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Abstract

In this thesis, we explore mean-field limit theory, focusing on the derivation of non-
linear (stochastic) partial differential equations from large systems of interacting stochastic
particles. Our goal is to provide a rigorous description of complex interacting systems through
their density functions as the number of particles becomes large. A process also known as
“propagation of chaos”.

We investigate systems with idiosyncratic noise and those influenced by idiosyncratic and
common noise, the latter being particularly relevant in fields like biology and finance. For both
types of systems, we demonstrate mean-field limit results, emphasizing the unique challenges
and differences in the techniques applicable to each setting. Our primary aim is to handle
interaction kernels with low regularity, extending beyond the classical Lipschitz theory..

In the absence of common noise, we focus on moderately interacting particle systems. We
illustrate how to combine and extend various techniques such as convergence in probability, the
relative entropy method, and the modulated energy method for singular interaction kernels.
This includes applications to attractive Keller–Segel models, opinion dynamics, and general
sub-Coulomb type kernels. Additionally, we establish well-posedness results for the underlying
diffusion-aggregation equations and stochastic differential equations.

When considering systems with common noise, we achieve new well-posedness results
for conditional McKean–Vlasov stochastic differential equations by solving the associated
stochastic partial differential equations and employing a dual argument. Furthermore, we
derive explicit bounds on the relative entropy between the conditional Liouville equation
and the stochastic Fokker–Planck equation with a bounded and square-integrable interaction
kernel. This extends well-known relative entropy results to the setting of common noise,
providing a novel conditional propagation of chaos result.

Our quantitative findings can serve as a foundation for further analysis of the effects of
common noise on interacting particle systems and their fluctuations. This work not only
advances theoretical understanding but also offers practical insights into the behavior of
complex systems under stochastic influence.
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Zusammenfassung

In dieser Dissertation erforschen wir den sogennanten “mean-field limit”, wobei der Schw-
erpunkt auf der Herleitung nichtlinearer (stochastischer) partieller Differentialgleichungen aus
stochastischen Interaktionsmodellen liegt. Unser Ziel ist es, dass wenn die Anzahl der Teilchen
im Interaktionmodell groß wird, dieses riguros durch eine Dichtefunktion zu beschreiben.
Dieser Prozess wird auch “propagation of chaos” genannt.

Wir untersuchen sowohl Systeme mit idiosynkratischem Rauschen als auch solche, die
zusätzlich durch ein gemeinsames Rauschen beeinflusst werden, wobei letzteres besonders in
Bereichen wie der Biologie und Finanzen relevant ist. Für beide Arten von Systemen unter-
suchen wir Grenzwertverhalten im Falle steigender Anzahl an Partikel, wobei wir die Heraus-
forderungen und Unterschiede in den Techniken für die unterschiedlichen Fälle hervorheben
und vergeleichen. Unser primäres Ziel ist es, mit Interaktionen niedriger Regularität umzuge-
hen, die über die klassische Lipschitz-Theorie hinausgehen.

Dabei konzentrieren wir uns in Abwesenheit vom gemeinsamen Rauchen auf das moderate
Regime. Wir veranschaulichen, wie verschiedene Konzepte wie die Konvergenz in Wahrschein-
lichkeit, die Methode der relativen Entropie und die modulierte Energiemethode für singuläre
Interaktionen kombiniert und erweitert werden können. Dies umfasst Anwendungen auf at-
traktive Keller-Segel-Modelle, Meinungsdynamiken und allgemeine Sub-Coulomb Interaktio-
nen. Zusätzlich stellen wir Ergebnisse zur Existenz und Eindeutigkeit der zugrunde liegenden
Diffusions-Aggregations-Gleichungen und stochastischen Differentialgleichungen auf.

Beim Betrachten von Systemen mit gemeinsamem Rauschen erzielen wir neue Ergebnisse
zur Existenz und Eindeutigkeit für bedingte stochastische McKean-Vlasov Differentialgle-
ichungen, indem wir die zugehörigen stochastischen partiellen Differentialgleichungen lösen
und ein duales Argument verwenden. Darüber hinaus leiten wir explizite Schranken für die
relative Entropie zwischen der bedingten Liouville Gleichung und der stochastischen Fokker–
Planck Gleichung mit einem beschränkten und quadratisch integrierbaren Interaktionskern
ab. Dieses Abschätzung erweitert bekannte relative Entropie Ergebnisse auf das Setting des
gemeinsamen Rauschens und liefert ein neuartiges bedingtes “propagation of chaos” Resultat.

Unsere quantitativen Ergebnisse können als Grundlage für weitere Analysen vom gemein-
samem Rauschen auf interagierende Teilchensysteme und deren Fluktuationen dienen. Diese
Dissertation fördert nicht nur das theoretische Verständnis, sondern bietet auch praktische
Einblicke in das Verhalten komplexer Systeme unter stochastischem Einfluss.
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Chapter 1

Introduction

In the 19th century, Boltzman [Bol70] proposed the idea of “Stosszahlensatz” or molecular
chaos, to elucidate how his famous kinetic equation could be derived from a particle system
governed by Newton’s laws of dynamics. During this process, he introduced a decreasing
quantity, directly linked to thermodynamic entropy in the equilibrium state, suggesting that
the solution drives towards Maxwell’s equilibrium [Max67]. However, the mathematical tools
to rigorously derive Boltzmann equation from interacting particle systems were not yet devel-
oped. Initially, significant contributions to this field came from physicists such as Jeans [Jea15]
and Vlasov [Vla38]. This underscored the need for an axiomatic mathematical framework, a
concept famously advocated by David Hilbert at the International Congress of Mathematics
in Paris in 1900. It was not until the 1950s that mathematicians such as Kac and McKean
embarked on a concerted effort to formalize the concept molecular chaos. Inspired by Boltz-
man’s work, Kac [Kac56] introduced the idea that for time-evolving systems, chaos should be
propagated in time. Following Kac’s pioneering work, McKean [McK67] extended the concept
of chaos introduced by Kac, broadening its applicability beyond Boltzmann’s kinetic theory
to include various classical equations in kinetic theory as well as diffusion equations.

One of the most significant contributions of McKean and Kac was the establishment of
a comprehensive mathematical framework to analyze the limiting behaviour of interacting
particles. Their approach integrated deterministic and probabilistic methods, involving a
large system of particles described by (stochastic) ordinary differential equations. In this
system each particle experiences the influence of all others through a weighted sum over
all interactions mediated by the interaction force k, capturing the microscopic interactions
between gas molecules. Intuitively, as the number of particles N becomes large, which is
reasonable for many systems such as gas molecules, the microscopic viewpoint transitions to
a macroscopic one, described by a density function. This limit procedure, now known as the
mean-field limit or the associated concept of propagation of chaos, captures the emergence of
collective behaviour from individual interactions.

In this thesis we will further contribute to the above concept of propagation of chaos
with respect to a variety of systems. The main goal will be to demonstrate that even if
the interaction k between the particles is non-smooth we can still expect that chaos should
propagate in time.

Given that our initial motivation is derived from kinetic equations, the density function is
expected to satisfy a (stochastic) partial differential equation, allowing us to explore properties
of the macroscopic system such as mass conservation, long-term behaviour, or steady states.
These are properties we cannot easily observe on the microscopic level. Hence, if we can
demonstrate that the microscopic and macroscopic viewpoints are connected, we can make
statements about the system without computing all particle interactions. Instead, we can
analyze the density, significantly reducing computational costs, making this procedure not
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2 Introduction

only mathematically interesting but also practically valuable in modern numerics. Here,
the computational costs of computing interactions grow exponentially, making it easier to
simulate the density instead of the interacting particle system by solving the partial differential
equations with efficient numerical schemes.

Hence, it is not surprising that the importance of the connection between microscopic
and macroscopic systems gained significant recognition, motivating researchers to focus on
it. Thus, building upon the groundbreaking works of McKean [McK67] and Kac [Kac56],
Sznitman [Szn91] provided an essential comprehensive survey on propagation of chaos, offering
important applications and results on random measures. This seminal work serves as an
invaluable resource for researchers seeking to explore this topic.

From this point onward, the topic of propagation of chaos grew rapidly, including a
wide array of subjects and applications. These include animal herding or flocking [DCBC06,
TBL06, BCC11, CCH14, CCHS19], swarming models [CFTV10], various Cucker–Smale mod-
els [HL09, CFRT10, CZ21, HZ22], and opinion dynamic models [Lor07, DMPW09, GPY17,
Hos20, BPCG24], such as the Hegselmann–Krause model [HK02, RD09, DR10, WLEC17,
CSDH19]. Other notable applications include chemotaxis [KS70, Hor04, HP09, NP23], kinetic
equations [MM13, CC21], optimal control [ACS23, AMS23], neuroscience [BFFT12, LS14],
mean-field games [CDL16, CD18, LZ19, LLF23a], training of neural networks [MS02, MMN18,
SS20], and consensus based optimization [GPY17, FKR21, HQ22, Tot22].

One of the main observations leading to the emergence of new results was tackling the
problem with a “top-to-bottom” approach. As we have seen, mean-field theory combines
stochastic analysis with partial differential equations, famously connected through Itô’s and
Feynman—Kac’s formulas [KS91]. In broad terms, the standard technique nowadays is to
guess the limiting partial differential equation and analyze its properties. As it turns out, in
most cases, these limiting equations exhibit better regularity than the underlying interacting
particle system. Hence, if one can solve the limiting equation with some additional regularity,
it can be used to overcome the difficulties in the interacting particle system and, consequently,
demonstrate propagation of chaos from a “top-to-bottom” approach. This is also the main
approach we are going to follow throughout this thesis.

However, by the superposition principle [BR20], we can identify to each parabolic par-
tial differential equation a stochastic process. Consequently, alongside the limiting density
emerges the McKean–Vlasov process or mean-field limit process. Similar to the law of large
numbers, we expect that for a large number of particles N , each particle starts behaving like
the McKean–Vlasov process. Therefore, the mean-field limit can be viewed as a dynamic
version of the law of large numbers.

Moreover, we notice the interplay between partial differential equations and stochastic
analysis and how improvements in one area can influence the other. This theme will recur
throughout the thesis, where we will demonstrate results in the context of partial differential
equations that have implications for the stochastic analysis. Basically, in this context, these
two areas can be viewed as sides of the same coin.

Consequently, we will analyze the connection between classic quantities from the theory
of partial differential equations such as relative entropy, Fisher information, modulated en-
ergy, and modulated free energy within the framework of stochastic analysis. The goal is to
demonstrate the connections between these quantities and their implications for mean-field
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limits, providing new methods for tackling singular interactions. Along the way, we will es-
tablish well-posedness results for the equations at hand. These results are significant in their
own right and have been extensively studied, such as the well-posedness of McKean–Vlasov
equations [HRW21, RZ21, GHM22].

Moreover, we introduce another layer of complexity by adding stochastic perturbations,
known as environmental or common noise, to the interacting particle system, affecting all par-
ticles. We will highlight the major differences from the classical work by McKean [McK67],
Kac [Kac56], and Sznitman [Szn91] in this new setting. Moreover, we will transfer the men-
tioned quantities from the deterministic setting of partial differential equations into the sto-
chastic setting, providing innovative approaches to tackle mean-field limits with common
noise.

In the following we aim to recall fundamental concepts of mean-field limits and propaga-
tion of chaos. We start by presenting the historical concepts such as Kac’s chaos and defining
propagation of chaos. Then, we introduce our primary interacting particle system, which is
described by a stochastic differential equation. Next, we will demonstrate some established
results in scenarios where the interaction is sufficiently smooth. Additionally, we will discuss
the effect of common noise on these systems. This introduction will mirror the main results
presented in the upcoming chapters, offering insight into some of the ideas, terminology, and
techniques used in this thesis. Furthermore, we will explain the challenges that arise when
the interaction is non-smooth, highlighting the necessity of our contributions to the field.



4 Introduction

1.1. Notion of chaos

Let us now dive into the various interpretations of chaos. Broadly speaking, propagation
of chaos refers to the property that the convergence of measures within a specific topology at
initial time t = 0 also holds for future times t > 0. Throughout this chapter we will consider
E as a separable metric space. A measure µ on the product space EN is said to be symmetric
if, for any permutation ι : {1, . . . , N} 7→ {1, . . . , N} and any measurable sets A1, . . . , AN , the
equality

µ(A1 × · · · ×AN ) = µ(Aι(1) × · · ·Aι(AN ))

holds. Furthermore, we write µ ≪ ν, if µ is absolutely continuous with respect to ν [Kle20,
Definition 7.30]. We begin by examining interacting particle systems, which are described
by an exchangeable collection of N ∈ N stochastic processes XN

t = (X1
t , . . . , X

N
t ) for t ≥ 0.

Later on, we will find it convenient to represent the dynamics of such a system, XN
t , through

a system of stochastic differential equations (see Section 1.2).
In studying propagation of chaos, our focus shifts to the behaviour of the sequence(

XN
t , N ∈ N

)
as N → ∞ for t > 0. Later, we will explore various quantities associated

with XN
t in the limit N → ∞. For example, for a fixed r ≥ 1 we can examine the law of

the first r particles (X1
t , . . . , X

r
t ) or analyze their associated density. Notably, the law may

converge in the weak topology or within some Wasserstein distance. Additionally, the density
of the r-th marginal can converge almost everywhere or in some Lp-space or in some other
topology. Thus, it is not surprising that there exist several notions to describe propagation
of chaos.

1.1.1. Kac’s chaos. In this section, we provide a brief overview of the foundational work on
propagation of chaos by Kac [Kac56] based on the works of Mischler, Mouhot, Hauray [MM13,
HM14]. Recall the original objective of Boltzmann, Kac, and McKean, which aimed to derive
Boltzmann kinetic equations from the collision of gas molecules. Specifically, they tried to
demonstrate that the particle description of a gas, under the assumption of binary collisions,
converges to the spatially homogeneous Boltzmann equation

∂tf(t, v) = Q(f, f)(t, v), v ∈ Rd, t ≥ 0,

where v denotes the velocity, Q is the collision operator and f is a density function describing
the gas. In his seminal work [Kac56], Kac established the following result [Kac56, Basic
Theorem]:

Consider dimension d = 1 and let ϕ be a symmetric function defined on the sphere SN in
RN , satisfying the Master equation

∂tϕ(t, v1, . . . , vN ) =
ϑ

2Nπ

∑
1≤i<j≤N

2π∫
0

φ(v1, . . . , vi cos(θ) + vj sin(θ), . . . ,

− vi sin(θ) + vj cos(θ), . . . , vN )− ϕ(t, v1, . . . , vN ) dθ,

where ϑ is a constant. Define the r-th contraction of ϕ as

f r,N (t, v1, . . . , vr) :=

∫
v2r+1+···+v2N=N−(v21+·+v2r)

ϕ(t, v1, . . . , vN ) dHN−(r+1)(vr+1, . . . , vN ),
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where (v1, . . . , vN ) ∈ SN . If, at the initial time t = 0 and for r ∈ N the function f satisfies
the Boltzmann property

lim
N→∞

f r,N (0, v1, . . . , vr) =

r∏
i=1

lim
N→∞

f1,N (0, vi),

then f satisfies the Boltzmann property for t > 0, i.e.

lim
N→∞

f r,N (t, v1, . . . , vr) =
r∏
i=1

lim
N→∞

f1,N (t, vi).

It is noteworthy that this convergence perspective is rooted in the framework of partial dif-
ferential equations, without employing probability concepts. This is expected, as stochas-
tic analysis was in its infancy during this period, and probabilistic tools like, for instance,
Prokhorov’s theorem had just been developed. Moreover, in contemporary research, the
Boltzmann property has evolved into more modern forms of convergence suited for various
settings. For example, an interacting particle system can be Kac chaotic, Fisher informa-
tion chaotic, or entropy chaotic [HM14]. These types will be discussed further in subsequent
sections.

1.1.2. Propagation of chaos. To analyze the convergence of an interacting particle sys-
tems XN

t , let us introduce the empirical measure. This map is defined from the underlying
probability space (Ω,F ,P) into the space of measures P(E) on E and is given by

(1.1) µX
N

t (ω) :=
1

N

N∑
i=1

δXi
t(ω)

,

where δx is the Dirac measure concentrated at the point x ∈ E. The empirical measure
encodes the state of all particles and exhibits the typical law of large numbers scaling of
N−1. Understanding the convergence properties of this measure is central to the study of
propagation of chaos. Following [Szn91] we also require the concept of f -chaotic.

Definition 1.1. Let f be a measure on some separable metric space E and (fN , N ∈
N) be a sequence of symmetric probability measures on EN . We say that (fN , N ∈ N) is
f -chaotic, if for any finite number r ≥ 1, and collection of bounded continuous functions
φ1, . . . , φr ∈ Cb(E) we have

(1.2) lim
N→∞

⟨fN , φ1 ⊗ · · · ⊗ φr ⊗ 1 · · · ⊗ 1⟩ =
r∏
i=1

⟨f, φi⟩.

In its core the property tells us that the r-th marginals of the symmetric probability
measures (fN , N ∈ N), which we will denote by f r,N , converge weakly to the product measure
denoted by f⊗r and hence becomes statistically independent.

As it turns out Sznitman [Szn91, Proposition 2.2] provides a useful characterization of
the property in Definition 1.1 in terms of the empirical measure (1.1).

Proposition 1.2. Let f be a measure on some separable metric space E and fN be a
symmetric probability measure on a EN . Then, the following statements are equivalent:

(i) (fN , N ∈ N) is f -chaotic.
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(ii) Condition (1.2) holds for r = 2. Thus, it suffices that the second marginal of fN

converges weakly towards the product measure f ⊗ f .
(iii) If XN := (X1, . . . , XN ) is distributed according to fN , i.e., Law (X1, . . . , XN ) = fN

for all N ∈ N, then the associated empirical measure µX
N
:= 1

N

N∑
i=1

δXi converges in

law towards the deterministic measure f .

We notice that the convergence in law of the measure-valued empirical measure may
not be easy to verify at first glance. Thus, we would like to refer to [Kal17, Chapter 4] for a
complete analysis on convergence of random measures and in particular [Kal17, Theorem 4.11]
for equivalent characterizations. Finally, we are ready to define propagation chaos in terms
of measures being chaotic.

Definition 1.3 (Propagation of chaos for a particle system). Assume that at the time
t = 0 the sequence of joint distributions (fN0 , N ∈ N) of XN

0 is f0-chaotic. Then, we say
propagation of chaos holds, if at any time t > 0 the sequence of joint distributions fNt of XN

t

is ft-chaotic.

We contemplate the precise nature of (ft, t ≥ 0) and its characterization. Conceptually, as
the number of particles described byXN

t increases, f should represent the density of the entire
system, given it has distribution f0 at time t = 0. In the setting of Boltzmann, f solves the
Boltzmann equation with initial distribution f0. In forthcoming discussions, particularly in
Section 1.3, we anticipate that for particle systems governed by classical stochastic differential
equations driven by independent Brownian motions, f solves a partial differential equation of
aggregation-diffusion type. However, this expectation may not universally hold. For instance,
substituting the Brownian motions with fractional Brownian motions [GLM24] retains the
anticipation of propagation of chaos, with f now defined as the law of the limiting McKean–
Vlasov stochastic differential equation (see Section 1.3.2). Additionally, if the system is an
abstract Markov process defined by its generator, one needs to pass to the limit inside the
associated martingale problem. The underlying theme is that we often “guess” the limiting
distribution f .

Subsequently, we have two options at our disposal. We can either pursue a “bottom-
to-top” approach, wherein we demonstrate that the system of interacting particles has a
solution, while simultaneously proving propagation of chaos and the existence of the limiting
object, or we can solve for the limiting object f ex nihilo. The latter approach, known as
the “top-to-bottom” method, exploits the fact that the limiting object often has a better
structure and becomes more regular through bootstrap arguments. Historically, many proofs
have utilized the “bottom-to-top” approach, employing compactness methods or BBGKY
hierarchies [Lan75, Gol16, GLM24]. However, it has emerged that the “top-to-bottom” ap-
proach is better suited for irregular kernels [LP17, JW18, Ser20, Lac23]. In this thesis, we
primarily focus on this approach. For more details on particle systems described by stochastic
differential equations, we refer to Section 1.3.

1.1.3. Chaos in Wasserstein distance. Because the notion of Kac’s chaos is a non-
quantitative property relying on the weak convergence of measure, many mathematician
prefer to work with the Wasserstein distance [BGG12, CD18, CC21, PD22]. We start by
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defining the Wasserstein distance. Let (d) be the metric of the separable metric space E. For
1 ≤ p <∞ let µ, ν ∈ Pp(E). Then, we define the p-Wasserstein distance as

Wp(µ, ν) := inf
π∈Π(ν,µ)

(∫
E×E

d(x, y)pπ(x, y)

) 1
p

,

where Π(ν, µ) is the convex non-empty set of all probability measures on E × E such that π
has marginals µ and ν.

For the convenience of the reader we present some simple but crucial facts about the
Wasserstein distance applied to the Dirac delta measure and the empirical measure. First,
for a point x ∈ E and a measure µ on E we have the equality

Wp(δx, µ)
p =

∫
E
d(x, y)p dµ(y).

Second, for xi, yi ∈ E we have the inequality

Wp

(
1

N

N∑
i=1

δxi ,
1

N

N∑
i=1

δyi

)p
≤ 1

N

N∑
i=1

d(xi, yi)
p,

where we used the natural coupling

π(x, y) =
1

N

N∑
i=1

δ(xi,yi).

Hence, if we consider the empirical measure with respect to random variables X1, . . . , XN and
Y 1, . . . , Y N , we can estimate the Wasserstein distance with respect to the almost everywhere
average distance of the variables. Moreover, the concept of propagation of chaos can be
naturally extended to incorporate the Wasserstein distance.

Definition 1.4 (Chaos in Wasserstein distance). Let p ∈ N, let (fN , N ∈ N) be a sequence
of symmetric measures on EN such that fN ∈ Pp(EN ), and let f ∈ P(E). The following
three notions of chaos in Wasserstein distance were introduced in [HM14]:

(i) Wasserstein Kac’s chaos: For all r ∈ N and r-the marginal f r,N of fN it holds that

lim
N→∞

Wp(f
r,N , f⊗r) = 0.

(ii) Infinite dimensional Wasserstein chaos:

lim
N→∞

Wp(f
N , f⊗N ) = 0.

(iii) Wasserstein empirical chaos: Suppose the EN -valued random variable XN has dis-
tribution fN . Then,

lim
N→∞

Wp(Law (µX
N
), δf ) = 0,

where Wp is a Wasserstein distance on P(P(E)) and µX
N

is the empirical measure
of XN .
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It is well known that convergence in Wasserstein distance implies the weak convergence of
measures [Vil03, Theorem 7.12]. Some advantages of considering the Wasserstein distance is
that explicit rates of convergence can be established with respect to a distance. In applications

one considers often the expected value ofWp(µ
XN

t , f) and tries to prove that it vanishes in the
limit [FG15, CD18, Hua24]. However, we need to guarantee that the measures lie in Pp(E)
for p ≥ 1.

1.1.4. Entropy and Fisher information chaotic. In this section, we present another
concept of propagation of chaos by considering the entropy of the system. Let f be a non-
negative measurable function on Rd with mass one. We define the entropy by

(1.3) H(f) :=

∫
Rd

f(x) log(f(x)) dx.

Related to the entropy is the Fisher information, which is given by

(1.4) I(f) :=

∫
Rd

|∇f(x)|2

f(x)
dx.

Obviously, we consider only such f such that the integrals on the right-hand side are well-
defined. Notice that for a fN ∈ P(RdN ) the Fisher information and entropy scale with the
number of particles N . To normalize the effect, we introduce the normalized versions of the
above quantities

IN (f
N ) :=

1

N
I
(
fN
)
, HN

(
fN
)
:=

1

N
H
(
fN
)
,

where we integrate over RdN instead of Rd in (1.3), (1.4).

Definition 1.5. Consider f ∈ P(Rd) and a sequence (fN , N ≥ 2) of symmetric proba-
bility measures on RdN such that for some q > 0, the q-th moment Mq(f

1,N ) :=
∫
|z|q df1,N

of the first marginal f1,N is uniformly bounded in N . We say that

i) the sequence (fN , N ∈ N) is f -Fisher information chaotic if

f1,N ⇀ f weakly in P(Rd), IN (fN ) → I(f), and I(f) <∞;

ii) the sequence (fN ) is f -entropy chaotic if

f1,N ⇀ f weakly in P(Rd), HN

(
fN
)
→ H(f), and H(f) <∞.

A remarkable result by Hauray and Mischler [HM14, Theorem 1.4] shows that under
certain assumptions all versions of chaotic are related.

Theorem 1.6. Consider (fN , N ∈ N) a sequence of symmetric probability measures in
P (RdN ) such that the q-th moment Mq(f

1,N ) is bounded for q > 2, and f ∈ P(Rd).
In the list of assertions below, each one implies the assertion which follows:

(i) (fN , N ∈ N) is f -Fisher information chaotic;
(ii) (fN , N ∈ N) is f -Kac’s chaotic and I(fN ) is bounded;
(iii) (fN , N ∈ N) is f -entropy chaotic;
(iv) (fN , N ∈ N) is f -Kac’s chaotic.
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At the end of the chapter we want to introduce the very important concept of relative
entropy. In this thesis it will play a crucial role in showing strong convergence of the marginals.
Thus, let E as always be a Polish space and µ, ν be two probability measures over E.

The relative entropy H(µ|ν) is defined by

(1.5) H(µ|ν) :=


∫
E

dµ

dν
log
(dµ
dν

)
dν, µ≪ ν,

∞, otherwise.

Some properties of the relative entropy include that H(µ | µ) = 0 and the data processing
inequality

H(µ ◦ f−1 | ν ◦ f−1) ≤ H(µ | ν)

for any measurable function f from E into another measurable space.
Instead of analysing the convergence properties of the entropy, one can compare the

interacting particle system to the limit system in the context of the entropy itself. This
comparison is achieved through the concept of relative entropy, which will be a significant
focus in this thesis. Specifically, we will investigate the relative entropy of the complete joint
distribution fN compared to the distribution of the limiting equation, as well as the relative
entropy of the marginals f r,N compared to the marginal distribution of the limiting equation.
Understanding, the relationship between the entropy of the complete joint distribution and
that of the marginals is clarified by the following lemma [DMM01, Lemma 3.9].

Lemma 1.7. Let fN be a symmetric probability measure on EN and f ∈ P(E). Then, the
following inequalities hold

(1.6) Hr

(
f r,N

)
≤ 2HN

(
fN
)

and Hr

(
f r,N | f⊗r

)
≤ 2HN

(
fN | f⊗N

)
.

It is also well-known that the relative entropy is connected with the total variation norm
by the Csiszár–Kullback–Pinsker inequality [Vil09, Chapter 22],

(1.7) ∥f r − gr∥L1(Er) ≤
√
2rHr(f r | gr).

By combining this inequality with the previous ones, we observe that the convergence of
the normalized relative entropy HN

(
fN | f⊗N

)
of the full marginals is sufficient to demon-

strate convergence of the marginals L1. The convergence in the L1-norm, in turn, implies
the weak convergence of the associated measures and thus Kac’s chaos. In the upcoming
Chapters 3 and 5, we explore the explicit evolution of relative entropy for measure flows of
stochastic differential equations with non-vanishing diffusion coefficients in order to demon-
strate the convergence in L1.

1.2. First order vs. second order systems

In this section, we distinguish between two classical systems commonly discussed in the
literature, namely first and second order systems of stochastic differential equations. Firstly,
let us delve into first order systems, often interpreted as the small mass limit of Langevin
equations in statistical physics [JW17]. We begin with N indistinguishable particles XN

t =
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(XN
t , . . . , X

N
t ) described through the system of stochastic differential equations (SDE’s)

(1.8) dXi
t =

1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ(t,Xi
t) dB

i
t + ν(t,Xi

t) dWt, i = 1, . . . , N,

where k represents the interaction force between particles, and σ and ν denote the diffusion
coefficients. The Brownian motions (Bi, i ∈ N) are independent, modelling the idiosyncratic
noise, while the Brownian motion W is independent of each Bi and captures the environ-
mental/common noise in the system. The initial condition (Xi

0, i ∈ N) is always chosen to be
i.i.d. (independent and identically distributed) with sufficient regularity and independent of
all Brownian motions. At this moment we already choose sequences (Bi, i ∈ N), (Xi

0, i ∈ N)
since our primary focus lies on the limit N → ∞.

If σ = ν = 0, then the system reduces to a deterministic dynamic. When we remove
the common noise ν = 0, we revert to the classical framework of McKean [McK67] and
Sznitman [Szn91]. In this thesis, we explore both variants: one without the common noise
ν = 0 and one with common noise ν ̸= 0. The inclusion of noise in the model is significant
not just from a mathematical perspective of diffusion, but also from a modeling standpoint.
This is because we cannot anticipate animals, microorganisms, or opinions to interact with
each other or the environment in a deterministic manner.

For fundamental physical principles such as Newton’s laws of motion we also need to
introduce second-order systems. Thus, let (XN

t ,V
N
t ) = (X1

t , . . . , X
N
t , V

1
t , . . . , V

N
t ) be the

solution of the second order stochastic differential equation
dXi

t = c(t,Xi
t , V

i
t ) dt,

dV i
t = 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ(t,Xi
t , V

i
t ) dB

i
t + ν(t,Xi

t , V
i
t ) dWt,

(1.9)

for i = 1, . . . , N . In contrast to the first order system, only the second equation of this system
exhibits the influence of stochastic fluctuations, leading to significant analytical ramifications.
In practical scenarios, simplifications often arise, where we set c(t,Xi

t , V
i
t ) = V i

t , and the
diffusion coefficients σ, ν become constant or even vanish. In the case of vanishing diffusion
coefficients the system reduces to the classical deterministic Newton dynamic. Conceptually,
the pair (Xi

t , V
i
t ) represents the position Xi

t of a particle at time t as well as its velocity V i
t .

It is worth noting that the domain of (Xi
t , V

i
t ) remains unbounded, even if the position Xi

t

is bounded or situated on a periodic torus, due to the unbounded nature of the velocity V i
t .

Furthermore, the natural connection to kinetic equations like the Vlasov–Poisson equation or
Boltzmann’s kinetic equation arises as they represent limiting equations of the system (1.9).
In this thesis, second-order systems will not be treated in detail. However, we assume that
with minor adjustments, similar results to those presented in the upcoming chapters can be
obtained for second-order systems.

In both cases the regularity of the interaction force kernel plays a crucial role. Therefore,
our primary focus lies on the interaction kernel k and how it affects the system, particularly
regarding the concept of propagation of chaos. As an illustration, we will present examples of
interaction kernels and their applications, which are relevant to both first and second-order
systems.

Example 1.8.
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(1) Aggregation models often feature a potential structure k = −∇W outside the di-
agonal, with an additional term V on the diagonal. This results in an stochastic
differential equation of the form

dXi
t = − 1

N

N∑
j=1
j ̸=i

∇W (Xi
t −Xj

t ) dt−∇V (Xi
t) dt+ σ(t,Xi

t) dB
i
t + ν(t,Xi

t) dWt,

for i = 1, . . . , N . Observe that we removed the self-interaction term from the sum
and instead obtained the additional term ∇V . These systems have been extensively
studied, see for instance [Mal01, BGV07, CCH14]. For second-order models such
as the Cucker–Smale model and the related phenomena like swarming of fish or
flocking of birds, we refer to [CFTV10, LLEK10, BCC11, MT11, CCH14, ABCvB14,
CCHS19, CZ21].

(2) Alignment models are frequently utilized to simulate phenomena such as the flocking
of birds, schools of fish, and swarms of insects. Pioneering works such as [VCBJ+95,
CS07] laid the foundation for this rapidly expanding field, which is evident from the
substantial body of literature [BCC11, CCH14, CCHS19, CZ21]. One of the classical
models in this domain is the Cucker–Smale model [CS07], defined by the system of
equations:

dXi
t = V i

t dt,

dV i
t = 1

N

N∑
j=1

k(|Xi
t −Xj

t |)(V i
t − V j

t ) dt+ σ(t,Xi
t , V

i
t ) dB

i
t + ν(t,Xi

t , V
i
t ) dWt,

for each i = 1, . . . , N . Here, the alignment arises in the evolution of the velocity. It
is well-documented that models with sufficiently regular interaction kernels k exhibit
flocking and alignment behaviour. However, such models lie beyond the scope of this
thesis, and interested readers are directed to [HL09, CZ21, BHK22, HZ22] for more
detailed discussions.

(3) Opinion dynamics models, such as the Hegselmann–Krause model or general bounded
confidence models [HK02, Hos20, CNP23, BPCG24], explore how opinions spread
within a network through interactions among its agents. These networks are charac-
terized by the bounded interaction force kernel, wherein agents disregard ideas that
lie beyond a certain distance from their own, thus falling outside their confidence
radius.

(4) Interacting particle systems are widely used for optimization across fields such as
economics, physics, finance, and artificial intelligence. Consensus-based optimization
methods are commonly employed, featuring a particle system described by

dXi
t = −λ(Xi

t − vf )H
ε(f(Xi

t)− f(vf )) dt+
√
2σ|Xi

t − vf | dBi
t, i = 1, . . . , N,

where λ, σ are constants and vf is the weighted mean with weight function given by
exp(−αf(x)),

vf :=

( N∑
i=1

exp(−αf(Xi
t)

)−1 N∑
i=1

Xi
t exp(−αf(Xi

t).
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The mean-field scaling in this context is embedded within the weight function, and f
is the function we wish to minimize. An extensive body of literature exists on this
topic. For an overview of recent developments, see [Tot22], and for mathematical
analysis of the mean-field limit, we refer to [CCTT18, FKR21, HQ22].

(5) One of the most crucial interaction kernels is the Coulomb kernel given by

k(x) = ±C(d, s) x

|x|s
, x ∈ Rd,

where 0 < s < d + 2, C(d, s) is some constant depending on the dimension d, the
singularity strength s and physical parameters. The sign determines whether the
interaction is repulsive (+) [Ser20, NRS22, dCRS23] or attractive (−) [BJW23].
When s = d, the Poisson kernel is recovered. Such kernels are used in Vlasov-
Poisson systems [LP17] to describe electrons or in the field of chemotaxis such as
Keller–Segel systems. Obviously, the difficulty lies in the singularity of the kernel,
which can lead to collisions of particles and the breakdown of solutions [FJ17].

(6) From a fluid dynamics perspective, the Biot–Savart kernel

k(x) =
(−x2, x1)

|x|2
, x ∈ R2,

is of interest. Consequently, system (1.8) becomes the vortex model, which is used to
approximate the two-dimensional Navier–Stokes equation in vorticity form [MP82,
Osa87, FHM14, JW18].

1.3. Categories of noise and interaction kernels

In the upcoming sections, we will explore various settings for the mean-field limit distin-
guished by the nature of noise present and irregularity of the interaction kernels. In each of
these settings we will provide unique insights into the different frameworks and the challenges
they pose, all while considering a simple interaction force except the last subsection, where
we talk about singular kernels. This offers a glimpse into the foundational concepts that will
be further developed and expanded upon in the main part of the thesis. Given that this thesis
is concerned with first-order systems, our analysis in this section will predominantly focus on
them.

1.3.1. Deterministic model. Let us provide a brief overview over the deterministic sce-
nario, corresponding to the case σ = ν = 0 in equation (1.8). This yields the system

(1.10) dXi
t =

1

N

N∑
j=1

k(Xi
t −Xj

t ) dt, i = 1, . . . , N

with initial condition Xi
0 = xi0 for some points xi0 ∈ Rd. In the absence of noise, the effects of

regularization by noise are absent, limiting the solution theory to ordinary differential equa-
tions, which generally exhibit inferior behaviour compared to stochastic differential equations.
Therefore, let us assume k ∈ C1(Rd), which implies that k is Lipschitz continuous, thus re-
sulting in a strong solution for system (1.10). But what is the mean-field limit of this system?
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We observe that the empirical measure µX
N

satisfies the following Cauchy problem{
∂tµ

XN

t +∇ · (µXN

t (k ∗ µXN

t )) = 0,

µt=0 = µX
N

0 .
(1.11)

This equation should be interpreted in a distributional sense and can be derived using the

method of characteristics for transport equations. Now, let µX
N

0 → f0 and, for the moment,
assume propagation of chaos holds. Taking the limit N → ∞ heuristically in equation (1.11),
we observe that the limiting measure f should satisfies the same Cauchy problem but with ini-
tial condition f0, allowing us to describe the dynamics of the limiting measure. Therefore, the
strategy for proving propagation of chaos proceeds as follows: we establish the well-posedness
of the Cauchy problem and a stability estimate in the Wasserstein distance. Combining both,
we obtain the following theorem [Gol16, Theorem 1.4.4].

Theorem 1.9. Suppose k ∈ C1(Rd), antisymmetric and the initial non-negative density
f0 ∈ L1(Rd) has a first moment bound M1(f0) <∞. Then the Cauchy problem (1.11){

∂tf +∇ · (ft(k ∗ ft)) = 0,

ft=0 = f0,

has a unique weak solution ft(·) ∈ L1(Rd) ∩ P(Rd). Additionally, the stability estimate

W1(µ
XN

t , ft) ≤ C

(
T, sup

x∈Rd

|∇k(x)|
)
W1(µ

XN

0 , f0)

holds, which implies propagation of chaos in the sense of Definition 1.1 and Proposition 1.2.

For a literature review on regular kernel k, we refer to the end of the subsequent section, as
most results in the smooth case allow a degeneracy of the diffusion coefficients and, therefore,
are also applicable in the deterministic scenario.

1.3.2. Stochastic differential equations without common noise. In the stochastic
framework without common noise, the stochastic differential equation (1.8) with i.i.d. initial
condition (Xi

0, i = 1, . . . , N) simplifies to

(1.12) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ(t,Xi
t) dB

i
t, i = 1, . . . , N.

The drift can be rewritten as

(1.13)
1

N

N∑
j=1

k(Xi
t −Xj

t ) = k ∗ µXN

t (Xi
t).

Assuming propagation of chaos, where the empirical measure µX
N

t converges to some ρt, we
can guess the limiting system of processes is given by

(1.14)

{
dY i

t = −(k ∗ ρt)(Xi
t) + σ(t, Y i

t ) dB
i
t,

Law(Y i
t ) = ρt,

i = 1, . . . , N.

These equations, known as McKean–Vlasov stochastic differential equations, depend on the

measure of the solution itself. Moreover, Proposition 1.2 suggests that the first marginal ρ1,Nt
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of the system (1.12) converges weakly to ρ, establishing a necessary connection between ρ
and Y i

t . Notably, if a solution exists, the processes Y i and Y j are independent and identically
distributed, reducing the analyze to a single equation. Consequently, the question regarding
the well-posedness of McKean–Vlasov SDEs naturally arises in the context of mean-field
theory, cf. [Wan18, RZ21, BR20, HRW21, Wan23].

To further understand the relationship between ρ and Y i
t , it is instructive to examine the

associated partial differential equations. As we mentioned, partial differential equations can
be linked to stochastic differential equations through Itô’s formula [KS91, Theorem 3.6].

Theorem 1.10 (Itô’s formula). Let (Ω,F , (Ft, t ≥ 0),P) be a complete filtered probability
space. Let ((M1

t , . . . ,M
d
t ), t ≥ 0) be a d-dimensional local martingale with respect to (Ft, t ≥ 0)

and ((A1
t , . . . , A

d
t ), t ≥ 0) be a d-dimensional (Ft, t ≥ 0)-adapted process of finite variation

with Ai0 = 0 for all i. Set

Xi
t = Xi

0 +Ait +M i
t , 0 ≤ t <∞

for all 1 ≤ i ≤ d, where (X1
0 , . . . , X

d
0 ) is an F0-measurable random vector. Additionally, let

φ : [0,∞)×Rd 7→ Rd be continuously differentiable in the first variable and twice continuously
differentiable in the second variable, then

φ(t,Xt)− φ(0, X0)

=

t∫
0

∂

∂t
φ(s,Xs) dt+

d∑
i=1

t∫
0

∂

∂xi
φ(s,Xs) dM

i
s +

d∑
i=1

t∫
0

∂

∂xi
φ(s,Xs) dA

i
s

+
1

2

d∑
i=1

d∑
j=1

t∫
0

∂2

∂xi∂xj
φ(s,Xs) d⟨M i

s,M
j
s ⟩, P-a.s., 0 ≤ t <∞.

(1.15)

Applying this result to a smooth function φ : Rd 7→ R and the empirical measure, we
obtain

⟨φ, µXN

t ⟩ = 1

N

N∑
i=1

φ(Xi
t)

=
1

N

N∑
i=1

t∫
0

−∇φ(Xi
s) · (k ∗ µX

N

s (Xi
s)) +

1

2
Tr

(
σ(s,Xi

s)σ(s,X
i
s)

T∇2φ(Xi
s)

)
ds

+
1

N

N∑
i=1

t∫
0

∇φ(Xi
s)σ(s,X

i
s) dB

i
s

=

t∫
0

−⟨∇φ · (k ∗ µXN

s ), µX
N

s ⟩+ 1

2

〈
Tr

(
σ(s, ·)σ(s, ·)T∇2φ(·)

)
, µX

N

s

〉
ds

+
1

N

N∑
i=1

t∫
0

∇φ(Xi
s)σ(s,X

i
s) dB

i
s.
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Suppose σ is bounded. By applying Itô’s isometry A.33, we obtain

E
(∣∣∣∣ 1N

N∑
i=1

t∫
0

∇φ(Xi
s)σ(s,X

i
s) dB

i
s

∣∣∣∣) ≤ C

N

and consequently by taking the limit, we find

⟨φ, ρt⟩ =
t∫

0

−⟨∇φ · (k ∗ ρs), ρs⟩+
〈
Tr

(
σ(s, ·)σ(s, ·)T∇2φ(·)

)
, ρs

〉
ds.

Hence, we assume that the limiting measure satisfies the following non-local, non-linear partial
differential equation

(1.16) ∂tρt = ∇ · ((k ∗ ρt)ρt) +
d∑

i,j=1

∂

∂xi

∂

∂xj

(
[σ(s, ·)σ(s, ·)T](i,j)ρt

)
on [0, T ]×Rd, where [σ(s, ·)σ(s, ·)T](i,j) denotes the (i, j)-entry of the matrix. However, it can
be readily verified that the same equation must be satisfied by the law of the process (1.14).
Consequently, if uniqueness in the sense of distribution holds, it follows that ρt must be the
law of Yt, providing further justification for the inclusion of the second condition in (1.14).

Armed with this insight, we can now demonstrate propagation of chaos in a simple setting
where k is Lipschitz continuous and σ is smooth, employing the coupling technique by Sznit-
man [Szn91]. The approach involves establishing, initially, the existence of a unique strong
solution for the McKean–Vlasov stochastic differential equation (1.14) through a fixed-point
argument. Subsequently, we can compare the trajectories of both processes in the L1(L∞)-
norm. Specifically, one can demonstrate the following bound [Szn91, Theorem 1.4]

(1.17) E
(

sup
0≤t≤T

|Xi
t − Y i

t |
)

≤ C√
N
,

which is an easy consequence of the Lipschitz continuity of the coefficients k and σ.
We finish this section by providing some literature in the regular case, which in some

cases also covers the deterministic case. As mentioned in the begging of this theses, the
first mathematical foundation goes back to McKean [Kac56, McK66]. For smooth interaction
kernels a variety of results have been achieved such as Gaussian fluctuations [BH77, Dob79,
Tan84], well-posedness of the McKean–Vlasov equation [Szn91, CD18] and approximation
algorithms [BT97]. Based on monotonicity and Lyapunov-type conditions on the kernel k,
Gärtner [Gär88] demonstrated propagation of chaos and existence of martingale solutions to
the McKean–Vlasov using a compactness argument.

1.3.3. Moderated interaction. In this section, we explore the scaling of interacting par-
ticle systems. We provide a brief overview based on [Oel85] and direct readers to this source
for more comprehensive details. Until now, we have primarily focused on weakly interacting
systems defined by equations (1.8), (1.9), and (1.12). A common characteristic of these sys-

tems is that the interaction k(Xi
t −Xj

t ) is of order
1
N , a natural occurrence in the context of
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the law of large numbers. Notably, our interaction kernel k remains independent of the num-
ber of particles, representing the regime of weakly interacting particles extensively studied in
literature [McK67, Szn91, Gär88, JW18, Ser20].

We now extend our analysis to particle systems where the interaction kernel k varies with
the number of particles N , denoted as kN . This extension finds motivation in various partial
differential equations arising in biology, physics, and other research areas. These equations are
often local and depend on point evaluations, rather than on the whole density. Consequently,
we are, for instance, interested in scenarios where kN converges to the Dirac distribution as
N → ∞, yielding

lim
N→∞

kN ∗ ρ = ρ

with the limiting term on the right-hand side being local. In the case of constant diffusion σ,
the resulting limiting partial differential equation (1.16) corresponds to the porous medium
equation.

Following [Oel85], we introduce the scaling of the interaction force kernel k as

kN (x) = Nβk(Nβ/dx).

This scaling is measure preserving on Rd. Notably, when β = 0, we recover the weak interac-
tion regime analyzed thus far.

For β = 1, we enter the strong interaction regime, where different particles only interact,
when their distance is of order N−1/d, yet the strength of their interaction is of order one. In
the mean-field limit, this regime yields the Poisson point process [Szn91].

Finally, for β ∈ (0, 1), we encounter the moderated regime. Here, the strength of the
interaction of each each particle is of order N−1+βd, lying between the weak and strong
regimes, hence earning the name moderated regime. In particular, in terms of convergence to
the porous medium equation, this regime holds significant importance [Oel90]. Naturally, the
question arises how the mean-field limit changes under different regimes. Unfortunately, this
question is outside the scope of this thesis and we refer to the works of Oelschläger [Oel85,
Oel90]. Nevertheless, we will utilize this concept to derive propagation of chaos for singular
interaction kernels, in cases where the interacting particle system may not be well-defined.

1.3.4. Singular interaction kernels. In the case of singular interaction kernels, the stan-
dard coupling technique from Section 1.3.2 is no longer viable. Thus, we need to develop a
different approach. Recently, prominent ideas have emerged, such as using modulated en-
ergy and relative entropy, along with their combination known as the modulated free energy
approach. In this section, we introduce these quantities, provide some initial connections be-
tween them, and discuss the current state of the art. Consider the interactive particle system
with additive noise

(1.18) dXi
t =

κ

N

N∑
j=1

∇g(Xi
t −Xj

t ) dt+ σ dBi
t, i = 1, . . . , N,

where we imposed a potential structure k := −∇g and introduce an additional parameter
κ ∈ {−1,+1} to capture either the attractive κ = 1 or the repulsive κ = −1 case. We can
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define the modulated energy as

(1.19) KN

(
µX

N

t |ρt
)
:=

1

σ2
E
(∫

R2d\{x=y}
g(x− y) d(µX

N

t − ρt)(x) d(µ
XN

t − ρt)(y)

)
,

where we denote the integrand of the modulated energy by

FN (µ
XN

t |ρt)(ω) :=
∫
R2d\{x=y}

g(x− y) d(µX
N

t (ω)− ρt)(x) d(µ
XN

t (ω)− ρt)(y).

Moreover, let us introduce the Liouville equation

∂tρ
N
t (x1, . . . , xN ) = σ2

2

N∑
i=1

∂xixiρ
N
t (x1, . . . , xN )

+ κ
N∑
i=1

∂xi

(
ρNt (x1, . . . , xN )

1
N

N∑
j=1

k(xi − xj)

)
,

ρN0 (x1, . . . , xN ) =
N∏
i=1

ρ0(xi).

(1.20)

By applying Itô’s formula (1.15) one can verify that the law of the interacting particle sys-
tem (1.18) solves the Liouville equation. Analogously, we also need the N -th tensor product
ρ⊗N of equation (1.16), which satisfies

∂tρ
⊗N
t (x1, . . . , xN )

=
σ2

2

N∑
i=1

∂xixiρ
⊗N
t (x1, . . . , xN ) +

N∑
i=1

∂xi

(
(k ∗ ρt)(xi)ρ⊗Nt (x1, . . . , xN )

)
.

Let us also recall the normalized relative entropy between ρNt and ρ⊗Nt

HN

(
ρNt |ρ⊗Nt

)
:=

1

N

∫
RdN

log

(
ρNt (x1, . . . , xN )

ρ⊗Nt (x1, . . . , xN )

)
ρNt (x1, . . . , xN ) dx1, . . . dxN .

Notice that we divide by N to compensate for the growth of dimension in the limit N → ∞.
To set the stage, let us recall the key inequality and summarize the steps of the relative

entropy method introduced by Jabin and Wang [JW18]. The first step is to compute the
evolution of the relative entropy (1.21). Skipping the computations from Section 3.4, the
evolution of the relative entropy is given by

HN

(
ρN |ρ⊗N

)
−HN

(
ρN0 |ρ⊗N0

)
= − κ

N2

N∑
i,j=1

∫ t

0

∫
RdN

ρNs (k(xi − xj)− k ∗ ρs(xi)) · ∇xi log

(
ρNs
ρNs

)

− σ2

2N

N∑
i=1

∣∣∣∣∇xi log

(
ρNs
ρNs

)∣∣∣∣2ρNs dx1 . . . dxN ds.

(1.21)
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However, we can deploy probabilistic arguments [Lac23, Lemma 4.4] to compute the
relative entropy. Using Girsanov transformation we find directly

(1.22) HN

(
ρN |ρ⊗N

)
= HN

(
ρN0 |ρ⊗N0

)
+

κ

2σ2N

N∑
i=1

∫ t

0
E
(∣∣∣∣k ∗ (µXN

s − ρs
)
(Xi

s)

∣∣∣∣2)ds.

Let us compare the both expressions. We notice that we can derive the second expression
by applying the inequality ab ≤ a2σ2/2 + (2σ2)−1b2 to the first expression. However, it
is impossible to reverse this comparison. Therefore, the probabilistic argument hides the
dissipation information of the Brownian motion in the Girsanov transformation, which is not
recoverable. Although this method yields an equality instead of an inequality, it implies that
the dissipation term in equation (1.21) can only be utilized in this manner and does not offer
additional benefits for further computation.

This computation also heavily depends on the diffusion coefficient σ, which produces the
dissipation term. So, in the deterministic case σ = 0, we lack the dissipation term, making
the above reasoning invalid. Instead, we can suppose more regularity on the solution ρ as
well as the concept of entropy solutions [JW18, Definition 2] for ρN to handle the case σ = 0.

The next step in the relative entropy method is to transform the measure of the term

κ

Nσ2

N∑
i=1

∫ t

0

∫
RdN

∣∣∣∣ 1N
N∑
j=1

(k(xi − xj)− k ∗ ρs(xi))
∣∣∣∣2ρNs dx1 . . . dxN ds

from the measure of the interacting particle system ρN to the mean-field particle system ρ⊗N

by paying the price of an exponential term. This leads to

κ

N2σ2

N∑
i=1

log

(∫
RdN

exp

(
1

N

∣∣∣∣ N∑
j=1

(k(xi − xj)− k ∗ ρs(xi))
∣∣∣∣2)ρ⊗Ns dx1 . . . dxN

)
ds

with an error term that depends linearly on the relative entropy, which becomes negligible
after applying a Gronwall argument. A significant combinatorial result by Jabin and Wang
bounds the exponential term using an exponential law of large numbers, resulting in the
bound

sup
0≤t≤T

HN

(
ρNt |ρ⊗Nt

)
≤ C

N
.

Here, the regularity of the kernel is crucial and is hidden in the constant C. In their original
work, Jabin and Wang considered kernels k ∈ W−1,∞ on the torus covering the case of the
Biot–Savart kernel. An important extension of this method was introduced by Lacker [Lac23],
who further refined the estimate by using a BBGKY hierarchy in the relative entropy esti-
mate, improving the bound from C/N to C/N2. Lacker also demonstrated the optimality
of this bound by presenting a counter example, showing that it cannot be further improved.
Previously, Jabin, Bresch, and Soler [BJS22] also used the BBGKY for the Vlasov–Poisson–
Fokker–Planck system for plasmas in dimension two.

Now, let us turn our attention to the other important expression: the modulated energy
KN . This quantity is particularly useful because, for the Coulomb potential, the modulated
energy implies the weak convergence of the empirical measures [RS23]. We compute its
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evolution as follows

FN
(
µX

N

t , ρt
)
− FN

(
µX

N

0 , ρ0
)

=
2κ

N3

N∑
i,j,l=1
j,l ̸=i

∫ t

0
∇g(Xi

s −Xj
s ) · ∇g(Xi

s −X l
s) ds

+
2κ

N

N∑
i=1

∫ t

0
(g ∗ div(∇g ∗ ρsρs))(Xi

s)− 2κ

∫ t

0
⟨g ∗ div(∇g ∗ ρsρs), ρs⟩ dsds

− 2κ

N2

N∑
i,j=1,i ̸=j

∫ t

0
∇g ∗ ρs(Xi

s) · ∇g(Xi
s −Xj

s ) ds

+ σ2
∫ t

0

∫
(Rd)2\{x=y}

∆g(x− y)( dµX
N

s − dρs)
⊗2(x, y) ds

+
2σ

N

N∑
i=1

∫ t

0

∫
Rd\{Xi

s}
∇g(Xi

s − y)( dµX
N

s − dρs)(y) · dBi
s.

Rearranging provides

FN
(
µX

N

t , ρt
)
− FN

(
µX

N

0 , ρ0
)

=
2κ

N3

N∑
i,j,l=1
j,l ̸=i

∫ t

0
(∇g(Xi

s −Xj
s )−∇g ∗ ρs(Xi

s)) · (∇g(Xi
s −X l

s)−∇g ∗ ρs(Xi
s)) ds

+
2κ

N2

N∑
i,j=1
j ̸=i

∫ t

0
⟨g ∗ div(∇g ∗ ρsρs), µX

N

s − ρs⟩

+ (∇g(Xi
s −Xj

s )−∇g ∗ ρs(Xi
s))∇g ∗ ρs(Xi

s)) ds

+ σ2
∫ t

0

∫
(Rd)2\{x=y}

∆g(x− y)( dµX
N

s − dρs)
⊗2(x, y) ds

+
2σ

N

N∑
i=1

∫ t

0

∫
Rd\{Xi

s}
∇g(Xi

s − y)( dµX
N

s − dρs)(y) · dBi
s.
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Finally, we obtain

FN
(
µNt , ρt

)
− FN

(
µN0 , ρ0

)
= 2κ

∫ t

0

∫
Rd

∇g ∗ (µXN

s − ρs) · ∇g ∗ (µX
N

s − ρs) dµ
XN

s ds

+ 2κ

∫ t

0

∫
Rd×Rd

∇g(x− y) · ∇g ∗ ρs(x)( dµX
N

s − dρs)
⊗2(x, y) ds

+ σ2
∫ t

0

∫
(Rd)2\{x=y}

∆g(x− y)( dµX
N

s − dρs)
⊗2(x, y) ds

+
2σ

N

N∑
i=1

∫ t

0

∫
Rd\{Xi

s}
∇g(Xi

s − y)( dµX
N

s − dρs)(y) dB
i
s.

(1.23)

Notice that after the multiplication with σ−2 the first term is actually four times the relative
entropy if we ignore the scaling factor N , which immediately connects these two quantities.
The relationship between the relative entropy expressions (1.21) and (1.22) and their connec-
tion to estimates of the modulated free energy will hopefully be explored in future projects.
At present, it is unclear how to use this insight, though it has been briefly addressed in recent
works.

Continuing with equation (1.23), we observe that the last integral is as a stochastic inte-
gral and vanishes in expectation. The second term presents the main challenge in estimation
and can be approached in several ways. The first approach in handling this term was pro-
posed by Serfaty and Duernickx [Ser20, Proposition 1.1] in the deterministic setting for the
repulsive Coulomb kernel. Their method involves renormalizing the quantity by expanding
Dirac measures into spheres with uniform measures and carefully obtaining an estimate on
the diagonal terms.

Additionally, it is worth noting that in the case of the repulsive Coulomb kernel (κ = −1),
one can demonstrate that the modulated energy is non-negative. Therefore, we obtain the
following bound∫ t

0
E
(∫

Rd

|∇g ∗ (µXN

s − ρs)|2 dµX
N

s

)
ds− FN (µ

N
0 , ρ0)

≤ 2

∫ t

0

∣∣∣∣E(∫
Rd×Rd

∇g(x− y) · ∇g ∗ ρs(x)( dµX
N

s − dρs)
⊗2(x, y)

)∣∣∣∣ ds
+ σ2

∫ t

0

∣∣∣∣E(∫
(Rd)2\{x=y}

∆W (x− y)( dµX
N

s − dρs)
⊗2(x, y)

)∣∣∣∣ ds.
Hence, comparing it to the relative entropy representation (1.22), we actually found an upper
bound on the relative entropy. This provides a further connection between the relative entropy
and modulated energy. Unfortunately, a similar bound cannot be obtained in the attractive
case, which provides further insight into why the modulated energy method [Ser20] is currently
only applied to repulsive kernels.
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Another significant extension is the combination of modulated energy and relative entropy,
which is referred to as modulated free energy

(1.24) EN (ρ
N
t |ρ⊗Nt ) := KN

(
µX

N

t |ρt
)
+HN

(
ρNt |ρ⊗Nt

)
.

This quantity is particularly useful for addressing the attractive Keller–Segel interaction kernel
(g(x) = λ log(|x|)). Bresch, Jabin, and Wang [BJW23] demonstrated propagation of chaos by
deriving crucial upper and lower bounds on the modulated free energy (1.24). The challenge
lies in establishing a lower bound on EN because it is not immediately evident that EN is
non-negative. Interestingly, their approach does not rely on the evolution of the quantity but
instead utilizes the specific structure of the kernel and the torus setting. Thus, the evolution
is major factor in establishing the upper bound, but plays no role in deriving the lower bound,
which is a fascinating observation, because Serfaty and Duernickx [Ser20, Corollary 3.5] use
the same strategy in their original work.

