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Using ‘working’ assumptions on conditional third and fourth moments of errors, we propose a method of moments estimator
that can have improved efficiency over the popular Gaussian quasi-maximum likelihood estimator (GQMLE). Higher-order
moment assumptions are not needed for consistency – we only require the first two conditional moments to be correctly
specified – but the optimal instruments are derived under these assumptions. The working assumptions allow both asymmetry
in the distribution of the standardized errors as well as fourth moments that can be smaller or larger than that of the Gaussian
distribution. The approach is related to the generalized estimation equations (GEE) approach – which seeks the improvement
of estimators of the conditional mean parameters by making working assumptions on the conditional second moments. We
derive the asymptotic distribution of the new estimator and show that it does not depend on the estimators of the third and
fourth moments. A simulation study shows that the efficiency gains over the GQMLE can be non-trivial.
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1. INTRODUCTION

Nonlinear dynamic models of means, variances and covariances are routinely estimated in financial economics,
macroeconomics and various other disciplines. A leading example is the set of models coming from the GARCH
(generalized autoregressive conditional heteroskedasticity) and multi-variate GARCH class of models; see
Bollerslev (1986). In an influential paper, Bollerslev and Wooldridge (1992) show that the GQMLE has a critical
robustness property in the general multi-variate case where means, variances, and covariances can all depend on
the conditioning set: provided the first two conditional moments are correctly specified, the GQMLE consistently
estimates the parameters indexing the means, variances and covariances under weak regularity conditions. More-
over, Bollerslev and Wooldridge (1992) show how to estimate the asymptotic variance of the GQMLE allowing for
arbitrary departures from normality (subject to the existence of enough finite moments). Many empirical papers
have computed parameter estimates of the first two conditional moments using the GQMLE with fully robust SEs.

Naturally, as noted by Bollerslev and Wooldridge (1992), the GQMLE is asymptotically inefficient compared to
the maximum likelihood estimator (MLE) from a correctly specified model. Of course, this requires a researcher
to model the entire distribution of the outcome variables conditional on the observed covariates. A leading exam-
ple in the univariate case is Bollerslev (1987), who proposes replacing the normal distribution with a t-distribution
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with unknown degrees of freedom. The degrees-of-freedom parameter is estimated along with the mean and vari-
ance parameters. There are some shortcomings to this approach, the most important being that the estimators of
the mean and variance parameters are generally inconsistent if the t-distribution is misspecified – which happens if
the distribution is asymmetric, or if the conditional fourth moment is not proportional to the square of the variance.
In the univariate setting, Newey and Steigerwald (1997) characterize the class of quasi-maximum likelihood esti-
mators that identify parameters in correctly specified first two conditional moments. Symmetry plays an important
role, as does the assumption that the standardized innovations are actually i.i.d., rather than a general martingale
difference sequence (MDS) with unit conditional variances. As a practical matter, specifying a non-normal distri-
bution is difficult with multi-variate outcomes. One possibility is to combine a marginal distribution, such as a t
-distribution, with copulas, as in Patton (2006) and Fan et al. (2014). However, one is still making a full paramet-
ric joint distributional assumption, and the resulting MLEs are inconsistent if either the marginal distribution or
the copula is misspecified.

Rather than assuming a particular distribution for the standardized innovations, one can take a semi-parametric
approach to allow flexibility in the distribution. Examples in the univariate case include Engle and
Gonzalez-Rivera (1991), Drost et al. (1997), Hafner and Rombouts (2007) and Di and Gangopadhyay (2011).
However, such approaches still impose a non-trivial restriction on the distribution of the innovations: the innova-
tions are assumed to be i.i.d. This means that the third and fourth moments are restricted to very specific functions
of the conditional variance. If those restrictions fail – for example, if the asymmetry or kurtosis changes in gen-
eral ways with the conditioning variables – the semi-parametric (or adaptive) estimators will be inconsistent. By
contrast, the GQMLE does not require i.i.d. innovations for consistency or asymptotic normality, and neither does
fully robust inference. In other words, in terms of consistency, semi-parametric methods are less robust than the
GQMLE. There is a practically important difference between the standardized innovations being an MDS – which
is implied by the correct specification of the first two moments – and assuming they are actually i.i.d. Relax-
ing the i.i.d. condition on the standardized residuals is not easy; for example, see the discussion in Komunjer
and Vuong (2010). Of course, things would be even more difficult in a multi-variate setting. As a practical mat-
ter, semi-parametric approaches with multi-variate outcomes can be very difficult computationally – even if one
believes that the (matrix) standardized innovations are i.i.d. In addition, proper choices of tuning parameters are
crucial to the performance of these methods.

Our purpose in this article is to improve the GQMLE estimator without imposing additional (substantive)
assumptions. As just summarized, any non-Gaussian MLE or semi-parametric MLE imposes assumptions beyond
those used by Bollerslev and Wooldridge (1992) for consistency and asymptotic normality. In the conclusion of
Bollerslev and Wooldridge (1992), the inefficiency of the GQMLE is noted, with the possibility of using the method
of moments to improve efficiency suggested as a future research topic. Building on this observation, we propose
an estimator that potentially has a smaller asymptotic variance than the GQMLE if some working assumptions
hold. As in the GEE literature for estimating parameters in conditional mean functions, efficiency gains often arise
even when the working assumptions fail. A key point is that the consistency of the ‘optimal’ instrumental variables
estimator does not require these working assumptions.

We extend the GEE idea for estimating conditional means (Liang and Zeger, 1986) to the case where the param-
eters of the first two conditional moments are of interest and these moments are assumed to be correctly specified.
To obtain optimal instrumental variables, we restrict the class of submodels. In particular, as in the GEE literature,
we specify a ‘working’ optimal instrument matrix. This involves a ‘working’ conditional variance–covariance
matrix for the residual function that defines the first two conditional moments. Namely, we consider an estimator
that, like the GQMLE, requires only the first two moments to be correctly specified for consistency. Within this
class, we want to find an estimator that is motivated by the optimal instrumental variables estimator (OPIV) but
requires weaker assumptions. This novel estimator integrates essential characteristics from both OPIV and GEE
approaches, and we refer to it as ‘working OPIV’ (WOPIV). It has the potential to be more efficient than the
GQMLE when only the first two moments are correctly specified. As demonstrated through simulations in various
univariate and multi-variate models, the WOPIV outperforms the GQMLE when the underlying distribution of the
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IMPROVED ESTIMATION OF DYNAMIC MODELS 3

innovation term is skew normal, while both methods have similar performances when the underlying distribution
is standard normal.

Our proposed WOPIV method is related to the literature on estimating function methods of dynamic mod-
els. Methodologies in a similar spirit were first developed in statistics by Durbin (1960), Godambe (1985), and
Godambe and Heyde (2010); see also Heyde (1997). The theory of estimating functions with the plugged-in
estimator of nuisance parameters has been applied to the estimation of ARCH-type models by Chandra and
Taniguchi (2001). Compared to the above-referenced work, the WOPIV is for a more general class of dynamic
models. There are a few works in the literature considering improving the estimator of dynamic models by exploit-
ing higher-order moment conditions. Prono (2010) proposes a GMM method to obtain an efficient estimator for
the GARCH(1,1) model; see also Im and Schmidt (2008) for the i.i.d. case. The highly cited work of Harvey and
Siddique (1999) includes the third moment to account for the skewness in the innovation distribution. The method
considered in Meddahi and Renault (1998) and Li and Turtle (2000) can be regarded as special cases of our frame-
work in the univariate ARCH-type models. An important advantage of our proposed WOPIV method over those
based on GMM is that instead of estimating the entire set of optimal instruments, the WOPIV solely relies on the
estimated third and fourth moments to construct the instruments, and inconsistent estimators of these moments will
not affect the consistency of the WOPIV. In contrast, the consistent estimation of high-order moments is crucial
for the above-mentioned GMM-based methods.

The rest of the article is organized as follows. In Section 2, we show the basic univariate framework of the
proposed WOPIV. In Section 3, we present its theoretical properties. In Section 4, we extend our approach to
multi-variate models. In Section 5, we discuss the performance of the WOPIV in comparison to other relevant
methods. Simulations and applications are in Sections 6 and 7. The proofs and other technical details of the WOPIV,
as well as tables and figures, are presented in the Appendices.

2. UNIVARIATE MODELS

We start with the univariate case. Let yt (for t = 1, … ,T) be a scalar response, and xt be a vector of condi-
tioning variables, which is finite-dimensional and can generally include lagged values of yt. xt can also include
contemporaneous values of some other series, say zt, as well as lags of zt.

Let Θ be the parameter set where 𝜃 takes its value, and we use mt(xt,𝜽) and vt(xt,𝜽), where vt(xt,𝜽) > 0 for all
xt and 𝜽 ∈ Θ, to denote the conditional mean and variance respectively. We assume that the first two moments are
correctly specified: for some 𝜽0 ∈ Θ,

E(yt|xt) = mt(xt,𝜽0), (1)

Var(yt|xt) = vt(xt,𝜽0). (2)

The setup of this model is general, allowing for variance parameters and mean parameters to be completely separate
or to overlap. An example of the latter is the ARCH-in-mean type model. See, for example, Engle et al. (1987).

Conditions (1) and (2) are standard regularity conditions for dynamic models. However, it is traditional in the
settings of interest to assume that the models are dynamically complete in mean and variance:

E(yt|xt,t−1) = E(yt|xt), (3)

Var(yt|xt,t−1) = Var(yt|xt), (4)

where

t−1 = 𝜎(yt−1, xt−1, yt−2, xt−2, … , y1, x1, y0, x0, …),

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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4 W. WANG, J. M. WOOLDRIDGE and M. XU

is the filtration corresponding to time t−1. A dynamic completeness assumption in the first two moments is always
assumed in ARCH and GARCH models and their extensions. Following the convention, we assume that the first
two conditional moments are correctly specified and dynamically complete. This is the assumption imposed in
Bollerslev and Wooldridge (1992).

Example 1. The GARCH(1,1) model:

𝜀t = 𝜎t𝜂t,

𝜎2
t = 𝜔0 + 𝛼0𝜀

2
t−1 + 𝛽0𝜎

2
t−1, (5)

where 𝜂t’s are i.i.d. innovations, and 𝛼0, 𝛽0 > 0, 𝛼0 + 𝛽0 < 1.
In this example, yt = 𝜀t and xt = (𝜀t−1, 𝜎t−1). We shall note that usually for the GARCH model, a joint Markovian

assumption holds: the process xt is Markovian, but 𝜀t is not. In addition, xt =
(
𝜀t−1, 𝜎t−1

)
is only partly observed

because 𝜎t−1 is unobserved; it depends on 𝜃0 and {𝜀t−i, i > 1}, i.e., an infinite number of past values of the process.
We will discuss the estimation strategy in Section 2.2.

By the dynamic completeness assumption, the optimal instrumental variables derived for the WOPIV depend
solely on xt. As we permit lags of yt or zt to be included in xt, there is no longer a need to use lags of xt, such as
xt−1, for constructing the instruments at time t. In this way, the WOPIV becomes a direct extension of the GQMLE,
which can be viewed as a particular instrumental variables estimator (IV) whose instruments depend only on xt.

In an effort to improve the GQMLE method, we proceed to define the error term as well as the standardized
error as

ut = yt − mt(xt,𝜽0),

et =
ut√

vt(xt,𝜽0)
.

By construction,

E
(
ut|xt

)
= 0, Var

(
ut|xt

)
= vt(xt,𝜽0),

E
(
et|xt

)
= 0, Var

(
et|xt

)
= 1,

and these conditional moments continue to hold conditional on t−1. It is important to observe that et is not
guaranteed to be even independent of xt, let alone its further lags before time t. Treatments such as Newey and
Steigerwald (1997) make the strong assumption (which is not required in our article):

et is independent of
(
xt, xt−1, …

)
, t = 1, 2, … (6)

In contrast, conditions (3) and (4) require only that {et}T
t=1 is an MDS. As discussed in Bollerslev and

Wooldridge (1992), the correct specification of the first two conditional moments implies that the vector of score
functions of the quasi-log likelihood (evaluated at 𝜃0) forms an MDS. Along with weak dependence requirements,

the MDS properties ensure that the GQMLE is
√

T-asymptotically normal. Condition (6) can be used to sim-
plify the verification of regularity conditions, but it has no substantive effect on the asymptotic properties of the
GQMLE. See also Wooldridge (1994) for a more general discussion.

To obtain a simple estimator that can be more efficient than the GQMLE, we start with the following two
conditions:

E
(
e3

t |xt

)
= E

(
e3

t

)
≡ 𝜅0

3 , (7)

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 5

E
(
e4

t |xt

)
= E

(
e4

t

)
≡ 𝜅0

4 , (8)

where 𝜅0
3 and 𝜅0

4 are two constants. Written in terms of the errors ut,

E
(
u3

t |xt

)
= 𝜅0

3

[
vt(xt,𝜽0)

]3∕2
, (9)

E
(
u4

t |xt

)
= 𝜅0

4

[
vt(xt,𝜽0)

]2
. (10)

It shall be noted that conditions (7) and (8) are not really assumptions imposed on the proposed WOPIV method.
Rather, they are introduced to motivate the construction of the working variance–covariance matrix of the con-
ditional moment restrictions shown below. However, it is worth noting that our method implicitly assumes the
existence of the third and fourth moments of et. Therefore we shall not target applications, where the third and
the fourth moments do not exist, for example, the cases considered in Fan et al. (2014). Under the assumption of
normality, we have 𝜅0

3 = 0 and 𝜅0
4 = 3. Bollerslev and Wooldridge (1992) show that neither of these restrictions is

necessary for the consistency of the GQMLE. In fact, neither is the assumption that these E
(
e3

t |xt

)
and E

(
e4

t |xt

)
are constant. For the estimators here, we use (7) and (8) to derive working optimal instruments for estimating 𝜽0,
but these conditions are not required for the consistency of the WOPIV. Later, we will need to estimate 𝜅0

3 and 𝜅0
4 ,

but this is easily done given an initial preliminary estimator of 𝜽0, which is typically the GQMLE. In deriving the
asymptotic properties, we will only assume that the estimators converge to some constants without invoking (7)
or (8).

Our proposed WOPIV is motivated by finding the working optimal instruments under the assumption that the
model is dynamically complete in the first two moments and the auxiliary conditions (7) and (8). For each t and

wt

def
= (yt, x

′
t)
′, define the 2 × 1 matrix of residual functions:

rt(wt,𝜽) =

(
yt − mt(xt,𝜽)[

yt − mt(xt,𝜽)
]2 − vt(xt,𝜽)

)
.

If the model is dynamically complete, then

E
[
rt(wt,𝜽0)|xt

]
= E

[
rt(wt,𝜽0)|xt,t−1

]
= 0.

