROGU) algorithm for continuous-action games with a finite (i.e., bounded) action
space A. AROGU defines a search tree of increasingly constrained restrictions by

4As argued above, any other considerations like fairness are assumed to be baked into this utility
function.
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identifying and testing reasonable subsets of existing restrictions, starting from the
unrestricted action space. The theoretical results and conclusions in this section hold
for an arbitrary governance utility function u.

7.3.1 Restricting the action space

For a given joint action, a, we say that a restriction R invalidates a if a /∈ R, i.e., at
least one individual action is not allowed by R. In general, a restriction R that in-
validates an existing NE does not simply cause a new NE to appear at the boundary
of R (i.e., as close to the old NE as allowed by R)—instead, a new NE might appear
anywhere else in the joint action space, or the restricted game might not have an NE
at all. However, a restriction that does not invalidate any existing NE (we call such
a restriction irrelevant) leaves the existence of those NEs unchanged. More formally:

Proposition 1. Given some x ∈ R, let Uε(x) := [x − ε, x + ε) denote the half-open ε-
neighborhood of x, and for a vector x ∈ Rn, let Uε(x) := ∪n

i=1Uε(xi) ⊆ R5. Assume that
a ∈ A is a joint action such that N ⊆ R with R := A \ Uε(a). Then

N ⊆ N |R ,

which means that invalidating actions within the ε-neighborhood of a does not remove any
of the Nash equilibria from G.

Proof. Let x ∈ N be a NE over the action space A, and let R be defined as in the
statement of the proposition. Then

xi ∈ Bi(x−i) ∀i ∈ I
Def. 6
===⇒ ui(x) ≥ ui(a′, x−i) ∀a′ ∈ A ∀i ∈ I

R⊆A
===⇒ ui(x) ≥ ui(a′, x−i) ∀a′ ∈ R ∀i ∈ I

x∈R
==⇒ xi ∈ Bi|R(x−i)∀i ∈ I =⇒ x ∈ N |R .

As a direct consequence, any restriction that improves the MESU of a game must
invalidate all existing minimum Nash Equilibria.

7.3.2 The AROGU algorithm

Given an action space, the broad idea of AROGU is to define successively more
constrained restrictions and then search for the best of those restrictions in terms
of their MESU (see Algorithm 2). Basically, we can check every possible restriction
of the form (7.1) (see Assumption 4), starting from A and ending with maximally
constrained restrictions. Of course, this brute-force method is not practical since it
requires computing the MESU of infinitely many restrictions.

We propose the following improvement for a current restriction R at any step of
the process: Calculate the minimum NE, a∗ := N−|R, and derive all relevant actions,
i.e., the set Ω :=

⋃
i∈I a∗i of all (individual) actions that are part of N−|R. For each

ω ∈ Ω, define a new restriction by removing an ε-neighborhood Uε(ω) from R (see
Figure 7.2).

5Note that, by definition, this neighborhood is still one-dimensional!
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FIGURE 7.2: Tentative restrictions for a set Ω of relevant actions. Each
tentative restriction is defined by removing an ε-neighborhood of one

of the relevant actions ω ∈ Ω.

Let us consider a graphical example: It follows from Proposition 1 that, in the
setting of Figure 7.2, any restriction R′ ⊂ R which includes ω1, ω2 and ω3, would
not eliminate N−|R, and therefore cannot have a higher MESU than R. Hence, it is
not necessary to check those restrictions, effectively pruning them from the search
tree. As we show experimentally later, this can lead to a significant reduction in the
number of NE calculations required compared to uniformly checking all restrictions.

For each of the tentative restrictions, we repeat the process of computing the NE
and relevant actions, subsequently restricting them further until the action space is
empty. Of all those restrictions, we then select the one that gives the highest MESU,
resulting in a (pruned) breadth-first search over the restriction space. To ensure that
restrictions are not considered multiple times, we keep a set (i.e., a closed/duplicate
list) of already explored restrictions. Moreover, the state space size can be controlled
via the hyperparameter ε (the resolution of AROGU), which defines the size of the
interval around a relevant action that is removed for tentative restrictions.

Algorithm 2: Action-Space Restrictor for Optimal Governance Utility
(AROGU)

Data: Governed Game G = (I, A, r, u), equilibrium oracle µ, resolution ε
Result: Optimal restriction R̂∗ ⊆ A

1 (R̂∗, û∗)← (A, u(µ(A)))
2 Q← Queue with content {A}
3 while Q is not empty do
4 R← Q.dequeue()

// Loop through relevant actions
5 for ω ∈ Ω(µ(R)) do
6 R′ ← R.remove(Uε(ω)) // Tentative restriction

7 if R′ is not empty and has not been explored before then
8 Q.enqueue(R′)
9 if u(µ(R′)) > û∗ then

10 (R̂∗, û∗)← (R′, u(µ(R′)))
11 end
12 end
13 end
14 end
15 return R̂∗
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7.3.3 Equilibrium oracle

To add restrictions purposefully, we need to know where the current equilibria are.
For this work, we assume that there is an oracle function µ which, for a given RG
G|R, returns a joint action a ∈ R which is an equilibrium of G|R with minimum
governance utility. In Appendix A.1, we show how to implement such an oracle for
quadratic utility functions6.

7.3.4 Complexity and correctness

Proposition 2. Let A = [a, b) and ε > 0. Then, any restriction chain

A = R0 ⊐ R1 ⊐ ... ⊐ Rx = ∅

consists of at most ⌈ b−a
ε ⌉ elements, where R ⊐ R′ means that R′ is a tentative restriction

over R as created by Algorithm 2. In other words, the depth of the search tree is bounded by
⌈ b−a

ε ⌉.

Proof. For any subsequent pair Ri ⊐ Ri+1 in a restriction chain, let us denote by ωi
the action whose ε-neighborhood was removed at this step. We see that |ωi −ωj| ≥
ε ∀ i < j (otherwise, ωj would have been already forbidden before its removal).
There cannot be more than ⌈ b−a

ε ⌉ points with pairwise distance ≥ ε on the interval
A which has length (b− a).

As a result of Proposition 2, we can bound the runtime of AROGU by |Ωmax|d,
where d = ⌈ b−a

ε ⌉, and Ωmax is the largest set Ω(µ(R)) we encounter in the for loop
(line 5) of Algorithm 2.

Definition 15. A restriction R∗ is called optimal for a game G if SG(R∗) ≥ SG(R) ∀ R ⊆
A.

Assumption 5. We assume that there is always a Nash Equilibrium for a restricted game,
i.e., Ω(R) ̸= ∅ ∀R ⊆ A.

Proposition 3. Let R∗ be an optimal restriction for a game G. Then, under Assumption 5,

R∗ ⊂ R ⇒ ∃ω ∈ Ω(R) : ω /∈ R∗ .

Proof. Assume that ∀ω ∈ Ω(R) : ω ∈ R∗. Then N−|R ∈ R∗, and since R∗ ⊂ R,
N−|R ⊆ N |R∗ according to Proposition 1. Therefore, S(R∗) ≤ S(R), which, together
with R∗ ⊂ R, contradicts the optimality of R∗.

Proposition 4. Throughout Algorithm 2, (at least) one of the following two conditions
holds:

(i) The restriction queue Q contains a restriction R which is a superset of an optimal
restriction R∗

(ii) R̂∗ is already set to an optimal restriction

Proof. After the initialization step, condition (i) holds since any optimal restriction
R∗ is a subset of A, which is in Q.

6In general, finding a Nash Equilibrium of a given NFG is a hard problem by itself (Daskalakis,
Goldberg, and Papadimitriou, 2009).
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From Definition 15, we see immediately that the update step

(R̂∗, û∗)← (R′, u(µ(R′)))

in line 10 satisfies two properties: A non-optimal restriction never replaces an opti-
mal one, and an optimal restriction always replaces a non-optimal one. Thus, once
condition (ii) is satisfied, it stays satisfied until AROGU terminates. Let us, therefore,
assume that (ii) does not hold yet.

Whenever a restriction R is dequeued from Q, condition (i) either still holds (this
is the case if there is another such restriction still in Q), or R is a superset of an
optimal restriction R∗. Since (ii) is not satisfied, we know that R itself is not optimal.
Proposition 3 asserts that there is a relevant action ω ∈ Ω(R) which is not in R∗.
Hence, at the respective pass of the for loop, we will have R′ := R \ Uε(ω), and, for
a sufficiently small ε, R′ ⊇ R∗.

If R′ has been explored before, it was enqueued then, meaning that (i) still holds.
Otherwise, R′ is enqueued now. If R′ ⊃ R∗, (i) holds, and if not, R′ is optimal, such
that (ii) becomes true.

Theorem 2. Let G = (I, A, r, u) be a governed game. If Assumption 5 holds, and for a
sufficiently small ε > 0, Algorithm 2 finds an optimal restriction R∗.

Proof. AROGU terminates after finitely many steps: Any tentative restriction R′ pro-
duced by a reduction of some R ∈ Q continues a chain of increasingly constrained
restrictions, as in Proposition 2, and the length of such a chain is bounded by ⌈ b−a

ε ⌉.
At the point of termination, Q is empty. Condition (i) in Proposition 4 does not

hold anymore, which means that R̂∗ is indeed an optimal restriction.

7.4 Evaluation

We have shown that the AROGU algorithm finds an optimal restriction for a given
NFG under some assumptions. However, these assumptions are not always satisfied
in real-world settings. Our experimental study is thus set to address the following
open questions:

Q1 If Assumption 5 is not guaranteed to hold, does AROGU still find (close to)
optimal restrictions?

Q2 Does the state-space pruning technique used by AROGU allow for reasonable
run-times, despite the fact that the size of the search tree is exponential in b−a

ε ?

To answer these questions, we examine parameterized continuous-action ver-
sions of the Cournot Game (CG) and Braess’ Paradox (BP). First, we use domain
knowledge about both games to establish theoretical results for their governance
optimum and optimal restriction (see Appendix A). Afterward, we compare these
findings with the results of AROGU for a range of parameters to obtain insights into
AROGU’s scaling behavior. The values of ε were empirically chosen to provide a
good balance between run-time and accuracy, but the results are actually reasonably
insensitive to this choice: Varying ε by a factor of 5 causes the MESU to change by
less than 1% in both games.
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7.4.1 Quadratic utility functions

Let us start by observing that many interesting problems, including the continuous
Braess Paradox (see Definition 18), the Cournot Game, and the continuous version
of any 2x2 matrix game, can be represented as NFGs with quadratic reward functions.
They have the convenient property of being convex or concave (or both, i.e., lin-
ear) in each variable xi, depending on the sign of the coefficient of x2

i . They allow
for efficient computation of best responses and Nash Equilibria and, therefore, lend
themselves well to the examination of RGs and the optimization of restrictions.

Definition 16. A reward function r : A → R is called quadratic if it is polynomial in the
agents’ actions ai and has a maximum degree of 2. This means that, for n agents,

r(a) = ∑
α∈Nn

cα · aα1
1 · · · aαn

n

with cα ∈ R and maxcα ̸=0 (∑n
i=1 αi) ≤ 2.

For two agents, quadratic reward functions have the form

r(a1, a2) = c1a2
1 + c2a2

2 + c3a1a2 + c4a1 + c5a2 + c6

with coefficients c1, ..., c6 ∈ R.
Quadratic reward functions allow us to construct an equilibrium oracle µ for

AROGU without any specific knowledge about the game (see Appendix A.1).

7.4.2 Definition of parameterized games

Definition 17 (Cournot Game). A parameterized Cournot Game (CG) with parameter
λ := pmax − c is defined by I = {1, 2}, A = [0, λ], r1(a1, a2) = −a2

1 − a1a2 + λa1 and
r2(a1, a2) = −a2

2 − a1a2 + λa2.

In the continuous version of Braess’ Paradox, agents do not choose one of the
available routes but decide which fraction of their flow they send through each route
(see Appendix A.4 for the derivation of the reward functions):

Definition 18 (Continuous Braess Paradox). A parameterized continuous Braess Para-
dox (BP) with parameter b ≥ 0 is defined by I = {1, 2}, A = [0, 1], r1(a) =
−4a2

1 + (b− 5)a1 − 4a2 + 17 and r2(a) = −4a2
2 − 4a1 + (b− 5)a2 + 17.

Varying b changes the attractiveness of taking the “cooperative” routes, com-
pared to the “selfish” route. This degree of freedom is sufficient to change the struc-
ture of the game and its equilibria.

7.4.3 Metrics

To measure the performance of AROGU, we use the following metrics:

Definition 19. For an action space A and a restriction R ⊆ A, the degree of restriction
is defined as r(R) := 1− |R||A| , where |R| is the size of R as defined in Section 7.2.1.

Definition 20. The relative improvement of a restriction R is

∆(R) :=
mina∈N |R u(a)−mina∈N u(a)

|mina∈N u(a)| .
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Moreover, we measure the number of oracle calls in AROGU as a proxy for the
cost of finding an optimal restriction, implying that µ is assumed to have constant
run-time7.

7.4.4 Theoretical expectation

Cournot Game

The optimal restriction R∗ for the CG with parameter λ is R∗ = [0, λ
4 )∪ [λ

2 , λ) with a
constant degree of restriction r(R∗) = 25% (see Appendix A.2 for details). We expect
the result of AROGU to fluctuate around these values, depending on the size of ε.
The value of λ does not change the structure of the game but scales the action space
size, the equilibria, and the restrictions, thereby providing insights into the scaling
behavior of AROGU.