In general, we notice that the term

(1.25) E
(∫

Rd

|∇g ∗ (µXN

t − ρt)|2 dµX
N

s

)
is crucial for deriving mean-field limits. This term plays a significant role in the relative
entropy method, the modulated energy method, and the coupling method. From our per-
spective, it is unavoidable in the estimation process. Regardless of the specific approach
chosen, an estimation involving the term (1.25) is essential. Therefore, there should be a
fundamental connection between all the quantities discussed here. We will explore this con-
nection further in Chapter 3, aiming to enhance our understanding regarding the relationship
between these quantities. While we gained a solid grasp of the individual components dur-
ing our studies, assembling the full picture remains a tough challenge. This ongoing effort
presents an exciting avenue for future research.

Let us also highlight a challenge encountered in the analysis of mean-field limits with
singular interaction kernels that at the moment we swept under the rug: the issue of well-
posedness of the Liouville equation. This issue becomes particularly relevant for attractive
kernels or kernels in the repulsive super-Coulomb case, where the existence of solutions to the
associated Liouville equation is unclear. While some authors assert the existence of entropy
solutions [JW18, BJW23] in the Coulomb case on the torus, this remains an open problem to
the best of our knowledge. For example, in [dCRS23], it is suggested that such solutions may
exist for the repulsive case at the level of stochastic differential equations, but as of now, no
rigorous proof has been established [RS24].

Another important concept to tackle singular kernels is the convergence in probability
method introduced by Pickl and Lazarovici [LP17]. This concept is crucial to our thesis and
will be summarized in detail in Chapter 2 for bounded interaction kernel k. One can classify
this method between the interface of singular kernels and moderated interactions.

The idea is to regularize the interaction kernel k ⇝ kε with a parameter ε, which depends
on the number of particles ε = N−β. This regularization extends to both the interacting
particle system XN,ε and the mean-field equation YN,ε, creating an intermediate framework,
avoiding well-posedness issues at the particle level.
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Stability of PDE

Figure 1. Intermediate System

The goal of propagation of chaos in probability is to demonstrate the connection at the top
of Figure 1. But, instead of using an estimate in expectation as in the coupling method (1.17),
we rely on convergence in probability. This means there exists a δ(N) > 0 with δ(N) → 0 as
N → ∞ such that

P

(
sup
t∈[0,T ]

|XN,ε
t −YN,ε

t |∞ ≥ δ(N)

)
→ 0, as N → ∞.

Consequently, the probability that the interacting particles XN are further than δ(N) away
from the mean-field particles YN vanishes as N → ∞. We can also demonstrate convergence
rates that depend on the number of particles. While the expectation based estimate (1.17)

achieves and optimal rate of 1/
√
N [Tan84], convergence in probability can achieve arbitrarily

fast convergence rates N−γ . However, for the “bad set”

sup
t∈[0,T ]

|XN,ε
t −YN,ε

t |∞ ≥ δ(N)

the best achievable bound is δ(N) = N−1/2+η for any small η > 0, which aligns with the
law of large numbers [Tan84]. As we will demonstrate in Chapter 3, this concept, under a
convolution structure of kε, implies convergence in relative entropy and modulated energy in
the intermediate regime, underscoring its strength. Further details can be found in Chapter 3.
Finally, it is worth noting that this approach is widely applied in singular models such as the
Keller–Segel model [HLL19, FHS19].

1.3.5. Stochastic differential equations with common noise. To illustrate the ma-
jor differences between propagation of chaos with and without common noise, we consider
how common noise adds an additional layer of complexity to the analysis of propagation of
chaos. This type of noise affects the entire population, and thus, we cannot expect as in the
idiosyncratic case, the law of large numbers to negate its effects. As we discussed in Sec-
tion 1.3.2, there are multiple approaches to derive the mean-field limiting equation. We also
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showed that the empirical measure satisfies a stochastic differential equation with vanishing
quadratic variation as N → ∞. Consequently, we predicted that the limiting measure ρ
satisfies a deterministic partial differential equation. Now, let us repeat this calculation with
the inclusion of common noise. Applying Itô’s formula (1.15) to the empirical measure, we
obtain

⟨φ, µXN

t ⟩ =
t∫

0

−⟨∇φ · (k ∗ µXN

s ), µX
N

s ⟩ ds+ 1

N

N∑
i=1

t∫
0

∇φ(Xi
s)σ(s, ·) dBi

s

+
1

2

t∫
0

〈
Tr

(
(σ(s, ·)σ(s, ·)T + ν(s, ·)ν(s, ·)T)∇2φ(·)

)
, µX

N

s

〉
ds

+ ⟨∇φT(·)ν(s, ·), µXN

s ⟩ dWt.

We notice that the stochastic term driven by the common noiseW does not vanish! Therefore,

assuming µX
N

t converges in some topology to ρ such that all limiting procedures are well-
defined, we derive the following stochastic partial differential equation

dρt = ∇ · ((k ∗ ρt)ρt)) dt−∇ · (ν(t, x)ρt dWt)

+
1

2

d∑
i,j=1

∂xi∂xj

(
([σ(t, x)σ(t, x)T](i,j) + [ν(t, xi)ν(t, xj)

T](i,j))ρt

)
dt,(1.26)

where [A](i,j) denotes the (i, j)-entry of a matrix A. Thus, the limiting measure ρ solves a
stochastic partial differential equation, implying that the measure ρ is no longer deterministic
but a truly random measure. This is a significant observation because it indicates that results
like Proposition 1.2 are not applicable, making the analysis of such mean-field limits more
challenging. Furthermore, the “top-to-bottom” approach, which involves solving the limiting
equation first and then using the solution’s regularity properties to achieve propagation of
chaos, becomes more challenging. The difficulty arises because, in general, we cannot expect
to have the same regularity for solutions of the stochastic partial differential equation (1.26) as
we do for the deterministic partial differential equation (1.16). In particular, it is challenging
to obtain uniform estimates in the probability space, whereas in the deterministic case, one
can simply use embedding theorems to guarantee bounded solutions.

Next, let us derive the stochastic partial differential equation (1.26) from the point of view
of stochastic analysis. To do this, we introduce the conditional (or stochastic) McKean–Vlasov
equation {

dY i
t = −(k ∗ ρt(Y i

t )) dt+ σ(t, Y i
t , µt) dB

i
t + ν(t, Y i

t , µt) dWt,

ρt = LY i
t |FW

t
, ∀t ≥ 0,

(1.27)

where FW
t is the σ-algebra generated by the Brownian motion W and LY i

t |FW
t

is the condi-

tional density of Y i
t given FW

t . The second equality can be understood in an almost every-
where sense, meaning ρ is a measure on the space of continuous functions C([0, T ];Rd) and a
version of the regular conditional law of Y given the filtration FW generated by the Brownian
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motion W . Applying Itô’s formula (1.15) and taking the conditional expectation, we obtain

E
(
φ(Xt)

∣∣∣∣FW
t

)
= E

(
φ(X0)

∣∣∣∣FW
t

)
− E

(
(k ∗ ρt) · ∇φds

∣∣∣∣FW
t

)
+

1

2

d∑
i,j=1

E
(∫ t

0

(
([σ(t, x)σ(t,Xi

s)
T](i,j)

+ [ν(t, xi)ν(t, xj)
T](i,j))∂xi∂xjφ(s,Xs)

)
ds

∣∣∣∣FW
t

)
+ E

(∫ t

0
∇φ(Xs)σ(s,Xs) dWs

∣∣∣∣FW
t

)
+ E

(∫ t

0
∂xφ(Xs)ν(s,Xs) dBs

∣∣∣∣FW
t

)
for smooth function φ. Fubini’s theorem and the stochastic version of the conditional Fubini
theorem A.35, which we recalled in the Appendix, imply that the conditional law ρ of Y
given FW is actually a solution to the equation (1.26). Therefore, as before, there is an
interplay between the stochastic partial differential equation and the conditional McKean–
Vlasov equations. This relationship is explored in the significant work by Lacker, Shkolnikov,
and Zhang [LSZ23], where a superposition principle and mimicking theorems are derived
through a complex reduction of the problem to smooth coefficients. For a weak existence
result on conditional McKean–Vlasov equations we refer to [HvS21].

To distinguish between the settings with and without common noise, we will refer to the
concept of propagation of chaos in the presence of common noise as conditional propagation
of chaos. This emphasizes the difference between convergence towards the true distribution
and convergence towards the conditional distribution.

In comparison to the non common noise case, this field is not well studied and the literature
is sparse. While propagation of chaos for Lipschitz coefficients has been known at least since
Sznitman’s review [Szn91], the same result for common noise is rather new and can be found,
for instance, in Carmona’s and Delarue’s book [CD18, Chapter 2]. In the context of transport
noise was proven by Coghi and Flandoli [CF16] in 2016. Although this regular case can be
achieved through standard probabilistic arguments, it still took more than twenty years due
to the detailed considerations required. Flandoli and Coghi’s approach, inspired by [Gol16],
involves constructing a stochastic Liouville equation that maps the initial measure to the
solution of the stochastic Fokker–Planck equation. Utilizing sharp estimates in Kolmogorov’s
continuity theorem and properties of measure-valued solutions of the associated stochastic
Fokker–Planck equation, they ultimately demonstrate conditional propagation of chaos.

Additional relevant literature includes the work of Dawson and Vaillancourt [DV95], who
formulated a martingale problem and demonstrated the tightness of the empirical measure,
as well as the works of Kurtz and Xiong [KX99], and Coghi and Gess [CG19] on the existence
of stochastic non-linear Fokker–Planck equations (1.26) under Lipschitz coefficients.

1.3.6. Comments. In the above setting, we use a time-independent interaction k : Rd 7→ Rd,
which expresses the drift term as a convolution with the empirical measure, as shown in equa-

tion (1.13). Thus, we can generalize the drift term to b
(
t,Xi

t , µ
XN

t

)
instead of a normalized
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sum. For instance, if b is Lipschitz continuous, the analysis does not change significantly, and
we expect all the previous results to hold true [CD18, Theorem 2.12]. The analysis becomes
more complex when we involve techniques that use partial differential equations, particularly
for singular interaction kernels.

At this point, it is beneficial to have more structure on the measure dependency of b.
Typically, this is achieved by expressing the interaction through an integration of the empirical
measure with respect to some function

b
(
t,Xi

t , µ
XN

t

)
= b̃

(
t,Xi

t ,

∫
h(Xi

t , y) dµ
XN

t (y)

)
.

By specifying the properties of the new functions b̃, h, we observe that the difference from
the weighted sum lies in the transformation applied by b̃ and h. Hence, if we restrict the
properties of b̃ and h, we expect all methods to work analogously.

Similar, we can also include measure dependency on the diffusion coefficients, σ, ν by
adding a Lipschitz continuity in the Wasserstein distance

|σ(t, x, µ)− σ(t, y, µ̃)|+ |ν(t, x, µ)− ν(t, y, µ̃)| ≤ C
(
|x− y|+W2(µ, µ̃)

)
.

In this case the coupling technique still works on the space of probability measures with finite
second moment. However, even if the coefficients are elliptic it is no clear how to apply
the methods from Section 1.3.4 since the associated equations are now also non-linear in the
diffusion.

1.4. Setting and notation

Since the complete thesis is based on the analysis of particle systems, we want to fix
the probabilistic framework, where particle systems (1.8) are defined. Additionally, we need
to fix the space for the solution of our partial differential equations (PDE’s) and stochastic
partial differential equations (SPDE’s). For questions around measurability or completeness
and other useful results such as the Aubin–Lions lemma we refer to the Appendix. The
setting will be held as general as possible to include models with and without common noise,
multiplicative noise, additive noise and arbitrary dimensions. Later, we will reduce the setting
in each chapter of this thesis to necessary requirements for this section.

1.4.1. Probabilistic framework. In this thesis we will focus on a finite time interval [0, T ]
with arbitrary T > 0, if not stated otherwise. To that end, let (Ω,F , (Ft)t≥0,P) be a complete
probability space with right-continuous and complete filtration (Ft)t≥0. Under a complete
probability space (Ω,F ,P) we understand that all sets A ∈ N with

N := {A ⊆ Ω | A ⊆ B for some B ∈ F with P (B) = 0}
are measurable. A filtration (Ft)t≥0 is complete if F0 contains all sets A ∈ N and right
continuous if

Ft = Ft+ : =
⋂
s>t

Fs

holds for t ≥ 0. Furthermore, let (Bi
t = (Bi,1

t , . . . , Bi,m
t ), t ≥ 0), i ∈ N be a sequence

independent m-dimensional Brownian motions with respect to the filtration (Ft, t ≥ 0), and
(Wt = (W 1

t , . . . ,W
m̃
t ), t ≥ 0) be another m̃-dimensional Brownian motions with respect to
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the same filtration (Ft, t ≥ 0), which is independent from (Bi
t, t ≥ 0) for all i ∈ N. Moreover,

we denote by FW = (FW
t , t ≥ 0) the augmented filtration generated by W and by PW the

predictable σ-algebra with respect to FW . More precisely, PW is the σ-algebra on Ω× [0, T ]
generated by all FW -adapted and left-continuous processes. Analogously, we define FB and
PB. It remains to construct the initial condition. Our interacting particle systems always
have initial distribution ρ0 and are independent. Therefore, let (ζi, i ∈ N) be a sequence of
i.i.d. random variables with distribution ρ0, independent of FW and FB. In the stochastic
differential equation (1.8), we set Xi

0 = ζi as the initial condition, which accomplishes the
desired set-up. This concludes the basic setting in order to define interacting particle systems
of the form (1.8), i.e.

dXi
t =

1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ(t,Xi
t) dB

i
t + ν(t,Xi

t) dWt, i = 1, . . . , N

with i.i.d. initial condition (Xi
0, i ∈ N). For a more detailed construction of independent

Brownian motions and augmented filtration we refer to [KS91, Chapter 2]. Moreover, for
weak and strong uniqueness as well as weak and strong existence of stochastic differential
equations and the martingale problem we refer to [KS91, Chapter 5]. Additionally, we adopt
the convention that for constant diffusion coefficients σ and/or ν, we omit the associated
identity matrix, keeping in mind to ensure that the dimensions in the stochastic integrals are
well-defined. Finally, we use the notation X ∼ ρ to represent that ρ is the law of random
variable X. We write LX for the law of X and LX|F for the conditional law of X given the
filtration F .

1.4.2. Function spaces. For a vector x ∈ Rd, we write |x| for the standard Euclidean norm
and |x|∞ for the l∞-Euclidean norm. We denote by B(a, r) a ball with center a and radius
r with respect to the Euclidean norm. For an N -particle vector XN = (x1, . . . , xN ) ∈ RdN
we make the convenient that the l∞-norm is taken with respect to the dimension d, i.e.
|XN |∞ : = max(|x1|, . . . , |xd|). We use the generic constant C for inequalities, which may
change from line to line.

For 1 ≤ p ≤ ∞ we denote by Lp(Rd) the space of measurable functions whose p-
th power is Lebesgue integrable (with the usual modification for p = ∞) equipped with
the norm ∥·∥Lp(Rd), by L1(Rd, |x|2 dx) the space of all measurable functions f such that∫
Rd |f(x)||x|2 dx <∞, by C∞

c (Rd) the space of all infinitely differentiable functions with com-

pact support on Rd, and by S(Rd) the space of all Schwartz functions, see [Yos80, Chapter 6]
for more details. Even though in most cases functions in Lp(Rd) will be real-valued, we will
use the same notation for Rl-valued functions and replacing the absolute value in the defini-
tion by the Euclidean norm. A similar convenient hold for all other normed spaces implicitly
by replacing the absolute value with the norm. Additionally, the convolution operator ∗
is understood to act component-wise when one operand is vector-valued. For instance, for
k : Rd → Rd and f : Rd 7→ R, the convolution k ∗ f : Rd 7→ Rd is defined component-wise.

For a smooth function f : [0, T ] × Rd 7→ R and a multi-index κ with length |κ| :=
∑

i κi,

we denote the derivative with respect to xκ = xκ11 · · ·xκdd by ∂κf(t, x) :=
∏
i

(
∂
∂xi

)κif(t, x),
where we write ∂xif or fxi(t, x) for

∂
∂xi
f(t, x). The gradient ∇ and Laplace operator ∆ always

act on the space variable x. The derivative with respect to time we denote by ∂tf(t, x) or
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d
dtf(t, x). For f ∈ S(Rd) we define the Fourier transform F [u] and inverse Fourier transform

F−1[u] by

F [u](ξ) :=

∫
Rd

e−2πiη·xf(x) dx and F−1[u](ξ) :=

∫
Rd

e2πiη·xf(x) dx.

For u ∈ S ′(Rd) we can also define the Fourier transformation by duality

⟨F [u], f⟩ := ⟨u,F [f ]⟩, f ∈ S(Rd).
We denote the Bessel potential for each s ∈ R and u ∈ S ′(Rd) by

(1−∆)s/2u := F−1[(1 + 4π2|ξ|2)s/2F [u]]

and define the Bessel potential space Hs
p for p ∈ (1,∞) and s ∈ R by

Hs
p := {u ∈ S ′(Rd) : (1−∆)s/2u ∈ Lp(Rd)}

with norm

∥u∥Hs
p(Rd) :=

∥∥∥(1−∆)s/2u
∥∥∥
Lp(Rd)

.

Applying [Tri83, Theorem 2.5.6] we can characterize the above Bessel potential spaces Hm
p

for 1 < p <∞ and m ∈ N as Sobolev spaces

Wm,p(Rd) :=
{
u ∈ Lp(Rd) : ∥u∥Wm,p(Rd) :=

∑
κ∈A, |κ|≤m

∥∂κf∥Lp(Rd) <∞
}
,

where ∂κu is to be understood as weak derivatives [AF03] and A is the set of all multi-indices.
The definition of Wm,p(Rd) extends in the natural way to p = ∞. Moreover, we will use the
following abbreviation Hs(Rd) := Hs

2(Rd).
In general we will denote by ⟨·, ·⟩ the dual paring and the inner product. If we want to

specify the space we write it as a subscript, for instance for the L2(Rd) product we write
⟨·, ·⟩L2(Rd). But in general it should be clear from context which dual paring we mean. Addi-
tionally, weak convergence is denoted by the symbol⇀. Again, whether it is weak convergence
of measures or weak convergence of functions in some normed spaces should be understood
from the context.

We also require Banach-valued Lp-spaces as well as the stochastic version of them. Let
(Z, ∥·∥Z) be a Banach space. We denote by Lp([0, T ];Z) the space of all strongly measurable
functions u : [0, T ] → Z such that

∥u∥Lp([0,T ];Z) :=


(∫ T

0
∥u(t)∥pZ dt

) 1
p
<∞, for 1 ≤ p <∞,

ess sup
t∈[0,T ]

∥u(t)∥Z <∞, for p = ∞.

The Banach space C([0, T ];Z) consists of all continuous functions u : [0, T ] → Z, equipped
with the norm

max
t∈[0,T ]

∥u(t)∥Z <∞.

We also introduce another class of Lp-spaces, which should serve as solution spaces for
our stochastic partial differential equations. For a filtration (Ft)t≥0, 1 ≤ p ≤ ∞ and 0 ≤
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s < t ≤ T we denote by SpF ([s, t];Z) the set of Z-valued (Ft)-adapted continuous processes
(Xu, u ∈ [s, t]) such that

∥X∥Sp
F ([s,t];Z) :=


(
E
(

sup
u∈[s,t]

∥Xu∥pZ

)) 1
p

, p ∈ [1,∞),

sup
ω∈Ω

sup
u∈[s,t]

∥Xu∥Z , p = ∞,

is finite. Similar, LpF ([s, t];Z) denotes the set of Z-valued predictable processes (Xu, u ∈ [s, t])
such that

∥X∥Lp
F ([s,t];Z) :=


(
E
(

t∫
s
∥Xu∥pZ du

)) 1
p

, p ∈ [1,∞),

sup
(ω,u)∈Ω×[s,t]

∥Xu∥Z , p = ∞,

is finite. In most case Z will be the Bessel potential space Hs
p , as it is mainly used by

Krylov [Kry10] in treating SPDEs. For a more detail introduction to the above function
spaces we refer to [Kry99, Section 3].

1.5. Structure of the thesis

We have tried to organize this thesis to follow a logical and natural flow. In Chapter 1, we
introduced the general framework of mean-field limits and propagation of chaos, showcasing
established results in the Lipschitz case. After the Introduction, the thesis mirrors the content
of Chapter 1 but shifts the focus to more complex kernels with lower regularity, specifically
those outside the Lipschitz regime.

The thesis is divided into two main parts: the first part deals with systems without
common noise (ν = 0 in (1.8)), corresponding to Chapter 2 and Chapter 3. The second
part addresses interacting particle systems with common noise (ν ̸= 0 in (1.8)), covered in
Chapter 4 and Chapter 5.

Each subsequent chapter follows a consistent structure. First, the problem is introduced
along with the specific notation for that chapter. For instance, the interacting particle process
Xt, the McKean–Vlasov SDE Yt, and the associated Fokker–Planck equations ρt are redefined
in each chapter according to its context. This approach is intended to prevent an overload of
indices within each chapter.

Thus, any notation, (stochastic) partial differential equations, and stochastic differential
equations introduced outside Section 1.4 are only valid within their respective chapters and
should not be considered valid outside of them.

Afterwards, we present our contributions to the research area and provide related lit-
erature to place our work within it. This supplements the literature already discussed in
Chapter 1. Finally, we prove the main results in each chapter, which constitutes the bulk of
the content. Therefore, I will only provide a brief overview of the content of each chapter and
its main results.

Chapter 2 is based on [CNP24] and includes results on the existence, uniqueness, and reg-
ularity for diffusion-aggregation equations with bounded force. Additionally, we demonstrate
a convergence of probability result for the moderated interaction particle system towards the
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McKean–Vlasov stochastic differential equation with an arbitrary rate, i.e.

P
(

sup
t∈[0,T ]

∣∣XN,ε
t −YN,ε

t

∣∣
∞ ≥ N−α

)
≤ C(γ)N−γ , for each N ≥ N0,

where ε = N−β is the regularization parameter, α ∈ (0, 1/2), γ > 0, and XN,ε
t ,YN,ε

t are the
particles system corresponding to the regularized kernel kε.

Chapter 3, based on the work [PN24], serves as a natural continuation of Chapter 2. Here,
we utilize the convergence in probability to derive quantitative estimates on the modulated
energy and relative entropy. The key insight in this chapter is that, under a convolution
structure on the interaction kernel kε = V ε ∗ V ε, we can relate the relative entropy and the
modulated energy to a weighted L2-norm depending on the decomposition V ε. Consequently,
we transform the problem of relative entropy and modulated energy into one concerning an
L2-norm. Our main result is a quantitative inequality regarding the weighted L2-norm

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
+
σ2

8
E
( T∫

0

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥2
L2(Rd)

ds

)

≤
C(T, σ, γ, CBDG, ∥V ε∥2H2(Rd) , ∥kε∥W 1,∞(Rd))

N2α
.

As a corollary, we demonstrate propagation of chaos for the attractive Keller–Segel model
and the opinion dynamics model in the moderated regime.

Now, we move into the setting of common noise. Chapter 4 is motivated by the analysis of
opinion dynamic models with a bounded confidence radius and is based on the work [CNP23].
In this context, the interaction kernel k has bounded support. Without common noise and
with non-degenerate diffusion in the SDE (1.3.2), propagation of chaos is well established
using the techniques presented in Section 1.3.4. However, when common noise is present, the
well-posedness of the non-linear stochastic Fokker–Planck equation (1.26) and the conditional
McKean–Vlasov equation (1.27) is not immediately clear.

Thus, the main result in Chapter 4 is the proof of strong existence and uniqueness for
the conditional McKean–Vlasov equation (1.27) in the case k ∈ L1(R)∩L2(R), as well as the
existence for the stochastic Fokker–Planck equation (1.26) in the case k ∈ L2(R). Addition-
ally, we will establish a conditional propagation of chaos result in the moderated regime with
a cut-off ε of order log(N).

Finally, in Chapter 5, we extend the relative entropy method pioneered by Jabin and
Wang [JW18] to the setting of common noise. We will demonstrate that under suitable
conditions on the diffusion coefficients σ and ν, we can estimate the relative entropy between
the conditional Liouville equation and the stochastic Fokker–Planck equation. More precisely,
we obtain

E
(

sup
0≤t≤T

H
(
ρNt |ρ⊗Nt

))
≤ C

(
∥k∥L∞(Rd)

)
for the non-normalized relative entropy H

(
ρNt |ρ⊗Nt

)
between the conditional Liouville equa-

tion ρNt and the N -th tensor product ρ⊗Nt of the the d-dimensional stochastic Fokker–Planck
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equation (1.26). Additionally, we extend Sznitman’s Proposition 1.2 to include random lim-
iting measures, thereby demonstrating conditional propagation of chaos.

In the Appendix, we provide a compilation of relevant facts and inequalities widely ac-
knowledged in the stochastic analysis and partial differential equations community. Although
these are well-known, their inclusion here allows for easy reference, gathering essential details
into a single location.



Chapter 2

Mean-field limit via convergence in proba-
bility

The aim of this chapter is to present the concept of convergence in probability introduced
by Peter Pickl and Lazarovici [LP17] in an universal manner without any specific model
or kernel. This concept can be regarded as the basic building block for upcoming results.
The content of this chapter is taken from [CNP24], which in turn is inspired by the original
work [LP17].

2.1. Setting and method

In this section we introduce the problem setting, that is, the necessary notation, the
interacting particle systems as well as their associated PDEs, and outline the general method
implemented in the present chapter, following [LP17].

On the microscopic level, we model the system, as seen in the Section 1.3.2 by an inter-
acting N -particle system XN = (X1, . . . , XN ), given by stochastic differential equations with
additive noise of the form

(2.1) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ dBi
t, i = 1, . . . , N, XN

0 ∼
N
⊗
i=1
ρ0

for t ≥ 0, starting from i.i.d. initial condition (Xi
0, i ∈ N) with Xi

0 ∼ ρ0, diffusion parameter
σ > 0 and interaction kernel

k : Rd 7→ Rd.
For convenience we also choose Bi to be a d-dimensional Brownian motion, meaning we set
m = d as defined in Section 1.4.1, and simplify the notation σ dBi

t by omitting writing the
identity matrix. In this chapter our main focus lies on non-smooth interaction kernels k,
which satisfy some local Lipschitz assumption.

Since we are interested in non Lipschitz continuous k, the classical coupling method
presented in the Section 1.3.2 does not work, that is, comparing the particle (Xi

t , t ≥ 0) to
the solution (Y i

t , t ≥ 0) of the McKean–Vlasov stochastic differential equations (McKean–
Vlasov SDE) YN

t : = (Y 1
t , . . . , Y

N
t ),{

dY i
t = −(k ∗ µt)(Y i

t ) dt+ σ dBi
t, i = 1, . . . , N, YN

0 = XN
0 ,

µt = Law(Y i
t ),

(2.2)

for t ≥ 0, and, subsequently, showing the weak convergence of the empirical measure µX
N

t ⇀
µt as N → ∞ for all t ≥ 0. Assuming that the law µ of the solution (Y i

t , t ≥ 0) possesses
a probability density ρ that satisfies an associated Fokker–Planck equation, we employ PDE

31
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theory to demonstrate propagation of chaos using a “top-to-bottom” approach. However, the
result at the end is the probability estimate

P

(
sup
t∈[0,T ]

|XN,ε
t −YN,ε

t |∞ ≥ N−α

)
≤ C(γ)N−γ , for each N ≥ N0

for α ∈ (0, 1/2) and γ > 0.

2.1.1. Approximated interacting particle systems. In order to apply the method of
convergence in probability, we need to change our particle systems to the intermediate level
(see Figure 1). To introduce the regularized versions of (2.1) and (2.2), we take a smooth
approximation (kε, ε > 0) of k, which will be specified late on. The regularized microscopic

N -particle system XN,ε
t := (X1,ε

t , . . . , XN,ε
t ) is given by

(2.3) dXi,ε
t = − 1

N

N∑
j=1

kε(Xi,ε
t −Xj,ε

t ) dt+ σ dBi
t, i = 1, . . . , N, XN,ε

0 ∼
N
⊗
i=1
ρ0,

and the regularized mean-field trajectories YN,ε
t := (Y 1,ε

t , . . . , Y N,ε
t ) by

(2.4) dY i,ε
t = −(kε ∗ ρεt )(Y

i,ε
t ) dt+ σ dBi

t, i = 1, . . . , N, YN,ε
0 = XN,ε

0 ,

where ρεt := ρε(t, ·) denotes the probability density of any of the i.i.d. random variables Y i,ε
t .

Moreover, for i = 1, . . . , N , it is convenient to denote the regularized interaction force
Kε
i : RdN → Rd as

(2.5) Kε
i (x1, . . . , xN ) := − 1

N

N∑
j=1

kε(xi − xj), (x1, . . . , xN ) ∈ RdN ,

and the mean-field interaction force Kε
t,i : RdN → Rd as

(2.6) Kε
t,i(x1, . . . , xN ) := −(kε ∗ ρεt )(xi), (x1, . . . , xN ) ∈ RdN ,

where ρεt is the law of Y i,ε
t .

2.1.2. Diffusion-aggregation equations. The associated probability densities of the par-
ticle systems, introduced in Subsection 2.1.1, satisfy non-linear, non-local partial differential
equations. Indeed, the particle system (2.2) induces the non-linear diffusion-aggregation equa-
tion {

∂tρ(t, x) =
σ2

2 ∆ρ(t, x) +∇ · ((k ∗ ρ)(t, x)ρ(t, x)), ∀ (t, x) ∈ [0, T ]× Rd,
ρ(x, 0) = ρ0, ∀x ∈ Rd,

(2.7)

and the regularized particle system (2.4) the diffusion-aggregation equation{
∂tρ

ε(t, x) = σ2

2 ∆ρε(t, x) +∇ · ((kε ∗ ρε)(t, x)ρε(t, x)), ∀ (t, x) ∈ [0, T ]× Rd,
ρε(x, 0) = ρ0, ∀x ∈ Rd.

(2.8)

Note that we use ρt and ρεt for the solutions of the PDEs (2.7) and (2.8) as well as
for the probability densities of the particle systems (2.2) and (2.4), respectively, since these
objects will coincide by the superposition principle, see [BR20]. Thus, if we can solve the
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PDE’s (2.7), (2.8) the superposition principle provides weak solutions to the McKean–Vlasov
SDE’s (2.2) and (2.4)

2.1.3. Assumption on initial condition and interaction kernel. Throughout this chap-
ter we make the following assumptions on the interaction kernel k and the initial condition ρ0
of the interacting particle system.

Assumption 2.1. The interaction force kernel k : Rd → Rd satisfies

k ∈ L∞(Rd)

and the initial condition ρ0 : Rd → R fulfils

ρ0 ∈ L1(Rd) ∩ L∞(Rd) ∩ L1(Rd, |x|2 dx), ρ0 ≥ 0, and

∫
Rd

ρ0(x) dx = 1.

2.1.4. Outline of the method. The method of the chapter originated from the approach
of D. Lazarovici and P. Pickl, developed for the Vlasov–Poisson system in [LP17]. It is based
on the coupling method [Szn91] and a regularization of k to kε. A key insight of D. Lazarovici
and P. Pickl is to prove the convergence in probability with an arbitrary large algebraic rate
and algebraic cut-off parameter ε ∼ N−β, β > 0, instead of comparing the trajectories XN,ε

and YN,ε in Wasserstein distance or in L2-norm, as for instance done in [Szn91, CCH14].
More precisely, for α ∈ (0, 1/2), β ≤ α and arbitrary γ > 0, we shall show that

P

(
sup
t∈[0,T ]

|XN,ε
t −YN,ε

t |∞ ≥ N−α

)
≤ C(γ)N−γ , for each N ≥ N0.

To implement this strategy and to achieve the aforementioned result, we proceed as follows:

(1) We start with an analysis of the diffusion-aggregation equations (2.7) and (2.8), that
is, we prove the well-posedness of the non-local, non-linear PDEs (2.7) and (2.8),
together with an L∞([0, T ];L∞(Rd))-bound on the solution ρε, which is uniform in
ε. These results can be obtained via standard PDE techniques such as a compactness
method, Aubin–Lions lemma, which provides strong convergence, and a Moser type
iteration, see Section 2.2. The uniform bound allows us to have a trade-off between
the irregularity of the interaction force kernel and the regularity of the solution ρε.

(2) The main idea of D. Lazarovici and P. Pickl was to recognize that even though the
interaction force kernel is not globally Lipschitz continuous, the approximation kε

satisfies a local Lipschitz bound of order ε−d for |x− y| ≤ 2ε, i.e.

(2.9) |kε(x)− kε(y)| ≤ lε(y)|x− y|.
Let us emphasize that the bound depends only on the point y. Hence, the above
inequality seems like a Taylor expansion around the point y, where the second order
term is missing. Consequently, the bound cannot be achieved by a simple application
of the mean-value theorem.

We will assume that the interaction force kernel k satisfies (2.9), see Assump-
tion 2.13 below, and present various examples of such kernels in Section 2.3. We refer
to [LP17, CCS19, HLL19] for further models with interaction force kernels satisfying
(2.9). In general, whether (2.9) holds true, depends entirely on the interaction force
kernel of the considered model, in particular, on the order of discontinuity/singularity
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of the kernel. Hence, as rule of thumb, if the discontinuity/singularity is of order
ε−d+1 in a d-dimensional setting, then the local Lipschitz bound assumption can be
satisfied.

(3) We need to derive a law of large numbers, see Section 2.4. This allows us to treat
every involved object with regard to its expectation on a set with high probability,
which enables us to take advantage of the obtained regularity of ρε in Step (1).
Unsurprisingly, we need i.i.d. objects to apply the derived law of large numbers. In

the present case these objects are going to be the processes (Y i,ε
t , t ≥ 0) for i ∈ N.

Moreover, we would like to emphasize the importance of Step (2) at this moment and
the crucial fact that lε(y) only depends on the point y. Replacing in inequality (2.9)

the point y with the process Y i,ε
t and x with the process Xi,ε

t , we see that lε on the

right-hand side of (2.9) is depending on the i.i.d. process Y i,ε
t . Consequently, we can

rely on the law of large numbers, Proposition 2.21.
(4) Finally, let us demonstrate how to apply the previous steps to derive propagation of

chaos in probability but leaving out the technical difficulties. To that end, for some
α ∈ (0, 1/2) and δ > 0, we define an auxiliary process

JNt := min

(
1, Nα|XN,ε

t −YN,ε
t |∞ +N−δ

)
.

This process seems to control the difference |XN,ε
t − YN,ε

t |∞ in the limit N → ∞
with weight Nα. Furthermore, the minimum is no restriction, since we only want to

show convergence to zero in probability, and we notice that, if Nα|XN,ε
t −YN,ε

t |∞ is
too big, the process stays constant one and the time derivative is zero. Therefore,
we heuristically obtain

d

dt
(Nα|XN,ε

t −YN,ε
t |∞ +N−δ)

≤ Nα sup
i=1,...,N

|Kε
i (X

N,ε
t )−Kε

t,i(Y
N,ε
t )|

≤ Nα sup
i=1,...,N

|Kε
i (X

N,ε
t )−Kε

i (Y
N,ε
t ))|+Nα sup

i=1,...,N
|Kε

i (Y
N,ε
t )−Kε

t,i(Y
N,ε
t )|.

The last term depends on the i.i.d. particles (Y i
t , i = 1, . . . , N) and can be estimated

via the law of large numbers, Proposition 2.21, with a rate of N−δ−α. For the first
term we can use the local Lipschitz bound (having in mind that the particles are
close because of the minimum in the process) to complete a Gronwall argument. As
mentioned before, the crucial point in this step is the fact that the local Lipschitz

bound only depends on the i.i.d. particlesYN,ε
t and not on the particles systemXN,ε

t .

This allows us to exchange the local Lipschitz bound 1
N

N∑
j=1

lε(Y i,ε
t − Y j,ε

t ) with its

conditional expectation lε ∗ ρεt (Y
i,ε
t ). Using the regularity properties, obtained from

the PDE analysis in Step (1), we can bound ∥kε ∗ ρε∥L∞([0,T ];L∞(Rd)). Hence, we

conclude that

d

dt
(Nα|XN,ε

t −YN,ε
t |∞ +N−δ) ≤ C(Nα|XN,ε

t −YN,ε
t |∞ +N−δ).
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Applying Gronwall’s lemma completes the proof. We remark that we implicitly used
the fact that the law of large numbers holds for large N ∈ N and, consequently, the
above Gronwall inequality only holds in the limit N → ∞. In the actual proof we
will use a version of the process JNt which is multiplied by an exponential, which
just leads to a rewriting of the above Gronwall argument.

The remaining of the chapter is devoted to establish Step (1)-(4) with all technical details
for bounded interaction force kernels.

Our contribution: In the present chapter we establish the approach of Lazarovici and
Pickl [LP17] in a general setting allowing for interacting particle systems and diffusion-
aggregation equations with bounded interaction force kernels which can be approximated
in a suitable manner by smooth kernels. One main objective is to provide a transparent road
map how to utilize this approach. To that end, we give a brief summary of the approach and
explain its core concepts.

The first contribution is to demonstrate the well-posedness of the diffusion-aggregation
equation (2.7), which is derived from the interacting particle system (2.1), for bounded interac-
tion force kernels k. The main challenge lies in the non-linearity in the transport term, which
is treated by a strong-weak convergence argument provided by Aubin’s lemma A.31. The
presented well-posedness result expands previous existence results regarding similar partial
differential equations, for instance, regarding bounded confidence models [Lor07, CJLW17]
used in social science.

The second contribution is to provide Lp and L∞-estimates for the solution ρ through a
Moser iteration. Following [LP17], we introduce a uniform local Lipschitz assumption, see
Assumption 2.13 below. For instance, we verify that models for the opinion formation of
interacting agents, such as the Hegselmann–Krause model [HK02], satisfy this uniform local
Lipschitz assumption. As a rule of thumb, Assumption 2.13 is fulfilled by interaction force
kernels with jump/singularity that are at most the same order as the space dimension.

As third contribution, we establish propagation of chaos in probability supposing the local
Lipschitz assumption for the bounded interaction force kernel k. This is achieved by proving
a suitable law of large numbers, demonstrating the convergence of the regularized particle
system to the regularized mean-field system in a suitable topology and, subsequently, proving
the convergence of the regularized probability density ρε to the probability density ρ as ε→ 0.

Related literature: The influential approach of Lazarovici and Pickl [LP17] deals with the
Vlasov–Poisson system, which is a second order system with a singular interaction force ker-
nel k. For the Vlasov–Poisson kernel, the underlying particle system is a priori not well-posed.
Therefore, a regularization kε of the kernel k is introduced in [LP17], where kε is a smooth ap-
proximation of the interaction force kernel k depending on the number of particles (ε = N−β),
such that the interacting particle system is well-posed. Nowadays, the aforementioned ap-
proach is widely used, for instance, for the Keller–Segel equation [HLL19, LY19, FHS19],
the Cucker–Smale model with singular communication [HKPZ19] and the Vlasov–Poisson–
Fokker–Planck equation [CCS19, HLP20, CLPY20]. All of the above system have singular
interactions and therefore could collapse, as e.g. the Keller–Segel system [FJ17, Proposi-
tion 4]. Hence, an advantage of the method [LP17] is that well-posedness of the underlying
particle system is not required since one works directly with the regularized/approximative
particle system using the kernel kε for which one can apply classical existence and uniqueness
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theorems for SDE’s. Moreover, the approach of Lazarovici and Pickl allows to show prop-
agation of chaos of the regularized particle systems to the regularized mean-field equation.
This acts as an intermediate result, as illustrated by the top arrow in Figure 1. However, the
remaining limit of the regularized mean-field equation to the mean-field equation (right arrow
of Figure 1) is reduced to a convergence analysis on the PDE level. On the other hand, the
convergence of the regularized particle system to the non-regularized particles system (left
arrow of Figure 1) only requires a stability analysis on the SDE level, which still is, at least
in general, a challenging task.

Let us also recall some literature for singular kernels, which do not tackle the problem with
the method of convergence in probability. For a more details we refer to the Section 1.3.4
and Chapter 3. Motivated by various models arising especially in physics, which require
bounded measurable or even singular interaction force kernels, an enormous amount of work
has been dedicated to treat such irregular interaction force kernels. Initially, approaches to
treat such irregular kernels were often based on compactness methods in combination with the
martingale problems associated to the McKean–Vlasov SDEs, see e.g. [Oel84, Osa87, Gär88,
FJ17, GQ15]. More recently, even singular kernels, like the Coulomb potential x/|x|s for s > 0,
were investigated in the non-random setting [Ser20, NRS22] (σ = 0) as well as in a random
setting [JW18, BJW19, BJW23, RS23] (σ > 0). The aforementioned references introduced a
novel method called the modulated energy approach, see Section 1.3.4, Chapter 3 or Chapter 5
in the case of common noise. Further results on propagation of chaos were proven for general
Lp-interaction force kernels k for first and second order systems on the torus [BJW23] and
on the whole space Rd [HRZ24, Han23, Lac23].

Organization of the chapter: In Section 2.1 we introduce the notation, the interacting
particle systems and their associated diffusion-aggregation equations. Moreover, we present
a brief outline of the used method, building on the work of D. Lazarovici and P. Pickl [LP17].
The well-posedness and regularity properties of the diffusion-aggregation equations are es-
tablished in Section 2.2. In Section 2.3 we discuss the local Lipschitz assumption on the
approximative interaction force kernels and provide various examples. Section 2.4 contains
the law of large numbers and the propagation of chaos in probability is provided in Section 2.5.

2.2. Well-posedness and uniform bounds for the diffusion-aggregation equations

In this section we prove well-posedness of the PDEs (2.7) and (2.8), show the convergence
of the solutions (ρε, ε > 0) to ρ in the weak topology, and provide regularity results as well
as uniform bounds for (ρε, ε > 0) and ρ, which are required for propagation of chaos result
in probability established later in Section 2.5. We start by introducing an assumption on the
approximation sequence (kε, ε > 0) of interaction force kernels.

Assumption 2.2. Let (kε, ε > 0) be a sequence, which satisfies the following:

(i) For each ε > 0 the interaction force kernel kε : Rd 7→ Rd is twice continuously
differentiable;

(ii) For each ε > 0 we have ∥kε∥L∞(Rd) ≤ C ∥k∥L∞(Rd) <∞;

(iii) We have lim
ε→0

kε = k a.e.

Under Assumptions 2.1, 2.2 the strong existence and uniqueness of (2.3) and (2.4) follow
directly from the Lipschitz continuity of the approximation kε.
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For the non-linear, non-local PDE (2.8) we notice that, by Young’s inequality, we obtain
the following L∞(Rd)-bound
(2.10) |(kε ∗ ρε)(t, x)| ≤ ∥kε∥L∞(Rd) ∥ρ

ε
t∥L1(Rd) ≤ C ∥k∥L∞(Rd) .

Hence, kε ∗ ρ is uniformly bounded in ε > 0 on [0, T ] × Rd. The same statement holds for
k ∗ ρ. Consequently, the convolution term is bounded and we expect the existence of a weak
solution to the PDEs (2.7) and (2.8).

For the partial differential equations (2.7) and (2.8) we rely on the concept of weak
solutions, which we recall in the next definition.

Definition 2.3 (Weak solutions). We say that the function ρε ∈ L2([0, T ];H1(Rd)) ∩
L∞([0, T ];L2(Rd)) with d

dtρ
ε ∈ L2([0, T ];H−1(Rd)) is a weak solution of (2.8) if, for every

η ∈ L2([0, T ];H1(Rd)),
T∫
0

⟨∂tρεt , η⟩H−1(Rd),H1(Rd) dt

= −
T∫
0

∫
Rd

(
σ2

2
∇ρε(t, x) + (kε ∗ ρε)(t, x)ρε(t, x)

)
· ∇η dx dt

(2.11)

and ρε(0, ·) = ρ0. Similarly, we define ρ ∈ L2([0, T ];H1(Rd)) ∩ L∞([0, T ];L2(Rd)) with ∂tρ ∈
L2([0, T ];H−1(Rd)) as a weak solution of (2.7) if (2.11) holds with the interaction force kernel
k instead of its approximation kε.

Remark 2.4. Notice that ρε ∈ L2([0, T ];H1(Rd)) with ∂tρε ∈ L2([0, T ];H−1(Rd)) implies
ρε ∈ C([0, T ];L2(Rd)), see [Eva10, Chapter 5.9]. The same statement holds for the solution
ρ.

By the regularity of the solution in Definition 2.3 we can actually weaken the assumption
on η in equation (2.11) to η ∈ C([0, T ];C∞

c (Rd)).

Remark 2.5. The divergence structure of the PDEs (2.7) and (2.8), respectively, implies
mass conservation/the normalisation condition

1 =

∫
Rd

ρt(x) dx =

∫
Rd

ρεt (x) dx, t ∈ [0, T ],

under Assumption 2.1. This is an immediate consequence by plugging in a cut-off sequence,
see [Bre11, Lemma 8.4], which converges to the constant function 1 as a test function in (2.11).

Theorem 2.6. Suppose Assumption 2.1. Then, for each T > 0 and ε > 0 there exists a
unique non-negative weak solution ρε ∈ L2([0, T ];H1(Rd)) ∩ L∞([0, T ];L2(Rd)) with d

dtρ
ε ∈

L2([0, T ];H−1(Rd)) to the regularized PDE (2.8) in the sense of Definition 2.3. Moreover,
the estimate

∥ρε∥L∞([0,T ];L2(Rd)) + ∥ρε∥L2([0,T ];H1(Rd)) + ∥∂tρε∥L2([0,T ];H−1(Rd))

≤ C
(
T, ∥k∥L∞(Rd)

)
∥ρ0∥L2(Rd)

(2.12)

holds for all ε > 0.
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Proof. Let us explain the main idea of the existence proof. We consider the associated
McKean–Vlasov process{

dY ε
t = −(kε ∗ ρεt )(Y ε

t ) dt+ σ dB1
t , Y0 ∼ ρ0,

ρεt = Law(Y ε
t ),

for the initial condition ρ0. Then, by [KS91, Chapter 5. Theorem 2.9] and the Lipschitz
continuity of the drift kε ∗ ρεt , the aforementioned SDE has a unique strong solution and,
by [Rom18, Proposition 3.1], it has a density (ρεt , t ≥ 0). Now, fix ρεt and consider the
solution ρ̃ε = (ρ̃εt , t ≥ 0) to the linearized parabolic PDE{

∂tρ̃
ε(t, x) = σ2

2 ∆ρ̃ε(t, x) +∇ · ((kε ∗ ρε)(t, x)ρ̃ε(t, x)), ∀ (t, x) ∈ [0, T ]× Rd,
ρ̃ε(x, 0) = ρ0, ∀x ∈ Rd.

By standard second order parabolic PDE theory, we know that the aforementioned PDE is
well-posed and

ρ̃ε ∈ L2([0, T ];H1(Rd)) ∩ L∞([0, T ];L2(Rd)),
d

dt
ρ̃εt ∈ L2([0, T ];H−1(Rd)),

with the estimate (2.12). Applying the superposition principle [BR20, Theorem 4.1], we find
a weak solution to

dỸ ε
t = −(kε ∗ ρεt )(Ỹ ε

t ) dt+ σ dB1
t , Ỹ N

0 ∼ ρ0, t ∈ [0, T ],

with Law(Ỹ ε
t ) = ρ̃εt dx. Since strong uniqueness holds [HRZ24, Theorem 4.10] for the above

SDE, we have Ỹ ε = Y ε. By the Yamada–Watanabe theorem [KS91, Chapter 5, Proposi-
tion 3.20] this implies uniqueness in law and therefore

ρ̃εt dx = ρεt dx, t ∈ [0, T ],

in the sense of measures. Hence, ρ̃εt = ρεt P-a.s. for all t ∈ [0, T ] and ρε has the desired
regularity. □

Lemma 2.7. Suppose Assumption 2.1. Consider a solution ρε of the regularized diffusion-
aggregation equation (2.8) with initial condition ρ0, which by Theorem 2.6 exists. Then, we
have the following uniform bound∫

Rd

|x|2ρε(t, x) dx ≤ C
(
T, ∥k∥L∞(Rd)

) ∫
Rd

|x|2ρ0(x) dx

for all t ≥ 0, which depend only upon
∫
Rd(1 + |x|2)ρ0(x) dx and T . Therefore, the function

t 7→
∫
Rd |x|2ρε(t, x) dx is bounded in L∞([0, T ];Rd).

Proof. The core idea is to use |x|2 as a test function. To that end, we take a sequence
of radial antisymmetric functions (gn, n ∈ N) with gn ∈ C2

c (Rd) for all n ∈ N, such that gn
grows to |x|2 as n→ ∞. More precisely, we choose the non-negative function

χn(x) :=

{
|x|, for |x| ≥ 1

n ,

−n3 |x|
4

8 + n3|x|2
4 + 3

8n , for |x| ≤ 1
n ,

and let (ζn, n ∈ N) be a sequence of compactly supported cut-off function defined by ζn(x) =
ζ(x/n), where ζ is a smooth function with support in the ball of radius two and has value one
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in the unit ball. Notice that the derivatives of ζn have support in the annulus B(0, 2n)\B(0, n)
and satisfy the inequality |∇mζn(x)| ≤ Cn−m. Define gn := ζnχ

2
n. We notice that the first

derivative of gn is bounded and |∇gn|2 ≤ Cgn for all n ∈ N. Additionally we have

∂

∂xi

∂

∂xi
(χ2

n(x)) =
∂

∂xi

(
2χn(x)

∂

∂xi
χn(x)

)
= 2

∣∣∣∣ ∂∂xiχn(x)
∣∣∣∣2 + 2χn(x)

∂

∂xi

∂

∂xi
χn(x).

Now, for |x| ≥ 1/n we have

∂

∂xi

∂

∂xi
χn(x) =

∂

∂xi

xi
|x|

=
1

|x|
− x2i

|x|3
.

Consequently, we applying Hölder’s inequality for sums we obtain

|∆(χ2
n(x))| ≤ 2 + 2d

1
2 +

2

|x|2
d∑
i=1

|xi|2 = 2d
1
2 + 4.

For |x| ≤ 1/n we have

∂

∂xi

∂

∂xi
χn(x) =

∂

∂xi

(
− 4n3|x|2xi +

3n

2
xi

)
= −8n3x2i − 4n2|x|2 + 3n

2
,

which implies

|∆(χ2
n(x))| = 16n6|x|6 + 9n2

4
|x|2 + 2χn(x)

(
− 8n3|x|2 − 4dn2|x|2 + 3dn

2

)
≤ 16 +

9

4
+

4

n

(
8n+ 4d+

3dn

2

)
≤ C

for a constant independent of n ∈ N. Consequently, the Laplace operator of χ2 is bounded
uniformly in n ∈ N. Then, for φ ∈ C∞

c (0, T ) we obtain∫ T

0

∫
Rd

gn(x)ρ
ε(t, x)

d

dt
φ(t) dx dt

=

∫ T

0

∫
Rd

(
σ2

2
∇ρε(t, x) · ∇gn(x) + (kε ∗ ρε)∇gn(x)ρε(t, x)

)
φ(t) dx dt.

Furthermore, for t1, t2 ∈ [0, T ] we have∣∣∣∣∫
Rd

gn(x)ρ
ε(t1, x) dx−

∫
Rd

gn(x)ρ
ε(t2, x) dx

∣∣∣∣ ≤ ∥gn∥L2(Rd) ∥ρ
ε(t1, ·)− ρε(t2, ·)∥L2(Rd) .

Therefore, ρε ∈ C([0, T ];L2(Rd)) implies that t 7→
∫
Rd gn(x)ρ

ε(t, x) dx is continuous for each
n ∈ N. Then, the fundamental lemma of calculus of variations implies∫

Rd

gn(x)ρ
ε(t, x) dx−

∫
Rd

gn(x)ρ0(x) dx

= −
∫ t

0

∫
Rd

σ2

2
∇ρε(s, x) · ∇gn(x) + (kε ∗ ρε)(s, x) · ∇gn(x)ρε(s, x) dx ds.
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We can use mass conservation, Sobolev embedding and (2.12) to obtain∫
Rd

gn(x)ρ
ε(t, x) dx

≤
∫
Rd

|x|2ρ0(x) dx+ CT ∥k∥2L∞(Rd) +

t∫
0

∫
Rd

ρεs(x)|∇gn(x)|2 dx ds

+
σ2

2

∫ t

0

∫
Rd

∣∣∆ζn(x)χ2
n(x) + 4∇ζn(x) · ∇χn(x)χn(x) + ζn∆(χ2

n(x))
∣∣ ρε(s, x) dx ds

≤
∫
Rd

|x|2ρ0(x) dx+ CT ∥k∥2L∞(Rd) +

t∫
0

∫
Rd

ρεs(x)gn(x) dx ds

+
σ2

2

∫ T

0

∫
B(0,2n)\B(0,n)

C

n2
|χ2
n(x)|+

C

n
|χn(x)|ρεs(x) dx ds+

σ2

2

∫ T

0

∫
Rd

ρεs(x) dx ds

≤
∫
R
|x|2ρ0(x) dx+ CT ∥k∥2L∞(Rd) +

t∫
0

∫
Rd

ρεs(x)gn(x) dx+ C.

Applying Gronwall’s lemma and Fatou’s lemma proves the lemma. □

Lemma 2.8. Let (fn, n ∈ N) be a sequence in L2([0, T ];H1(Rd)). If the sequence satisfies

(i) ∥fn∥L2([0,T ];H1(Rd)) ≤ C,

(ii) ∥∂tfn∥L2([0,T ];H−1(Rd)) ≤ C,

(iii) sup
t∈[0,T ]

∫
Rd |x|2|fn(t, x)|dx ≤ C,

for some constant C > 0, then (fn, n ∈ N) is relative compact in Lp([0, T ];Lp(Rd)) for all
p ∈ [1, 2].

Proof. Let us denote by B(0, R) the ball with radius R and center 0. Then, by the
Rellich-Kondrachov theorem A.12 the embedding H1(B(0, R)) ↪→ L2(B(0, R)) is compact.
Hence, by Aubin–Lions lemma [Sho97, Chapter 3, Proposition 1.3], (fn, n ∈ N) is relative
compact in L2([0, T ];L2(B(0, R))). Since the above spaces is of finite measure, we obtain the
relative compactness of (fn, n ∈ N) in Lp([0, T ];Lp(B(0, R))) for all p ∈ [1, 2]. Note that by
Cantor’s diagonal argument we can extract one subsequence (fnk

, k ∈ N) such that

lim
k→∞

∥fnk
− fR∥Lp([0,T ];Lp(B(0,R))) = 0.

for some limit point fR ∈ Lp([0, T ];Lp(B(0, R))) and all p ∈ [1, 2], R ∈ N. Furthermore,
using again a Cantor’s diagonal argument, we can assume that (fnk

, k ∈ N) converges almost
everywhere to fR in B(0, R). For x ∈ Rd we choose some R ∈ N such that x ∈ B(0, R) and
define f(x) := fR(x). This definition is well-defined, since for x ∈ B(0, R) ⊂ BR′ we have
fR = fR′ on B(0, R) by the local Lp convergence of the sequence (fnk

, k ∈ N). Consequently,
the sequence (fnk

, k ∈ N) convergence almost everywhere to f on Rd. It remains to prove
that f ∈ Lp([0, T ];Lp(Rd)) and fnk

→ f ∈ Lp([0, T ];Lp(Rd)) as k → ∞. First, the uniform
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second moment estimate and the uniform L2(Rd) bound in combination with Fatou’s lemma
imply f ∈ Lp([0, T ];Lp(Rd)) and

sup
t∈[0,T ]

∫
Rd

|x|2f(t, x) dx ≤ sup
n∈N

sup
t∈[0,T ]

∫
Rd

|x|2fn(t, x) dx ≤ C.

Second, we find

∥fnk
− f∥L1([0,T ];L1(Rd))

=

T∫
0

∫
Rd

|fnk
(t, x)− f(t, x)| dx dt

=

T∫
0

∫
B(0,R)

|fnk
(t, x)− f(t, x)|dx dt+

T∫
0

∫
B(0,R)c

|fnk
(t, x)− f(t, x)|dx dt

≤
T∫
0

∫
B(0,R)

|fnk
(t, x)− f(t, x)|dx dt+ 1

R2
sup
k∈N

T∫
0

∫
B(0,R)c

|x|2|fnk
(t, x)− f(t, x)|dx dt.

Taking k → ∞ and then R → ∞, we find a subsequence (fnk
, k ∈ N) which converges in

L1([0, T ];L1(Rd)). The uniform Lp(Rd)-bound on (fn, n ∈ N) and an interpolation inequal-
ity A.3 shows the relative compactness of (fn, n ∈ N) in Lp([0, T ];Lp(Rd)). □

In the next theorem, we show that the approximation sequence (ρε, ε > 0) converges in
the weak sense to a weak solution ρ of equation (2.7).

Theorem 2.9. Suppose Assumption 2.1. Then, for each T > 0 there exists a subse-
quence (ρεm ,m ∈ N) such that ρεm ⇀ ρ as m → ∞ in L2([0, T ];H1(Rd)). Furthermore,
ρ ∈ L2([0, T ];H1(Rd))∩L∞([0, T ];L2(Rd)) with ∂tρ ∈ L2([0, T ];H−1(Rd)) is the unique non-
negative weak solution of equation (2.7), which satisfies

∥ρ∥L∞([0,T ];L2(Rd)) + ∥ρ∥L2([0,T ];H1(Rd)) + ∥∂tρ∥L2([0,T ];H−1(Rd))

≤ C
(
T, ∥k∥L∞(Rd)

)
∥ρ0∥L2(Rd) .

(2.13)

In addition, there exists a subsequence (ρεm ,m ∈ N) such that ρεm → ρ converges weakly as
m→ ∞ in L1([0, T ];L1(Rd)).

Proof. From (2.12), the Banach–Alaoglu theorem A.28 and the lower semi-continuity
we obtain (2.13) and a subsequence (ρεm ,m ∈ N) such that

ρεm ⇀ ρ in L2([0, T ];H1(Rd)),

∂tρ
εm ⇀ ∂tρ in L2([0, T ];H−1(Rd)).