As discussed in Wooldridge (1994), the optimal instrumental variables based on these moment conditions depend
on E

[
∇

𝜽
rt(wt,𝜽0)|xt

]
and Var

[
rt(wt,𝜽0)|xt

]
. Let P denote the dimension of 𝜃0. Under the correct specification of

the first and the second moments, we can obtain the 2 × P matrix

Rt(xt,𝜽0) ≡ E
[
∇

𝜽
rt(wt,𝜽0)|xt

]
= −

(
∇

𝜽
mt(xt,𝜽0)

∇
𝜽
vt(xt,𝜽0)

)
.

Next, Var
[
rt(wt,𝜽0)|xt

]
can generally be any positive semi-definite matrix function of xt, making it diffi-

cult to implement an always efficient IV estimator. Our key innovation is to impose a working version of
Var

[
rt(wt,𝜽0)|xt

]
, where we borrow the term ‘working’ from the GEE literature (for example, Zeger and

Liang, 1986). In particular, if we impose (7) and (8), then

Dt(xt,𝜽0,𝜿0) ≡ Var
[
rt(wt,𝜽0)|xt

]
=

(
vt(xt,𝜽0) 𝜅0

3

[
vt(xt,𝜽0)

]3∕2

𝜅0
3

[
vt(xt,𝜽0)

]3∕2 (
𝜅0

4 − 1
) [

vt(xt,𝜽0)
]2

)
,

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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6 W. WANG, J. M. WOOLDRIDGE and M. XU

where 𝜅0

def
= (𝜅0

3 , 𝜅
0
4 )

′. Rather than being unrestricted, Dt(xt,𝜽0,𝜿0) has a relatively simple form and depends
on only two additional parameters. Under normality or other symmetric distributions, this structure holds with
𝜅0

3 = 0. Specific distributions also imply values for 𝜅0
4 , or in some cases (such as the skew normal distribution or

the t-distribution) we treat it as a parameter to be estimated using an MLE approach. We can use this structure to
obtain an estimator that has the potential to be more efficient than the GQMLE. As discussed in the GEE literature,
we expect efficiency will carry over even if we drop (7) and (8).

As in Wooldridge (1994) (Page 61, equation (7.32)), the working optimal instruments, obtained only from the
moments conditional on xt, are

Zt

def
= Dt(xt,𝜽0,𝜿0)−1Rt(xt,𝜽0).

In practice, obtaining this working optimal instrument matrix for some models may be infeasible since xt might
depend on the unknown parameter 𝜃0 or unobserved historical values, such as yt with t ≤ 0. Thus, we shall
distinguish estimation strategies for fully observed xt and for partially unobserved xt. The detailed estimation steps
in these two cases are outlined in the following two subsections.

2.1. xt is fully observed

To implement the WOPIV, we need initial estimators of 𝜽0 and 𝜿0, which are denoted by 𝜽̌ and 𝜅̌. For 𝜽0, an obvious
choice is the GQMLE. For 𝜅0, we employ a method-of-moments estimator to obtain the standardized residuals:

ět =
ǔt√

vt(xt, 𝜽̌)
,

where ǔt = yt − mt(xt, 𝜽̌). Then, we can obtain

𝜅̌3

def
= 1

T

T∑
t=1

ě3
t =

1
T

T∑
t=1

⎡⎢⎢⎢⎣
ǔt√

vt(xt, 𝜽̌)

⎤⎥⎥⎥⎦
3

. (11)

Next, define 𝜏0
4 = 𝜅0

4 − 1, such that 𝜏0
4 = E

[(
e2

t − 1
)2
]
. Then, a method-of-moments estimator that ensures

non-negativity is

𝜏4

def
= 1

T

T∑
t=1

(
ě2

t − 1
)2 = 1

T

T∑
t=1

[
ǔ2

t

vt(xt, 𝜃̌)
− 1

]2

. (12)

Given the preliminary estimators 𝜃̌ and 𝜅̌
def
= (𝜅̌3, 𝜅̌4) = (𝜅̌3, 𝜏4 + 1), we can obtain estimators of the working

optimal instruments under the correct model specification, the dynamic completeness, and (7) and (8):

Žt = Ď
−1

t Řt, (13)

where Ďt = Dt(xt, 𝜃̌, 𝜅̌) and Řt = Rt(xt, 𝜃̌). The WOPIV is obtained by solving 𝜃 from

T∑
t=1

Ž′
trt(wt, 𝜃) = 0, (14)

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 7

which is a set of P nonlinear equations with P unknowns in 𝜽. We use 𝜃̂ to denote its solution. It is worth noting
that the existence of a solution to (14) is not a trivial issue. See, e.g., Definition 2.1 and the accompanying remarks
in Jacod and Sørensen (2018) for a further discussion.

2.2. xt is partially observed

If xt is not fully observed, it can be denoted by xt ≡ xt(𝜃0) =
(
x′

1t, x2t(𝜃0)′
)′

, where x1t is fully observed, and
x2t(𝜃0) depends on the unknown 𝜃0 and potentially infinite number of observation lags. However, in practice, only
historical realizations (yt, xt) for t ≥ 1 are available. Thus, we need to replace the unobserved part x2t(𝜃0) with
a proxy containing finite lags of available observations and some initial values. Let x̃2t(𝜃) be a feasible version

of x2t(𝜃0) that is generated with a given 𝜃 and an initial value w0 (recall that wt

def
= (yt, x

′
t)
′). We define x̃t(𝜃) =(

x′
1t, x̃2t(𝜃)′

)′
and w̃t(𝜃) =

(
yt, x̃t(𝜃)′

)′
. Next, we define

rt(w̃t(𝜃),𝜽) =

(
yt − mt(x̃t(𝜃),𝜽)[

yt − mt(x̃t(𝜃),𝜽)
]2 − vt(x̃t(𝜃),𝜽)

)
.

And for

ũt = yt − mt(x̃t(𝜽̌), 𝜽̌), ẽt =
ũt√

vt(x̃t(𝜽̌), 𝜽̌)
,

where 𝜽̌ is a consistent initial estimator of 𝜃0. Then, we have

𝜅̃3 =
1
T

T∑
t=1

⎡⎢⎢⎢⎣
ũt√

vt(x̃t(𝜽̌), 𝜽̌)

⎤⎥⎥⎥⎦
3

, 𝜏4 =
1
T

T∑
t=1

[
ũ2

t

vt(x̃t(𝜽̌), 𝜽̌)
− 1

]2

.

Now, a feasible sample score function is

T∑
t=1

Z̃
′
trt(w̃t(𝜃),𝜽) = 0, (15)

where Z̃t

def
= D̃

−1

t R̃t, D̃t

def
= Dt(x̃t(𝜽̌), 𝜃̌, 𝜅̃), R̃t

def
= Rt(x̃t(𝜽̌), 𝜽̌), and 𝜅̃

def
= (𝜅̃3, 𝜅̃4) = (𝜅̃3, 𝜏4 + 1).

To show the asymptotic properties of the solution to (15), we can follow a strategy that is commonly applied in
the GARCH literature (e.g., p. 143 of Francq and Zakoian (2010)). For a given 𝜃, let xt(𝜃) (and wt(𝜃)) be series
that depend on 𝜃 and possibly unobserved historical values prior to the time point t = 1. With some abuse of
notations, let 𝜅̌ be defined similarly to (11) and (12) except that in those formulae, xt’s are replaced by xt(𝜽̌)’s.

Similarly, we can define Ďt = Dt(xt(𝜽̌), 𝜃̌, 𝜅̌), Řt = Rt(xt(𝜽̌), 𝜽̌), and Žt = Ď
−1

t Řt. In Section 3, we assume that the

estimator from (15) has the same first-order asymptotic behavior as the one from
∑T

t=1Ž
′
trt(wt(𝜃), 𝜃) = 0, and then

we show the asymptotic properties of the latter. In Appendix B.3, we show that for the case of GARCH(1,1), this
assumption is valid, i.e., the impact caused by initial values vanishes as T goes to infinity.

Example 1 (continued). For the GARCH(1,1) model, we have

rt(wt, 𝜃0) =

(
𝜀t

𝜀2
t − (𝜔0 + 𝛼0𝜀

2
t−1 + 𝛽0𝜎

2
t−1)

)
,Rt = −

(
0 0

1 𝜀2
t−1

0

𝜎2
t−1

)
,

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 W. WANG, J. M. WOOLDRIDGE and M. XU

and

Dt(xt, 𝜃0, 𝜅0) ≡ Var
[
rt(wt,𝜽0)|xt

]
=

(
vt(xt, 𝜃0) 𝜅0

3 [vt(xt, 𝜃0)]3∕2

𝜅0
3 [vt(xt, 𝜃0)]3∕2 (𝜅0

4 − 1)[vt(xt, 𝜃0)]2

)

=

(
𝜎2

t 𝜅0
3𝜎

3
t

𝜅0
3𝜎

3
t (𝜅0

4 − 1)𝜎4
t

)
.

Let Dt

def
= Dt(xt, 𝜃0, 𝜅0), we have

D−1
t = 1

(𝜅0
4 − 1)𝜎6

t − (𝜅0
3 )2𝜎

6
t

(
(𝜅0

4 − 1)𝜎4
t −𝜅0

3𝜎
3
t

−𝜅0
3𝜎

3
t 𝜎2

t

)

= 1
c0
𝜅

(
(𝜅0

4 − 1)𝜎−2
t −𝜅0

3𝜎
−3
t

−𝜅0
3𝜎

−3
t 𝜎−4

t

)
,

where c0
𝜅
= 𝜅0

4 − 1 − (𝜅0
3 )

2. Then

D−1
t Rt = − 1

c0
𝜅

(
(𝜅0

4 − 1)𝜎−2
t −𝜅0

3𝜎
−3
t

−𝜅0
3𝜎

−3
t 𝜎−4

t

)(
0 0

1 𝜀2
t−1

0

𝜎2
t−1

)

= − 1
c0
𝜅

(
−𝜅0

3𝜎
−3
t −𝜅0

3𝜎
−3
t 𝜀2

t−1

𝜎−4
t 𝜎−4

t 𝜀2
t−1

−𝜅0
3𝜎

−3
t 𝜎2

t−1

𝜎−4
t 𝜎2

t−1

)
. (16)

Recall that in Example 1, we have that xt =
(
x′

1t, x2t(𝜃0)′
)′ =

(
𝜀t−1, 𝜎t−1

)
is only partially observed since

𝜎2
t−1 = 𝜔0 + 𝛼0𝜀

2
t−2 + 𝛽0𝜎

2
t−2 = 𝜔0

1−𝛽0
+ 𝛼0

∑∞
k=0𝛽

k
0𝜀

2
t−2−k – the last infinite sum depends on the unknown parameter

𝜃0 and involves unobservable historical values. To construct the working optimal instrument matrix, we have to
apply a feasible version of 𝜎2

t . A possible choice is to generate 𝜎̃2
t (𝜃): for t = 1, … ,T , we have

x1t = 𝜀t−1,

x̃2t(𝜃) = 𝜎̃t−1(𝜃) =

(
𝜔

1 − 𝛽
+ 𝛼

t−1∑
k=0

𝛽k𝜀2
t−2−k

)1∕2

, (17)

for some initial values (𝜀2
0, 𝜀

2
−1) and a given 𝜃 = (𝜔, 𝛼, 𝛽)′ satisfying 𝛼 > 0, 𝛽 > 0 and 𝛼 + 𝛽 < 1. In general, the

impact of initial values is asymptotically vanishing, as discussed in Appendix B.3.
Based on (17), we can write down x̃t(𝜃) and w̃t(𝜃). Then, we have

rt(w̃t(𝜃),𝜽) =

(
𝜀t

𝜀2
t − (𝜔 + 𝛼𝜀2

t−1 + 𝛽𝜎̃2
t−1(𝜃))

)
,

Z̃t = D̃
−1

t R̃t = − 1
c̃𝜅

(
−𝜅̃3𝜎̃

−3
t (𝜃̌) −𝜅̃3𝜎̃

−3
t (𝜃̌)𝜀2

t−1

𝜎̃−4
t (𝜃̌) 𝜎̃−4

t (𝜃̌)𝜀2
t−1

−𝜅̃3𝜎̃
−3
t (𝜃̌)𝜎̃2

t−1(𝜃̌)
𝜎̃−4

t (𝜃̌)𝜎̃2
t−1(𝜃̌)

)
,

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 9

where c̃𝜅 = 𝜅̃4 − 1 − 𝜅̃2
3. Finally, the WOPIV can be obtained by solving 𝜃 = (𝜔, 𝛼, 𝛽)′ from

T∑
t=1

Z̃
′
trt(w̃t(𝜃),𝜽) = − 1

c̃𝜅

T∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̌)

− 𝜅̃3𝜎̃
−3
t (𝜃̌)𝜀t

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̌)

𝜀2
t−1 − 𝜅̃3𝜎̃

−3
t (𝜃̌)𝜀2

t−1𝜀t

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̌)

𝜎̃2
t−1(𝜃̌) − 𝜅̃3𝜎̃

−3
t (𝜃̌)𝜎̃2

t−1(𝜃̌)𝜀t

⎞⎟⎟⎟⎟⎟⎟⎠
= 0. (18)

2.3. Some remarks

It is true that, under the correct specification of the first two moments (dynamic completeness is not needed for
this), the preliminary estimation of 𝜽0 and 𝜿0 does not affect the consistency of the WOPIV. In fact, in the formal
statement of our result, we drop (7) and (8), and simply assume that 𝜃̌ and 𝜅̌ converge in probability to some
constant vectors; see the remark following Theorem 1 in Section 3.1. The proposed estimator will not be the OPIV
without (7) and (8), but it can still be asymptotically more efficient than the GQMLE. Intuitively, the WOPIV
plugs in sample averages of the third and the fourth sample moments of residuals that are normalized by the square
root of the conditional second moment, while the GQMLE implicitly imposes 𝜅0

3 = 0 and 𝜅0
4 = 3. Therefore, we

expect the WOPIV to outperform the GQMLE in many cases. We illustrate in Section 5.1 the scenarios in which
the WOPIV could potentially be more efficient than the GQMLE.

To avoid solving the nonlinear first-order condition, we can consider a one-step estimation. The idea of a
one-step estimator is to consider a linear approximation to the moment condition in (14) or (15). Provided that
we have a well-chosen initial estimator 𝜃̌ (for example, a consistent GQMLE), we can improve on the estimator 𝜃̌
using a one-step procedure. Taking (14) as an example, the corresponding one-step estimator can be obtained by

𝜃 = 𝜃̌ −

[
T∑

t=1

Ž
′
t∇rt(wt, 𝜃̌)

]−1 T∑
t=1

Ž
′
trt(wt, 𝜃̌). (19)

Suppose that 𝜃̌ is a consistent and asymptotically normal estimator, and 𝜃̂ is the solution to (14), an ‘ideal’
consistent estimator for 𝜃0. Then, 𝜃 is asymptotically first-order equivalent to 𝜃̂.

