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Abstract: As university dropout rates increase, implementing innovative solutions is crucial to reduce
attrition. Aligning students’ interests with their study programs enhances academic success, satisfaction,
and retention. This paper presents a novel approach using open-source Large Language Models (LLM)
and Retrieval-Augmented Generation (RAG) to develop a semi-open-domain knowledge chatbot. The
chatbot generates informed responses and recommendations to diverse student queries by retrieving
relevant data while maintaining ethical standards and avoiding biased responses. When testing five
model combinations on 70 prompts partially from real study advisors, results demonstrate that the
RAG approach with the Mixtral LLM and RoBERTa embedding model offers superior performance.
Our method for handling critical user prompts further indicates a significantly improved response
quality. These findings advance service-oriented chatbots in education, aiming to reduce student
attrition through accurate and helpful program recommendations.
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1 Introduction

With increasing university dropout rates of currently more than every fourth student in
Germany [HHS22], scholars and practitioners are looking to find new ways to decrease
attrition. One finding in this context is that the fit between students’ interests and the content
of the study program is particularly important for the development of long-term academic
success [AR10; TR06]. Furthermore, scholars have demonstrated that a better fit can help
increase the students’ satisfaction with the program [Al08], their grades [EN16; TR06], as
well as decrease the probability of attrition [BGD22]. Moreover, managing expectations and
informing students via orientation systems can increase students’ motivation and expectation
of success [Me24]. Based on these findings, scholars have built multiple web-based systems
to inform students about study programs, helping them orient themselves and make fitting
recommendations. One specific method that has only received little attention is using
chatbots to make study program recommendations. When they are used, chatbots are often
rule-based, with human-coded questions and answers [Di18; FSW23; Ku23], which becomes
infeasible for usually broader study orientation inquiries.

In this paper, we address this gap by introducing an open-source Large Language Models
(LLM) and Retrieval-Augmented Generation (RAG) method to build a semi-open-domain
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knowledge chatbot that can generate answers from the retrieved data and answer broader
student questions. We further discuss approaches to make the chatbot usable in an ethical
manner and limit its capacity to take political or otherwise sensitive standpoints that could
harm the trust of users or bias the answers. On the basis of 70 prompts that partially come
from real study advisors, we test five different model combinations. The results indicate
that using filter layers first and applying the RAG approach with the Mixtral LLM and
RoBERTa embedding model returns the best answers with good scores across all prompt
types. The analysis further reveals that the proposed method for handling critical user
prompts also improves the chatbot’s answers significantly compared to chatbots that do not
use the method.

We hope that the discussed approaches and results can be helpful to the ongoing investigation
of service-oriented chatbots in the education sector and reduce attrition by informing students
and giving them sensible recommendations.

2 Background

In recent years, the use and implementation of chatbots have seen a rise in almost all areas,
e.g., in Management, Support, Education, Business, and Health Care [AM20; NC17]. In
general, a chatbot can be regarded as an example of intelligent Human-Computer Interaction
[BK18]. In the literature, scholars rely on four domains to distinguish chatbots [AM20;
NC17]. From a knowledge perspective, a chatbot can either be open, meaning that one can
ask the chatbot a variety of questions unbound by the topic, or closed, in which case the
chatbot’s knowledge will be limited to one predefined topic area. Furthermore, one can
distinguish the chatbots by their service (interpersonal, intrapersonal, inter-agent) and goal
(informative, chat-based, task-based). The fourth domain describes how chatbots function.
They may be rule-based, which limits the chatbots’ answers to a predefined human-coded
set of questions and answers, or retrieval-based, or generate answers based on machine
learning models. While these domains help distinguish chatbots, one must also keep in
mind that the borders between different styles flow seamlessly.

2.1 Chatbots for Study Program Orientation

Similar to other areas, scholars have implemented a variety of chatbots to assist in the
education sector. As such, scholars have, e.g., built chatbots to teach coding languages
[DTZ20; Wi20], engineering [Me20], or psychology [Ha13]. A majority of these chatbots
(88.88%) can be classified as rule-based chatbots being based on predefined answer and
question possibilities [Ku23]. In the education-specific strand of literature, scholars have
also categorized chatbots further as either teaching- or service-oriented [OA21; PDP20].
While teaching-oriented chatbots support educators as additional tutors or learning tools,
service-oriented chatbots are more used to assist students in their day-to-day lives, making



curriculum and study program decisions. Following this classification, we will focus on
service-oriented chatbots to help in the study program orientation in the context of this study.
Examples of chatbots designed for this specific task include LiSA, a chatbot created to help
students in their university life [Di18] or the German bot DIAS, which offers students an
information platform for their study pursuits [FSW23].