Moreover, we have ρ ≥ 0 a.e. by Mazur’s lemma [Bre11, Corollary 3.8]. Next, we notice
that the subsequence (ρεm ,m ∈ N) fulfills Lemma 2.8. Consequently, without renaming the
subsequence we conclude

(2.14) lim
m→∞

∥ρεm − ρ∥Lp([0,T ];Lp(Rd)) = 0
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for all p ∈ [1, 2]. Hence, it remains to show that we can take the limit in (2.11). From the
above weak convergence it immediately follows

T∫
0

⟨∂tρεmt , η⟩H−1(Rd),H1(Rd) dt→
T∫
0

⟨∂tρt, η⟩H−1(Rd),H1(Rd) dt,

T∫
0

∫
Rd

∇ρεm(t, x) · ∇η(t, x) dx dt→
T∫
0

∫
Rd

∇ρ(t, x) · ∇η(t, x) dx dt

for η ∈ L2([0, T ];H1(Rd)) as m→ ∞. We write the non-linear term as

(2.15)

T∫
0

∫
Rd

ρεm(t, x)(kεm ∗ ρεm)(t, x) · ∇η(t, x) dx dt = I1 + I2 + I3 + I4

with

I1 =

T∫
0

∫
Rd

(ρεm − ρ)(kεm ∗ ρεm)(t, x) · ∇η(t, x) dx dt,

I2 =

T∫
0

∫
Rd

ρ((kεm − k) ∗ ρ)(t, x) · ∇η(t, x) dx dt,

I3 =

T∫
0

∫
Rd

ρ(kεm ∗ (ρεm − ρ))(t, x) · ∇η(t, x) dx dt,

I4 =

T∫
0

∫
Rd

ρ(k ∗ ρ)(t, x) · ∇η(t, x) dx dt.

For the first term I1 we notice that it vanishes as m → ∞. Indeed, since |kεm ∗ ρεm | ≤
C ∥k∥L∞(Rd) and ∇η ∈ L2([0, T ];L2(Rd)), we have (kεm ∗ ρεm) · ∇n ∈ L2([0, T ];L2(Rd))
uniform in εm and, thus, ρεm → ρ in L2([0, T ];L2(Rd)) implies

T∫
0

∫
Rd

(ρεm − ρ)(kεm ∗ ρεm)(t, x) · ∇η(t, x) dx dt→ 0, as m→ ∞
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by Hölder’s inequality. For the second term I2 we use Assumptions 2.2 to find

T∫
0

∫
Rd

ρ(t, x)((kεm − k) ∗ ρ)(t, x) · ∇η(t, x) dx dt

=

T∫
0

∫
Rd

∫
Rd

ρ(t, x)(kεm − k)(x− y)ρ(t, y) · ∇η(t, x) dy dx dt

≤
T∫
0

∫
Rd

∫
Rd

(ρ|∇η|)(t, x) ∥kεm + k∥L∞(Rd) ρ(t, y) dy dx dt

≤ (C + 1)

T∫
0

∫
Rd

∫
Rd

(ρ|∇η|)(t, x) ∥k∥L∞(Rd) ρ(t, y) dy dx dt.

The right-hand side is finite and, therefore, by the dominated convergence theorem and the
almost everywhere convergence of kε → k, the second term vanishes. For the third term I3
we apply Young’s inequality [LL01, Theorem 4.2] and (2.14) to obtain

T∫
0

∫
Rd

ρ(t, x)(kεm ∗ (ρεm − ρ)(t, x)) · ∇η(t, x) dx dt

≤
T∫
0

∥ρεm − ρ(t, ·)∥L1(Rd) ∥k∥L∞(Rd) ∥ρ∇η(t, ·)∥L1(Rd) dt

≤ ∥η∥L2([0,T ];H1(Rd)) ∥ρ∥L2([0,T ];L2(Rd)) ∥k∥L∞(Rd)

T∫
0

∥ρεm − ρ(t, ·)∥L1(Rd) dt

→ 0, as m→ ∞.

Consequently, taking the limit m→ ∞ in (2.15), we discover

lim
m→∞

T∫
0

∫
Rd

ρεm(t, x)(kεm ∗ ρεm)(t, x) · ∇η(t, x) dx dt =
T∫
0

∫
Rd

ρ(k ∗ ρ)(t, x) · ∇η(t, x) dx dt

and therefore ρ is a weak solution. The uniqueness follows by simple L2-estimates; see for
instance [CJLW17, Theorem 3.10] in the case of the Hegselmann–Krause model (notice that
the proof of the uniqueness also works for Rd and k ∈ L∞(Rd)). □

Remark 2.10. The uniqueness of the solution ρ actually implies that any subsequence
convergences to the solution ρ.

Lemma 2.11. Suppose Assumption 2.1. Then, for any T > 0 the weak solutions (ρε, ε > 0)
of (2.8) as well as the weak solution ρ of (2.7) with initial condition ρ0 are bounded in
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L∞([0, T ];Lp(Rd)) for p ∈ [1,∞). More precisely, we have, for all ε > 0,

∥ρε∥L∞([0,T ];Lp(Rd)) , ∥ρ∥L∞([0,T ];Lp(Rd)) ≤ C
(
p, σ, T, ∥k∥L∞(Rd)

)
∥ρ0∥Lp(Rd) .

Proof. Without loss of generality we show the claim only for ρ and we also may assume
that ρ is a smooth solution. Otherwise we mollify the initial condition such that there exists
a sequence of smooth solutions, which converge weakly in L2([0, T ];H1(Rd)) to ρε for each
fix ε > 0. Applying the lower semi-continuity for each ε > 0 first and then the convergence
result in Theorem 2.9 will prove the lemma.

Multiplying (2.7) with p
2(p−1)ρ

p−1, integrating by parts over Rd and using inequality (2.10),

we obtain

1

2(p− 1)

d

dt

∫
Rd

ρp(t, x) dx

=
p

2(p− 1)

∫
Rd

d

dt
ρ(t, x)ρp−1(t, x) dx

=
p

2(p− 1)

∫
Rd

(
σ

2
∆ρ(t, x) +∇ · ((k ∗ ρ)(t, x)ρ(t, x))

)
ρp−1(t, x) dx

=
p

2

∫
Rd

−σ
2
|∇ρ(t, x)|2ρp−2(t, x)− (k ∗ ρ)(t, x) · ∇ρρp−1(t, x) dx

= −σ
2

p

∫
Rd

|∇(ρp/2)(t, x)|2 dx−
∫
Rd

∇(ρp/2)(t, x) · (k ∗ ρ)(t, x)ρp/2(t, x) dx

≤ −σ
2

p

∫
Rd

|∇(ρp/2)(t, x)|2 dx+ ∥k∥L∞(Rd)

∫
Rd

|∇(ρp/2)(t, x)ρp/2(t, x)| dx

≤ −σ
2

p

∫
Rd

|∇(ρp/2)(t, x)|2 dx+ ∥k∥L∞(Rd)

∫
Rd

σ2

2p ∥k∥L∞(Rd)

|∇(ρp/2)(t, x)|2

+
p ∥k∥L∞(Rd)

2σ2
|ρp(t, x)| dx

≤ −σ
2

2p

∫
Rd

|∇(ρp/2)(t, x)|2 dx+
p ∥k∥2L∞(Rd)

2σ2

∫
Rd

|ρp(t, x)|dx

≤
p ∥k∥2L∞(Rd)

2σ2

∫
Rd

|ρp(t, x)| dx,

where we used Young’s inequality with ε = σ2

∥k∥
L∞(Rd)p

in the sixth step. An application of

Gronwall’s inequality leads to∫
Rd

ρp(t, x) dx ≤ C
(
p, σ, T, ∥k∥L∞(Rd)

)
∥ρ0∥Lp(Rd) for all t ∈ [0, T ].

□

Lemma 2.12. Suppose Assumption 2.1. Then, for each T > 0 there exists a constant C
such that, for all ε > 0,

∥ρε∥L∞([0,T ];L∞(Rd)) , ∥ρ∥L∞([0,T ];L∞(Rd)) ≤ C
(
T, ρ0, ∥k∥L∞(Rd)

)
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holds for the weak solutions (ρε, ε > 0) of (2.8) and for the weak solution ρ of (2.7).

Proof. As previously, we will only show the claim for ρ and we can assume that ρ is
smooth.

Set ρm := max(ρ−m, 0) for some fix strictly positive m ∈ R and let p > 2. For the sake

of notational brevity we drop the depend of the involved on (t, x). Multiplying (2.7) by ρp−1
m

and integrating by parts, we obtain

1

p

d

dt

∫
Rd

ρpm dx =

∫
Rd

(
σ2

2
∆ρ+∇ · ((k ∗ ρ)ρ)

)
ρp−1
m dx

=−
∫
Rd

σ2(p− 1)

2
∇ρ · ∇(ρm)ρ

p−2
m − (p− 1)∇(ρm)ρ

p−2
m · (k ∗ ρ)ρdx

=−
∫
Rd

σ2(p− 1)

2
|∇ρm|2ρp−2

m − (p− 1)ρp−1
m (ρm)x(k ∗ ρ)

+m(p− 1)(ρm)xρ
p−2
m (k ∗ ρ) dx

=− 2σ2(p− 1)

p2

∫
Rd

|∇(ρp/2m )|2 dx− 2(p− 1)

p

∫
Rd

∇(ρp/2m )ρp/2m · (k ∗ ρ) dx

+
2m(p− 1)

p

∫
Rd

∇(ρp/2m )ρp/2−1
m · (k ∗ ρ) dx.

Notice, that we can interchange the derivatives of ρm and ρ as long as we have big enough p
such that at least one ρm is present in the integrand. In the next step we estimate the last
two terms with Young’s inequality. More precisely, we get

2(p− 1)

∫
Rd

1

p
∇(ρp/2m )ρp/2m · (k ∗ ρ) dx

≤ 2(p− 1) ∥k∥L∞(Rd)

∫
Rd

1

p
|∇(ρp/2m )| |ρp/2m | dx

≤ 2(p− 1)

∫
Rd

σ2

4p2
|∇(ρp/2m )|2 +

∥k∥2L∞(Rd)

σ2
|ρp/2m |2 dx

=
(p− 1)σ2

2p2

∫
Rd

|∇(ρp/2m )|2 dx+
2(p− 1) ∥k∥2L∞(Rd)

σ2

∫
Rd

|ρpm|dx

and

2(p− 1)

∫
Rd

1

p
∇(ρp/2m )mρp/2−1

m · (k ∗ ρ) dx

≤ 2(p− 1)

∫
Rd

1

p
|∇(ρp/2m )|m ∥k∥L∞(Rd) |ρ

p/2−1
m |dx

≤ 2(p− 1)

∫
Rd

σ2

4p2
|∇(ρp/2m )|2 +

m2 ∥k∥2L∞(Rd)

σ2
|ρp−2
m |dx

≤ (p− 1)σ2

2p2

∫
Rd

|∇(ρp/2m )|2 dx+
2(p− 1) ∥k∥2L∞(Rd)m

2

σ2

∫
Rd

|ρp−2
m | dx.



46 Mean-field limit via convergence in probability

Furthermore, we can estimate∫
Rd

|ρp−2
m |dx =

∫
Rd

1{m≤ρ≤m+1}|ρp−2
m |+ 1{ρ≥m+1}|ρp−2

m | dx

≤
∫
Rd

1{m≤ρ≤m+1} + |ρpm|dx

≤ 1

m

∫
Rd

ρdx+

∫
Rd

|ρpm|dx

≤ 1

m
+

∫
Rd

|ρpm| dx.

Hence, we derive for the last term the following inequality

2(p− 1)

∫
Rd

1

p
∇(ρp/2m )mρp/2−1

m · (k ∗ ρ) dx

≤ (p− 1)σ2

2p2

∫
Rd

|∇(ρp/2m )|2 dx+
2(p− 1) ∥k∥2L∞(Rd)m

σ2

+
2(p− 1) ∥k∥2L∞(Rd)m

2

σ2

∫
Rd

|ρpm|dx.

Putting everything together we find

1

p

d

dt

∫
Rd

ρpm dx ≤− σ2(p− 1)

p2

∫
Rd

|∇(ρp/2m )|2 dx+
2(p− 1) ∥k∥2L∞(Rd)m

σ2

+

(
2(p− 1) ∥k∥2L∞(Rd)

σ2
+

2(p− 1) ∥k∥2L∞(Rd)m
2

σ2

)∫
Rd

|ρpm|dx,

from which we can conclude that

d

dt

∫
Rd

ρpm dx

≤ −σ
2

2

∫
Rd

|∇(ρp/2m )|2 dx+
2 ∥k∥2L∞(Rd) p

2(m2 + 1)

σ2

∫
Rd

|ρpm|dx+
2p2 ∥k∥2L∞(Rd)m

σ2
.

By the Gagliardo–Nirenberg–Sobolev inequality [Leo17, Theorem 12.87] and [Nir59] on the

whole space as well as Young’s inequality with τ = 3σ2

4 we have

λ2 ∥u∥2L2(Rd) ≤ CGNSλ
2 ∥u∥

4
2+d

L1(Rd)
∥∇u∥

2d
2+d

L2(Rd)

≤
(
σ2(2 + d)

4d

)− d
2 2

2 + d
(CGNSλ

2)
2+d
2 ∥u∥2L1(Rd) +

σ2

4
∥∇u∥2L2(Rd) ,

(2.16)
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where CGNS is the Gagliardo–Nirenberg–Sobolev constant dimension d. For u = ρ
p/2
m , C1 :=

2∥k∥2
L∞(Rd)(m

2+1)

σ2 and λ =
√
C1p we obtain

C1p
2

∫
Rd

|ρpm| dx

≤
(
σ2(2 + d)

4d

)− d
2 2

2 + d
C

2+d
2

GNSC
2+d
1 p2+d

∥∥∥ρp/2m

∥∥∥2
L1(Rd)

+
σ2

4

∥∥∥(ρp/2m )x

∥∥∥2
L2(Rd)

.

Consequently, we have

d

dt

∫
Rd

ρpm dx ≤− 1

4
σ2
∫
Rd

(ρp/2m )2x dx+ p2+dC
(
σ,m, ∥k∥L∞(Rd)

)(∫
Rd

|ρp/2m | dx
)2

+
2p2 ∥k∥2L∞(Rd)m

σ2
.

Applying the above inequality (2.16) with u = ρ
p/2
m , λ = p and rearranging the terms we

discover

−σ
2

4

∥∥∥(ρp/2m )x

∥∥∥2
L2(Rd)

≤ −p2
∫
Rd

|ρpm| dx+
4

3σ
C3/2p2+d

∥∥∥ρp/2m

∥∥∥2
L1(Rd)

,

which then implies

d

dt

∫
Rd

ρpm dx

≤ −p2
∫
Rd

|ρpm|dx+ C
(
σ,m, ∥k∥L∞(Rd)

)
p2+d

(∫
Rd

ρp/2m dx

)2

+
2p2 ∥k∥2L∞(Rd)m

σ2

= −p2
∫
Rd

|ρpm|dx+ C
(
σ,m, ∥k∥L∞(Rd)

)
p2+d

(∫
Rd

ρp/2m dx

)2

+ C
(
σ,m, ∥k∥L∞(Rd)

)
p2

for some non-negative constant C(σ,m, ∥k∥L∞(Rd)).

Let us define

wj(t) :=

∫
Rd

ρ2
j

m(t, x) dx and Sj := sup
t∈[0,T ]

wj(t),

for j ∈ N. Then, for p = 2j the above inequality can be written as

d

dt
wj(t) ≤ −22jwj(t) + 22j

(
C
(
σ,m, ∥k∥L∞(Rd)

)
2djw2

j−1(t) + C
(
σ,m, ∥k∥L∞(Rd)

))
≤ −22jwj(t) + 22j

(
C
(
σ,m, ∥k∥L∞(Rd)

)
2djS2

j−1 + C
(
σ,m, ∥k∥L∞(Rd)

))
.

Moreover, define u(x) := −22jx+22j
(
C
(
σ,m, ∥k∥L∞(Rd)

)
2djS2

j−1+C
(
σ,m, ∥k∥L∞(Rd)

))
, ε :=

22j and A := C
(
σ,m, ∥k∥L∞(Rd)

)
22jS2

j−1+C
(
σ,m, ∥k∥L∞(Rd)

)
. Then, u is globally Lipschitz

continuous in x and v = e−εtv0 +A(1− e−εt) is a solution of the following ODE{
d
dtv(t) = u(v(t)),

v(0) = v0.
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Let us choose v0 :=
∫
Rd ρ

2j
0 dx ≥ w(0). Then, we can apply the comparison principle A.23 to

obtain

wj(t) ≤ v(t) ≤ e−εtv0 +A

≤ ∥ρ0∥2
j−1
L∞(Rd) + C

(
σ,m, ∥k∥L∞(Rd)

)
2djS2

j−1 + C
(
σ,m, ∥k∥L∞(Rd)

)
.

It follows that

Sj = sup
t∈[0,T ]

wj(t) ≤ C
(
σ,m, ∥k∥L∞(Rd)

)
max

(
∥ρ0∥2

j−1
L∞(Rd) , 2

djS2
j−1 + 1

)
.

To complete the proof, we perform a version of Moser iteration technique to bound the L∞-

norm. Let us assume for the moment that ∥ρ0∥L∞(Rd) ≥ 1. Let S̃j :=
Sj

∥ρ0∥2
j−1

L∞(Rd)

. Because

a+ b ≤ 2max(a, b) the last inequality provides us with

S̃j ≤ C
(
σ,m, ∥k∥L∞(Rd)

)
max

(
1, 2djS̃2

j−1, ∥ρ0∥
−(2j−1))

L∞(Rd)

)
≤ C

(
σ,m, ∥k∥L∞(Rd)

)
max

(
1, 2djS̃2

j−1

)
.

Adding on both sides δ > 0 and taking the logarithm, we arrive at

log(S̃j + δ) ≤ max(log
(
C
(
σ,m, ∥k∥L∞(Rd)

)
+ δ
)
, log

(
C
(
σ,m, ∥k∥L∞(Rd)

)
2djS̃2

j−1 + δ)
)

≤ 2 log
(
S̃j−1 + δ

)
+ dj log(2) + log

(
C
(
σ,m, ∥k∥L∞(Rd)

))
for some new constant C

(
σ,m, ∥k∥L∞(Rd)

)
> 0. This implies

2−j log
(
S̃j + δ

)
− 21−j log

(
S̃j−1 + δ

)
≤ 2−jdj log(2) + 2−jC

(
σ,m, ∥k∥L∞(Rd)

)
for j ∈ N, where we used Lemma 2.11 to not subtract infinity, i.e. log(S̃j−1+δ) <∞. Adding
the above inequality over j = 1, . . . , J , we find

2−J log
(
S̃J + δ

)
− log

(
S̃0 + δ

)
=

J∑
j=1

2−j log
(
S̃j + δ

)
− 2−(j−1) log

(
S̃j−1 + δ

)
≤

∞∑
j=1

2−jdj log(2) + 2−jC
(
σ,m, ∥k∥L∞(Rd)

)
≤ C

(
σ,m, ∥k∥L∞(Rd)

)
for a constant C independent of J and δ > 0. A straightforward way to see that the series is
absolutely convergent is to apply the ratio criterion from elementary analysis.

Now, we have S̃0 = sup
t∈[0,T ]

∥ρ(·, t)∥L1(Rd) = 1 by mass conservation. Therefore, taking the

exponential function on both sides and letting δ → 0, we discover

S2−J

J ≤ C ∥ρ0∥(2
J−1)2−J

L∞(Rd)
≤ C

(
σ,m, ρ0, ∥k∥L∞(Rd)

)
<∞.

On the other hand, we have

S2−J

J =

(
sup
t∈[0,T ]

∫
Rd

ρ2
J

m (t, x) dx

) 1

2J

= sup
t∈[0,T ]

(∫
Rd

ρ2
J

m (t, x) dx

) 1

2J

.
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Finally, we can take the limit J → ∞ to conclude

sup
t∈[0,T ]

∥ρm(t, ·)∥L∞(Rd) = sup
t∈[0,T ]

lim
J→∞

∥ρm(t, ·)∥L2J (Rd)
≤ lim sup

J→∞
sup
t∈[0,T ]

∥ρm(t, ·)∥L2J (Rd)

= lim sup
J→∞

S2−J

J ≤ C
(
∥k∥L∞(Rd) , ρ0

)
.

This finishes the case ∥ρ0∥L∞(Rd) ≥ 1. In the case ∥ρ∥L∞(Rd) ≤ 1 we immediately obtain the

inequality
Sj ≤ C

(
σ,m, ∥k∥L∞(Rd)

)
max(1, 2djS2

j−1)).

Thus, by the same steps we obtain

2−J log(Sj) ≤ C
(
∥k∥L∞(Rd) , ρ0

)
.

Taking the exponential and the limit we arrive at an uniform bound for the L∞(Rd)-norm of
ρ. □

2.3. Local Lipschitz bound

In this section we introduce a uniform Lipschitz assumption on the approximation se-
quence (kε, ε > 0) and show that most bounded confidence models, as used in the theory of
opinion formation [Hos20], satisfy this assumption.

At first glance, we notice that even though the interaction force kernels kε is uniformly
bounded it is not uniformly Lipschitz continuous in ε. Hence, the classical theory regarding
Lipschitz continuous interaction force kernels on mean-field limits cannot be applied directly
to the particles systems introduced in Subsection 2.1.1. Instead we need use the properties of
the convolution to derive uniform Lipschitz continuity of the mean-field force kε∗ρε. Following
e.g. [CG17, LP17, FHS19], we derive a Lipschitz bound for certain models in the case where the
trajectories Xε

t and Y ε
t are close in a suitable sense. This approach requires an approximation

with suitable properties and could not be generalized, so far, to arbitrary approximations.
The main reason lies in the derivative of the approximation kε. If the derivative would be
non-negative, then we could use a Taylor approximation, the properties of the solution ρε

and the formula ∥|∇kε| ∗ ρεt∥L∞(Rd) = ∥kε ∗ ∇ρεt∥L∞(Rd) to obtain a local Lipschitz bound for

kε with estimates on the gradient ∇ρεt . Unfortunately, in most cases a simple mollification
of k has a derivative becoming non-negative as well as non-positive. Therefore, we have to
postulate the following assumptions on the approximation sequence (kε, ε > 0).

Assumption 2.13. The sequence (kε, ε > 0) satisfies the following:

(i) There exists a family of functions (lε, ε > 0) such that

|kε(x)− kε(y)| ≤ lε(y)|x− y|
for x, y ∈ Rd with |x− y| ≤ 2ε;

(ii)
sup
t∈[0,T ]

∥lε ∗ ρεt∥L∞(Rd) ≤ C(∥k∥L∞(Rd))(∥ρ0∥L1(Rd) + ∥ρ0∥L∞(Rd)),

where C(∥k∥L∞(Rd)) is some finite constant depending on the L∞(Rd)-norm of k.

Remark 2.14. The constant 2 in Assumption 2.13 can be replaced by any positive con-
stant. For simplicity, we choose the most convenient one to avoid cumbersome notation.
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2.3.1. Exemplary interaction kernels. The particle systems, as introduced in Subsec-
tion 2.1.1, can be used to model the opinion of interacting individuals, see e.g. [Hos20]. A
prominent class are given by so-called bounded confidence models, in which the interaction
is described by interaction force kernels of the form

kBCM(x) := 1[0,R](|x|)h(x),

where h : Rd 7→ Rd is a twice continuously differentiable function. To show that kBCM satisfies
Assumption 2.13, we introduce the following approximation sequence (ψεa,b, ε > 0) of the

indicator function 1[a,b](z) with a, b ∈ R, a < b, such that the following properties hold for
each ε > 0:

• ψεa,b ∈ C∞
c (Rd),

• ψεa,b → 1[a,b] as ε→ 0 almost everywhere,

• supp(ψεa,b) ⊆ [a− 2ε, b+ 2ε], supp( d
dzψ

ε
a,b) ⊂ [a− 2ε, a+ 2ε] ∪ [b− 2ε, b+ 2ε],

• 0 ≤ ψεa,b ≤ 1,
∣∣ d
dzψ

ε
a,b

∣∣ ≤ C
ε for some constant C > 0.

Since we want to take ε→ 0, we consider only the case where ε is small enough. In particular,
we can take the mollification of the indicator function of a set. We define the regularized
interaction force kernel

kεBCM(x) = ψε−R,R(|x|)h(x)
which obviously satisfies Assumptions 2.2. That it also satisfies Assumption 2.13 is verified
in the following.

Lemma 2.15 (Local Lipschitz bound for bounded confidence models). Consider the reg-
ularized interaction force kernel kεBCM with cut-off ε. Let NBRε := B(−R, 4ε) ∪ B(R, 4ε)
(“neighbourhood of R”). Then, we have the following estimates:

(i) For each x, y ∈ Rd with |x− y| ≤ 2ε and

lεBCM(y) :=

{
C1B(0,R+3)(y), y ∈ NBRc

ε,

Cε−1, y ∈ NBRε,

it holds that

|kεBCM(x)− kεBCM(y)| ≤ lεBCM(y)|x− y|;
(ii) For each x, y ∈ RdN with |x− y|∞ ≤ ε and

Lεi,BCM(y1, . . . , yN ) :=
1

N

N∑
j=1

lεBCM(yi − yj), (y1, . . . , yN ) ∈ RdN ,

it holds that

|Kε
i,BCM(x)−Kε

i,BCM(y)| ≤ 2Lεi,BCM(y)|x− y|∞,

where Ki,BCM is defined by (2.5) with kBCM .

Proof. (i) Let |x− y| ≤ 2ε. By the mean value theorem, we have the bound

|kεBCM(x)− kεBCM(y)| ≤
∣∣∇kε(z)∣∣|x− y|

for some z in the line segment between x and y. Let us distinguish between two cases.
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Case 1: y ∈ NBRε. Using the bound∣∣∇kεBCM(z)
∣∣ ≤ ∣∣∇(ψε(|z|))h(z)

∣∣+ ∣∣ψε(z)∇h(z)∣∣ ≤ Cε−1

for all z ∈ Rd for some constant C > 0, which depends on the deterministic function h, it
follows

|kεBCM(x)− kεBCM(y)| ≤ Cε−1|x− y|.
Case 2: y ∈ NBRc

ε. Because z lies on the line segment between x, y, it follows for some
s ∈ [0, 1] that

|z − y| = |y − s(x− y)− y| ≤ |x− y| ≤ 2ε

and therefore |R − z| ≥ |R − y| − |z − y| ≥ 4ε − 2ε = 2ε. Analogously, | − R − z| ≥
| −R− y| − |z− y| ≥ 2ε. Consequently, z is far enough away from the points R and −R such
that the derivative of the approximation ψε vanishes. This implies∣∣∇kεBCM(z)

∣∣ ≤ ∣∣ψε(|z|)∇h(z)∣∣ ≤ ∣∣∇h(z)∣∣1[−R−3,R+3](|y|) ≤ C1[−R−3,R+3](|y|),

where we used |y| ≤ |y− z|+ |z| ≤ 2+ |z|. Together with the mean value theorem this proves
the second case.

(ii) We want to apply (i). For x, y ∈ RdN , |x− y|∞ ≤ ε, it follows

|Kε
i,BCM(x)−Kε

i,BCM(y)| ≤ 1

N − 1

N∑
j=1
j ̸=i

|kεBCM(xi − xj)− kεBCM(yi − yj)|

≤ 1

N − 1

N∑
j=1
j ̸=i

lεBCM(yi − yj)|xi − xj − (yi − yj)|

≤ 2Lεi,BCM(y)|x− y|∞.

It is indeed justified to apply (i) since |xi − xj − (yi − yj)| ≤ 2|x − y|∞ ≤ 2ε for all i, j =
1, . . . , N . □

Remark 2.16. The second part of Lemma 2.15 is a direct consequence of part one. Hence,
if (kε, ε > 0) satisfies Assumption 2.13, we have

|Kε
i (x)−Kε

i (y)| ≤ 2Lεi (y)|x− y|∞

for x, y ∈ RdN with |x− y|∞ ≤ ε and

Lεi (y1, . . . , yN ) :=
1

N

N∑
j=1

lε(yi − yj), (y1, . . . , yN ) ∈ RdN .

The convenient properties of the solutions (ρε, ε ≥ 0) allow us to find a uniform bound of
the convolution term lε ∗ ρεt . This will be the content of the following lemma.

Lemma 2.17. Suppose Assumption 2.1 and let us define

L̄εt,i,BCM(y1, . . . , yN ) := (lεBCM ∗ ρεt )(yi), (y1, . . . , yN ) ∈ RdN ,
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the averaged version of Lε for i = 1, . . . , N . Then, there exists a constant C, depending on
the deterministic function h and ρ0, such that

sup
i=1,...,N

sup
t∈[0,T ]

∥L̄εt,i,BCM∥L∞(RdN ) ≤ C
(
∥ρε0∥L1(Rd) + ∥ρε0∥L∞(Rd)

)
,

where ρεt is the solution of (2.8) for the special interaction force kernel kBCM .

Proof. Let i ∈ {1, . . . , N} and y = (y1, . . . , yN ) ∈ RdN . Then, by mass conservation and
Lemma 2.12, we have

|L̄εt,i,BCM(y)| = |(lεBCM ∗ ρεt )(yi)|

≤
∫
Rd

1{z : yi−z∈NBRc
ε}|l

ε
BCM(yi − z)ρt(z)| dz

+

∫
Rd

1{z : yi−z∈NBRε}|l
ε
BCM(y − z)ρt(z)| dz

≤ C

∫
Rd

|ρεt (z)| dz + Cεdε−1 ∥ρεt∥L∞(Rd)

≤ C
(
∥ρεt∥L1(Rd) + ∥ρεt∥L∞(Rd)

)
≤ C

(
∥ρ0∥L1(Rd) + ∥ρ0∥L∞(Rd)

)
,

where C again depends on the deterministic function h. □

Consequently, we have shown that kε = ψεh fulfills Assumption 2.13 and (as previously
mentioned) Assumption 2.2, which implies the following corollary.

Corollary 2.18. The interaction force kernel kBCM of the bounded confidence model
satisfies Assumptions 2.2 and 2.13. The associated approximation sequence

(
kεBCM , ε > 0

)
is

given by kεBCM(x) := ψε−R,R(x)h(x).

Another example of interest occurs in dimension d = 1. The interaction forces with h(z) :=
sgn(z), which corresponds to a uniform interaction, i.e., every particle in the interaction radius
has the same impact. Unfortunately, sgn(z) /∈ C2(R) and, hence, we cannot directly apply
Lemma 2.15. However, the function sgn(z) has no effect on the discontinuities −R and R.
Therefore, if we can control the function around zero, we can obtain an analogue result to
Lemma 2.15. Indeed, we define

kU(z) := −1[−R,0](x) + 1[0,R](z), z ∈ R,

which can be appropriated by kεU(z) := ψε−R,0(z) + ψε0,R(z). Defining

NBZRε := [−R− 4ε,−R+ 4ε] ∪ [−4ε, 4ε] ∪ [R− 4ε,R+ 4ε]

as the neighbourhood of zero and R, we can perform the same steps as in Lemma 2.15 to
prove the following lemma for kU .

Lemma 2.19 (Local Lipschitz bound for uniform kernel). Consider the regularized inter-
action force kernel kεU with cut-off ε. Then, we have the following estimates:
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(i) For each x, y ∈ R with |x− y| ≤ 2ε and

lεU(z) :=

{
0, z ∈ NBZRc

ε,

Cε−1, z ∈ NBZRε,

it holds that

|kεU(z)− kεU(y)| ≤ lεU(y)|z − y|;
(ii) For each x, y ∈ RN with |x− y|∞ ≤ ε and

Lεi,U(y1, . . . , yN ) :=
1

N

N∑
j=1

lεU(yi − yj), (y1, . . . , yN ) ∈ RN ,

it holds that

|Kε
i,U(x)−Kε

i,U(y)| ≤ 2Lεi,U(y)|x− y|∞.

Corollary 2.20. The interaction force kernel kU satisfies Assumptions 2.2 and 2.13 with
the associated approximation sequence

(
kεU , ε > 0

)
given by kεU(z) := ψε−R,0(z) + ψε0,R(z).

Proof. Apply Lemma 2.19 and similar computations as in proof of Lemma 2.17 to show
that Assumption 2.13 is fulfilled. The verification of Assumption 2.2 follows immediately. □

2.4. Law of large numbers

The derivation of propagation of chaos is based on defining several exceptional sets where
the desired properties will not hold. Hence, we need to rely on the fact that the probability
measure of these sets is extremely small. This fact is the subject of the next proposition.

Proposition 2.21 (Law of large numbers). Let 0 < α, δ such that 0 < δ + α < 1/2
and Z1, . . . , ZN be independent random variables in Rd such that Zi has density ui for i =
1, . . . , N . Let h = (h1, . . . , hd) : Rd → Rd be a bounded measurable function. Define Hi(Z) :=

1
N

N∑
j=1
j ̸=i

h(Zi − Zj) and

S :=

{
sup

1≤i≤N
|Hi(Z)− E(Hi(Z))| ≥ N−(δ+α)

}
,

S̃ :=

{
sup

1≤i≤N
|Hi(Z)− E(−i)(Hi(Z))| ≥ N−(δ+α)

}
,

where E(−i) stands for the expectation with respect to every variable except Zi, i.e.

E(−i)(Hi(Z)) :=
1

N

N∑
j=1
j ̸=i

(h ∗ uj)(Zi).

Then, for each γ > 0 there exists a constant C(γ) > 0, which depends on γ,C, such that

P(S), P(S̃) ≤ C(γ)N−γ .
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Proof. We prove the statement for the set S. The estimate for the set S̃ can be shown
similarly by replacing E(Hi(Z)) with E(−i)(Hi(Z)). First, we notice

P

(
sup

1≤i≤N
|Hi(Z)− E(Hi(Z))| ≥ N−(δ+α)

)

≤
N∑
i=1

d∑
l=1

P
(
|Hi,l(Z)− E(Hi,l(Z))| ≥ N−(δ+α)

)
,

where Hi,l =
1
N

N∑
j=1
j ̸=i

hl(Z
i − Zj). Hence, it suffices to prove

P(|Hi,l(Z)− E(Hi,l(Z))| ≥ N−(δ+α)) ≤ C(γ)N−γ

for each γ > 0, i = 1, . . . , N , l = 1, . . . , d. Let us assume i = 1, l = 1, where we will omit the
index l for more convenient notation, and for j = 2, . . . , N let us denote by Θj the independent
random variables Θj := h(Z1 − Zj). Then, applying Chebyshev’s inequality to the function
x 7→ x2m, we obtain

P(|H1(Z)− E(H1(Z))| ≥ N−(δ+α)) ≤ N2(δ+α)mE(|H1(Z)− E(H1(Z))|2m)

≤ N2(δ+α)mE

 1

N − 1

N∑
j=2

(Θj − E(Θj))

2m .
(2.17)

The expectation on the right-hand side can be rewritten, using the multinomial formula, as

(x2 + x3 + · · ·+ xN )
2m =

∑
a2+a3+···+aN=2m

(
2m

a2, . . . , aN

) N∏
j=2

x
aj
j ,

where a = (a2, a3, . . . , aN ) ∈ NN−1
0 is a multi-index of length |a| = 2m. Consequently, using

the independence of (Θj , j = 2, . . . , N), we get

E

 1

N

N∑
j=2

(Θj − E(Θj))

2m
= N−2m

∑
a2+a3+···+aN=2m

(
2m

a2, . . . , aN

) N∏
j=2

E((Θj − E(Θj))
aj )

= N−2m
∑

a2+a3+···+aN=2m
|a|0≤m

(
2m

a2, . . . , aN

) N∏
j=2

E((Θj − E(Θj))
aj ),(2.18)

where |a|0 the number of non-zero entries of the multi-index a. Otherwise, if |a|0 > m, then
there exists a j such that aj = 1 and the product vanish since E(Θj − E(Θj)) = 0. From the
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bound on h we have

|E((Θj − E(Θj))
aj )| =

∣∣∣∣∫
Rd×Rd

(h(z1 − zj)− E(Θj))
aju1(z1)u

j(zj) dz1 dzj

∣∣∣∣ ≤ Caj .

Using the facts(
2m

a2, . . . , aN

)
≤ (2m)2m and

∑
a2+a3+···+aN=2m

|a|0=k

1 ≤ Nk(2m)k

for 0 ≤ k ≤ m, we can estimate (2.18) to arrive at

E

 1

N

N∑
j=2

(Θj − E(Θj))

2m ≤ N−2m
∑

a2+a3+···+aN=2m
|a|0≤m

(2m)2mC2m

≤ N−2m
m∑
k=1

Nk(2m)3mC2m ≤ C(m)Nm

N2m

for some constant C(m). Hence, plugging it into (2.17), we find

P(|H1(Z)− E(H1(Z))| ≥ N−(δ+α)) ≤ C(m)
N2(δ+α)m+m

N2m
.

Using the assumption δ + α < 1/2 and choosing m such that m(−1 + 2(δ + α)) = γ proves
the proposition. □

The law of large numbers provided in Proposition 2.21 allows to show that the sets, where
the desired properties do not hold, are small in probability.

Corollary 2.22. Let 0 < α, δ, 0 < α+ δ < 1/2, ε ∼ N−β with 0 < β ≤ α and define for
0 ≤ t ≤ T the following sets

B1
t := {|Kε(YN,ε

t )−Kε
t (Y

N,ε
t )|∞ ≤ N−(δ+α)},

B2
t := {|Lε(YN,ε

t )− Lεt (Y
N,ε
t )|∞ ≤ 1},

where the mean-field particles are close under the kernel Kε and Lε, which were defined in
Section 2.1.1 and Remark 2.16. Then, for each γ > 0 there exists a C(γ) > 0 such that

P
(
(B1

t )
c),P((B2

t )
c
)
≤ C(γ)N−γ

for every 0 ≤ t ≤ T , where the constant C(γ) is independent of t ∈ [0, T ].

Proof. First, the random variables (Y i,ε
t , i = 1, . . . , N) are i.i.d. and have a probability

density ρεt given by the solution of the regularized system (2.8). Moreover, we have

Kε
i (x1, . . . , xN ) = − 1

N

N∑
j=1

kε(xi − xj), (x1, . . . , xN ) ∈ RdN ,
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with kε bounded. We recall that we denote by E(−i) the expectation with respect to every
variable but the i-th. Therefore, we get

E(−i)(K
ε
i (Y

N,ε
t )) = − 1

N

N∑
j=1

E(kε(Y i,ε
t − Y j,ε

t ))

= − 1

N

N∑
j=1

∫
Rd

kε(Y i,ε
t − z)ρε(z, t) dz = −(kε ∗ ρt)(Y i,ε

t ) = Kε
t,i(Y

N,ε
t )

for all i = 1, . . . , N . As a result, we obtain

(B1
t )

c =

{
sup

1≤i≤N
|Kε

i (Y
N,ε
t )− E(−i)(K

ε
i (Y

N,ε
t ))| > N−(δ+α)

}
and therefore, by Proposition 2.21,

P
(
(B1

t )
c
)
≤ C(γ)N−γ .

For the set B2
t we notice the function lεN−α is bounded since ε ∼ N−β and, thus, we can

do similar steps as before with the set

(B2
t )

c = {N−α|Lε(YN,ε
t )− Lεt (Y

N,ε
t )|∞ ≥ N−α}

⊆ {N−α|Lε(YN,ε
t )− Lεt (Y

N,ε
t )|∞ ≥ N−(δ+α)}.

This proves the corollary. □

2.5. Propagation of chaos in probability

In this section we are going to prove propagation of chaos for the particle system (2.3). We
deploy a coupling method with the mean-field SDE (2.2) and show convergence in probability
with an arbitrary algebraic rate N−γ for γ > 0. To that end, we present the main result,

which states that the trajectory of the N-particle system XN with XN
0 ∼

N
⊗
i=1
ρ0 typically

remains close to the mean-field trajectory Y N with same starting position XN
0 = Y N

0 during
any finite interval [0, T ].

Theorem 2.23. Suppose Assumption 2.1. Let T > 0, α ∈
(
0, 12
)
and (kε, ε > 0) satisfy

Assumptions 2.2 and 2.13 with ε ∼ N−β for 0 < β ≤ α. Then, for every γ > 0, there exists
a positive constant C(γ) and N0 ∈ N such that

P
(

sup
t∈[0,T ]

∣∣XN,ε
t −YN,ε

t

∣∣
∞ ≥ N−α

)
≤ C(γ)N−γ , for each N ≥ N0.

The constant C(γ) depends on the initial density ρ0, the final time T > 0, α and γ. The
natural number N0 also depends on ρ0, T and α.

To prove Theorem 2.23, we need the following auxiliary lemma.
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Lemma 2.24. [LP17, Lemma 8.1] For a function f : Rd → R we denote the right upper
Dini derivative by

D
+
y f(y) := lim sup

h→0+

f(y + h)− f(y)

h
.

Let g ∈ C1(Rd) and h(y) := sup
0≤s≤y

g(s). Then, one has D
+
y h(y) ≤ max

(
0, d

dyg(y)
)

for all

y ≥ 0.

Proof of Theorem 2.23. For T > 0 and α ∈ (0, 1/2) and δ = 1
2(1/2 − α) > 0 let us

define the auxiliary process

JNt := min

(
1, sup

0≤s≤t
eλ(T−s)(Nα|XN,ε

s −YN,ε
s |∞ +N−δ)

)
,

where λ > 0 is a constant, which will be defined later. In the first step we want to understand

how JNt helps us to control the maximum distance |XN,ε
t −YN,ε

t |∞. For 0 ≤ t ≤ T we have

sup
0≤s≤t

Nα|XN,ε
s −YN,ε

s |∞ ≤ sup
0≤s≤t

eλ(T−s)(Nα|XN,ε
s −YN,ε

s |∞ +N−δ).(2.19)

Hence, if JNt < 1 we obtain sup
0≤s≤t

Nα|XN,ε
s −YN,ε

s |∞ ≤ JNt < 1. Furthermore, we can assume

N ≥ N0 such that JNo = eλ(T−s)N−δ < 1
2 with N0 depending on T, λ. As a result, we find

P

(
sup
t∈[0,T ]

|XN,ε
t −YN,ε

t |∞ ≥ N−α

)
≤ P(JNT ≥ 1) ≤ P

(
JNT − JN0 ≥ 1

2

)

≤ 2E(JNT − JN0 ) ≤ 2E

 T∫
0

D
+
t J

N
t dt

(2.20)

= 2

T∫
0

E(D+
t J

N
t ) dt,

where we used a more general fundamental theorem of calculus, see e.g. [HT06, Theorem 11],

in the last inequality. In the next step we want to estimate the Dini derivative D
+
t J

N
t .

Applying Lemma 2.24, we discover

(2.21) D
+
t J

N
t ≤ max

(
0,

d

dt
g(t)

)
with g(t) := eλ(T−t)(Nα|XN,ε

t −YN,ε
t |∞ +N δ). Computing the derivative, we find

(2.22)
d

dt
g(t) ≤ −λeλ(T−t)(Nα|XN,ε

t −YN,ε
t |∞+N−δ)+eλ(T−t)Nα|Kε(XN,ε

t )−Kε
t (Y

N,ε
t )|∞

with Kε and K
ε
t defined as in (2.5) and (2.6), respectively. Next, let us introduce the set

At := {D+
t J

N
t > 0} and notice that (2.21) implies At ⊆ {D+

t J
N
t ≤ d

dtg(t)}. Hence, we
discover

E(D+
t J

N
t ) = E(D+

t J
N
t 1At) + E(D+

t J
N
t 1Ac

t
) ≤ E

(
d

dt
g(t)1At

)
.
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In combination with (2.20) we see that, in order to prove the theorem, it is enough to show
that E( d

dtg(t)1At) is bounded by C(γ)N−γ for some constant C(γ) > 0 and t ∈ [0, T ].

At this moment let us recall the sets B1
t , B

2
t from Section 2.4, where the “good” properties

hold to further reduce the problem. We have

E
(

d

dt
g(t)1At

)
= E

(
d

dt
g(t)1At∩B1

t ∩B2
t

)
+ E

(
d

dt
g(t)1At∩(B1

t ∩B2
t )

c

)
≤ E

(
d

dt
g(t)1At∩B1

t ∩B2
t

)
+ CNα

(
P
(
(B1

t )
c
)
+ P

(
(B2

t )
c
))

≤ E
(

d

dt
g(t)1At∩B1

t ∩B2
t

)
+ C(γ)N−γ ,

where we used the fact that the interaction force approximation kε is uniformly bounded
in the first inequality and thus we have | ddtg(t)| ≤ CNα with the help of (2.22). The last
inequality follows immediately from Corollary 2.22 and relabeling γ. It is therefore enough to
prove that d

dtg(t) ≤ 0 holds under the event At∩B1
t ∩B2

t . This is equivalent to the inequality

(2.23) eλ(T−t)Nα|Kε(XN,ε
t )−K

ε
t (Y

N,ε
t )|∞ ≤ λeλ(T−t)(Nα|XN,ε

t −YN,ε
t |∞ +N−δ).

We observe that on At we have JNt < 1. In fact, let JNt ≥ 1 and remember that JNt is an
non-decreasing function bounded by 1. Consequently, the right upper Dini derivative vanishes
and we are in the set Ac

t . Together with (2.19) this means

(2.24) sup
0≤s≤t

|XN,ε
s −YN,ε

s |∞ ≤ N−α

holds on At. Splitting up the term on the left-hand side of (2.23), we obtain

|Kε(XN,ε
t )−K

ε
t (Y

N,ε
t )|∞ ≤ |Kε(XN,ε

t )−Kε(YN,ε
t )|∞ + |Kε(YN,ε

t )−K
ε
t (Y

N,ε
t )|∞

≤ |Lε(YN,ε
t )|∞|XN,ε

t −YN,ε
t |∞ +N−(δ+α)

≤ (C + |Lεt (Y
N,ε
t )|∞)|XN,ε

t −YN,ε
t |∞ +N−(δ+α)

≤ C(ρ0, T )(|XN,ε
t −YN,ε

t |∞ +N−(δ+α)),

where we used the local Lipschitz bound from Assumption 2.13, inequality (2.24) and the
condition of event B1

t in the second inequality. Then, we applied the condition of B2
t in the

third inequality and finally Assumption 2.13 in the last inequality. Inserting this back into
the left-hand side of (2.23), we discover

eλ(T−t)Nα|Kε(XN,ε
t )−K

ε
t (Y

N,ε
t )|∞ ≤ eλ(T−t)NαC(ρ0, T )(|XN,ε

t −YN,ε
t |∞ +N−(δ+α))

= C(ρ0, T )e
λ(T−t)(Nα|XN,ε

t −YN,ε
t |∞ +N−δ).

Choosing λ = C(ρ0, T ) provides (2.23) and concludes the proof. □

Remark 2.25. The cut-off α ∈ (0, 1/2) was only used in Corollary 2.22 to bound the set
B2
t . Hence, one possibility on improving the cut-off is to optimize Proposition 2.21 in order

to handle more general cut-off functions.
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From Theorem 2.23 it immediately follows that the marginals of XN
t and Y N

t converge
in the Wasserstein metric, see e.g. [CG17, Corollary 2.2]. For the sake of completeness we
include the statement below.

Corollary 2.26. [CG17, Corollary 2.2.] Let the assumptions of Theorem 2.23 hold.

Consider the probability density ρ⊗N,εt of YN,ε
t and ρN,εt the probability density of XN,ε

t . Then,

ρN,k,εt converges weakly (in the sense of measures) to ρ⊗k,εt as N → ∞, ε(N) → 0 for each fixed

k ≥ 1. Furthermore, the probability density ρN,εt converges weakly (in the sense of measures)

to the same measure as ρ⊗N,εt as N → ∞. More precisely, there exists a positive constant C
and N0 ∈ N such that

sup
t∈[0,T ]

W1(ρ
N,k,ε
t , ρ⊗k,εt ), sup

t∈[0,T ]
W1(ρ

N,ε
t , ρ⊗N,εt ) ≤ C(ρ0, T, α)N

−α

holds for each k ≥ 1 and N ≥ N0, where W1 denotes the Wasserstein metric

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
Rd×Rd

1

k

k∑
i=1

|xi − yi|dπ(x, y)

and Π(µ, ν) is the set of all probability measures on Rd×Rd with first marginal µ and second
marginal ν. The constant C(ρ0, T, α) depends on the initial condition ρ0, the final time T
and α. Moreover, N0 ∈ N is the same as in Theorem 2.23.

Corollary 2.26 implies the weak convergence in the sense of measures of the k-th mar-

ginal ρN,k,εt to the product measure ρ⊗kt . Indeed, since ρN,k,εt converges weakly to ρ⊗k,εt , it is

sufficient to show that ρ⊗k,εt converges weakly to ρ⊗kt . By the classic result [Szn91, Proposi-
tion 2.2] we can consider the special case k = 2, i.e ρεt ⊗ ρεt converges weakly to ρt ⊗ ρt. We
can further reduce it by applying [Pat13, Theorem 2.8], which tells us that it is enough to
show ρεt converges weakly to ρt.

Lemma 2.27. Let T > 0 and suppose Assumption 2.1. Moreover, let (ρε, ε > 0) and ρ be
the weak solutions obtained in theorems 2.6 and 2.9. Then, one has

(2.25) sup
t∈[0,T ]

∣∣∣∣∫
Rd

(ρεt (x)− ρt(x))ϕ(x) dx

∣∣∣∣ −−−→ε→0
0

for all ϕ ∈ L∞(Rd). In particular, ρεt ⊗ ρεt converges weakly to ρt ⊗ ρt for all t ≥ 0 in the
sense of measures.

Remark 2.28. Suppose the assumptions of Theorem 2.23 hold. Then, Lemma 2.27 to-
gether with the discussion before Lemma 2.27 and Proposition 1.2 imply that, for all t ∈ [0, T ],

lim
N→∞

1

N

N∑
i=1

δ
Xi,ε

t
= ρt

in law as measure valued random variables if ε ∼ N−β.

Proof of Lemma 2.27. First, we notice that the convergence is uniform in time. There-
fore, the strong convergence result from Lemma 2.8 cannot be applied. We start by show-
ing (2.25) holds for ϕ ∈ H1(Rd). To that end, let us assume ϕ is in a dense subset and
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smooth enough, i.e. ϕ ∈ C∞
c (Rd). Now, let 0 ≤ t1 < t2 ≤ T . Then, the uniform bound on

d
dtρ

ε
t (see (2.12)) and integration by parts [Zei90, Theorem 23.23] implies∣∣∣∣ ∫

Rd

ρε(t1, x)ϕ(x) dx−
∫
Rd

ρε(t2, x)ϕ(x) dx

∣∣∣∣
=

∣∣∣∣
t2∫
t1

〈
d

dt
ρεt , ϕ

〉
H−1(Rd),H1(Rd)

dt

∣∣∣∣
≤ |t2 − t1|1/2

∥∥∥∥ d

dt
ρε
∥∥∥∥
L2([0,T ];H−1(Rd))

∥ϕ∥H1(Rd)

≤ C|t2 − t1|1/2 ∥ϕ∥H1(Rd) .

Consequently, the sequence of function t 7→
∫
Rd ρ

ε
t (x)ϕ(x) dx is equicontinuous. Using the

L∞([0, T ];L2(Rd))-bound, we also get a uniform bound on the sequence. As a result, we can
apply the Arzela–Ascoli theorem to obtain a convergent subsequence, which depends on ϕ

and will be denoted by (ρε(ϕ), ε(ϕ) ∈ N) such that
∫
Rd ρ

ε(ϕ)
t ϕ dx → ζ(ϕ) in C([0, T ]). By

the fundamental lemma of calculus of variation and the fact that ρ
ε(ϕ)
t converges weakly in

L2([0, T ];L2(Rd)) we can identify the limit ζ(ϕ) =
∫
Rd ρtϕ dx. Since ϕ was taken from a dense

subset of H1(Rd), we can use a diagonal argument to obtain a subsequence, which will be not
renamed, such that, for ϕ ∈ H1(Rd),

(2.26) sup
t∈[0,T ]

∣∣∣∣∫
Rd

(ρ
ε(ϕ)
t (x)− ρt(x))ϕ(x) dx

∣∣∣∣ −−−−→ε(ϕ)→0
0.

With another density argument and the uniform bound of (ρε, ε ≥ 0) in L∞([0, T ];L2(Rd))
we obtain for each ϕ ∈ L2(Rd) a subsequence (ρ

ε(ϕ)
t , ε(ϕ) ∈ N) such that (2.26) holds. Again,

since L2(Rd) is separable we can use another diagonal argument to show that we can obtain
a subsequence (ρεkt , k ∈ N) such that (2.26) holds for all ϕ ∈ L2(Rd). Notice that this
subsequence is independent of the function ϕ. Furthermore, the uniqueness of the limit

implies that (2.26) actually holds for any sequence (ρ
ε(N)
t , ε(N) > 0) itself, where ε(N) is

some sequence depending on N such that ε(N) → 0 as N → ∞.
Next, for ϕ ∈ L∞(Rd), we apply Lemma 2.7 and the fact that ϕ(x)1{|x|≤R} ∈ L2(Rd) to

find

sup
t∈[0,T ]

∣∣∣∣∫
Rd

(ρεt (x)− ρt(x))ϕ(x) dx

∣∣∣∣
≤ sup

t∈[0,T ]

∣∣∣∣∫
Rd

(ρεt (x)− ρt(x))ϕ(x)1{|x|≤R} dx

∣∣∣∣
+ sup
t∈[0,T ]

∣∣∣∣∫
Rd

(ρεt (x)− ρt(x))ϕ(x)1{|x|≥R} dx

∣∣∣∣
≤ sup

t∈[0,T ]

∣∣∣∣∫
Rd

(ρεt (x)− ρt(x))ϕ(x)1{|x|≤R} dx

∣∣∣∣
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+
∥ϕ∥L∞(Rd)

R2
sup
t∈[0,T ]

∫
Rd

|ρεt (x) + ρt(x)||x|2 dx

≤ sup
t∈[0,T ]

∣∣∣∣∫
Rd

(ρεt (x)− ρt(x))ϕ(x)1{|x|≤R} dx

∣∣∣∣+ C(ρ0) ∥ϕ∥L∞(Rd)R
−2.

Letting ε→ 0 and then R→ ∞, we obtain (2.25) and the corollary is proven. □

2.6. Comments

The main inequality of Chapter 2 is given in Assumption 2.13, which resembles a Taylor
expansion around the point y without an error term. Much of the work by Pickl and Lazarovici
is built upon this foundational observation. An alternative, is presented by Prof. Chen’s idea
to perform an actual Taylor expansion. This approach is more natural and easier to follow.
Additionally, it eliminates the need for the Assumption 2.13, allowing the inclusion of more
models. However, the drawback is in estimating the Lipschitz bound (Lemma 2.17). In
Taylor’s approximation, the Lipschitz bound is equivalent to the first derivative. Our proof
transfers the local Lipschitz bound on the interacting particle system XN to the i.i.d. mean-
field particle system YN via the law of large numbers, and then utilizes the properties of the
mean-field solution. This corresponds to the “top-to-bottom” approach. Consequently, we
need to estimate

sup
x∈Rd

|∇kε| ∗ ρεt (x),

if we want to follow Taylor’s approximation. Without additional structure on the interaction
kernel, we encounter difficulties and cannot proceed further with the known methods. The
main problem lies in the fact that, even though we have a convolution structure, we cannot
flip the derivative onto the solution, rendering the regularity we obtained from the mean-
field problem obsolete. Therefore, similar assumptions to ours are necessary to demonstrate
convergence in probability, and there appears to be no mathematical advantage gained.



Chapter 3

Quantitative estimates for the relative en-
tropy

Having established convergence probability for bounded kernels k in Chapter 2, one can
ask the question whether the convergence of the same N particle system

(3.1) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ dBi
t, i = 1, . . . , N, XN

0 ∼
N
⊗
i=1
ρ0

with i.i.d. initial condition (Xi
0, i = 1, . . . , N), d-dimensional Brownian motion Bi

t, k : Rd 7→
Rd, and σ > 0, can be demonstrated in some stronger sense?

In this chapter we explore the relative entropy method [JW18] and modulated energy
method [Ser20] by using our findings form Chapter 2 about the convergence in probability.
The chapter should provide a more detailed view into the modulated energy and relative
entropy method, which we have already seen a glimpse of in Section 1.3.4. We know from
Section 1.3.4 that all this quantities are in a sense stronger than the notion of weak conver-
gence. We will describe the connection between the various forms of convergences and find
a remarkable relation to the earlier work by Oelschläger [Oel87]. This provides new insights
into how to tackle singular interaction kernels. In particular, attractive Coulomb kernels.

It also works as a foundation for Chapter 5, where we will investigate the relative entropy
approach for interacting particle systems with common noise. Many concepts will reappear,
so it’s essential to understand them in the non-stochastic setting first, where the limiting
equations are deterministic rather than stochastic, as they are in Chapter 5.

This chapter is based on [PN24].

3.1. Problem setting

The setting remains the same as in Chapter 2. For the sake of completeness, we briefly
recall it. We will primarily focus on the interacting particle systems and diffusion-aggregation
equations on an intermediate level. Therefore, we may temporarily set aside the issue of well-
posedness for the non-regularized systems. If we are interested in the non-regularized case, we
will always assume k ∈ L∞(Rd) in this chapter. Additionally, we will need to introduce the
Liouville equation, which is satisfied by the density of the interacting particle system itself.

3.1.1. Assumption on initial condition. The assumptions are similar to those in Chap-
ter 2. However, since we are only at an intermediate level, we require only the following
assumptions on the initial condition ρ0 of the interacting particle system throughout this
chapter.

62
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Assumption 3.1. The initial condition ρ0 : Rd → R fulfills

(3.2) ρ0 ∈ L1(Rd) ∩ L∞(Rd) ∩ L1(Rd, |x|2 dx), ρ0 ≥ 0, and

∫
Rd

ρ0(x) dx = 1.

3.1.2. Interacting particle systems. TheN -particle systemXN
t := (X1

t , . . . , X
N
t ) is given

by (3.1). The particle system (3.1) induces in the limiting case N → ∞ the following i.i.d.
sequence YN

t := (Y 1
t , . . . , Y

N
t ) of mean-field particles

(3.3) dY i
t = −(k ∗ ρt)(Y i

t ) dt+ σ dBi
t, i = 1, . . . , N, YN

0 = XN
0 ,

where ρt := ρ(t, ·) denotes the probability density of the i.i.d. random variable Y i
t .