3. THEOREMS

Here, we outline the assumptions and theoretical properties of the proposed WOPIV.

3.1. Consistency

Our general estimation equation is defined on a compact parameter space Θ × Γ. In this space, 𝜃 ∈ Θ is the
parameter of interest, and 𝜅 = (𝜅3, 𝜅4) ∈ Γ is a set of nuisance parameters. Recall the notations defined in
Section 2.2: For a given 𝜃, we use xt(𝜃) (and wt(𝜃)) to denote series that depend on 𝜃 and possibly unobserved
historical values prior to the time point t = 1.

Define the score function

QT (𝜃̌, 𝜅̌, 𝜃) =
1
T

T∑
t=1

Rt(xt(𝜽̌), 𝜽̌)′Dt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1rt(wt(𝜃), 𝜃), (20)

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 W. WANG, J. M. WOOLDRIDGE and M. XU

where 𝜃̌ is a consistent initial estimator of 𝜃0; 𝜅̌ is defined similarly to (11) and (12) except that in those formulae,
xt’s are replaced by xt(𝜽̌)’s. Furthermore, we define

Q∞(𝜃0, 𝜅0, 𝜃) = E[Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1rt(wt(𝜃), 𝜃)].

The true parameter of interest should satisfy 𝜃0 = argzero𝜃∈ΘQ∞(𝜃0, 𝜅0, 𝜃), where argzero𝜃∈Θf (𝜃) denotes the root
of f (𝜃) = 0. Our proposed estimator is

𝜃̂ = argzero𝜃∈ΘQT (𝜃̌, 𝜅̌, 𝜃), (21)

with plug-in 𝜃̌ and 𝜅̌.
Here, we show the consistency, 𝜃̂ →p 𝜃0. When xt is not fully observed, we shall estimate 𝜃0 from an alternative

score function, Q̃T (𝜃̌, 𝜅̃, 𝜃) = 1

T

∑T
t=1Z̃

′
trt(w̃t(𝜃),𝜽) = 0; see equation (15) in Section 2.2. This score function

involves {yt, xt1, x̃t2(𝜃)}t, where x̃t2(𝜃) is generated from a given 𝜃 and some initial values. We hope that the feasible
Q̃T (𝜃̌, 𝜅̃, 𝜃) is first-order equivalent to QT (𝜃̌, 𝜅̌, 𝜃), such that we can focus on the latter in the entire Section 3. To
this end, we assume that:

A.0 Asymptotically, the choice of initial values does not matter. Namely, Q̃T (𝜃̌, 𝜅̃, 𝜃) is close to QT (𝜃̌, 𝜅̌, 𝜃), in the
sense that sup𝜃̇,𝜅,𝜃 |∇l

𝜃
Q̃T (𝜃̇, 𝜅, 𝜃) − ∇l

𝜃
QT (𝜃̇, 𝜅, 𝜃)|2 = Op(T−1) for l = 0, 1. Here, ∇l

𝜃
represents the lth-order

derivative with respect to 𝜃 (assuming that both Q̃T (𝜃̇, 𝜅, 𝜃) and QT (𝜃̇, 𝜅, 𝜃) are l-times differentiable with
respect to 𝜃).

We will verify this assumption in Appendix B.3 for the GARCH(1,1) model. When xt is fully observed, the score
function QT (𝜃̌, 𝜅̌, 𝜃) can be simplified to (14), and all the subsequent analysis remains valid. Therefore, in the rest
of Section 3, we will work with QT (𝜃̌, 𝜅̌, 𝜃) that is presented in (20).

To proceed, we define the |v|2 as the l2-norm of a vector v, and |A|2 as the spectral norm of a matrix A. Addition-
ally, for a random variable X, we define ||X||p as its Lp-norm given a positive number p. Based on these definitions,
we impose the following assumptions:

A.1 (Initial estimators) For the initial estimators 𝜃̌ and 𝜅̌, it holds that 𝜃̌ →p 𝜃0 and 𝜅̌ ≡
(
𝜅̌3, 𝜅̌4

)
→p 𝜅0, where

𝜅0 is a constant vector; it holds that sup𝜃∈Θ |QT (𝜃̌, 𝜅̌, 𝜃) − QT (𝜃0, 𝜅0, 𝜃)|2 = op(1).
A.2 (Uniform consistency) sup𝜃∈Θ |QT (𝜃0, 𝜅0, 𝜃) − Q∞(𝜃0, 𝜅0, 𝜃)|2 →p 0.
A.3 (Identification) For any constant 𝜀 > 0, we have inf|𝜃−𝜃0|2≥𝜀 |Q∞(𝜃0, 𝜅0, 𝜃)|2 > 0 = |Q∞(𝜃0, 𝜅0, 𝜃0)|2.
A.4 (Existence of an estimate) The root of the estimating equation QT (𝜃̌, 𝜅̌, 𝜃̂) = 0 exists.

Assumption A.1 ensures that the initial estimators will not impact the consistency of the second-stage estima-
tion. Assumptions A.2 and A.3 are adapted from the general consistency theorem for the Z-estimator (see, e.g.,
Theorem 5.9 of Van der Vaart, 2000). Assumption A.4 ensures that a solution exists for (21). We acknowledge
that the existence of such a solution is not a trivial issue; however, throughout this section, we assume that a
solution exists. We refer to, e.g., Jacod and Sørensen (2018), for further discussions on this issue. In addition,
Appendix B.1 provides a detailed discussion of Assumptions A.1 to A.4 in the context of the GARCH(1,1) model.

Theorem 1. Under Assumptions A.1, A.2, A.3, and A.4, it holds that 𝜃̂ →p 𝜃0.

The proof of Theorem 1 can be found in Appendix A.1.1.

Remark. Note that in Assumption A.1, 𝜅0 is only labeled as a constant vector, and we do not impose conditions
(7) and (8) presented in Section 2. This is because the convergence of the nuisance parameters to the true values is
not necessary for the consistency of 𝜃̂. In fact, in the case that 𝜃̌ and 𝜅̌ converge to some other 𝜃∗ and 𝜅∗, Theorem 1
still holds if all the QT (𝜃0, 𝜅0, ⋅) and Q∞(𝜃0, 𝜅0, ⋅) in Assumptions A.1–A.4 are replaced with QT (𝜃∗, 𝜅∗, ⋅) and
Q∞(𝜃∗, 𝜅∗, ⋅).

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 11

We shall note that Assumption A.2, which pertains to uniform convergence, is comparatively strong. However,
we have the option to adopt an alternative set of assumptions. For instance,

A.2’ (i) (Semi-continuity) For every 𝜃 ∈ Θ, liminfT→∞|QT (𝜃0, 𝜅0, 𝜃)|2 ≥ limT→∞ |EQT (𝜃0, 𝜅0, 𝜃)|2, almost surely;
(ii) (Compactness and boundedness) Θ is compact, and E

(
sup𝜃∈Θ |QT (𝜃0, 𝜅0, 𝜃)|2) < ∞; (iii) (Pointwise

convergence) |QT (𝜃0, 𝜅0, 𝜃) − Q∞(𝜃0, 𝜅0, 𝜃)| →p 0 holds for every 𝜃 ∈ Θ.

See Appendix B.2 for the verification of Assumption A.2’.

Theorem 2. Under Assumptions A.1, A.2’, A.3, and A.4, it holds that 𝜃̂ →p 𝜃0.

The proof of Theorem 2 can be found in Appendix A.1.2.

3.2. Asymptotic normality

Here, we show the asymptotic normality of the WOPIV. We first introduce some definitions and abbreviations.
Recall that rt(wt, 𝜃0) = rt(wt(𝜃0), 𝜃0); for any 𝜃, 𝜃 ∈ Θ and initial estimators (𝜃̌, 𝜅̌), we define

rt(𝜃) = rt(wt(𝜃), 𝜃),
Rt(𝜃) = ∇rt(𝜃) = 𝜕rt(𝜃)∕𝜕𝜃′|𝜃=𝜃,
Řt = Rt(𝜃̌),Rt = Rt(𝜃0),Dt = Dt(xt,𝜽0,𝜿0).

Furthermore, we define

ǍT (𝜃) =
1
T

T∑
t=1

Ř
′
tDt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1rt(𝜃),

AT (𝜃) =
1
T

T∑
t=1

Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1rt(𝜃),

and

B̌T (𝜃) =
1
T

T∑
t=1

Ř
′
tDt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1Rt(𝜃),

B̌0(𝜃) = E(Ř
′
tDt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1Rt(𝜃)),

B0(𝜃) = E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1Rt(𝜃)),
B0 = B0(𝜃0),
C0 = E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1rt(𝜃0)rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1Rt(𝜃0)).

Moreover, we define the b-ball around 𝜃̇ as (𝜃̇, b) = {𝜃 ∶ |𝜃 − 𝜃̇|2 < b}, where 𝜃̇ is a point within the interior
of Θ, and b is a positive constant. Based on these definitions, we impose the following assumptions:

B.1 (Data generating) The sequence {rt(wt, 𝜃0)}t≥1 is a stationary and ergodic MDS with respect to (w.r.t.) t−1,
where t = 𝜎({yi, xi}i≤t) is the sigma field generated by {yi, xi}i≤t. The dynamic completeness assumptions
(3) and (4) hold, such that E[rt(wt, 𝜃0)|xt] = 0.

B.2 (i) (Differentiability) There exists a positive constant b1, such that for all (𝜃, 𝜅) ∈ Θ × Γ that satisfy |𝜃−𝜃0|2 <
b1 and |𝜅 −𝜅0|2 < b1, it holds that each element of rt(𝜃) is measurable and twice continuously differentiable
w.r.t. 𝜃, each element of Dt(xt(𝜃), 𝜃, 𝜅)−1 is continuously differentiable w.r.t. 𝜃 and 𝜅, and each element of

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12770 by U

niversitätsbibliothek M
annheim

, W
iley O

nline L
ibrary on [02/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 W. WANG, J. M. WOOLDRIDGE and M. XU

B0(𝜃) is continuously differentiable w.r.t. 𝜃. (ii) (Invertibility) B0 and C0 are positive definite matrices, and
their maximum eigenvalues are bounded.

B.3 (i) (Uniform convergence) For some b > 0, sup𝜃∈(𝜃0,b)
(
B̌T (𝜃) − B̌0(𝜃)

)
= op(1); (ii) (Stochastic equiconti-

nuity) ǍT (𝜃0) − AT (𝜃0) = op(1∕
√

T).
Remark. Assumption B.1 reiterates the fundamental conditions applied to the conditional moment function
evaluated at the true 𝜃0, as previously detailed in Section 2. Assumption B.2 introduces the continuity and dif-
ferentiability conditions that can be satisfied by many models of conditional means and variances. For example,
the analytical forms of rt(𝜃) and Dt(xt(𝜃), 𝜃, 𝜅)−1 of the GARCH(1,1) model, as presented in Section 2.2, satisfy
Assumption B.2. Assumption B.3(i) is required to ensure that B̌T (𝜃) eventually converges to B0; this assumption
can be verified by similar arguments presented in the proof of lemma B.5 of Richter et al. (2023). B.3(ii) is adapted
from assumption 5.2 of Newey (1994). It specifies the general stochastic equicontinuity condition that is required

for the
√

T-consistency of a two-stage Z-estimator.

Theorem 3. Under Assumptions A.1–A.4 and B.1–B.3,√
T(𝜃̂ − 𝜃0) →d N(0,B−1

0 C0B−1
0 ). (22)

Moreover, if E(rt(𝜃0)r′t(𝜃0)|t−1) = Dt(xt,𝜽0,𝜿0), it holds that
√

T(𝜃̂ − 𝜃0) →d N(0,B−1
0 ).

The proof can be found in Appendix A.2.

3.3. One-step estimation

Here, we show the asymptotic equivalence between the one-step estimator 𝜃 and the ideal estimator 𝜃̂. The former

is obtained by updating any
√

T-consistent estimator 𝜃̌, as presented in (19); the latter is given by (14). To proceed,
we impose:

C.1 Both 𝜃̂ and 𝜃̌ are
√

T-consistent estimators of 𝜃0.

Theorem 4. Under Assumptions A.4, B.2, B.3, and C.1, it holds that
√

T(𝜃 − 𝜃̂) = op(1).

The proof is in Appendix A.3.

4. THE MULTI-VARIATE CASE

We now describe the estimation strategy in the multi-variate case. For a d × 1 vector yt, the conditional mean and
variance functions are specified as

E(yt|xt) = mt(xt,𝜽0), (23)

Var(yt|xt) = 𝚺t(xt,𝜽0). (24)

The d×1 vector of error terms is denoted by ut(𝜃0) = yt−mt(xt, 𝜃0). Furthermore, we can suppress the dependence

of the functions mt(xt,𝜽0) and 𝚺t(xt,𝜽0) on xt, and write the standardized vector as et

def
= 𝚺t(𝜃0)−1∕2(yt −mt(𝜽0)) =

𝚺t(𝜃0)−1∕2ut(𝜃0). Note that et is a d−dimensional random vector, and 𝜃 is a P-dimensional parameter. In the
multi-variate case, we look at the moment vector rt(𝜃0)(d+d(d+1)∕2)×1 = (ut(𝜃0)′,Vech(ut(𝜃0)u′

t(𝜃0) − 𝚺t(𝜃0))′)′. It
should be noted that Vec is the vectorization of a matrix, and Vech is denoted as a half vectorization. The switching
between Vec and Vech is via a duplication operator Dn and an elimination operator Ln, such that for an n× n sym-
metric matrix A, we have DnVech(A) = Vec(A) and LnVec(A) = Vech(A). Now, we have the following conditional

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 13

moment conditions:

E
(
ut(𝜃0)|xt

)
= 0, Var

(
ut(𝜃0)|xt

)
= 𝚺t(xt,𝜽0),

E
(
et|xt

)
= 0, Vec

(
Var(et|xt)

)
= E(et ⊗ et|xt) = Vec(Id),

where Id denotes the d-dimensional identity matrix. We define the third and fourth conditional moments of et as
K3 = E(et ⊗ ete

′
t|xt) and K4 = E(et ⊗ ete

′
t ⊗ e′t|xt) respectively. These two matrices are the multi-variate versions

of (7) and (8). In particular, for an i.i.d. standard normally distributed et, we have K3 = 0 and K4 = Id2 + Kd +
Vec(Id)Vec(Id)′, where Kd is a commutation matrix defined, for example, in Magnus and Neudecker (1979).