While these chatbots indicate promising results when it comes to study program orientation,
they are, much like the majority of educational chatbots, mainly rule-based and closed-
domain. This, however, limits the chatbot’s ability to help students since the orientation
process includes a wide set of possible user questions that cannot feasibly be accounted
for by human-coded rules. Additionally, the rule-based method only works for smaller
projects; as soon as a chatbot is expected to be used by a larger crowd, the number of
human-coded rules increases exponentially, making the method unattainable. This work
aims to fill this gap using open-source Large Language Models (LLM) to build a chatbot that
can generate answers to make cross-domain recommendations and also answer broader study
questions and fears. Such a chatbot can be categorized as a semi-open-domain, interpersonal,
informative/chat-based, and generative bot. With such a configuration, the chatbot would
offer a novel solution to the Chatbot-Assisted Study Program Orientation (CASPO).

3 Methodology

3.1 Building an Open-Domain Chatbot

For building the chatbot, we decided against a time- and resource-consuming fine-tuning of
LLM models and instead chose to connect the LLM models to a dataset, thereby utilizing
the Retrieval-Augmented Generation approach [Ga24]. Using this method, the user enters
a prompt, which an embedding model then embeds. Following this, the model further
compares the similarity between the user prompt and the database entries. The fixed number
of entries that match the prompt best is then given to the LLM as additional information
for the answer generation. Hence, the user is given factual information retrieved from the
embedded data but can also ask broader questions regarding their study orientation.

In the context of this paper, we will focus on building a CASPO for study programs
in Baden-Wuerttemberg, Germany3. Nevertheless, the proposed methodology can easily
be adapted to incorporate more study programs. To construct the database, we scraped
all necessary study program information from the website of the Federal Employment
Agency4. The collected data included program names, descriptions, administrative details,
and university information. This data was then embedded and saved as a database. Using
the explained RAG methodology, we compared various embedding models and LLM model
combinations to determine the best set for this specific chatbot task.

3 The chatbot is being built as part of a project initiated by the Ministry of Science, Research and Art of the State
of Baden-Württemberg, the goal is to add the chatbot to a new study orientation system which can then be used.

4 https://web.arbeitsagentur.de/berufenet/studienfelder, last visited, July 2nd, 2024
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Fig. 1: Methodology to ensure the chatbot’s usability and political correctness.

For the embedding models, we included a Cross English & German RoBERTa Sentence
embedding model [Ma20] and a German jina embedding model [Mo24]. Both models
have the advantage of performing well for the German case and for English titles of study
programs held in English. In the first phase of testing, we included three different LLMs to
generate answers based on embedded matches, Meta’s Llama3 model [AI24], Mistralai’s
Mixtral 8x7B [Ji24], and the Sauerkraut LLM [VA24]. However, the first test results,
analyzing the models’ reasoning, demonstrated that an increased number of matches given
to the LLM improved the answers, especially for broader questions, while also increasing
the number of tokens the model would have to handle. Since both Llama3 and Sauerkraut
support small token sizes only, we decided to exclusively further test Mixtral. Moreover,
the number of matches was included as a hyperparameter, testing the LLM with 30 and 60
matches, resulting in four different chatbot configurations to evaluate.

3.2 Methods for Increasing Answer Validity and Reliability

Even though the proposed chatbot architecture introduces many novel features to CASPO,
the method also has its disadvantages, which are mainly caused by the open domain. As
such, scholars have demonstrated that open-domain models show clear political tendencies
leaning toward a left ideology [HSW23]. Moreover, models also answer politically sensitive
topics and offend users [Ba21], posing as a biased information source [Vä20]. Such biased
answers could, therefore, also hurt the chatbot’s effectiveness for the program orientation and
may even lead to more attrition due to wrong expectations and motivations [Me24] as well
as reduce the trust users have in the chatbot. For this reason, we decided to suppress some
answers of the chatbot via manually included rules, resulting in a semi-open chatbot. The
derived methodology for implementing this kind of chatbot is visualized in Fig. 1. The main
idea is to first screen the user prompts using the LLM model instructed to detect whether the
inquiry is of a sensitive or problematic nature. If so, the model will give a predefined answer.
Only if the prompt is cleared to be non-problematic it is given to the embedding model and
to the LLM to generate an answer. Nevertheless, utilizing the LLM for detecting critical