To introduce the regularized versions of (3.1) and (3.3), we take a smooth approximation
(kε, ε > 0) of k and replace the drift term with its approximation. Hence, the regularized

microscopic N -particle system XN,ε
t := (X1,ε

t , . . . , XN,ε
t ) is given by

(3.4) dXi,ε
t = − 1

N

N∑
j=1

kε(Xi,ε
t −Xj,ε

t ) dt+ σ dBi
t, i = 1, . . . , N, XN,ε

0 ∼
N
⊗
i=1
ρ0,

and the regularized mean-field trajectories YN,ε
t := (Y 1,ε

t , . . . , Y N,ε
t ) by

(3.5) dY i,ε
t = −(kε ∗ ρεt )(Y

i,ε
t ) dt+ σ dBi

t, i = 1, . . . , N, YN,ε
0 = XN,ε

0 ,

where ρεt := ρε(t, ·) denotes the probability density of the i.i.d. random variable Y i,ε
t .

In the following computations, we will encounter lengthy expressions, and to maintain

clarity in notation, we abbreviate the empirical measure µX
N,ε

t by µN,εt .

3.1.3. Diffusion-aggregation equations and Liouville equations. The interacting par-
ticle system (3.1) induces the following Liouville equation on RdN ,

∂tρ
N
t (X

N ) = σ2

2

N∑
i=1

∆xiρ
N
t (X

N ) +
N∑
i=1

∇ ·

(
ρNt (X

N ) 1
N

N∑
j=1

k(xi − xj)

)
,

ρN0 (XN ) =
N∏
i=1

ρ0(xi),

(3.6)

for XN = (x1, . . . , xN ) ∈ RdN . The system (3.3) induces the non-linear aggregation-diffusion
equation {

∂tρt =
σ2

2 ∆ρ+∇ · (ρtk ∗ ρt), ∀ (t, x) ∈ [0, T ]× Rd,
ρ(x, 0) = ρ0, ∀x ∈ Rd.

,(3.7)

The regularized particle system (3.4) is associated to the Liouville equation
∂tρ

N,ε
t (XN ) = σ2

2

N∑
i=1

∆xiρ
N,ε
t (XN ) +

N∑
i=1

∇xi ·

(
ρN,εt (XN ) 1

N

N∑
j=1

kε(xi − xj)

)
,

ρN,ε0 (XN ) =
N∏
i=1

ρ0(xi),

(3.8)
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and the regularized system (3.5) to the aggregation-diffusion equation{
∂tρ

ε
t =

σ2

2 ∆ρεt +∇ · (ρεtkε ∗ ρεt ), ∀ (t, x) ∈ [0, T ]× Rd,
ρε(x, 0) = ρ0, ∀x ∈ Rd.

(3.9)

Analogously to Chapter 2 we use ρt and ρ
ε
t for the solutions of the PDEs (3.7) and (3.9)

as well as for the probability densities of the particle systems (3.3) and (3.5), respectively.
Furthermore, we require the marginal of the system of rank 1 ≤ r ≤ N ,

(3.10) ρN,rt =

∫
Rd(N−r)

ρNt (x1, . . . , xN ) dxr+1 . . . dxN .

We remark that the r-th martingale solves the following Liouville equation

∂tρ
N,r
t =

σ2

2

r∑
i=1

∫
Rd(N−r)

∆xiρ
N
t (x1, . . . , xN )

+∇xi ·

(
ρNt (x1, . . . , xN )

1

N

N∑
j=1

k(xi − xj)

)
dxr+1 . . . dxN .

(3.11)

Similar to (3.10), we denote by ρN,r,εt the r-th marginal of the approximated Liouville equation,
i.e.

ρN,r,εt :=

∫
Rd(N−m)

ρN,εt (x1, . . . , xN ) dxm+1 . . . dxN ,

which solves (3.11) with kε instead of k. Additionally, we define the chaotic law

ρ⊗r,εt (x1, . . . , xm) :=
r∏
i=1

ρεt (xi),

which solves the following equation

∂tρ
⊗r,ε
t (x1, . . . , xr)

=
σ2

2

r∑
i=1

∆xiρ
⊗r,ε
t (x1, . . . , xr) +

r∑
i=1

∇xi ·
(
(k ∗ ρεt )(xi)ρ

⊗r,ε
t (x1, . . . , xr)

)
with initial condition ρ⊗r,ε0 = ρ⊗r0 .

For the partial differential equations (3.6), (3.7), (3.8) and (3.9) we rely on the concept
of weak solutions. For the PDE’s (3.7) and (3.9) we refer to Definition 2.3. For the Liouville
equation (3.8) we define a weak solution in a similar fashion.

Definition 3.2 (Weak solutions). Let ε > 0. A function ρN,ε ∈ L2([0, T ];H1(RdN )) ∩
L∞([0, T ];L2(RN )) with ∂tρN,ε ∈ L2([0, T ];H−1(RdN )) is a weak solution of (3.8) if for every
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η ∈ L2([0, T ];H1(RdN )),
T∫
0

⟨∂tρN,εt , ηt⟩H−1(RdN ),H1(RdN ) dt =−
N∑
i=1

T∫
0

∫
RdN

(
σ2

2
∇xiρ

N,ε
t (XN ) · ∇xiηt(X

N )

+
1

N

N∑
j=1

kε(xi − xj)ρ
N,ε
t (XN )

)
· ∇xiηt(X

N ) dXN dt(3.12)

and ρN,ε(0,XN ) =
N∏
i=1

ρ0(xi). Similar, ρN ∈ L2([0, T ];H1(RdN )) ∩ L∞([0, T ];L2(RdN )) is a

solution of (3.6), if ∂tρ
N ∈ L2([0, T ];H−1(RdN )) and (3.12) holds with the interaction force

kernel k instead of its approximation kε.

Remark 3.3. We note that the regularity ρN,ε ∈ L2([0, T ];H1(RdN )) and time regularity
∂tρ

N,ε ∈ L2([0, T ];H−1(RdN )) imply ρN,ε ∈ C([0, T ];L2(RdN )) [Eva10, Chapter 5.9]. The
same statement holds for the solution ρN of the Liouville equation.

As in Section 2.2 we can weaken the assumption on the test function η to the regularity
η ∈ C([0, T ];C∞

c (Rd)). Also recall that mass conservation holds by Remark 2.5.
We recall some general facts regarding the well-posedness of the interacting particle sys-

tems and Fokker–Planck equations, which will be used throughout the thesis. We may assume

that kε is bounded. First, we observe that we have a solution (ρN,εt , t ≥ 0) of the regularized
PDE (3.8) in the sense of Definition 3.2, which follows from the regularity of kε. In the case
k ∈ L∞(Rd), we obtain a solution (ρNt , t ≥ 0) by the same methods as well. According to SDE

theory [HRZ24, Theorem 3.7 and Theorem 4.10], we also obtain strong solutions
(
XN,ε
t , t ≥ 0

)
,(

YN,ε
t , t ≥ 0

)
to the regularized SDEs (3.4), (3.5). Similar, in the case k ∈ L∞(Rd) the results

imply strong solutions of the particle system (3.1) and McKean–Vlasov SDE (3.3), respec-
tively. Additionally, Section 2.2 guarantees the well-posedness of PDE (3.9) and (3.7) in the
case k ∈ L∞(Rd).

Consequently, our framework is well-defined in the case k ∈ L∞(Rd) and, in particular, the

empirical measure µX
N,ε

t (ω) given by (1.1) with the associated interacting particle system (3.1)
is well-defined. Outside of k ∈ L∞(Rd), we will only focus on the intermediate regime, where
well-posedness is not an issue, since the minimal requirement for kε is to be bounded.

Our contribution: We present a novel method to derive propagation of chaos in relative
entropy on the whole space for both non-conservative field and potential field possessing a
convolution structure. Inspired by Oelschläger [Oel87], the presented method is based on
the crucial observation that, under the convolution structure of the interaction kernel k, the
expectation of the mollified weighted L2-norm and the modulated energy (also as a weighted
L2-norm) can be estimated using the dynamics of the underlying systems in conjunction with
propagation of chaos in probability, as demonstrated in [LP17, HLP20, FHS19] and Chapter 2.
The key contribution of the present work lies in the technique of combining propagation of
chaos in probability [LP17, HLL19, FHS19, HKPZ19, CCS19, HLP20, CLPY20, CNP24] with
the underlying entropy structure from [JW18, Ser20] and the fluctuation estimates in [Oel87].
Consequently, we prove that convergence in probability, which is obtained by some type of
mollification technique, implies convergence in relative entropy for an algebraic cut-off N−β.



66 Quantitative estimates for the relative entropy

This demonstrates that convergence in probability is actually a quite strong convergence
result on the intermediate level.

We emphasize that the main quantitative estimate, Theorem 3.14, is presented in a general
manner, allowing its application to a wide range of kernels. We refer to Remark 3.15 for more
details and to Section 3.6 for some interesting examples from the fields of chemotaxis and
opinion dynamics. In particular, the method can be further applied in handling the attractive
and repulsive Coulomb interaction potential in dimension d ≥ 2, which includes the Keller–
Segel model. Finally, we derive an estimate on the supremum norm in time of the relative
entropy between the law of the approximated particle system and the chaotic law of the
approximated mean-field SDE system of rate greater than 1/2. Moreover, the approximation
is of algebraic order, which is sharper than the logarithmic cut-off derived from the standard
coupling method [Szn91, LY19].

Based on the results from Chapter 2 we also provide convergence of the intermediate
system to the true mean-field limit for bounded interaction kernels k in the L1-norm. Conse-
quently, we prove the L1-convergence of the r-th marginal of the Liouville equation to the r-th
chaotic law of the non-linear diffusion-aggregation equation. This final convergence result is
only presented for bounded kernels since, in general, the existence for the linear Liouville
equation (3.6) on RdN is not given, see [BJW19, Proposition 4.2] for the torus setting.

Related literature: Motivated by models, particularly from physics, with bounded measur-
able or even singular interaction force kernels, extensive efforts have been devoted to inves-
tigated propagation of chaos for particle systems with such kernels. Initially, approaches to
treat such irregular kernels were often based on compactness methods in combination with the
martingale problems associated to the McKean–Vlasov SDEs, see e.g. [Oel84, Osa87, Gär88,
FHM14, GQ15, FJ17, LLY19]. For general singular Lp-interaction force kernels k, propa-
gation of chaos was demonstrated for first and second order systems on the torus [BJW23]
and on the whole space Rd [Han23, Lac23, HRZ24]. Another approach is the convergence in
probability, which we discussed in Chapter 2.

Significant contributions to the understanding of moderately interacting systems were
made by Oelschläger several decades ago, particularly in the context of deriving the porous
medium equation, as detailed in works such as [Oel84, Oel87]. Especially, for the fluctuation

analysis, a weighted L2-estimate with convergence rate o(N−1/2) has been obtained. The con-
volution structure of the moderate interaction played an important role. In the estimates pro-
posed in [Oel87], the repulsive moderate interaction provides an essential quantity to absorb
the rests, which appear from an interacting effect. Related to the work by Oelschläger [Oel87],
Olivera, Richard, and Tomašević [ORT23] utilized the semigroup approach and an additional
cut-off to demonstrate Lp-estimates for moderate interacting systems.

Our goal is to use the techniques introduced in by Oelschläger’s and extend them beyond
the porous medium equation. However, the novelty of our work is that we do not follow
directly the framework provided by [Oel87], but generate a direct estimation method in a
general framework.

Additionally, our work distinguishes itself from the standard modulated energy and rela-
tive entropy approach [JW18, BJW19, Ser20, BJW23, RS23]. A drawback of the modulated
energy approach in combination with the relative entropy is the torus domain as well as the
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requirement of entropy solutions on the particle level (microscopic level), see [BJW19, Propo-
sition 4.2]. Such solutions are non-trivial outside the torus setting and in general not unique.
Recently, Wang and Feng extended some ideas from the torus setting to the 2D-viscous point
vortex model on the whole space R2. The idea is to show exponential decay of the solu-
tion [FW23, Theorem 4.4] to be able to apply the large deviation result in [JW18]. Again
strict restrictions on the initial conditions such as exponential decay are necessary.

In the present chapter we manage to avoid the exponential law of large numbers/large
deviation principle [JW18] and the strict conditions on the initial condition by utilizing the
convergence in probability. We also treat general forces such as rotational fields or mag-
netic fields in physics. We manage to derive quantitative bounds on singular forces such as
attractive Coulomb interaction kernels on the whole space, which to our knowledge require
approximation techniques on the level of the Liouville equation by the nature of their sin-
gularities. The price we pay lies in the obtained convergence rate. While [JW18] establish

convergence in the sense of the relative entropy of N−1, we achieve a rate of N−1/2−ϑ for
some ϑ > 0. Nevertheless, the convergence is faster than 1/2 and, therefore, we are optimistic
that this result can be used as a stepping stone for Gaussian fluctuation.

Organization of the chapter: In Section 3.1 we recall the interacting particle systems
and their associated diffusion-aggregation equations from Chapter 2, and give the necessary
assumption on the initial condition. In Section 3.2 we recall the main ingredients from Chap-
ter 2 as an assumption on which we rely for our main estimate in Theorem 3.14. Then, the
main results are established in Section 3.3. We provide the idea and the main estimate in
Section 3.4. In Section 3.5, we demonstrate propagation of chaos in the case of bounded
interaction for the non-regularized systems by establishing the convergence of the approxi-
mated PDEs to the non-approximated counterparts. Finally, in Section 3.6, we showcase the
applicability of the developed method by discussing, e.g. singular Keller–Segel models and
bounded confidence models.

3.2. Assumption of convergence in probability

The analysis of the entropy relies on the convergence of the particle system (3.4) to the
particle system (3.5) in probability, which we introduced in Chapter 2. At this point, we want
to follow a general approach and not limit ourselves to the results of Chapter 2. Thus, we
introduce the following convergence in probability assumption.

Assumption 3.4. Let
(
XN,ε
t , t ≥ 0

)
,
(
YN,ε
t , t ≥ 0

)
be given by (3.4), (3.5). Then for

α ∈ (0, 1/2), βα ∈ (0, α), β ≤ βα, ε ∼ N−β there exists an N0 ∈ N such that for all N ≥ N0,
γ > 0 we have

(3.13) P
(

sup
0≤t≤T

sup
1≤i≤N

∣∣Xi,ε
t − Y i,ε

t

∣∣ ≥ N−α
)

≤ C(γ)N−γ ,

where C(γ) depends on the initial density ρ0, the final time T > 0, α and γ.

This assumptions is satisfied by a variety of models [LP17, HLL19, FHS19, HKPZ19,
CCS19, HLP20, CLPY20]. In particular for bounded k or even singular kernels this assump-
tion is fulfilled, see Chapter 2.
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Furthermore, we need the following law of large numbers result.

Assumption 3.5. Let (YN,ε
t , t ≥ 0) and ρεt be given by (3.5). Assume further that 0 < α, δ,

0 < α + δ < 1/2, ε ∼ N−β with βα ∈ (0, α), β ≤ βα and define for 0 ≤ t ≤ T the following
sets

Bα
t :=

{
max
1≤i≤N

∣∣∣∣ N∑
j=1

kε(Y i,ε
t − Y j,ε

t )− (k ∗ ρεt )(Y
i,ε
t )

∣∣∣∣ ≤ N−(δ+α)

}
.

Then, for each γ > 0 there exists a C(γ) > 0 such that

(3.14) P
(
(Bα

t )
c
)
≤ C(γ)N−γ

for every 0 ≤ t ≤ T , where the constant C(γ) is independent of t ∈ [0, T ].

We refer again to [LP17, HLL19, FHS19, HKPZ19, CCS19, HLP20, CLPY20]. In partic-
ular, the assumption is satisfied for bounded forces k, which satisfy the local Lipschitz bound
as we have seen in Proposition 2.21.

3.3. Main results

Let Jε(x) := 1
εd
J
(
x
ε

)
and J : Rd → R be a given mollification kernel, see Section A.2.

Let ζ be a cut-off function, which satisfies |ζ| ≤ 1, ζ = 1 on B(0, 1) and ζ = 0 on B(0, 2)c,
ζε(x) = ζ(εx). We need the following assumptions on the regularized version of interaction
force separately to state the main result of this chapter. For concrete examples, such as the
Keller–Segel model, we refer to Section 3.6.

Definition 3.6. We sayW ε = (W ε
1 , . . . ,W

ε
d ), V

ε are admissible approximations, ifW ε
i ∈

L2(Rd) for all i = 1, . . . , d and V ε ∈ H2(Rd) with

(3.15) ∥W ε∥L2(Rd) ≤ Cε−aW , ∥V ε∥H2(Rd) ≤ Cε−aV

for some C > 0 and aW , aV > 0. Additionally, we say U ε, V ε are strongly admissible approx-
imations, if U ε ∈ L2(Rd) and V ε ∈ H2(Rd) with

(3.16) ∥U ε∥H2(Rd) ≤ Cε−aU , ∥V ε∥H2(Rd) ≤ Cε−aV .

Notice that U ε is R-valued and W ε is Rd-valued.

In general we will consider two type of forces. First, kε = W ε ∗ V ε and second kε =
∇(U ε ∗ V ε). The potential field structure of the latter one will be required for the definition
of the modulated energy (see Section 3.4). The assumption on k includes many different
forces, where no potential field is needed.

Remark 3.7. Some typical examples for the above structure with k : Rd 7→ Rd are as
follows:

(1) The interaction force kernel k ∈ L2(Rd). Then W ε = k and V ε = Jε is just the
standard mollified version of k.

(2) If k ∈ Lp for p < ∞, we can choose W ε = k ∗ Jε and V ε = Jε, which is also just a
mollification of k.

(3) If k ∈ L∞(Rd) we may choose W ε = ζε(k ∗ Jε) and V ε = Jε, where ζε is defined as
a cut-off function to guarantee integrability of the mollification k ∗ Jε.
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The first main result of this chapter is propagation of chaos on the mollified level with
ε = N−β:

Theorem 3.8. Let ρN,ε and ρε be the non-negative solutions of (3.8) and of (3.9) respec-
tively. Assume that the convergence in probability, Assumption 3.4, and the law of large num-
bers, Assumption 3.5 hold for α ∈ (14 ,

1
2). Let kε = W ε ∗ V ε and W ε ∈ L2(Rd), V ε ∈ H2(Rd)

be admissible in the sense of Definition 3.6 with rate aW , aV . Then there exists a β1 ∈ (0, βα)
depending on aW , aV such that ∀β ∈ (0, β1), the following propagation of chaos result holds
for ε = N−β between (3.8) and of (3.9).

(3.17)
∥∥∥ρN,2,εt − ρεt ⊗ ρεt

∥∥∥2
L1(R2d)

≤ 2H2

(
ρN,2,εt |ρεt ⊗ ρεt

)
≤ 4HN

(
ρN,εt |ρ⊗N,εt

)
= o

(
1√
N

)
.

where ρN,2,ε is the 2-marginal density of ρN,ε.
Furthermore, if kε = ∇(U ε ∗ V ε) with U ε, V ε being admissible approximations with rate

aU , aV , then the estimate (3.17) holds with β ∈ (0, β̃1) for some β̃1 > 0. If au = aw and av
is the same as in the previous case, then b̃1 = b1 and the estimate (3.17) holds with the same
constants.

Moreover, if U ε, V ε are strongly admissible, then there exists β2 ∈ (0, βα) such that
∀β ∈ (0, β2), the following estimate for regularized modulated energy holds with ε = N−β

between (3.8) and of (3.9).

KN

(
ρN,εt |ρ⊗N,εt

)
=

1

σ2
E
(∫

R2

(W ε ∗ V ε)(x− y) d(µN,εt − ρεt )(x) d(µ
N,ε
t − ρεt )(y)

)
= o

(
1√
N

)
.

Remark 3.9. In obtaining the estimate for the modulated energy KN , the proof has been
done with the identity

KN

(
ρN,εt |ρ⊗N,εt

)
=

1

σ2
E
(〈

Û ε ∗ (µN,εt − ρεt ), V
ε ∗ (µN,εt − ρεt )

〉)
,

where Û(x) = U(−x) is the reflection. Again choosing for instance W ε = Jε we may borrow
an additional factor from the mollification kernel Jε, which will weaken the convergence rate
estimate, or in other words, one has to choose even smaller β to achieve the order o( 1√

N
).

The restriction α ∈ (14 ,
1
2) is in place to guarantee the order o( 1√

N
). The convergence of the

relative entropy holds also without this restriction.

Additionally, for bounded force, we know from Chapter 2 that convergence in probability
holds for approximations (kε, ε > 0), which satisfy a local Lipschitz bound. Additionally, we
have stability on the PDE level (2.14). Therefore, we can obtain a propagation of chaos result
without mollification.

Theorem 3.10. Assume that k ∈ L∞(Rd) and the Assumption 3.1 holds for initial
condition ρ0. Additionally, suppose the Assumptions 3.4, 3.5 hold for the approximation
kε = (ζε(k ∗ Jε)) ∗ Jε. Then, for any fix r ∈ N, we have the convergence of the r-th marginal
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of the Liouville equation (3.6) to the aggregation-diffusion equation (3.7) in the L1(Rdr)-norm,
i.e.

lim
N→∞

∥∥ρN,r − ρ⊗r
∥∥
L1([0,T ];L1(Rdr))

= 0.

Remark 3.11. The theorem holds for more general approximation kε as long as the ap-
proximation kε ∈ L2(Rd) and the convergence in probability holds.

Let us finish the section with an overview over the constants:

• α ∈ (0, 1/2) provides the rate on the distance of the particles in the convergence in
probability

sup
1≤i≤N

|Xi,ε
t − Y i,ε

t | ≥ N−α

and in the law of large numbers{
max
1≤i≤N

∣∣∣∣ N∑
j=1

kε(Y i,ε
t − Y j,ε

t )− (k ∗ ρεt )(Y
i,ε
t )

∣∣∣∣ ≥ N−(δ+α)

}
.

• βα ∈ (0, α) provides the maximum interval (0, βα) for the cut-off parameter β, for
which the convergence in probability and law of large numbers hold.

• β is the convergence rate of the approximated particles Xi,ε
t , Y i,ε

t such that ε = N−β.
• β1, β2 provide the maximum intervals (0, β1), (0, β2) such that the relative entropy
and modulated energy converges with rate greater than 1/2, (see (3.17)).

3.4. Relative entropy method

This section is devoted to present the relative entropy method for the moderate interacting
problem and its connection to the L2-estimate proposed by Oelschläger [Oel87]. We derive
the smoothed L2-estimate for given force k (no requirement as a potential field), and the
smoothed modulated energy for potential field with convolution structure. Both lead to the
estimate of the relative entropy between ρN,ε and ρ⊗N,ε.

The main idea is to use the assumption of convergence in probability (Assumption 3.4),
the structure of the PDEs (3.8), (3.9) and the law of large number (Assumption 3.5). Applying
the Csiszár–Kullback–Pinsker inequality 1.6 and the sub-additivity inequality (1.7) we provide
an estimate on the L1(Rdr)-norm of the marginals ρN,r,ε and ρ⊗r,ε for fix r ∈ N.

We emphasize that the method developed in Theorem 3.14 can be applied in different
settings. Indeed, since we are working on the approximation level, our assumptions are only
needed in the regularized setting. Hence, in general the assumptions on k, V and W itself
can be chosen more irregular, extending even to singular models. We refer to Remark 3.15
and the applications Section 3.6 for more details.

3.4.1. Relative entropy and modulated energy. In this section we introduce our main
quantities the relative entropy and the modulated free energy. We then show the connection
between the L2-norm

(3.18) E
(∥∥∥V ε ∗ (µN,εt − ρεt )

∥∥∥2
L2(Rd)

)
,

the relative entropy HN

(
ρN,εt |ρ⊗N,εt

)
as well as the modulated free energy KN

(
ρN,εt |ρ⊗N,εt

)
.

This can be viewed as a combination of Oelschläger’s results on moderated interaction and
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fluctuations [Oel87] and the relative entropy method developed among others by Serfaty,
Jabin, Wang, Bresch and Lacker [JW16, JW18, BJW19, BJW23, Ser20, NRS22, RS23,
BJW23, Lac23] for the mean-field setting. The aim is to demonstrate how both concepts
connect under the convolution assumption. Finally, we derive an estimate on the relative
entropy in terms of the above L2-norm.

Following [BJW19] we recall the relative entropy and modulated free energy from Sec-
tion 1.3.4. The modulated free energy is given by

EN

(
ρN,ε | ρ⊗N,ε

)
:= HN

(
ρN,ε|ρ⊗N,ε

)
+KN

(
ρN,ε|ρ⊗N,ε

)
,

where

HN

(
ρN,εt |ρ⊗N,εt

)
:=

1

N

∫
RdN

ρN,εt (x1, . . . , xN ) log
( ρN,εt (x1, . . . , xN )

ρ⊗N,εt (x1, . . . , xN )

)
dx1, . . . , xN

is the relative entropy introduced in [JW16] and if kε = ∇(U ε ∗ V ε) is a potential

KN

(
ρN,εt |ρ⊗N,εt

)
:=

1

σ2
E
(∫

R2d

(U ε ∗ V ε)(x− y) d(µN,εt − ρεt )(x) d(µ
N,ε
t − ρεt )(y)

)
is the modulated energy. We refer to [BJW19] and the references therein for more details on
the modulated free energy.

Let us now explore some connections between the relative entropy and the structure
presented by Oelschläger [Oel87]. We start by rewriting the expectation of the free energy by
using our convolution structure. A straightforward calculation shows

KN

(
ρN,εt |ρ⊗N,εt

)
=

1

σ2
E
(〈

Û ε ∗ (µN,εt − ρεt ), V
ε ∗ (µN,εt − ρεt )

〉)
,(3.19)

where Û(x) = U(−x) is the reflection. Applying Young’s inequality we see that it is enough
to control a term of the form

E
(∥∥∥V ε ∗ (µN,εt − ρεt )

∥∥∥2
L2(Rd)

)
for some function V ε, where we just write V ε for simplicity and understand that we can

chose V ε = Û ε in all calculations below. Hence, in order to estimate KN

(
ρN,εt |ρ⊗N,εt

)
we can

estimate the L2-difference between the convoluted empirical measure and the solution the law
of the mean-field limit (3.3). This will be accomplished in Theorem 3.14.

But let us recall that our initial goal is to estimate the relative entropy HN

(
ρN,εt |ρ⊗N,εt

)
and not KN

(
ρN,εt |ρ⊗N,εt

)
. Therefore, let us connect the relative entropy to the L2-norm of

V ε ∗ (µN,εt − ρεt ). First, we consider the case kε =W ε ∗ V ε.
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Lemma 3.12. Let W ε, V ε be admissible and kε = W ε ∗ V ε. Then for the non-negative
solutions ρN,ε of (3.8) and ρε of (3.9), it holds ∀t > 0 that

HN

(
ρN,εt |ρ⊗N,εt

)
+
σ2

4N

∫ t

0

N∑
i=1

∫
RdN

∣∣∣∣∣∇xi log
( ρN,εs (XN )

ρ⊗N,εs (XN )

)∣∣∣∣∣
2

ρN,εs (XN ) dXN ds

≤
∥W ε∥2L2(Rd)

σ2
E
(∫ t

0

(∥∥V ε ∗ (µN,εs − ρεs)
∥∥2
L2(Rd)

)
ds

)
,(3.20)

Proof. Let us compute the time derivative of the relative entropy

d

dt
HN

(
ρN,εt |ρ⊗N,εt

)
=

1

N

∫
RdN

∂tρ
N,ε
t (XN ) log

( ρN,εt (XN )

ρ⊗N,εt (XN )

)
+ ∂tρ

N,ε
t (XN )− ρN,εt (XN )

ρ⊗N,εt (XN )
∂tρ

⊗N,ε
t (XN ) dXN

=
1

N

∫
RdN

(
σ2

2

N∑
i=1

∆xiρ
N,ε
t (XN )

+

N∑
i=1

∇xi ·
(
ρN,εt (XN )

1

N

N∑
j=1

kε(xi − xj)

))
log
( ρN,εt (XN )

ρ⊗N,εt (XN )

)

− ρN,εt (XN )

ρ⊗N,εt (XN )

N∑
i=1

σ2

2
∆xiρ

⊗N,ε
t (XN )−

N∑
i=1

∇xi · ((kε ∗ ρεt )(xi)ρ
⊗N,ε
t (XN )) dXN

= − σ2

2N

N∑
i=1

∫
RdN

∣∣∣∣∣∇xi log
( ρN,εt (XN )

ρ⊗N,εt (XN )

)∣∣∣∣∣
2

ρN,εt (XN ) dXN

− 1

N2

N∑
i,j=1

∫
RdN

(
kε(xi − xj)− kε ∗ ρεt (xi)

)
ρN,εt (XN ) · ∇xi log

( ρN,εt (XN )

ρ⊗N,εt (XN )

)
dXN

≤ − σ2

4N

N∑
i=1

∫
RdN

∣∣∣∣∣∇xi log
( ρN,εt (XN )

ρ⊗N,εt (XN )

)∣∣∣∣∣
2

ρN,εt (XN ) dXN

+
1

σ2N

N∑
i=1

∫
RdN

∣∣∣∣ 1N
N∑
j=1

kε(xi − xj)− kε ∗ ρεt (xi)
∣∣∣∣2ρN,εt (XN ) dXN

= − σ2

4N

N∑
i=1

∫
RdN

∣∣∣∣∣∇xi log
( ρN,εt (XN )

ρ⊗N,εt (XN )

)∣∣∣∣∣
2

ρN,εt (XN ) dXN

+
1

σ2
E
(
⟨µN,εt , |kε ∗ (µN,εt − ρεt )|2⟩

)
.

For kε =W ε ∗ V ε we have further estimates

1

σ2
E
(
⟨µN,εt , |kε ∗ (µN,εt − ρεt )|2⟩

)
=

1

σ2
E
(
⟨µN,εt , |W ε ∗ V ε ∗ (µN,εt − ρεt )|2⟩

)
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≤
∥W ε∥2L2(Rd)

σ2
E
(∥∥∥V ε ∗ (µN,εt − ρεt )

∥∥∥2
L2(Rd)

)

Substituting the estimate into the first inequality, while recalling that HN

(
ρN,ε0 |ρ⊗N,ε0

)
= 0,

proves the lemma. □

Remark 3.13. Depending on the regularity of V ε and W ε one may choose to interchange
the roles in the estimate. Generally, one should choose the more regular function to be V ε.
Indeed, in the above estimate we need only the L2-norm of W ε, while later on in Theorem 3.14
we need the L∞-norm as well as the L2-norm of not only the function V ε but also of its
derivatives. Moreover, if the force kε is a potential field, the last term has the following
structure

E
(∥∥∥∇V ε ∗ (µN,εt − ρεt )

∥∥∥2
L2(Rd)

)
,

which will also be estimated by Theorem 3.14. Hence, we do not lose convergence rates in the
case kε = ∇(U ε ∗ V ε), but as already mentioned, we obtained an additional estimate on the

modulated energy KN

(
ρN,εt |ρ⊗N,εt

)
.

Consequently, by the above discussion, in order to control the relative entropy and the
modulated energy in the case kε is a potential field, we need to find an estimate for the L2-
norm (3.18), which was studied in the moderated regime by Oelschläger [Oel87] nearly forty
years ago.

3.4.2. L2-estimate. In this section we concentrate on estimating the rest term in the entropy
estimate (3.20).

We present the main theorem of the chapter, which is formulated for a function V ε, which
depends on ε. This presentation is motivation by our case kε =W ε ∗ V ε. We emphasize that
the function in the following theorem can be chosen independent of ε, but than the estimate
has no connection to the modulated energy or the relative entropy (see Lemma 3.12).

Theorem 3.14. Suppose (3.2), the convergence in probability, Assumption 3.4, and the
law of large numbers, Assumption 3.5 hold both with rates β, βα, α specified therein. Then for
any V ε ∈ H2(Rd) the following L2-estimate holds

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
+
σ2

8
E
( T∫

0

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥2
L2(Rd)

ds

)

≤ C

N
(∥V ε∥2H1(Rd) ∥k

ε∥2L∞(Rd) +
∥∥∇2V ε

∥∥2
L2(Rd)

) +
C ∥V ε∥2H1(Rd) (1 + ∥kε∥2L∞(Rd))

Nγ

+
∥∇kε∥L∞(Rd) ∥V ε∥L2(Rd) + ∥kε∥2L∞(Rd) ∥∇V ε∥2L2(Rd) + ∥V ε∥2L2(Rd)

N2α

+ C
∥∇V ε∥2L2(Rd) (1 + ∥∇kε∥L∞(Rd)) + ∥∇V ε∥L2(Rd)

∥∥∇2V ε
∥∥
L2(Rd)

∥kε∥L∞(Rd)

Nα+ 1
2

,

where C depends on T , σ, γ, CBDG.
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Remark 3.15. The only ingredients we need for completing the proof of theorem 3.14 are
the convergence in probability of the particle system XN,ε to the mean-field limit YN,ε (3.13) as
well as the law of large numbers (3.14). But the convergence in probability and the law of large
numbers are known for a variety of interaction force kernels, see for instance [LP17, FHS19,
HLL19, HLP20]. Hence, this result can be extended for a variety of interaction force kernels.
We refer to Section 3.6 for applicable models such as the case with Coulomb force. In the
case of d-dimensional kernels we notice, that our estimates become dimension dependent by
the choice of β and the approximation V ε and ε ∼ N−β. Consequently, the rate of convergence
becomes dependent on the dimension of the problem.

Remark 3.16. The results in Theorem 3.14 state that µN,εt is close to ρεt in the mollified

L2-norm. By propagation of chaos we expect that this quantity should be small since µN,εt −ρεt
should ideally vanish in the limit. The majority of work, which lies ahead, is to estimate this
L2-norm with a good rate. In the process we will also obtain an estimate on the derivative

V ε
x ∗ (µN,εt − ρεt ). This is no surprise, since the estimate follows the structure of the classic

a priori L2-estimate for the parabolic equation [WYW06, Chapter 3]. As a result, we obtain
in the L2(P)-norm an L∞([0, T ];L2(Rd))-bound and as usual an L2([0, T ];L2(Rd))-bound for
the derivative. In combination with Lemma 3.12 this will allow us to obtain a bound on the
relative entropy H

(
ρN,εt |ρ⊗N,εt

)
. Additionally, if the interaction force is a potential field we

obtain an estimate for KN

(
ρN,εt |ρ⊗N,εt

)
by equality (3.19).

Let us start by describing the dynamic of the empirical measure µN,εt . Applying Itô’s
formula(1.15) to a sufficiently smooth function f , we obtain

⟨f, µN,εt ⟩ = 1

N

N∑
i=1

f(Xi,ε
t )

= ⟨f, µN0 ⟩ − 1

N

N∑
i=1

1

N

N∑
j=1

t∫
0

∇f(Xi,ε
s ) · k(Xi,ε

s −Xj,ε
s ) ds

+
σ

N

N∑
i=1

t∫
0

∇Tf(Xi,ε
s ) dBi

s +
σ2

2N

N∑
i=1

t∫
0

∆f(Xi,ε
s ) ds.

Taking the expectation and using the fact that we have a density of XN,ε
s , provides a weak

formulation of the Liouville equation (3.8). If we want to compare it to the mean-field law,
we need to make the crucial observation that the stochastic integral in the above equation
should vanish after taking the expectation. In other words, we have no term in the regularized
PDE (3.9), which corresponds to the stochastic integral. If the integrand is smooth enough
then obviously the stochastic integral vanishes. However, we need to compute the following
difference

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
.

Therefore, we need somehow transfer the naive approach to the more complex expected
value. Applying the above dynamic we prove the following lemma, which allows us to treat

the convolution V ε ∗ µN,εt as if the stochastic integral vanishes.
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Lemma 3.17. Let µX
N,ε

t (ω) defined by (1.1) with the interacting particle system (3.4)
associated to it. Then, we have the following inequality

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)

≤ 2E
(

sup
0≤t≤T

∫
Rd

∣∣∣∣ 1N
N∑
i=1

(
V ε(y −Xi

0) +
1

N

N∑
j=1

t∫
0

∇V ε(y −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s ) ds

+
σ2

2

t∫
0

∆V ε(y −Xi,ε
t ) ds

)
− V ε ∗ ρεt (y)

∣∣∣∣2 dy)+
2Tσ2CBDG

N
∥∇V ε∥2L2(Rd) .

Proof. We use Itô’s formula(1.15), the dynamics (3.4) and the Burkholder–Davis–Gundy
inequality (A.1) to find

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)

= E
(

sup
0≤t≤T

∫
Rd

∣∣∣∣ 1N
N∑
i=1

V ε(y −Xi,ε
s )− V ε ∗ ρεt (y)

∣∣∣∣2 dy)

= E
(

sup
0≤t≤T

∫
Rd

∣∣∣∣ 1N
N∑
i=1

(
V ε(y −Xi

0) +
1

N

N∑
j=1

t∫
0

∇V ε(y −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s ) ds

+
σ2

2

t∫
0

∆V ε(y −Xi,ε
t ) ds− σ

t∫
0

∇TV ε(y −Xi,ε
s ) dBi

s

)
− V ε ∗ ρεt (y)

∣∣∣∣2 dy)

≤ 2E
(

sup
0≤t≤T

∫
Rd

∣∣∣∣ 1N
N∑
i=1

(
V ε(y −Xi

0) +
1

N

N∑
j=1

t∫
0

∇V ε(y −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s ) ds

+
σ2

2

t∫
0

V ε∆(y −Xi,ε
t ) ds

)
− V ε ∗ ρεt (y)

∣∣∣∣2 dy)

+ 2σ2E
(

sup
0≤t≤T

∫
Rd

∣∣∣∣ 1N
N∑
i=1

t∫
0

∇TV ε
x (y −Xi,ε

s ) dBi
s

∣∣∣∣2 dy).
It remains to estimate the last term by the Burkholder–Davis–Gundy (BDG) inequality (A.1),

2σ2E
(

sup
0≤t≤T

∫
Rd

∣∣∣∣ 1N
N∑
i=1

t∫
0

∇TV ε(y −Xi,ε
s ) dBi

s

∣∣∣∣2 dy)

≤ 2σ2
∫
Rd

E
(

sup
0≤t≤T

∣∣∣∣ 1N
N∑
i=1

t∫
0

∇TV ε(y −Xi,ε
s ) dBi

s

∣∣∣∣2)dy
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≤ 2σ2CBDG

∫
Rd

E
(〈

1

N

N∑
i=1

·∫
0

∇TV ε(y −Xi,ε
s ) dBi

s

〉
T

)
dy

≤ 2σ2CBDG

N2

∫
Rd

E
( N∑
i=1

T∫
0

|∇V ε(y −Xi,ε
s )|2 ds

)
dy

≤ 2Tσ2CBDG

N
∥∇V ε∥2L2(Rd) .

Inserting this calculation into the previous inequality proves the lemma. □

Proof of Theorem 3.14. By Lemma 3.17 we can ignore the stochastic integral in the

processes (Xi, ε, t ≥ 0), which determine the empirical measure µN,εt . Hence, let us write

V ε∗̃µN,εt (y) :=
1

N

N∑
i=1

(
V ε(y −Xi

0) +
1

N

N∑
j=1

t∫
0

∇V ε(y −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s ) ds

+
σ2

2

t∫
0

∆V ε(y −Xi,ε
t ) ds

)
for the convolution V ε ∗ µN,εt after applying Itô’s formula(1.15) but without the stochastic
integral. Then, we have∥∥∥V ε∗̃µN,εt − V ε ∗ ρεt

∥∥∥2
L2(Rd)

−
∥∥V ε ∗ µN0 − V ε ∗ ρ0

∥∥2
L2(Rd)

= 2

t∫
0

⟨∂s(V ε∗̃µN,εs − V ε ∗ ρεs), V ε∗̃µN,εs − V ε ∗ ρεs⟩L2(Rd) ds,

where we notice that for the initial time t = 0, we have V ε∗̃µN0 = V ε ∗ µN0 by definition. Let

us remark that since all integrands are smooth enough we have ∇(V ε∗̃µN,εt ) = ∇V ε∗̃µN,εt .

Next, plugging in V ε∗̃µN,εs and differentiate we obtain

⟨∂sV ε∗̃µN,εs , V ε∗̃µN,εs − V ε ∗ ρεs⟩L2(Rd)

=

〈
1

N

N∑
i=1

1

N

N∑
j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )

+
σ2

2N

N∑
i=1

∆V ε(· −Xi,ε
s ), V ε∗̃µN,εs − V ε ∗ ρεs

〉
L2(Rd)

=

〈
1

N

N∑
i=1

1

N

N∑
j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s ), V ε∗̃µN,εs − V ε ∗ ρεs

〉
L2(Rd)

− σ2

2
⟨∇V ε ∗ µN,εs ,∇V ε∗̃µN,εs −∇V ε ∗ ρεs⟩L2(Rd).
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Similar, ρεs is a weak solution to our PDE (3.9), which implies

⟨∂sV ε ∗ ρεs), V ε∗̃µN,εs − V ε ∗ ρεs⟩L2(Rd)

=

〈
V ε ∗

(
σ2

2
∆ρεs +∇ · ((kε ∗ ρεs)ρεs)

)
, V ε∗̃µN,εs − V ε ∗ ρεs

〉
L2(Rd)

= −σ
2

2
⟨∇V ε ∗ (ρεs),∇V ε∗̃µN,εs −∇V ε ∗ ρεs⟩L2(Rd)

+ ⟨V ε ∗ ∇ · ((kε ∗ ρεs)ρεs), V ε∗̃µN,εs − V ε ∗ ρεs⟩L2(Rd).

Combing the last two calculations, we find∥∥∥V ε∗̃µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

=
∥∥V ε ∗ µN0 − V ε ∗ ρ0

∥∥2
L2(Rd)

− 2

t∫
0

σ2

2
⟨∇(V ε ∗ µN,εs − V ε ∗ ρεs),∇(V ε∗̃µN,εs − V ε ∗ ρεs)⟩L2(Rd) ds

+

t∫
0

〈
2

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇ · (V ε ∗ (kε ∗ ρεs)ρεs),

V ε∗̃µN,εs − V ε ∗ ρεs
〉
L2(Rd)

ds.

The goal is now to insert V ε ∗ µN,εs back into the equation. Let us define the term

MV ε

s : =

(
σ

N

N∑
i=1

s∫
0

∇T∂x1V
ε(· −Xi

u) dB
i
u, . . . ,

σ

N

N∑
i=1

s∫
0

∇T∂xdV
ε(· −Xi

u) dB
i
u

)T

.

Then, for the absorption term we have

−
t∫

0

σ2

2
⟨∇(V ε ∗ µN,εs − V ε ∗ ρεs),∇(V ε∗̃µN,εs − V ε ∗ ρεs)⟩L2(Rd) ds

= −
t∫

0

σ2

2

∥∥∇V ε ∗ µN,εs −∇V ε ∗ ρεs
∥∥2
L2(Rd)

ds

+

t∫
0

σ2

2

〈
∇V ε ∗ (µN,εs − ∗ρεs),MV ε

〉
L2(Rd)

ds

≤ −
t∫

0

σ2

2

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥2
L2(Rd)

ds+

t∫
0

σ2

16

∥∥∇V ε ∗ (µN,εs ∗ ρεs)
∥∥2
L2(Rd)

+ 2σ2
∥∥MV ε∥∥2

L2(Rd)
ds
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= −
t∫

0

7σ2

16

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥2
L2(Rd)

ds

+ 2σ2
t∫

0

∥∥∥∥∥∥ σN
N∑
i=1

s∫
0

∆V ε(· −Xi
u) dBu

∥∥∥∥∥∥
2

L2(Rd)

ds

and for the last term

E
(

sup
0≤t≤T

t∫
0

〈
1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

V ε∗̃µN,εs − V ε ∗ ρεs
〉
L2(Rd)

ds

)

≤ E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

V ε ∗ µN,εs − V ε ∗ ρεs
〉
L2(Rd)

∣∣∣∣ds)

+ E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

∣∣∣∣ds).
Applying Lemma 3.17 and put together the above estimates we have shown

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
≤ E

(
sup

0≤t≤T

∥∥∥V ε∗̃µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
+

2Tσ2CBDG

N
∥∇V ε∥2L2(Rd)

≤ 2E
(

sup
0≤t≤T

(∥∥V ε ∗ µN0 − V ε ∗ ρ0
∥∥2
L2(Rd)

−
t∫

0

7σ2

16

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥2
L2(Rd)

ds

+

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

V ε ∗ µN,εs − V ε ∗ ρεs
〉
L2(Rd)

∣∣∣∣ ds))
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+ 2E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

∣∣∣∣ ds)

+ 4σ2E
(

sup
0≤t≤T

t∫
0

∥∥MV ε∥∥2
L2(Rd)

ds

)
+

2Tσ2CBDG

N
∥∇V ε∥2L2(Rd) .

(3.21)

Now, we want to estimate each term on its own. We will split the fourth terms into fourth
separate lemmata to keep a readable structure. The theorem follows immediately by com-
bining Lemma 3.19 and the inequalities (3.22), (3.30), (3.37) in the lemmata below. We will
summarize the estimate after we prove the following lemmata.

Lemma 3.18 (Initial Value Inequality). Let the assumptions of Theorem 3.14 hold true.
Then

(3.22) E
(∥∥V ε ∗ µN0 − V ε ∗ ρ0

∥∥2
L2(Rd)

)
≤ 2

N
∥V ε∥2L2(Rd) .

Proof. We compute

E
(∥∥V ε ∗ µN0 − V ε ∗ ρ0

∥∥2
L2(Rd)

)
=

∫
Rd

E
(
|V ε ∗ µN0 (y)|2 − 2V ε ∗ µN0 (y) · V ε ∗ ρ0(y) + |V ε ∗ ρ0(y)|2

)
dy

=

∫
Rd

1

N2

N∑
i,j=1

E
(
V ε(y −Xi

0) · V ε(y −Xj
0)

)
− 2

N

N∑
i=1

E
(
V ε(y −Xi

0)

)
· V ε ∗ ρ0(y)

+ |V ε ∗ ρ0(y)|2 dy

=

∫
Rd

N2 −N

N2
|V ε ∗ ρ0(y)|2 +

1

N
|V ε|2 ∗ ρ0(y)− |V ε ∗ ρ0(y)|2 dy

=
1

N

∫
Rd

(V ε)2 ∗ ρ0(y)− |V ε ∗ ρ0(y)|2 dy

≤ 1

N

( ∥∥|V ε|2 ∗ ρ0
∥∥
L1(Rd)

+ ∥V ε ∗ ρ0∥2L2(Rd)

)
≤ 2

N
∥V ε∥2L2(Rd) ∥ρ0∥L1(Rd) ,

where we used the fact that the initial particles are i.i.d. and Young’s inequality for convolu-
tions in the last step. □
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Lemma 3.19 (Absorption Inequality). Let the assumptions of Theorem 3.14 hold true.
Then

E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

V ε ∗ (µN,εs − ρεs)

〉
L2

∣∣∣∣− 7σ2

16

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥2
L2(Rd)

ds

)
≤

16T ∥∇kε∥2L∞(Rd) ∥V ε∥2L2(Rd)

σ2N2α
+

4T ∥V ε∥2L2(Rd)

σ2N2(α+δ)

+
(4 ∥∇V ε∥2L2(Rd)

N2ασ2
+

16 ∥V ε∥2L2(Rd)

Nσ2

) T∫
0

∥kε ∗ ρεs∥
2
L∞(Rd) ds

+
C(γ)T

Nγ

(
∥V ε∥2L2(Rd) ∥k

ε∥2L∞(Rd) + ∥∇V ε∥2L2(Rd)

)
− σ2

8
E
(

sup
0≤t≤T

t∫
0

∥∥∇V ε ∗ (µN,εs − ∗ρεs)
∥∥2
L2(Rd)

ds

)
.

Proof. Before we begin the proof of this lemma, we will provide an overview of our

approach. Our main strategy is to utilize the convergence in probability of the particle Xi,ε
t

to their mean-field limit Y i,ε
t (Assumption 3.4) in combination with the law of large numbers

(Assumption 3.5). This implies that the “bad set”, where the particles are apart is small in

probability with arbitrary algebraic convergence rate. Therefore, we may assume that Xi,ε
t is

close to Y i,ε
t , and we formally replace the empirical measure of (Xi,ε

t , i = 1, . . . , N) with the

empirical measure associated with (Y i,ε
t , i = 1, . . . , N). However, (Y i,ε

t , i = 1, . . . , N) has more
desirable properties. For instance, the particles are independent and have density ρεt ∈ L1(Rd)
and often even ρεt ∈ L∞(Rd). This allows us to apply the law of large numbers (3.14), which
ultimately proves the claim.

Let us start by splitting our probability space Ω into two sets. On one set Bα
s the particles

are close to the mean-field particles in probability and “satisfy” the law of large numbers. The
other set we take as the complement (Bα

s )
c, which has small probability by inequalities (3.13)

and (3.14).
More precisely, we have

Bα
s =

{
ω ∈ Ω: max

i=1,...,N

∣∣∣∣ 1N
N∑
j=1

kε(Y i,ε
s (ω)− Y j,ε

s (ω))− (kε ∗ ρεs)(Y i,ε
s (ω))

∣∣∣∣ ≤ N−(α+δ)

}

∩
{
ω ∈ Ω: max

i=1,...,N
|Xi,ε

s (ω)− Y i,ε
s (ω)| ≤ N−α

}
(3.23)

for some δ > 0 such that 0 < α+ δ < 1/2 and we have the estimate P((Bα
s )

c) ≤ C(γ)N−γ for
all γ > 0 by (3.13) and (3.14). Let us rewrite the last Lebesgue integral on the left-hand side
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of our claim as follows

E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

V ε ∗ µN,εs − V ε ∗ ρεs
〉
L2(Rd)

∣∣∣∣ds)

≤ E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

V ε ∗ µN,εs − V ε ∗ ρεs
〉
L2(Rd)

∣∣∣∣(1(Bα
s )

+ 1(Bα
s )

c

)
ds

)
.

We are going to estimate each term by itself.
On the set Bα

s : In order to estimate the first term above we let ω ∈ Bα
s and will not write

the indicator function. Then we have

1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · kε(Xi,ε
s (ω)−Xj,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs)),

V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

=
1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · (kε(Xi,ε
s (ω)−Xj,ε

s (ω))− kε(Y i,ε
s (ω)− Y j,ε

s (ω))),

V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

+
1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · kε(Y i,ε
s (ω)− Y j,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs)),

V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

= I1s (ω) + I2s (ω).

For the first term we obtain

|I1s (ω)|

=

∣∣∣∣ 1

N2

N∑
i,j=1

〈
V ε(· −Xi,ε

s (ω))(kε(Xi,ε
s (ω)−Xj,ε

s (ω))− kε(Y i,ε
s (ω)− Y j,ε

s (ω))),

∇V ε ∗ (µN,εs (ω)− ρεs)

〉
L2(Rd)

∣∣∣∣
≤ 1

N2

N∑
i,j=1

〈
|(V ε(· −Xi,ε

s (ω))| max
1≤i≤N

|kε(Xi,ε
s (ω)−Xj,ε

s (ω))− kε(Y i,ε
s (ω)− Y j,ε

s (ω))|,
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|∇V ε ∗ (µN,εs (ω)− ρεs|
〉
L2(Rd)

≤ 2

N

N∑
i=1

〈
∥∇kε∥L∞(Rd) |V

ε(· −Xi,ε
s (ω))| max

1≤i≤N
|Xi,N

s − Y i,N
s |,

|∇V ε ∗ (µN,εs (ω)− ρεs)|
〉
L2(Rd)

≤ 2

N

N∑
i=1

⟨N−α ∥∇kε∥L∞(Rd) |V
ε(· −Xi,ε

s (ω))|, |∇V ε ∗ (µN,εs (ω)− ρεs|⟩L2(Rd)

≤ 2

N

N∑
i=1

∫
Rd

8 ∥∇kε∥2L∞(Rd)

σ2N2α
|V ε(y −Xi,ε

s (ω))|2 dy

+
σ2

32

∫
Rd

|∇V ε ∗ (µN,εs (ω)− ρεs)(y)|2 dy

≤ 16

σ2N2α
∥∇kε∥2L∞(Rd) ∥V

ε∥2L2(Rd) +
σ2

16

∥∥∇V ε ∗ (µN,εs (ω)− ρεs)
∥∥2
L2(Rd)

.

(3.24)

Here we used integration by parts in the first step, the property of the set Bα
s in the fourth

step. As always, we neglect the last term by absorbing it into the diffusion in our statement.
We treat the term I2s (ω) using the law of large numbers property of the second term in

Bα
s . For ω ∈ Bα

s we rewrite

|I2s (ω)| =
∣∣∣ 1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · kε(Y i,ε
s (ω)− Y j,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs)),

V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

∣∣∣
=
∣∣∣ 1

N2

N∑
i,j=1

〈
V ε(· −Xi,ε

s (ω))kε(Y i,ε
s (ω)− Y j,ε

s (ω))− V ε ∗ ((kε ∗ ρεs)ρεs)),

∇V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

∣∣∣
=
∣∣∣ 1

N2

N∑
i,j=1

〈
V ε(· −Xi,ε

s (ω))(kε(Y i,ε
s (ω)− Y j,ε

s (ω))− (kε ∗ ρεs)(Y i,ε
s (ω)))

+ (V ε(· −Xi,ε
s (ω))− V ε(· − Y i,ε

s (ω)))(kε ∗ ρεs)(Y i,ε
s (ω))

+ V ε(· − Y i,ε
s (ω))(kε ∗ ρεs)(Y i,ε

s (ω))− V ε ∗ ((kε ∗ ρεs)ρεs)),

∇V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

∣∣∣
= |I21s (ω)|+ |I22s (ω)|+ |I23s (ω)|.(3.25)
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For the first term I21s (ω) we obtain

|I21s (ω)| ≤ 1

N

N∑
i=1

〈
|V ε(· −Xi,ε

s (ω))|
∣∣∣∣ 1N

N∑
j=1

kε(Y i,ε
s (ω)− Y j,ε

s (ω))− (kε ∗ ρεs)(Y i,ε
s (ω))

∣∣∣∣,
|∇V ε ∗ (µN,εs (ω)− ρεs)|

〉
L2(Rd)

≤ 1

N

N∑
i=1

⟨N−(α+δ)|V ε(· −Xi,ε
s (ω))|, |∇V ε ∗ (µN,εs (ω)− ρεs)|⟩L2(Rd)

≤ 4N−2(α+δ)

σ2
∥V ε∥2L2(Rd) +

σ2

16

∥∥∇V ε ∗ (µN,εs (ω)− ρεs)
∥∥2
L2(Rd)

,(3.26)

where we used the property of the set Bα
s in the second step and Young’s inequality.

Using the fact that we are still on the set Bα
s we obtain for the second term I22s (ω) the

following estimate

|I22s (ω)|

≤
4 ∥kε ∗ ρεs∥

2
L∞(Rd)

Nσ2

N∑
i=1

∫
Rd

|V ε(y −Xi,ε
s (ω))− V ε(y − Y i,ε

s (ω)))|2 dy

+
σ2

16

∫
Rd

|∇V ε ∗ (µN,εs (ω)− ρεs)(y)|2 dy

=
4 ∥kε ∗ ρεs∥

2
L∞(Rd)

Nσ2

N∑
i=1

∫
Rd

∣∣∣∣
1∫

0

d

dr
V ε(y − Y i,ε

s (ω) + r(Y i,ε
s (ω)−Xi,ε

s (ω))) dr

∣∣∣∣2 dy
+
σ2

16

∫
Rd

|∇V ε ∗ (µN,εs (ω)− ρεs)(y)|2 dy

≤
4 ∥kε ∗ ρεs∥

2
L∞(Rd)

σ2
max
1≤i≤N

|Y i,ε
s (ω)−Xi,ε

s (ω)|2

· 1

N

N∑
i=1

1∫
0

∫
Rd

∣∣∣∇V ε(y − Y i,ε
s (ω) + r(Y i,ε

s (ω)−Xi,ε
s (ω)))

∣∣∣2 dy dr
+
σ2

16

∫
Rd

|∇V ε ∗ (µN,εs (ω)− ρεs)(y)|2 dy

=
4 ∥kε ∗ ρεs∥

2
L∞(Rd)

σ2
max
1≤i≤N

|Y i,ε
s (ω)−Xi,ε

s (ω)|2
1∫

0

∫
Rd

|∇V ε(z)|2 dz dr

+
σ2

16

∫
Rd

|∇V ε ∗ (µN,εs (ω)− ρεs)(y)|2 dy

≤
4 ∥kε ∗ ρεs∥

2
L∞(Rd)

N2ασ2
∥∇V ε∥2L2(Rd) +

σ2

16

∥∥∇V ε ∗ (µN,εs (ω)− ρεs)
∥∥2
L2(Rd)

.(3.27)
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In the above calculations we used Young’s inequality in the first step, Jensen inequality in
the second estimate, the property of the set Bα

s in the third estimate.
In order to estimate the last term I23s (ω) in (3.25) we use the independence of our mean-

field particles (Y i,ε
t , i = 1, . . . , N). Hence, we can no longer do the estimates pathwise and

need to take advantage of the expectation. First, applying Young’s inequality we find

|I23s (ω)| ≤ 4

σ2

∫
Rd

1

N2

∣∣∣∣ N∑
i=1

V ε(y − Y i,ε
s (ω))(kε ∗ ρεs)(Y i,ε

s (ω))− V ε ∗ ((kε ∗ ρεs)ρεs))(y)
∣∣∣∣2 dy

+
σ2

16

∥∥∇V ε ∗ (µN,εs (ω)− ρεs)
∥∥2
L2(Rd)

.