Now, we discuss the estimation strategy, which is in general by applying the ones discussed in Sections 2.1 and
2.2 to the multi-variate case. In the following, we describe the case with fully observed xt. The case with partially
observed xt can be obtained by replacing xt with x̃t(𝜃), as described in Section 2.2. We start by describing how K3

and K4 can be similarly estimated from a sample. Let j1, j2, j3, j4, i1, and i2 be integers taking values from 1 to d.
Then, we have

Ǩ3 is d2 × d with [Ǩ3](j1−1)d+j2,j3
= 1

T

T∑
t=1

ětj1
ětj2

ětj3
,

Ǩ4 is d2 × d2 with [Ǩ4](j1−1)d+j2,(j3−1)d+j4
= 1

T

T∑
t=1

ětj1
ětj2

ětj3
ětj4

,

where ětj is the jth element of ět, and ět = 𝚺t(𝜃̌)−1∕2(yt − m(xt, 𝜃̌)) for an initial estimator 𝜃̌.
For constructing the working variance-covariance matrix, we can preserve certain properties of a Gaussian

distributed random vector by imposing that the elements of et are independent of each other and have zero means.
It is important to emphasize that this condition, just like conditions (7) and (8) in the univariate case, is not an
actual assumption essential to our theoretical framework. Instead, it serves as a rationale for constructing the
working variance-covariance matrix for our proposed method. If et is normally distributed, these conditions will
naturally hold. Even without the normality of et, the working variance-covariance matrix can still capture certain
characteristics of et that the GQMLE might overlook, potentially resulting in superior performance compared
to the GQMLE. Under this condition, an estimator of ((j1 − 1)d + j2) × j3th element of K3 can be 1

T

∑T
t=1ě3

tj for
j1 = j2 = j3 = j, and otherwise 0 (because E(ej1

ej2
ej3
) = 0 if two of the elements in (j1, j2, j3) are unequal.) The

{(j1 − 1)d + j2, (j3 − 1)d + j4}th element in Ǩ4 is non-zero when j1 = j2 = i1 and j3 = j4 = i2, j1 = j4 = i1 and
j2 = j3 = i2, j1 = j3 = i1 and j2 = j4 = i2, or j1 = j2 = j3 = j4 = j. We can then estimate the non-zero element by
( 1

T

∑T
t=1ě2

ti1
)( 1

T

∑T
t=1ě2

ti2
) for the first three cases, and by 1

T

∑T
t=1ě4

tj for the case of j1 = j2 = j3 = j4 = j.
The matrix Dt in Section 2 becomes

Dt

def
= Dt(xt,𝜽0) =

(
𝚺t 𝚺12,t

𝚺′
12,t 𝚺22,t

)
, (25)

where 𝚺t is the abbreviation of 𝚺t(𝜽0), and

𝚺′
12t = Ld𝚺t(𝜃0)1∕2 ⊗ 𝚺t(𝜃0)1∕2K3𝚺t(𝜃0)1∕2,

𝚺22t = Ld(𝚺t(𝜃0)1∕2 ⊗ 𝚺t(𝜃0)1∕2K4𝚺t(𝜃0)1∕2 ⊗ 𝚺t(𝜃0)1∕2 − Vec 𝚺t(𝜃0)Vec𝚺t(𝜃0)′)

Ld

(
𝚺t(𝜃0)1∕2 ⊗ 𝚺t(𝜃0)1∕2K4𝚺t(𝜃0)1∕2 ⊗ 𝚺t(𝜃0)1∕2 − Vec 𝚺t(𝜃0)Vec𝚺t(𝜃0)′

)′
.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 W. WANG, J. M. WOOLDRIDGE and M. XU

The gradient of the moment functions is a (d + d(d + 1)∕2) × P matrix:

∇rt(wt, 𝜃0) = (−∇mt(xt, 𝜃0)′, (Ld

[
−
(
ut(𝜽0)⊗ Id + Id ⊗ ut(𝜽0)

)
∇mt(xt, 𝜃0) − ∇Vec 𝚺t(𝜃0)

]
)′)′.

Define Rt(𝜃) = E(∇rt(wt, 𝜃)|t−1), and Řt = Rt(𝜃̌). The optimal instrument matrix is Žt = Ď
−1

t Řt, where Ďt is a
variation of Dt that is evaluated at 𝜃̌, Ǩ3, and Ǩ4. Then, we can estimate 𝜃0 as we previously did for equation (14).

The case with partially observed xt can be handled by replacing xt with x̃t(𝜃). The approach aligns with what
has been presented in Section 2.2.

5. ESTIMATION PERFORMANCE

5.1. When is the GQMLE asymptotically efficient?

To understand better the circumstances under which we can improve on the GQMLE, we study in this section the
factors that impact the efficiency of the GQMLE. In particular, we study the effect of the third and fourth moments
on the asymptotic variance–covariance matrix. We follow Bollerslev and Wooldridge (1992) to introduce the setup
of the GQMLE. Again, it should be noted that the discussion in this section pertains to the scenario where xt is
observable. For cases involving partially observed xt, one can substitute xt with x̃t(𝜃), as outlined in Section 2.2.

The GQMLE is defined to be

𝜃̌ = argmax𝜃∈Θ
1
T

T∑
t=1

𝓁t(𝜃; yt, xt).

The contribution of observation t to the quasi-log-likelihood function is

𝓁t(𝜃; yt, xt) = −1∕2 log |𝚺t(xt, 𝜃)| − 1∕2(ut(wt, 𝜃)′)𝚺−1
t (xt, 𝜃)ut(wt, 𝜃).

By abbreviating ut(wt, 𝜃) as ut(𝜃), we can express the contribution of observation t to the score function as

st(𝜃) = ∇𝜃mt(𝜃)′𝚺t(𝜃)−1ut(𝜃) + 1∕2∇𝜃𝚺t(𝜃)′(𝚺−1
t (𝜃)⊗ 𝚺−1

t (𝜃))Vec(ut(𝜃)ut(𝜃)′ − 𝚺t(𝜃)),

where ∇𝜃𝚺t(𝜃) = ∇𝜃′Vec(𝚺t(𝜃)) is a d2 × P matrix, and ∇𝜃mt(𝜃)′ = −∇𝜃ut(𝜃)′ is a P × d matrix.
To study the negative Hessian matrix evaluated at the 𝜃0, we write ∇𝜃st(𝜃0) as

It(𝜃0) = ∇𝜃mt(𝜃0)′𝚺t(𝜃0)−1∇𝜃ut(𝜃0) + 1∕2∇𝜃𝚺t(𝜃0)′(𝚺−1
t (𝜃0)⊗ 𝚺−1

t (𝜃0))∇𝜃𝚺t(𝜃0).

Let us define Jt

(
𝜃0

)
= E[st(𝜃0)s′t(𝜃0)|xt]. Through some rearrangements, we get:

Jt(𝜃0) = ∇𝜃ut(𝜃0)′𝚺−1
t (𝜃0)∇𝜃ut(𝜃0)

+ 1∕2∇𝜃𝚺t(𝜃0)′𝚺t(𝜃0)−1∕2 ⊗ 𝚺t(𝜃0)−1∕2K3𝚺t(𝜃0)−1∕2∇ut(𝜃0)
+ 1∕2{∇𝜃𝚺t(𝜃0)′𝚺t(𝜃0)−1∕2 ⊗ 𝚺t(𝜃0)−1∕2K3𝚺t(𝜃0)−1∕2∇ut(𝜃0)}′

+ 1∕4∇𝜃𝚺t(𝜃0)′𝚺t(𝜃0)−1∕2 ⊗ 𝚺t(𝜃0)−1∕2K4𝚺t(𝜃0)−1∕2 ⊗ 𝚺t(𝜃0)−1∕2∇𝜃𝚺t(𝜃0)
− 1∕4∇𝜃𝚺t(𝜃0)′Vec(𝚺t(𝜃0)−1)Vec′(𝚺t(𝜃0)−1)∇𝜃𝚺t(𝜃0)

= Jt1 + Jt2 + J′
t2 + Jt3 + Jt4.

Let ‘plim’ denote the probability limit. Then, we define J0(𝜃) = plimT→∞
1

T

∑T
t=1Jt(𝜃), J0 = J0(𝜃0), I0(𝜃) =

plimT→∞
1

T

∑T
t=1It(𝜃), and I0 = I0(𝜃0). Under some regularity conditions, the asymptotic variance of the GQMLE

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 15

is I−1
0 J0I−1

0 (see, for example, Theorem 6 in Appendix A.4). If the conditional distribution of et is indeed a
standardized multi-variate Gaussian, we have I0 = J0, and the asymptotic variance would hit the lower bound J−1

0 .
The variance of a GQMLE depends on the analytical form of Jt(𝜃0) and It(𝜃0). In the one-dimensional case of

a GARCH(p, q) model, mt(𝜃) = 0, and thus Jt1 = 0 and Jt2 = 0. We can see that Jt(𝜃0) =
𝜅0

4−1

2
It(𝜃0). If 𝜅0

4 , the
fourth moment of a Gaussian random variable, equals 3, then Jt(𝜃0) = It(𝜃0), and the asymptotic variance will hit
the lower bound. This corresponds to the findings of Francq and Zakoïan (2004). Now we define

J20 + J′
20 + J30 + J40 = plimT→∞

1
T

T∑
t=1

(Jt2 + J′
t2 + Jt3 + Jt4).

The following proposition explains how, in the case where the model specified in (23) and (24) is not generated
from standard Gaussian-distributed innovations but is estimated using the GQMLE, the deviation from the optimal
variance matrix can be attributed specifically to the skewness matrix and the fourth-moment matrix.

Proposition 5. Let us assume that (i) the model satisfies equations (23) and (24), (ii) the model is dynamically
complete and has a consistent GQMLE, (iii) the innovation et has a finite fourth moment, and (iv) the GQMLE is

asymptotically normal, then the efficiency loss of the GQMLE is V0

def
= I−1

0 (J20 + J′
20 + J30 + J40 − I0)I

−1
0 , with

V3

def
= I−1

0 (J20 + J′
20)I

−1
0 being associated with the skewness matrix, and V4

def
= I−1

0 J30I−1
0 being associated with the

fourth-moment matrix.

Based on Proposition 5, we can analyze scenarios regarding the overlap of mean and variance parameters. Let
us first look at the case when the mean parameter and the variance parameter do not overlap, i.e., 𝜃 = (𝛽′, 𝛾 ′)′,
where 𝛽 is a P1 × 1 mean parameter, and 𝛾 is a P2 × 1 variance parameter. Then, the item ∇𝜃ut(𝜃0) consists of
∇𝛽ut(𝜃0)d×P1

and ∇𝛾ut(𝜃0)d×P2
(= 0), and the item ∇𝜃𝚺t(𝜃0) contains ∇𝛽𝚺t(𝜃0)(= 0) and ∇𝛾𝚺t(𝜃0). Then, we have(

I1 0

0 I2

)
def
= I0 = plimT→∞

1
T

T∑
t=1

It(𝜃0)

=

(
plimT→∞

1

T

∑T
t=1 ∇𝛽ut(𝜃0)′𝚺t(𝜃0)−1∇𝛽ut(𝜃0) 0

0 plimT→∞
1

T

∑T
t=11∕2∇𝛾𝚺t(𝜃0)′O2t∇𝛾𝚺t(𝜃0)

)
,

where O2t

def
= 𝚺−1

t (𝜃0)⊗ 𝚺−1
t (𝜃0).

To investigate the role of the third and fourth moments of et on the variance of the estimator, we look at Jt2

concerning the third moment matrix K3 and Jt3 concerning the fourth moment matrix K4. Ideally, if the distribution
of an innovation is symmetric, we should have K3 = 0, which is true for a Gaussian vector. Any deviation from
K3 = 0 would contribute to the deviation of J0 from I0. Furthermore, we define

plimT→∞
1
T

T∑
t=1

(Jt2 + J′
t2) =

(
0 D𝜅0

3

D′
𝜅0

3
0

)
, plimT→∞

1
T

T∑
t=1

Jt3 =

(
0 0

0 E𝜅0
4

)
,

where D𝜅0
3
= plimT→∞

1

T

∑T
t=11∕2∇𝛾𝚺t(𝜃0)′𝚺t(𝜃0)−1∕2 ⊗ 𝚺t(𝜃0)−1∕2K3𝚺t(𝜃0)−1∕2∇𝛽ut(𝜃0) is a P1 × P2 matrix, and

E𝜅0
4
= plimT→∞

1

T

∑T
t=11∕4∇𝛾𝚺t(𝜃0)′𝚺t(𝜃0)−1∕2 ⊗𝚺t(𝜃0)−1∕2K4𝚺t(𝜃0)−1∕2 ⊗𝚺t(𝜃0)−1∕2∇𝛾𝚺t(𝜃0) is a P2 × P2 matrix.

Then, the impacts arising from the skewness matrix and the fourth-moment matrix are expressed as follows:

V3 =

(
0 I−1

1 D𝜅0
3
I−1

2

I−1
1 D′

𝜅0
3
I−1

2 0

)
, V4 =

(
0 0

0 I−1
2 E𝜅0

4
I−1

2

)
.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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16 W. WANG, J. M. WOOLDRIDGE and M. XU

In sum, we can see that if the parameters do not overlap, the third moment does not affect the asymptotic
variance of the estimated mean parameter 𝛽 and variance parameter 𝛾̂ , but plays a role in their covariance. The
fourth moment plays a role only in the variance of the estimated variance parameter 𝛾̂ . However, if they overlap,
both the third and fourth moments of errors play a role in the variance–covariance matrix of the GQMLE.

Again, we take the one-dimensional case as an example: If the mean and variance parameters overlap, both 𝜅0
3

and 𝜅0
4 generally play a role; if the mean and variance parameters vary separately, 𝜅0

3 does not affect the variance of
the GQMLE. Particularly, in the case where no conditional mean is presented, such as in a GARCH(p, q) model,
we have ∇𝜃mt(𝜃) = −∇𝜃ut(𝜃) = 0. Thus, it holds that Jt(𝜃0) = Jt3 + Jt4, and the parameter 𝛽 does not exist
anymore. In this case, 𝜃 = 𝛾 , I0 = I2, and plimT→∞

1

T

∑T
t=1Jt3 = E𝜅0

4
. Consequently, only the fourth moment plays

a role in the asymptotic variance of 𝛾̂ .

5.2. Comparison with semi-parametric methods of dynamic models

Here, we compare the proposed WOPIV method with the semi-parametric method of dynamic models of Ana-
tolyev (2003, 2007), Hafner and Rombouts (2007) and Di and Gangopadhyay (2011). See Section 6.3 for the
comparison of Monte Carlo simulation results.

5.2.1. Comparison with Anatolyev (2003) and Anatolyev (2007)
These two papers utilize the full information of higher-order moments to specify the OPIV. In the case of the model
described by (1) and (2), the correct specifications of the third and fourth moments are needed, whereas our working
instrument matrix only requires the knowledge of the first two moments. Consequently, our estimator could be
less efficient than the one proposed by Anatolyev (2003) if the third and fourth moments are known and deviate
from the specifications in (9) and (10). Nonetheless, the WOPIV does not depend on the correct specification of
the higher-order moments of the innovation terms.