Braess’ Paradox

The unique unrestricted NE (user equilibrium) is
(

b−5
8 , b−5

8

)
, while the governance

optimum is
(

b−9
8 , b−9

8

)
. This means that for b /∈ [5, 17], both joint actions coincide

as the action space is A = [0, 1], and restricting the action space cannot improve the
MESU. Within the interval [5, 17], however, the agents’ actions need to be pushed
down (toward 0) to match the governance optimum, giving the optimal restriction
R∗ = A \

[
b−9

8 , b−5
4

]
with a degree of restriction of r(R) = b−5

4 on b ∈ [5, 9] and

r(R) = 17−b
8 on b ∈ [9, 17]. The formal analysis is given in Appendix A.5.

7.4.5 Experimental results

Cournot Game

Figure 7.3 shows the results of AROGU for λ ∈ {10, 11, ..., 200} with ε = 0.1. The
MESU of the restrictions found by AROGU is consistently ≈ 12.5% larger than the
unrestricted MESU, which matches the theoretical prediction. Together with a de-
gree of restriction of ≈ 25%, this answers Q1 affirmatively for this setting. The num-
ber of oracle calls (i.e., tentative restrictions) increases quadratically in |A| (see Ap-
pendix A.3), as opposed to the exponential bound shown above. Regarding Q2, this
indicates that the pruning technique eliminates a large part of the possible restric-
tions.

Braess’ Paradox

Figure 7.4 shows the results of AROGU for b ∈ [4, 18] in steps of 0.1 with ε = 0.001.
Let us have a look at b ∈ [5, 9] first: While the user equilibrium decreases when b
exceeds 5 (agents find it increasingly advantageous to take the center route, causing
more and more congestion), this effect can be completely eliminated using restric-
tions (as we see, the restricted MESU stays at 34). For b > 9, the optimal restriction
stops pushing the agents to choose action 0 but allows an interval of [0, b−9

8 ]. Hence,
both governance optimum and user equilibrium have increasing governance util-
ity, eventually joining at b = 17. Again, the degree of restriction and the restricted
MESU approximately match the theoretical optimum (Q1). Since the action space

7Nemirovsky and Yudin, 1983 have defined the oracle complexity of an algorithm to capture scenarios
like this.
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FIGURE 7.3: Unrestricted and restricted MESU, relative improve-
ment, degree of restriction and number of oracle calls for the

Cournot Game.

FIGURE 7.4: Unrestricted and restricted MESU, relative improve-
ment, degree of restriction, and number of oracle calls for the

Braess Paradox.

has a constant size, the number of oracle calls is asymptotically constant, only im-
pacted by the required degree of restriction and the subsequent pruning (Q2).

7.5 Summary

In this chapter, we have addressed the governance learning problem for continuous
action spaces. Specifically, we had to deal with the challenges of representing con-
tinuous restrictions and searching a potentially unlimited number of restrictions to
find an optimal one.

The AROGU algorithm can significantly improve a game’s minimum equilib-
rium governance utility by aligning user equilibrium and governance optimum with
non-discriminatory restrictions. While its theoretical complexity is (as expected from
the problem specification) exponential in the size of the action space, we have (a)
solved the combinatorial explosion with respect to the number of agents by only
using non-discriminatory restrictions, and (b) shown empirically that our breadth-
first search approach manages with a much lower than exponential number of or-
acle calls in practice. This makes AROGU applicable to real-world settings like the
Cournot Game, even though the theoretical results do not guarantee its efficiency.

We conjecture that restriction-based mechanism design approaches (ultimately,
the vision is that of optimally restricted general Stochastic Games) are a crucial step
to building powerful governance entities for an emergent multi-agent society. For
this vision, however, it is necessary to develop computational frameworks that sup-
port this governance paradigm from both the agent and the environmental perspec-
tive. In other words, commonly used multi-agent frameworks need to acquire the
ability to act as electronic institutions, coordinating not only the interplay between
agents and environment but also the information flow and learning behavior with
respect to restrictions and restricted actions.
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Chapter 8

Implementing dynamic restrictions
in MARL frameworks

Both the execution of an ARMAS and the governance learning problem require
multi-agent systems to communicate action space restrictions between governance
and agents. In contrast to a standard MAS, this requirement manifests as a rather
complex dispatching algorithm that queries the governance before each agent step
while correctly assigning rewards and handling terminations.

Existing MARL implementations do not explicitly offer support for such a gov-
ernance, but it turns out that their structure is sufficiently generic to be enhanced
with a governance wrapper that provides the above-mentioned functionality.

In this chapter, we motivate, implement, and analyze a governance wrapper for
PettingZoo (Terry et al., 2021), a state-of-the-art MARL framework.

Personal Contribution. I defined the architecture of the code package, developed two of
the three use cases, and was the primary author of the text. The implementation was jointly
written with Tim Grams, who also provided the navigation use case (Section 8.3.2).

8.1 Motivation

Since its first release in 2017, OpenAI’s Gym1 environment specification (Brockman
et al., 2016) has become the standard for Reinforcement Learning environments rep-
resented as MDPs or, more generally, as POMDPs. Gym’s minimalistic design offers
enough freedom and flexibility to allow users to create and train RL agents in their
own environments. Consequently, popular RL frameworks like Keras RL (Plappert,
2016), Tensorforce (Kuhnle, Schaarschmidt, and Fricke, 2017), Coach (Caspi et al.,
2017), Acme (Hoffman et al., 2020), Stable Baselines (Raffin et al., 2021), and CleanRL
(Huang et al., 2022) have adopted Gym environments as their default environment
class.

However, Gym is designed for single-agent learning only, employing a loop be-
tween the agent act() and environment step() until the episode is done (see Fig-
ure 8.1). To enable multi-agent settings, approaches based on SGs or POSGs have
been proposed, but, as Terry et al., 2021 have pointed out, implementing them in
code raises several unsolved challenges2. To overcome these limitations, they in-
troduce the Agent Environment Cycle (AEC) model and the corresponding Petting-
Zoo library, which has gained widespread adoption and works seamlessly with RL

1By now, Gym is maintained by the Farama Foundation (https://farama.org/) under the name
gymnasium.

2Specifically, they criticize dummy actions for turn-based games and fixed number of agents for the
POSG implementation of RLlib (Liang et al., 2018), and the lack of intermediate rewards and continu-
ous action spaces for the Extensive-Form Games of OpenSpiel (Lanctot et al., 2020).

https://farama.org/)
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step()

Environment Agent
act()

reset()

if done:

FIGURE 8.1: Agent-Environment loop for a single-agent setting (as
implemented in Gym).

frameworks such as The Autonomous Learning Library (Nota, 2020), AI-Traineree
(Laszuk, 2020), PyMARL (Samvelyan et al., 2019), RLlib (Liang et al., 2018), Stable
Baselines (Hill et al., 2018; Raffin et al., 2021), CleanRL (Huang et al., 2022; Terry,
Black, and Hari, 2020)), and Tianshou (Weng et al., 2022).

In Gym and PettingZoo, agents typically have access to the same set of actions
throughout an episode, either as a discrete set or a box-shaped continuous space3.
Recent versions of PettingZoo seem to allow changing observation and action spaces
at run-time, but instructions are inconsistent4, and compatibility issues arise with
RL algorithms that expect invariant input-output shapes (which is the case for most
common deep learning algorithms).

A commonly used solution for dynamic action spaces is invalid action masking
(Vinyals et al., 2017; Huang and Ontañón, 2022). However, this method, which in-
volves providing a Boolean vector of valid and invalid actions as part of the obser-
vation, is limited to discrete spaces and can be inefficient. For instance, in Dota 2,
where the action space comprises 1, 837, 080 actions (Berner et al., 2019), the masking
approach becomes burdensome with respect to the storage of observation batches.

Dynamic restrictions of the action spaces, as imposed in many real-world scenar-
ios by physical, legal, or other constraints (Mandel et al., 2017; Boutilier et al., 2018;
Chandak et al., 2020), can therefore not be represented by existing RL frameworks
in a principled way. To address this limitation, we propose an extension with the
following components:

1. The action space, referred to as the base space, remains static.

2. Agents receive a restriction as part of their observation, representing an arbi-
trary subset of the base space.

3. Restrictions, represented by gym.spaces, efficiently capture arbitrary sets of
valid actions.

3More complex spaces can be obtained by defining tuples or dictionaries of basic spaces, but these
are internally flattened for processing and, therefore, need to have fixed shapes as well.

4The documentation contains an example with the comment “If your spaces change over time,
remove this line (disable caching)”, but also says “This space should never change for a particular
agent ID.”. The docstring of AECEnv.action_space() even states that the function “MUST return the
same value for the same agent name”.
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4. The internal representation of valid actions in a restriction is opaque, while
compatibility with RL models is ensured through fixed-length flattening.

5. Restrictions can be defined by the environment or provided by a restrictor agent
which produces restrictions as actions.

6. A restrictor agent can be treated like any other agent and may be an RL agent
or a static function.

7. The interplay between the environment, restrictor, and agents is managed by
a restriction wrapper.

Our proposed Dynamically Restricted Action Spaces for Multi-Agent Systems
(DRAMA) implementation is based on the ARMAS model and notation introduced
in Chapters 2 and 3. In this chapter, we explain our reference implementation (Sec-
tion 8.2) and present three use cases in Section 8.3.

8.2 Implementation

In the standard AEC, three entities are of importance: gym.Spaces are passed back
and forth between an AECEnv and one or more Agents, as shown in the minimal
execution loop (see Algorithm 3).

Algorithm 3: Agent-environment cycle (AEC).

env . r e s e t ( )
for agent in env . a g e n t _ i t e r ( ) :

observat ion , _ * = env . l a s t ( )
a c t i o n = agents [ agent ] . a c t ( observat ion )
env . s tep ( a c t i o n )

DRAMA directly builds upon this setup, using the exact same loop. We define
three more classes with their respective base classes, each corresponding to one of
the above entities:

class Restriction(gym.Space) represents any subset of an action space.

class Restrictor(Agent) is an agent whose actions are Restrictions.

class RestrictionWrapper(AECEnv) manages the order of agent and restrictor ac-
tions, as well as the enhancement of agent observations with the respective
restrictions.

This reflects one of the fundamental design decisions of DRAMA: The agent poli-
cies π and the restriction policies ρ are defined in the same way, such that both kinds
of policies can be learned within the training process implemented by PettingZoo-
compatible MARL frameworks. Hence, any restriction needs to be a valid gym.Space
which can be batched for training and evaluation workflows, and restriction poli-
cies are queried (and potentially trained) like an agent policy in the AEC. Moreover,
DRAMA is designed to be extensible by sub-classing any of its components (e.g.,
to define more complex restrictions), even though the reference implementation al-
ready contains the necessary classes for a range of applications.
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8.2.1 Restriction

Discrete restriction For discrete spaces gym.Discrete(n, start=s) with the ac-
tion set {s, s + 1, ..., s + n− 1}, restrictions have traditionally been implemented as
action masks. These masks are Boolean vectors of length n, where each entry in-
dicates whether an action is allowed (True) or forbidden (False). While this ap-
proach is suitable for small n, it becomes inefficient when n is large and only a small
fraction of actions is allowed at each step. To address this issue, we introduce two
implementations of DiscreteRestriction: DiscreteSetRestriction stores a set of
allowed actions, while DiscreteVectorRestriction follows the conventional vector
representation, but as a subclass of gym.Space.

Continuous restriction We provide two restriction classes for one-dimensional
continuous spaces as used in Chapter 7: The IntervalUnionRestriction class rep-
resents a union of closed allowed intervals, and BucketSpaceRestriction repre-
sents a Boolean vector of equally sized allowed and forbidden buckets. For multi-
dimensional spaces, these classes can be combined as long as the dimensions are
independent, such as in gym.Box spaces. For more complex dependencies between
dimensions (e.g., the “circle restriction” A = [0, 1]2, R = {a ∈ A : ||a||2 ≤ 1}), we
offer the generic PredicateRestriction class, which supports the definition of an
arbitrary predicate function, but is not flattenable (see also “Agent observations” in
Section 8.2.3).

8.2.2 Restrictor

The Restrictor class is designed as a regular agent but with Restrictions as ac-
tions. Consequently, the AEC of PettingZoo can handle DRAMA natively without
any special considerations for restrictors.

Observation space The observation structure of a restrictor is not predefined but
comprises the entire env.state() by default. As such, it includes any information
available in the environment, such as the identifier of the next agent or the agents’
latest rewards. In particular, it is not necessarily linked to the observation functions
σ of the agents. Optionally, a custom preprocessing function can be applied before
calling Restrictor.act() (see Section 8.2.3).

Action space Usually, the action space of a restrictor comprises all possible restric-
tions of a given agent action space A (for a more flexible mapping, see “Action Post-
Processing” in Section 8.2.3). To represent this space, which is mathematically equiv-
alent to the power set of A, we provide the base class RestrictorActionSpace. Ini-
tialized with the base space A, it enables the restrictor to generate any Restriction
compatible with A.

Reward function The restrictor’s reward function5 can be constructed using any
information available in the environment. By default, we use the social welfare r =

∑i∈I ri, which sums over all agent rewards.

5In ARMAS terminology, this is the governance utility function.
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8.2.3 Restriction wrapper

The RestrictionWrapper is responsible for managing the interaction between the
environment, agents, and restrictor(s). Prior to querying an agent, the wrapper re-
quests a restriction from the corresponding restrictor and then passes this restriction
to the agent as part of its observation.

Agent-restrictor mapping In the simplest case of DRAMA, a single restrictor is
utilized for all agents. However, multiple restrictors can be defined to accommodate,
for instance, agents with different action spaces. By establishing a mapping between
the set of agents and the set of restrictors, the wrapper can obtain the appropriate
restrictions for each agent from the corresponding restrictor.