As always, the last term is going to be absorbed. For the first term, we recall that our
statement has an supremum over all 0 ≤ t ≤ T and an expectation. Hence, it is enough to
estimate

E
(

sup
0≤t≤T

t∫
0

4

σ2

∫
Rd

1

N2

∣∣∣∣ N∑
i=1

V ε(y − Y i,ε
s (ω))(kε ∗ ρεs)(Y i,ε

s (ω))

− V ε ∗ ((kε ∗ ρεs)ρεs))(y)
∣∣∣∣2 dy)

=

T∫
0

4

N2σ2

∫
Rd

E
(∣∣∣∣ N∑

i=1

V ε(y − Y i,ε
s (ω))(kε ∗ ρεs)(Y i,ε

s (ω))

− V ε ∗ ((kε ∗ ρεs)ρεs))(y)
∣∣∣∣2) dy.

Let us denote for fix y ∈ Rd

Zis(y, ω) := V ε(y − Y i,ε
s (ω))(kε ∗ ρεs)(Y i,ε

s (ω))− V ε ∗ ((kε ∗ ρεs)ρεs))(y).

Then we notice that

E(Zis) = E(V ε(y − Y i,ε
s )(kε ∗ ρεs)(Y i,ε

s ))− V ε ∗ ((kε ∗ ρεs)ρεs))(y)

=

∫
Rd

V ε(y − z)(kε ∗ ρεs)(z)ρεs(z) dz − V ε ∗ ((kε ∗ ρεs)ρεs))(y) = 0.

Furthermore, we have the random variables (Zis, i = 1, . . . , N) are pairwise independent.
Hence, if i ̸= j we find

E(Zis · Zjs) = E(Zis) · E(Zjs) = 0.

We notice that we have

E
(∣∣∣∣ N∑

i=1

V ε(y − Y i,ε
s (ω))(kε ∗ ρεs)(Y i,ε

s (ω))− V ε ∗ ((kε ∗ ρεs)ρεs))(y)
∣∣∣∣2)

= E
(∣∣∣∣ N∑

i=1

Zis

∣∣∣∣2) =
N∑
i=1

E(|Zis|2).
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However, by using the trivial inequality (a + b)2 ≤ 2(a2 + b2) and Young’s inequality for
convolution we obtain∫

Rd

E(|Zis(y)|2) dy

≤ 2E
(∫

Rd

|V ε(y − Y i,ε
s (ω))(kε ∗ ρεs)(Y i,ε

s (ω))|2 + |V ε ∗ ((kε ∗ ρεs)ρεs))(y)|2 dy
)

≤ 2 ∥kε ∗ ρεs∥
2
L∞(Rd) ∥V

ε∥2L2(Rd) + 2 ∥V ε∥2L2(Rd) ∥(k
ε ∗ ρεs)ρεs∥

2
L1(Rd)

= 4 ∥kε ∗ ρεs∥
2
L∞(Rd) ∥V

ε∥2L2(Rd) .

Hence, the estimate for I23 follows by the previous law of large numbers argument and is
obtained in the following

E
(

sup
0≤t≤T

t∫
0

|I23s (ω)| ds
)

≤ σ2

16

t∫
0

∥∥∇V ε ∗ (µN,εs (ω)− ρεs)
∥∥2
L2(Rd)

+
16 ∥V ε∥2L2(Rd)

Nσ2

T∫
0

∥kε ∗ ρεs∥
2
L∞(Rd) ds.(3.28)

By combining the estimates (3.26), (3.27), (3.28) with (3.25), and (3.24) we obtain the
estimate on the set Bα

s

E
(

sup
0≤t≤T

t∫
0

(|I1s (ω)|+ |I2s (ω)|)1(Bα
s )

ds

)

≤ −3σ2

16

T∫
0

∥∥∇V ε ∗ (µN,εs (ω)− ρεs)
∥∥2
L2(Rd)

ds+
16T ∥∇kε∥L∞(Rd) ∥V ε∥2L2(Rd)

σ2N2α

+
4T ∥V ε∥2L2(Rd)

σ2N2(α+δ)
+
(4 ∥∇V ε∥2L2(Rd)

N2ασ2
+

16 ∥V ε∥2L2(Rd)

Nσ2

) T∫
0

∥kε ∗ ρεs∥
2
L∞(Rd) ds(3.29)

It remains to obtain an estimate on the complement of Bα
s .

On the set (Bα
s )

c: Applying Young’s inequality, multiple Hölder’s inequalities, the fact
that P((Bα

s )
c) ≤ C(γ)N−γ , we obtain

E
(

sup
0≤t≤T

t∫
0

∣∣∣ 1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · kε(Xi,ε
s (ω)−Xj,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs)),

V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

∣∣∣1(Bα
s )

c ds

)

≤ 1

N2

N∑
i,j=1

E
( T∫

0

1(Bα
s )

c

∣∣∣〈V ε(· −Xi,ε
s (ω))kε(Xi,ε

s (ω)−Xj,ε
s (ω))− V ε ∗ ((kε ∗ ρεs)ρεs)),
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∇V ε ∗ (µN,εs (ω)− ρεs)
〉
L2(Rd)

∣∣∣ds)

≤ 1

N2

N∑
i,j=1

E
( T∫

0

1(Bα
s )

c

(∥∥V ε(· −Xi,ε
s (ω))kε(Xi,ε

s (ω)−Xj,ε
s (ω))

∥∥2
L2(Rd)

+ ∥V ε ∗ ((kε ∗ ρεs)ρεs))∥
2
L2(Rd)

)
ds

)

+
1

2
E
( T∫

0

1(Bα
s )

c

∥∥∇V ε ∗ (µN,εs (ω)− ρεs)
∥∥2
L2(Rd)

ds

)

≤ 1

N

N∑
i=1

E
( T∫

0

1(Bα
s )

c

(∥∥V ε(· −Xi,ε
s (ω))

∥∥2
L2(Rd)

∥kε∥2L∞(Rd)

+ ∥V ε∥2L2(Rd) ∥k
ε ∗ ρεs∥

2
L∞(Rd) ∥ρ

ε
s∥

2
L1(Rd)

)
ds

)
+ 2

T∫
0

E
(
1(Bα

s )
c ∥∇V ε∥2L2(Rd)

)
ds

≤ 2

T∫
0

P
(
(Bα

s )
c
)(

∥V ε∥2L2(Rd) ∥k
ε∥2L∞(Rd) + ∥∇V ε∥2L2(Rd)

)
ds

≤ C(γ)T

Nγ

(
∥V ε∥2L2(Rd) ∥k

ε∥2L∞(Rd) + ∥∇V ε∥2L2(Rd)

)
.

Combined with the estimate on the set Bα
s , we obtained the result. □

Lemma 3.20 (Stochastic Remaining Term Inequality). Let the assumptions of Theo-
rem 3.14 hold true. Then

E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs),

σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

∣∣∣∣ ds)

≤
2σT

3
2C

1
2
BDG

Nα+ 1
2

∥∇V ε∥2L2(Rd) ∥∇k
ε∥L∞(Rd) + σ

C
1
2
BDGT

3
2

Nα+δ+ 1
2

∥∇V ε∥2L2(Rd)

+

(
σ
C

1
2
BDG

∥∥∇2V ε
∥∥
L2(Rd)

Nα+ 1
2

∥∇V ε∥L2(Rd)

+ σ
2C

1
2
BDG ∥∇V ε∥2L2(Rd)

N

) T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds.
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+
2C(γ)C

1
2
BDGσ

N
1
2
+γ

∥∇V ε∥2L2(Rd)

(
∥kε∥L∞(Rd)

2

3
T

3
2 +

T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds

)
.(3.30)

Proof. We carry out a similar strategy as in the previous Lemma 3.19. Again, we want
to split Ω into a good and bad set. Remember the definition of set Bα

s in (3.23), we do the
estimates on Bα

s and its complement (Bα
s )
c separately.

On the set Bα
s : Let ω ∈ Bα

s , then we insert the i.i.d. process YN,ε and split the estimate
further into two terms

1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · kε(Xi,ε
s (ω)−Xj,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs)),

σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

=
1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · (kε(Xi,ε
s (ω)−Xj,ε

s (ω))− kε(Y i,ε
s (ω)− Y j,ε

s (ω))),

σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

+
1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · kε(Y i,ε
s (ω)− Y j,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs)),

σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

= II1s (ω) + II2s (ω).

Further, utilizing the property of the set Bα
s and the Burkholder–Davis–Gundy inequal-

ity (A.1) we obtain

E
(

sup
0≤t≤T

t∫
0

|II1s (ω)|1(Bα
s )

ds

)

≤ E
( T∫

0

1

N2

N∑
i,j=1

〈∣∣∣∇V ε(· −Xi,ε
s (ω)) ·

(
kε(Xi,ε

s (ω)−Xj,ε
s (ω))

− kε(Y i,ε
s (ω)− Y j,ε

s (ω))
)∣∣∣, ∣∣∣∣ σN

N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∣∣∣∣〉
L2(Rd)

1(Bα
s )

ds

)

≤ 2E
( T∫

0

1

N

N∑
i=1

〈
∥∇kε∥L∞(Rd) |∇V

ε(· −Xi,ε
s (ω))| max

1≤i≤N
|Xi,ε

s (ω)− Y i,ε
s (ω)|,
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∣∣∣∣ σN
N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∣∣∣∣〉
L2(Rd)

1(Bα
s )

ds

)

≤
2σ ∥kεx∥L∞(Rd)

Nα+1

N∑
i=1

T∫
0

E
(〈

|∇V ε(· −Xi,ε
s (ω))|,

∣∣∣∣ 1N
N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∣∣∣∣〉
L2(Rd)

)
ds

=
2σ ∥∇kε∥L∞(Rd)

Nα
C

1
2
BDG ∥∇V ε∥2L2(Rd) T

3
2

1

N
1
2

=
2σT

3
2C

1
2
BDG

Nα+ 1
2

∥∇V ε∥2L2(Rd) ∥∇k
ε
x∥L∞(Rd) ,(3.31)

where we have used the estimate

1

N

N∑
i=1

T∫
0

E
(〈

|∇V ε(· −Xi,ε
s (ω))|,

∣∣∣∣ 1N
N∑
l=1

s∫
0

∇TV ε
x (· −X l

u) dB
l
u

∣∣∣∣〉
L2(Rd)

)
ds

≤ 1

N

N∑
i=1

T∫
0

∫
Rd

E(|∇V ε(y −Xi,ε
s (ω))|2)

1
2E
(∣∣∣∣ 1N

N∑
l=1

s∫
0

∇TV ε(y −X l
u) dB

l
u

∣∣∣∣2) 1
2

dy ds

≤ 1

N

N∑
i=1

T∫
0

∫
Rd

E(|∇V ε(y −Xi,ε
s (ω))|2)

1
2
C

1
2
BDG

N
E
( N∑
l=1

s∫
0

|∇V ε(y −X l
u)|2 du

) 1
2

dy ds

≤ C
1
2
BDG

1

N2

N∑
i=1

T∫
0

(∫
Rd

E(|∇V ε(y −Xi,ε
s (ω))|2) dy

) 1
2

·
(∫

Rd

E
( N∑
l=1

s∫
0

|∇V ε(y −X l
u)|2 du

)
dy

) 1
2

ds

= C
1
2
BDG ∥∇V ε∥2L2(Rd) T

3
2

1

N
1
2

.

(3.32)

This completes the estimate of II1s (ω) on the set Bα
s . Next, for ω ∈ Bα

s we rewrite II2s (ω) in
the following way

II2s (ω)

=
1

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · kε(Y i,ε
s (ω)− Y j,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs)),
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σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

= − σ

N2

N∑
i,j=1

〈
∇V ε(· −Xi,ε

s (ω)) · (kε(Y i,ε
s (ω)− Y j,ε

s (ω))− (kε ∗ ρεs)(Y i,ε
s (ω)))

+ (∇V ε(· −Xi,ε
s (ω))−∇V ε(· − Y i,ε

s (ω))) · (kε ∗ ρεs)(Y i,ε
s (ω))

+∇V ε(· − Y i,ε
s (ω)) · (kε ∗ ρεs)(Y i,ε

s (ω))−∇V ε ∗ ((kε ∗ ρεs)ρεs)),

1

N

N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

= σ(II21s (ω) + II22s (ω) + II23s (ω)).

For the first term II21s (ω), applying the the property of the set Bα
s , we find with the help of

the estimate (3.32) for the stochastic term that

E
(

sup
0≤t≤T

t∫
0

|II21s (ω)|ds
)

≤ E
( T∫

0

1

N

N∑
i=1

〈
|∇V ε(· −Xi,ε

s (ω))|
∣∣∣∣ 1N

N∑
j=1

kε(Y i,ε
s (ω)− Y j,ε

s (ω))− (kε ∗ ρεs)(Y i,ε
s (ω))

∣∣∣∣,
∣∣∣∣ 1N

N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∣∣∣∣〉
L2(Rd)

ds

)

≤ N−(α+δ)

T∫
0

1

N

N∑
i=1

∫
Rd

E
(∣∣∣∣∇V ε(y −Xi,ε

s (ω))
1

N

N∑
l=1

s∫
0

∇TV ε(y −X l
u) dB

l
u

∣∣∣∣)dy ds

≤ N−(α+δ)C
1
2
BDG ∥∇V ε∥2L2(Rd) T

3
2

1

N
1
2

=
C

1
2
BDGT

3
2

Nα+δ+ 1
2

∥∇V ε∥2L2(Rd) ,

(3.33)

where we used Fubini’s theorem in the second step. For the term II22s (ω) we first notice that

|∂yjV ε(y −Xi,ε
s (ω))− ∂yiV

ε(z − Y i,ε
s (ω))|

=

∣∣∣∣
1∫

0

∇∂yjV ε(y − Y i,ε
s (ω)− r(Y i,ε

s (ω)−Xiε
s (ω))) · (Y i,ε

s (ω)−Xiε
s (ω)) dr

∣∣∣∣
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and therefore by Minkowski’s inequality we obtain

|∇V ε(· −Xi,ε
s (ω))−∇V ε(· − Y i,ε

s (ω)))(kε ∗ ρεs)(Y i,ε
s (ω)|

≤
( d∑
j=1

|∂yjV ε(y −Xi,ε
s (ω))− ∂yiV

ε(z − Y i,ε
s (ω))|2

) 1
2

∥kε ∗ ρεs∥L∞(Rd)

≤
( d∑
j=1

∣∣∣∣
1∫

0

∇∂yjV ε(y − Y i,ε
s (ω)− r(Y i,ε

s (ω)−Xiε
s (ω))) · (Y i,ε

s (ω)−Xiε
s (ω)) dr

∣∣∣∣2) 1
2

· ∥kε ∗ ρεs∥L∞(Rd)

=

1∫
0

|∇2V ε(y − Y i,ε
s (ω)− r(Y i,ε

s (ω)−Xiε
s (ω)))||(Y i,ε

s (ω)−Xiε
s (ω))| dr

· ∥kε ∗ ρεs∥L∞(Rd) .

Consequently, we arrive at

|II22s (ω)|

≤ 1

N

N∑
i=1

〈
|∇V ε(· −Xi,ε

s (ω))−∇V ε(· − Y i,ε
s (ω)))(kε ∗ ρεs)(Y i,ε

s (ω)|,

∣∣∣∣ 1N
N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∣∣∣∣〉
L2(Rd)

≤ 1

N

N∑
i=1

〈 1∫
0

∣∣∣∣∇2V ε
(
y − Y i,ε

s (ω)− r(Xi,ε
s (ω)− Y i,ε

s (ω))
)∣∣∣∣|(Y i,ε

s (ω)−Xi,ε
s (ω))|dr,

∣∣∣∣ 1N
N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∣∣∣∣〉
L2(Rd)

∥kε ∗ ρεs∥L∞(Rd)

≤ ∥kε ∗ ρεs∥L∞(Rd)N
−α 1

N

N∑
i=1

〈 1∫
0

∣∣∣∇2V ε
(
y − Y i,ε

s (ω)− r(Xi,ε
s (ω)− Y i,ε

s (ω))
)∣∣∣ dr,

∣∣∣∣ 1N
N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∣∣∣∣〉
L2(Rd)

≤
∥kε ∗ ρεs∥L∞(Rd)

Nα+1

N∑
i=1

∥∥∥∥
1∫

0

∣∣∣∇2V ε
x

(
y − Y i,ε

s (ω)− r(Xi,ε
s (ω)− Y i,ε

s (ω))
)∣∣∣ dr∥∥∥∥

L2(Rd)

·
∥∥∥∥ 1

N

N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∥∥∥∥
L2(Rd)
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≤ ∥kε ∗ ρεs∥L∞(Rd)N
−α ∥∥∇2V ε

∥∥
L2(Rd)

∥∥∥∥ 1

N

N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∥∥∥∥
L2(Rd)

,

where we utilized the property of Bα
s in the third step, followed by the application of Hölder’s

inequality and Minkowski’s inequality. Consequently, applying the Burkholder–Davis–Gundy
inequality (A.1) we obtain

E
(

sup
0≤t≤T

t∫
0

|II22s (ω)| ds
)

≤

∥∥∇2V ε
∥∥
L2(Rd)

Nα
E
( T∫

0

∥kε ∗ ρεs∥L∞(Rd)

∥∥∥∥ 1

N

N∑
l=1

s∫
0

∇TV ε(· −X l
u) dB

l
u

∥∥∥∥
L2(Rd)

ds

)

≤

∥∥∇2V ε
∥∥
L2(Rd)

Nα+1

T∫
0

∥kε ∗ ρεs∥L∞(Rd)

·
(∫

Rd

E
(∣∣∣∣ N∑

l=1

s∫
0

∇TV ε(y −X l
u) dB

l
u

∣∣∣∣2)dy

) 1
2

ds

≤
C

1
2
BDG

∥∥∇2V ε
∥∥
L2(Rd)

Nα+1

T∫
0

∥kε ∗ ρεs∥L∞(Rd)

·
(∫

Rd

E
( N∑
l=1

s∫
0

|∇V ε(y −X l
u)|2 du

)
dy

) 1
2

ds

≤
C

1
2
BDG

∥∥∇2V ε
∥∥
L2(Rd)

Nα+ 1
2

∥∇V ε∥L2(Rd)

T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds.(3.34)

For II23s (ω) we use again the Burkholder–Davis–Gundy (A.1) inequality to estimate the
stochastic integral and by the law of large number argument, similar to the term I23 in
Lemma 3.19, we obtain

E
(

sup
0≤t≤T

t∫
0

|II23s (ω)| ds
)

≤
T∫
0

∫
Rd

E
(∣∣∣∣ 1N

N∑
i=1

∇V ε(y − Y i,ε
s (ω)) · (kε ∗ ρεs)(Y i,ε

s (ω))−∇(V ε ∗ (kε ∗ ρεs)ρεs))(y)
∣∣∣∣,

∣∣∣∣ 1N
N∑
l=1

s∫
0

∇TV ε(y −X l
u) dB

l
u

∣∣∣∣) dy ds
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≤
T∫
0

(∫
Rd

E
(∣∣∣∣ 1N

N∑
i=1

∇V ε(y − Y i,ε
s (ω)) · (kε ∗ ρεs)(Y i,ε

s (ω))

−∇(V ε ∗ (kε ∗ ρεs)ρεs))(y)
∣∣∣∣2) dy

) 1
2

(∫
Rd

E
(∣∣∣∣ 1N

N∑
l=1

s∫
0

∇TV ε(y −X l
u) dB

l
u

∣∣∣∣2)dy

) 1
2

ds

≤ 2C
1
2
BDG

T∫
0

N−1/2 ∥kε ∗ ρεs∥L∞(Rd) ∥∇V
ε∥L2(Rd) s

1
2N−1/2 ∥∇V ε∥L2(Rd) ds

≤
2C

1
2
BDG ∥∇V ε∥2L2(Rd)

N

T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds.

(3.35)

This completes the estimate on the set Bα
s , namely

E
(

sup
0≤t≤T

t∫
0

(|II1s (ω)|+ |II2s (ω)|)1(Bα
s )

ds

)

≤
2σT

3
2C

1
2
BDG

Nα+ 1
2

∥∇V ε∥2L2(Rd) ∥∇k
ε∥L∞(Rd) + σ

C
1
2
BDGT

3
2

Nα+δ+ 1
2

∥∇V ε∥2L2(Rd)

+

(
σ
C

1
2
BDG

∥∥∇2V ε
∥∥
L2(Rd)

Nα+ 1
2

∥∇V ε∥L2(Rd)

+ σ
2C

1
2
BDG ∥∇V ε∥2L2(Rd)

N

) T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds.(3.36)

On the set (Bα
s )

c: Using P((Bα
s )

c) ≤ C(γ)N−γ for all γ > 0 by Assumption 3.5, the
Burkholder–Davis–Gundy inequality (A.1), Hölder’s inequality, we obtain

E
(

sup
0≤t≤T

t∫
0

∣∣∣∣〈 1

N2

N∑
i,j=1

∇V ε(· −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )− (∇V ε ∗ (kε ∗ ρεs)ρεs),

σ

N

N∑
l=1

−
s∫

0

∇TV ε(· −X l
u) dB

l
u

〉
L2(Rd)

∣∣∣∣1(Bα
s )

c ds

)

≤ σ

N2

N∑
i,j=1

T∫
0

∫
Rd

E
(
1(Bα

s )
c

∣∣∣∣(∇V ε(y −Xi,ε
s ) · kε(Xi,ε

s −Xj,ε
s )−∇(V ε ∗ (kε ∗ ρεs)ρεs))(y)
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· 1

N

N∑
l=1

s∫
0

∇TV ε(y −X l
u) dB

l
u

∣∣∣∣) dy ds

≤ σ

N2

N∑
i,j=1

T∫
0

(∫
Rd

E
(
1(Bα

s )
c |(∇V ε(y −Xi,ε

s ) · kε(Xi,ε
s −Xj,ε

s )

−∇(V ε ∗ (kε ∗ ρεs)(y)ρεs)(y)|2
)
dy

) 1
2

·
(∫

Rd

E
(∣∣∣∣ 1N

N∑
l=1

s∫
0

∇TV ε(y −X l
u) dB

l
u

∣∣∣∣2)dy

) 1
2

ds

≤
2C

1
2
BDGσ

N2

N∑
i=1

T∫
0

(∫
Rd

E
(
1(Bα

s )
c(|(∇V ε(y −Xi,ε

s )|2 ∥kε∥2L∞(Rd)

+ |∇(V ε ∗ (kε ∗ ρεs)ρεs)(y)|2)
)
dy

) 1
2
(∫

Rd

E
( N∑
l=1

T∫
0

|∇V ε(y −X l
u)|2 du

)
dy

) 1
2

ds

≤
2C

1
2
BDGσ

N
1
2

∥V ε
x ∥L2(Rd)

T∫
0

E
(
1(Bα

s )
c

(
∥∇V ε∥2L2(Rd) ∥k

ε∥2L∞(Rd)

+ ∥∇(V ε ∗ (kε ∗ ρεs)ρεs)∥
2
L2(Rd)

)) 1
2

s
1
2 ds

≤
2C(γ)C

1
2
BDGσ

N
1
2
+γ

∥∇V ε∥2L2(Rd)

(
∥kε∥L∞(Rd)

2

3
T

3
2 +

T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds

)
.

This completes the estimate on the set (Bα
s )

c and we have shown our Lemma. □

Lemma 3.21 (Stochastic Integral Inequality). Under the assumptions of Theorem 3.14 we
have the following L2-estimate for the stochastic integral,

4σ2E
(

sup
0≤t≤T

t∫
0

∥∥∥∥MV ε

∥∥∥∥2
L2(Rd)

ds

)
≤ T

3
2

N

∥∥∇2V ε
∥∥ .(3.37)

with

MV ε
: =

(
σ

N

N∑
i=1

s∫
0

∇T∂x1V
ε(· −Xi

u) dB
i
u, . . . ,

σ

N

N∑
i=1

s∫
0

∇T∂xdV
ε(· −Xi

u) dB
i
u

)T

.



94 Quantitative estimates for the relative entropy

Proof. For j = 1, . . . , d an application of the Burkholder–Davis–Gundy inequality (A.1)
implies

E
(

sup
0≤t≤T

t∫
0

∥∥∥∥∥∥ 1

N

N∑
i=1

s∫
0

∇T∂xjV
ε(· −Xi

u) dBu

∥∥∥∥∥∥
2

L2(Rd)

ds

)

≤
T∫
0

∫
Rd

E
(∣∣∣∣ 1N

N∑
i=1

s∫
0

∇T∂xjV
ε(y −Xi

u) dBu

∣∣∣∣2)dy

)
ds

≤ 1

N2

T∫
0

∫
Rd

E
( N∑
i=1

s∫
0

|∇T∂xjV
ε(y −Xi

u)|2 du
)
dy

)
ds,

which implies

4σ2E
(

sup
0≤t≤T

t∫
0

∥∥∥∥MV ε

∥∥∥∥2
L2(Rd)

ds

)
≤ T

3
2

N

∥∥∇2V ε
∥∥2
L2(Rd)

.

□

Continuation of the proof of theorem 3.14. We are ready to input the estimates
from above lemmata in the the inequality (3.21). We find

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
+
σ2

8
E
( T∫

0

∥∥∇(V ε ∗ µN,εs − ρεs)
∥∥
L2(Rd)

ds

)

≤ 2

N
∥V ε∥2L2(Rd) +

16T ∥∇kε∥2L∞(Rd) ∥V ε∥2L2(Rd)

σ2N2α
+

4T ∥V ε∥2L2(Rd)

σ2N2(α+δ)

+
(4 ∥∇V ε∥2L2(Rd)

N2ασ2
+

16 ∥∇V ε∥2L2(Rd)

Nσ2

) T∫
0

∥kε ∗ ρεs∥
2
L∞(Rd) ds

+
C(γ)T

Nγ

(
∥V ε∥2L2(Rd) ∥k

ε∥2L∞(Rd) + ∥∇V ε∥2L2(Rd)

)
+

2σT
3
2C

1
2
BDG

Nα+ 1
2

∥∇V ε∥2L2(Rd) ∥∇k
ε∥L∞(Rd) + σ

C
1
2
BDGT

3
2

Nα+δ+ 1
2

∥∇V ε∥2L2(Rd)

+

(
σ
C

1
2
BDG

∥∥∇2V ε
∥∥
L2(Rd)

Nα+ 1
2

∥∇V ε∥L2(Rd)

+ σ
2C

1
2
BDG ∥∇V ε∥2L2(Rd)

N

) T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds
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+
2C(γ)C

1
2
BDGσ

N
1
2
+γ

∥∇V ε∥2L2(Rd)

(
∥kε∥L∞(Rd)

2

3
T

3
2 +

T∫
0

∥kε ∗ ρεs∥L∞(Rd) s
1
2 ds

)
.

+
T

3
2

N

∥∥∇2V ε
∥∥2
L2(Rd)

.

The above estimate is the most general one we obtain. In the following we simplify it to
derive a usable estimates. In the process we may loose some convergence rate, depending on
the concrete problem at hand. Noticing that by mass conservation

∥kε ∗ ρεs∥L2(0,T ;L∞(Rd)) ≤ ∥kε∥L∞(Rd) ∥ρ
ε
s∥L2(0,T ;L1(Rd)) ≤ T ∥kε∥L∞(Rd) ,

by keeping all the N and ε dependent terms and put all the other constants into a universal
constant C, which depends on T , σ, γ, CBDG, we obtain

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
+
σ2

8
E
( T∫

0

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥
L2(Rd)

ds

)

≤ C

N
(∥V ε∥2H1(Rd) ∥k

ε∥2L∞(Rd) +
∥∥∇2V ε

∥∥2
L2(Rd)

) +
C ∥V ε∥2H1(Rd) (1 + ∥kε∥2L∞(Rd))

Nγ

+
∥∇kε∥2L∞(Rd) ∥V ε∥2L2(Rd) + ∥kε∥2L∞(Rd) ∥∇V ε∥2L2(Rd) + ∥V ε∥2L2(Rd)

N2α

+ C
∥∇V ε∥2L2(Rd) (1 + ∥∇kε∥L∞(Rd)) + ∥V ε

x ∥L2(Rd)

∥∥∇2V ε
∥∥
L2(Rd)

∥kε∥L∞(Rd)

Nα+ 1
2

.

In the above estimates, α ∈ (0, 12) and δ > 0 are also used and the theorem is proven. □

In the our main setting kε =W ε ∗ V ε we provide the following rough estimate.

Corollary 3.22. Let kε = W ε ∗ V ε and W ε, V ε be admissible with rates aW , aV . If
Theorem 3.14 holds, then

E
(

sup
0≤t≤T

∥∥∥V ε ∗ µN,εt − V ε ∗ ρεt
∥∥∥2
L2(Rd)

)
+
σ2

8
E
( T∫

0

∥∥∇V ε ∗ (µN,εs − ρεs)
∥∥
L2(Rd)

ds

)

≤ C

Nε2aW+4aV
+

C

N2αε2aW+4aV
+

C

Nα+ 1
2 εaW+3aV

+
C

Nγε2aW+4aV
.

Proof. Estimating all norms of V ε by ∥V ε∥H2(Rd) ≤ Cε−aV and using Young’s inequality

to find

∥kε∥L∞(Rd) + ∥kεx∥L∞(Rd) ≤ 2 ∥W ε∥L2(Rd) ∥V
ε∥H2(Rd) ≤ Cε−aW−aV .

Hence the right hand side of the main inequality in Theorem 3.14 can be estimated by

C

Nε2aW+4aV
+

C

N2αε2aW+4aV
+

C

Nα+ 1
2 εaW+3aV

+
C

Nγε2aW+4aV
.

□
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Now, that we have proven our main estimate, we are ready to demonstrate the relative
entropy estimates by combining Theorem 3.14 and Lemma 3.12. We start with the first main
result of this chapter

Proof of Theorem 3.8. We combine the assumptions of Theorem 3.14 and the results
from Lemma 3.12, Theorem 3.14 and Corollary 3.22, to find a small β1 ≤ βα so that for
0 < β ≤ β1, ε = N−β and small 0 < λ≪ 1

HN

(
ρN,εt |ρ⊗N,εt

)
≤ C

N
1
2
+λ

= o

(
1√
N

)
.

This allows us to demonstrate strong convergence in the L∞([0, T ];L1(Rd))-norm. Ap-
plying, inequalities (1.6) and (1.7), we obtain∥∥∥ρN,2,εt − ρεt ⊗ ρεt

∥∥∥2
L1(R2d)

≤ 2H2

(
ρN,1,εt |ρεt

)
≤ 4HN

(
ρN,εt |ρ⊗N,εt

)
= o

(
1√
N

)
.

In the case kε = ∇(U ε ∗ V ε) the estimate (3.17) is derived analogously. The key is to
recognize that we actually derived an estimate on the gradient of V ε, which we have not
used so far. In the case of kε = ∇(U ε ∗ V ε) we utilize it and as a result we obtain the
same convergence rates. The estimate for the modulated energy follows also directly from
equality (3.19), Young’s inequality and an application of Theorem 3.14 for V ε and Û ε under
the assumption that U ε, V ε are strongly admissible. □

3.4.3. Special choices of W ε and V ε. We present a series of corollaries for Theorem 3.14
for different choices of V ε. In most applications we want to take a mollified sequence. In the
special case V ε = Jε we obtain the following corollary.

Corollary 3.23. Suppose Theorem 3.14 holds true. Let V ε = Jε be a mollification, then
for ε = N−β with some β < βα and ∥kε∥L∞(Rd) ≤ ε−ak , ∥∇kε∥L∞(Rd) ≤ ε−ak−1 for some

ak > 0, then we obtain the following L2-estimate ,

E
(

sup
0≤t≤T

∥∥∥Jε ∗ µN,εt − Jε ∗ ρεt
∥∥∥2
L2(Rd)

)
+
σ2

2
E
( T∫

0

∥∥∇Jε ∗ (µN,εs − ρεs)
∥∥
L2(Rd)

ds

)

≤ C

N2α−dβ +
C

Nα+1/2−(d+2)β
+

C

N2α−dβ−(2ak+2)β
+

C

Nα+ 1
2
−(d+2)β−(ak+1)β

+
C

N2α−(d+2)β−akβ
+

C

NγN (d+2+2ak)β

≤ C

N2α−dβ−(2ak+2)β
+

C

Nα+ 1
2
−(d+2)β−(ak+1)β

+
C

N2α−(d+2)β−akβ
+

C

NγN ((d+2)+2ak)β

for a constant C, which depends on T , σ, γ, CBDG. In particular if k ∈ L∞(Rd) and kε =
(ζε(Jε ∗ k)) ∗ Jε the above estimate holds with ε = N−β and ak = 0.
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Proof. If V ε = Jε, we obtains easily that

∥Jε∥Hm(Rd) =
1

εd

∥∥∥∥∥F−1

[(
1 +

∣∣∣∣ξε
∣∣∣∣2)m

2

F [J ](ξ)

](
·
ε

)∥∥∥∥∥
L2(Rd)

=
1

ε
d
2
+m

∥∥∥F−1[(ε2 + |ξ|2)
m
2 F [J ](ξ)]

∥∥∥
L2(Rd)

≤ C

ε
d
2
+m

.

Therefore, we obtained with ε = N−β,

E
(

sup
0≤t≤T

∥∥∥Jε ∗ µN,εt − Jε ∗ ρεt
∥∥∥2
L2(Rd)

)
+
σ2

2
E
( T∫

0

∥∥∇Jε ∗ (µN,εs − ρεs)
∥∥
L2(Rd)

ds

)

≤ C

N2α−dβ +
C

Nα+1/2−(d+2)β
+

C

N2α−dβε2ak+2
+

C

Nα+ 1
2
−(d+2)βεak+1

+
C

N2α−(d+2)βεak

+
C

Nγε(d+2)+2ak

The second claim follows by Young’s inequality and the scaling of the mollifier. More precisely,

∥Jε∥Wm,1(Rd) =
1

ε

∥∥∥F−1[(1 + |ξ|2)
m
2 F [J ](ξ)]

∥∥∥
L1(Rd)

≤ C

εm

□

Corollary 3.24. Suppose Assumptions 3.4, 3.5 hold for α ∈ (14 ,
1
2) and suppose the

bounded force k has the approximation kε = W ε ∗ V ε with W ε = ζε(k ∗ Jε) and V ε = Jε.

Then for ε = N−β and β < min

(
α

(d+4) ,
1

2(d+4)(4α − 1), βα

)
, there exists an 0 < λ ≪ 1 such

that

sup
t∈[0,T ]

HN

(
ρN,εt |ρ⊗N,εt

)
≤ C

N
1
2
+λ

for a constant C, which depends on T , σ, γ, CBDG.

Proof. Let us start by estimating ∥W ε∥2L2(Rd) in inequality (3.20),

∥W ε∥2L2(Rd) =

∫
Rd

|ζε(x)|2
∣∣∣∣ ∫

Rd

k(x− y)Jε(y) dy

∣∣∣∣2 dx ≤ 4ε−2 ∥k∥L∞(Rd) = 4N2β ∥k∥L∞(Rd)

Now, applying Corollary 3.23 to inequality (3.20), keeping track of the powers, we obtain the
result. More precisely, notice that we have to first fix α ∈ (14 ,

1
2), then choose a βJ such that

the terms for 0 < β ≤ βJ smaller than C

N
1
2+λ

, and then fix γ such that the estimate holds. □

Next, we provide a similar corollary in the case the force k is a potential and has a
convolution structure.
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Corollary 3.25. Suppose Assumptions 3.4, 3.5 hold for α ∈ (14 ,
1
2). Let the force k be

given by a potential k = ∇(U ∗ V ) with U, V ∈ H
1
2 (Rd) and its approximation is given by

kε = ∇((U ∗ Jε) ∗ (V ∗ Jε)). Then for ε = N−β and β < min

(
1
3 , α − 1

4 , βα

)
, there exists a

0 < λ≪ 1 such that

sup
t∈[0,T ]

HN

(
ρN,εt |ρ⊗N,εt

)
≤ C

N
1
2
+λ
,

sup
t∈[0,T ]

|KN

(
ρN,εt |ρ⊗N,εt

)
| ≤ C

N
1
2
+λ
.

for a constant C, which depends on T , σ, γ, CBDG.

Proof. Since W ∈ H
1
2 (Rd) we know that W ∗ Jε ∈ L2(Rd) and therefore we only need

to estimate the L2-norm for ∇V ε = ∇(V ∗ Jε) in inequality (3.20) to obtain the convergence
rates. We emphasize that in Theorem 3.14 we also obtained an estimate on the gradient V ε.
Consequently, we can use Theorem 3.14 for the function V ε = V ∗ Jε. By the estimate

∥Jε∥Wm,1(Rd) =
1

εd

∥∥∥F−1[(1 + |ξ|2)
m
2 F [J ](ξ)]

∥∥∥
L1(Rd)

≤ C

εm

∥∇Jε∥Wm,1(Rd) =
1

ε

∥∥∥F−1[(1 + |ξ|2)
m
2 F [∇J ](ξ)]

∥∥∥
L1(Rd)

≤ C

εm+1

for any m ≥ 0 we know that

∥V ε∥L2(Rd) ≤ ∥V ∥L2(Rd) ≤ C

∥∇V ε∥L2(Rd) ≤ ∥V ∥
H

1
2 (Rd)

∥Jε∥
W

1
2 ,1(Rd)

≤ C

ε
1
2∥∥∇2V ε

∥∥
L2(Rd)

≤ ∥V ∥
H

1
2 (Rd)

∥∇Jε∥
W

1
2 ,1(Rd)

≤ C

ε
3
2

(3.38)

∥kε∥L∞(Rd) ≤ ∥W ε∥
H

1
2 (Rd)

∥V ε∥
H

1
2 (Rd)

≤ C

∥∇kε∥L∞(Rd) ≤ ∥W ε∥H1(Rd) ∥V
ε∥H1(Rd) ≤

C

ε
.

Plugging in all estimates with ε = N−β into Theorem 3.14 and having equality (3.19) in mind
we obtain the rate of β and the estimate on the modulated energy. □

We have now shown in two cases how to derive explicit estimates on the relative entropy

HN

(
ρN,εt |ρ⊗N,εt

)
with the help of Theorem 3.14. In general, if the function W ε, V ε have low

regularity, we need to mollify them to make them admissible. Hence, we borrow the necessary
regularity from J and consequently, get higher rates of N in our estimates. Compare for
instance Corollary 3.24 and Corollary 3.25. Therefore the estimate by using the regularity of
the Jε term, will lead to weaker convergence rates. The benefit is of course that one does not
require a potential field and the convolution structure of the potential.
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3.5. De-regularization of the high dimensional PDE and the limiting PDE

The goal of this section is to prove Theorem 3.10, i.e. the strong form of propagation of
chaos on the PDE level in the L1-norm. For the de-regularization of Liouville equation (3.8)
we need k ∈ L∞(Rd). We take the following approximation kε = (ζε(k ∗ Jε)) ∗ Jε). We need

convergence results between ρN,1,εt and ρN,1t as well as ρεt and ρt. The latter convergence was
shown as by-product in Theorem 2.9. More precisely,

(3.39) lim
ε→0

∥ρε − ρ∥L1([0,T ];L1(Rd)) = 0.

It remains to show that the approximated Liouville equation converges in entropy to the
Liouville equation. An application of inequality (1.7) implies also the L1-convergence.

Lemma 3.26. Let k ∈ L∞(Rd), ρN,ε be the solution of the regularized Liouville equa-
tion (3.8) and ρN the solution of the Liouville equation (3.6). Then, we have

sup
t∈[0,T ]

HN

(
ρN,εt | ρNt

)
+
σ2

4N

N∑
i=1

T∫
0

∫
RdN

ρN,εs

∣∣∣∣∇xi log

(
ρN,εs

ρNs

)∣∣∣∣2 dXN ds

≤ CT ∥k∥2L∞(Rd) sup
t∈[0,T ]

√
HN

(
ρN,εt | ρ⊗N,εt

)
+ 2C ∥k∥2L∞(Rd) ∥ρ

ε
s − ρs∥L1([0,T ];L1(Rd))

+

T∫
0

∫
R2d

|k(x1 − x2)− kε(x1 − x2)|2ρs(x1)ρs(x2) dx1 dx2 ds.

In particular, the last term vanishes by dominated convergence.

Proof. We start by computing the time derivative of ρN,εt log

(
ρN,ε
t

ρNt

)
. We have

HN

(
ρN,εt | ρNt

)
= HN

(
ρN,ε | ρN

)
(0) +

t∫
0

d

ds
HN

(
ρN,εs | ρNs

)
ds

= − σ2

2N

N∑
i=1

t∫
0

∫
RdN

∇xiρ
N,ε
s ∇xi log

(
ρN,εs

ρNs

)
dXN ds

− 1

N

N∑
i=1

t∫
0

∫
RdN

(
ρN,εs

1

N

N∑
j=1

kε(xi − xj)

)
· ∇xi log

(
ρN,εs

ρNs

)
dXN ds

+
σ2

2N

N∑
i=1

t∫
0

∫
RdN

∇xiρ
N
s ∇xi

(
ρN,εs

ρNs

)
dXN ds

+
1

N

N∑
i=1

t∫
0

∫
RdN

(
ρNs

1

N

N∑
j=1

k(xi − xj)

)
∇xi

(
ρN,εs

ρNs

)
dXN ds
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= − σ2

2N

N∑
i=1

t∫
0

∫
RdN

ρN,εs

∣∣∣∣∇xi log

(
ρN,εs

ρNs

)∣∣∣∣2 dXN ds

+
1

N2

N∑
i,j=1

t∫
0

∫
RdN

(k(xi − xj)− kε(xi − xj))ρ
N,ε
s ∇xi log

(
ρN,εs

ρNs

)
dXN ds

≤ − σ2

4N

N∑
i=1

t∫
0

∫
RdN

ρN,εs

∣∣∣∣∇xi log

(
ρN,εs

ρNs

)∣∣∣∣2 dXN ds

+
1

σ2N2

N∑
i,j=1

t∫
0

∫
RdN

|k(xi − xj)− kε(xi − xj)|2ρN,εs dXN ds.

Now, it is enough to show, that the last term vanishes for N → ∞ and consequently for
ε→ 0. We start by using the fact that the particle system (3.4) is exchangeable. We obtain

1

σ2N2

N∑
i,j=1

t∫
0

∫
RdN

|k(xi − xj)− kε(xi − xj)|2ρN,εs (XN ) dXN ds

=
1

σ2N2

N∑
i,j=1

t∫
0

E
(
|k(Xi

s −Xj
s )− kε(Xi

s −Xj
s )|2
)
ds

=
1

σ2

t∫
0

E
(
|k(X1

s −X2
s )− kε(X1

s −X2
s )|2

)
ds

=
1

σ2

t∫
0

∫
R2d

|k(x1 − x2)− kε(x1 − x2)|2ρN,2,εs (x1, x2) dx1 dx2 ds.

Hence, we obtained an expression in which the dimension does not change in the limit. By ap-
plying mass conservation, the Csiszár–Kullback–Pinsker inequality (1.7) and inequality (1.6)
we further estimate the term

t∫
0

∫
R2d

|k(x1 − x2)− kε(x1 − x2)|2ρN,2,εs (x1, x2) dx1 dx2 ds

=

t∫
0

∫
R2d

|k(x1 − x2)− kε(x1 − x2)|2(ρN,2,εs − (ρεs ⊗ ρεs)(x1, x2)) dx1 dx2 ds

+

t∫
0

∫
R2d

|k(x1 − x2)− kε(x1 − x2)|2(ρεs ⊗ ρεs)(x1, x2) dx1 dx2 ds
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≤ C ∥k∥2L∞(Rd)

t∫
0

∥∥ρN,2,εs − ρ⊗2,ε
∥∥
L1(R2d)

ds+

t∫
0

∫
R2d

|k(x1 − x2)− kε(x1 − x2)|2

·
(
(ρεs(x1)− ρs(x1))ρ

ε
s(x2) + ρs(x1)(ρ

ε
s(x2)− ρs(x2)) + ρs(x1)ρs(x2)

)
dx1 dx2 ds

≤ CT ∥k∥2L∞(Rd) sup
t∈[0,T ]

√
HN

(
ρN,εt | ρ⊗N,εt

)
+ 2C ∥k∥2L∞(Rd) ∥ρ

ε
s − ρs∥L1([0,T ];L1(Rd))

+

t∫
0

∫
R2d

|k(x1 − x2)− kε(x1 − x2)|2ρs(x1)ρs(x2) dx1 dx2 ds.

Plugging this estimate into our above entropy calculation and taking the supremum in time
proves the lemma. □

Combing both implies the strong convergence on the PDE-level of any observable ρN,r to
the law ρ⊗r in the L1(Rdr)-norm.

Proof of theorem 3.10. For k ∈ L∞(Rd), let kε = (ζε(k ∗ Jε)) ∗ Jε, therefore we take
W ε = ζε(kε ∗ Jε) and V ε = Jε with ε = ε(N) = N−β. By assumption of the theorem
(see also Theorem 2.23), there exists a βα ∈ (0, 12) such that for all β ≤ βα the convergence
in probability, Assumption 3.4, and the law of large numbers, Assumption 3.5 both hold.

Therefore we can apply the result from Corollary 3.24 for 0 < β < min

(
1
3 , α − 1

4 , βα

)
and

obtain the convergence of the relative entropy H
(
ρN,εt | ρ⊗N,εt

)
to zero. We can even get

better convergence rate β, since we are not interested in the order of convergence of the
relative entropy. Applying (1.7) and (1.6), we obtain∥∥ρN,r − ρ⊗r

∥∥
L1([0,T ];L1(Rdr))

≤
∥∥ρN,r − ρN,r,ε

∥∥
L1([0,T ];L1(Rdr))

+
∥∥ρN,r,ε − ρ⊗r,ε

∥∥
L1([0,T ];L1(Rdr))

+
∥∥ρ⊗r,ε − ρ⊗r

∥∥
L1([0,T ];L1(Rdr))

≤
T∫
0

√
2rHr

(
ρN,r,εt | ρN,rt

)
+

√
2rHr

(
ρN,r,εt | ρ⊗r,εt

)
+
∥∥∥ρ⊗r,εt − ρ⊗rt

∥∥∥
L1(Rdr)

dt

≤
T∫
0

√
4rHN

(
ρN,εt | ρNt

)
+

√
4rHN

(
ρN,εt | ρ⊗N,εt

)
+
∥∥∥ρ⊗r,εt − ρ⊗rt

∥∥∥
L1(Rdr)

dt.

As mentioned the second term converges to zero. For the first term we use the inequality

in Lemma 3.26 together with the fact that the HN

(
ρN,εt | ρ⊗N,εt

)
converges to zero and the
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dominated convergence to obtain

lim sup
N→∞

T∫
0

√
4rHN

(
ρN,εt | ρNt

)
dt ≤ C(∥k∥L∞(Rd) ,m) lim sup

N→∞

T∫
0

∥ρεt − ρt∥
1
2

L1(Rd)
dt

≤ C(∥k∥L∞(Rd) ,m, T ) lim sup
N→∞

( T∫
0

∥ρεt − ρt∥L1(Rd) dt

) 1
2

= 0.

where the last equality follows by (3.39). Consequently, it remains to show that the third
term vanishes, i.e.

(3.40) lim sup
N→∞

∥∥∥ρ⊗r,εt − ρ⊗rt

∥∥∥
L1([0,T ];L1(Rdr))

= 0.

Again this follows by (3.39) and an induction argument. Indeed let us assume r = 2, then by
mass conservation we have∥∥∥ρ⊗2,ε

t − ρ⊗2
t

∥∥∥
L1([0,T ];L1(R2d))

=

T∫
0

∫
R2

|(ρεt (x1)− ρt(x1))ρ
ε
t (x2) + ρt(x1)(ρ

ε
t (x2)− ρt(x2))| dx1 dx2 dt

≤ 2 ∥ρεt − ρt∥L1([0,T ];L1(R))
N→∞−−−−→ 0,

which proves the initial case for the induction. Now, by the same argument one can prove
the induction step and therefore equation (3.40). □

3.6. Application

We provide some examples for which Theorem 3.8 can be shown with the same techniques
developed in Section 3.4. In particular we demonstrate the convergence in relative entropy in
the attractive Coulomb case on the whole space. Note that the rate of converges may vary
across these examples. As stated in Remark 3.15 we only need the existence of approximated
PDE (3.9), the particle system (3.5), the convergence in probability of the particle system XN

to the mean-field limit YN (Assumption (3.4)) and the law of large numbers (Assumption 3.5).
Since we are working on the regularized level, we can often assume the existence of the above
results.

Although the result in Theorem 3.8 also works with rotational field, it worth to study
directly a convolution type of potential field to achieve better cut-off rate, in other words,
to allow bigger β. For a given potential field, the challenging part is to find a convolution
structure for the potential described in Section 3.4. The first idea to obtain interesting kernels,
beside the Delta-Distribution, which was given in [Oel87], is to look at infinite divisible
distributions. Assume that kε is infinitely divisible. Then, there exists a V ε such that
kε = V ε ∗ V ε or kε = ∇(V ε ∗ V ε). Hence, if we can approximate the antiderivative of our
kernel by a infinitely divisible distribution (multiplied by a constant if necessary) we are able
to find candidates for interesting kernels.
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Another powerful tool is the Fourier analysis. On the Fourier side the equation kε =
V ε ∗W ε becomes

F(W ε) = F(V ε)F(W ε),

which can be explored. In particular for singular kernels we have representations of the Fourier
transforms, see for instance [Ste70]. Consequently, we can use this approach to obtain a wide
range of interesting examples used in biology or physics.

In the rest of the section we provide some fascinating examples for which the case of
convolution structure in Theorem 3.14 can be obtained.

3.6.1. Uniform bounded confidence model. Let V (x) = i1[
−R

2
,R
2

](x) be a complex-

valued function. Then 
V ∗ V : R → R,

x→


0 if x > |R|,
−x−R if −R ≤ x ≤ 0,

x−R if 0 < x ≤ R.

is a Lipschitz-continuous function with bounded support. Furthermore, we have

∇(V ∗ V ) = −1[−R,0] + 1[0,R] =: kU a.e.

Consequently, the uniform bounded confidence model, satisfies the assumption of Section 3.4
with the usual mollification approximation. Also, it is well known that the indicator func-
tion 1[

−R
2
,R
2

] ∈ Hs(R) for all s < 1/2. We also have the convergence in probability by

Theorem 2.23. Hence, we obtain the following proposition

Proposition 3.27. Let kU be given above, then the first marginal (ρN,1t , t ≥ 0) of the law
of the system XN converges to the law (ρt, t ≥ 0) of YN in the L1([0, T ];L1(R))-norm.

3.6.2. Parabolic-elliptic Keller–Segel system. In this subsection we provide an approx-
imation for the elliptic-parabolic Keller–Segel model [KS70] in Rd. The underlying PDE is
given by {

∂tρt = σ2

2 ∆ρt −∇ · (χρt∇ct),
−∆ct = ρt,

for χ, σ > 0. Decoupling the above system by setting ct = Φ∗ρt with Φ being the fundamental
solution of the Laplace equation we can formally derive the above equation from the particle
system (3.4) with the interaction force kernel k = −∇Φ. In particular, if d ≥ 2 we have

Φ(x) =

{
− 1

2π log(|x|), x ̸= 0, if d ≥ 2,
1

d(d−2)λ(B1(0))
1

|x|d−2 , x ̸= 0, if d ≥ 3,

is the fundamental solution of the Laplace equation.
In the following we present two approaches to mollify our kernel. For the first approach,

let us define a mollification kernel JKS , which satisfies JKS ≥ 0, ∥JKS∥L1(Rd) = 1 and

supp(JKS) ⊂ B(0, 1/2) and is infinitely differentiable. As always we set JεKS(x) =
1
εd
JKS

(
x
ε

)
.

Then kε = −∇(JεKS ∗ Φ ∗ JεKS) satisfies all properties of [HLL19, Theorem 2.1]. Hence,
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the convergence in probability Assumption 3.4, the law of large numbers Assumption 3.5 is
satisfied.

Hence, under consideration of Remark 3.9 we can obtain a relative entropy convergence
results on the approximated d-dimensional attractive Keller–Segel system on the whole space
Rd. We formulate the following proposition as combination of Lemma 3.12 and Theorem 3.14.

Proposition 3.28. Let kε = −∇(W ε ∗ V ε) with W ε = JεKS ∗ Φ, V ε = JεKS. Let ρN,ε be
the solution of the Liouville equation (3.8) and ρε be the solution to regularized Keller–Segel
equation, i.e. to the PDE (3.9). Then, there exists a β > 0 depending on the dimension d
such that for ε = ε(N) = N−β there exists a λ > 0 such that

sup
t∈[0,T ]

HN

(
ρ
N,ε(N)
t | ρ⊗N,ε(N)

t

)
≤ CN−λ.

Remark 3.29. By going through the proof of Theorem 3.14 one can obtain a convergence
rate and precise condition for β. Furthermore, by inequality (1.7) we have proven convergence
of the L1(Rd)-norm of the marginals

lim
N→∞

∥∥∥ρN,2,ε(N)
t − ρ

ε(N)
t ⊗ ρ

ε(N)
t

∥∥∥
L1(Rd)

= 0.

It is also well-known that under additional assumptions on the initial condition ρ0 and in the

sub-critical regime χ < 8π in the case d = 2 the density ρ
ε(N)
t converges in L1(Rd). Hence,

we have shown that in the sub-critical case the density of the two marginal ρ
N,2,ε(N)
t converges

in L1(Rd) to the solution of the Keller–Segel equation.

In the case d ≥ 3 we can obtain an even better approximation, which has a symmetric
convolution structure given by kε = −∇(V ε ∗ V ε). Indeed, define the approximation of Φ as

Φε := JεKS ∗ Φ ∗ JεKS . Then, for cα = π−α/2Γ(α/2) and

(3.41) V ε =

√
c2

cd−2d(d− 2)λ(B1(0))
F−1(|ξ|−1F(JεKS)(ξ))

we have

(3.42) Φε = V ε ∗ V ε.

More precisely, for fix ε > 0 we have JεKS ∈ Lp(Rd) for all p ≥ 1. Hence the Fourier transform
F(JεKS) is well-defined and by the Hardy–Littlewood–Sobolev inequality [Ste70, Chapter 5,

Theorem 1], [LL01, Corollary 5.10] Φε ∈ L2(Rd) and the Fourier transform exists. Similar
| · |−1F(JεKS)(·) ∈ L2(Rd). A simple calculation shows∥∥∥| · |−1F

1
2 (JεKS)(·)

∥∥∥2
L2(Rd)

=

∫
Rd

|ξ|−2|F(JεKS)(ξ)|dξ

≤ ∥F(JεKS)∥L∞(Rd)

∫
B1(0)

|ξ|−2 dξ +

∫
B1(0)c

|F(JεKS)(ξ)| dξ <∞

since d > 2 and F(JεKS) is a Schwartz function. As a result, to verify (3.42) we need to show

F(Φε) = F(V ε)2,
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where the right-hand is square integrable. Now, by [LL01, Corollary 5.10] we have

F(V ε)2(ξ) =
c2

cd−2d(d− 2)λ(B1(0))
|ξ|−2F(JεKS)(ξ) = F(Φε)(ξ),

where the left-hand side is in L2(Rd) by similar arguments as before. Therefore, (3.42) is
proven and we can find an appropriate approximation for the Keller–Segel interaction kernel.
In particular, we can derive similar estimates to (3.38) with the help of Fourier analysis
and the Hardy–Littlewood–Sobolev inequality [Ste70, Chapter 5. Theorem 1]. Clearly, this
estimates will now depend on the dimension d and therefore the convergence rate parameters
also depend on the dimension d.

Proposition 3.30. Let d ≥ 3 and kε = −∇(W ε ∗ V ε) with W ε, V ε defined by the same
expression (3.41). Then the conclusion of Proposition 3.28 holds. Additionally we have the
modulated energy estimate

sup
t∈[0,T ]

|KN

(
ρN,εt |ρ⊗N,εt

)
| ≤ CN−λ

for some C > 0, λ > 0.

Another approach to approximate the Coulomb kernel k is by utilizing the following
approximation in dimension d ≥ 3,

(3.43) Φε(x) =
1

d(d− 2)λ(B1(0))

∫
R

hε(y)

|x− y|d−2
dy,

where

(3.44) hε(y) =
1

(4πε)d/2
exp

(
− |y|2

4ε

)

is the Weierstrass kernel. Indeed, we note first that the square root F
1
2 (hε) is well-defined

since the Fourier transform of a Gaussian is still a Gaussian or in other words the normal
distribution is infinitely divisible. More precisely, by [LL01, Theorem 5.2] we have

F(hε)(ξ) = exp

(
− 4επ2|ξ|2

)
.

Hence, similar to the first approximation, we obtain Proposition 3.30. By using the
Weierstrass kernel over an abstract mollification kernel we obtain explicit sharp convergence
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rates. For instance, using Plancherel theorem we obtain

∥∇V ε∥2L2(Rd) =
c2

cd−2d(d− 2)λ(B1(0))

∥∥∥∇F−1(|ξ|−1F
1
2 (hε)(ξ))(·)

∥∥∥2
L2(Rd)

=
c2

cd−2d(d− 2)λ(B1(0))

∫
Rd

d∑
i=1

|∂xiF−1(|ξ|−1F
1
2 (hε)(ξ))(x)|2 dx

=
c2

cd−2d(d− 2)λ(B1(0))

∫
Rd

d∑
i=1

|F−1(2πiξi|ξ|−1F
1
2 (hε)(ξ))(x)|2 dx

=
2πc2

cd−2d(d− 2)λ(B1(0))

d∑
i=1

∫
Rd

|ξiξ−1F
1
2 (hε)(ξ)|2 dξ

=
2πc2

cd−2d(d− 2)λ(B1(0))

d∑
i=1

∫
Rd

|ξiξ|−1 exp

(
− 2επ2|ξ|2

)
|2 dξ

=
2πc2

cd−2d(d− 2)λ(B1(0))εd/2

d∑
i=1

∫
Rd

∣∣∣∣ξiξ−1 exp

(
− 2π2|ξ|2

)∣∣∣∣2 dξ
≤ 2πc2

cd−2(d− 2)λ(B1(0))εd/2

∫
Rd

exp

(
− 4π2|ξ|2

)
|dξ

=
c2

2d−1πd/2−1cd−2(d− 2)λ(B1(0))
ε−d/2.