prompts might introduce new biases from the model, as such we recommend training a
custom filtering model once sufficient user queries are collected. Additionally, since LLMs
are prone to hallucinate when using links, we have added an additional layer in which
custom parsers scan the user prompts to add useful links from another dataset to the LLM’s
response. By deploying this methodology, we hope to circumvent the apparent disadvantages
of open-domain chatbots and only leave the clear advantages of deploying such a model for
CASPO.

3.3 Evaluation

In this study, we evaluate the four embedding/LLM combinations (jina/Mixtral30, RoBER-
Ta/Mixtral30, jina/Mixtral60, RoBERTa/Mixtral60) and choose the best model, which we
subsequently input into the discussed semi-open pipeline. A comparison of this model with
the other four then shows how successful the proposed methodology is and, therefore, the
usability of the chatbot. The evaluation is based on a set of 70 diverse prompts, ranging
from regular prompts such as “Can I study [program] at the University of [location]?” or “I
am interested in [topics], what study program can you recommend?”, to explorative prompts
including Reddit questions, unusual prompts, and critical prompts to see how the models
react to political and offensive inquiries. In addition to prompts for these four categories, we
also include a set of prompts collected by real study advisors to test how well the chatbots
answer these real-world questions. The evaluation metric is coded with values of -1, meaning
the answer is wrong; 0, the answer is not perfect but would suffice; and 1, the answer is
correct. Based on this metric, the chatbot answers were graded by three independent coders.

4 Results

The analysis of the codings revealed an inter-coder agreement of 0.75 using Krippendorff’s
Alpha [HK07; Kr18], indicating a strong agreement between the coders. The individual
scores were then averaged over the three coders to generate the final scores. Fig. 2 reports
the average performance of the four combinations and the semi-open chatbot grouped by
the discussed prompt types. The results further support the findings from the first analysis,
which states that a higher number of entries given to the LLM is beneficial for answer
generation. Furthermore, one can see that the results using the RoBERTa embedding model
are better than those utilizing jina, with the exception of critical and regular prompts.
Among the four models, the best-performing chatbot used the RoBERTa embedding model,
returning 60 matched entries to the Mixtral LLM. This model performed best for explorative
questions followed by regular and study advisor prompts, with average scores above 0.75.
Nevertheless, the model demonstrates great difficulties and uncertainty for critical prompts.

Based on the comparison of the four chatbot combinations, we implemented the derived
methodology for a semi-open chatbot with the RoBERTa/Mixtral60 architecture.



Fig. 2: Evaluation of different chatbot combinations. Note: Results report the average performance for
each prompt type on a scale from -1 to 1 and the 95% confidence intervals as a measure of uncertainty.

While there are no notable changes in answers on explorative, regular, or study advisor
prompts, one can see that the semi-open chatbot performs significantly better for unusual
and critical prompts with an average score of 0.909, indicating the validity and reliability
of the applied filtering. Hence, the results demonstrate that using the semi-open chatbot
schema leads to almost perfect answers in all five categories. Since the final goal is to deploy
the chatbot to be used by people interested in studying, we have uploaded the whole bot on
Huggingface (https://huggingface.co/spaces/nestole/Chaetti), where we will continue with
further evaluations and tests.

5 Conclusion

This work presented a novel method to create a semi-open chatbot for study program
orientation and recommendation. A chatbot of such an architecture is a more scalable
solution compared to current chatbots in this strand of literature. A detailed evaluation of
different models and configurations has shown that filtering user prompts at the beginning
and then using the RAG approach with the Mixtral LLM and RoBERTa embedding model
returned the best answers with scores above 0.75 for all prompt types. In the next step,
we recommend testing the developed chatbot in the field via a user survey in which we
will also explore its acceptance by different demographics [BIS24; PDP20]. We further
recommend investigating the effects of such chatbots on users as well as comparing different
chatbot modalities such as voice- and text-based effects [RBH22]. Lastly, while the derived
approach has demonstrated its merit, we believe it should be further tested to improve the
approach with additional layers by including models that can, e.g., detect the user intent
[ASA23] to make even better-tailored study program recommendations.
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