Observation pre-processing As mentioned above, the default observation for a re-
strictor is set to env.state(). Optionally, a pre-processing function can be specified
for each restrictor, which the wrapper applies in analogy to the agent observation
functions σ.

Action post-processing In situations where a restrictor functions as a learning
agent, its restriction space might not align with the action space of the (ordinary)
agents. For instance, if the restrictor selects from a predetermined set of restric-
tions, it is advisable to define its action space as Discrete, and subsequently map
the chosen action to a corresponding restriction. To accommodate these scenarios, a
restrictor-generated restriction can undergo post-processing before being passed to
the respective agent. This allows for seamless integration and compatibility between
the restrictor’s actions and the agent’s expected input.

Agent observations The observation received from the environment is passed
to the agents as part of a two-key dictionary: {"observation": ...,
"restriction": ...}. The keys of this dictionary can be customized. For
example, seamless compatibility with Tianshou’s built-in agents requires using
DiscreteVectorRestriction in conjunction with the restriction key action_mask.

By default, the wrapper flattens all observation and action spaces, including re-
strictions, into fixed-shape gym.Box spaces (with possible padding or overflow) to
ensure compatibility with existing libraries. To anticipate the emergence of algo-
rithms in the future that can natively handle a wider range of spaces (i.e., any class
adhering to the gym.Space specification), we offer three more options: (a) Flattening
into variable-shape gym.Sequence spaces, (b) applying a custom flattening function,
and (c) using the original spaces without flattening.

Restriction violations The consequences of violating a restriction can be arbitrarily
defined and may be individual per agent. By default, an invalid action causes the
wrapper to throw a custom RestrictionViolationException. An invalid action
can also be replaced by sampling uniformly from the allowed set or projected to the
nearest action, and custom methods can be added by specifying a function for each
restrictor.
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FIGURE 8.2: Reward and action curves for the Parameterized
Cournot Game with a learning restrictor. At iteration 40, when the
restriction is defined, the reward of both agents undergoes an abrupt
improvement, showing that the restriction is boosting social welfare.
This plot explicitly shows the alternation between restrictor and agent

actions.

8.3 Use cases

In this section, we provide several illustrations of how DRAMA can be applied to
a variety of multi-agent scenarios. It is important to note that these use cases are
intentionally designed to be simple6. The primary emphasis is placed on exploring
the interaction and learning dynamics between the agents and restrictor(s) facilitated
by the restriction wrapper.

8.3.1 Learning optimal restrictions in a continuous-action game

To demonstrate learned restrictions in a continuous action space, let us consider the
Parameterized Cournot Game as defined in Chapter 7.

We aim to learn an optimal restriction by observing the actions of the agents.
The restrictor observes the agents’ behavior until their strategies converge, and then
formulates an optimal restriction based on its estimation of the game’s parameters,
namely pmax and c. In response to the restriction, the agents adjust their actions,
resulting in a stable outcome that differs from the original equilibrium. The gov-
ernance reward (i.e., social welfare), as depicted in Figure 8.2, exhibits a noticeable
increase at the point where the restrictor comes into action. While this learning be-
havior is simplistic, it effectively demonstrates the dynamic interaction between the
restrictor and the agents.

6Two of the three multi-agent systems are taken from previous chapters, while the third one was
first defined in Grams, 2023.
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8.3.2 Training an RL agent with dynamic restrictions in an obstacle avoid-
ance scenario

Using DRAMA, we train an RL agent to navigate a dynamic environment with com-
plex action spaces. In this scenario, restrictions are not necessarily tied to the agent’s
observation but serve as an additional source of information. Consider a navigation
task where an agent aims to reach a goal on a two-dimensional map. The environ-
ment can contain temporary obstacles, such as other agents or objects, which are not
directly sensed by the agent. An external entity can, therefore, suggest restrictions
on the agent’s action space to avoid collisions, such that the agent can select actions
that maximize the expected return over varying subsets of the action space.

The environment, as shown in Figure 8.3, is a 15× 15 field where the agent (blue
circle) has a location lt ∈ R2, perspective pt ∈ [0, 360], and starting position p0 =
(2, 2). At each time step t, the agent observes lt and pt, as well as the distance and
angle to the goal g = (12, 12). It then chooses as its action an angle at ∈ [−110, 110]
to determine the subsequent step’s direction (with a step length of 1). The goal is
reached when the distance d(pt, g) is≤ 1. Seven obstacles of various shapes, defined
by their location and radius, are randomly generated at each episode’s start and are
not observed by the agent.

(A) Projection (B) Unrestricted

FIGURE 8.3: Examplary agent trajectories for the navigation task.
While projection allows surrounding obstacles by bringing actions
into the feasible set, an unrestricted agent is stuck with repeated for-

bidden movements.

To handle the dynamic restrictions, we employ the IntervalUnionRestriction
class to represent the union of open intervals that correspond to actions leading to
collisions. The valid action space is also computed based on these intervals. Since
the number of intervals can vary, the boundaries cannot be treated as static model
inputs. We train a Twin Delayed DDPG (TD3) algorithm (Fujimoto, Hoof, and Meger,
2018) to find the shortest path to the goal, comparing two cases: First, the agent
learns without knowledge of restrictions and may collide with obstacles. Second,
we provide dynamic restrictions to the agent using DRAMA, allowing the agent to
choose feasible actions that are closest to its preferred actions.

The experiment demonstrates that DRAMA improves learning in scenarios with
dynamic action spaces: The fraction of evaluation environments where the agent
succeeds significantly increases when handling restrictions, as depicted in Figure 8.4
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FIGURE 8.5: Traffic network with dynamic restrictions. The restrictor
learns which roads (edges) to close in order to maximize throughput,

measured as the negative mean of all agents’ travel times.

for multiple model runs. With projection, most obstacles can be smoothly navigated,
while unrestricted agents frequently encounter obstacles, as can be seen from the
trajectories in Figure 8.3. We note, however, that the average number of steps re-
mains relatively high compared to the shortest path, even when restrictions are used
and the success rate is high. This highlights the need for agents to make more in-
formed decisions when dealing with variable action spaces. Notably, Grams, 2023
have recently explored RL architectures for dynamic restrictions and conducted ex-
periments in this environment.

8.3.3 Training an RL restrictor for a discrete action space

Consider a traffic network where agents i ∈ I are tasked with selecting a shortest
route from their starting points si to their respective destinations di. The travel time
along each road segment is influenced by its utilization, i.e., the relative number
of agents using it. This is described by a latency model le(u) = a + buc, where
individual parameters (a, b, c) are assigned to each edge (see Maerivoet and Moor,
2005).

In this context, we consider once more a variation of Braess’ paradox (see also
Section 7.2.4), where closing roads in the network can actually lead to an increase in
overall throughput under specific conditions. Motivated by this paradox, we train
a restrictor to determine the optimal configuration of open and closed roads. This
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restrictor operates within a network of self-interested agents who aim to minimize
their individual travel times. The restrictor serves as a governance mechanism with
the objective of minimizing the total travel time of all agents.

For the sake of simplicity, we utilize the graph network depicted in Figure 8.5.
All simple paths in this network are enumerated and used as the discrete action
space for the agents. At each step, each agent i selects the shortest route from si to
di based on the current edge latencies. Without any governance in place, all agents
traveling from s = 0 to t = 3 naturally choose the route 0→ 1→ 2→ 3, resulting in
an average travel time of ≈ 17 (as shown by the red line in Figure 8.6).

To improve traffic flow, we introduce a governance mechanism that can selec-
tively close individual roads (i.e., remove edges). The action space for the gover-
nance is represented by MultiBinary(5)7. While the agents use a fixed strategy to
determine the shortest routes given the restrictions, the governance, acting as an RL
agent, learns the optimal set of restrictions by observing the agents and the environ-
ment. In our approach, we use an off-the-shelf DQN algorithm (Mnih et al., 2013),
where the current edge latencies serve as the observation.

In our setting, the governance learns to close the edge 1 → 2 (as illustrated in
Figure 8.7), leading the agents to distribute themselves across the routes 0→ 1→ 3
and 0 → 2 → 3, with each route having an approximate utilization of 50%. As
a result, the average travel time decreases to ≈ 15 (indicated by the green line in
Figure 8.6), which indeed represents the optimal configuration for the given network
structure.
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FIGURE 8.6: Social welfare (sliding average over 5, 000 steps, mean
and standard deviation over 5 runs) of traffic network during training

(green), compared to unrestricted traffic (red).

8.3.4 Blue-sky idea: Text-based governance of LLM debate games

The governance of human communities primarily relies on the formulation and im-
plementation of laws conveyed through natural language. These laws encompass

7In our implementation, however, we ensure that there is always at least one open path available
for agents to use.
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ing training (sliding average over 1, 000 steps, mean and standard de-
viation over 5 runs). The dominant restriction {0, 1, 3, 4} corresponds

to closing the edge (1, 2) in the network.

explicit and implicit guidelines delineating permissible actions and behavioral con-
straints (i.e., action space restrictions), as well as information about penalties (i.e., re-
ward shaping definitions) for breaking the restrictions. It therefore appears plausible
that LLMs possess the capacity to learn and optimize text-based rules in alignment
with the behavioral tendencies exhibited by the (human and/or artificial) agents
subject to these rules. The recently published ChatArena library (Wu et al., 2023) of-
fers a testbed for such environments, while Park et al., 2023 explore language-based
Generative Agents which can exhibit emergent social behaviors, albeit without gov-
ernance. Combining these approaches with DRAMA could bridge the gap between
RL and language models, thereby facilitating the automated generation of intricate
rule sets guided by specific objectives. Ultimately, this might even hold the potential
to revolutionize the process of law creation for human and artificial communities.

8.4 Summary

In this chapter, we have described an extension of the Agent Environment Cycle for
MARL with a component that has thus far been handled in a limited, “hacky” way:
Complex dynamic action space restrictions.

Many practical scenarios involve nuanced action constraints, such as physical,
legal, or safety considerations, which require intelligent agents to navigate through
a complex decision-making space while adhering to restrictions. By explicitly in-
tegrating and modeling dynamic action space restrictions, we provide a more real-
istic and comprehensive framework for the development of intelligent agents (and
self-learning restrictors!) capable of effectively operating within the confines of real-
world constraints.



8.4. Summary 87

We deliberately chose to seamlessly place the DRAMA extension within a simple
and widely used MARL framework instead of defining a new platform from scratch.
Our experience has shown that there is a myriad of highly specific libraries avail-
able, many of which lack widespread adaptation, and almost none can keep up with
the integration of novel, state-of-the-art algorithms. As a consequence, we want to
encourage the research and development of restriction-aware RL agents (and restric-
tion classes) to pave the way for practical applications in domains where compliance
with explicit rules and regulations is paramount.
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Chapter 9

Evaluating efficacy and fairness of
restriction-based governance

The previous chapters have investigated solutions to the governance learning prob-
lem for various classes of multi-agent systems and proposed a practical approach
for integrating restriction-based governance mechanisms in existing MARL frame-
works.

In this chapter, corresponding to the last publication, we use the domain of traf-
fic management to evaluate the ARMAS approach with respect to its efficacy (i.e.,
by how much does restricting action spaces improve the governance utility?) and
fairness (which, of course, needs to be motivated and defined before it can be quan-
tified). In Chapters 6 and 7, we argued that our restriction-based governance is fair
because it treats all agents the same way. As opposed to this notion (“fairness of
treatment”), we consider here the notion of “fairness of outcome”, which takes into
account that equal treatment might affect different agents in different ways.

An empirical comparison with a commonly used reward-shaping approach leads
us back to the motivation of this thesis: Restriction-based governance, as proposed
by the ARMAS model, constitutes a valuable complement to reward shaping for
achieving system-level goals in multi-agent systems.

Personal Contribution. I defined the model and the research question, developed the ex-
perimental setup, and was the primary author of the text. The experiments were jointly
conducted with Tim Grams, especially the experiment on the Gn,p graph. The selection of the
application domain and the discussion of the results were joint work with Christian Bartelt
and Heiner Stuckenschmidt.

9.1 Motivation

In competitive multi-agent systems, the selfish strategies of the participating agents
(i.e., strategies that maximize the agent’s utility) often deviate from the socially op-
timal solution, which maximizes the social welfare. This discrepancy is a defining
trait of the class of Social Dilemmas, or Collective Action Problems (Olson, 1965; Van
Lange et al., 2013). It emerges across diverse application areas, with traffic flow opti-
mization (Beckmann, McGuire, and Winsten, 1955) being a notable example: Agents
leveraging heuristics or machine learning to identify the shortest routes on a di-
rected weighted graph might inadvertently reduce the social welfare significantly
below the optimal value (Joshi, Joshi, and Lamb, 2005). For affine latency functions
on graph edges, this price of anarchy can be as high as 33% (Roughgarden and Tardos,
2002) and can rise indefinitely for non-linear latency functions (Lin et al., 2011).

However, social welfare is not the only benchmark for optimality in a MAS.
Other objectives, like fairness or even goals unrelated to agents, can influence the
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design and functioning of such a system. Within the traffic context, this objective
might manifest as a utility function for traffic authorities or state administration,
aiming to curtail road erosion, decrease noise, or increase toll revenue, for instance.
To emphasize the universality of such objectives, we use the term Governance Utility
instead of social utility. A MAS then becomes a Governance Dilemma when a sta-
ble, joint strategy fails to attain the maximum governance utility. Contrasting with
a social dilemma, this broader definition captures scenarios where the governance
objective is not a straightforward (i.e., equally weighted linear) function of agent
objectives.