Remark 3.31. The above potential is attractive and therefore as far as we know regular-
ization/approximation is necessary to obtain a solution of the underlying Liouville equation on
Rd. Nevertheless, one can obtain tightness of the empirical measure in the super sub-critical
regime [FJ17]. Our approach provides propagation of chaos of the intermediate system on
the level of the relative entropy. Hence, it can be used as a tool to develop further results on
propagation of chaos for the Keller–Segel model without regularization.

3.6.3. Parabolic-elliptic Keller–Segel system with Bessel potential. Let us recall the
parabolic-elliptic Keller–Segel model [KS70] in Rd given by{

∂tρt = σ2

2 ∆ρt −∇ · (ρt∇ct),
ct = ∆ct + ρt.

Again solving the second equation by setting

ct = (I −∆)−1ρt = G ∗ ρt

with the L1 function G defined by

(3.45) G(x) := F−1[(1 + 4π2|ξ|2)−1](x) =
1

(4π)d/2

∞∫
0

exp

(
− t− |x|2

4t

)
t−

n
2 dt,
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we can decouple the system and obtain an analogous result by using the following approxi-
mations of G,

(3.46) Gε(x) = G ∗ hε(x),
or

(3.47) Gε(x) = G ∗ Jε(x),
where hε is the Weierstrass kernel given by (3.44). Setting

V ε(x) = F−1[(1 + 4π2|ξ|2)−1/2F
1
2 [hε](ξ)](x),

it can be shown similar to the elliptic-parabolic Keller–Segel model that

Gε = V ε ∗ V ε.

Consequently, we obtain the analogous result.

Proposition 3.32. Let kε = −∇Gε with Gε defined by (3.45) (3.46) or (3.47) and suppose
the Assumptions 3.4 and 3.5 hold. Moreover, for this kε let ρN,ε be the solution of the
Liouville equation (3.8) and ρε be the solution to regularized Keller–Segel equation, i.e. to
the PDE (3.9). Then, there exists a β > 0 depending on the dimension d such that for
ε = ε(N) = N−β there exists a λ > 0 such that

sup
t∈[0,T ]

HN

(
ρ
N,ε(N)
t | ρ⊗N,ε(N)

t

)
+ sup
t∈[0,T ]

|KN

(
ρN,εt |ρ⊗N,εt

)
| ≤ CN−λ.

Remark 3.33. By going through the proof of Theorem 3.14 one can obtain a convergence
rate and precise condition for β. We also assumed the convergence probability, since we can
not reference a concrete result. Nevertheless, we think that this assumption should be true for
good enough initial condition.

3.7. Comments

The results obtained in this chapter are powerful, as they demonstrate the convergence
of the marginals in the L1-norm. In particular, we can utilize PDE methods to eliminate
the approximation on the mean-field limit side, as discussed in Remark 3.31. Demonstrating
propagation of chaos on the side of interacting particle systems remains an open problem.
For instance, for the Keller–Segel model [FJ17], it is possible to show, using a compactness
method, that some subsequence converges in the very sub-critical regime, which solves the
non-regularized interacting particle system. However, we cannot show uniqueness of the limit,
leaving the problem unsolved.

This challenge seems insurmountable with classical PDE arguments since the correspond-
ing Liouville equation (3.8) is linear and lacks the regularization properties of the convolution
operator. Known techniques, such as modulated free energy, appear to reach their limits
regarding the singularity of the interaction kernel. Therefore, a new method or quantity must
be developed to demonstrate not only the mean-field limit at the intermediate level (Figure 1)
but the full mean-field limit for the whole space.

Improved regularity of the Fokker–Planck solution could be beneficial [FW23], but this is
far from trivial and does not address the solvability of the Liouville equation (3.8) in cases of
singular interaction kernels.



108 Quantitative estimates for the relative entropy

Finally, there are still open problems where the techniques developed in this setting could
be applied. For example, in fluctuation results, the quantitative nature of these techniques
could be very useful. Additionally, in large deviation theory [HHMT24], the use of relative
entropy is common, and these techniques could help lower the regularity assumptions on the
interaction kernel k. Furthermore, exploring the introduction of control parameters into the
equations presents an intriguing and promising direction for future research.



Chapter 4

Well-posedness for conditional McKean–
Vlasov equations

In this chapter our aim is to establish the well-posedness of the conditional McKean–
Vlasov system with non-Lipschitz kernel k, which where introduced in Section 1.3.5. Our
motivation to study such systems is derived from the Hegselmann–Krause model [HK02]
(HK model), which belongs to the class of bounded confidence opinion dynamics. More
precisely, we are interested in a version of the HK model where the opinions XN,HK :=
(X1,HK , . . . , XN,HK) of N agents are subject to idiosyncratic noises as well as common noise,
i.e., we consider for i = 1, . . . , N the particle system

(4.1) dXi,HK

t = − 1

N

N∑
j=1

kHK(X
i,HK

t −Xj,HK

t ) dt+ σ(t,Xi,HK

t ) dBi
t + ν dWt, Xi,HK

0 ∼ ρ0,

for t ≥ 0, where Xi,HK

t is the i-th agent’s opinion at time t, kHK(x) := 1[0,R](|x|)x is the
one-dimensional (non-Lipschitz) interaction force between the agents, σ : [0, T ] × R 7→ R is

some smooth diffusion coefficients, ν > 0 is a positive constant, and (Xi,HK

0 , i ∈ N) is the
i.i.d. sequence of initial values independent of all Brownian motions with distribution ρ0.
The local interaction kernel kHK represents the concept of bounded confidence in opinion
dynamics, indicating that opinions are influenced only within a certain range. In the above
HK model (4.1), the idiosyncratic noises B = ((Bi

t, t ≥ 0), i ∈ N) describe the individual
random effects on each agent’s opinion and the common noise (Wt, t ≥ 0) captures external
effects on the agents’ opinions. In the mean-field limit we expect as in Section 1.3.5, that the
opinion dynamic will follow the conditional McKean–Vlasov equation{

dY i,HK

t = −(kHK ∗ ρt)(Y i,HK

t ) dt+ σ(t, Y i,HK

t ) dBi
t + ν dWt, Y i

0 = Xi
0,

ρHK
t is the conditional density of Y i,HK

t givenFW
t ,

(4.2)

with the associated stochastic non-linear, non-local Fokker–Planck equation

(4.3) dρHK
t =

d2

dx2

(σ2t + ν2

2
ρHK
t

)
dt+

d

dx
((kHK ∗ ρHK

t )ρHK
t ) dt− ν

d

dx
ρHK
t dWt, t ≥ 0.

Let us remark that equation (4.3) is a non-local, non-linear stochastic partial differential
equation (SPDE), where the stochastic term is a consequence of the common noise W =
(Wt, t ≥ 0). Indeed, as we have seen in Section 1.3.5, if the number of agents tends to infinity
the effect of the idiosyncratic noises averages out, but the common noise does not.

Thus, our goal is to establish conditional propagation of chaos of the Hegselmann–Krause
model with common noise. More precisely, we show that regularized versions of the particle
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systems (4.1)

(4.4) dXi,ε,HK

t = − 1

N

N∑
j=1

kHK(X
i,ε,HK

t −Xj,ε,HK

t ) dt+ σ(t,Xi,ε,HK

t ) dBi
t + ν dWt

with same initial condition Xi,εHK

0 = Xi,HK

0 converge in L2-norm to the conditional McKean–
Vlasov equation (4.2) with some cut-off parameter ε depending on the number of particles
N . In the proceeding, we require the intermediate problem. Thus, the regularized McKean–
Vlasov stochastic differential equation (4.3){

dY i,ε,HK

t = −(kHK ∗ ρt)(Y i,ε,HK

t ) dt+ σ(t, Y i,ε,HK

t ) dBi
t + ν dWt,

ρHK
t is the conditional density of Y i,ε,HK

t givenFW
t .

(4.5)

with initial condition Y i,HK

0 = Xi,HK

0 . Obviously, we also have the associated regularized
conditional McKean–Vlasov equation

(4.6) dρε,HK

t =
d2

dx2

(σ2t + ν2

2
ρε,HK

t

)
dt+

d

dx
((kHK ∗ ρε,HK

t )ρε,HK

t ) dt− ν
d

dx
ρε,HK

t dWt

for t ≥ 0. The regularized systems allows us to estimate, for all i, terms of the form

E
(
|Xi,ε,HK

t −Y i,ε,HK

t |
)
and E

(
|Y i,ε,HK

t −Y i,HK

t |
)
separately. The second term we can treat via

SPDE methods by studying the associated non-linear stochastic Fokker–Planck equations.
As a result, one can obtain conditional propagation of chaos for the system (4.4). Following
the method described above, various versions of propagation of chaos at an intermediate level
with a logarithmic cut-off have been demonstrated for a variety of models with general ker-
nels k. This includes the work of [LP17, CG17] on particle systems without common noise,
featuring non-Lipschitz, unbounded, and even singular interaction kernels.

Notice that even though the kernel is not Lipschitz continuous, it is bounded and inte-
grable, and therefore kHK ∈ Lp(R) for all p ≥ 1. Thus, instead of analysing kHK , we assume
that the interaction kernel k satisfies some integrability condition and we focus on the inter-
acting system from Section 1.3.5 with additive common noise. As a corollary, we will then
obtain the results for the HK model.

4.1. Problem setting

In this subsection we introduce the interacting particle system with additive common
noise, its corresponding mean-field stochastic differential equation with its associated sto-
chastic Fokker–Planck equation. All of the systems are special one-dimensional cases of the
general SDE’s and SPDE’s from Section 1.3.5.

4.1.1. Interacting particle system with common noise. Let us recall the interacting
particle system XN

t = (X1
t , . . . , X

N
t ) from Section 1.3.5 with common noise in one dimension

with additive common noise, which has the following dynamics

(4.7) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ(t,Xi
t) dB

i
t + ν dWt, Xi

0 ∼ ρ0, , i = 1, . . . , N

for t ∈ [0, T ], where σ : [0, T ] × R 7→ R is the diffusion coefficient, ν > 0 a constant and
interaction force k : R 7→ R. The initial condition (Xi

0, i ∈ N) is i.i.d. with distribution ρ0
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and independent to all Brownian motions. We point out, that the kernel k denotes a general
kernel. However, the kernel kHK always stands for the kernel in the Hegselmann–Krause
model.

For establishing conditional propagation of chaos for k ∈ L1(Rd) ∩ L2(Rd) we need to
introduce an approximation sequence. Let (kε, ε > 0) ⊂ C∞

c (R) satisfy
• ∥kε − k∥L2(R) → 0 as ε→ ∞,

• supp(kε) ⊂ F for ε > 0 and supp
(

d
dxk

ε
)
⊂ F for some compact set F ⊂ R,

• 0 ≤ kε ≤ C, | d
dxk

ε| ≤ C
ε for some constant C > 0.

Notice that we can approximate the indicator function by smooth functions (ψε, ε > 0)
satisfying

• lim
ε→0

ψε = 1[−R,R] almost everywhere,

• supp(ψε) ⊂ [−R− 2ε,R+ 2ε], supp( d
dxψ

ε) ⊂ [−R− 2ε,−R+ 2ε] ∪ [R− 2ε,R+ 2ε],

• 0 ≤ ψε ≤ 1, | d
dxψ

ε| ≤ C
ε for some constant C > 0.

Consequently, we can define
kεHK(x) = xψε(x).

Then, (kεHK , ε > 0) satisfies the above approximation properties. We denote the regularized

interacting particle system for the kernel kε by XN,ε
t = (X1,ε

t , . . . , XN,ε
t ) and its dynamic is

given by

(4.8) dXi,ε
t = − 1

N

N∑
j=1

kε(Xi,ε
t −Xj,ε

t ) dt+ σ(t,Xi,ε
t ) dBi

t + ν dWt, Xi,ε
0 = Xi

0,

for t ∈ [0, T ] and i = 1, . . . , N . Although the interaction force kernel k is non-Lipschitz
continuous, the N -particle systems (4.7) and (4.8) possess unique strong solutions [HRZ24,
Theorem 3.7], as kε and k are both in L2(R).

Corresponding to the particle systems (4.7) and (4.8), for i ∈ N, we obtain the system of
mean-field SDEs given by{

dY i
t = −(k ∗ ρt)(Y i

t ) dt+ σ(t, Y i
t ) dB

i
t + ν dWt, Y i

0 = Xi
0,

ρt is the conditional density of Y
i
t givenFW

t ,
(4.9)

for t ∈ [0, T ], and the system of regularized mean-field SDEs is defined by{
dY i,ε

t = −(kε ∗ ρεt )(Y
i,ε
t ) dt+ σ(t, Y i,ε

t ) dBi
t + ν dWt, Y i,ε

0 = Xi,ε
0 ,

ρεt is the conditional density of Y
i,ε
t givenFW

t ,
(4.10)

for t ∈ [0, T ], where ρt denotes the conditional density of Y i
t given FW

t , that is, for every
bounded continuous function φ, ρt satisfies

E(φ(Y i
t ) | FW

t ) =

∫
R
φ(x)ρt(x) dx, P-a.e.

The same holds for the regularized conditional density ρεt of Y i,ε
t given FW

t . Let us remark
that ρεt , ρt have no superscript i since they are independent of i ∈ N. Indeed, in our case
the (regularized) mean-field particles are conditionally independent given FW and identically
distributed, thus, the conditional density is the same for each i ∈ N.
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4.1.2. Stochastic Fokker–Planck equations. Associated to the mean-field SDEs (4.9)
and (4.10), we have the stochastic Fokker–Planck equation, which reads as

(4.11) dρt =
d2

dx2

(σ2t + ν2

2
ρt

)
dt+

d

dx
((k ∗ ρt)ρt) dt− ν

d

dx
ρt dWt

and the regularized stochastic Fokker–Planck equation reads as

(4.12) dρεt =
d2

dx2

(σ2t + ν2

2
ρεt

)
dt+

d

dx
((kε ∗ ρεt )ρεt ) dt− ν

d

dx
ρεt dWt, t ∈ [0, T ].

Let us note that we consistently use the same notations ρ, ρε for the solutions of the
stochastic Fokker–Planck equations (4.11) and (4.12), as well as for the conditional densities of
the mean-field SDEs (4.9) and (4.10). As discussed in Section 1.3.5, and as we will demonstrate
in Theorem 4.15, these notations are justified since they coincide under sufficient regularity
assumptions on the initial condition ρ0. Nevertheless, the meaning of ρ, ρε will always be clear
from context. To establish the well-posedness of the stochastic Fokker–Planck equations (4.11)
and (4.12), we will employ the function spaces introduced in Section 1.4.2.

4.1.3. Assumptions on initial condition and diffusion coefficients. We make the fol-
lowing assumptions on the diffusion coefficient σ.

Assumption 4.1. Let T > 0 and σ : [0, T ] × R → R the diffusion coefficient, which
satisfies:

(i) Let 0 ≤ ρ0 ∈ L1(R) ∩ L2(R) with ∥ρ0∥L1(R) = 1

(ii) There exists a constant λ > 0 such that

σ2(t, x) ≥ λ

for all x ∈ R and t ∈ [0, T ].
(iii) There exists a constant Λ > 0 such that for all t ∈ [0, T ] we have

σ(t, ·) ∈ C3(R) and sup
t∈[0,T ]

3∑
i=1

∥∥∥∥ di

dxi
σ(t, ·)

∥∥∥∥
L∞(R)

≤ Λ.

Contribution: Our first contribution is to prove the well-posedness of the non-local, non-
linear stochastic Fokker–Planck equation (4.11). The main challenge in proving existence
and uniqueness results for (4.11) is the non-linear term (k ∗ ρt)ρt since this prevents us from
applying known results in the existing literature on SPDEs, such as those found in text-
books [Kry99, LR15], which consider the well-studied case of linear SPDEs. In the case of
non-linear SPDEs, one needs to take advantage of the specific structure of the considered
SPDE to employ a fixed point argument, cf. e.g. the recent work [HQ21]. In this line of
research, we establish local existence and uniqueness of a weak solution to the non-local,
non-linear Fokker–Planck equation (4.11). Additionally, we show global well-posedness of
the Fokker–Planck equation (4.11) assuming a sufficiently large diffusion coefficient or a suf-
ficiently small L2-norm of the initial value. Moreover, in contrast to many recent works
like [CF16, CG19, HvS21, CDFM20, BCD21] on interacting particle systems with common
noise, we avoid the measure-valued setting and deal with the conditional McKean–Vlasov
SDE and the associated Fokker–Planck equations by directly analysing the densities.
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Our second contribution is to prove the existence of a unique strong solution to the
McKean–Vlasov stochastic differential equation (4.9), which is essential for showing condi-
tional propagation of chaos towards to limiting Fokker–Planck equation (4.11). To obtain
the well-posedness of the McKean–Vlasov SDE (4.9), a central insight is to introduce suit-
able stopping times to ensure sufficient temporary regularity such that a backward stochastic
partial differential equation (BSPDE) associated to (4.9) possesses a classical solution, cf.
e.g. [DTZ13]. As a result, a duality argument in combination with the Itô–Wentzell for-
mula allows us to deduce the existence of a unique strong solution to the McKean–Vlasov
equation (4.9).

Our third contribution is to establish conditional propagation of chaos for regularized
particle systems (4.8) with common noise, which then implies the conditional propagation of
chaos for the HK model (4.1). Compared to Chapter 2, the cut-off will be logarithmic and
not algebraic.

Initially, all results are formulated in dimension one since this is essential to establish the
well-posedness of the McKean–Vlasov equation (4.9), see the BSPDE argument in Section 4.4
and in particular [DTZ13, Corollary 2.2]. For all other results, we provide corollaries providing
the multi-dimensional versions.

Related literature: For Lipschitz continuous interaction forces, conditional propagation
of chaos with transport type common noise has been showed by Coghi and Flandoli [CF16]
by utilizing sharp estimates in Kolmogorov’s continuity theorem and properties of measure-
valued solutions of the associated stochastic Fokker–Planck equation. In particular the ap-
proach is from an SDE level to an SPDE level [CF16, CG19]. In contrast we first solve
the SPDE and then prove that the associated SDE’s are well-posed. For Lipschitz continu-
ous interaction force with multiplicative noise Carmona and Delarue [CD18, Theorem 2.12]
demonstrated conditional propagation of chaos by utilizing a coupling argument. Dawson
and Vaillancourt [DV95] also formulated a martingale problem and demonstrated tightness
of the empirical measure obtaining a qualitative result with no convergence rates.

For particle systems with common noise and non-Lipschitz interaction force k (as in our
case), to the best of our knowledge there exists no general theory on stochastic McKean–
Vlasov equations or on conditional propagation of chaos. In order to derive conditional
propagation of chaos for the interacting particle system (4.7), we essentially rely on the well-
posedness of the McKean–Vlasov SDE (4.9) and follow [Szn91] as well as [LP17] to prove that
(ρt, t ≥ 0) characterizes the measure of the mean-field limit.

We should also mention the work by Lacker, Shkolnikov, and Zhang [LSZ23], which estab-
lishes a superposition principle between the stochastic Fokker–Planck equation (4.11) and the
conditional McKean–Vlasov equation (4.9) by reducing it to cases with smooth coefficients.
However, the uniqueness of the solution remains an open problem. As a result, only weak
existence in the context of stochastic differential equations has been demonstrated.

Organization of the chapter: In Section 4.2 we provide some background information for
the HK model, which was our motivation for studying conditional propagation of chaos for
non-smooth interaction kernels. In Section 4.3 the well-posedness of the stochastic Fokker–
Planck equation (4.11) is established and in Section 4.4 of the associated McKean–Vlasov
equation (4.9). The mean-field limit and conditional propagation of chaos of the HK model
with common noise are investigated in Section 4.5.
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4.2. Hegselmann–Krause model

In general the theory of opinion dynamics, which has been well-studied since the 1950s,
has become a rapidly growing area of research over the last few decades. With the rapid
development of the internet and social networks, we have observed significant changes in
how opinion dynamics evolve and by what sources they are effected. For example, previous
generations were heavily influenced by their geographically nearest social group, but nowadays
social networks play a dominant role for expressing and sharing opinions, enabling more
people than ever to do so from anywhere in the world. Consequently, the significance of
the geographical distance as a factor in shaping public opinion diminishes. Instead, each
citizen has a personal filter bubble [Spo17], which affects and in the same time shifts with
the opinion. This phenomena is described by so called bounded confidence opinion dynamics.
For an overview of opinion dynamics we refer to the surveys [Lor07, Hos20].

The original discrete-time Hegselsmann–Krause model [HK02] is given by

(4.13) xi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t), t ≥ 0, i = 1, . . . , n,

where xi(t) is the opinion of agent i at time t, Ni(t) := {1 ≤ j ≤ n : |xi(t)−xj(t)| ≤ ri} denotes
the neighbour set of agent i at time t and |Ni(t)| is the cardinality of the set. The convergence
and consensus properties of the discrete-time HK model were extensively studied in the past
years, see for instance [HK02, Lor06, BBCN13, KZPS12, NT12]. The main characteristic
feature of bounded confidence opinion models, like the HK model (4.13), is that the agents
interact only locally, which is modelled by the compactly supported interaction force in the
discrete-time HK model (4.13), i.e. j ∈ Ni(t), and, thus, opinions outside an agent’s moral
beliefs get ignored through this local interaction kernel. This phenomena is, e.g., observed in
case of liberal and conservative view points and their respective social media bubbles in the
USA [ENG+19, GKM17, Spo17]. The discrete-time HK model (4.13) is a fairly simple model
to describe opinion dynamics and by now there are numerous generalizations and variants of
the original HK model, for instance, the HK model with media literacy [XCW+20] or the HK
model with an opinion leader [WCB15]. For further extensions we refer to [DR10, RD09].

An important class of extensions of the original HK model captures external random
effect in opinion dynamics, see e.g. [PTHG13, CSDH19], leading naturally to a system of N
stochastic processes representing the opinion evolution. In this case, following e.g. [GPY17],

the opinion dynamics X̂N := (X̂i, i = 1, . . . , N) of N agents are modelled by a system of
stochastic differential equations

(4.14) dX̂i
t = − 1

N

N∑
j=1

kHK(X̂
i
t − X̂j

t ) dt+ σ(t, X̂i
t) dB

i
t, i = 1, . . . , N, X̂N

0 ∼
N
⊗
i=1
ρ0,

for t ≥ 0, where X̂i
t is the i-th agent’s opinion at time t, kHK is the interaction force between

the agents, σ is a smooth diffusion coefficient, ((Bi
t, t ≥ 0), i ∈ N) is a sequence of one-

dimensional independent Brownian motion and, as previously, ρ0 is the initial distribution.
We note that the interaction force kHK has compact support turning the continuous-time
HK model (4.14) into a bounded confidence model. The continuous-time HK model (4.14)
has been a topic of active research in the past years, e.g., the convergence to a consensus



4.3. Well-posedness of the stochastic Fokker–Planck equations 115

is studied in [GPY17] and the phase transition was investigated in [WLEC17]. For a more
detailed discussion on different types of noises in HK models we refer to [CSDH19] and the
references therein.

Our goal is to take it a step further by incorporating common noise into the HK model,
which represents the influence of environmental shifts on opinions, resulting in the SDE formu-
lation (4.1). By incorporating common noise, we enhance the HK model to more accurately
reflect the stochastic nature of real-world scenarios.

4.3. Well-posedness of the stochastic Fokker–Planck equations

This section is dedicated to establishing the global existence and uniqueness of weak
solutions of the stochastic Fokker–Planck equations (4.11) and (4.12) under suitable conditions
on the initial condition and coefficients. As a special case we obtain existence and uniqueness
of weak solutions for the stochastic Fokker–Planck equations (4.3) and (4.6) for the HK model.
Before we start our analysis, we introduce the concept of weak solutions.

Definition 4.2. For a general interaction force k ∈ L2(R), a non-negative stochastic
process (ρt, t ≥ 0) is called a (weak) solution of the SPDE (4.11) if

(ρt, t ∈ [0, T ]) ∈ L2
FW ([0, T ];W 1,2(R)) ∩ S∞

FW ([0, T ];L1(R) ∩ L2(R))

and, for any φ ∈ C∞
c (R), ρ satisfies almost surely the equation, for all t ∈ [0, T ],

⟨ρt, φ⟩L2(R) = ⟨ρ0, φ⟩L2(R) +

t∫
0

〈
σ2s + ν2

2
ρs,

d2

dx2
φ

〉
L2(R)

ds

−
t∫

0

〈
(k ∗ ρs)ρs,

d

dx
φ

〉
L2(R)

ds+

t∫
0

ν

〈
ρs,

d

dx
φ

〉
L2(R)

dWs

(4.15)

Remark 4.3. A solution to the stochastic partial differential equation (4.12) is defined
analogously by replacing k with kε.

Remark 4.4. There are multiple solution concepts for SPDEs, see for example [LR15] for
strong solutions in general separable Hilbert spaces or [DPZ14] for mild solutions with respect
to a infinitesimal generator. In the present work, we use the concept presented in [Kry99].
This has the advantage that we can use Itô’s formula for Lp-norms [Kry10] as well as the
linear SPDE theory in [Kry99].
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Remark 4.5. Under the assumption that for all t ∈ [0, T ], σt ∈ C2(R) we can rewrite
formally equation (4.15) such that the leading coefficient is in non-divergence form, i.e.

⟨ρt, φ⟩L2(R)

= ⟨ρ0, φ⟩L2(R) +
1

2

t∫
0

〈
(σ2s + ν2)

d2

dx2
ρs, φ

〉
L2(R)

+ 2

〈
d

dx
(σ2s + ν2)

d

dx
ρs, φ

〉
L2(R)

+

〈
d2

dx2
(σ2s + ν2)ρs, φ

〉
L2(R)

ds−
t∫

0

〈
(k ∗ ρs)ρs,

d

dx
φ

〉
L2(R)

ds

−
t∫

0

ν

〈
d

dx
ρs, φ

〉
L2(R)

dWs.

Hence, (ρt, t ≥ 0) solves the following SPDE

dρt =
σ2t + ν2

2

d2

dx2
ρt dt+

d

dx
(σ2t + ν2)

d

dx
ρt dt

+
1

2

d2

dx2
(σ2t + ν2)ρt dt+

d

dx
((k ∗ ρt)ρt) dt− ν

d

dx
ρt dWt, t ∈ [0, T ].

In the next theorem we establish uniqueness and local existence of weak solutions to
the non-local stochastic Fokker–Planck equation (4.11). Furthermore, we are going to see in
Corollary 4.9 that the existence will not depend on the L2-norm of the initial condition ρ0,
allowing us to extend the local solution obtained in Theorem 4.6 to a global solution on an
arbitrary interval [0, T ].

Theorem 4.6. Let Assumption 4.1 hold and k ∈ L2(R). Then, there exists a T ∗ > 0 and
a unique non-negative solution of the SPDE (4.11) in the space

B := L2
FW ([0, T ∗];W 1,2(R)) ∩ S∞

FW ([0, T ∗];L1(R) ∩ L2(R)).
Moreover, the solution ρ has the property of mass conservation

∥ρt∥L1(R) = 1, P-a.s.,

for all t ∈ [0, T ].

Proof. Let us define the metric space

F T,M :=
{
X ∈ S∞

FW ([0, T ];L2(R)) : ∥X∥S∞
FW ([0,T ];L2(R)) ≤M

}
for some constant M > ∥ρ0∥L2(R), for instance M = 2 ∥ρ0∥L2(R). The metric on F T,M is

induced by the norm on S∞
FW ([0, T ];L2(R)). The solution map T : F T,M → F T,M is defined

as follows. For each ζ ∈ F T,M we define T (ζ) as the solution of the following linear SPDE

dρt =
σ2t + ν2

2

d2

dx2
ρt dt+

d

dx
(σ2t + ν2)

d

dx
ρt dt

+
1

2

d2

dx2
(σ2t + ν2)ρt dt+

d

dx
((k ∗ ζt)ρt) dt− ν

d

dx
ρt dWt, t ∈ [0, T ].

(4.16)
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The L2-bound on k and Hölder’s inequality imply

(4.17) |k ∗ ζt(x)| ≤ ∥k∥L2(R) ∥ζt∥L2(R) ≤ ∥k∥L2(R)M

for all x ∈ R, which allows us to check the conditions of the Lp-theory of SPDEs [Kry99,
Theorem 5.1 and Theorem 7.1] for the case n = −1 therein. For instance, if we define for
q ∈W 1,2(R) the function

f(q, t, x) =
d

dx
((k ∗ ζt)qt),

then obviously f(0, ·, ·) ∈ L2
FW ([0, T ];H−1,2(R)) and, since x/(1+ |x|2)1/2 is bounded, we can

apply the lifting property [Tri78, Theorem 2.3.8] to obtain

∥f(q, t, ·)∥H−1,2(R) ≤ C ∥(k ∗ ζt)qt∥L2(R) ≤ ∥k∥L2(R)M ∥qt∥L2(R) .

By [Kry99, Remark 5.5] this is sufficient to verify [Kry99, Assumption 5.6]. The other as-
sumptions are proven similarly.

Hence, we can deduce that the linear SPDE (4.16) admits a unique solution

ρζ ∈ L2
FW ([0, T ];W 1,2(R)) ∩ S2

FW ([0, T ];L2(R)).

In the next step we want to demonstrate the non-negativity of the solution ρζ with the
regularity of the solution ρζ . Let us denote by km the mollification of k and let

ρζ,m ∈ L2
FW ([0, T ];W 1,2(R)) ∩ S2

FW ([0, T ];L2(R))

be the solution of the SPDE (4.16) with (km ∗ ζ)ρζ instead of (k ∗ ζ)ρζ . Then we can write
the SPDE in the form

dρζ,mt = a(t, x)
d2

dx2
ρζ,mt dt+ bm(t, x)

d

dx
ρζ,mt dt+ cm(t, x)ρζ,mt dt− ν

d

dx
ρζ,mt dWt,

for t ∈ [0, T ], with

a(t, x) :=
σ2t + ν2

2
, bm(t, x) :=

d

dx
(σ2t + ν

2)+km ∗ ζt, cm(t, x) :=
1

2

d2

dx2
(σ2t + ν

2)+
d

dx
km ∗ ζt.

Now, by Assumption 4.1 the coefficients am, bm, cm and the coefficient in the stochastic part
is bounded. Hence, by the maximum principle [Kry99, Theorem 5.12] the solution ρζ,m is
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non-negative. On the other hand, we have∥∥∥∥ d

dx

(
(km ∗ ζt)ρζt − (k ∗ ζt)ρζt

)∥∥∥∥2
L2
FW ([0,T ];H−1,2(R))

≤ C
∥∥∥((km − k) ∗ ζt)ρζt

∥∥∥2
L2
FW ([0,T ];L2(R))

≤ CE
( T∫

0

∥((km − k) ∗ ζt)∥2L∞(R)

∥∥∥ρζt∥∥∥2
L2(R)

)

≤ CE
( T∫

0

∥((km − k)∥2L2(R) ∥ζt∥
2
L2(R)

∥∥∥ρζt∥∥∥2
L2(R)

)

≤ C ∥((km − k)∥2L2(R)M
2
∥∥∥ρζt∥∥∥2

L2
FW ([0,T ];L2(R))

m→∞−−−−→ 0.

Consequently, by [Kry99, Theorem 5.7] we have

lim
m→∞

∥∥∥ρζ,m − ρζ
∥∥∥
L2
FW ([0,T ];W 1,2(R))

= 0

and therefore ρζt (·) ≥ 0 for all t ∈ [0, T ] almost surely (by intersecting all sets of measure one,
where ρζ,m is non-negative).

The non-negativity of the solution ρζ and the divergence structure of the equation provides
us with the normalization condition/mass conservation, that is∥∥∥ρζt∥∥∥

L1(R)
= ∥ρ0∥L1(R) = 1, P-a.s.,

for t ∈ [0, T ]. This follows immediately by plugging in a cut-off sequence (ξn, n ∈ N) for our
test function φ and taking the limit n → ∞ (see [Bre11, p. 212] for properties of the cut-off
sequence). Therefore, the map T (ζ) = ρζ will be well-defined if we can obtain a bound on
the S∞

FW ([0, T ];L2(R))-norm. For readability we will from now on drop the superscript ζ in
the following. Applying Itô’s formula [Kry10], we obtain

∥ρt∥2L2(R) − ∥ρ0∥2L2(R)

=

t∫
0

〈
ρs,

d

dx
(σ2s + ν2)

d

dx
ρs + ρs

d2

dx2
(σ2s + ν2)

〉
L2(R)

ds

−
t∫

0

〈
(σ2s + ν2)

d

dx
ρs,

d

dx
ρs

〉
L2(R)

ds− 2

t∫
0

〈
(k ∗ ζs)ρs,

d

dx
ρs

〉
L2(R)

ds

+ ν2
t∫

0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

ds+ 2ν

t∫
0

〈
ρs,

d

dx
ρs

〉
L2(R)

dWs
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=

t∫
0

〈
ρs,

d

dx
(σ2s + ν2)

d

dx
ρs + ρs

d2

dx2
(σ2s + ν2)

〉
L2(R)

ds

− 2

t∫
0

〈
(k ∗ ζs)ρs,

d

dx
ρs

〉
L2(R)

ds−
t∫

0

〈
σ2s

d

dx
ρs,

d

dx
ρs

〉
L2(R)

ds

≤
t∫

0

〈
ρs,

d

dx
(σ2s + ν2)

d

dx
ρs + ρs

d2

dx2
(σ2s + ν2)

〉
L2(R)

ds

− 2

t∫
0

〈
(k ∗ ζs)ρs,

d

dx
ρs

〉
L2(R)

ds− λ

t∫
0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

ds,

for 0 ≤ t ≤ T , where we used the fact that ρs
d
dxρs = 1

2
d
dx(ρ

2
s) to get rid of the stochastic

integral. At this step, it is crucial that we only have additive common noise. Otherwise the
stochastic integral will not vanish and the above estimate will not achieve the L∞-bound in ω.
For the first term we can use Assumption 4.1 and Young’s inequality to find

∣∣∣∣
t∫

0

〈
ρs,

d

dx
(σ2s + ν2)

d

dx
ρs + ρs

d2

dx2
(σ2s + ν2)

〉
L2(R)

ds

∣∣∣∣(4.18)

≤ Λ

t∫
0

∣∣∣∣〈ρs, d

dx
ρs + ρs

〉
L2(R)

∣∣∣∣ds
≤ λ

4

t∫
0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

ds+
(Λ2

λ
+ Λ

) t∫
0

∥ρs∥2L2(R) ds.

On the other hand, using (4.17) and Young’s inequality, we obtain∣∣∣∣〈(k ∗ ζs)ρs, d

dx
ρs

〉
L2(R)

∣∣∣∣ ≤ ∥k ∗ ζs∥L∞(R)

〈
|ρs|,

∣∣∣∣ d

dx
ρs

∣∣∣∣〉
L2(R)

≤ ∥k∥L2(R)M ∥ρs∥L2(R)

∥∥∥∥ d

dx
ρs

∥∥∥∥
L2(R)

≤
∥k∥2L2(R)M

2

λ
∥ρs∥2L2(R) +

λ

4

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

.

After absorbing the terms, we find

∥ρt∥2L2(R) − ∥ρ0∥2L2(R) ≤
(∥k∥2L2(R)M

2 + Λ2

λ
+ Λ

) t∫
0

∥ρs∥2L2(R) ds.
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For the rest of the proof we define the constant

C(λ,Λ, k,M) :=
∥k∥2L2(R)M

2 + Λ2

λ
+ Λ

and conclude

(4.19) ∥ρt∥2L2(R) ≤ ∥ρ0∥2L2(R) exp
(
C(λ,Λ, k,M)T

)
,

by Gronwall’s inequality. Choosing T̂ ∗ < ln(M/ ∥ρ0∥2L2(R))C(λ,Λ, k,M)−1, we have ρ ∈
F T̂

∗,M and the map

T : F T̂
∗,M → F T̂

∗,M , ζ → ρζ ,

is well-defined up to time T̂ ∗.
The next step is to show that T is a contraction in a small time span (T ≤ T̂ ∗) and,

therefore, has a fixed point. For ζ, ζ̃ ∈ F T,M let ρ := T (ζ), ρ̃ := T (ζ̃) be the associated
solutions of the linear SPDE (4.16). Then, we have

d(ρt − ρ̃t)

=
σ2t + ν2

2

d2

dx2
(ρt − ρ̃t) dt+ (σ2t + ν2)

d

dx
(ρt − ρ̃t) dt+

1

2

d2

dx2
(σ2t + ν2)(ρt − ρ̃t) dt

+
d

dx
((k ∗ ζt)ρt) dt−

d

dx
((k ∗ ζ̃t)ρ̃t) dt− ν

d

dx
(ρt − ρ̃t) dWt, t ∈ [0, T ].

Applying Itô’s formula [Kry10] and multiple Young’s inequality again (see (4.18)), we obtain

∥ρt − ρ̃t∥2L2(R)

= −
t∫

0

〈
(σ2s + ν2)

d

dx
ρs −

d

dx
ρ̃s,

d

dx
ρs −

d

dx
ρ̃s

〉
L2(R)

ds

− 2

t∫
0

〈
(k ∗ ζs)ρs − (k ∗ ζ̃s)ρ̃s,

d

dx
ρs −

d

dx
ρ̃s

〉
L2(R)

ds

+ ν2
t∫

0

∥∥∥∥ d

dx
(ρs − ρ̃s)

∥∥∥∥2
L2(R)

ds

+

t∫
0

〈
ρs − ρ̃s,

d

dx
(σ2s + ν2)

(
d

dx
ρs −

d

dx
ρ̃s

)
+ (ρs − ρ̃s)

d2

dx2
(σ2s + ν2)

〉
L2(R)

ds

≤ −λ
t∫

0

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥2
L2(R)

ds

− 2

t∫
0

〈
(k ∗ (ζs − ζ̃s))ρs + (k ∗ ζ̃s)(ρs − ρ̃s),

d

dx
ρs −

d

dx
ρ̃s

〉
L2(R)

ds



4.3. Well-posedness of the stochastic Fokker–Planck equations 121

+
λ

4

t∫
0

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥2
L2(R)

ds+
(Λ2

λ
+ Λ

) t∫
0

∥ρs − ρ̃s∥2L2(R) ds

≤ −3λ

4

t∫
0

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥2
L2(R)

ds+
(Λ2

λ
+ Λ

) t∫
0

∥ρs − ρ̃s∥2L2(R) ds

+

t∫
0

∥k∥L2(R)

∥∥∥ζs − ζ̃s

∥∥∥
L2(R)

∥ρs∥L2(R)

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥
L2(R)

ds

+ ∥k∥L2(R)

t∫
0

∥ρs − ρ̃s∥L2(R)

∥∥∥ζ̃s∥∥∥
L2(R)

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥
L2(R)

ds

≤ −3λ

4

t∫
0

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥2
L2(R)

ds+
(Λ2

λ
+ Λ

) t∫
0

∥ρs − ρ̃s∥2L2(R) ds

+

t∫
0

∥k∥2L2(R)M
2

λ

∥∥∥ζs − ζ̃s

∥∥∥2
L2(R)

+
λ

4

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥2
L2(R)

ds

+

t∫
0

∥k∥2L2(R)M
2

λ
∥ρs − ρ̃s∥2L2(R) +

λ

4

∥∥∥∥ d

dx
ρs −

d

dx
ρ̃s

∥∥∥∥2
L2(R)

ds

≤
t∫

0

∥k∥2L2(R)M
2

λ

∥∥∥ζs − ζ̃s

∥∥∥2
L2(R)

ds+

t∫
0

C(λ,Λ, k,M) ∥ρs − ρ̃s∥2L2(R) ds

≤ T
∥k∥2L2(R)M

2

λ

∥∥∥ζ − ζ̃
∥∥∥2
S∞
FW ([0,T ];L2(R))

+ C(λ,Λ, k,M)

t∫
0

∥ρs − ρ̃s∥2L2(R) ds.

Gronwall’s inequality provide us with the estimate

∥ρ− ρ̃∥S∞
FW ([0,T ];L2(R)) ≤

√
T ∥k∥2L2(R)M

2

λ
exp

(
T

2
C(λ,Λ, k,M)

)
∥ζ − ζ̃∥S∞

FW ([0,T ];L2(R)).

Now, choosing T ∗ such that√
T ∗ ∥k∥2L2(R)M

2

λ
λ exp

(
T ∗

2
C(λ,Λ, k,M)

)
< 1

and T ∗ ≤ T̂ ∗, we see that the map T : F T
∗,M → F T

∗,M is a contraction and consequently we
obtain a fixed point ρ, which is a local weak solution up to the time T ∗ of the SPDE (4.11). □
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We notice that in the proof of Theorem 4.6, we only use Hölder’s inequality, Young’s
convolution and product inequality. Hence, the statement of Theorem 4.6 holds also for
arbitrary dimension. We state this observation in the following corollary.

Corollary 4.7. Suppose Assumption 4.1 holds in th d-dimensional setting and k ∈
L2(Rd). Then, there exists a small T ∗ > 0 and a unique non-negative solution of the
SPDE (4.11) in the space

B := L2
FW ([0, T ∗];W 1,2(Rd)) ∩ S∞

FW ([0, T ∗];L1(Rd) ∩ L2(Rd)).

The solution should be understood in the sense of Definition 4.2, where Definition 4.2 is
modified for arbitrary dimension d in the obvious way, see also [Kry99, Definition 3.5].

Remark 4.8. Following the steps of the proof of Theorem 4.6, we see that we can obtain
not only a local solution but a (global) solution for any T > 0 by requiring a small L2-norm
on the initial condition ρ0. In particular, we can choose a constant M > 0 such that√

T ∥k∥2L2(R)M
2

λ
λ exp

(
T

2

(
∥k∥2L2(R)M

2 + Λ2

λ
+ Λ

))
< 1

and then the condition

∥ρ0∥L2(R) ≤M exp

(
− T

(
∥k∥2L2(R)M

2 + Λ2

λ
+ Λ

))
guarantees a unique non-negative solution of the SPDE (4.11) on the interval [0, T ].

Next, we establish another global existence and uniqueness result. We emphasize that in
the following result we do not need any further assumptions on ρ0 besides being in L1(R) ∩
L2(R). Instead, we impose a lower bound on the diffusion coefficient σ. Hence, we require
a sufficiently high randomness in the stochastic Fokker–Planck equation. We also assert the
fact that the continuation of the solution (ρt, t ≥ 0) is a direct consequence of the L2-theory
of SPDEs.

Corollary 4.9. Let Assumption 4.1 hold and k ∈ L1(R)∩L2(R). Furthermore, assume
that the diffusion coefficient σ has a derivative d

dxσ with compact support [−L,L] and satisfies

2L2 sup
0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥
L∞(R)

+

(
C4
GNS ∥k∥

2
L1(R) + 4L4 sup

0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥2
L∞(R)

)1/2

≤ λ,(4.20)

where λ is the ellipticity constant in Assumption 4.1 CGNS is the constant given by the
Gagliardo–Nirenberg–Sobolev interpolation in one dimension [Leo17, Theorem 12.83], i.e.

CGNS =
(
4π2

9

)−1/4
. Then, for each T > 0 there exist unique global non-negative solutions of

the stochastic Fokker–Planck equations (4.11) in the space B.
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Proof. Let ρ be the solution given by Theorem 4.6. Following the proof of Theorem 4.6,
we apply Itô’s formula [Kry10] and obtain, for 0 ≤ t ≤ T ∗,

∥ρt∥2L2(R) − ∥ρ0∥2L2(R)

= −
t∫

0

∥∥∥∥σs d

dx
ρs

∥∥∥∥2
L2(R)

ds+

t∫
0

〈
ρs,

d

dx
(σ2s + ν2)

d

dx
ρs + ρs

d2

dx2
(σ2s + ν2)

〉
ds

− 2

t∫
0

〈
(k ∗ ρs)ρs,

d

dx
ρs

〉
L2(R)

ds

= −
t∫

0

∥∥∥∥σs d

dx
ρs

∥∥∥∥2
L2(R)

ds−
t∫

0

〈
ρs

d

dx
(σ2s),

d

dx
ρs

〉
L2(R)

ds

− 2

t∫
0

〈
(k ∗ ρs)ρs,

d

dx
ρs

〉
L2(R)

ds

≤ −λ
2

t∫
0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

+ sup
0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥
L∞(R)

∥ρs∥L2([−L,L])

∥∥∥∥ d

dx
ρs

∥∥∥∥
L2(R)

ds

+
1

λ

t∫
0

∥(k ∗ ρs)ρs∥2L2(R) ds

≤
(
− λ

2
+ 2L2 sup

0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥
L∞(R)

) t∫
0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

ds

+
1

λ

t∫
0

∥k ∗ ρs∥2L4(R) ∥ρs∥
2
L4(R) ds

≤
(
− λ

2
+ 2L2 sup

0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥
L∞(R)

) t∫
0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

ds

+
1

λ

t∫
0

∥k∥2L1(R) ∥ρs∥
2
L4(R) ∥ρs∥

2
L4(R) ds

=

(
− λ

2
+ 2L2 sup

0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥
L∞(R)

)

·
t∫

0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

ds+
∥k∥2L1(R)

λ

t∫
0

∥ρs∥4L4(R) ds.
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We remark that we used integration by parts in the first step, Young’s and Hölder’s inequal-
ity in the third step, Hölder’s and Poincaré inequality [Leo17, Theorem 13.19] in the forth
step and Young’s inequality for convolutions in the fifth step. Let us recall the Gagliardo–
Nirenberg–Sobolev interpolation [Leo17, Theorem 12.83], which states that for u ∈ L1(R) ∩
W 1,2(R) we have

∥u∥L4(R) ≤ CGNS ∥u∥1/2L1(R)

∥∥∥∥ d

dx
u

∥∥∥∥1/2
L2(R)

.

Consequently, applying this inequality on the last term in our estimate and having mass
conservation in mind we find

∥ρt∥2L2(R) − ∥ρ0∥2L2(R)

≤
(
− λ

2
+ 2L2 sup

0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥
L∞(R)

+
C4
GNS ∥k∥

2
L1(R)

λ

) t∫
0

∥∥∥∥ d

dx
ρs

∥∥∥∥2
L2(R)

ds.

Hence, if

2L2 sup
0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥
L∞(R)

+

(
C4
GNS ∥k∥

2
L1(R) + 4L4 sup

0≤t≤T

∥∥∥∥ d

dx
(σ2t )

∥∥∥∥2
L∞(R)

)1/2

≤ λ,

we discover

(4.21) ∥ρ∥S∞
FW ([0,T ∗];L2(R)) ≤ ∥ρ0∥2L2(R) .

Since ρ ∈ L2
FW ([0, T ∗];W 1,2(R)), we may apply [Kry99, Theorem 7.1], which tells us that

ρ ∈ C([0, T ∗], L2(R)), P-a.s., and

E(∥ρT ∗∥2L2(R)) <∞.

As a result, we can take ρT ∗ as the new initial value and apply [Kry99, Theorem 5.1] in
combination with our above arguments in proof of Theorem 4.6 to obtain a solution on
[T ∗, 2T ∗], since the estimate (4.21) and the condition (4.20) are independent of T ∗. Hence,
after finitely many steps we have a global solution ρ on [0, T ]. The uniqueness and ρ ∈ B
follows by repeating the inequalities derived in the contraction argument in Theorem 4.6 or
using the uniqueness of the SPDE presented in [Kry99, Theorem 5.1 and Corollary 5.11]. □

Remark 4.10. In particular, for a constant diffusion σ > 0 the condition (4.20) reads
simply as

C2
GNS ∥k∥L1(R) ≤ σ,

which can be interpreted such that for a given integrable kernel k the system needs a certain
amount of idiosyncratic noise to stay alive for arbitrary T > 0. In other word, the diffusion
needs to be dominant.

Next, we are going to improve the regularity of the solution ρ by a bootstrap argument.

Lemma 4.11. Let ρ0 ∈ L1(R)∩W 2,2(R) with ∥ρ0∥L1(R) = 1. Moreover, let Assumption 4.1

hold and k ∈ L2(R). Assume we have a solution

ρ ∈ L2
FW ([0, T ];W 1,2(R)) ∩ S∞

FW ([0, T ];L1(R) ∩ L2(R))
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of the SPDE (4.11) on [0, T ]. Then ρ has the following regularity

ρ ∈ L2
FW ([0, T ];W 3,2(R)) ∩ S2

FW ([0, T ],W 2,2(R)) ∩ S∞
FW ([0, T ];L1(R) ∩ L2(R)).

Proof. Let us explore the following bootstrap argument. By assumptions we know
ρ ∈ L2

FW ([0, T ];W 1,2(R)) ∩ S∞
FW ([0, T ];L1(R) ∩ L2(R)) and solves the SPDE

(4.22) dρt =
d2

dx2

(σ2t + ν2

2
ρt

)
dt+

d

dx
((k ∗ ρt)ρt) dt− ν

d

dx
ρt dWt.

Furthermore, d
dx(k

ε ∗ ρt) = kε ∗ d
dxρt for the smooth approximation kε of k and consequently

the dominated convergence theorem implies d
dx(k∗ρt) = k∗ d

dxρt in the sense of distributions.
As a result

d

dx
((k ∗ ρt)ρt) =

(
k ∗ d

dx
ρt

)
ρt + (k ∗ ρt)

d

dx
ρt

is well-defined as a function in L1(R). Moreover, we find∥∥∥∥ d

dx
((k ∗ ρt)ρt)

∥∥∥∥
L2(R)

≤
∥∥∥∥(k ∗ d

dx
ρt

)
ρt

∥∥∥∥
L2(R)

+

∥∥∥∥(k ∗ ρt) d

dx
ρt

∥∥∥∥
L2(R)

≤
∥∥∥∥k ∗ d

dx
ρt

∥∥∥∥
L∞(R)

∥ρt∥L2(R) + ∥k ∗ ρt∥L∞(R)

∥∥∥∥ d

dx
ρt

∥∥∥∥
L2(R)

≤ ∥k∥L2(R) ∥ρt∥W 1,2(R) ∥ρt∥L2(R) + ∥k∥L2(R) ∥ρt∥L2(R) ∥ρt∥W 1,2(R)

≤ 2 ∥k∥L2(R) ∥ρt∥W 1,2(R) ∥ρt∥L2(R) ,

which implies∥∥∥∥ d

dx
((k ∗ ρ)ρ)

∥∥∥∥
L2
FW ([0,T ];L2(R))

≤ 2 ∥k∥L2(R) ∥ρ∥S∞
FW ([0,T ];L2(R)) ∥ρ∥L2

FW ([0,T ];W 1,2(R)) .

From the uniqueness of the SPDE (4.22), ρ0 ∈W 1,2(R) and [Kry99, Theorem 5.1 and Theo-
rem 7.1] we obtain

ρ ∈ L2
FW ([0, T ];W 2,2(R)) ∩ S2

FW ([0, T ];W 1,2(R)).

With the same strategy and the discovered regularity of ρ one obtains

d2

dx2
((k ∗ ρt)ρt) =

(
k ∗ d2

dx2
ρt

)
ρt + 2

(
k ∗ d

dx
ρt

)
d

dx
ρt + (k ∗ ρt)

d2

dx2
ρt

and consequently∥∥∥∥ d2

dx2
((k ∗ ρt)ρt)

∥∥∥∥
L2(R)

≤ 2 ∥k∥L2(R) ∥ρt∥W 2,2(R) ∥ρt∥L2(R) + 2 ∥k∥L2(R)

∥∥∥∥ d

dx
ρt

∥∥∥∥2
L2(R)

≤ 4 ∥k∥L2(R) ∥ρt∥W 2,2(R) ∥ρt∥L2(R) ,

where we used Gagliardo–Nirenberg–Sobolev inequality [Leo17, Theorem 7.41] in the last
step. Therefore, we have∥∥∥∥ d

dx
((k ∗ ρ)ρ)

∥∥∥∥
L2
FW ([0,T ];W 1,2(R))

≤ 4 ∥k∥L2(R) ∥ρ∥S∞
FW ([0,T ];L2(R)) ∥ρ∥L2

FW ([0,T ];W 2,2(R)) .
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Again, from the uniqueness of the SPDE (4.22), ρ0 ∈ W 2,2(R) and [Kry99, Theorem 5.1,
Corollary 5.11, Theorem 7.1] we obtain

ρ ∈ L2
FW ([0, T ];W 3,2(R)) ∩ S2

FW ([0, T ],W 2,2(R)).
□

As a consequence of Theorem 4.6, Corollary 4.9 and the fact that kHK, k
ε
HK ∈ L1(R) ∩

L2(R) for all ε > 0, we obtain the following corollary.

Corollary 4.12. Let Assumption 4.1 hold. Further, assume 0 ≤ ρ0 ∈ L1(R)∩L2(R) with
∥ρ0∥L1(R) = 1. Then, for the HK kernel (kHK there exists a T ∗ > 0 and a unique non-negative

solution ρHK, ρε,HK of the SPDE (4.3) and (4.6) in the space

B = L2
FW ([0, T ∗];W 1,2(R)) ∩ S∞

FW ([0, T ∗];L1(R) ∩ L2(R))

Furthermore, if d
dxσt(x) has compact support and inequality (4.20) holds, then we can extend

ρHK, ρε,HK to a global solution.

4.4. Well-posedness of the mean-field SDEs

In this section, we establish the existence of unique strong solutions for the mean-field
stochastic differential equations (SDEs) given by (4.9) and (4.10). Analogous to the classical
theory of ordinary SDEs, the mean-field SDEs (4.9) and (4.10) are related to the stochastic
Fokker–Planck equations (4.11) and (4.12) in the same way that ordinary SDEs are connected
to deterministic Fokker–Planck equations.

Similar to Section 4.3, we prove the existence of strong solutions for general interaction
force k, i.e. for equation (4.9). We notice that in order to show well-posedness for (4.9), it
is enough to show the well-posedness for just one of the identically distributed SDE’s of the
system (4.9). Hence, in the following we will drop the superscript i. In order to guarantee
the well-posedness of the SPDE (4.11) we make the assumption.

Assumption 4.13. Let 0 ≤ ρ0 ∈ L1(R) ∩W 2,2(R) with ∥ρ0∥L1(R) = 1. For T > 0 there

exists a unique solution ρ in L2
FW ([0, T ];W 1,2(R)) of the SPDE (4.11) on the interval [0, T ]

with

∥ρ∥L2
Fw ([0,T ];W 1,2(R)) + ∥ρ∥S∞

Fw ([0,T ];L1(R)∩L2(R)) ≤ C

for some finite constant C > 0.

Remark 4.14. The existence of a unique solution to the SPDE (4.11) in the above as-
sumption is satisfied, for instance, if the conditions stated in Remark 4.8, Theorem 4.6 or
Corollary 4.9 are satisfied.

Theorem 4.15. Let Assumption 4.1 as well as Assumption 4.13 hold and k ∈ L1(R) ∩
L2(R). Then, the mean-field SDE (4.9) has a unique strong solution (Yt, t ∈ [0, T ]) and ρt is
the conditional density of Yt given FW

t for every t ∈ [0, T ].

The idea to prove Theorem 4.15 is to freeze the measure ρt in the SDE (4.9) and use
a duality argument by introducing a dual backward stochastic partial differential equation
(BSPDE) in Lemma 4.17 in order to prove that ρt is the conditional density of Yt for given
FW
t .
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Proof. Let ρ be the unique solution of the SPDE (4.11) as in Assumption 4.13. We
recall that by the regularity result presented in Lemma 4.11 we have

ρ ∈ L2
FW ([0, T ];W 3,2(R)) ∩ S2

FW ([0, T ],W 2,2(R)).
Step 1. Fix ρ in the mean-field SDE (4.9) and notice that we are dealing with a standard

SDE with random coefficients. Hence, we can apply classical results if the drift coefficient k∗ρ
is Lipschitz continuous. The regularity of the solution, Sobolev embedding theorem [Bre11,
Theorem 8.8] and Morrey’s inequality [Leo17, Theorem 12.66] yields

sup
0≤t≤T

sup
x,y∈R
x̸=y

|(k ∗ ρt)(ω, x)− (k ∗ ρt)(ω, y)|
|x− y|

≤ sup
0≤t≤T

∥k ∗ ρt(ω)∥W 2,2(R)

≤ ∥k∥L1(R) sup
0≤t≤T

∥ρt(ω)∥W 2,2(R)

and

sup
0≤t≤T

|(k ∗ ρt)(ω, 0)| ≤ sup
0≤t≤T

sup
x∈R

|(k ∗ ρt)(ω, x)|

≤ ∥k∥L1(R) sup
0≤t≤T

∥ρt(ω)∥W 1,2(R) .

Furthermore, the maps ω 7→ sup
0≤t≤T

∥ρt(ω)∥W 2,2(R) and ω 7→ sup
0≤t≤T

∥ρt(ω)∥W 1,2(R) are measur-

able. Therefore, standard results for the existence of SDEs with Lipschitz continuous drift,
see e.g. [KRZ99, Theorem 1.1] or [KHLN97, Theorem 2.2], imply that the following SDE has
a unique strong solution

(4.23)

{
dY t = −(k ∗ ρt)(Y t) dt+ σ(t, Y t) dBt + ν dWt,

Y 0 ∼ ρ0 .

Step 2. We are going to use a dual argument (see Lemma 4.17 below) to show that ρt
is the conditional density of Yt with respect to FW

t . Hence, let T1 > 0 and (ut, t ∈ [0, T1])
be the solution of the BSPDE (4.24) below with terminal condition G ∈ L∞(Ω,FT1 , C∞

c (R)).
Utilizing the dual equation from Lemma 4.17, the dual analysis [Zho92, Corollary 3.1] and
the fact that u0 is FW

0 -measurable, we find

⟨ρ0, u0⟩ = E(⟨G, ρT1⟩).
On the other hand we can use the explicit representation of u0 given by Lemma 4.17 to obtain

⟨ρ0, u0⟩ =
∫
R
u0(y)ρ0(y) dy = E(u0(Y 0)) = E(E(G(Y T1)|σ(FW

0 , σ(Y 0)))) = E(G(Y T1)).