5.2.2. Comparison with Hafner and Rombouts (2007) and Di and Gangopadhyay (2011)
These two methods are similar in that they both estimate the innovation term’s density function non-parametrically,
subsequently plugging the estimates into a second-stage likelihood function and solving for the plug-in MLE. In
the second stage, both methods need to deal with the plug-in bias arising from the first-stage non-parametric esti-
mation. While Hafner and Rombouts (2007) add correction terms to the semiparametric likelihood score function
(Proposition 3 of Hafner and Rombouts (2007), on p. 259), Di and Gangopadhyay (2011) directly subtract an
estimated bias term from the semiparametric MLE (Theorem 3.3 of Di and Gangopadhyay (2011), on p. 262).
As both methods employ non-parametric techniques to estimate the unknown density function of the innovation,
they are, to a certain extent, immune to model misspecification. If their first-stage non-parametric estimators of
the innovation’s density function, along with the corresponding estimated correction terms, fulfill certain regu-
larity conditions, their methods can achieve the semi-parametric efficiency bound and cannot be beaten by other
regular estimators. In comparison, we employ a working variance-covariance matrix. Deriving this matrix is com-
putationally lighter since we estimate only the skewness and kurtosis of the unknown innovation, rather than its
density function or the bias correction term. Although our variance–covariance matrix may be misspecified, as
discussed in the article, any potential misspecification should not impact the consistency. The efficiency improve-
ment over the GQMLE hinges on how closely the working variance–covariance matrix approximates the true one.
Simulation results presented in Section 6 demonstrate that our proposed WOPIV performs effectively. Further-
more, as mentioned in the introduction, both semi-parametric methods impose an i.i.d. restriction on standardized
innovations. In contrast, our proposed method only requires the innovations to be MDS.

In addition, the performance of the semi-parametric estimators proposed by Hafner and Rombouts (2007)
and Di and Gangopadhyay (2011) depends on proper choices of tuning parameters, while the WOPIV is
tuning-parameter-free. In Section 6.3, we present a Monte Carlo comparison that both WOPIV and the semipara-
metric method proposed in Hafner and Rombouts (2007) (HR hereafter) can outperform the GQMLE. In an ideal

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 17

setting, HR can achieve the best performance among the three methods. However, this is contingent on proper
choices of tuning parameters. In comparison, our WOPIV method is tuning-parameter-free and easy to imple-
ment. In simulations, it outperforms the GQMLE by a considerable margin if the underlying innovation is skew
normally distributed.

6. SIMULATIONS

To assess the performance of our method, we run four Monte Carlo simulation experiments, comparing the finite
sample performances of the WOPIV, the GQMLE, and the semi-parametric method proposed in HR. In the fol-
lowing Sections 6.1 and 6.2, we show that, for both univariate models and multi-variate models, our method
significantly outperforms the GQMLE when the normality assumption is violated. When the innovation terms 𝜂t

are normally distributed, the two methods perform similarly. Our experiments encompass sample sizes ranging
from 200 to 2000, with 1000 Monte Carlo replications. We employ the function rsnorm from the R package fGarch
to generate series of the skew normal distribution. The resulting series has a skewness 𝜅0

3 ≈ 0.78 and a kurtosis
𝜅0

4 ≈ 3.49 (the arguments of the function rsnorm in the package fGarch are chosen as mean = 0, SD = 1, and
xi = 2), compared with the standard normal distribution where 𝜅0

3 = 0 and 𝜅0
4 = 3.

6.1. Univariate models

We first show the Monte Carlo results for the univariate GARCH model.

6.1.1. Data generating process
Case 1: GARCH(1,1). As discussed in Example 1, we have

𝜀t = 𝜎t𝜂t,

𝜎2
t = 𝜔0 + 𝛼0𝜀

2
t−1 + 𝛽0𝜎

2
t−1, (26)

where the noise term 𝜂t
i.i.d.∼ (0, 1). In the notations of the general model specified in (1) and (2), we have yt = 𝜀t

and xt = (𝜀t−1, 𝜎t−1)′. The parameter of interest is 𝜃0 = (𝜔0, 𝛼0, 𝛽0)′. Based on our discussion in Section 2.2, the
estimating equation (18) is replicated here:

− 1
c̃𝜅

T∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̌)

− 𝜅̃3𝜎̃
−3
t (𝜃̌)𝜀t

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̌)

𝜀2
t−1 − 𝜅̃3𝜎̃

−3
t (𝜃̌)𝜀2

t−1𝜀t

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̌)

𝜎̃2
t−1(𝜃̌) − 𝜅̃3𝜎̃

−3
t (𝜃̌)𝜎̃2

t−1(𝜃̌)𝜀t

⎞⎟⎟⎟⎟⎟⎟⎠
= 0. (27)

In comparison, the GQMLE score function of the GARCH (1,1) is (see, e.g., p. 143 of Francq and
Zakoian (2010))

T∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃)

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃)

𝜀2
t−1

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃)

𝜎̃2
t−1(𝜃)

⎞⎟⎟⎟⎟⎟⎟⎠
= 0. (28)

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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18 W. WANG, J. M. WOOLDRIDGE and M. XU

Table I. Simulation results of GARCH(1,1), with 𝜔0 = 0.1, 𝛼0 = 0.3, and 𝛽0 = 0.6

T Methods 𝜇̂𝜔 𝜇̂𝛼 𝜇̂𝛽 MSE𝜔 MSE𝛼 MSE𝛽

𝜂t is standard normal
500 GQMLE 0.1125 0.2956 0.5860 1.5010 3.0996 6.5017

WOPIV 0.1118 0.2935 0.5862 1.4907 3.0848 6.5737
1000 GQMLE 0.1059 0.2973 0.5939 1.0612 3.1335 5.5281

WOPIV 0.1056 0.2965 0.5938 1.0682 3.1256 5.5803
2000 GQMLE 0.1030 0.2989 0.5962 0.8951 2.9028 5.0283

WOPIV 0.1029 0.2985 0.5962 0.8927 2.8907 5.0296
𝜂t is skew normal
500 GQMLE 0.1101 0.2921 0.5917 1.3161 3.8766 6.6624

WOPIV 0.1066 0.2920 0.5947 0.9969 3.3153 5.5099
1000 GQMLE 0.1072 0.2988 0.5900 1.2716 3.9706 6.8525

WOPIV 0.1042 0.2965 0.5954 0.9202 2.9511 4.9964
2000 GQMLE 0.1049 0.3019 0.5920 1.1439 4.0527 6.5567

WOPIV 0.1034 0.3007 0.5943 0.8121 3.0785 4.8870

6.1.2. Simulation results
Table I presents the Monte Carlo averages and mean square errors (MSE), multiplied by T , for each of the 1000
estimates in Case 1. The true values are set to be (𝜔0, 𝛼0, 𝛽0) = (0.1, 0.3, 0.6). Throughout this section, we use 𝜇̂𝜃

and MSE𝜃 to denote the averages and MSEs of the Monte Carlo estimates for the respective parameters in each
case.

In Case 1, to understand the different performances of WOPIV and GQMLE, we can compare the score functions
in (27) and (28). Note that the term − 1

c̃𝜅
does not influence the solution of (27) and can be ignored. The score

function of the WOPIV (27) contains an additional element in each row. These elements are products of the
estimated skewness 𝜅0

3 and some zero-mean terms. If the original distribution is symmetric, such as the normal
distribution, we have 𝜅0

3 = 0. In this situation, the WOPIV should be approximately equivalent to the GQMLE.
If the skewness of 𝜂t is non-zero, the WOPIV should capture this information and beat the GQMLE in terms of
efficiency. Table I supports this conjecture.

By comparing the Monte Carlo averages to the true parameters, we observe that both GQMLE and WOPIV
generally appear to be asymptotically unbiased. The upper panel shows the simulation results where 𝜂t follows the
standard normal distribution, which implies 𝜅0

3 = 0. In this case, the estimation performances of the GQMLE and
our method become very similar. The lower panel shows the case where 𝜂t follows the skew normal distribution
and 𝜅0

3 ≈ 0.78. With a non-zero 𝜅0
3 , the GQMLE is no longer efficient, and we see that our method has achieved

improved performance in terms of MSE for every sample size and every parameter (highlighted in bold). For
example, in the sample size n = 2000, the Monte Carlo MSE of 𝜔 has dropped from 1.14 to 0.81, and the Monte
Carlo MSE of 𝛼 has dropped from 4.05 to 3.08.

6.2. Multi-variate models

6.2.1. Data generating process
Here, we present that our methods can perform well in multi-variate models. For simplicity, we consider
two-dimensional cases. Let 𝜂t = (𝜂1,t, 𝜂2,t)′ be an i.i.d. two-dimensional random vector with a variance-covariance

matrix
(

1 0
0 1

)
; for i = 1, 2, we have 𝜅0

3 = E(𝜂3
i,t), and 𝜅0

4 = E(𝜂4
i,t).

In Section 4, we have defined

Dt ≡ Var[rt(wt, 𝜃0)|xt] =

(
𝚺t 𝚺12,t

𝚺′
12,t 𝚺22,t

)
,

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 19

where 𝚺t is the abbreviation of 𝚺t(xt,𝜽0) defined in Section 4, 𝚺′
12t = L2𝚺1∕2

t ⊗𝚺1∕2
t K3𝚺1∕2

t , and 𝚺22t = L2(𝚺1∕2
t ⊗

𝚺1∕2
t K4𝚺1∕2

t ⊗𝚺1∕2
t −Vec 𝚺tVec𝚺′

t) L2

(
𝚺1∕2

t ⊗ 𝚺1∕2
t K4𝚺1∕2

t ⊗ 𝚺1∕2
t − Vec 𝚺tVec𝚺′

t

)′
. For the i.i.d. two-dimensional

innovation 𝜂t, we have

L2 =
⎛⎜⎜⎜⎝
1 0 0 0

0 1∕2 1∕2 0

0 0 0 1

⎞⎟⎟⎟⎠ ,

K3 = E(𝜂t ⊗ 𝜂t𝜂
′
t ) =

⎛⎜⎜⎜⎜⎝
𝜅0

3 0

0 0

0 0

0 𝜅0
3

⎞⎟⎟⎟⎟⎠
, K4 = E(𝜂t ⊗ 𝜂t𝜂

′
t ⊗ 𝜂′t ) =

⎛⎜⎜⎜⎜⎝
𝜅0

4 0 0 1

0 1 1 0

0 1 1 0

1 0 0 𝜅0
4

⎞⎟⎟⎟⎟⎠
.

6.2.2. Case 2: CCC-GARCH
Next, let 𝜀t = (𝜀1,t, 𝜀2,t)′ be a two-dimensional vector, and we have the Constant Conditional Correlations model:

⎧⎪⎪⎨⎪⎪⎩
𝜀t = 𝚺1∕2

t 𝜂t

𝚺t = 𝚲t𝚪t𝚲t

𝜎2
1,t = 𝜔1 + 𝛼1𝜀

2
1,t−1 + 𝛽1𝜎

2
1,t−1

𝜎2
2,t = 𝜔2 + 𝛼2𝜀

2
2,t−1 + 𝛽2𝜎

2
2,t−1,

where 𝚲t =
(
𝜎1,t 0
0 𝜎2,t

)
and 𝚪t =

(
1 𝜌
𝜌 1

)
. In the notations of the general model specified in (23) and (24), we

have yt = 𝜀t and xt = (𝜀1,t−1, 𝜎1,t−1, 𝜀2,t−1, 𝜎2,t−1)′. We reparameterize 𝜌 = sin 𝛿 (and 𝛿 = arcsin 𝜌) to ensure that 𝚪t

is a well-defined correlation matrix.
Then we have

rt(wt, 𝜃0) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀1,t

𝜀2,t

𝜀2
1,t − (𝜔1 + 𝛼1𝜀

2
1,t−1 + 𝛽1𝜎

2
1,t−1)

𝜀1,t𝜀2,t − sin𝛿𝜎1,t𝜎2,t

𝜀2
2,t − (𝜔2 + 𝛼2𝜀

2
2,t−1 + 𝛽2𝜎

2
2,t−1)

⎞⎟⎟⎟⎟⎟⎟⎠
,

where the parameter of interest are 𝜃0 = (𝜔1, 𝛼1, 𝛽1, 𝜔2, 𝛼2, 𝛽2, 𝛿)′, and

Rt = −

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 𝜀2
1,t−1 𝜎2

1,t−1 0 0 0 0
sin 𝛿𝜎2,t

2𝜎1,t

sin 𝛿𝜎2,t

2𝜎1,t
𝜀2

1,t−1

sin 𝛿𝜎2,t

2𝜎1,t
𝜎2

1,t−1

sin 𝛿𝜎1,t

2𝜎2,t

sin 𝛿𝜎1,t

2𝜎2,t
𝜀2

2,t−1

sin 𝛿𝜎1,t

2𝜎2,t
𝜎2

2,t−1 𝜎1,t𝜎2,t cos 𝛿

0 0 0 1 𝜀2
2,t−1 𝜎2

2,t−1 0

⎞⎟⎟⎟⎟⎟⎟⎠
.

With Dt defined in (25) and following the procedure described in Section 2.2, we can derive the sample moment
condition

∑T
t=1Z̃

′
trt(w̃t(𝜃),𝜽) = 0.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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20 W. WANG, J. M. WOOLDRIDGE and M. XU

6.2.3. Case 3: BEKK-GARCH
Let us consider the BEKK-GARCH model{

𝜀t = 𝚺1∕2
t 𝜂t

𝚺t = C + A𝜀t−1𝜀
′
t−1A′ + B𝚺t−1B′

.

In the Monte Carlo simulation, we set

C =

(
c11 c12

c12 c22

)
, A =

(
a11 0

0 a22

)
, and B = 0.

For this model, we have

rt(wt, 𝜃0) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀1,t

𝜀2,t

𝜀2
1,t − (c11 + a2

11𝜀
2
1,t−1)

𝜀1,t𝜀2,t − (c12 + 𝜀1,t−1𝜀2,t−1a11a22)
𝜀2

2,t − (c22 + a2
22𝜀

2
2,t−1)

⎞⎟⎟⎟⎟⎟⎟⎠
,

where the parameters of interest are 𝜃0 = (c11, c12, c22, a11, a22)′. In the notations of the general model specified in
(23) and (24), we have yt = 𝜀t and xt = 𝜀t−1, and

Rt = −

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
1 0 0 2a11𝜀

2
1,t−1 0

0 1 0 a22𝜀1,t−1𝜀2,t−1 a11𝜀1,t−1𝜀2,t−1

0 0 1 0 2a22𝜀
2
2,t−1

⎞⎟⎟⎟⎟⎟⎠
.

With Dt defined in (25) and following the procedure described in Section 2.1, we can derive the sample moment

condition
∑T

t=1Ž
′
trt(wt, 𝜃) = 0.