Let us now take a closer look at fairness: The prevalent definition of social wel-
fare (u = ∑ ui) does not distinguish between two agents achieving equal utility
(u1 = u2 = x) and one agent achieving u1 = 2x while the other gets u2 = 0. To
prevent such disparities, the governance utility could include a metric that dimin-
ishes with increased inequality between agents (e.g., variance, entropy, or Gini co-
efficient). Illustratively, consider a traffic junction where each car’s utility inversely
corresponds to its waiting time. From a social welfare viewpoint, a scenario where a
hundred cars each wait five seconds is identical to one where a single car waits 500
seconds while all others proceed immediately. However, the latter scenario, being
inherently inequitable, would be deemed suboptimal. The term equity formalizes
this intuition as “the absence of unfair, avoidable or remediable differences among
groups of people” (World Health Organization, 2023); we use this as a well-defined
operationalization of the subjective word “fairness” (see Section 9.3.4 for our con-
crete measure of equity).

In this chapter, we investigate two governance paradigms—action-space shaping
and reward shaping—in terms of efficacy (i.e., improvement in social welfare) and
equity (i.e., equitable treatment). Specifically, we compare dynamic action-space re-
strictions with dynamic marginal tolling (Sharon et al., 2017b). The traffic manage-
ment domain serves as a well-suited application area to explore and compare the
effect of both governance schemes.

We will, in contrast to Chapters 5 to 7, not focus on finding optimal restrictions
for a given traffic network. There exist numerous complexity and inapproximability
results for such systems in the traffic domain, one being Roughgarden, 2006’s proof
that barring P = NP , no polynomial-time algorithm can achieve an approximation
ratio < n

2 to find optimal edge constraints in a congested network with n nodes1. We
will, therefore, use existing knowledge about suitable restrictions and concentrate
on evaluating their impact relative to an established reward-shaping technique.

9.2 The effect of restrictions

9.2.1 Static restrictions

The most simple and extensively studied social dilemmas are two-player, two-action
matrix games such as the Prisoner’s Dilemma (Rapoport and Chammah, 1965),
Stag Hunt (Skyrms, 2003) and the Chicken Game (Rapoport and Chammah, 1966).
Clearly, restriction-based governance is inappropriate in such cases: Forbidding
even a single action would result in fully prescribed strategies, simplifying agent
behavior to the point of triviality.

1Note that this hardness result is due to the fact that we are now considering general POSGs without
any simplifications or additional assumptions.
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1 a 1, 1 1, 0 0, 0

b 0, 1 2, 2 3, 6

c 0, 0 6, 3 4, 4

(B) Restricting actions never
increases the MESU.

FIGURE 9.1: Payoff matrices for exemplary matrix games where
action-space restrictions have different effects. Following conven-
tional notation, the first number in each cell is the utility of agent 1,

and the second one of agent 2.

Let us, therefore, consider a two-player, three-action matrix game with symmet-
ric payoffs and assume the governance utility u to be the social welfare. The follow-
ing examples offer some initial insight into the possible impacts of restrictions:

Example 9. Given the game payoffs in Figure 9.1a, where both agents have the action space
A = {a, b, c}, the unique (pure) NE in an unrestricted scenario is the joint strategy (c, c)
with agent utilities u1(c, c) = u2(c, c) = 1 and u(c, c) = 2. The unique social optimum is
(b, b) with u(b, b) = 4.

By excluding action c for both agents, we can align the unique NE with the SO at (b, b).
As a result, the action space restriction increases the MESU from 2 to 4.

Example 10. Conversely, if the payoffs are given by Figure 9.1b, the unique unrestricted
NE is (c, c), where u1(c, c) = u2(c, c) = 4 and u(c, c) = 8. The SOs are (b, c) and (c, b),
both with u(b, c) = u(c, b) = 9.

If we were to eliminate action c, both the NE and the SO become unattainable. The new
NE evolves to (b, b), with utilities u1(c, c) = u2(c, c) = 2 and u(c, c) = 4. Even though
this NE now matches the new SO, its governance utility is less than its original value.

Example 11. Revisiting the payoffs from Figure 9.1a, but this time restricting action a, we
observe no governance effect since this limitation does not impact either the SO (b, b) or the
NE (c, c).

9.2.2 Dynamic restrictions

Braess’ Paradox, depicted in Figure 9.2a, is a frequently referenced illustration of
the effectiveness of restrictions in stateful MAS2. In the present work, we use edge
latency functions of the form

l( f ) = a + b
(

f
c

)d

(9.1)

with parameters a > 0, b ≥ 0, and c, d ≥ 1. This model is based on a proposal of
the Bureau of Public Roads (BPR) (Public Roads, 1964) and is a common choice in
the literature. The latency functions originally suggested by Braess, l( f ) = 0 and

2The formal definition of graph and latency functions is provided in Section 9.3.
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(A) Original Braess Paradox (B) Double Braess Paradox

FIGURE 9.2: Each edge of these traffic networks has a latency function
le( f ), indicating the length (i.e., travel time) of the edge for a given
flow f ∈ N0 (c is a capacity parameter). For agents traveling from
node 0 to 3, social welfare is increased from−17 to−15 by closing the
road between nodes 1 and 2. If two Braess Paradoxes are combined
(as shown on the right), different road closures result in optimal social

welfare, depending on the dominating demand.

TABLE 9.1: Travel times at equilibrium for the Double Braess Paradox
(optimal values underlined for each demand pattern).

Demand (0, 2), (1, 2) (0, 2),���(1, 2) (0, 2),���(1, 2) ���(0, 2),���(1, 2)

(0, 3) 17 15 17 18

(A, B) 25 26 25 24

l( f ) = f , do not fit this model since their free-flow time l(0) is zero. Hence, we use a
slightly modified version of the paradox that retains its essential characteristics but
ensures le(0) > 0 ∀e ∈ E.

The original network has a well-known static solution for the problem of finding
the best restriction: Closing the edge (1, 2) is socially optimal. Thus, a one-off anal-
ysis might suggest a permanent road closure, deeming dynamic restrictions unnec-
essary. However, when this network is superposed with a second, similar structure,
the restriction’s effect becomes demand-dependent:

Example 12. Consider the traffic network shown in Figure 9.2b. When all (or most) agents
travel from node 0 to node 3, the optimal restriction is to close only road (1, 2); however,
when demand between A and B dominates, closing both (0, 2) and (1, 2) is optimal3. It is,
therefore, not possible to find the optimal restriction without taking into account the real-time
behavior of the agents and adapting the governance policy when the behavior changes.

Example 12 illustrates the importance of dynamic restrictions, which necessarily
rely on real-time MAS observations. This perspective contrasts with much of the
existing Braess Paradox research and related problems (see Section 4.3), where a
static flow is the basis for determining the optimal edge subset.

3See Appendix B.2 in the supplementary material for more details about this setup.
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9.2.3 Limitations

It is evident that action space restrictions can never improve the social optimum,
as the maximum is taken from a strictly smaller joint strategy space. As for stable
strategies, our results of Chapter 7 show that the MESU can only rise if the relevant
NE is eliminated, i.e., if at least one action present in the lowest-welfare equilibrium
is restricted.

Applying restrictions to individual agents can achieve the SO by dictating spe-
cific actions for all agents, thereby removing their decision-making autonomy. How-
ever, transforming a MAS into a single-agent optimization problem by centralizing
all decisions is typically not feasible, for reasons ranging from ethical and legal con-
cerns to issues of resilience and scalability.

Viewing restrictions through a fairness lens (as discussed in Section 9.4.2), it be-
comes apparent that restrictions often need to be uniform. This ensures all agents
are treated equitably and have the same actions available at each time step. How-
ever, the uniformity of restrictions might impact the achievable governance utility,
as observed in Example 10.

9.3 Evaluation

In this section, we use a microscopic multi-step traffic model (see Appendix B.1.1)
to simulate agent behavior across a number of network structures, both with and
without governance. We analyze the impact of two distinct governance mechanisms
on agent behavior and overall system outcomes by varying parameters such as traf-
fic rate, latency functions, demand, and value of money (see Section 9.3.3 for the
definition of the latter concept).

Remark 7. As our focus is on the observed interaction between agents, their environment,
and the governance, there is only one equilibrium: The joint strategy which is achieved
experimentally after a sufficient number of steps. This simplifies the MESU concept, which
is based on a larger set of NEs. Our experiments indicate sufficient convergence for us to
consider joint strategies as stable after a few thousand steps.

9.3.1 Traffic model

Let G = (V, E, l) be a directed graph with a BPR latency function le : N0 → R+

as in Equation (9.1) for each edge e ∈ E. These functions map a flow value (i.e.,
the number of agents currently using the edge) to a latency value, which indicates
the number of time steps required to traverse the edge (see Figure 9.2). Each agent
i has a starting node si, a current position pi ∈ [0, 1] along an edge ei ∈ E and a
designated destination node di

4. At any time step, the flow fe of an edge e is defined
as fe = |{i ∈ I : ei = e}|, and the corresponding latency on e is le( fe). The graph,
together with the tuple (pi, ei, di) for all agents, represents the system’s current state.

An agent i can only decide its next move (i.e., select its next edge) upon reaching
a node, specifically when pi = 1. Therefore, the agent needs to observe only its
current node vi, destination node di, and the current latency values of all edges. As
described in the definition of the ARMAS model (Definition 10), the set R ∈ 2E of
currently permissible actions is also provided as an input.

4In this context, each source/sink pair that is used by an agent as starting and destination nodes is
called a commodity.
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(A) Gn,p graph with Braess’ Paradox. For this
graph, we have chosen n = 59 and p = 0.07,
in accordance with Valiant and Roughgarden,
2010’s assumption that p = Ω(n−1/2+ε) for

some ε > 0.

(B) Generalized Braess graph B4. Solid lines
denote constant-latency edges, while dashed
lines are edges with affine latency functions
(details and the construction schema for Bn

are provided in Appendix B.4).

FIGURE 9.3: Network structures used for the experiments. Start
nodes are marked blue, while target nodes are green. For each graph,
we measure travel times, improvement, and fairness for unrestricted

traffic, edge restrictions, and ∆- tolling.

9.3.2 ∆-tolling

∆-tolling, introduced by Sharon et al., 2017b, is a dynamic reward-shaping strategy
for congested networks. It updates per-edge tolls based on the difference between
free-flow time and actual latency. This method has been proven to be equivalent
to marginal-cost tolling for BPR latency functions, ensuring optimal system perfor-
mance among the set of tolling schemes. Its adaptability, scalability, and straight-
forward implementation make it a suitable benchmark, representing the reward-
shaping paradigm of multi-agent governance.

The toll update in ∆-tolling is expressed as

τ
(t)
e := R [de · (le( fe)− le(0))] + (1− R)τ(t−1)

e , (9.2)

where d is the exponent of the latency function (see Equation (9.1)), and R is a respon-
siveness parameter. Intuitively, ∆-tolling assigns a toll to each edge in proportion to
its congestion, while using exponential smoothing to prevent abrupt updates.

9.3.3 Setup

We evaluate the travel time of agents in unrestricted traffic (“Base”), edge restric-
tions (“Restriction”), and edge tolls (“Tolling”) across two different network types,
as depicted in Figure 9.3:

Random Erdős-Rényi (Gn,p) graphs Braess’ Paradox was shown to occur with high
probability on random graphs as the number of nodes tends to infinity (Valiant
and Roughgarden, 2010), but this result comes with some caveats; most no-
tably, the edge likelihood and the traffic rate need to be chosen carefully in
order to generate the paradox. We have thus selected a graph (Figure 9.3a)
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FIGURE 9.4: Results of the Gn,p graph experiment. First, we measure
travel times and improvement for the Base, Restriction, and Tolling sce-
narios as described in Section 9.3.3. In addition, we investigate the
dependency of the travel time on the value that an agent assigns to

money compared to time.

with n = 59 via random search where restricting a single edge improves social
welfare5. More details and graphs are shown in Appendix B.3, along with the
results of the analysis.

Generalized Braess graphs The graph family Bn, n ∈N+ (see Figure 9.3b) general-
izes the original network and the “Double Braess” structure from Figure 9.2b.
It allows the routing of n different commodities (i.e., source/sink pairs) on the
graph Bn, each commodity with a different optimal restriction.

For the Braess-based graphs, the optimal edges to close for improved latency are
already known; as previously mentioned in Section 9.1, our aim is not to provide
new results on the Braess Paradox’s occurrence or detection.

Agents in the MAS employ a simple shortest-path algorithm to select the opti-
mal edge upon reaching an intersection. This approach is well-defined for the un-
restricted and restricted scenarios. However, for the ∆-tolling scenario, a relative
weighting between travel time and tolls is necessary: Each agent i ∈ I has a value of
money vi ∈ R+

0 , which defines the time-equivalent worth of one unit of tolls. In other
words, the agent minimizes ∑e∈P

(
le( fe) + vite

)
over all paths P from its current po-

sition to its target node and then selects one of the optimal paths.

Remark 8. As highlighted by Pas and Principio, 1997 and Roughgarden, 2006, traffic rate
plays a pivotal role in the occurrence and severity of Braess’ Paradox. For this parameter,
our choices are:

Gn,p Using random search, we found a traffic rate of f = 56 to be adequate for the selected
graph.

Braess A rather generic traffic rate of f = 5
2 c for edge capacity c is sufficient6.

9.3.4 Performance metrics

The mean travel time of all agents (representing social welfare) is presented as the
main performance indicator for the respective governance methods. As a measure

5However, efficacy compared to ∆-tolling was not considered in the selection process, nor was the
fairness metric defined in Section 9.3.4.

6Intuitively, this can be explained by the fact that the routes on these graphs consist of either 3 or 4
edges, two of which are dominating in latency. Therefore, cars are randomly distributed along a route
whose length is ≈ 5

2 times the latency of a “long” edge.
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for equity, we examine the correlation between travel time and value of money for all
agents. Specifically, we assess the slope of the closest linear regression between these
two variables7. This evaluation is vital as it probes the governance mechanism’s
fairness, i.e., the treatment equality towards agents from different groups.