Now, let G = ϕξ with ϕ ∈ C∞
c (R) and ξ ∈ L∞(Ω,FT1). Consequently, we obtain

E(ξ⟨ϕ, ρT1⟩) = E(ξϕ(Y T1)) = E(ξE(ϕ(Y T1) | FW
T1 )),

which proves

⟨ϕ, ρT1⟩ = E(ϕ(Y T1) | FW
T1 ), P-a.e.,

and, therefore, ρT1 is the conditional density of Y T1 given FT1 . Since T1 is arbitrary, we have
proven the existence of a strong solution Y of the mean-field SDE (4.9).

□
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Remark 4.16. If (4.9) has a strong solution with conditional density

ρ ∈ L2
FW ([0, T ∗];W 1,2(R)) ∩ S∞

FW ([0, T ∗];L1(R) ∩ L2(R)),
then the conditional density process of Y 1 is the solution to the SPDE (4.11). Indeed, if
we first apply Itô’s formula (1.15) with a function φ ∈ C∞

c (R), then take the conditional
expectation with respect to the filtration FW and subsequently applying stochastic Fubini the-
orem A.35, we conclude that density process of Yt satisfies (4.15). By the uniqueness of the
SPDE (4.11) we obtain that ρt, which is the solution constructed in Theorem 4.6, is the
conditional density of Yt given FW

t for all t ∈ [0, T ].

In the following lemma, we close the gap in the above proof by demonstrating the existence
of a solution of the BSPDE (4.24) and the explicit representation of u0.

Lemma 4.17 (Dual BSPDE). Let Assumption 4.1 and Assumption 4.13 hold along with
k ∈ L1(R) ∩ L2(R). Then, for every T1 ∈ (0, T ] and G ∈ L∞(Ω,FT1 , C∞

c (R)) the following
BSPDE

dut = −
(
σ2t + ν2

2

d2

dx2
ut − (k ∗ ρt)

d

dx
ut + ν

d

dx
vt

)
dt+ vt dWt, t ∈ [0, T ],

uT1 = G,

(4.24)

admits a unique solution

(u, v) ∈ (L2
FW ([0, T ];W 2,2(R)) ∩ S2

FW ([0, T ];W 1,2(R)))× L2
FW ([0, T ];W 1,2(R)),

i.e. for any φ ∈ C∞
c (R) the equality

⟨ut, φ⟩L2(R) = ⟨G,φ⟩L2(R) +

T1∫
t

〈
σ2s + ν2

2

d2

dx2
us − (k ∗ ρs)

d

dx
us + ν

d

dx
vs, φ

〉
L2(R)

ds

−
T1∫
t

⟨vs, φ⟩L2(R) dWs

holds for all t ∈ [0, T ] with probability one. Moreover, we have

(4.25) u0(Y 0) = E(G(Y T1) |σ(σ(Y 0),FW
0 )),

where (Y t, t ∈ [0, T ]) is the solution of the linearised SDE (4.23) in the proof of Theorem 4.15.

Proof. Recall, by Theorem 4.15 we have

ρ ∈ L2
F ([0, T ];W

3,2(R)) ∩ S2
F ([0, T ];W

2,2(R)).
Our approach is to verify the assumptions of the L2-theory (see for example [DQT12, Theo-
rem 5.5]) for BSPDEs. Let u1, u2 ∈W 2,2(R), then∥∥∥∥(k ∗ ρt) d

dx
u1 − (k ∗ ρt)

d

dx
u2

∥∥∥∥
L2(R)

≤ ∥k ∗ ρt∥L∞(R)

∥∥∥∥ d

dx
(u1 − u2)

∥∥∥∥
L2(R)

≤ ∥k∥L2(R) ∥ρt∥L2(R)

∥∥∥∥ d

dx
(u1 − u2)

∥∥∥∥
L2(R)

≤ ∥k∥L2(R) ∥ρt∥L2(R) ∥u1 − u2∥W 1,2(R) .
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Now, by Theorem 4.6, ∥ρt∥L2(R) is uniformly bounded in (ω, t) ∈ Ω× [0, T ] and the interpo-

lation theorem [AF03, Theorem 5.2] implies for all ε > 0,∥∥∥∥(k ∗ ρt) d

dx
u1 − (k ∗ ρt)

d

dx
u2

∥∥∥∥
L2(R)

≤ ε ∥u1 − u2∥W 2,2(R) + C(k, ∥ρ∥S∞
FW ([0,T ];L2(R)))κ(ε) ∥u1 − u2∥L2(R)

for some non-negative decreasing function κ. Hence, Assumption 5.4 in [DQT12, Theorem 5.5]
is satisfied. The other assumptions are also easily verified. As a result we obtain a solution

(u, v) ∈ (L2
FW ([0, T ];W 2,2(R)) ∩ S2

FW ([0, T ];L2(R)))× L2
FW ([0, T ];W 1,2(R))

of the BSPDE (4.24). Here, the fact that u ∈ S2
FW ([0, T ];L2(R)) is a direct consequence

of [DM10, Theorem 2.2].
It remains to show that the equality (4.25) holds. By the bound

E
(

sup
t≤T1

∥ρt∥2W 1,2(R)

)
<∞

given by ρ ∈ S2
FW ([0, T ];W 1,2(R)), we observe that there exists a set Ω′ with P(Ω′) = 1 and

for all ω ∈ Ω′ we have

(4.26) sup
t≤T1

∥ρt(ω, ·)∥W 1,2(R) <∞.

Also, the map (ω, t) → ∥ρt(ω, ·)∥W 1,2(R) is predictable with respect to FW by the L2-SPDE

theory. Consequently, we can define for each m ∈ N the stopping time

τm(ω) = inf{t ∈ [0, T1] : ∥ρt(ω, ·)∥W 1,2(R) ≥ m}

and τm ↑ T1 by (4.26). Furthermore, let us define

F (t, x) := (k ∗ ρt)(x)
d

dx
ut(x) and Fm(t, x) := F (t, x)1(0,τm](t),

and note that Fm ∈ L2
FW ([0, T ];L2(R)) still satisfies all assumptions of the L2-BSPDE theory

( [DQT12, Theorem 5.5]) and therefore there exists a solution

(um, vm) ∈ (L2
FW ([0, T ];W 2,2(R)) ∩ S2

FW ([0, T ];L2(R)))× L2
FW ([0, T ];W 1,2(R))

of the following BSPDE

dumt = −
(
σ2t + ν2

2

d2

dx2
umt − Fm(t) + ν

d

dx
vmt

)
dt+ vmt dWt,

umT1 = G,

for each m ∈ N.
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In the next step we want to obtain a L2
FW ([0, T ];W 1,2(R))-bound for Fm. The L

2-estimate
follows directly from the above computations. For the weak derivative we compute∥∥∥∥ d

dx

(
(k ∗ ρt)

d

dx
ut

)
1(0,τm]

∥∥∥∥
L2(R)

≤
∥∥∥∥1(0,τm]

(
k ∗ d

dx
ρt

)
d

dx
ut

∥∥∥∥
L2(R)

+

∥∥∥∥(k ∗ ρt) d2

dx2
ut

∥∥∥∥
L2(R)

≤ 1(0,τm]

∥∥∥∥(k ∗ d

dx
ρt

)
d

dx
ut

∥∥∥∥
L2(R)

+ ∥k∥L2(R) ∥ρt∥S∞
F ([0,T ];L2(R))) ∥ut∥W 2,2(R) .

Since ρ ∈ S∞
FW ([0, T ];L2(R))), the last term behaves nicely. However, the first term would

be problematic because without the stopping time we do not have a similar L∞-estimate for
the derivative, i.e. ρ ∈ S∞

FW ([0, T ];W 1,2(R))). Hence, in order to overcome this problem we
introduced the stopping time τm and, therefore, we discover∥∥∥∥ d

dx

(
(k ∗ ρt)

d

dx
ut

)
1(0,τm]

∥∥∥∥
L2
FW ([0,T1];L2(R))

≤ ∥k∥2L2(R) E
( T1∫

0

1(0,τm](t)

∥∥∥∥ d

dx
ρt

∥∥∥∥2
L2(R)

∥∥∥∥ d

dx
ut

∥∥∥∥2
L2(R)

dt

)
+ ∥k∥L2(R) ∥ρt∥S∞

F ([0,T ];L2(R))) ∥ut∥L2
FW ([0,T ];W 2,2(R))

≤ ∥k∥L2(R)m
2 ∥u∥L2

FW ([0,T ];W 1,2(R))

+ ∥k∥L2(R) ∥ρt∥S∞
F ([0,T ];L2(R))) ∥ut∥L2

FW ([0,T ];W 2,2(R)) .

As a result, we obtain
∥Fm∥L2

FW ([0,T ];W 1,2(R)) <∞

for each m ∈ N. Applying [DQT12, Theorem 5.5] again, we find

(um, vm) ∈ (L2
FW ([0, T ];W 3,2(R)) ∩ S2

FW ([0, T ];W 1,2(R)))× L2
FW ([0, T ];W 2,2(R)).

The above regularity (p(m − 2) > 1 with p = 2,m = 3) allows us to apply [DTZ13, Corol-
lary 2.2], which tells us that there exists a set of full measure Ω′′

m maybe different from Ω′

such that

um(t, x) =G(x) +

T1∫
t

σ2t + ν2

2

d2

dx2
um(s, x)− 1(0,τm](s)(k ∗ ρ)(s, x)

d

dx
u(s, x)

+ ν
d

dx
vm(s, x) ds−

T1∫
t

vm(s, x) dWs

holds for all (t, x) ∈ [0, T1]× R on Ω′′
m. We use the subscript m to indicate that even though

the set Ω′′
m is independent of (t, x) it still may depend on m ∈ N.

Besides, to be precise, [Du20, Corollary 2.2] requires Fm ∈ L2
FW ([0, T ];W 3,2(R)), which is

more regularity than we have. However, one can modify the proof of [Du20, Corollary 2.2] to
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obtain the same result with Fm ∈ L2
FW ([0, T ];W 1,2(R)). The crucial part is that a mollifica-

tion of Fm with the standard mollifier converges in the supremum norm to Fm, which follows
from Morrey’s inequality even in our case Fm ∈ L2

FW ([0, T ];W 1,2(R)). For a similar result in
the SPDE setting we refer to [Roz90, Lemma 4.1].

Next, we want to apply an Itô–Wentzell type formula [YT13, Theorem 3.1] (with V =
u, X = Y therein). Hence, we need to verify the required assumption. First, we can view um
as a jointly continuous Itô process in (t, x) by [DTZ13, Corollary 2.2] on the set Ω′′

m. We also
recall that um ∈ L2

FW ([0, T ];W 2,2(R)), vm ∈ L2
FW ([0, T ];W 1,2(R)), Fm ∈ L2

FW ([0, T ];L2(R))
and Y is a strong solution and therefore a continuous semimartingale.

Moreover, we note that ρ, d
dxu are PW × B(R)-measurable and τm is PW -measurable.

Hence, the same holds true for Fm. Also as previously mentioned (k ∗ρt) is bounded in x ∈ R
for almost all (ω, t) ∈ Ω × [0, T1] and as we have seen in the proof of Theorem 4.15 (Step 1)
is Lipschitz continuous for almost all (ω, t) ∈ Ω × [0, T1]. Thus, all assumptions of [YT13,
Theorem 3.1] are fulfilled and we obtain

umT1(Y T1)

= um0 (Y 0) +

T1∫
0

(
σ2t + ν2

2

d2

dx2
umt − (k ∗ ρt)

d

dx
ut + ν

d

dx
vmt − σ2t + ν2

2

d2

dx2
umt

+ 1(0,τm](t)(k ∗ ρt)
d

dx
ut − ν

d

dx
vmt

)
(Y t) dt

+

T1∫
0

(
vmt + ν

d

dx
umt

)
(Y t) dWt +

T1∫
0

σt(Y t)
d

dx
umt (Y t) dBt

= um0 (Y 0) +

T1∫
0

F (t, Y t)(1(0,τm](t)− 1) dt+

T1∫
0

(
vmt + ν

d

dx
umt

)
(Y t) dWt

+

T1∫
0

σt(Y t)
d

dx
umt (Y t) dBt.(4.27)

With this formula at hand, let us introduce the filtration Gt = σ(σ(Y t),FW
t ), t ∈ [0, T ]. Our

aim is to take the conditional expectation with respect to G0 on both sides of the equation
in order to cancel the stochastic integrals. We observe that Gt ⊂ Ft and the solution (Y t, t ∈
[0, T ]) is predictable with respect to the filtration G. Moreover, B1 and W are still per
definition Brownian motions under the filtration (Ft, t ∈ [0, T ]). Hence, both stochastic
integrals are martingales with respect to the filtration (Ft, t ∈ [0, T ]), if we can prove an
L2-bound on the integrands.

By Sobolev’s embedding or Morrey’s inequality and the bound on σt we have

E
( T1∫

0

∣∣∣∣σt(Y t)
d

dx
umt (Y t)

∣∣∣∣2 dt) ≤ ΛE
( T1∫

0

∥∥∥∥ d

dx
umt

∥∥∥∥2
L∞(R)

dt

)
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≤ ΛE
( T1∫

0

∥umt ∥
2
W 2,2(R) dt

)
<∞,

which verifies that the second stochastic integral of (4.27) is a martingale with respect to the
filtration F . Hence, we discover

E
( T1∫

0

σt(Y t)
d

dx
umt (Y t) dBt

∣∣G0

)
= E

(
E
( T1∫

0

d

dx
umt (Y t) dBt

∣∣F0

) ∣∣G0

)
= 0.

Furthermore, we have the estimate

E
( T1∫

0

∣∣∣∣vmt (Y t) + ν
d

dx
umt (Y t)

∣∣∣∣2 dt) ≤ 2E
( T1∫

0

∥vmt ∥2L∞(R) + ν2
∥∥∥∥ d

dx
umt

∥∥∥∥2
L∞(R)

dt

)

≤ CE
( T1∫

0

∥vmt ∥2W 1,2(R) + ∥umt ∥
2
W 2,2(R) dt

)
<∞,

where we used Morrey’s inequality in the second step. Hence, the first stochastic integral
appearing in (4.27) is also a martingale with respect to the filtration G starting at zero.
Taking the conditional expectation with respect to G0 in (4.27) and having in mind that
Y 0 = Y0, we obtain

E(umT1(Y T1) | G0) = um0 (Y0) + E
( T1∫

0

F (t, Y t)(1(0,τm](t)− 1) dt

∣∣∣∣G0

)
.

It remains to show that

lim
m→∞

(E(umT1(Y T1) | G0)− um0 (Y0)) = E(uT1(Y T1) | G0)− u0(Y0), P-a.e.,(4.28)

and

(4.29) lim
m→∞

E
( T1∫

0

F (t, Y t)(1(0,τm](t)− 1) dt

∣∣∣∣G0

)
= 0, P-a.e.
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We first show (4.29). However, we prove L1-convergence, which then implies (4.29) along a
subsequence. We compute

E
(∣∣∣∣E(

T1∫
0

F (t, Y t)(1(0,τm](t)− 1) dt

∣∣∣∣G0

)∣∣∣∣)

≤ E
(
E
(∣∣∣∣

T1∫
0

F (t, Y t)(1(0,τm](t)− 1) dt

∣∣∣∣ ∣∣∣∣G0

))

≤ E
( T1∫

0

|F (t, Y t)(1(0,τm](t)− 1)|dt
)

≤ E
( T1∫

0

∥F (t, ·)∥L∞(R) |1(0,τm](t)− 1|dt
)

≤ E
( T1∫

0

∥F (t, ·)∥W 1,2(R) |1(0,τm](t)− 1|dt
)

≤ CE
( T1∫

0

(∥∥∥∥(k ∗ ρt) d

dx
ut

∥∥∥∥
L2(R)

+

∥∥∥∥(k ∗ ρt) d2

dx2
ut

∥∥∥∥
L2(R)

+

∥∥∥∥(k ∗ d

dx
ρt)

d

dx
ut

∥∥∥∥
L2(R)

)
|1(0,τm](t)− 1| dt

)

≤ C(T )E
( T1∫

0

(
2 ∥ρt∥L2(R) +

∥∥∥∥ d

dx
ρt

∥∥∥∥
L2(R)

)
∥ut∥W 2,2(R) |1(0,τm](t)− 1|dt

)

≤ C(T )E
( T1∫

0

(∥ρt∥2W 1,2(R) + ∥ut∥2W 2,2(R))|1(0,τm](t)− 1|dt
)
,

where we used Morrey’s inequality in the fourth step and Hölder’s inequality as well as (4.17)
in the sixth step. Finally, ρ ∈ L2

FW ([0, T ];W 1,2(R)), u ∈ L2
FW ([0, T ];W 2,2(R)), dominated

convergence theorem and τm ↑ T1 tell us that the last term vanishes for m→ ∞.
Taking the above subsequence, which we do not rename, we demonstrate (4.28) along a

further subsequence by proving L2-convergence of (4.28). Let us define ũm = u − um and
ṽm = v − vm, which solve the following BSPDE

dũmt = −
(
σ2t + ν2

2

d2

dx2
ũmt − F̃m + ν

d

dx
ṽmt

)
dt+ ṽmt dWt

with terminal condition G̃ = 0, free term

F̃m(t, x) = (k ∗ ρ)(t, x) d

dx
u(t, x)(1− 1(0,τm](t)) = F (t, x)(1− 1(0,τm](t))
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and F̃m ∈ L2
FW ([0, T ];L2(R)). Hence, by [DQT12, Theorem 5.5] the solution of the BSPDE

is unique and by [DM10, Proposition 3.2 and Proposition 4.1, Step 1] satisfies the estimate

(4.30) E
(

sup
t≤T1

∥ũmt ∥
2
W 1,2(R)

)
≤ C(T )

∥∥∥F̃m∥∥∥
L2
FW ([0,T ];L2(R))

.

Consequently, using Jensen inequality, the G0-measurability of u0(Y0), Morrey’s inequality
and (4.30) we find

E(|E(umT1(Y T1) | G0)− um0 (Y0))− (E(uT1(Y T1) | G0)− u0(Y0))|2)
≤ 2E(|ũmT1(Y T1)|2 + |ũm0 (Y0)|2)

≤ 2E(
∥∥ũmT1∥∥2L∞(R) + ∥ũm0 ∥2L∞(R))

≤ 2E(
∥∥ũmT1∥∥2W 1,2(R) + ∥ũm0 ∥2W 1,2(R))

≤ 4E
(

sup
t≤T1

∥ũmt ∥
2
W 1,2(R)

)

≤ C(T )E
( T1∫

0

∥∥∥(F̃m)t∥∥∥2
L2(R)

dt

)

≤ C(T )E
( T1∫

0

|1− 1(0,τm](t)|2 ∥F (t, x)∥2L2(R) dt

)
.

But F ∈ L2
FW ([0, T ];L2(R)) and, therefore, an application of the dominated convergence

theorem proves (4.28) along a subsequence. As a result, the last inequality together with (4.29)

implies (4.25) for all ω ∈ Ω̃ :=
⋂
m∈N

Ω′′
m ∩ Ω′. Hence, the lemma is proven. □

Utilizing the same calculations, we obtain the same result for the regularized mean-field
SDE (4.10).

Corollary 4.18. Let Assumption 4.1 as well as Assumption 4.13 hold and k ∈ L1(R)∩
L2(R). Then, for any ε > 0 we obtain a unique strong solution (Y ε

t , t ∈ [0, T ]) of the mean-
field SDE (4.10), and ρεt is the conditional density of Y ε

t given FW
t for every t ∈ [0, T ].

As an application of Theorem (4.15) to the HK model, we obtain a solution to the non-
regularized and the regularized conditional mean-field SDEs (4.2) and (4.5), respectively.

Corollary 4.19. Let 0 ≤ ρ0 ∈ L1(R) ∩W 2,2(R) with ∥ρ0∥L1(R) = 1. Suppose that for

T > 0 there exist unique solutions ρHK and ρε,HK in L2
FW ([0, T ];W 1,2(R)) of the SPDEs (4.3)

and (4.6), respectively, on the interval [0, T ] with

∥ρHK∥L2
Fw ([0,T ];W 1,2(R)) + ∥ρHK∥S∞

Fw ([0,T ];L1(R)∩L2(R)) ≤ C and

∥ρε,HK∥L2
Fw ([0,T ];W 1,2(R)) + ∥ρε,HK∥S∞

Fw ([0,T ];L1(R)∩L2(R)) ≤ C,

for some finite constant C > 0. Moreover, let the diffusion coefficient σ : [0, T ] × R → R
satisfy Assumption 4.1. Then, for ε > 0 there exists unique solution (Y i,HK , t ∈ [0, T ]) and
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(Y i,HK,ε, t ∈ [0, T ]) for the mean-field SDEs (4.2) and (4.5), respectively. Moreover, ρt is the

conditional density of Y i,HK

t given FW
t and ρε,HK

t is the conditional density of Y i,HK,ε
t given

FW
t , for every t ∈ [0, T ] and for all i ∈ N.

Remark 4.20. Because kHK ∈ L1(R)∩L∞(R) for the HK model, we can use Remark 4.14
to verify the estimates in Corollary 4.19.

4.5. Mean-field limits of the interacting particle system with common noise

In this section we establish conditional propagation of chaos for the regularized interact-
ing particle system with common noise (4.8) towards the mean-field stochastic differential
equations (4.9), respectively, the (non-regularized) stochastic Fokker–Planck equation (4.11).
To prove conditional propagation of chaos, we first derive estimates of the difference of the
regularized interacting particle system (4.8) and the regularized mean-field SDE (4.10) (see
Proposition 4.22) as well as of the difference of the solutions to the regularized stochastic
Fokker–Planck equation (4.12) and of the non-regularized stochastic Fokker–Planck equa-
tion (4.11) (see Proposition 4.23). In particular the results hold for the HK model, where
kεHK(x) is the approximation of kHK(x) = 1[−R,R](x)x. As preparation, we need the following
auxiliary lemma.

Lemma 4.21. Let (Ω,F ,P) be a probability space, G ⊆ F a sub-σ-algebra and X,Y con-
ditionally independent random variables with values in R given G. Moreover, let X have a
conditional density f : Ω×R → R such that f is G⊗B(R)/B(R) measurable and in L1(Ω×R).
Then, for every bounded measurable function h : R× R → R, we have

(4.31) E(h(X,Y ) |σ(G, σ(Y )))(ω) =

∫
R
h(z, Y (ω))f(ω, z) dz, ω ∈ Ω′,

on a set Ω′ ⊂ Ω of full probability.

Proof. First, we notice that by the measurability statement of Fubini’s theorem, the
right-hand side of (4.31) is σ(G, σ(Y ))-measurable. By the standard Lebesgue integral ap-
proximation technique we may assume h = 1B×B′(x, y) for some measurable sets B,B′ ∈ B(R)
in order to prove (4.31). Hence, we need to show

E(1A1B×B′(X,Y )) = E
(
1A

∫
R
1B×B′(z, Y (ω))f(ω, z) dz

)

for all A ∈ σ(G, σ(Y )). Now, we reduce the problem again to A = C ∩ C ′′ with C ∈ G and
C ′′ = Y −1(B′′) for some B′′ ∈ B(R). Consequently, using the conditional independence we
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find

E(1C∩C′′1B×B′(X,Y )) = E(1CE(1C′′1B×B′(X,Y ) | G))
= E(1CE(1B′′∩B′(Y )1B(X) | G))
= E(1CE(1B′′∩B′(Y ) | G)E(1B(X) | G))
= E(1C1B′′∩B′(Y )E(1B(X) | G))

= E
(
1C∩C′′(ω)1B′(Y (ω))

∫
R
1B(z)f(ω, z) dz

)
= E

(
1C∩C′′(ω)

∫
R
1B×B′(z, Y (ω))f(ω, z) dz

)
and the lemma is proven. □

The next proposition provides an estimate of the difference of the regularized particle
system and the regularized mean-field SDE.

Proposition 4.22. Suppose Assumption 4.1 and Assumption 4.13 hold. For each N ∈ N,
let ((Y i,ε

t , t ∈ [0, T ]), i = 1, . . . , N) be the solutions to the regularized mean-field SDEs (4.10),

as provided by Corollary 4.19, and let ((Xi,ε
t , t ∈ [0, T ]), i = 1, . . . , N) be the solution to

regularized interaction particle system (4.8). Then, for any ε > 0 and N ∈ N we have

sup
t∈[0,T ]

sup
i=1,...,N

E(|Xi,ε
t − Y i,ε

t |2) ≤
2 ∥k∥2L2(R) T

(N − 1)ε
exp

(
(C + Λ)T

ε

)
,

where C is some finite generic constant.

Proof. Applying Itô’s formula (1.15), we find

|Xi,ε
t − Y i,ε

t |2

= 2

t∫
0

(Xi,ε
s − Y i,ε

s )

(
1

N

N∑
j=1

−kε(Xi,ε
s −Xj,ε

s ) + (kε ∗ ρεs)(Y i,ε
s )

)
ds

+ 2

t∫
0

(Xi,ε
s − Y i,ε

s )(σ(s,Xi,ε
s )− σ(s, Y i,ε

s )) dBi
s +

t∫
0

(σ(s,Xi,ε
s )− σ(s, Y i,ε

s ))2 ds.(4.32)

Splitting the sum we have

1

N

N∑
j=1

−kε(Xi,ε
s −Xj,ε

s ) + (kε ∗ ρεs)(Y i,ε
s )

=
1

N

N∑
j=1

(kε ∗ ρεs)(Y i,ε
s )− kε(Y i,ε

s − Y j,ε
s )

+
1

N

N∑
j=1

kε(Y i,ε
s − Y j,ε

s )− kε(Xi,ε
s −Xj,ε

s )
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= Is1 + Is2 .

For Is2 , we use the property of our approximation sequence to discover

|Is2 | ≤
1

N

N∑
j=1

|kε(Y i,ε
s − Y j,ε

s )− kε(Xi,ε
s −Xj,ε

s )|

≤ C

Nε

N∑
j=1

|Xj,ε
s − Y j,ε

s |+ |Xi,ε
s − Y i,ε

s |

and consequently

E
(∣∣∣∣2

t∫
0

(Xi,ε
s − Y i,ε

s )Is2 ds

∣∣∣∣) ≤ C

Nε

t∫
0

N∑
j=1

E(|Xj,ε
s − Y j,ε

s |2 + |Xi,ε
s − Y i,ε

s |2) ds

≤ C

ε

t∫
0

sup
i=1,...,N

E(|Xi,ε
s − Y i,ε

s |2) ds,

where we used Young’s inequality. Next, let us rewrite Is1 such that

Is1 =
1

N

N∑
j=1

(kε ∗ ρεs)(Y i,ε
s )− kε(Y i,ε

s − Y j,ε
s ) =

1

N

N∑
j=1

Zsi,j

with

Zsi,j = (kε ∗ ρεs)(Y i,ε
s )− kε(Y i,ε

s − Y j,ε
s )

for i ̸= j. Furthermore,

E(|Is1 |2) =
1

N2
E
(
E
( N∑
j=1

Zsi,j

N∑
l=1

Zsi,l

∣∣∣∣σ(FW
s , σ(Y i,ε

s ))

))

=
1

N2

N∑
j=1

N∑
l=1

E(E(Zsi,jZsi,l |σ(FW
s , σ(Y i,ε

s ))).

It easy to verify that (Y i,ε
s , i = 1, . . . , N) are conditionally independent given FW

s and by
Theorem 4.15 have conditional density ρs. Hence, we apply Lemma 4.21 to obtain

E(kε(Y i,ε
s − Y j,ε

s ) |σ(FW
s , σ(Y i

s , ε))) = (kε ∗ ρεs)(Y i,ε
s )

and therefore E(Zsi,j |σ(FW
s , σ(Y i,ε

s ))) = 0, since (kε ∗ρεs)(Y
i,ε
s ) is σ(FW

s , σ(Y i,ε
s ))-measurable.

Consequently, for the cross terms j ̸= k one can verify that

E(Zsi,jZsi,k |σ(FW
s , σ(Y ,ε

s ))) = E(Zsi,j |σ(FW
s , σ(Y ,ε

s )))E(Zsi,k |σ(FW
s , σ(Y ,ε

s ))) = 0

by the previous findings. Hence, we have

E(|Is1 |2) =
1

N2

N∑
j=1

E(|Zsi,j |2)
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and using the boundedness of kε, the structure of our approximation and mass conservation,
we obtain

E(|Zsi,j |2) = E(|(kε ∗ ρεs)(Y i,ε
s )− kε(Y i,ε

s − Y j,ε
s )|2) ≤ 2 ∥kε∥2L∞(R) ≤

2

ε
∥k∥2L2(R) .

Combining all the above facts, we get

E(|Is1 |2) ≤
2 ∥k∥2L2(R)

Nε

and

E
(
2

t∫
0

(Xi,ε
t − Y i,ε

t )Is1 ds

)
≤ E

( t∫
0

|Xi,ε
t − Y i,ε

t |2 ds+
t∫

0

|Is1 |2 ds
)

≤
t∫

0

E(|Xi,ε
t − Y i,ε

t |2) ds+
2 ∥k∥2L2(R) T

Nε
.

Moreover, using the Lipschitz continuity of our coefficients σ we obtain

E

( t∫
0

(σ(s,Xi,ε
s )− σ(s, Y i,ε

s ))2 ds

)
≤ Λ

t∫
0

E
(
|Xi,ε

s − Y i,ε
s |2

)
≤ Λ

t∫
0

sup
i=1,...,N

E
(
|Xi,ε

s − Y i,ε
s |2

)
.

Now, combining this with the estimate of Is2 , as well as the fact that the stochastic integral
in equation (4.32) is a martingale (Assumption 4.1), we obtain

sup
i=1,...,N

E(|Xi,ε
t − Y i,ε

t |2) ≤ C

ε

t∫
0

sup
i=1,...,N

E(|Xi,ε
t − Y i,ε

t |2) ds

+ Λ

t∫
0

sup
i=1,...,N

E(|Xi,ε
t − Y i,ε

t |2) ds+
2 ∥k∥2L2(R) T

Nε

≤ C + Λ

ε

t∫
0

sup
i=1,...,N

E(|Xi,ε
t − Y i,ε

t |2) ds+
2 ∥k∥2L2(R) T

Nε
.

Applying Gronwall’s inequality yields

sup
t∈[0,T ]

sup
i=1,...,N

E(|Xi,ε
t − Y i,ε

t |2) ≤
2 ∥k∥2L2(R) T

Nε
exp

(
(C + Λ)T

ε

)
,

which proves the proposition. □

In the next step we need to estimate the difference of the solutions to the regularized
mean-field SDEs and the non-regularized mean-field SDE. Recall that, by the stochastic
Fokker–Planck equations, it is sufficient to consider the associated solutions ρε and ρ of the
SPDEs (4.12) and (4.11). For more details regarding this observation we refer to the proof of
Theorem 4.15.
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Proposition 4.23. Suppose Assumption 4.1 and Assumption 4.13 hold. Let ρε and
ρ be the solutions to the regularized stochastic Fokker–Planck equation (4.12) and to the
non-regularized stochastic Fokker–Planck equation (4.11), respectively, which are provided by
Corollary 4.12. Then,

∥ρε − ρ∥S∞
FW ([0,T ];L2(R))

≤ C(λ,Λ, T, ∥k∥L2(R) , ∥ρ∥S∞
FW ([0,T ];L2(R)) ∥ρ

ε∥S∞
FW ([0,T ];L2(R))) ∥k

ε − k∥L2(R) .

Proof. To estimate the difference ρt − ρεt , we notice that

ρεt − ρt =
d2

dx2

(
σ2t + ν2

2
(ρεt − ρt)

)
dt+

d

dx
((kε ∗ ρεt )ρεt ) dt

− d

dx
((k ∗ ρt)ρt) dt− ν

d

dx
(ρεt − ρt) dWt.

Performing similar computations as in the proof of Theorem 4.6 by using Young’s inequality,
we get

∥ρεt − ρt∥2L2(R)

≤ −λ
t∫

0

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥2
L2(R)

ds−
t∫

0

〈
(ρs − ρεs)

d

dx
(σ2s),

d

dx
ρs −

d

dx
ρεs

〉
L2(R)

ds

− 2

t∫
0

〈
(kε ∗ ρεs)ρεs − (k ∗ ρs)ρs,

d

dx
ρεs −

d

dx
ρs

〉
L2(R)

ds

≤ −3λ

4

t∫
0

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥2
L2(R)

ds+
Λ2

λ

t∫
0

∥ρs − ρεs∥
2
L2(R) ds

− 2

t∫
0

〈
(kε ∗ ρεs)ρεs − (k ∗ ρs)ρs,

d

dx
ρεs −

d

dx
ρs

〉
L2(R)

ds.

Rewriting the last term gives

(kε ∗ ρεs)ρεs − (k ∗ ρs)ρs
= ((kε − k) ∗ ρεs)ρεs + (k ∗ ρεs)ρεs − (k ∗ ρs)ρs
= ((kε − k) ∗ ρεs)ρεs + (k ∗ (ρεs − ρs))ρ

ε
s + ((k ∗ ρs)(ρεs − ρs).
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Hence, for the last two terms we can use Young’s inequality, Young’s inequality for convolu-
tion, mass conservation and (4.17) to obtain〈

(k ∗ ρs)(ρεs − ρs) + (k ∗ (ρεs − ρs))ρ
ε
s,

d

dx
ρεs −

d

dx
ρs

〉
L2(R)

≤ ∥k∥L2(R) ∥ρs∥L2(R) ∥ρ
ε
s − ρs∥L2(R)

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥
L2(R)

+ ∥k∥L2(R) ∥ρ
ε
s − ρs∥L2(R) ∥ρ

ε
s∥L2(R)

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥
L2(R)

≤ λ

4

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥2
L2(R)

+
1

λ
(∥k∥L2(R) ∥ρs∥L2(R) ∥ρ

ε
s − ρs∥L2(R) + ∥k∥L2(R) ∥ρ

ε
s − ρs∥L2(R) ∥ρ

ε
s∥L2(R))

2

≤ λ

2

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥2
L2(R)

+
2

λ
∥k∥2L2(R) ∥ρ

ε
s − ρs∥2L2(R) (∥ρs∥

2
L2(R) + ∥ρεs∥

2
L2(R)).

Moreover, 〈
((kε − k) ∗ ρεs)ρεs,

d

dx
ρεs −

d

dx
ρs

〉
L2(R)

≤ ∥(kε − k) ∗ ρεs∥L∞(R) ∥ρ
ε
s∥L2(R)

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥
L2(R)

≤ ∥kε − k∥L2(R) ∥ρ
ε
s∥L2(R) ∥ρ

ε
s∥L2(R)

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥
L2(R)

≤ λ

4

∥∥∥∥ d

dx
ρεs −

d

dx
ρs

∥∥∥∥2
L2(R)

+
1

λ
∥kε − k∥2L2(R) ∥ρ

ε
s∥

4
L2(R) ,

where we used Young’s inequality for convolutions in the second inequality and Young’s
inequality for the last step. Consequently, combining the last two estimates with our previous
L2-norm inequality and absorbing the L2-norm of the derivatives we obtain

∥ρεt − ρt∥2L2(R)

≤
2 ∥k∥2L2(R) + 1

λ

t∫
0

(∥ρs∥2L2(R) + ∥ρεs∥
2
L2(R) + Λ2) ∥ρεs − ρs∥2L2(R) ds

+
1

λ

t∫
0

∥kε − k∥2L2(R) ∥ρ
ε
s∥

4
L2(R) ds

≤
2 ∥k∥2L2(R) + 1

λ

t∫
0

(∥ρs∥2L2(R) + ∥ρεs∥
2
L2(R) + Λ2) ∥ρεs − ρs∥2L2(R) ds
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+
T

λ
∥kε − k∥2L2(R) sup

t∈[0,T ]
∥ρεt∥

4
L2(R) .

Applying Gronwall’s inequality and using the uniform bound (4.19), we obtain

sup
t∈[0,T ]

∥ρεt − ρt∥2L2(R)

≤ T

λ
∥kε − k∥2L2(R) sup

t∈[0,T ]
∥ρεt∥

4
L2(R)

· exp
(
2 ∥k∥2L2(R) + 1

λ

T∫
0

(∥ρs∥2L2(R) + ∥ρεs∥
2
L2(R) + Λ)ds

)

≤ T

λ
∥kε − k∥2L2(R) sup

t∈[0,T ]
∥ρεt∥

4
L2(R)

· exp
(
2T (∥k∥2L2(R) + 1)

λ
(∥ρ∥2S∞

FW ([0,T ];L2(R)) + ∥ρε∥2S∞
FW ([0,T ];L2(R)) + Λ)

)
.

After taking the supremum over ω ∈ Ω, we arrive at

∥ρε − ρ∥S∞
FW ([0,T ];L2(R))

≤ C(λ,Λ, T, ∥k∥L2(R) , ∥ρ∥S∞
FW ([0,T ];L2(R)) ∥ρ

ε∥S∞
FW ([0,T ];L2(R))) ∥k

ε − k∥L2(R) .

□

Remark 4.24. Due to Proposition 4.23, we know that the solutions ρε of the regularized
stochastic Fokker–Planck equations converges to the solution ρ of the non-regularized sto-
chastic Fokker–Planck equation as the interaction force kernels converge in the L2-norm for
ε→ 0.

Finally, we are in a position to state and prove the main theorem of this section.

Theorem 4.25 (Conditional propagation of chaos). Suppose Assumption 4.1 and As-
sumption 4.13 hold. Let ρ be the solution of the stochastic Fokker–Planck equation (4.11) and
let us denote by

µX
N

t (ω) :=
1

N

N∑
i=1

δ
Xi,ε

t (ω)

the empirical measure of the regularized interaction system ((Xi,ε
t , ε > 0), i = 1, . . . , N) given

by (4.8). Then, we have, for all t ∈ [0, T ],

E(|⟨µXN

t , φ⟩ − ⟨ρt, φ⟩|2)

≤ C
(
λ,Λ, T, ∥k∥L2(R) , ∥φ∥W 1,∞(R) , ∥φ∥L2(R) , ∥ρ∥S∞

FW ([0,T ];L2(R)) , ∥ρ
ε∥S∞

FW ([0,T ];L2(R))

)
·
(

1

N
+

1

Nε
exp

(
(C + Λ)T

ε

)
+ ∥kε − k∥2L2(R)

)
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for any φ ∈ C∞
c (R) and a finite constant C. Consequently, we have for ε = log(N) the

convergence

lim
N→∞

E(|⟨µXN

t , φ⟩ − ⟨ρt, φ⟩|2) = 0.

Proof. We compute

E(|⟨µXN

t , φ⟩ − ⟨ρεt , φ⟩|2)

= E
((

1

N

N∑
i=1

φ(Xi,ε
t )−

∫
R
ρεt (x)φ(x) dx

)2)

= 2E
((

1

N

N∑
i=1

φ(Xi,ε
t )− 1

N

N∑
i=1

φ(Y i,ε
t )

)2)

+ 2E
((

1

N

N∑
i=1

φ(Y i,ε
t )−

∫
R
ρεt (x)φ(x) dx

)2)

≤ 2

N2

( N∑
i=1

E(|φ(Xi,ε
t )− φ(Y i,ε

t )|2)1/2
)2

+ 2E
(

1

N

N∑
i=1

φ(Y i,ε
t )−

∫
R
ρεt (x)φ(x) dx

)2)

≤ 2 sup
i=1,...,N

E(|φ(Xi,ε
t )− φ(Y i,ε

t )|2) + 2E
((

1

N

N∑
i=1

φ(Y i,ε
t )−

∫
R
ρεt (x)φ(x) dx

)2)
,(4.33)

where we used Minkowski’s inequality in the third step. Now, by Proposition 4.22 and

|φ(Xi,ε
t )− φ(Y i,ε

t )|2 ≤ ∥φ∥2W 1,∞(R) |X
i,ε
t − Y i,ε

t |2,

we can estimate the first term by ∥φ∥2W 1,∞(R)
2∥k∥2

L2(R)T

Nε exp

(
(C+Λ)T

ε

)
. For the second term

we write out the square to obtain

2

N2

N∑
i,j=1

E
((

φ(Y i,ε
t )−

∫
R
ρεt (y)φ(y) dy

)(
φ(Y j,ε

t )−
∫
R
ρεt (y)φ(y) dy

))

=
2

N2

N∑
i,j=1

E
(
φ(Y i,ε

t )φ(Y j,ε
t )− φ(Y i,ε

t )

∫
R
ρεt (y)φ(y) dy

− φ(Y j,ε
t )

∫
R
ρεt (y)φ(y) dy +

(∫
R
ρεt (y)φ(y) dy

)2)
.
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Now, using the fact that ρεt is the conditional distribution of Y i,ε with respect to FW
t , we find

E
(
φ(Y i,ε

t )

∫
R
ρεt (y)φ(y) dy

)
= E

(
E
(
φ(Y i,ε

t )

∫
R
ρεt (y)φ(y) dy

∣∣∣∣FW
t

))
= E

(∫
R
ρεt (y)φ(y) dy E(φ(Y

i,ε
t )|FW

t )

)
= E

((∫
R
ρεt (y)φ(y) dy

)2)
.

Since (Y i,ε
t , i = 1, . . . , N) have identical conditional distributions given FW

t , the same equal-

ity holds for j instead of i. Additionally, using the fact that Y i,ε
t , Y j,ε

t are conditionally
independent for i ̸= j, we obtain

E
(
φ(Y i,ε

t )φ(Y j,ε
t )
)
= E

(
E(φ(Y i,ε

t )φ(Y j,ε
t )|FW

t )
)

= E
(
E(φ(Y i,ε

t )|FW
t )E(φ(Y j,ε

t )|FW
t )
)

= E
((∫

R
ρεt (y)φ(y) dy

)2)
for the cross terms. Hence, the cross terms vanish and we can estimate the second term
in (4.33) by

2

N2

N∑
i=1

E
((

φ(Y i,ε
t )−

∫
R
ρεt (y)φ(y) dy

)2)
≤
C(∥ϕ∥L∞(R))

N

for some finite constant C(∥φ∥L∞(R)), which depends only on φ. Putting everything together,

we find

E(|⟨µXN

t , φ⟩ − ⟨ρεt , φ⟩|2) ≤ ∥φ∥2W 1,∞

2 ∥k∥2L2(R) T

Nε
exp

(
(C + Λ)T

ε

)
+
C(∥φ∥L∞(R))

N

≤ C
(
∥k∥L2(R) , T, ∥φ∥W 1,∞

)( 1

N
+

1

(N − 1)ε
exp

(
CT

ε

))
.

Next, using Hölder’s inequality and Proposition 4.23, we discover

E(|⟨ρεt , φ⟩ − ⟨ρt, φ⟩|2)

≤ E(∥φ∥2L2(R) ∥ρ
ε
t − ρt∥2L2(R))

≤ ∥φ∥2L2(R) ∥ρ
ε − ρ∥2S∞

F ([0,T ];L2(R))

≤ ∥φ∥2L2(R)C(λ,Λ, T, ∥k∥L2(R) , ∥ρ∥S∞
FW ([0,T ];L2(R)) ∥ρ

ε∥S∞
FW ([0,T ];L2(R))) ∥k

ε − k∥2L2(R) .
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Therefore, combining this estimate with the previous one we obtain

E(|⟨µXN

t , φ⟩ − ⟨ρt, φ⟩|2)

≤ 2E(|⟨µXN

t , φ⟩ − ⟨ρεt , φ⟩|2) + 2E(|⟨ρεt , φ⟩ − ⟨ρt, φ⟩|2)

≤ C
(
λ,Λ, T, ∥k∥L2(R) , ∥φ∥W 1,∞(R) , ∥φ∥L2(R) , ∥ρ∥S∞

FW ([0,T ];L2(R)) , ∥ρ
ε∥S∞

FW ([0,T ];L2(R))

)
·
(

1

N
+

1

Nε
exp

(
(C + Λ)T

ε

)
+ ∥kε − k∥2L2(R)

)
.

□

In conclusion, we can address the question of propagation of chaos for the HK model.

Corollary 4.26. Let the assumption of Theorem 4.25 hold. Then for ε = log(N) and
φ ∈ C∞

c (R) we have the following conditional propagation of chaos result for the HK model

lim
N→∞

E(|⟨µXN,ε,HK

t , φ⟩ − ⟨ρHK
t , φ⟩|2) = 0,

where XN,ε,HK is the interacting particle system associated to the kernel kεHK.

4.6. Comments

In comparison to the previous chapters, the convergence in probability approach is un-
fortunately not applicable here. One central component of this approach was compensating
for the irregularity of the interaction kernel k by leveraging the regularity of the solution ρ of
the Fokker–Planck, specifically using the L∞ bound in (t, x) for the solution ρ. In the SPDE
setting, however, we need to replace this bound with an L∞ bound in (ω, t, x). The proba-
bility space Ω, generally lacks a specific structure, making it unrealistic to expect techniques
from parabolic differential equations such as bootstrap arguments or embeddings to work.
Thus, we cannot produce a uniform bound in L∞(Ω) with the classical methods. Instead,
as demonstrated in Section 4.4, we had to employ a stopping time argument to perform a
bootstrap argument, which fortunately did not compromise the dual argument. However, this
line of reasoning cannot be reliably extended in general. Consequently, in the end, we cannot
achieve an algebraic-order cut-off and are instead confined to the less satisfying regime of a
logarithmic cut-off.

Moreover, it would be particularly beneficial to gain a deeper understanding of the stability
of SPDEs with respect to mollification and the appropriate topologies. This issue is closely
related to the challenges represented by the left and right arrows in Figure 1, indicating
that we should not anticipate better results than those achieved in the deterministic case.
However, the impact of common noise is still not fully understood, especially when considering
different types of noise. For instance, it is known that transport-type noise can prevent blow-
up [FGL21]. This raises the question: does common noise actually help? This remains an
open question, and we anticipate that the coming years will bring significant advances and
insights in this area. Regarding the question of stability, we will explore this further in
Chapter 5.



Chapter 5

Quantitative estimates for the relative en-
tropy with common noise

We prove a conditional propagation of chaos result for the interacting particle system

(5.1) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ(t,Xi
t) dB

i
t + ν(t,Xi

t) dWt

driven by idiosyncratic noise (Bi
t, t ≥ 0), i ∈ N and common noise (Wt, t ≥ 0). The Brownian

motions (Bi
t, t ≥ 0) are independent of each other, and (Wt, t ≥ 0) is independent of (Bi

t, t ≥ 0)
for all i. Details of the probabilistic setting are provided in Section 1.4. For the interaction
kernel, we require k ∈ L2(Rd) ∩ L∞(Rd). Systems of the form (5.1) are commonly utilized
in the field of mean-field games [CD18, Section 2.1] as well as mathematical finance [Ahu16,
DLR20, HvS21, LSZ23].

Our aim is to investigate the asymptotic behavior of the system (5.1) and to derive
conditional propagation of chaos. We develop the relative entropy method in the common
noise setting (5.1), extending the results from Section 1.3.4. While relative entropy theory
is well-established in the absence of common noise [JW18, BJW19], there is relatively little
literature addressing relative entropy in the case with common noise. The techniques that
relative entropy theory relies on—namely, the Liouville equation, the regularity of the mean-
field partial differential equation (PDE), and the exponential law of large numbers—need to
be adapted for the common noise setting.

The presence of common noise adds an extra layer of complexity to the problem. As we
have seen in Section 1.3.5, the empirical distribution of particles at the limit evolves stochas-
tically according to a non-linear stochastic partial differential equation (SPDE). Moreover,
the associated Liouville equation must be modified to a conditional Liouville equation, which
also solves an SPDE. The work is based on the preprint [Nik24]

5.1. Problem Setting

The setting in this chapter is very general, corresponding to the framework outlined in
Section 1.4.1, which involves a sequence of m dimensional Brownian motion (Bi i ∈ N) and a
m̃-dimensional common noiseW . Recall that we write a vector in RdN as XN = (x1, . . . , xN ) ∈
RdN , where xi = (xi,1, . . . , xi,d) ∈ Rd. For a standard vector in Rd, we use the variable z ∈ Rd.
For a matrix A ∈ Rd×d′ , we denote the (α, β) entry as [A](α,β).

5.1.1. Interacting particle systems with common noise. In this subsection we in-
troduce the probabilistic setting, in particular, the N -particle system and the associated
McKean–Vlasov equation.

145
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We require also the following coefficients

k : Rd 7→ Rd, σ : [0, T ]× Rd 7→ Rd×m, ν : [0, T ]× Rd 7→ Rd×m̃.
We define the interacting particle system by

(5.2) dXi
t = − 1

N

N∑
j=1

k(Xi
t −Xj

t ) dt+ σ(t,Xi
t) dB

i
t + ν(t,Xi

t) dWt

and the conditional McKean–Vlasov system by{
dY i

t = −(k ∗ ρt(Y i
t )) dt+ σ(t, Y i

t ) dB
i
t + ν(t, Y i

t ) dWt,

ρt = LY i
t |FW

t
,

(5.3)

where LY i
t |FW

t
is the conditional density of Y i

t given FW
t . It is well-known that pathwise-

uniqueness implies that LY i
t |FW

t
is independent of i ∈ N.

5.1.2. Stochastic partial differential equations. Let us introduce the SPDE’s associated
to the SDE’s defined in (5.2), (5.3). From the interacting particle system (5.2) we can derive
the stochastic Fokker–Planck equation in RdN solved by the conditional density ρNt given the
filtration FW

t . We call this SPDE the conditional Liouville equation, which is given by

dρNt =
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β

(
([σ(t, xi)σ(t, xj)

T](α,β)δi,j + [ν(t, xi)ν(t, xj)
T](α,β))ρ

N
t

)
dt

+
N∑
i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
t

)
dt−

N∑
i=1

∇xi · (ν(t, xi)ρNt dWt),(5.4)

where δi,j = 1 if and only if i = j and otherwise zero. Analogously, we define the d-dimensional
non-linear SPDE

dρt = ∇ · ((k ∗ ρt)ρt)) dt−∇ · (νtρt dWt)

+
1

2

d∑
α,β=1

∂zα∂zβ

(
([σtσ

T
t ](α,β) + [νtν

T
t ](α,β))ρt

)
dt

(5.5)

associated to (5.3). The provided equation represents the conditional density of a single
particle in the McKean–Vlasov SDE (5.3). Extending this concept to cover N conditionally
independent particles, we introduce the SPDE

dρ⊗Nt =
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β

(
(δi,j [σ(t, xi)σ(t, xj)

T](α,β) + [ν(t, xi)ν(t, xj)
T](α,β))ρ

⊗N
t

)
dt

+

N∑
i=1

∇xi · ((k ∗ ρt)(xi)ρ⊗Nt )) dt−
N∑
i=1

∇xi · (ν(t, xi)ρ⊗Nt dWt).(5.6)

The notation ⊗N is intentionally used, as it will become evident that if the d-dimensional
SPDE (5.5) has a solution, then equation (5.6) also possesses a solution in the form of a tensor
product.
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From the above equation we can deduce the following r-marginal SPDE of the interacting
particle system

dρr,Nt =

r∑
i=1

∫
R(N−r)d

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
t

)
dxr+1 · dxN dt

−
N∑
i=1

∇xi · (
∫
R(N−r)d

ν(t, xi)ρ
N
t dxr+1 · · · dxN dWt)

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β

(∫
R(N−r)d

([σ(t, xi)σ(t, xj)
T](α,β)δi,j

+ [ν(t, xi)ν(t, xj)
T](α,β))ρ

N
t

)
dxr+1 · · ·xN dt

5.1.3. Assumptions on initial condition and diffusion coefficients. Throughout this
chapter we make the following assumption on our diffusion coefficients σ, ν and the initial
condition ρ0.

Assumption 5.1.

(1) For each (i, l) ∈ {1, . . . , d} × {1, . . . ,m} we require σi,l(t, ·) ∈ C1(Rd) and for some
positive constant C > 0 we have the following uniform estimate

sup
0≤t≤T

∥∥∥σi,l(t, ·)∥∥∥
C1(Rd)

≤ C.

(2) For each (i, l̂) ∈ {1, . . . , d} × {1, . . . , m̃} we require νi,l̂(t, ·) ∈ C1(Rd) and for some
positive constant C > 0 we have the following uniform estimate

sup
0≤t≤T

∥∥∥νi,l̂(t, ·)∥∥∥
C1(Rd)

≤ C.

(3) The diffusion ν is divergence free, i.e. for each l̂ = 1, . . . , m̃ we have

d∑
β=1

∂zβν
β,l̂(t, z) = 0, (t, z) ∈ [0, T ]× Rd.

(4) For every α ∈ {1, . . . , d} we have

d∑
β=1

∂yβ

m∑
l=1

σα,l(t, z)σβ,l(t, z) = 0, , (t, z) ∈ [0, T ]× Rd,

d∑
β=1

∂yβ

m̃∑
l̂=1

να,l̂(t, z)νβ,l̂(t, z) = 0, (t, z) ∈ [0, T ]× Rd.

(5) σ satisfies the ellipticity condition. For all λ ∈ Rd we have

d∑
α,β=1

[σs(z)σs(z)
T](α,β)λαλβ ≥ δ|λ|2.
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(6) The initial condition ρ0 ∈ L2(Rd) satisfies the second moment estimate∫
Rd

|z|2ρ0(z) dz <∞.

Remark 5.2. Assumption (3) is a standard assumption in the field of SPDEs [CF16,
HQ21], implying the non-randomness of the Lp-norms. Condition (4) is necessary for reduc-
ing the conditional Liouville equation (5.4) from a Fokker–Planck equation [BKRS15] to a
SPDE in divergence structure. The same applies to the non-local SPDE (5.6). We require
the ellipticity condition (5) for the existence of the SPDE’s [Roz90, Kry99], analogously to
the parabolic PDE theory.

A direct consequence of Assumption 5.1 (5) is the existence and strong uniqueness of the
interacting particle system (5.2).

Our contribution: Our first contribution lies in proving the global well-posedness of the
stochastic partial differential equations associated with the particle systems. Since our kernel
k lies in L2(Rd) ∩ L∞(Rd) it prevents us from directly applying established results in the
literature on SPDEs, such as those found in textbooks by Krylov [Kry99], Rozovsky [Roz90]
to our non-linear stochastic Fokker–Planck equation (5.6). Consequently, for our non-linear
SPDE (5.6), we resort to employing a Picard iteration method.

Our second contribution focuses on demonstrating the boundedness of the relative entropy
in RdN . To achieve this, we compute the evolution of the relative entropy using Itô’s formula.
A key insight lies in recognizing that, unlike in the classical setting where distributions are
directly compared in the relative entropy, we should instead compare the conditional distribu-
tion of the interacting particle system (5.1) with the solution of the stochastic Fokker–Planck
equation (5.6).

However, defining the relative entropy for general random measures poses a challenge. To
the best of our knowledge, we could not find a reliable definition. But if we consider solutions
of the conditional Liouville equation (5.4) and the stochastic Fokker–Planck equation (5.6)
with sufficient regularity, we can provide a pointwise interpretation of the SPDE’s (5.4), (5.6).
This enables us to apply Itô’s formula to the SPDE’s, thereby deriving an expression for the
dynamics of the relative entropy. Subsequently, we can further analyze this expression by
employing methods known in the non-common case, such as the exponential law of large
numbers [JW18]. Notice, that in the absence of transport-type noise, we must address the
quadratic variations arising in the calculations. Consequently, we establish the boundedness
of the relative entropy for systems with smooth coefficients. By applying the sub-additivity
and the Csiszár–Kullback–Pinsker inequality, we obtain an estimate in the L1-norm between
the marginals of the Liouville equation and the stochastic Fokker–Planck equation, showing
a decay rate of N−1/2, indicating that results from Jabin and Wang [JW18] are applicable
even in the presence of common noise. Additionally, we recover the result from Jabin and
Wang [JW18] on the whole space in the case of vanishing common noise ν = 0.

Finally, we demonstrate that in the case k ∈ L2(Rd) ∩ L∞(Rd) the conditional Liouville
equation (5.4) and the stochastic Fokker–Planck equation (5.6) can be approximated by the
associated SPDE’s with smooth coefficients. This type of stability result leads to the relative
entropy estimate, which seems to be novel. Additionally, we demonstrate conditional prop-
agation of chaos. To our best knowledge, this is the first result on conditional propagation
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of chaos for general bounded interaction kernels in the L1-norm. However, it is crucial to
exercise caution at this stage, as the standard equivalent characterization provided by Sznit-
man’s Proposition 1.2 cannot be directly applied due to the non-deterministic nature of our
limiting measure. Therefore, we need to replicate the proof in the setting of random measures.
Consequently, we extend the results for conditional propagation of chaos by Carmona and
Delarue [CD18, Chapter 2] to the kernel k ∈ L2(Rd) ∩ L∞(Rd).
Related literatures: In contrast to interacting particle system, which are driven by id-
iosyncratic noise [Szn91, JW18, RS23, GLM24], literature on common noise remains limited.
For systems with uniformly Lipschitz interaction forces, we know from Chapter 4 that Coghi
and Flandoli [CF16] established conditional propagation of chaos in the presence of common
noise. Dawson and Vaillancourt [DV95] also formulated a martingale problem and demon-
strated tightness of the empirical measure obtaining a qualitative result with no convergence
rates.

In a parallel effort to ours, Shao and Zhao [SZ24] recently presented a similar relative en-
tropy estimate for the stochastic two-dimensional Navier–Stokes equation driven by transport
noise, utilizing methods from [JW18]. Their approach necessitates the initial independence
of intensity and position, which introduces additional assumptions on the physical model.
While their work shares similarities with ours, such as the relative entropy estimate and uti-
lization of common noise, distinctions arise in the domain (torus vs Rd) and the nature of
noise (transport noise vs. Itô noise). Moreover, the authors [SZ24] capitalized on the specific
structure of the Biot–Savart kernel, particularly its divergence-free property.

Rosenzweig [Ros20] addressed a related problem by establishing quantitative estimates for
the Biot–Savart kernel using the modulated energy method in a pathwise setting, a method
previously introduced by Serfaty [Ser20] in the deterministic setting for Coulomb kernels.
Challenges in this context stemmed from the commutator estimate for the second-order cor-
rection term. Although the modulated energy method naturally extends to systems with
transport noise, the pathwise extension in the case of relative entropy requires a pathwise
Radon–Nikodym derivative, posing challenges for random measures. Furthermore, Rosen-
zweig, Nguyen, and Serfaty [NRS22] obtained similar results for the repulsive Coulomb case
under transport noise.