6.2.4. Simulation results
Here, we show the results of the simulation study. Tables II and III present the Monte Carlo averages
and MSEs (multiplied by T) from 1000 estimates for Case 2 and Case 3 respectively. The true val-
ues are (𝜔1, 𝛼1, 𝛽1, 𝜔2, 𝛼2, 𝛽2, 𝜌) = (0.4, 0.8, 0.15, 0.2, 0.7, 0.2, 0.7) for the CCC-GARCH(1,1) model, and
(c11, c12, c22, a11, a22) = (0.8, 0.5, 0.7, 0.6, 0.5) for the BEKK-GARCH model.
In Case 2, both GQMLE and WOPIV appear to be consistent and asymptotically unbiased. We note that in both
the upper panel and lower panel of Table II, the Monte Carlo means of estimates, 𝜇̂’s, converge to the true values
as sample sizes increase, and the magnitudes of the biases are generally minimal. Therefore, we can focus on
the comparison of variances. As demonstrated in Section 4, our proposed method for multi-variate cases involves

estimating both K3 and K4. The upper panel of Table II shows the simulation results with 𝜂t
i.i.d.∼ N(0, I2), which

implies

K3 = 0
(4×2)

and K4 =
⎛⎜⎜⎜⎝
3 0 0 1
0 1 1 0
0 1 1 0
1 0 0 3

⎞⎟⎟⎟⎠ .
wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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IMPROVED ESTIMATION OF DYNAMIC MODELS 21

Table II. Simulation results of CCC-GARCH (1,1), with (𝜔1, 𝛼1, 𝛽1, 𝜔2, 𝛼2, 𝛽2, 𝜌) = (0.4, 0.8, 0.15, 0.2, 0.7, 0.2, 0.7)

Mean

T Methods 𝜇̂𝜔1
𝜇̂𝛼1

𝜇̂𝛽1
𝜇̂𝜔2

𝜇̂𝛼2
𝜇̂𝛽2

𝜇̂𝜌

500 GQMLE 0.4063 0.7962 0.1444 0.2034 0.6953 0.1951 0.6998

WOPIV 0.4045 0.7920 0.1445 0.2025 0.6895 0.1957 0.6997

1000 GQMLE 0.4042 0.7959 0.1490 0.2022 0.7002 0.1974 0.7006

WOPIV 0.4023 0.7924 0.1497 0.2014 0.6971 0.1979 0.7004

2000 GQMLE 0.4022 0.7995 0.1489 0.2014 0.6989 0.1992 0.7011

WOPIV 0.4012 0.7972 0.1491 0.2011 0.6975 0.1994 0.7011
Variance

T Methods 𝜎̂
2
𝜔1

𝜎̂
2
𝛼1

𝜎̂
2
𝛽1

𝜎̂
2
𝜔2

𝜎̂
2
𝛼2

𝜎̂
2
𝛽2

𝜎̂
2
𝜌

500 GQMLE 1.7891 4.3450 1.0231 0.5621 3.8848 1.4554 0.2770

WOPIV 1.8507 4.7392 1.0811 0.6008 4.4032 1.6261 0.2837

1000 GQMLE 1.8539 4.3591 1.0416 0.5766 3.6734 1.3152 0.2620

WOPIV 1.9925 4.7354 1.2147 0.5882 3.9364 1.4830 0.2726

2000 GQMLE 1.8187 4.1762 0.9328 0.5284 3.5566 1.2467 0.2553

WOPIV 1.9441 4.8180 1.0558 0.5683 3.8627 1.3947 0.2675
𝜂t is skew normal
Mean

T Methods 𝜇̂𝜔1
𝜇̂𝛼1

𝜇̂𝛽1
𝜇̂𝜔2

𝜇̂𝛼2
𝜇̂𝛽2

𝜇̂𝜌

500 GQMLE 0.4086 0.7995 0.1473 0.2022 0.6945 0.1992 0.7011

WOPIV 0.4058 0.7994 0.1473 0.2009 0.6961 0.1993 0.7012

1000 GQMLE 0.4068 0.8010 0.1464 0.2038 0.6979 0.1954 0.7002

WOPIV 0.4052 0.8025 0.1454 0.2032 0.6998 0.1945 0.7002

2000 GQMLE 0.4042 0.7970 0.1488 0.2022 0.7007 0.1976 0.7009

WOPIV 0.4030 0.7971 0.1490 0.2019 0.7012 0.1973 0.7008
Variance

T Methods 𝜎̂
2
𝜔1

𝜎̂
2
𝛼1

𝜎̂
2
𝛽1

𝜎̂
2
𝜔2

𝜎̂
2
𝛼2

𝜎̂
2
𝛽2

𝜎̂
2
𝜌

500 GQMLE 2.5501 5.4769 1.4274 0.6263 3.9147 1.7264 0.2603

WOPIV 2.0396 4.5859 1.2229 0.5260 3.6312 1.5843 0.2632

1000 GQMLE 2.3926 5.4903 1.2257 0.6864 4.4586 1.7915 0.2454

WOPIV 1.8615 4.8035 1.0580 0.5784 3.9711 1.5975 0.2478

2000 GQMLE 2.3407 4.7825 1.1856 0.6335 4.4659 1.5817 0.2344

WOPIV 1.9055 4.3984 1.0963 0.5701 3.9433 1.4392 0.2409

Across all sample sizes, the Monte Carlo variances of WOPIV and GQMLE are very close, indicating that the two
methods exhibit similar performances when the innovations follow a standard normal distribution.

The lower panel of Table II shows the case where 𝜂t follows the skew normal distribution with

K3 =

⎛⎜⎜⎜⎜⎜⎝

𝜅0
3 0

0 0

0 0

0 𝜅0
3

⎞⎟⎟⎟⎟⎟⎠
and K4 =

⎛⎜⎜⎜⎜⎜⎝

𝜅0
4 0 0 1

0 1 1 0

0 1 1 0

1 0 0 𝜅0
4

⎞⎟⎟⎟⎟⎟⎠
,

where 𝜅0
3 ≈ 0.78 and 𝜅0

4 ≈ 3.49. As predicted, the GQMLE is no longer efficient due to the model misspecification.
We see that our method has achieved smaller variances in every sample size and almost every coefficient, as
highlighted in bold.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Table III. Simulation results of BEKK-GARCH, with c11 = 0.8, c12 = 0.5, c22 = 0.7, a11 = 0.6, and a22 = 0.5

T Methods 𝜇̂c11
𝜇̂c12

𝜇̂c22
𝜇̂a11

𝜇̂a22
MSEc11 MSEc12 MSEc22 MSEa11 MSEa22

𝜂t is standard normal

500 GQMLE 0.8018 0.5029 0.7023 0.5966 0.4928 2.3033 1.1891 1.3228 1.3367 1.3493

WOPIV 0.7973 0.4999 0.6980 0.5944 0.4909 2.3343 1.1811 1.3259 1.3410 1.3698

1000 GQMLE 0.7987 0.4991 0.6987 0.5985 0.4971 2.3419 1.2341 1.4147 1.2844 1.3237

WOPIV 0.7962 0.4977 0.6967 0.5974 0.4962 2.3638 1.2487 1.4470 1.2915 1.3235

2000 GQMLE 0.7996 0.5002 0.7001 0.5990 0.4991 2.2034 1.2320 1.4746 1.2845 1.2059

WOPIV 0.7985 0.4995 0.6990 0.5986 0.4987 2.2051 1.2259 1.4719 1.2869 1.2081
𝜂t is skew normal

500 GQMLE 0.8020 0.5032 0.7016 0.5936 0.4930 2.5672 1.2991 1.6204 1.5426 1.4141

WOPIV 0.7977 0.5008 0.6995 0.5930 0.4924 2.0405 1.1562 1.3030 1.3291 1.2210

1000 GQMLE 0.7981 0.4988 0.6975 0.5975 0.4996 2.5126 1.3372 1.8252 1.5768 1.4566

WOPIV 0.7964 0.4976 0.6960 0.5978 0.4988 2.1277 1.2239 1.5045 1.3145 1.2225

2000 GQMLE 0.7997 0.5003 0.6999 0.5973 0.4970 2.7286 1.3321 1.8529 1.6249 1.5519

WOPIV 0.7999 0.5001 0.6997 0.5968 0.4971 2.2430 1.2109 1.5833 1.3074 1.2955

In Case 3 for the BEKK-GARCH model, we see the same pattern: our methods and the GQMLE have similar
performances if the underline 𝜂t is correctly specified as N(0, I2). If 𝜂t is drawn from a skew normal distribution,
our method outperforms GQMLE in every sample size and every parameter.

To summarize, in both univariate models and multi-variate models, the simulation results show that our method
has good performance. While the GQMLE and our methods perform similarly in the case of normally distributed
𝜂t, our method outperforms the GQMLE in the case of skew normally distributed 𝜂t.

6.3. Comparison with a semi-parametric estimator

Here, we compare our proposed WOPIV, the GQMLE, and the method proposed by Hafner and Rombouts (2007)
(HR). The data generating process is similar to Case 1: For each sample size n = 200, 500 and 1000, we generate
1000 Monte Carlo samples from a GARCH(1,1) model with (𝜔0, 𝛼0, 𝛽0) = (0.1, 0.3, 0.6). For the HR, we try two
different bandwidths: r ⋅ n−2∕5 and r ⋅ n−1∕5, where r is the range of the normalized residuals. See section 3.2 of
Hafner and Rombouts (2007) (pp. 261–263) for more details on the implementation of their method (Table IV).
If 𝜂t is standard normally distributed, the performance of the three methods is similar. The GQMLE has a slight
edge over the other two, which is reasonable given that it is efficient in this case. If 𝜂t is skew normally distributed,
both WOPIV and HR outperform the GQMLE across all sample sizes and parameters. For the HR, the choice
of bandwidth plays an important role: When selecting a bandwidth of h = r ⋅ n−2∕5, the HR demonstrates the
best performance, with the WOPIV exhibiting larger MSEs than the HR but still significantly outperforming the
GQMLE. When opting for a bandwidth of h = r ⋅ n−1∕5, the WOPIV emerges as the superior method. In this
case, the HR has larger MSEs than the WOPIV and only marginally surpasses the GQMLE. In sum, the HR
can achieve the best performance when the bandwidth is appropriately chosen. Meanwhile, the WOPIV offers
a tuning-parameter-free, easy-to-implement method that can outperform the GQMLE when the innovation is
not Gaussian.

7. APPLICATION

Here, we illustrate the application of our methodology by analyzing the stock price series of Amazon (AMZN).
We have gathered daily observations from January 2013 to December 2017, resulting in a total of 1500 data points.
The data source is Yahoo Finance, https://finance.yahoo.com. Figure 1 displays the original series, illustrating a

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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Table IV. Comparison between GQMLE, WOPIV and HR for GARCH(1,1) with 𝜔0 = 0.1, 𝛼0 = 0.3 and 𝛽0 = 0.6

T Methods h 𝜇̂𝜔 𝜇̂𝛼 𝜇̂𝛽 MSE𝜔 MSE𝛼 MSE𝛽

𝜂t is standard normal
200 GQMLE — 0.1417 0.2832 0.5540 3.5848 3.0821 9.7503

WOPIV — 0.1410 0.2793 0.5514 3.6418 3.1293 10.6301
HR OP(n−2∕5) 0.1400 0.2817 0.5523 3.3366 3.2169 10.3751
HR OP(n−1∕5) 0.1401 0.2803 0.5529 3.3672 3.1070 10.2860

500 GQMLE — 0.1125 0.2956 0.5860 1.5010 3.0996 6.5017
WOPIV — 0.1118 0.2935 0.5862 1.4907 3.0848 6.5737

HR OP(n−2∕5) 0.1121 0.2941 0.5863 1.5222 3.2294 6.7409
HR OP(n−1∕5) 0.1120 0.2942 0.5861 1.4875 3.0699 6.5164

1000 GQMLE — 0.1059 0.2973 0.5939 1.0612 3.1335 5.5281
WOPIV — 0.1056 0.2965 0.5938 1.0682 3.1256 5.5803

HR OP(n−2∕5) 0.1058 0.2969 0.5936 1.1150 3.3126 5.8068
HR OP(n−1∕5) 0.1057 0.2968 0.5938 1.0564 3.1294 5.5321

𝜂t is skew normal
200 GQMLE — 0.1508 0.2895 0.5334 3.9382 3.8102 11.2614

WOPIV — 0.1444 0.2927 0.5376 3.7112 3.1911 10.2598
HR OP(n−2∕5) 0.1439 0.2930 0.5387 3.5037 2.8889 9.6033
HR OP(n−1∕5) 0.1508 0.2895 0.5322 3.9975 3.8124 11.3887

500 GQMLE — 0.1101 0.2921 0.5917 1.3161 3.8766 6.6624
WOPIV — 0.1066 0.2920 0.5947 0.9969 3.3153 5.5099

HR OP(n−2∕5) 0.1075 0.2947 0.5916 0.8342 2.4666 4.4345
HR OP(n−1∕5) 0.1098 0.2917 0.5913 1.2667 3.7642 6.6063

1000 GQMLE — 0.1072 0.2988 0.5900 1.2716 3.9706 6.8525
WOPIV — 0.1042 0.2965 0.5954 0.9202 2.9511 4.9964

HR OP(n−2∕5) 0.1037 0.2968 0.5960 0.6682 2.2406 3.7268
HR OP(n−1∕5) 0.1072 0.2990 0.5900 1.2451 3.9116 6.7115

Figure 1. Series of the stock prices of AMZN

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12770 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Figure 2. First difference in log prices of AMZN

Table V. Summary statistics of the AR(3) residual of the differenced logarithmic series of stock price

Series Mean SD Min. Max Standard skewness Standard kurtosis

Original 495.4334 266.8574 175.93 1195.83 0.7854 2.3485
Residual 0.0000 0.0157 −0.1330 0.0841 −0.3704 9.3648

Table VI. Estimation results of GARCH(1,1) for GQMLE and WOPIV

Methods 𝜔̂ 𝛼̂ 𝛽

QMLE 1.0814 0.2519 0.3534
(0.0850) (0.0142) (0.0342)

WOPIV 1.0161 0.2657 0.3706
(0.0791) (0.0143) (0.0325)

clear indication of the presence of trends and potential autocorrelation. To remove these trends and autocorrelation,
we work with the AR(3) residual of the logarithmic first-difference series of these prices. Figure 2 presents these
series (re-scaled by 100), and Table V provides a summary of their descriptive statistics.

Compared to the original price series, the time series after pre-processing no longer exhibits non-stationarity.
However, the sample skewness and kurtosis of both series suggest clear deviations from the normal distribution.
For both QMLE and our proposed method, we fit the GARCH (1,1) model. The parameters of interest are 𝜃 =
(𝜔0, 𝛼0, 𝛽0), with the model specified as

rt(wt, 𝜃0) =

(
𝜀t

𝜀2
t − (𝜔0 + 𝛼0𝜀

2
t−1 + 𝛽0𝜎

2
t−1)

)
.