9.3.5 Results

The experiments are fully reproducible, with the seeds used for the experiments’
randomized components listed in Appendix B.5.

Random Erdős-Rényi (Gn,p) graphs

Figure 9.4 shows the performance metrics for ten independent runs on the graph
from Figure 9.3a (the mean is drawn as a solid line, while the shaded area denotes the
standard deviation of the results). With respect to travel times, both Restriction and
Tolling outperform Base by approximately 3%. The fairness metric, however, shows
a substantial difference between the two governance paradigms: While agents with
different values of money are treated largely equally in the Base and Restriction sce-
narios, their travel times differ significantly (p ≤ 0.01) for Tolling, such that agents
with higher value of money vi have longer travel times.

Generalized Braess Graphs Bn

The performance metrics for the graph family Bn with the single commodity (sn, tn)
are shown in Figure 9.5 for n ∈ {0, 1, ..., 20} and five independent runs. Similarly to
the results on the Gn,p graph, both Restriction and Tolling improve the Base case, and
this time Restriction (using optimal road closures) outperforms Tolling by a few per-
centage points. Regarding fairness, Figure 9.5b displays the regression lines’ slopes
(see Figure 9.4b for a single graph) in an aggregated way for all graphs Bn. This
fairness metric shows that Base and Restriction are nearly unbiased across all com-
modities. For Tolling, the correlation between the value of money and travel time
in this particular setup shifts from disadvantaging high values of money for small
values of n to disadvantaging low values of money for larger n.

9.4 Discussion

9.4.1 Efficacy

The declared objective of the governance is maximizing social welfare, i.e., minimiz-
ing the travel time of all agents. To this end, both approaches succeed in improving
the status quo (the unrestricted Base scenario), and the improvements are compara-
ble in magnitude.

The results in Figures 9.4 and 9.5 show the mean travel time but not the mean
total cost, i.e., the weighted combination of travel time and tolls which reveal the
additional reward that the toll-based governance has to invest. As can be seen in
Figure 9.6 for the generalized Braess graphs, including the tolls results in a much
lower efficacy of the reward-shaping scheme. This can be an additional argument
for restrictions, where no monetary rewards are involved.

7A correlation coefficient like Pearson or Spearman is not suitable since it only measures the
strength of the connection, but not its direction; in particular, if all agents have the same travel time
(i.e., the mechanism is perfectly fair), these coefficients are not zero, but one.
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FIGURE 9.5: Results of the generalized Braess graph experiment,
showing the performance metrics in relation to the demand pattern.
Both Restriction and Tolling improve the Base case, but the fairness
measure is very different: In Tolling, the value of money has a major

influence on the travel time.

Remark 9. Marginal-cost tolling, by definition, targets edges where heightened demand
results in latency spikes. However, in situations such as Braess’ Paradox, it is the “constant-
low-latency edges” that need to be closed to attain optimal flow. Such edges, by definition
of the tolling scheme, can never be tolled since le( fe) = le(0) for any flow fe > 0. As a
result, the tolling strategy must reduce demand for these roads by imposing higher tolls on
connecting roads. This culminates in a “proxy-tolling” outcome where certain high-demand
edges remain toll-free, while others bear the brunt with exorbitant tolls.

9.4.2 Fairness

Reward-shaping strategies inherently differentiate between agents based on how
additional rewards influence them. In essence, an agent with a minimal value of
money might remain largely unaffected by rewards or penalties, while others might
drastically alter their behavior. Given that rewards and penalties often manifest
as monetary values, this can inadvertently compromise fairness, especially in sce-
narios where an agent’s wealth should not dictate their actions. Our experiments
reveal that while ∆-tolling effectively reduces average travel time, it simultaneously
introduces significant variance between agent groups. Notably, the relationship be-
tween the value of money and travel time is not straightforward but varies with
the network structure. Restriction-based governance, in contrast, offers comparable
travel-time efficiency but ensures a distribution of travel times that is close to equity.

9.4.3 Resource restrictions

To conclude the discussion of restriction-based governance and reward shaping, we
outline resource restriction as a hybrid governance paradigm, combining elements of
restriction-based and reward-based governance:

Restrictions, as they have been defined so far, directly limit the action spaces of
the agents, thereby generating new equilibria. Another way restrictions can be used
in multi-agent systems is to restrict resources in order to change incentives. The re-
strictions, therefore, serve to indirectly shape the rewards by encouraging or discour-
aging actions that relate to the restricted resources. In Section 10.3.1, we outline a
parking management scenario based on existing work for dynamic pricing (Kappen-
berger, Theil, and Stuckenschmidt, 2022) and show that closing some of the parking
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FIGURE 9.6: Total cost of travel (including tolls) for the generalized
Braess graphs.

spaces can increase social welfare. Without forbidding any agent actions, the restric-
tion of resources (in this case, parking spaces) affects how the agents valuate their
options, which, in turn, steers their behavior in the desired direction.

In contrast to “pure” reward shaping approaches, this method avoids monetary
incentives and, therefore, maintains some of the mentioned advantages of action-
space shaping. On the other hand, it does not lend itself to the direct calculation
of equilibrium strategies without explicit knowledge of the connection between re-
source restriction and corresponding changes in agent utility.

9.5 Summary

Action-space restrictions seem to be inferior to reward shaping at first glance, as
they only allow a binary distinction between allowed and forbidden actions (similar
to a reward of 0 and −∞ for choosing an action, respectively). However, as we
have shown in the present work, the actual comparison is more complex (see, e.g.,
Remark 9), and restrictions come with a considerable advantage regarding fairness.

The study of action-space restrictions as a means of governing multi-agent sys-
tems is far from exhausted: Only recently have common multi-agent learning en-
vironments like PettingZoo (Terry et al., 2021) been equipped with governance ca-
pabilities (Oesterle and Grams, 2024), and there is still scarce consideration of re-
strictions for Reinforcement Learning algorithms (first steps are described in Grams,
2023). It has been shown that finding optimal restrictions for dynamic systems can
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be hard, but the dependency of their effect on the (a priori unknown) behavior of
the agents makes real-time adaptation and optimization necessary.

Despite these challenges, its unique way of interacting with agents and envi-
ronment makes action-space shaping a valuable tool for governance entities, both
in abstract game-theoretic settings and in real-world systems. We want to empha-
size that the acceptance of governance mechanisms, be it reward shaping or restric-
tions, crucially depends on their (perceived and objective) fairness. With respect
to this condition, restriction-based governance, together with equity considerations,
has the potential to substantially push the applicability of governance schemes for
systems consisting of human or artificial agents.
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Chapter 10

Discussion

The preceding chapters have introduced and investigated the general idea of gov-
erning multi-agent systems using dynamic action-space restrictions. After defining
the ARMAS model and looking at the governance learning problem for various sub-
classes, an implementation proposal, and an evaluation of ARMAS against reward
shaping, we now round our thesis off by discussing our findings in a wider context.

10.1 Solution approaches for governance learning

10.1.1 Classification

We have shown solutions to the governance learning problem for three subclasses of
ARMAS. These solutions, albeit not covering the whole spectrum of multi-agent sys-
tems, represent the three broad categories of methods through which any optimiza-
tion problem can be approached: Exact methods, heuristics, and learning methods.
Naturally, all three classes come with their respective advantages and drawbacks.

Exact methods The AROGU algorithm of Chapter 7 is an exact method in the sense
that it finds an optimal restriction if its assumptions are fully satisfied (see
Theorem 2). As such, its disadvantages are two-fold: First, it strictly relies on
these assumptions and on exact knowledge of the agents’ reward functions to
provide a guaranteed optimum, and can only handle restrictions of a specific
form. And second, its worst-case run-time is exponential in the size of the ac-
tion space, since an exhaustive search might be necessary. The main advantage
of such a method, of course, is that it finds an optimal solution.

Heuristics The tabular approach of Chapter 5 is a heuristic that draws upon the im-
plicit assumption that past joint actions are a good predictor for future joint ac-
tions. Using this assumption, we then derive minimal restrictions by removing
undesired joint actions in a greedy manner. The advantage of this algorithm is
that it can leverage the observed agent behavior without needing to explicitly
model the agents’ inner workings, i.e., their preferences and utilities. How-
ever, distribution shifts can disturb its prediction mechanism and, therefore,
impair performance. The use of a table of all joint actions and their respective
probabilities requires an exponential amount of memory with respect to the
number of agents and the size of their action spaces.

Learning methods The RL approach used in Chapter 6 is a classical learning ap-
proach. The governance is provided with state and reward values and learns
an optimal restriction policy by mapping states to restrictions that result in
maximum expected rewards. Drawbacks of using the RL paradigm are that
(a) the governance’s action space needs to conform with what the algorithm (in
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this case, PPO) supports, (b) the resulting restriction policy is not easily inter-
pretable, and (c) the restriction policy can change unpredictably and does not
provide any stability. On the other hand, the approach can make use of state-
of-the-art learning algorithms, can be integrated into existing frameworks, and
only requires minimal assumptions since it simply states the governance learn-
ing problem as an RL problem.

10.1.2 Comparison with reward shaping

Action-space restrictions can be seen as a special form of reward shaping in which
the assigned reward is either 0 (for allowed actions) or −∞ (for forbidden actions).
While this perspective makes the approach look less powerful in terms of gover-
nance influence, it avoids the problem that agents, in general, react differently to the
same reward. In real-world scenarios, this is due to the fact that agents have differ-
ent valuations of the currency of the governance’s reward. In Chapter 9, we have
borrowed and adapted the concept of value of time from transport economics, which
quantifies the opportunity cost of the time that an agent spends traveling. In other
words, the value of time is the amount that a traveler would be willing to pay in
exchange for saved time or the amount they would accept as compensation for lost
time.

Monetary rewards as a means of governance also have other implications that
complicate their use in large-scale, real-world applications: Strong incentives are
only created by sufficient amounts of money, and real money needs to come from
somewhere in order to be spent on incentives. Unless the governance entity of a sys-
tem can create unlimited amounts of monetary resources1, this leads to the problem
of weighing efficacy against expenditure.

10.2 Challenges for governance learning

Tackling the governance learning problem for a restriction-based governance
scheme in Chapters 5 to 7, we have come across several limitations and challenges.
Some of these apply to any governance approach, while others are specific to the
restriction-based approach we have chosen. Accordingly, using a different gover-
nance paradigm might solve the latter kind of challenges, but can also introduce
new ones, and be faced with the same general problems that are inherent in the task.

10.2.1 Paradigm-independent challenges

Hardness

The effect of governance action on agent behavior is, in general, not easily pre-
dictable, and it does not need to be continuous: By targeting a single action (e.g., by
forbidding it or applying a negative reward to it), the resulting equilibrium can re-
main unchanged, or the intervention can have minimal consequences for the chosen
actions, or it can completely change how agents act. This lack of continuity prevents
the use of common optimization techniques like gradient descent or bisection.

Finding an optimal governance policy, therefore, essentially requires searching
the entire space of interventions. Any intervention potentially depends on the cur-
rent environmental state, meaning that the governance policy is a mapping from the

1In general, the presence of extremely large or infinite amounts of money tend to make money
worthless, so this is not a sustainable solution even when it is possible.
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state space to the intervention space2. A governance policy therefore (naïvely) suf-
fers from a combinatorial explosion with respect to at least three scaling factors: The
number of agents, the size of the action spaces, and the number of environmental
states.

Non-stationarity

All governance approaches for multi-agent systems (not just restriction-based ap-
proaches) have in common that they operate in a heavily non-stationary environ-
ment: Not only do the agents act in unpredictable ways and systematically change
their action policies over time; they typically adapt their policies adversarially to cir-
cumvent any governance interventions which keep them from reaching their own
objectives.

Moreover, any change in the governance policy causes a distribution change in
the environment as seen from an agent’s perspective, leading to strategy adaptations
and the gradual settling into a new equilibrium where all agents keep their policies
approximately constant. This means that an update of the governance policy might
first result in chaotic behavior (this can be positive or negative from the governance’s
viewpoint), and its real effect, i.e., the change in the system equilibrium developing
under the new policy, can only be seen after a phase of convergence3.

Sample efficiency

For the reasons described in the previous section, the governance can reliably learn
the effect of an action (i.e., an intervention) only in very large intervals. The num-
ber of samples from which a governance policy can be learned is, therefore, lower
than required by most machine learning approaches, and particularly Reinforcement
Learning approaches, to converge to an optimum.

Practicality dictates that a governance for unknown real-world agents cannot be
trained for arbitrary amounts of training data but needs to provide a sensible and,
therefore, acceptable policy from the very beginning of its operation.

Interpretability

Except in very specific circumstances, governance is always a matter of acceptance
by the agents that participate in a governed system. Therefore, a governance policy
needs not only to be effective but also reasonable in the sense that its interventions
can be explained, understood, and accepted. For explicit rules, this can be straight-
forward (although a table of rewards and sanctions still might need an aggregated
description in order to be interpretable), but policies that are encoded by, e.g., a
neural network, do not innately have this property. As usual in machine learning,
lack of interpretability and verifiability are crucial challenges when it comes to the
application of a governance scheme in systems with real-world relevance.

Fairness

The fairness of a governance scheme is an inherently moral question, requiring a
measure that is independent of performance. Generally defined as “impartial and

2We intentionally use the vague term intervention space since this thought applies equally to rewards,
restrictions, or any other form of governance intervention.

3This does not even include cases of oscillating behavior without any convergence.
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just treatment without favoritism or discrimination”, fairness in multi-agent systems
can be interpreted in a number of different ways. Section 4.2.6 lists a few proposals
for fairness in ML, but ultimately, fair treatment of agents is highly domain-specific.

A relatively unquestionable objective could be that the governance should only
enforce outcomes that are Pareto efficient: If it is possible to give all agents simulta-
neously a higher reward4, then the governance should always do this.

Which outcome on the Pareto front should be preferred, however, is mostly a con-
sideration in which there is no right or wrong. In particular, the maxim that the out-
comes (i.e., rewards) of all agents should be equal, requires that these outcomes can
be compared and do not depend on easily manipulable statistics like self-reporting
of satisfaction. In general, Goodhart’s law5 suggests that this is not an easy problem.

Compliance

Whatever means a governance uses to influence the interaction of agents and en-
vironment, it always needs to ensure that these interventions are effective, that is,
that the agents comply with the governance’s actions. Eventually, the only means of
enforcing compliance is physical power.

The most common way to deal with this challenge in theoretical models of multi-
agent systems is simply to postulate that agents, by assumption, do not violate the
governance rules. Of course, this only shifts the problem to the next level: What
happens if agents do act against these rules? Therefore, any real-world governance
scheme needs to account for the possibility of non-compliance and define an esca-
lation process that eventually leads to a physical restriction of agents to allowed
behavior.

The requirement of practical control over the MAS can be satisfied in a wide
range of relevant applications, for example, by any digital platform where agents
are software components, actions are chosen by exchanging messages, and the gov-
ernance is managed and enforced by the platform operator. In physical systems,
however, this is much harder to achieve.

10.2.2 Challenges of restriction-based governance

Trade-off between restriction and autonomy

For a governance that restricts the freedom of action of the agents, a reasonable
maxim is that fewer restrictions are better, all else being equal (see Section 1.2.5). This
target, like the ones described in Section 10.2.1, is of a moral nature and introduces
a natural trade-off between the degree of restriction (see Definition 11) and efficacy
(e.g., relative improvement of governance utility). It is easy to recognize this trade-
off when we look at the extremes, as shown in Figure 10.1: If the degree of restriction
is always zero, the MAS is ungoverned, and the relative improvement is also zero.
The highest improvement, on the other hand, is achieved with the maximum de-
gree of restriction when the governance optimum is prescribed by allowing exactly
one action for each agent6. Although the relation between the degree of restriction
and relative improvement of governance utility is not necessarily monotonic, there
is a sweet spot for any weighting between these two measures. Again, the “right”

4This refers, of course, to the expected cumulative reward which is the base of the agents’ optimiza-
tion.

5“When a measure becomes a target, it ceases to be a good measure.”
6Assuming that the governance possesses the capabilities necessary to identify the actions that lead

to the SO.
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weighting is a matter of performance and ethical considerations and cannot be uni-
versally determined: Overly restrictive governance control may stifle the innovative
and adaptive capabilities of autonomous agents, while too little control might lead
to undesirable or harmful outcomes.

Restrictions for contribution games

A common classification of multi-agent systems distinguishes between systems
where cooperation is achieved by all agents choosing the same actions or strategies
and games where cooperation requires the choice of different or complementary ac-
tions or strategies. The former category is called coordination games, while the latter
type of systems are contribution games. The difference between these two categories
is best illustrated in the traffic domain:

• Route selection is a contribution game. Effective routing in a traffic network
relies on an even distribution of agents over the available routes (i.e., different
agents should take different actions); if all agents take the same route, it will
become congested, while the capacity of other routes is unused. Of course,
this requires that agents either know about the other agents’ choices, or that an
equilibrium develops over time through (asynchronous) strategy adjustments.

• Agent behavior on a specific congested road is a coordination game. If every
agent keeps a steady speed without tailgating or constantly switching lanes
(i.e. if everyone takes the same actions), traffic jams often clear much faster.
However, it is a dominant strategy to “exploit the weakness” of the other cars
who follow this cooperative policy.
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Non-discriminatory restrictions can, by their very definition, only solve coordi-
nation games, since it is not possible to prescribe different actions to different agents;
any action that is used by at least one agent in a socially optimal solution needs to be
allowed for all agents. To address contribution games, it is thus necessary to use in-
dividual restrictions, thereby introducing new challenges regarding scalability and
fairness (see Section 10.2.1).

It is, however, conceivable to devise more complex rules to enforce a solution of
a contribution game in a fair way. Two exemplary approaches are conditional and
randomized restrictions, illustrated as follows for the route selection scenario:

Conditional restrictions Instead of telling each agent which route to take, we can
define a condition for taking one or the other route. For example, you can only
take the freeway if you stay on it for more than 20 miles, otherwise you have
to take the highway.

Randomization The governance defines different roles and randomly assigns
agents to roles. By the law of large numbers, the proportion of agents using
a certain strategy will be close to the probability of the corresponding role. For
example, the entrance to a freeway is only open 30% of the time (and the de-
cision is made individually for each car); if it is currently closed, you need to
take an alternative road.

Both approaches share the property that fairness is only implemented in expec-
tation: For every individual restriction decision, some agents might have a greater
degree of freedom than others, and the associated rewards might differ. However,
the expected restrictions do not differ between agents, since the conditions and ran-
domization are agent-agnostic.

Representation of restrictions and policies

The scalability issue described in Section 10.2.1 applies to both individual restric-
tions and the restriction policy as a whole: The number of possible restrictions for
discrete action spaces A = (Ai)i∈I is 2∏i∈I |Ai |7. An explicit mapping from the state
space to this restriction space is usually not efficient, while an approximation comes
with its own limitations. For continuous action spaces, the situation is even worse
since there are infinitely many possible restrictions8.

10.2.3 Challenges of reward-based governance

Reward as part of the environment

The standard Reinforcement Learning loop posits that the environment provides
both state and reward and the agent chooses an action based on these two values.
The implicit assumption is that the agent will just act in a way that maximizes the
expected (discounted) future reward as given by R = E

[
∑∞

t=0 γtrt
]
. In this term,

only the discount rate γ is chosen by the agent, while rt is the reward as defined by
the environment. The agent can decide to be more or less myopic, but the general
valuation of states and actions comes from an outside entity.

7For non-discriminatory restrictions over the action space A, this reduces to 2|A|.
8By Cantor’s theorem, the number of restrictions over any infinite action space is uncountably in-

finite, such that looping over these restrictions in a suitable order with a stopping condition is not an
option.
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In contrast, humans tend to optimize a reward that they themselves assign to the
environmental state after observing the state. From an outside perspective, this as-
signment is not known and does not even have to be consistent (i.e., a well-defined
function), since the same environmental state can seem more or less favorable to an
agent, depending on its internal state (which, again, is not known to the environ-
ment or other agents, if applicable)9.

Not having access to the agents’ reward values can be a severe challenge for a
reward-shaping governance: As described in Chapter 5, the direct observation of
actions needs to be translated back into agent preferences and utilities, such that the
governance can act on this estimated utility when optimizing social welfare. Obvi-
ously, this translation (or reverse engineering) step introduces the possibility of error
and manipulation on the part of an agent.

Comparability of rewards

Rewards as a means of changing agent behavior implicitly assume that additional
rewards and sanctions indeed affect agents in a way that can be predicted and ex-
ploited. This means that agents actually act rationally with respect to rewards (i.e.,
they try to maximize their future expected reward) and, therefore, avoid actions that
lead to unnecessarily low rewards. For a governance that has no access to the agents’
actual decision-making process, the process of finding an optimal reward-shaping
policy consists of tentatively rewarding and sanctioning certain behaviors and ob-
serving the effects. From these observations, the rewards can then be adjusted until
the desired behavior is achieved.

When agents have highly different valuations of additional rewards—for in-
stance, if one agent gets rewards between 0 and 10, while another agent gets re-
wards between 100 and 1000—it can be very hard to find a governance policy that
strikes the right balance for all agents between over-governing and not having any
influence at all.

10.3 New ideas for multi-agent governance

10.3.1 Hybrid governance approaches

In Section 2.4, we have treated governance interventions at the reward level and
the action level as two separate approaches. In practice, though, these intervention
points are not always clear-cut.

In many normative approaches, researchers intend to provide restrictions but
concede that, given the lack of enforceability in real-world systems, sanctions are
required as the “back-up measure” in case the restrictions are violated by the agents.
Negative consequences of any kind (which, ultimately, can always be expressed in
terms of negative rewards) serve both as threats to deter future perpetrators and to
punish those who have already acted in undesired ways.

Let us show an exemplary case of a hybrid approach that uses restrictions as a
means of changing the reward structure of a system, again in the domain of traffic:

In Kappenberger, Theil, and Stuckenschmidt, 2022’s dynamic pricing scenario
(see Figure 10.2), parking spaces are available at a number of different places within
a city district. A number of cars (agents) with individual targets on the map navigate

9For human agents, behavioral psychology has identified a myriad of biases and other features
which prevent actual preferences from being represented as a fixed utility function.
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FIGURE 10.2: Grid network for dynamic pricing of parking spaces as
proposed by Kappenberger, Theil, and Stuckenschmidt, 2022.

the road network in order to find a parking space. For each agent, the utility of find-
ing a parking space depends on various factors such as the travel time, the distance
from the parking space to the target, or the agent’s preference to park roadside or in
a garage10.

We formalize this scenario in the following simplified way: Using a directed
graph with latency functions as in the experiments of Chapter 9, we now assign two-
dimensional positions to all nodes. In this geography, parking lots are located at cer-
tain locations on the map and connected to nodes, such that an agent can only use a
parking space when it has reached the respective node. Cars have uniformly random
entry and exit points (nodes) and normally distributed targets ((x, y)-coordinates)
within the limits of the grid. The utility of an agent is a weighted sum (where the
weights correspond to the preference conversion factor between driving and walk-
ing) of travel time between start node and parking space and distance between park-
ing space and target.

To illustrate resource restrictions, let us use the simple grid shown in Figure 10.3,
and assume that there are two parking lots which are accessible from nodes 1 and
4, respectively. All agents enter the graph at node 0 and leave at node 5. Crucially,
the center of the agents’ target distribution is (0.5, 0.7), meaning that lot 1 is slightly
more attractive than lot 4.

As the parking management authority, we can only set the number of available
parking spaces at lot 1 to a number k between 0 and 10; at lot 4 there are always 10
spaces. Similarly to Braess’ Paradox, closing some of the parking spaces can increase
social welfare: Simulating the scenario for all values k ∈ {0, 1, ..., 10} gives the social
welfare graph in Figure 10.4. We can see that social welfare takes its maximum at
k = 6, while both extreme values of k are detrimental.

This phenomenon can be explained as follows: When there are 10 parking spaces
in lot 1, most cars decide to go there, resulting in over-utilization and congestion of

10As in Chapter 9, agents can have individual weightings for the relative importance of these factors.
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3 4 5
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FIGURE 10.3: Parking environment with two parking lots which can
be reached from nodes 1 and 4, respectively. The red dot denotes the
center of the normal distribution of targets, meaning that lot 1 is more

attractive on average.

edge (0, 1). When there are fewer parking spaces available, the lot becomes grad-
ually less attractive, until the incentives are sufficiently balanced to allow for even
traffic on both edges (0, 1) and (3, 4).

While we do have restrictions in this scenario (i.e., the use of certain parking
spaces can be allowed or forbidden), they are not aimed at removing specific actions
from the agents’ action spaces. Instead, the agents can still choose the same actions
(i.e., use the same edges and nodes), but the utility of doing so—in RL terms, their
action-value functions—are affected by the restrictions.

10.3.2 Emergent governance as a meta-strategy

Open, self-describing systems like human language allow agents to reason about
and define governance schemes as part of their interaction with the environment.
Simple examples that are commonly expressed in natural language but cannot eas-
ily be represented in the prevailing mathematical models are contracts, elections, or
enforcement of rules by a monopoly on violence. While agents in a POSG usually
have very well-structured, unalterable action spaces, real-world agents can use com-
munication to build meta-actions that open up new strategies and thereby change
the entire system to allow for new, better equilibria. The emerging field of Cooper-
ative AI (Dafoe et al., 2020) aims to translate this ability, which humans have used
for a long time to shape their environment and interactions, to artificial agents. At
best, this will allow us to transcend the rigid rules usually assumed in multi-agent
systems, and create governance forms that are not constrained by the intervention
points described in Section 2.4 for the POSG framework.

10.3.3 Language-based governance

As an example of the meta-strategies outlined in the previous section, assume that
agents act upon an environment by exchanging natural-language messages. In such
a “debate arena” (see also Section 8.3.4), agent goals can be achieved by giving the
best arguments and thereby winning debates, while the governance takes the role
of mediating the discussion and facilitating a constructive process. Of course, it
is utterly infeasible to explicitly describe the transition function or the governance
utility function of such a system in terms of token-based actions; for example, the
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FIGURE 10.4: Social welfare of restricted parking for different num-
bers of parking spaces at lot 1. When all 10 spaces are open, route
0→ 1→ 2→ 5 is congestion-prone since lot 1 is the better option for
most agents. Demand can be balanced by closing some of the spaces

at lot 1, leading to optimal social welfare when 4 spaces are closed.

action space of an agent is the set of all token tuples that have a meaning in the
language under consideration11.

This setting is much less clearly defined than any commonly used POSG model,
but it is a lot closer to how intelligent agents would interact: The openness of the
action spaces allows for an unbounded wealth of creative strategies, and ever more
complex patterns of cooperation can be learned over time. As humans have, within
the gigantic multi-agent system that is society, developed their own “self-contained
multi-agent systems” with rules, norms, rewards, and enforcement mechanisms, de-
bating agents can be imagined to build similar structures if given a sufficiently ex-
pressive language and enough time.