Table VI summarizes the estimation results for both the QMLE and the WOPIV. The estimates of (𝜔0, 𝛼0, 𝛽0) are
reported, along with their SDs in the bracket. We observe that the estimates from the QMLE and the WOPIV are
close to each other. All the coefficients are highly significant, and the standard deviation of our proposed method
is generally smaller than those of the QMLE. Overall, the outcomes from both simulation and application support
our estimation strategy.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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APPENDIX A: PROOFS AND OTHER RESULTS

Here, we present the proofs of the main theorems. In addition, the asymptotic results of the GQMLE are also
included.

A.1. Consistency

A.1.1. Proof of Theorem 1

Proof. By A.4, we have QT

(
𝜃̌, 𝜅̌, 𝜃̂

)
= 0. Thus,

|QT (𝜃̌, 𝜅̌, 𝜃̂)|2 ≤|QT (𝜃̌, 𝜅̌, 𝜃0)|2
=|QT (𝜃0, 𝜅0, 𝜃0)|2 + op(1)
=|Q∞(𝜃0, 𝜅0, 𝜃0)|2 + op(1), (A1)

where the first inequality follows from A.4, the first equality follows from A.1, and the second equality follows
from A.2. Subtracting |Q∞(𝜃0, 𝜅0, 𝜃̂)|2 from both sides of (A1) yields

|QT (𝜃̌, 𝜅̌, 𝜃̂)|2 − |Q∞(𝜃0, 𝜅0, 𝜃̂)|2 ≤ |Q∞(𝜃0, 𝜅0, 𝜃0)|2 − |Q∞(𝜃0, 𝜅0, 𝜃̂)|2 + op(1),|QT (𝜃0, 𝜅0, 𝜃̂)|2 + op(1) − |Q∞(𝜃0, 𝜅0, 𝜃̂)|2 ≤ 0 − |Q∞(𝜃0, 𝜅0, 𝜃̂)|2 + op(1),

op(1) + op(1) ≤ −|Q∞(𝜃0, 𝜅0, 𝜃̂)|2 + op(1),|Q∞(𝜃0, 𝜅0, 𝜃̂)|2 ≤ op(1), (A2)

where the second inequality follows from A.1 and A.3, and the third inequality follows from A.2. By A.3, for any
𝜀, there exists 𝜂 such that for any 𝜃 ∈ Θ, it holds |𝜃 − 𝜃0|2 ≥ 𝜀 ⇒ |Q∞(𝜃0, 𝜅0, 𝜃)|2 > 𝜂. By taking 𝜃 = 𝜃̂ in the
preceding expression, we obtain

P
(|𝜃̂ − 𝜃0|2 ≥ 𝜀

)
≤ P

(|Q∞(𝜃0, 𝜅0, 𝜃̂)|2 > 𝜂
)
→ 0,

where the → follows from (A2). Thus, |𝜃̂ − 𝜃0|2 = op(1). ◾
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IMPROVED ESTIMATION OF DYNAMIC MODELS 27

A.1.2. Proof of Theorem 2

Proof. Recall that the b-ball around 𝜃̇ is defined as (𝜃̇, b) = {𝜃 ∶ |𝜃 − 𝜃̇|2 < b}, where 𝜃̇ is a point within the
interior of Θ, and b is a positive constant. For k = 1, 2, … , let (𝜃̇, 1∕k) be a sequence of shrinking open balls
centered around 𝜃̇. For any 𝜃1 ∈ Θ that satisfies 𝜃1 ≠ 𝜃0, we have

lim
k→∞

inf
𝜃∈(𝜃1,1∕k)

lim
T→∞

|EQT (𝜃0, 𝜅0, 𝜃)|2 ↑ |Q∞(𝜃0, 𝜅0, 𝜃1)|2 > 0 = |Q∞(𝜃0, 𝜅0, 𝜃0)|2, (A3)

where the ↑ follows by the monotone convergence theorem, and the inequality follows by A.3.
Thus, for this 𝜃1, we can find a large enough positive integer k(𝜃1) such that

inf
𝜃∈(𝜃1,1∕k(𝜃1))

lim
T→∞

|EQT (𝜃0, 𝜅0, 𝜃)|2 > 0 = |Q∞(𝜃0, 𝜅0, 𝜃0)|2. (A4)

Considering Θ𝜀

def
= {𝜃 ∶ |𝜃 − 𝜃0|2 ≥ 𝜀} for a positive constant 𝜀, by A.2’(ii), we can find a finite set of l points,

such that {𝜃i}l
i=1 ∈ Θ𝜀 and Θ𝜀 ⊂ ∪l

i=1(𝜃i, 1∕k(𝜃i)). Furthermore, let us define

𝛿 = min[ inf
i∈1,···,l

lim inf
𝜃∈(𝜃i,1∕k(𝜃i))

lim
T→∞

|EQT (𝜃0, 𝜅0, 𝜃)|2, 1]. (A5)

By (A4) and l < ∞, it holds that 𝛿 > 0. By A.4 and the definition of {𝜃i}l
i=1, we have P(|𝜃̂ − 𝜃0| ≥ 𝜀) ≤

P(infi=1,···,l inf𝜃∈(𝜃i,1∕k(𝜃i)) |QT (𝜃̌, 𝜅̌, 𝜃)|2 − |QT (𝜃̌, 𝜅̌, 𝜃0)|2 < 0). Next, we show that the right-hand side of this
equation is o(1).

By A.1, A.2’(i), (A3), and (A5), it holds that P[infi=1,···,l inf𝜃∈(𝜃i,1∕k(𝜃i)) |QT (𝜃̌, 𝜅̌, 𝜃)|2 ≤ 𝛿∕2] = o(1). By A.1 and

A.2’(iii), it holds that P(|QT (𝜃̌, 𝜅̌, 𝜃0) − Q∞(𝜃0, 𝜅0, 𝜃0)|2 ≥ 𝛿∕2) = P(|QT (𝜃̌, 𝜅̌, 𝜃0)|2 ≥ 𝛿∕2) = o(1). Consequently,
P(|𝜃̂ − 𝜃0| ≥ 𝜀) ≤ P(infi=1,···,l inf𝜃∈(𝜃i,1∕k(𝜃i)) |QT (𝜃̌, 𝜅̌, 𝜃)|2 − |QT (𝜃̌, 𝜅̌, 𝜃0)|2 < 0) = o(1). ◾

A.2. Proof of Theorem 3

Before we begin the proof, let us first review the notations defined in Section 3.2. For any 𝜃, 𝜃 ∈ Θ and initial
estimators (𝜃̌, 𝜅̌), we have

rt(𝜃) = rt(wt(𝜃), 𝜃),
Rt(𝜃) = ∇rt(𝜃) = 𝜕rt(𝜃)∕𝜕𝜃′|𝜃=𝜃,
Řt = Rt(𝜃̌),Rt = Rt(𝜃0),Dt = Dt(xt,𝜽0,𝜿0).

Further,

ǍT (𝜃) =
1
T

T∑
t=1

Ř
′
tDt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1rt(𝜃),

AT (𝜃) =
1
T

T∑
t=1

Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1rt(𝜃),

and

B̌T (𝜃) =
1
T

T∑
t=1

Ř
′
tDt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1Rt(𝜃),

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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28 W. WANG, J. M. WOOLDRIDGE and M. XU

B̌0(𝜃) = E(Ř
′
tDt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1Rt(𝜃)),

B0(𝜃) = E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1Rt(𝜃)),
B0 = B0(𝜃0),
C0 = E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1rt(𝜃0)rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1Rt(𝜃0)). (A6)

Proof. We start with equation (21),

1
T

T∑
t=1

Ř
′
tDt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1rt(𝜃̂) = 0.

We are interested in 𝜃̂, the root of this score function. A Taylor expansion leads to

0 = 1
T

T∑
t=1

Ř
′
tDt

(
xt

(
𝜃̌
)
, 𝜃̌, 𝜅̌

)−1
rt(𝜃̂)

= 1
T

T∑
t=1

Ř
′
tDt

(
xt

(
𝜃̌
)
, 𝜃̌, 𝜅̌

)−1
rt

(
𝜃0

)
+ 1

T

T∑
t=1

Ř
′
tDt

(
xt

(
𝜃̌
)
, 𝜃̌, 𝜅̌

)−1∇rt(𝜃)
(
𝜃̂ − 𝜃0

)
,

where 𝜃 is a vector that is between 𝜃̂ and 𝜃0 (in an element-wise sense). By B.2(ii) and some rearrangements, we
have

√
T
(
𝜃̂ − 𝜃0

)
= − B−1

0
1√
T

T∑
t=1

R′
tDt

(
xt, 𝜃0, 𝜅0

)−1
rt

(
𝜃0

)
− B−1

0
1√
T

T∑
t=1

[
Ř

′
tDt

(
xt

(
𝜃̌
)
, 𝜃̌, 𝜅̌

)−1 − R′
tDt

(
xt, 𝜃0, 𝜅0

)−1
]

rt

(
𝜃0

)
− B−1

0

(
B̌T (𝜃) − B0

)√
T
(
𝜃̂ − 𝜃0

)
= I + II + III.

By B.2(i) and B.3(ii), it holds that II = op(1). By A.1–A.4, we have 𝜃̂ →p 𝜃0, which implies 𝜃 →p 𝜃0. As a result,

B̌T (𝜃) − B0 = op(1) holds by B.2(i) and B.3(i), leading to III = op

(√
T(𝜃̂ − 𝜃0)

)
. Thus,

√
T
(
𝜃̂ − 𝜃0

)
= − 1√

T
B−1

0

T∑
t=1

R′
tDt

(
xt, 𝜃0, 𝜅0

)−1
rt

(
𝜃0

)
+ op

(√
T(𝜃̂ − 𝜃0)

)
. (A7)

Consequently, the first term of the right-hand side of (A7) is the leading term.

Define 𝜁t = B−1
0 R′

tDt(xt,𝜽0,𝜿0)−1rt(𝜃0). For an arbitrary P-dimensional vector c, 𝜉t

def
= c′𝜁t is a station-

ary and ergodic MDS by B.1, and its variance is finite by B.2(ii). As a result, limT→∞ E

[(
− 1√

T

∑
t 𝜉t

)2
]

=

E(c′B−1
0 C0B−1

0 c). Then, √
T(𝜃̂ − 𝜃0) →L N(0,B−1

0 C0B−1
0 ) (A8)

follows from the CLT for the MDS (Billingsley (1961); see also corollary A.1 of Francq and Zakoian (2010)), the
Cramér Wold device, and (A7).

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12770
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IMPROVED ESTIMATION OF DYNAMIC MODELS 29

Finally, if the variance–covariance matrix is correctly specified, namely, E(rt(𝜃0)r′t(𝜃0)|xt) = Dt(xt,𝜽0,𝜿0), then,

C0 = E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1rt(𝜃0)r′t(𝜃0)Dt(xt,𝜽0,𝜿0)−1Rt(𝜃0))
= E(E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1rt(𝜃0)r′t(𝜃0)Dt(xt,𝜽0,𝜿0)−1Rt(𝜃0)|xt))
= E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1E(rt(𝜃0)r′t(𝜃0)|xt)Dt(xt,𝜽0,𝜿0)−1Rt(𝜃0))
= E(Rt(𝜃0)′Dt(xt,𝜽0,𝜿0)−1Rt(𝜃0)) = B0.

Consequently, the asymptotic variance-covariance matrix of (A8) becomes B−1
0 . ◾

A.3. Proof of Theorem 4

Proof. Define Q̌T (𝜃) =
1

T

∑T
t=1Ř

′
t Dt(xt(𝜃̌), 𝜽̌, 𝜿̌)−1rt(𝜃). Under A.4 and B.2(i), equations (14), (19), and (A6) yield

the following equalities:

Q̌T (𝜃̂) = 0,

B̌T (𝜃̌) = 𝜕Q̌T (𝜃)∕𝜕𝜃′|𝜃=𝜃̌ ,
𝜃 = 𝜃̌ − B̌T (𝜃̌)−1Q̌T (𝜃̌).

Rearranging the last equality, we have

−Q̌T (𝜃̌) = B̌T (𝜃̌)(𝜃 − 𝜃̌). (A9)

Extending Q̌T (𝜃̂) = 0 around 𝜃̌ yields

0 = Q̌T (𝜃̌) + B̌T (𝜃̌)(𝜃̂ − 𝜃̌) + op(𝜃̂ − 𝜃̌)

= Q̌T (𝜃̌) + B̌T (𝜃̌)(𝜃̂ − 𝜃̌) + op(
1√
T
), (A10)

where the first equality follows from B.2(i), and the second equality follows from C.1. Rearranging (A10) yields

−Q̌T (𝜃̌) = B̌T (𝜃̌)(𝜃̂ − 𝜃̌) + op(
1√
T
). (A11)

Combining (A9) and (A11) and rescaling them by
√

T , we have

op(1) =
√

TB̌T (𝜃̌)(𝜃 − 𝜃̂)

=
√

T(B0 + op(1))(𝜃 − 𝜃̂),

where the second equality follows from B.3(i), B.2(i), and C.1. After multiplying both sides by B−1
0 and some

rearrangements, we obtain √
T(𝜃 − 𝜃̂) = B−1

0 op(1) − B−1
0 op

(√
T(𝜃 − 𝜃̂)

)
= op(1),

where the first equality follows from B.2(ii). This shows the first-order asymptotic equivalence between
𝜃̂ and 𝜃. ◾

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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30 W. WANG, J. M. WOOLDRIDGE and M. XU

A.4. Asymptotic properties of the GQMLE

The asymptotic normality and consistency of the GQMLE are well established in the literature.

M.1 𝜃0 lies in the interior of Θ.
M.2 I0 is positive definite.
M.3 sup𝜃∈Θ | 1

T

∑T
t=1It(𝜃) − I0(𝜃)|2 →p 0.

M.4 1√
T

∑T
t=1st(𝜃0) →d N(0, J0).

Theorem 6. (Wooldridge (1994)). Under Assumptions A.4 to A.4, the GQMLE is asymptotically normal,√
T(𝜃̌ − 𝜃0) →d N(0, I−1

0 J0I−1
0 ).

A proof can be found in Wooldridge (1994).

APPENDIX B: EVALUATING ASSUMPTIONS WITHIN GARCH(1,1)

Here, we examine the validity of Assumptions A.1–A.4, A.2’, and A.0 specifically within the context of the
GARCH(1,1) model. Throughout this section, we assume that the time series {yt, xt}t defined for the GARCH(1,1)
model described in (5) is both covariance stationary and strict stationary, and is also ergodic. This is satisfied if
the innovation term 𝜂t is i.i.d. for all t, E(𝜀2

t ) < ∞, and the parameters meet the criteria 𝛼0, 𝛽0 > 0 and 𝛼0 + 𝛽0 < 1.
We denote this specific subset of the parameter space Θ as Θs, where ‘s’ represents ‘stationary’. It shall be noted
that a GARCH process can be strictly stationary without necessarily being covariance stationary. See, e.g., figure
2.8 in Francq and Zakoian (2010) and follow-up discussions for more details. To streamline our explanation, we
assume that the innovation 𝜂t is i.i.d. and its 4 + 𝛿th moment exists, for some 𝛿 > 0.