11Of course, we can simply set the action space as A := T∗, but the effect of an action a ∈ A depends
on its meaning, which itself is a complex (and poorly understood) function of the sequence of tokens.
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Conclusion and outlook

In this thesis, we have introduced the formal model of an action-restricted multi-
agent system and examined its feasibility as a dynamic governance mechanism. For
the two settings of discrete action spaces over a Stochastic Game and continuous
action spaces over a Normal-Form Game, we have proposed and analyzed solution
approaches to find an optimal governance policy. Additionally, we have proposed
an implementation of ARMAS using the agent-environment cycle of PettingZoo,
and we have evaluated the restriction-based governance approach with respect to
efficacy and fairness.

Drawing upon the analogy of laws as restrictions of the action spaces of humans
in any kind of community, we see great potential in this approach for designing
socially optimal interactions among artificial agents in a future where such agents
are highly evolved and ubiquitous.

Naturally, there are many open questions regarding scalability, convergence,
safety guarantees, manipulability, and other concerns that need to be addressed to
facilitate adoption in real-world settings. In this chapter, we outline a few limitations
of our current approach and propose directions for further research. The last section
of this work will take another step back and look at the potential long-term impact
of multi-agent governance on society—ultimately, the goal of our work is to develop
a theoretical understanding of how autonomous decision-makers of all sorts can be
supported by self-learning governance structures to collectively make the world a
better place.

11.1 Limitations

11.1.1 Scalability

The space of possible governance schemes for multi-agent systems is fundamentally
unbounded and has no inherent structure that can easily be exploited. By limiting
ourselves to restriction-based governance and defining the governance restriction
policy as a function from the environmental state to subsets of action spaces, we
have already heavily narrowed down the search space. Still, finding an optimal
restriction policy for a general multi-agent system of any meaningful size is an open
challenge, and keeping the policy optimal over time in the face of adaptive agent
strategies is even harder.

11.1.2 Definition of real-world MAS

Many systems of practical relevance are not well-defined and, therefore, do not al-
low for a good translation into an accurate mathematical model. For example, the
actions that humans perform in their environment could be precisely expressed as
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movements in space; after all, even spoken words are nothing but sound waves
caused by moving certain parts of the body. However, this perspective is not at all
helpful for describing what happens when humans talk to each other. High-level
actions like “go to the supermarket” or “convince your spouse to buy a house to-
gether”, on the other hand, are far too broad to allow for new creative combinations
that add new expressivity to the system. Again, language might be the key to an
interaction protocol at the right level of detail, accuracy, and conciseness.

11.1.3 Ethical implications of restrictions

Depending on the nature of the agents in a multi-agent system, restricting action
spaces can have far-reaching physical consequences or fundamentally touch the
freedom and privacy of agents. This is especially serious when human agents are
involved, but also artificial agents ultimately act on behalf of human stakeholders1.
Therefore, ethical considerations, which usually do not play any discernible role in a
technical treatment of multi-agent systems and their governance, must be taken into
account when defining the objective and impact of a governance scheme. Naturally,
our assumption is that the governance objective embodies the “greater good” for
which it is acceptable to restrict the freedom of the agents. This perspective, how-
ever, implicitly presumes that the governance does not abuse its power and that the
greater good is agreed upon by all involved agents.

To take the step from a technically sound and well-performing governance ap-
proach to a safely deployable component for real-world MAS, the following consid-
erations are essential: (a) Governance systems might have to make complex ethical
decisions, particularly in scenarios where agents’ actions have significant moral or
societal implications. The principles guiding these decisions need to be carefully
considered and ethically sound. To allow for an independent assessment of these
principles, it is essential to ensure that the workings of the governance system are
transparent, such that agents and other stakeholders understand why certain actions
are restricted. (b) The criteria used to restrict actions must be fair and unbiased.
There is a risk that the governance system might inadvertently discriminate against
certain agents or behaviors, for example, if the system is built or trained on biased
data. (c) Determining who is responsible for the actions of an autonomous agent be-
comes more complex under a governed system. If something goes wrong, it can be
challenging to ascertain whether the fault lies with the agent, the governance rules,
or the designers of the system. (d) While the primary intent of governance might
be to ensure safety and security, overly restrictive or poorly designed controls could
lead to vulnerabilities, especially if the governance is not able to adapt to unforeseen
situations in due time.

11.2 Future work

The above-mentioned limitations immediately give rise to exciting future work.
Some of these research directions seem fairly straightforward (as a challenge, though
not as a solution!), while others require a whole set of new ideas and frameworks in
order to be operationalized into technical work.

1Should, at some point in the future, artificial agents be able and allowed to act as separate entities,
this development will most likely exacerbate the issue instead of solving it: Fully autonomous artificial
agents should enjoy the same rights as humans and therefore be protected from unethical governance
influences the same way humans are today.
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11.2.1 Rigorous classification of governance schemes

We have seen in Section 2.4 that the POSG model for multi-agent systems naturally
exhibits a few intervention points where a governance can hook into the system. At
the same time, Section 10.3.1 has shown that these points can be combined to make
governance more complex and potentially more powerful. While this investigation
was merely based on examples, an exhaustive treatment of potential governance
schemes (first for the POSG model, but eventually for more general interaction mod-
els) might uncover a wealth of previously unimagined approaches.

Alternatively, there might be a general representation of any governance scheme
in the same form, relieving us from manually devising a classification of possible
governance methods. To use an analogy: Just as neural networks, by virtue of their
structure and number of parameters, allow for a much wider range of functions to
be represented than, say, linear or quadratic regression, we can imagine a parameter-
ized governance scheme that is much more general than just defining action-space
restrictions or governance rewards. By tuning the parameters of such a “universal”
governance, we can then find a truly optimal policy, not just within the realms of
directly addressing action spaces and rewards.

11.2.2 Generalization to Partially Observable Stochastic Games

In the present work, we have proposed a general model which can represent a broad
spectrum of systems, at the expense of a unified solution algorithm. Instead, we have
presented governance learning algorithms for smaller problem classes by making
additional assumptions about the systems under consideration.

Connecting these dots to create an efficient (e.g., polynomially computable or
polynomial-time converging) algorithm to find an optimal restriction policy for gen-
eral POSGs (and therefore, ARMASs) would be a breakthrough for the significance
of restriction-based governance schemes.

The development of Reinforcement Learning, where scalability experienced a
quantum leap several decades after the birth of the field through the application of
deep learning, gives hope that known challenges, previously unsolvable due to their
computational complexity, will eventually be solved as technology advances.

11.2.3 Language-based restrictions

One of the major limitations of our current approach is that most multi-agent sys-
tems, especially when humans are involved, are not well-defined in terms of the in-
teraction frameworks of Chapter 2. This limitation, briefly described in Section 11.1,
means that in these systems, there just is no definitive set of actions that could meaning-
fully be restricted. In contrast, human language is precisely what we use to describe
the world around us, reason about what we want to do, and even carry out a lot of
our actions—those with which we communicate with other people.

Solving the governance learning problem with state-of-the-art language process-
ing systems would immediately result in restrictions expressed in natural language,
therefore allowing for infinite expressivity combined with high accuracy and inher-
ent human interpretability.
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11.3 Societal relevance

A governance system that can automatically generate optimal rule sets and laws
could have a significant impact on the functioning of large societies, such as coun-
tries or even the global community. Such a system has the potential to greatly im-
prove the efficiency and fairness of legal and regulatory frameworks, leading to bet-
ter outcomes for individuals and society as a whole.

One major benefit of an automated governance system is that it can rapidly adapt
to changing circumstances and emerging issues. By analyzing data in real time,
the system can identify areas of concern and generate new rules and regulations to
address them. This could be particularly important in fields such as public health
and environmental protection, where timely action is crucial and accurate forecasts
are difficult.

Another potential benefit is the reduction of bias and discrimination in decision-
making. By basing decisions on objective data and algorithms, an automated gov-
ernance system could reduce the impact of personal biases and prejudices that exist
in virtually all human decision-making. This could lead to fairer outcomes for all
individuals, regardless of their background or circumstances.

Furthermore, an automated governance system could increase transparency and
accountability in decision-making processes. All decisions and rule changes would
be made traceable and auditable, allowing for greater scrutiny and oversight by the
public and other stakeholders.

However, it is important to note that an automated governance system is not a
panacea and may raise concerns about privacy, security, and the potential for un-
intended consequences. Therefore, careful consideration and regulation would be
needed to ensure that such a system is developed and used responsibly and ethi-
cally.

Ultimately, even the physical universe can be seen as a multi-agent system that
is governed by the laws of physics, prescribing any decision-making entity which
actions it can and cannot perform in any given situation. After all, it is hardly con-
ceivable that the world could produce intricate structures and purposefully crafted
sub-systems, if not for these laws.

Multi-agent systems consisting of human agents most often apply a multi-
faceted approach to governance: There are static action constraints, conditional
rules, monetary and other incentives, but also moral maxims, appeals to people’s
sense of fairness and solidarity, and many other forms of normative influence on be-
havior. We can see that for at least two thousand years, philosophers and politicians
have struggled to find an optimal method to govern communities, and the systems
that have emerged have been shown to be brittle, prone to manipulation, and in per-
petual need of adjustment. At the same time, there is a broad consensus that certain
elements like individual freedom, voting rights, and corrigibility should be included
in any feasible form of governance, both for ethical and performance reasons2.

It would be exciting to see whether a self-learning governance equipped with
superior data collection, reasoning, and forecasting capabilities would come to the
same conclusions and devise similar governance schemes.

2One could argue, though, that the continued worldwide occurrence of non-democratic forms of
government means that this consensus is less pronounced than commonly assumed from our own
viewpoint.
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A.1 Equilibrium oracle for quadratic utilities

For a quadratic reward function r : R2 → R and a restriction R ⊂ R, the best
response function B1|R(x2) can be found by a straight-forward case analysis: Let r
be defined as

r(x1, x2) = ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f ,

and define five “candidate points”

xl := min
x∈R

x ,

xu := max
x∈R

x ,

x∗ :=
cx2 + d
−2a

,

x− := max
x∈R,x<x∗

x , and

x+ := min
x∈R,x>x∗

x .

With these points,

• if r is constant in x1 (i.e., a = 0 and cx2 + d = 0), then B1(x2) = R,

• if r is linear in x1 with positive slope (i.e., a = 0 and cx2 + d > 0), then B1(x2) =
{xu},

• if r is linear in x1 with negative slope (i.e., a = 0 and cx2 + d < 0), thenB1(x2) =
{xl},

• if r is convex in x1 (i.e., a > 0), then B1(x2) = arg maxx∈{xl ,xu} r(x),

• if r is concave in x1 (i.e., a < 0) and x∗ ∈ R, then B1(x2) = {x∗}, and

• if r is concave in x1 (i.e., a < 0) and x∗ /∈ R, then B1(x2) =
arg maxx∈{x−,x+} r(x).

Note that B1(x2) is not necessarily unique (or even a finite set). To find the
NE, observe that the unrestricted best response functions B1(x2) = − c1x2+d1

2a1
and

B2(x1) = − c2x1+e2
2b2

lead to the unique unrestricted NE

x∗ = (x∗1 , x∗2) =
(

c1e2 − 2d1b2

4a1b2 − c1c2
,

c2d1 − 2e2a1

4a1b2 − c1c2

)
.
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If this point exists and is allowed by R, i.e., 4a1b2− c1c2 ̸= 0 and x∗ ∈ R, thenN |R =
{x∗}. Otherwise, we use fictitious play (i.e., successive mutual best responses) to
find the fixed points, repeatedly calling the restricted best response functions while
maintaining a list of candidate solutions.

A.2 Expected results for the Cournot Game

Let the function
D : A→ R, D(a) = ∑

i∈I
min

x∈Bi(a−i)
(ai − x)2 (A.1)

measure the deviation of the joint action a from a Nash Equilibrium; by definition,
its roots are exactly the Nash Equilibria of the respective best response functions. If
there are no roots (i.e., mina∈A D(a) > 0), there is no (pure) Nash Equilibrium.

For the (unrestricted) CG, the unique best responses are B1(q2) =
{

λ−q2
2

}
and

B2(q1) =
{

λ−q1
2

}
. Therefore, we get

D(q) =
(

q1 −
λ− q2

2

)2

+

(
q2 −

λ− q1

2

)2

=
5
4
(q2

1 + q2
2) + 2q1q2 −

3
2

λ(q1 + q2) +
1
2

λ2

which has a unique global minimum q∗ = (λ
3 , λ

3 ) with D(q∗) = 0.
If we allow interval union restrictions for the CG, best responses are not unique

anymore, but still follow a simple pattern: If the unrestricted best response q∗ is
not part of an allowed interval, the restricted best responses are the closest allowed
actions on either one or both sides of q∗.

More formally: Let q∗ := λ
3 be the unrestricted optimal quantity, and define, for

a given restriction R ⊆ [0, λ], the two closest allowed quantities q+ := minq∈R({q >
q∗}) and q− := maxq∈R({q < q∗}). Setting ∆+ := q+ − q∗ and ∆− := q∗ − q−, the
Nash Equilibria N |R of the restricted CG are:

N |R =



{(q+, q+)} if ∆+ < 1
2 ∆−

{(q+, q+), (q+, q−), (q−, q+)} if ∆+ = 1
2 ∆−

{(q+, q−), (q−, q+)} if 1
2 ∆− < ∆+ < 2∆−

{(q−, q−), (q+, q−), (q−, q+)} if ∆+ = 2∆−

{(q−, q−)} if ∆+ > 2∆−

.