B.1. On Assumptions A.1–A.4

First, we verify Assumption A.2 within Θs. Let Θ𝜋 be a finite grid of Θ, partitioned with sufficient granularity.
Then, the uniform convergence condition presented in A.2, can be implied by the pointwise convergence on these
finite grid points, i.e., sup𝜃∈Θ𝜋

|QT (𝜃0, 𝜅0, 𝜃)−Q∞(𝜃0, 𝜅0, 𝜃)|2 →p 0, and a stochastic equicontinuity condition, i.e.,
for any 𝜃1, 𝜃2 ∈ Θs,

plim𝛿→0 sup|𝜃1−𝜃2|2≤𝛿|QT (𝜃0, 𝜅0, 𝜃1) − Q∞(𝜃0, 𝜅0, 𝜃1) − QT (𝜃0, 𝜅0, 𝜃2) + Q∞(𝜃0, 𝜅0, 𝜃2)|2 = 0. (B1)

Now, we show the pointwise convergence. Recall that R′
tD

−1
t is the instrument evaluated at 𝜃0, 𝜎2

t is the true
conditional variance evaluated at 𝜃0, and 𝜀t = 𝜎t𝜂t. For a given 𝜃, a reasoning similar to that in Section 2.2 yields

QT (𝜃0, 𝜅0, 𝜃) =
1
T

T∑
t=1

R′
tD

−1
t rt(𝜃) =

1
T

T∑
t=1

1
c0
𝜅

⎛⎜⎜⎜⎜⎜⎜⎝

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

− 𝜅0
3𝜎

−3
t 𝜀t

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜀2
t−1 − 𝜅0

3𝜎
−3
t 𝜀2

t−1𝜀t

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜎2
t−1 − 𝜅0

3𝜎
−3
t 𝜎2

t−1𝜀t

⎞⎟⎟⎟⎟⎟⎟⎠
. (B2)

Note that 1

T

∑T
t=1[R

′
tD

−1
t rt(𝜃) − E(R′

tD
−1
t rt(𝜃)|t−1)] is an averaged sum of MDS. It will be an Op(

1√
T
) term if the

innovation 𝜂t is i.i.d. and its second moment exists. Thus, we can focus on the term 1

T

∑T
t=1E(R′

tD
−1
t rt(𝜃)|t−1).

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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IMPROVED ESTIMATION OF DYNAMIC MODELS 31

Note that by (B2),

1
T

T∑
t=1

E(R′
tD

−1
t rt(𝜃)|t−1) =

1
T

T∑
t=1

1
c0
𝜅

E

⎛⎜⎜⎜⎜⎝
𝜀2

t −𝜎
2
t (𝜃)

𝜎4
t

− 𝜅0
3𝜎

−3
t 𝜀t

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜀2
t−1 − 𝜅0

3𝜎
−3
t 𝜀2

t−1𝜀t

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜎2
t−1 − 𝜅0

3𝜎
−3
t 𝜎2

t−1𝜀t

|||t−1

⎞⎟⎟⎟⎟⎠
= 1

T

T∑
t=1

1
c0
𝜅

E

⎛⎜⎜⎜⎜⎝
𝜀2

t −𝜎
2
t (𝜃)

𝜎4
t

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜀2
t−1

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜎2
t−1

|||t−1

⎞⎟⎟⎟⎟⎠
, (B3)

where the second equality follows from E(𝜀t|t−1) = 0 and 𝜎−3
t =

(
𝜔0 + 𝛼0𝜀

2
t−1 + 𝛽0𝜎

2
t−1

)−3∕2 ∈ t−1. Recall that
xt = (𝜀t−1, 𝜎t−1). We define

f (… xt−1, xt)
def
= E

⎛⎜⎜⎜⎜⎝
𝜀2

t −𝜎
2
t (𝜃)

𝜎4
t

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜀2
t−1

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜎2
t−1

|||t−1

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
𝜎2

t −𝜎
2
t (𝜃)

𝜎4
t

𝜎2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜀2
t−1

𝜎2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜎2
t−1

⎞⎟⎟⎟⎟⎠
, (B4)

where the last equality follows from 𝜎2
t (𝜃) = 𝜔 + 𝛼𝜀2

t−1 + 𝛽𝜎2
t−1(𝜃) and 𝜎2

t

def
= 𝜎2

t (𝜃0). Note that xt is assumed
to be stationary and ergodic; f is measurable by (B4); and E|f (… xt−1, xt)| < ∞ is implied by E(𝜀2

t ) < ∞, the
stationarity of 𝜀2

t , and 𝜃 ∈ Θs. Thus, by the ergodic theorem (e.g., theorem A.2 of Francq and Zakoian (2010))
and the Law of iterated expectation, the last term of (B3) converges to

1
c0
𝜅

E

⎛⎜⎜⎜⎜⎝
𝜀2

t −𝜎
2
t (𝜃)

𝜎4
t

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜀2
t−1

𝜀2
t −𝜎

2
t (𝜃)

𝜎4
t

𝜎2
t−1

⎞⎟⎟⎟⎟⎠
= Q∞(𝜃0, 𝜅0, 𝜃) = E[Rt(𝜃)′Dt(xt(𝜽),𝜽,𝜿)−1rt(wt(𝜃), 𝜃)]. (B5)

Thus, we have the pointwise convergence of |QT (𝜃0, 𝜅0, 𝜃) − Q∞(𝜃0, 𝜅0, 𝜃)|2 for the GARCH(1,1) model.
Next, we show the stochastic equicontinuity condition (B1). By iterating 𝜎2

t (𝜃) = 𝜔 + 𝛼𝜀2
t−1 + 𝛽𝜎2

t−1(𝜃), we
obtain 𝜎2

t (𝜃) =
𝜔

1−𝛽
+ 𝛼

∑∞
k=0𝛽

k𝜀2
t−1−k. Then,

QT

(
𝜃0, 𝜅0, 𝜃1

)
− QT

(
𝜃0, 𝜅0, 𝜃2

)
= 1

T

T∑
t=1

R′
tD

−1
t

[
rt

(
𝜃1

)
− rt

(
𝜃2

)]
= 1

T

T∑
t=1

R′
tD

−1
t

(
0

𝜔1

1−𝛽1
− 𝜔2

1−𝛽2
+ 𝛼1

∑∞
k=0 𝛽

k
1𝜀

2
t−1−k − 𝛼2

∑∞
k=0 𝛽

k
2𝜀

2
t−1−k

)

=
(

𝜔1

1 − 𝛽1

−
𝜔2

1 − 𝛽2

)
1
T

T∑
t=1

R′
tD

−1
t

(
0

1

)

+
∞∑

k=0

(
𝛼1𝛽

k
1 − 𝛼2𝛽

k
2

)[ 1
T

T∑
t=1

R′
tD

−1
t

(
0

𝜀2
t−1−k

)]
. (B6)
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For any 𝜃 = (𝜔, 𝛼, 𝛽)′ ∈ Θs, it holds that 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1 by the definition of Θs. Thus, the last equality of
(B6) indicates that QT

(
𝜃0, 𝜅0, 𝜃

)
is Lipschitz in 𝜃 ∈ Θs. By the same reasoning, Q∞

(
𝜃0, 𝜅0, 𝜃

)
is also Lipschitz in

𝜃 ∈ Θs, as can be seen by substituting ‘ 1

T

∑T
t=1’ with ‘E’ in (B6). Consequently, equation (B1) holds, and we have

Assumption A.2 satisfied.
For Assumption A.3, the equality (B5) illustrates that for the GARCH(1,1) model, Q∞(𝜃0, 𝜅0, 𝜃) is equivalent to

the mean of the score function of the GQMLE up to a constant factor (see also (27) and (28)). Thus, A.3 is satisfied
under the standard identification conditions for the GQMLE; see, e.g., p. 144 of Francq and Zakoian (2010).

For Assumption A.4, we have commented in a remark after equation (14) that the existence of solutions of
nonlinear Z-estimation in a finite sample is a non-trivial problem. We refer to Jacod and Sørensen (2018) for
further discussions.

Lastly, we verify Assumption A.1. The consistency of the initial estimator, 𝜃̌ →p 𝜃0, can be achieved by using

the GQMLE to obtain 𝜃̌. The convergence of 𝜅̌ ≡
(
𝜅̌3, 𝜅̌4

)
→p 𝜅0 is implied by the consistency of 𝜃̌ and the

existence of the third and fourth moments of 𝜂t. The last statement can be similarly validated using the argu-
ments for the verification of Assumption A.2, except that the Lipschitz argument employed in (B6) is applied to
R′

t(x, 𝜃1)Dt(xt, 𝜃1, 𝜅1)−1 − R′
t(x, 𝜃2)Dt(xt, 𝜃2, 𝜅2)−1 instead of rt

(
𝜃1

)
− rt

(
𝜃2

)
(see equation (16) for the function

form of R′
t(x, 𝜃0)Dt(xt, 𝜃0, 𝜅0)−1 for the GARCH(1,1) case.).

B.2. On Assumption A.2’

Recall that QT (𝜃0, 𝜅0, 𝜃) =
1

T

∑T
t=1R′

tD
−1
t rt(𝜃). Assumption A.2’(i) is satisfied if we have QT (𝜃0, 𝜅0, 𝜃) converges to

EQT (𝜃0, 𝜅0, 𝜃), almost surely. For the GARCH(1,1) model, we have validated the convergence in probability in our
previous discussion of Assumption A.2. The conditions for almost sure convergence, similar to the ones required
here, can be found in lemma B.1 of Richter et al. (2023).

For A.2’(ii), a compact parameter set, though relaxable under certain circumstances, is standard in the literature.
For the GARCH(1,1) model, where QT (𝜃0, 𝜅0, 𝜃) is given by (B2), the condition E sup𝜃∈Θ |QT (𝜃0, 𝜅0, 𝜃)|2 < ∞
is guaranteed by the compactness of Θ and the existence of 4 + 𝛿th moment of the innovation terms. Lastly,
Assumption A.2’(iii) has been addressed in the preceding discussion of Assumption A.2.

B.3. On Assumption A.0

We now show that for our proposed WOPIV approach, the selection of initial values has negligible impact in the
context of the GARCH(1,1) model.

By equation (18) in Section 2.2, we have for the GARCH(1,1) model

Q̃T (𝜃̇, 𝜅, 𝜃) =
1
T

T∑
t=1

Rt

(
x̃t(𝜃̇), 𝜃̇

)
D−1

t

(
x̃t(𝜃̇), 𝜃̇, 𝜅

)
rt(w̃t(𝜃), 𝜃)

= − 1
c𝜅

⋅

⎡⎢⎢⎢⎢⎣
1
T

T∑
t=1

⎛⎜⎜⎜⎜⎝
𝜀2

t −(𝜔+𝛼𝜀
2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̇)

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̇)

𝜀2
t−1

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎̃

2
t−1(𝜃))

𝜎̃4
t (𝜃̇)

𝜎̃2
t−1(𝜃̇)

⎞⎟⎟⎟⎟⎠
− 1

T

T∑
t=1

⎛⎜⎜⎜⎝
𝜅3𝜎̃

−3
t (𝜃̇)𝜀t

𝜅3𝜎̃
−3
t (𝜃̇)𝜀2

t−1𝜀t

𝜅3𝜎̃
−3
t (𝜃̇)𝜎̃2

t−1(𝜃̇)𝜀t

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

= − 1
c𝜅

⋅
[
S̃1(𝜃̇, 𝜅, 𝜃) − S̃2(𝜃̇, 𝜅, 𝜃)

]
, (B7)

where c𝜅 = 𝜅4 − 1 − (𝜅3)2. Note that S̃1(𝜃̇, 𝜅, 𝜃) essentially exhibits the form the score function of the GQMLE
(see also the discussion before and after (28)), and S̃2(𝜃̇, 𝜅, 𝜃) can be regarded as an adjustment term introduced
by the WOPIV, to enhance the GQMLE.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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Similarly,

QT (𝜃̇, 𝜅, 𝜃) = − 1
c𝜅

⋅

⎡⎢⎢⎢⎢⎣
1
T

T∑
t=1

⎛⎜⎜⎜⎜⎝
𝜀2

t −(𝜔+𝛼𝜀
2
t−1+𝛽𝜎

2
t−1(𝜃))

𝜎4
t (𝜃̇)

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎

2
t−1(𝜃))

𝜎4
t (𝜃̇)

𝜀2
t−1

𝜀2
t −(𝜔+𝛼𝜀

2
t−1+𝛽𝜎

2
t−1(𝜃))

𝜎4
t (𝜃̇)

𝜎2
t−1(𝜃̇)

⎞⎟⎟⎟⎟⎠
− 1

T

T∑
t=1

⎛⎜⎜⎜⎝
𝜅3𝜎

−3
t (𝜃̇)𝜀t

𝜅3𝜎
−3
t (𝜃̇)𝜀2

t−1𝜀t

𝜅3𝜎
−3
t (𝜃̇)𝜎2

t−1(𝜃̇)𝜀t

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

= − 1
c𝜅

⋅
[
S1(𝜃̇, 𝜅, 𝜃) − S2(𝜃̇, 𝜅, 𝜃)

]
. (B8)

Combining (B7) and (B8) yields

Q̃T (𝜃̇, 𝜅, 𝜃) − QT (𝜃̇, 𝜅, 𝜃) =
1
c𝜅

{[
S1(𝜃̇, 𝜅, 𝜃) − S̃1(𝜃̇, 𝜅, 𝜃)

]
+
[
S̃2(𝜃̇, 𝜅, 𝜃) − S2(𝜃̇, 𝜅, 𝜃)

]}
.

By lemma B.2 of Richter et al. (2023), it holds that sup𝜃̇,𝜅,𝜃 |∇l
𝜃
S̃1(𝜃̇, 𝜅, 𝜃) −∇l

𝜃
S1(𝜃̇, 𝜅, 𝜃)|2 = Op

(
1

T

)
for l = 0, 1.

Using a similar reasoning, we can derive sup𝜃̇,𝜅,𝜃 |∇l
𝜃
S̃2(𝜃̇, 𝜅, 𝜃)−∇l

𝜃
S2(𝜃̇, 𝜅, 𝜃)|2 = Op

(
1

T

)
. Lastly, equations (B7)

and (B8) indicate that for the GARCH(1,1), both Q̃T (𝜃̇, 𝜅, 𝜃) and QT (𝜃̇, 𝜅, 𝜃) are differentiable with respect to 𝜃.
Thus, the Assumption A.0 is satisfied.
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