This suggests the following sequence of successive restrictions for the AROGU
algorithm:

• Identify λ
3 as the unique relevant action of the unrestricted game and therefore

exclude R :=
[

λ
3 − ϵ, λ

3 + ϵ
)

from the action space

• Identify both boundary actions as relevant and exclude one of them, increasing
the excluded region R around λ

3

• Whenever R becomes imbalanced by a factor of > 2 around λ
3 , a symmetric

equilibrium appears at one end of it

• Finally, R is large enough to produce the symmetric equilibrium (λ
4 , λ

4 )
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FIGURE A.1: Exponential and quadratic interpolation of the number
of oracle calls in the Cournot Game

• This occurs when R = [λ
4 , λ

2 ), and therefore R = [0, λ
4 ) ∪ [λ

2 , λ)

• The algorithm goes on to enlarge R until the set of allowed actions becomes
empty

• Since no further restriction produces a socially better stable solution, the
largest (i.e., least restrictive) R with (λ

4 , λ
4 ) ∈ N |R is finally returned as the

optimal restriction R∗

• The resulting degree of restriction is r(R∗) = 25%

The optimal restriction R∗ has the unique equilibrium (λ
4 , λ

4 ) which gives the
MESU S(R∗) = u(λ

4 , λ
4 ) =

1
4 λ2. In contrast, the unrestricted game produces a unique

equilibrium of (λ
3 , λ

3 ), such that S(A) = u(λ
3 , λ

3 ) = 2
9 λ2. The resulting relative im-

provement is ∆rel =
1
8 .

A.3 Number of oracle calls in the Cournot Game

To show that the number of oracle calls for AROGU’s solution of the Cournot Game
grows quadratically rather than exponentially, let us fit the two curves f1(λ) =
aebλ + c and f2(λ) = aλ2 + bλ + c to the data and check their deviation. Recall that
the experimental data is f (10) = 912, f (11) = 1095, f (12) = 1294, f (13) = 1513,
and so on (the full data set can be reproduced using the supplementary material).

As can be seen from Figure A.1, the quadratic interpolation polynomial f2 gives
a close-to-perfect fit with parameters a = 8.33, b = 8.00, and c = −1.45. In contrast,
the exponential fit with f1 produces the degenerate parameter values a = 0.00, b =
1.00, and c = 1.12 · 1062.

A.4 Continuous Braess Paradox

In the original (discrete) version of Braess’ Paradox (see Example 7), each agent has
three route options, of which they must choose exactly one. The travel time from
node 0 to node 3 is then used as their cost function (i.e., it is to be minimized).

When transforming this into a one-dimensional continuous NFG, we have to
address two points: (a) There has to be a continuum of actions, and (b) we need
utility functions instead of cost functions. Therefore, we define the action space as
A = [0, 1] and give it the following meaning: Agent 1 routes a flow of x1 through
route 0 → 1 → 2 → 3, and the remaining flow of (1 − x1) through route 0 →
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2 → 3. Similarly, agent 2 routes a flow of x2 through route 0 → 1 → 2 → 3,
and the remaining flow of (1− x2) through route 0 → 1 → 3. This means that for
both agents, 0 is the “cooperative” action, while 1 is the “competitive” action. The
edge weights are adjusted such that full utilization (which is now a flow of 2 along
an edge) gives the same travel time as utilization of 1 in the original setting (see
Figure A.2).

FIGURE A.2: Continuous version of Braess’ Paradox

We calculate the expected travel time ci(x) for both agents and subtract them
from a virtual baseline of 32 in order to get the reward functions ri(x). The expected
travel time along a route is the flow on the route, multiplied by the sum of the edge
latencies lv,w(x), given this flow1. For agent 1, this calculation is:

c1(x) = x1(l0,1 + l1,2 + l2,3) + (1− x1)(l0,2 + l2,3)

= x1(l01 + l1,2) + (1− x1) · l02 + l2,3

= x1(4(1 + x1) + 1) + 11(1− x1) + 4(1 + x2)

= 4x2
1 − 6x1 + 4x2 + 15 ,

and the corresponding reward function is

r1(x1, x2) = −4x2
1 + 6x1 − 4x2 + 17 .

In the same way, we get

r2(x1, x2) = −4x2
2 − 4x1 + 6x2 + 17 .

To generalize this setting, let us assume the affine latency functions l0,2(x) =
l1,3(x) = a(x1 + x2) + b and l0,1(x) = l2,3(x) = c(x1 + x2) + d, while leaving the con-
stant latency l1,2(x) = 1 unchanged. This gives the parameterized reward functions

r1(x) = −(a + c)x2
1 + (2a + b− c− 1)x1 − cx2 + (4c + d + 1)

and
r2(x) = −(a + c)x2

2 − cx1 + (2a + b− c− 1)x2 + (4c + d + 1) .

To obtain a one-dimensional range of experiments, we fix a = 0, c = 4 and
d = 0 and vary b (intuitively, we vary the attractiveness of taking the cooperative
routes, compared to the selfish route). The parameterized reward functions ri(x) are
therefore

r1(x) = −4x2
1 + (b− 5)x1 − 4x2 + 17

1Here, lv,w denotes the latency function of the edge from node v to node w.
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and
r2(x) = −4x2

2 − 4x1 + (b− 5)x2 + 17 .

A.5 Expected results for the Braess Paradox

From r1 and r2 as defined in Section 7.4.4, we can immediately derive the best re-
sponse functions Bi(xj) =

{
b−5

8

}
for all i, resulting in N =

{(
b−5

8 , b−5
8

)}
. More-

over, since u(x) = r1(x) + r2(x) = −4x2
1 − 4x2

2 + (b− 9)x1 + (b− 9)x2 + 34, we get

the social optimum x∗ =
(

b−9
8 , b−9

8

)
.

Finally, we conclude from A = [0, 1] that, for b ≤ 5 and b ≥ 17, N = {x∗} such
that the unrestricted and the restricted MESU are equal. For b ∈ (5, 17), however,
the two values differ, such that restricting A can improve the MESU.

Let us first assume that b ∈ (5, 9]. To make b−9
8 a best response for an agent, we

have to exclude any action from A that this agent would prefer over b−9
8 . It is easy to

see that the range of actions that needs to be excluded is (0, b−5
4 ), giving the unique

optimal restriction R∗ = {0} ∪ [ b−5
4 , 1].

For b ∈ [9, 17), a similar analysis yields that ( b−9
8 , 1) needs to be excluded, and

therefore R∗ = [0, b−9
8 ].

From the optimal restriction R∗, we can calculate the unrestricted and restricted
MESU as well as the degree of restriction:

S(A) =


34 for b ≤ 5
1
8

(
b2 − 18b + 337

)
for b ∈ [5, 13]

2b + 8 for b ≥ 13

,

S(R∗) =


34 for b ≤ 9
1
8 (b− 9)2 + 34 for b ∈ [9, 17]
2b + 8 for b ≥ 17

,

and

r(R∗) =


0 for b ≤ 5
b−5

4 for b ∈ [5, 9]
17−b

8 for b ∈ [9, 17]
0 for b ≥ 17

.
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B.1 Traffic models

B.1.1 Multi-step microscopic model

The pseudo-code of the environmental model used for the experiments is listed in
Algorithm 4. Some of the design choices are noteworthy:

• When an agent chooses its next edge, it does so using the anticipated latency of
the network, i.e., it calculates the latency of an edge e as le( fe + 1), since the
utilization will be incremented as soon as the car enters the road. There are
two ways to use the anticipated latency for finding a shortest path: (a) Only
use the anticipated latency for the first edge, or use it for all edges along the
route. Moreover, to account for the total cost, each agent uses its value-of-time
and value-of-money properties and chooses a shortest path with respect to the
weighted sum of anticipated travel time and anticipated tolls.

• The speed of an agent along an edge (i.e., the number of steps it takes until
it reaches the end of the edge) is set when the agent enters the edge, and is
not changed anymore, even if the latency of the edge changes in subsequent
steps when the agent is still traversing the edge. This gives a more realistic
behavior than having incoming agents change the speed of agents which are
further along the edge.

• At each step, the agents move along their current edge according to their
speed. As soon as the end of the edge is reached, the agent stops, and at the
next step makes its choice about the subsequent edge. This means that in this
model, it always takes at least one step to traverse an edge, even if the latency
is less than 1. Accordingly, the latency values need to be large enough to allow
for differentiated travel times under this discretization.

• When an agent reaches its destination, the position is reset to the source. This
step is executed prior to deciding on the subsequent edges and progressing
traffic. The approach facilitates a more even flow with a fixed number of agents
on the graph.

B.1.2 Single-step microscopic model

For the examples in Section 9.2, we use a model in which each agent is still a dis-
tinct entity; however, agents do not move on the network, but instead choose their
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Algorithm 4: Multi-step traffic simulation
input: Network, cars, number of steps

1 foreach step do
2 Compute flow for each edge in network based on car positions and

update network attributes accordingly;
3 foreach car c do
4 Move c based on speed;
5 if c has reached the end of its edge e then
6 Decrement flow on e;
7 end
8 end
9 foreach car c do

10 if c has reached its target then
11 Reset c;
12 end
13 end
14 foreach car c (in random order) do
15 if c is at a node then
16 Determine next edge e for c;
17 Set c’s speed based on latency of e ;
18 Increment flow on e;
19 end
20 end
21 end

entire route at once, whereupon the travel times and total costs are computed in
a single step. To avoid spikes and oscillations, we still let the agents choose their
routes sequentially in random order (observing what the previous agents have cho-
sen at the same step). From a game-theoretic viewpoint, this setup corresponds to an
Extensive-Form Game, while the multi-step setup in Appendix B.1.1 is a Stochastic
Game. Its results are “cleaner” than in the multi-step model, since an agent can be
thought of as a continuous flow which is, at the same time, located at each edge of
its route.

B.2 Double Braess Paradox

To construct this “Double Braess Paradox”, we first observe that in the original net-
work (Figure 9.2a), there are three types of latency functions: (a) High constant la-
tencies like edge (0, 2), (b) affine latencies like (0, 1) and (c) low constant latencies like
(1, 2). The latter type of edge is removed to resolve the paradox.

Therefore, we re-use the high-constant-latency edge (0, 2) as the low-constant-
latency edge in another, superimposed paradox, such that its removal improves the
flow on this second structure. Accordingly, we add two nodes A and B (taking the
roles of 0 and 3 in the original setting), and connect them to the existing nodes 0 and
2. The latency functions of the new edges need to be chosen such that the unique
optimal route from A to B is A→ 0→ 2→ B, regardless of the traffic rate.

Note that the edge (0, 2) now has a double role: To resolve the paradox on the
subgraph {0, 1, 2, 3}, it needs to be present; to resolve the paradox on the extended
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FIGURE B.1: Additional results of the Gn,p graph experiment. Similar
to the results shown in Figure 9.4, both Restriction and Tolling improve
the mean travel time compared to Base. However, value of money

significantly influences travel time with Tolling (p ≤ 0.01).

graph {A, 0, 2, B}, it needs to be removed. Hence, we now have demand-dependent
optimal restrictions as intended.

B.3 Gn,p graphs

Our experiments follow the formal notation of Valiant and Roughgarden, 2010 in
which each graph G is drawn from the standard Erdős-Rényi model Gn,p. Each edge
is given an independent affine latency function le(n) = a + b( n

c ) where a, b and
c are integers drawn independently from three fixed uniform distributions A, B,
and C. We search for Braess’ Paradox by repeatedly sampling graphs, traffic rates,
source nodes s, and destination nodes d. Hereby, agents are initialized on random
edges of the simple paths between s and d. The restriction effect is measured by
independently removing each edge e with a high equilibrium flow from G. We find
Braess’ Paradoxes when generating traffic scenarios with the following parameters
and seed 46:

A B C f s d e

G50,0.07 U{3,4} U{2,3} U{1,3} 38 23 33 (23, 30)

G34,0.06 U{3,4} U{2,4} U{1,4} 38 6 20 (25, 9)

G59,0.08 U{2,4} U{2,3} {3} 31 3 27 (20, 41)

The travel time and fairness metrics for G50,0.07 and G34,0.06 are shown in Fig-
ure B.1.
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B.4 Generalized Braess graphs

The same reasoning as in Appendix B.2 applies to the generalized Braess graphs: In
every iteration i, the high-constant-latency edge (si−1, w) becomes a low-constant-
latency edge in the subgraph {si, si−1, w, ti}.

Formally, the graph Bn = (Vn, En) is defined as:

Vn := {s0, ..., sn, v, w, t0, ..., tn}
En := {(s0, v), (v, w), (v, t0)} ∪ {(s1, s0), ..., (sn, sn−1)} ∪

{(s0, w), ..., (sn, w)} ∪ {(s0, t1), ..., (sn−1, tn)} ∪
{(w, t0), ..., (w, tn)}

with

le( f ) :=


1 if e = (v, w)

2 + 6 · f
c if e = (si, si−1) or (s0, v) or (w, ti)

11 + 2i if e = (si, w) or (si, ti+1)

.

It is clear that edges involving nodes sj or tj with j > i are irrelevant for traffic
flowing from si to ti since there are no directed paths going through these nodes. For
commodity (si, ti), the optimal restriction is closing edges {(sk, w), 0 ≤ k ≤ i− 1}.

B.5 Reproducing the experiments

Using the code provided in the accompanying repository and the seeds listed below,
the results reported in Chapter 9 can be fully reproduced. Different seeds, of course,
can give slightly different results, but will confirm that all claims are robust with
respect to randomization.

We have used the following seeds for our experiments:

Experiment Seeds

Gn,p 41, 42, 43, 44, 45, 46, 47, 48, 49, 50

Braess 42, 43, 44, 45, 46
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