In our work, the presence of idiosyncratic noise, dictated by the ellipticity of the diffusion
coefficient σ, plays a significant role. This aspect differentiates our approach from the previous
literature discussed. In our setting, the work by Huang, Qiu [HQ21] investigates the Keller–
Segel model with Bessel potential and the work of Chen, Prömel and the author [CNP23]
demonstrates the existence and uniqueness of non-linear SPDEs and conditional McKean–
Vlasov equations. Other relevant literature includes the work of Kurtz, Xiong [KX99], Coghi
and Gess [CG19] for the existence of stochastic non-linear Fokker–Planck equations under
non-linear Lipschitz coefficients.

A broad area where interacting particle systems of the form (5.1) are studied is in mathe-
matical finance and mean-field games. For instance, Carmona, Delarue, and Lacker [CDL16]
investigate mean-field games for Lipschitz drifts with common noise of the form (5.1), as do
Delarue, Lacker, and Ramanan [DLR20]. We refer to the references therein for more details.

Finally, let us mention the results of Jabin andWang [JW18], which serve as a foundational
reference in our work. We extend their results in the bounded kernel setting to include
common noise. Additionally, we require fewer assumptions on the regularity of the mean-field
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equation, which is a consequence of the stronger assumption on the interaction kernel k and
the ellipticity of the diffusion coefficient σ. However, the focus on the entire space Rd prevents
the inclusion of kernels in W−1,∞(Rd), as stability of stochastic partial differential equations
cannot be guaranteed using our methods.

Organization of the chapter: In Section 5.1 we provide the definitions of the particle
systems and the associated SPDE’s along with the introduction of the relative entropy. In
Section 5.2 the well-posedness of the Liouville equation (5.4) and the stochastic Fokker–
Planck equation (5.6) is established. In Section 5.3 we compute the evolution of the relative
entropy in the setting of smooth coefficients. Finally, conditional propagation of chaos with
common noise for interaction kernel k ∈ L2(Rd)∩L∞(Rd) is investigated in Section 5.4 as well
as a stability estimate for the conditional Liouville equation and stochastic Fokker–Planck
equation.

5.2. Well-posedness of the stochastic Fokker–Planck and Liouville equations

In this section we demonstrate the existence and uniqueness of solutions to the linear
SPDE (5.4) and the non-linear SPDE (5.6) in the sense of Definition 5.3 and Definition 5.5.
Additionally, we provide some a priori bounds uniform in the probability space. We use
similar techniques to [CNP23] and for readers familiar with SPDE’s the results should not
come as a surprise. We provide now definitions to the SPDE’s (5.4), (5.5) and (5.6).

Definition 5.3. For a fix N ∈ N a non-negative stochastic process
(
ρNt , t ≥ 0

)
is called

a (weak) solution of the SPDE (5.6) with initial condition ρ⊗N0 if

ρN ∈ L2
FW ([0, T ];H1(RdN )) ∩ S∞

FW ([0, T ];L1(RdN ))

and, for any φ ∈ C∞
c (RdN ), ρN satisfies almost surely the equation, for all t ∈ [0, T ],

⟨ρNt , φ⟩L2(RdN )

= ⟨ρ⊗N0 , φ⟩L2(RdN ) −
N∑
i=1

t∫
0

〈
1

N

N∑
j=1

k(xi − xj)ρ
N
s ,∇xiφ

〉
L2(RdN )

ds

+
1

2

N∑
i=1

d∑
α,β=1

t∫
0

〈
[σ(s, xi)σ(s, xi)

T](α,β)ρ
N
s , ∂xi,β∂xi,αφ

〉
L2(RdN )

ds

+
1

2

N∑
i,j=1

d∑
α,β=1

t∫
0

〈
[ν(s, xi)ν(s, xj)

T](α,β)ρ
N
s , ∂xj,β∂xi,αφ

〉
L2(RdN )

ds

+

N∑
i=1

d∑
α=1

m̃∑
l̂=1

t∫
0

〈
να,l̂(s, xi)ρ

N
s , ∂xi,αφ

〉
L2(RdN )

W l̂
s.

Definition 5.4. A non-negative stochastic process (ρt, t ≥ 0) is a (weak) solution to the
SPDE (5.5) with initial condition ρ0, if

(5.7) ρ ∈ L2
FW ([0, T ];H1(Rd)) ∩ S∞

FW ([0, T ];L1(Rd))
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and

⟨ρt, φ⟩L2(Rd) = ⟨ρ0, φ⟩L2(Rd) −
t∫

0

〈
(k ∗ ρs)ρs,∇xiφ

〉
L2(Rd)

ds

+
1

2

d∑
α,β=1

t∫
0

〈
[σ(s, z)σ(s, z)T](α,β)ρs, ∂zβ∂zαφ

〉
L2(Rd)

ds

+
1

2

d∑
α,β=1

t∫
0

〈
[ν(s, z)ν(s, z)T](α,β)ρs, ∂zβ∂zαφ

〉
L2(Rd)

ds

+
d∑

α=1

m̃∑
l̂=1

t∫
0

〈
να,l̂(s, z)ρs, ∂zαφ

〉
L2(Rd)

W l̂
s.

holds.

Definition 5.5. For a fix N ∈ N a non-negative stochastic process
(
ρ⊗Nt , t ≥ 0

)
is called

a (weak) solution of the SPDE (5.4) with initial condition ρ⊗N0 if

ρ⊗N ∈ L2
FW ([0, T ];H1(RdN )) ∩ S∞

FW ([0, T ];L1(RdN ))

and, for any φ ∈ C∞
c (RdN ), ρ⊗N satisfies almost surely the equation, for all t ∈ [0, T ],

⟨ρ⊗Nt , φ⟩L2(RdN )

= ⟨ρ⊗N0 , φ⟩L2(RdN ) −
N∑
i=1

t∫
0

〈
(k ∗ ρs)(xi)ρ⊗Ns ,∇xiφ

〉
L2(RdN )

ds

+
1

2

N∑
i=1

d∑
α,β=1

t∫
0

〈
[σ(s, xi)σ(s, xi)

T](α,β)ρ
⊗N
s , ∂xi,β∂xi,αφ

〉
L2(RdN )

ds

+
1

2

N∑
i,j=1

d∑
α,β=1

t∫
0

〈
[ν(s, xi)ν(s, xj)

T](α,β)ρ
⊗N
s , ∂xj,β∂xi,αφ

〉
L2(RdN )

ds

+
N∑
i=1

d∑
α=1

m̃∑
l̂=1

t∫
0

〈
να,l̂(s, xi)ρ

⊗N
s , ∂xi,αφ

〉
L2(RdN )

W l̂
s.

(5.8)

We start by demonstrating the existence of the Liouville equation (5.4).

Proposition 5.6. Suppose k ∈ L∞(Rd). Then, there exists a non-negative solution
ρN ∈ L2

FW ([0, T ];H1(Rd)) of the SPDE (5.4) in the sense of Definition 5.3.
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Proof. Define f(t, u) =
N∑
i=1

∇xi ·
(

1
N

N∑
j=1

k(xi − xj)u

)
for u ∈ H1(RdN ). Then we find

∥f(t, u)∥H−1(RdN ) ≤
N∑
i=1

∥∥∥∥∥∥ 1

N

N∑
j=1

k(xi − xj)u

∥∥∥∥∥∥
L2(RdN )

≤ N ∥k∥L∞(Rd) ∥u∥L2(RdN )

and by linearity

∥f(t, u)− f(t, v)∥H−1(RdN ) ≤ N ∥k∥L∞(Rd) ∥u− v∥L2(RdN )

for u, v ∈ H1(RdN ). Applying [Kry99, Theorem 5.1] proves the existence. It remains to show
that ρN is non-negative. However, this is a direct consequence of the maximum principle for
SPDE’s, which was already applied in Theorem 4.6. □

Lemma 5.7 (A priori L2-estimate). Let k ∈ L∞(Rd) and let the non-negative process
ρ ∈ L2

FW ([0, T ];H1(Rd)) satisfy the SPDE

dρt = ∇ · ((k ∗ ut)ρt)) dt−∇ · (νtρt dWt)

+
1

2

d∑
α,β=1

∂zα∂zβ

(
([σtσ

T
t ](α,β) + [νtν

T
t ](α,β))ρt

)
dt,

where ut is a predictable with respect to FW , L1-valued process, which satisfies the inequality
∥ut∥L1(Rd) ≤ 1, P-a.s. for all t ≥ 0. Then

(5.9) ∥ρt∥L2(Rd)) ≤ C(T, d, δ, ∥k∥L∞(Rd)) ∥ρ0∥L2(Rd) , P-a.s.

for all t ≥ 0.

Proof. Let us compute the norm ∥ρt∥L2(Rd),

∥ρt∥2L2(Rd) − ∥ρ0∥2L2(Rd)

= −2

t∫
0

∫
Rd

((k ∗ us)ρs) · ∇ρs dz ds

−
d∑

α,β=1

t∫
0

∫
Rd

∂zβ

(
([σsσ

T
s ](α,β) + [νsν

T
s ](α,β))ρs

)
∂zαρs dz ds

+
m̃∑
l̂=1

t∫
0

∫
Rd

∣∣∣∣ d∑
β=1

∂zβ (ν
β,l
s ρs)

∣∣∣∣2 dz ds+ 2

m̃∑
l̂=1

d∑
β=1

t∫
0

∫
Rd

ρs∂zβ (ν
β,l̂
s ρs) dW

l̂
s.
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By the divergence-free assumption of ν we have

∫
Rd

ρs

d∑
β=1

∂zβ (ν
β,l̂
s ρs) dz =

1

2

∫
Rd

d∑
β=1

νβ,l̂s ∂zβ (ρ
2
s) dz

= −1

2

∫
Rd

d∑
β=1

∂zβν
β,l̂
s ρ2s dz

= 0

and therefore the stochastic integral vanishes. Again using the divergence-free assump-
tion 5.1 (3) we find

m̃∑
l̂=1

t∫
0

∫
Rd

∣∣∣∣ d∑
β=1

∂zβ (ν
β,l
s ρs)

∣∣∣∣2 dz ds = m̃∑
l̂=1

d∑
α,β=1

t∫
0

∫
Rd

∂zα(ν
α,l
s ρs)∂zβ (ν

β,l
s ρs) dz ds

=

m̃∑
l̂=1

d∑
α,β=1

t∫
0

∫
Rd

να,ls νβ,ls ∂zαρs∂zβρs dz ds.

(5.10)

However, we also have

d∑
α,β=1

t∫
0

∫
Rd

∂zβ

(
([σsσ

T
s ](α,β) + [νsν

T
s ](α,β))ρs

)
∂zαρs dz ds

=

d∑
α,β=1

t∫
0

∫
Rd

∂zβ

(
[σsσ

T
s ](α,β) + [νsν

T
s ](α,β)

)
ρs∂zαρs dz ds

+

d∑
α,β=1

t∫
0

∫
Rd

([σsσ
T
s ](α,β) + [νsν

T
s ](α,β))∂zβρs∂zαρs dz ds.

Consequently, the last term containing ν is exactly the term (5.10) and therefore both terms
cancel. For the first term we use the uniform bound on the derivatives and Young’s inequality
to estimated it by

d∑
α,β=1

∣∣∣∣
t∫

0

∫
Rd

∂zβ

(
[σsσ

T
s ](α,β) + [νsν

T
s ](α,β)

)
ρs∂zαρs dz ds

∣∣∣∣
≤ C(d, δ)

t∫
0

∥ρs∥2L2(Rd) +
δ

2
∥∇ρs∥2L2(Rd) ds.
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Combining the last estimates and plugging them in the evolution of the L2-norm, we arrive
at

∥ρt∥2L2(Rd) − ∥ρ0∥2L2(Rd) = − 2

t∫
0

∫
Rd

((k ∗ us)ρs) · ∇ρs dz ds+ C(d, δ) ∥ρs∥2L2(Rd)

−
d∑

α,β=1

t∫
0

∫
Rd

[σsσ
T
s ](α,β)∂zβρs∂zαρs dz +

δ

2
∥∇ρs∥2L2(Rd) ds

≤ 2

t∫
0

∥k ∗ us∥2L∞(Rd) ∥ρs∥
2
L2(Rd) ds+ C(d, δ) ∥ρs∥2L2(Rd) ds

≤ (2 ∥k∥2L∞(Rd) + C(d, δ))

t∫
0

∥ρs∥2L2(Rd) ds,

where we used the ellipticity condition in the last step. An application of Gronwall’s lemma
provides

∥ρt∥2L2(Rd) ≤ C(T, d, δ, ∥k∥L∞(Rd)) ∥ρ0∥
2
L2(Rd) , P-a.s.

for all t ≥ 0. □

Lemma 5.8. (A priori moment estimate) Suppose we are in the setting of Lemma 5.7.
Then the following moment estimate holds

E
(

sup
0≤t≤T

(∫
Rd

ρt(z)|z|2 dz
)2)

≤ C(T, σ, ν, ∥k∥L∞(Rd))

(∫
Rd

ρ0(x)|z|2 dz
)2

.

Proof. The core idea is to use |z|2 as a test function. To that end, we take a sequence
of radial non-negative anti-symmetric smooth functions (gn, n ∈ N) with gn ∈ C2

c (Rd) for
all n ∈ N, such that gn grows to |z|2 as n → ∞ and |∇gn|2 ≤ Cgn and |∆gn| is uniformly
bounded in n ∈ N. For instance one can choose

χn(z) :=

{
|z|, for |z| ≥ 1

n ,

−n3 |z|
4

8 + n3|z|2
4 + 3

8n , for |z| ≤ 1
n ,

and let (ζn, n ∈ N) be a sequence of compactly supported cut-off function defined by ζn(x) =
ζ(x/n), where ζ is a smooth function with support in the ball of radius two and has value
one in the unit ball. The reader can verify that gn = χ2

nζn satisfies the above properties.
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Plugging gn as our test function, we obtain

⟨ρt, gn⟩L2(Rd)

= ⟨ρ0, gn⟩L2(Rd) −
t∫

0

〈
(k ∗ us)ρs,∇gn

〉
L2(Rd)

ds+
d∑

α=1

m̃∑
l̂=1

t∫
0

〈
να,l̂s ρs, ∂zαgn

〉
L2(Rd)

W l̂
s

− 1

2

t∫
0

〈
(σ2s + ν2s )ρs,∆gn

〉
L2(Rd)

ds.

The first term, can be simply estimated by

t∫
0

〈
(k ∗ us)ρs,∇gn

〉
L2(Rd)

ds ≤ C ∥k∥2L∞(Rd) +

t∫
0

⟨ρs, |∇gn|2⟩L2(Rd) ds

≤ C ∥k∥2L∞(Rd) + C

t∫
0

⟨ρs, gn⟩L2(Rd) ds.

For the other term we obtain

t∫
0

〈
(σ2s + ν2s )ρs,∆gn

〉
L2(Rd)

ds ≤ C

t∫
0

∫
Rd

ρs(x) dx ds ≤ CT,

where we used the uniform bound of |∆gn|. Now, we take the square and then the expectation
to arrive at

E
(
⟨ρt, gn⟩2L2(Rd)

)
≤ ⟨ρ0, gn⟩L2(Rd) + CT 2 ∥k∥4L∞(Rd) + CT 2 + Ct

1
2

t∫
0

E
(
⟨ρs, gn⟩2L2(Rd)

)
ds

+ E
(∣∣∣∣ d∑

α=1

m̃∑
l̂=1

t∫
0

〈
να,l̂s ρs, ∂zαgn

〉
L2(Rd)

W l̂
s

∣∣∣∣2).(5.11)

Using the BDG-inequality to estimate the stochastic integral we arrive at

E
(∣∣∣∣ d∑

α=1

m̃∑
l̂=1

t∫
0

〈
να,l̂s ρs, ∂zαgn

〉
L2(Rd)

W l̂
s

∣∣∣∣2)

≤
d∑

α,β=1

m̃∑
l̂=1

E
( t∫

0

〈
να,l̂s ρs, ∂zαgn

〉
L2(Rd)

〈
νβ,l̂s ρs, ∂zβgn

〉
L2(Rd)

ds

)

≤ C(∥ν∥L∞(Rd) , m̃, d)

d∑
α=1

E
( t∫

0

∣∣∣∣⟨ρs, ∂zαgn⟩L2(Rd)

∣∣∣∣2 ds)
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≤ C(∥ν∥L∞(Rd) , m̃, d) E
( t∫

0

⟨ρs, |∇gn|2⟩L2(Rd) ds

)

≤ C(∥ν∥L∞(Rd) , m̃, d)

t∫
0

E
(
⟨ρs, gn⟩L2(Rd)

)
ds.

An application of Gronwall’s lemma proves

sup
0≤t≤T

E
(∣∣∣∣ ∫

Rd

ρt(z)|z|2 dz
∣∣∣∣2) ≤ C(T, σ, ν, ∥k∥L∞(Rd))

(∫
Rd

ρ0(z)|z|2 dz
)2

.

Now, we can use this inequality to estimate the case, where the supremum is inside the
expectation. Till inequality 5.11 we follow the same steps but with the difference that the
supremum is now inside the expectation. We notice that we can apply Doob’s maximal
inequality to estimate the stochastic integral with the previous bound. Thus, obtaining the
bound

E
(

sup
0≤t≤T

(∫
Rd

ρt(z)|z|2 dz
)2)

≤ C(T, σ, ν, ∥k∥L∞(Rd))

(∫
Rd

ρ0(x)|z|2 dz
)2

.

□

We are ready to prove that the non-local d-dimensional SPDE (5.5) has a unique solution.

Proposition 5.9 (Existence of d-dimensional SPDE ρ). Let k ∈ L2(Rd)∩L∞(Rd). Then
the SPDE (5.5) has a unique solution solution in the space L2

FW ([0, T ];H1(Rd)) satisfying

(5.12) ∥ρ∥L2
FW ([0,T ];H1(Rd)) ≤ C(T, δ, d, ∥k∥L2(Rd) , ∥k∥L∞(Rd)) ∥ρ0∥L2(Rd) .

Proof. Let us proof the existence by a Picard-Lindelöf iteration. Let us define for n ∈ N
the following SPDE

dρnt = ∇ · ((k ∗ ρn−1
t )ρnt )) dt−∇ · (νtρn dWt)

+
1

2

d∑
α,β=1

∂zα∂zβ

(
([σtσ

T
t ](α,β) + [νtν

T
t ](α,β))ρ

n
t

)
dt

(5.13)

with initial value ρ0 and ρ0 = ρ0. The initial value holds for all SPDE’s in this proof. Then
the SPDE is linear and by the estimate

(5.14)
∥∥∇ · ((k ∗ ρ0)u)

∥∥
H−1(Rd)

≤
∥∥k ∗ ρ0∥∥

L∞(Rd)
∥u∥L2(Rd) ≤ ∥k∥L∞(Rd) ∥u∥L2(Rd)

for u ∈ L2
FW ([0, T ];H1(Rd)) we have a solution of the SPDE by [Kry99, Theorem 5.1] in the

case n = 1, therein. Furthermore, it is easy consequence of the divergence structure and the
maximum principle that ρ1 is non-negative and satisfies mass conservation∥∥ρ1t∥∥L1(Rd)

= ∥ρ0∥L1(Rd) = 1, P-a.s.,

for t ∈ [0, T ]. A more detailed proof is given in [CNP23] in a similar setting. Hence, since ρ1

has measure one uniform in time and Ω, we can derive, using the same arguments for each
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n ∈ N, a non-negative solution that satisfies mass conservation and the uniform estimate

(5.15) ∥ρn∥L2
FW ([0,T ];H1(Rd)) ≤ C(T, δ, d) ∥ρ0∥L2(Rd)

as provided by [Kry99, Theorem 5.1]. Additionally, ρn satisfies the L2-bound (5.9) uniform
in n ∈ N. Let us consider the difference of the SPDE’s

d(ρnt − ρn−1
t )

= ∇ · ((k ∗ ρn−1
t )(ρnt − ρn−1

t ) + (k ∗ (ρn−1
t − ρn−2

t ))ρn−1
t ) dt−∇ · (νt(ρnt − ρn−1

t ) dWt)

+
1

2

d∑
α,β=1

∂zα∂zβ

(
([σtσ

T
t ](α,β) + [νtν

T
t ](α,β))(ρ

n
t − ρn−1

t )

)
dt.

Applying Itô’s formula [Kry10], we obtain∥∥ρnt − ρn−1
t

∥∥2
L2(Rd)

= −2

t∫
0

∫
Rd

((k ∗ ρn−1
s )(ρns − ρn−1

s )− (k ∗ (ρn−1
s − ρn−2

s ))ρn−1
s ) · ∇(ρns − ρn−1

s ) dz ds

−
d∑

α,β=1

t∫
0

∫
Rd

∂zβ

(
([σsσ

T
s ](α,β) + [νsν

T
s ](α,β))(ρ

n
s − ρn−1

s )

)
∂zα(ρ

n
s − ρn−1

s ) dz ds

+
m̃∑
l̂=1

t∫
0

∫
Rd

∣∣∣∣ d∑
β=1

∂zβ (ν
β,l̂
s (ρns − ρn−1

s ))

∣∣∣∣2 dz ds
+ 2

m̃∑
l̂=1

d∑
β=1

t∫
0

∫
Rd

(ρns − ρn−1
s )∂zβ (ν

β,l̂
s (ρns − ρn−1

s )) dx dW l̂
s.

Similar as before the stochastic integral vanishes by the divergence free assumption on ν.
Again using the divergence-free assumption 5.1 (3) we find

m̃∑
l̂=1

t∫
0

∫
Rd

∣∣∣∣ d∑
β=1

∂zβ (ν
β,l̂
s (ρns − ρn−1

s ))

∣∣∣∣2 dz ds
=

m̃∑
l̂=1

d∑
α,β=1

t∫
0

∫
Rd

∂zα(ν
α,l̂
s (ρns − ρn−1

s ))∂zβ (ν
β,l̂
s (ρns − ρn−1

s )) dz ds

=

m̃∑
l̂=1

d∑
α,β=1

t∫
0

∫
Rd

να,l̂s νβ,l̂s ∂zα(ρ
n
s − ρn−1

s )∂zβ (ρ
n
s − ρn−1

s ) dz ds.

(5.16)
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However, we also have

d∑
α,β=1

t∫
0

∫
Rd

∂zβ

(
([σsσ

T
s ](α,β) + [νsν

T
s ](α,β))(ρ

n
s − ρn−1

s )

)
∂zα(ρ

n
s − ρn−1

s ) dz ds

=

d∑
α,β=1

t∫
0

∫
Rd

∂zβ

(
[σsσ

T
s ](α,β) + [νsν

T
s ](α,β)

)
(ρns − ρn−1

s )∂zα(ρ
n
s − ρn−1

s ) dz ds

+
d∑

α,β=1

t∫
0

∫
Rd

([σsσ
T
s ](α,β) + [νsν

T
s ](α,β))∂zβ (ρ

n
s − ρn−1

s )∂zα(ρ
n
s − ρn−1

s ) dz ds.

The last term with ν is exactly the term (5.16) and therefore both term cancel. For the first
term we use the uniform bound on the derivatives and Young’s inequality to estimated it by

d∑
α,β=1

∣∣∣∣
t∫

0

∫
Rd

∂zβ

(
[σsσ

T
s ](α,β) + [νsν

T
s ](α,β)

)
(ρns − ρn−1

s )∂zα(ρ
n
s − ρn−1

s ) dz ds

∣∣∣∣
≤ C(d, δ)

∥∥ρns − ρn−1
s

∥∥2
L2(Rd)

+
δ

2

∥∥∇(ρns − ρn−1
s )

∥∥2
L2(Rd)

.

Combining the last estimates we arrive at∥∥ρnt − ρn−1
t

∥∥2
L2(Rd)

= −2

t∫
0

∫
Rd

((k ∗ ρn−1
s )(ρns − ρn−1

s )− (k ∗ (ρn−1
s − ρn−2

s ))ρn−1
s ) · ∇(ρns − ρn−1

s ) dz ds

−
d∑

α,β=1

t∫
0

∫
Rd

[σsσ
T
s ](α,β)∂zβ (ρ

n
s − ρn−1

s )∂zα(ρ
n
s − ρn−1

s ) dz ds

+
δ

2

t∫
0

∥∥∇(ρns − ρn−1
s )

∥∥2
L2(Rd)

ds+ C(d, δ)

t∫
0

∥∥ρns − ρn−1
s

∥∥2
L2(Rd)

ds

≤ 4δ

t∫
0

∥∥k ∗ ρn−1
s

∥∥2
L∞(Rd)

∥∥ρns − ρn−1
s

∥∥2
L2(Rd)

ds+ C(d, δ)

t∫
0

∥∥ρns − ρn−1
s

∥∥2
L2(Rd)

ds

+ 4δ

t∫
0

∥∥k(ρn−1
s − ρn−2

s )
∥∥2
L∞(Rd)

∥∥ρn−1
s

∥∥2
L2(Rd)

ds

≤ C(d, δ, ∥k∥L∞)

t∫
0

∥∥ρns − ρn−1
s

∥∥2
L2(Rd)

ds+ 4δ ∥k∥2L2(Rd)

t∫
0

∥∥ρn−1
s − ρn−2

s

∥∥2
L2(Rd)

ds,
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where we used the uniform L2 bound (5.9) and ellipticity condition in the last step. Taking
expectation and using Gronwall’s lemma, we find

E
( ∥∥ρnt − ρn−1

t

∥∥2
L2(Rd)

)
≤ 4δ ∥k∥2L2(Rd) e

C(d,δ,∥k∥L∞ )T

t∫
0

E(
∥∥ρn−1

s − ρn−2
s

∥∥2
L2(Rd)

) ds.

The standard Picard–Lindelöf iteration implies that

∞∑
n=1

sup
0≤t≤T

E
( ∥∥ρnt − ρn−1

t

∥∥2
L2(Rd)

)
<∞

and therefore we can find a function ρ ∈ L2
FW ([0, T ];H1(Rd)) such that

(5.17) lim
n→∞

∥ρn − ρ∥L2
FW ([0,T ];H1(Rd)) = 0.

Furthermore, ρ satisfies mass conservation and therefore by similar arguments as before there
exists a solution ρ̂ of the linear SPDE

dρ̂t = ∇ · ((k ∗ ρt)ρ̂t)) dt−∇ · (νtρ̂t dWt)

+
1

2

d∑
α,β=1

∂zα∂zβ

(
([σtσ

T
t ](α,β) + [νtν

T
t ](α,β))ρ̂t

)
dt,

which also satisfies the L2-bound (5.9) . Applying the inequality in [Kry99, Theorem 5.1] and
the L2-bound (5.9) we find

∥ρ̂− ρn∥L2
FW ([0,T ];H1(Rd)) ≤ ∥(k ∗ (ρ− ρn))ρ̂∥L2

FW ([0,T ];L2(Rd))

≤ C ∥ρ− ρn∥L2
FW ([0,T ];L2(Rd))

n→∞−−−→0.

Hence ρ = ρ̂ and we have a solution to the non-linear SPDE (5.5). The properties of ρ are a
direct consequence of the properties of ρn and the strong convergence in L2

FW ([0, T ];H1(Rd)).
□

Remark 5.10. We cannot use the inequality provided by [Kry99, Theorem 5.1] directly
since our SPDE is non-linear. Therefore, we need to rely on a Gronwall argument and
estimate the L2(Rd)-norm directly. We purposely choose this presentation of the existence
of the SPDE (5.5) because we will need a stability result in Section 5.4, which follows the
same idea. Alternatively, we could have verified the monotonicity conditions of Wei and
Röckner [LR15].

Lemma 5.11. Let ρt be a solution of the d-dimensional SPDE (5.5) provided by Proposi-

tion 5.9. Then the tensor product ρ⊗N
(
XN
)
=

N∏
i=1

ρ(xi) for XN = (x1, . . . , xN ) ∈ RdN solves

the dN -dimensional SPDE (5.6) in the sense of Definition 5.5.
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Proof. By the structure of the solution we immediately obtain the regularity necessary
in Definition 5.5. Let φi ∈ C∞

c (Rd) for i = 1, . . . , N) be smooth functions. Then for φ
(
XN
)
=

N∏
i=1

φ(xi) we obtain

⟨ρ⊗Nt , φ⟩L2(RdN ) =
N∏
i=1

⟨ρt, φi⟩L2(Rd).

The right hand side is now a product of Itô processes. Hence applying the Itô formula (1.15)
to the function f(y) = y1y2 · · · yN for y ∈ RN we obtain

d

( N∏
i=1

⟨ρt, φi⟩L2(Rd)

)

=

N∑
i=1

N∏
j ̸=i

⟨ρt, φj⟩L2(Rd) d⟨ρt, φi⟩L2(Rd)

+
1

2

N∑
i,j=1
i ̸=j

N∏
q ̸=i
q ̸=j

⟨ρt, φq⟩L2(Rd) d⟨⟨ρt, φi⟩L2(Rd), ⟨ρt, φj⟩L2(Rd)⟩.

Computing the quadratic variation we find

⟨⟨ρt, φi⟩L2(Rd), ⟨ρt, φj⟩L2(Rd)⟩

=

〈 d∑
α=1

m̃∑
l=1

t∫
0

〈
να,l(s, xi)ρs, ∂xi,αφi

〉
L2(Rd)

W l
s,

d∑
β=1

m̃∑
l̂=1

t∫
0

〈
νβ,l̂(s, xj)ρs, ∂xj,βφj

〉
L2(Rd)

W l̂
s

〉

=

d∑
α,β=1

m̃∑
l̂=1

t∫
0

〈
να,l̂(s, xi)ρs, ∂xi,αφi

〉
L2(Rd)

〈
νβ,l̂(s, xj)ρs, ∂xj,βφj

〉
L2(Rd)

ds,

which implies the following form for the covariation term

1

2

N∑
i,j=1
i ̸=j

d∑
α,β=1

m̃∑
l̂=1

t∫
0

⟨να,l̂(s, xi)νβ,l̂(s, xj)
( N∏
q=1

ρs

)
(·), ∂xi,α∂xj,βφ⟩L2(Rd) ds.
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Plugging in the dynamic ⟨ρt, φ⟩, we find

N∑
i=1

N∏
j ̸=i

⟨ρt, φj⟩L2(Rd) d⟨ρt, φi⟩L2(Rd)

=

N∑
i=1

t∫
0

N∏
j ̸=i

⟨ρs, φj⟩L2(Rd)

(〈
(k ∗ ρs)(xi)ρs,∇φi

〉
L2(Rd)

+
1

2

d∑
α,β=1

〈
[σ(s, ·)σ(s, ·)T](α,β)ρs, ∂xi,β∂xi,αφi

〉
L2(Rd)

+
1

2

d∑
α,β=1

〈
[ν(s, xi)ν(s, xi)

T](α,β)ρs, ∂xi,β∂xi,αφi

〉
L2(Rd)

)
ds

+
N∑
i=1

d∑
α=1

m̃∑
l̂=1

t∫
0

N∏
j ̸=i

⟨ρs, φj⟩L2(Rd)

〈
να,l̂(s, xi)ρ

⊗N
s , ∂xi,αφi

〉
L2(Rd)

W l̂
s.

Putting the product into one integral over RdN as before we see that
N∏
i=1

ρt(xi) satisfies

equation (5.8) for φ ∈ C∞
c (RdN ) of the form φ

(
XN
)
=

N∏
i=1

φ(xi). Because functions of this

form are dense in L2(RdN ) the claim follows by the regularity of ρ. □

Remark 5.12. At the end of the section let us make some comments on the regularity of
the interaction kernel k. First, we are concerned with the global existence of solutions, mean-
ing for arbitrary T > 0. Otherwise, the conditional propagation of chaos results seems not
powerful, since we assume our initial condition is independent and, therefore, the indepen-
dence should at least propagate for some small T > 0. Hence, to demonstrate global existence,
the map u 7→ (k ∗ u)ρ needs to be a continuous linear map. One way to enforce this is for
k ∗ u to be uniformly bounded in the probability space and in the time variable, as discussed
in [HQ21, CNP23]. Additionally, Itô’s formula for the Lp-norms requires the condition p ≥ 2.

Consequently, lacking concrete properties of k, we require k to belong to Lp
′
(Rd), where p′ is

the conjugated exponent.
However, in order to apply the exponential law of large numbers [JW18, Theorem 3] in

Section 5.3, we require a bounded force k. Therefore, the condition k ∈ L2(Rd) ∩ L∞(Rd)
appears to be necessary and minimal.

5.3. Relative entropy method in the smooth case

In this section we assume that all coefficients σ, ν, k are smooth uniform in time. More
precisely, for all indices α, β, l̃ we assume

(5.18) sup
0≤t≤T

∥∥[σ(t, ·)σT(t, ·)](α,β)∥∥C∞(Rd)
+ sup

0≤t≤T

∥∥∥νβ,l̃(t, ·)∥∥∥
C∞(Rd)

+ ∥k∥C∞(Rd) ≤ C
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for some constant C > 0 and Assumption 5.1 holds. The idea is to demonstrate the relative
entropy estimate in cases where ρN , ρ⊗N solve the SPDE’s 5.4, 5.6 , not in the weak sense
against a test function, but rather pointwise. The key to achieving this lies in the Sobolev
embedding, which mandates at least two derivatives to properly interpret the pointwise second
derivatives in the SPDE’s 5.4, 5.6.

Proposition 5.13. For each N ∈ N the solutions ρNt and ρ⊗Nt are smooth and there
exists versions, which have an Ito process representation.

Hence, there exists a set Ω̃ with P(Ω̃) = 1 such that for all
(
t,XN

)
∈ [0, T ]×RdN we have

ρN
(
ω, t,XN

)
= ρ0(x) +

N∑
i=1

t∫
0

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
(
ω, s,XN

))
ds

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

t∫
0

να,l̂(s, xi)∂xi,αρ
N
(
ω, s,XN

)
W l̂
s

+
1

2

N∑
i=1

d∑
α,β=1

t∫
0

∂xi,α∂xi,β

(
[σ(s, xi)σ(s, xi)

T](α,β)ρ
N
(
ω, s,XN

))
ds

+
1

2

N∑
i,j=1

d∑
α,β=1

t∫
0

∂xi,α∂xj,β

(
+ [ν(s, xi)ν(s, xj)

T](α,β)ρ
N
(
ω, s,XN

))
ds

and

ρ⊗N
(
ω, t,XN

)
= ρ0(x) +

N∑
i=1

t∫
0

∇xi ·
(
(k ∗ ρ)

(
ω, t,XN

)
ρ⊗N

(
ω, s,XN

))
ds

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

t∫
0

να,l̂(s, xi)∂xi,αρ
⊗N(ω, s,XN)W l̂

s

+
1

2

N∑
i,j=1

d∑
α,β=1

t∫
0

∂xi,α∂xi,β

(
[σ(s, xi)σ(s, xi)

T](α,β)ρ
⊗N(ω, s,XN))ds

+
1

2

N∑
i,j=1

d∑
α,β=1

t∫
0

∂xi,α∂xj,β

(
[ν(s, xi)ν(s, xj)

T](α,β)ρ
⊗N(ω, s,XN))ds.

Proof. Let us fix N ∈ N and choose a n ∈ N such that n > 2 + dN
2 . We start with the

linear N -particle SPDE. Similar to the non-smooth case, we can obtain a solution

ρN ∈ L2
FW ([0, T ];H1(Rd)),
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which satisfies mass conservation. Since all coefficients are smooth we can write the SPDE’s
in non-divergence form. Therefore, we can apply [Kry99, Theorem 5.1 and Remark 5.6] in
the case p = 2 and n as above to obtain

ρN ∈ L2
FW ([0, T ];Hn(Rd)).

The Itô representation, then immediately follows from the regularity and [Roz90, Theo-
rem 4.3(e)]. For the non-linear SPDE ρ⊗N we repeat the arguments with one slight modi-
fication. After obtaining the solution by the same steps as in Section 5.2, we linearize the
equation by fixing ρ in the convolution k ∗ ρ. Now, the coefficients are again smooth and for
arbitrary multi-index γ we have

∥∂γ(k ∗ ρt)∥L∞ ≤ ∥k∥C|γ|(Rd)

by Young’s inequality and mass conservation of ρ. This provides a smooth solution ρ and
consequently, by the same argument as in Lemma 5.11, we obtain a smooth solution ρ⊗N ,
which again has the Itô representation by [Roz90, Theorem 4.3(e)].

□

For each XN ∈ RdN we obtain two process ρNt
(
XN
)
and ρ⊗Nt

(
XN
)
. Consequently, we can

utilize Itô’s formula to derive an evolution of the relative entropy

H
(
ρNt |ρ⊗Nt

)
: =

∫
Rd

ρNt
(
XN
)
log

(
ρNt
(
XN
)

ρ⊗Nt
(
XN
))dρNt

(
XN
)
.

To begin, we split the integrand x log(x/y) of the relative entropy into two terms x log(x)
and −x log(y). Subsequently, we apply Itô’s formula to each function separately and combine
them later.

Lemma 5.14 (Itô’s formula for x log(x)). Let ρNt be the smooth solution provided by Propo-
sition 5.13. Then,

dρNt
(
XN
)
log(ρNt )

(
XN
)

= (log
(
ρNt
(
XN
))

+ 1)

( N∑
i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
t

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂t (xi)∂xi,αρ
N
t

(
XN
)
dW l̂

t

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β

(
[σt(xi)σt(xi)

T](α,β)ρ
N
t

(
XN
))

dt

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β

(
[νt(xi)νt(xj)

T](α,β)ρ
N
t

(
XN
))

dt

)

+
ρNt
2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,α log
(
ρNt
(
XN
)))2

dt.(5.19)
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In particular, we can choose a set Ω̃ ⊆ Ω with P(Ω̃) such that equality (5.19) holds for all(
t, xN

)
and the integrands on the right hand side of equality (5.19) are product measurable in

(ω, s, x).

Proof. Let us fix XN ∈ RdN . Then for almost all ω and all t ≥ 0 we have

d
(
ρNt
(
XN
)
log(ρNt )

(
XN
))

=
(
log(ρNt )

(
XN
)
+ 1
)
dρNt +

1

2ρNt
(
XN
) d⟨ρNt (XN)⟩.

For the quadratic variation we obtain

d
〈
ρNt
(
XN
)〉

= d

〈 N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂(t, xi)∂xi,αρ
N
t

(
XN
)
W l̂
t

〉

=
N∑

i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂(t, xi)∂xi,αρ

N
t

(
XN
))(

να,l̂(t, xj)∂xj,βρ
N
t

(
XN
))

dt.

Consequently, combining the quadratic variation with the dynamic given in Proposition 5.13
we obtain

d
(
ρNt
(
XN
)
log(ρNt )

(
XN
))

=
(
log
(
ρNt
(
XN
))

+ 1
)( N∑

i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
t

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂t (xi)∂xi,αρ
N
t

(
XN
)
dW l̂

t

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σt(xi)σt(xi)

T](α,β)ρ
N
t

(
XN
))

dt

)

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νt(xi)νt(xj)

T](α,β)ρ
N
t

(
XN
))

dt

)

+
1

2ρNt
(
XN
) N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂t (xi)∂xi,αρ

N
t

(
XN
))(

να,l̂t (xj)∂xj,βρ
N
t

(
XN
))

dt.

Now, we can rewrite the last term into

1

2ρNt
(
XN
) m̃∑
l̂=1

( N∑
i=1

d∑
α=1

(
να,l̂(t, xi)∂xi,αρ

N
t

(
XN
)))2

dt

=
ρNt
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂(t, xi)∂xi,α log
(
ρNt
(
XN
)))2

dt.

Inserting it into the previous equation we obtain equation 5.19. For the measurability state-
ment we just notice that the integrands are continuous in time and space Rd. Therefore
we can apply Kolmogorov’s continuity criteria in (t, x) to obtain a continuous version of the
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stochastic integral, which implies the continuity of the right hand side of equation 5.19 and
consequently the product measurability. □

Similar, we obtain an expression for ρNt
(
XN
)
log
(
ρ⊗Nt

(
XN
))
.

Lemma 5.15 (Itô’s formula for x log(y)). Let ρ⊗Nt be the smooth solution provided by
Proposition 5.13. Then,

d
(
ρNt
(
XN
)
log
(
ρ⊗Nt

(
XN
))

= log
(
ρ⊗Nt

(
XN
))( N∑

i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
t

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂t (xi)∂xi,αρ
N
t

(
XN
)
dW l̂

s

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σt(xi)σt(xi)

T](α,β)ρ
N
t

(
XN
))

dt

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νt(xi)νt(xj)

T](α,β))ρ
N
t

(
XN
))

dt

)

+
ρNt
(
XN
)

ρ⊗Nt
(
XN
)( N∑

i=1

∇xi ·
(
(k ∗ ρt)(xi)ρ⊗Nt

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂t (xi)∂xi,αρ
⊗N
t

(
XN
)
dW l̂

s

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σt(xi)σt(xi)

T](α,β)ρ
⊗N
t

(
XN
))

dt

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νt(xi)νt(xj)

T](α,β))ρ
⊗N
t

(
XN
))

dt

)

+ ρNt
(
XN
) N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂t (xi)∂xi,α log(ρNt )

(
XN
))

·
(
να,l̂t (xj)∂xj,β log

(
ρ⊗Nt

(
XN
)))

dt

−
ρNt
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,α log
(
ρ⊗Nt

(
XN
)))2

dt.(5.20)

In particular, we can choose a set Ω̃ ⊆ Ω with P(Ω̃) such that equality (5.19) holds for all
(t, x) and the integrands on the right hand side of equality (5.19) are product measurable in
(ω, s, x).
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Proof. Applying Itô’s formula(1.15) to x log(y) we obtain

d
(
ρNt
(
XN
)
log
(
ρ⊗Nt

(
XN
)))

= log
(
ρ⊗Nt

(
XN
))

dρNt
(
XN
)
+

ρNt
(
XN
)

ρ⊗Nt
(
XN
) dρ⊗Nt (

XN
)

+
1

ρ⊗Nt
(
XN
) d〈ρNt (XN), ρ⊗Nt (

XN
)〉

−
ρNt
(
XN
)

2(ρ⊗Nt
(
XN
)
)2

d
〈
ρ⊗Nt

(
XN
)〉

Computing the quadratic variation we find

d
〈
ρ⊗Nt

(
XN
)〉

= d

〈 N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂(t, xi)∂xi,αρ
⊗N
t

(
XN
)
W l̂
t

〉

=
N∑

i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂t (xi)∂xi,αρ

⊗N
t

(
XN
))(

να,l̂t (xj)∂xj,βρ
⊗N
t

(
XN
))

dt

=

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,αρ
⊗N
t

(
XN
))2

dt,

where we used the fact that d⟨W l
t ,W

l̃
t ⟩ = δl,l̃ dt. Now, by similar arguments we obtain

d
〈
ρNt
(
XN
)
, ρ⊗Nt

(
XN
)〉

= d

〈 N∑
i=1

d∑
α=1

m̃∑
l=1

να,lt (xi)∂xi,αρ
N
t

(
XN
)
W l
t ,

N∑
j=1

d∑
β=1

m̃∑
l̂=1

νβ,l̂t (xj)∂xj,βρ
⊗N
t

(
XN
)
W l̂
t

〉

=

N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂t (xi)∂xi,αρ

N
t

(
XN
))(

να,l̂t (xj)∂xj,βρ
⊗N
t

(
XN
))

dt.

Consequently, we arrive at

d
(
ρNt
(
XN
)
log(ρ⊗Nt

(
XN
))

= log
(
ρ⊗Nt

(
XN
))( N∑

i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
t

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂t (xi)∂xi,αρ
N
t

(
XN
)
dW l̂

t

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σt(xi)σt(xi)

T](α,β)ρ
N
t

(
XN
))

dt

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νt(xi)νt(xj)

T](α,β))ρ
N
t

(
XN
))

dt

)



5.3. Relative entropy method in the smooth case 167

+
ρNt
(
XN
)

ρ⊗Nt
(
XN
)( N∑

i=1

∇xi ·
(
(k ∗ ρt)(xi)ρ⊗Nt

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂t (xi)∂xi,αρ
⊗N
t

(
XN
)
dW l̂

t

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σt(xi)σt(xi)

T](α,β)ρ
⊗N
t

(
XN
))

dt

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νt(xi)νt(xj)

T](α,β))ρ
⊗N
t

(
XN
))

dt

)

+
1

ρ⊗Nt
(
XN
) N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂t (xi)∂xi,αρ

N
t

(
XN
))(

να,l̂t (xj)∂xj,βρ
⊗N
t

(
XN
))

dt

−
ρNt
(
XN
)

2
(
ρ⊗Nt

(
XN
))2 m̃∑

l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,αρ
⊗N
t

(
XN
))2

dt.

For the last two term we find

1

ρ⊗Nt
(
XN
) N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂t (xi)∂xi,αρ

N
t

(
XN
))(

να,l̂t (xj)∂xj,βρ
⊗N
t

(
XN
))

dt

−
ρNt
(
XN
)

2
(
ρ⊗Nt

(
XN
))2 m̃∑

l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,αρ
⊗N
t

(
XN
))2

dt

= ρNt
(
XN
) N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,l̂t (xi)∂xi,α log

(
ρNt
(
XN
))(

να,l̂t (xj)∂xj,β log
(
ρ⊗Nt

(
XN
)))

dt

−
ρNt
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,α log
(
ρ⊗Nt

(
XN
)))2

dt,

which with the same measurability arguments as in Lemma 5.14 implies our claim. □

In the next step we want to combine both Lemma 5.14 and Lemma 5.15. We make a
crucial observation that the difference of the last term in equation (5.19) and the last two
terms in equation (5.20) creating a square, i.e.

ρNt
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,α log
(
ρNt
(
XN
)))2

dt

− ρNt
(
XN
) N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

(
να,lt (xi)∂xi,α log

(
ρNt
(
XN
)))

·
(
να,l̂t (xj)∂xj,β log

(
ρ⊗Nt

(
XN
)))

dt
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+
ρNt
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,α log
(
ρ⊗Nt

(
XN
)))2

dt

=
ρNt
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,α log

(
ρNt
(
XN
)

ρ⊗Nt
(
XN
)))2

dt.(5.21)

As a result we obtain the following dynamic

d(ρNt
(
XN
)(

log
(
ρNt
(
XN
))

− log
(
ρ⊗Nt

(
XN
)))

=

(
log

(
ρNt
(
XN
)

ρ⊗Nt
(
XN
))+ 1

)( N∑
i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
t

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l=1

να,lt (xi)∂xi,αρ
N
t

(
XN
)
dW l

s

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σt(xi)σt(xi)

T](α,β)ρ
N
t

(
XN
))

dt

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νt(xi)νt(xj)

T](α,β))ρ
N
t

(
XN
))

dt

)

+
ρNt
(
XN
)

ρ⊗Nt
(
XN
)( N∑

i=1

∇xi ·
(
(k ∗ ρt)(xi)ρ⊗Nt

(
XN
))

dt

−
N∑
i=1

d∑
α=1

m̃∑
l̂=1

να,l̂t (xi)∂xi,αρ
⊗N
t

(
XN
)
dW l̂

s

+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σt(xi)σt(xi)

T](α,β)ρ
⊗N
t

(
XN
))

dt

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νt(xi)νt(xj)

T](α,β))ρ
⊗N
t

(
XN
))

dt

)

+
ρNt
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂t (xi)∂xi,α log

(
ρNt
(
XN
)

ρ⊗Nt
(
XN
)))2

dt.

After integrating over RdN , the divergence free assumption of ν and the stochastic Fubini
Theorem [Ver12] kills the stochastic integrals. Hence, applying Fubini’s theorem (everything
is product measurable) for the Lebesgue integrals we find

H
(
ρNt |ρ⊗Nt

)
=

∫ t

0

∫
RdN

(
log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))+ 1

)( N∑
i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)ρ
N
s

(
XN
))
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+
1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σs(xi)σs(xi)

T](α,β)ρ
N
s

(
XN
))

+
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νs(xi)νs(xj)

T](α,β))ρ
N
s

(
XN
)))

−
ρNs
(
XN
)

ρ⊗Ns
(
XN
)( N∑

i=1

∇xi ·
(
(k ∗ ρs)(xi)ρ⊗Ns

(
XN
))

− 1

2

N∑
i=1

d∑
α,β=1

∂xi,α∂xi,β
(
[σs(xi)σs(xi)

T](α,β)ρ
⊗N
s

(
XN
))

− 1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β
(
[νs(xi)νs(xj)

T](α,β))ρ
⊗N
s

(
XN
)))

+
ρNs
(
XN
)

2

m̃∑
l̂=1

( N∑
i=1

d∑
α=1

να,l̂s (xi)∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
)))2

dXN ds.

We notice that the constant one in the first term vanishes by the divergence structure of the
equation and the integration over the whole domain RdN . In the next step let us use the
cancellation property of σ and ν to rewrite the second order differential operator

1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α∂xj,β

(( m̃∑
l=1

σα,ls (xi)σ
β,l
s (xj)δi,j +

m̃∑
l̂=1

να,l̂s (xi)ν
β,l̂
s (xj)

)
ρNs
(
XN
))

=
1

2

N∑
i,j=1

d∑
α,β=1

∂xi,α

(( m̃∑
l=1

σα,ls (xi)σ
β,l
s (xj)δi,j +

m̃∑
l̂=1

να,l̂s (xi)ν
β,l̂
s (xj)

)
∂xj,βρ

N
s

(
XN
))
.

The same inequality holds if ρN is replaced by ρ⊗N . Hence, if we only look at the terms
containing ν we arrive at the following expression for the coefficient ν,

1

2

N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

∫
RdN

log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∂xi,α(να,l̂s (xi)ν

β,l̂
s (xj)∂xj,βρ

N
s

(
XN
))

dXN

− 1

2

N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

∫
RdN

ρNs
(
XN
)

ρ⊗Ns
(
XN
)∂xi,α(να,l̂s (xi)ν

β,l̂
s (xj)∂xj,βρ

⊗N
s

(
XN
))

dXN

= −1

2

N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

∫
RdN

∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))να,l̂s (xi)ν

β,l̂
s (xj)∂xj,βρ

N
s

(
XN
)
dXN

+
1

2

N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

∫
RdN

∂xi,α

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))να,l̂s (xi)ν

β,l̂
s (xj)∂xj,βρ

⊗N
s

(
XN
)
dXN
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= −1

2

N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

∫
RdN

ρNs
(
XN
)
∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))

· να,l̂s (xi)ν
β,l̂
s (xj)∂xj,β log

(
ρNs
(
XN
))

dXN

+
1

2

N∑
i,j=1

d∑
α,β=1

m̃∑
l̂=1

∫
RdN

ρNs
(
XN
)
∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))

· να,l̂s (xi)ν
β,l̂
s (xj)∂xj,β log(ρ

⊗N
s )

(
XN
)
dXN

= −1

2

m̃∑
l̂=1

∫
RdN

ρNs
(
XN
)( N∑

i=1

d∑
α=1

να,l̂s (xi)∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
)))2

dXN .

Hence, we obtain exactly the same term as in the covariation calculations (5.21) but with a
negative sign. Consequently, they vanish and we do not see any contribution of the common
noise ν in the relative entropy. Let us summarize our result in the following proposition.

Proposition 5.16. Let ρNt , ρ
⊗N
t be given by Proposition 5.13. Then we have the following

representation of the relative entropy

H
(
ρNt |ρ⊗Nt

)
=

∫ t

0

∫
RdN

N∑
i=1

log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∇xi ·

(
1

N

N∑
j=1

k(xi − xj)ρ
N
s

(
XN
))

−
N∑
i=1

ρNs
(
XN
)

ρ⊗Ns
(
XN
)∇xi ·

(
(k ∗ ρs)(xi)ρ⊗Ns

(
XN
))

+
1

2

N∑
i=1

d∑
α,β=1

log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∂xi,α([σs(xi)σs(xi)T](α,β)∂xi,βρNs (XN))

− 1

2

N∑
i=1

d∑
α,β=1

ρNs
(
XN
)

ρ⊗Ns
(
XN
)∂xi,α([σs(xi)σs(xi)T](α,β)∂xi,βρ⊗Ns (

XN
))

dXN ds.

Remark 5.17. This phenomenon seems maybe strange but it somehow shows that the
common noise has no effect on the expected relative entropy E(H

(
ρNt |ρ⊗Nt )

)
as long as both

measures are conditioned on the common noise. This is a crucial observation. If both mea-
sures are viewed under the information of the common noise W , we expect that the particles
behave similar as in the classical mean-field limit setting and this phenomenon is exactly
reflected in the relative entropy.

From the representation we obtain the classical relative entropy bound.
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Corollary 5.18. Let ρNt , ρ
⊗N
t be given by Proposition 5.13. We have the following

relative entropy inequality

H
(
ρNt |ρ⊗Nt

)
≤ − δ

4

N∑
i=1

t∫
0

∫
RdN

ρNs
(
XN
)∣∣∣∣∇xi log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∣∣∣∣2 dXN ds

+
1

δ

N∑
i=1

t∫
0

ρNs
(
XN
)∣∣∣∣ 1N

N∑
j=1

k(xi − xj)− (k ∗ ρs)(xi)
∣∣∣∣2 dXN ds.

Proof. The proof is a standard entropy computation similar to the ones performed
in [LLF23b, PN24]. Applying Young’s inequality and the exchangeability of the particles we
find ∫

RdN

N∑
i=1

log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∇xi ·

(
1

N

N∑
j=1

k(xi − xj)ρ
N
s

(
XN
))

−
N∑
i=1

ρNs
(
XN
)

ρ⊗Ns
(
XN
)∇xi ·

(
(k ∗ ρs)(xi)ρ⊗Ns

(
XN
))

dXN

=

N∑
i=1

∫
RdN

ρNs
(
XN
)
∇xi log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
)) ·

(
1

N

N∑
j=1

k(xi − xj)− (k ∗ ρs)(xi)
)
dXN

≤
N∑
i=1

∫
RdN

δ

4
ρNs
(
XN
)∣∣∣∣∇xi log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∣∣∣∣2

+
ρNs
(
XN
)

δ

∣∣∣∣ 1N
N∑
j=1

k(xi − xj)− (k ∗ ρs)(xi)
∣∣∣∣2 dXN .

Using integration by parts and the ellipticity condition on σ we find

1

2

N∑
i=1

d∑
α,β=1

∫
RdN

log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∂xi,α([σs(xi)σs(xi)T](α,β)∂xi,βρNs (XN))

− 1

2

N∑
i=1

d∑
α,β=1

ρNs
(
XN
)

ρ⊗Ns
(
XN
)∂xi,α([σs(xi)σs(xi)T](α,β)∂xi,βρ⊗Ns (

XN
))

dx

= −1

2

N∑
i=1

d∑
α,β=1

∫
RdN

ρNs
(
XN
)
∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))

· [σs(xi)σs(xi)T](α,β)∂xi,β log
(
ρNs
(
XN
))

+
1

2

N∑
i=1

d∑
α,β=1

ρNs
(
XN
)
∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))

· [σs(xi)σs(xi)T](α,β)∂xi,β log
(
ρ⊗Ns

(
XN
))

dXN



172 Quantitative estimates for the relative entropy with common noise

= −1

2

N∑
i=1

∫
RdN

ρNs
(
XN
) d∑
α,β=1

∂xi,α log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))

· [σs(xi)σs(xi)T](α,β)∂xi,β log
(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))dXN

≤ −δ
2

N∑
i=1

∫
RdN

ρNs
(
XN
)∣∣∣∣∇xi log

(
ρNs
(
XN
)

ρ⊗Ns
(
XN
))∣∣∣∣2 dXN .

Combining both inequalities proves the corollary. □

Theorem 5.19. In the smooth setting we have the following relative entropy bound between
the conditional law of the particles system ρN and the the solution ρ⊗N of the SPDE (5.6),

(5.22) E
(

sup
0≤t≤T

H
(
ρNt |ρ⊗Nt

))
≤ C

(
T, δ, ∥k∥L∞(Rd)

)
,

where C
(
T, δ, ∥k∥L∞(Rd)

)
depends on the finial time T , the ellipticity constant δ and ∥k∥L∞.

Remark 5.20. The results demonstrate that in the smooth case, the relative entropy es-
timates presented by Jabin and Wang [JW18] hold even in the presence of common noise.
However, if our coefficients and interaction kernel are not smooth, we need to resort to
an approximation argument. As discussed in Section 5.4, this becomes achievable when
k ∈ L2(Rd) ∩ L∞(Rd). The challenging aspect lies in handling the non-linear SPDE 5.5.
Consequently, we have reformulated the inquiry about a quantitative relative entropy estimate
with common noise into a question concerning the stability of non-linear SPDEs. It is fore-
seeable that other results derived from the work of Jabin and Wang [JW18] can be adapted to
the common noise setting by similar techniques.

Proof of Theorem5.19. The proof is basically an application of [JW18, Theorem 3].
Let us define the following process

ψ(s, z, y) =
1

16e ∥k∥L∞(Rd)

(k(z − y)− k ∗ ρs(z))

and notice that ∥ψ∥L∞(Rd) ≤
1
2e uniformly in time and the probability space Ω. Then applying

Corollary 5.18 and [JW18, Lemma 1] we find

E
(

sup
0≤t≤T

H
(
ρNt |ρ⊗Nt

))

≤ 1

δ

N∑
i=1

T∫
0

E
(
ρNs
(
XN
)∣∣∣∣ 1N

N∑
j=1

k(xi − xj)− (k ∗ ρs)(xi)
∣∣∣∣2 dx) ds

≤
16e ∥k∥L∞(Rd)

δ

T∫
0

E
(
H
(
ρNs |ρ⊗Ns

))
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+
1

N

N∑
i=1

E
(
log

(∫
RdN

ρ⊗Ns
(
XN
)
exp

(
1

N

N∑
j1,j2=1

ψ(s, xi, xj1)ψ(s, xi, xj2)

)
dx

))
ds.

Additionally, we have the following cancellation property for all s ∈ [0, T ],∫
Rd

ψ(s, z, y)ρs(y) = 0, P-a.e..

At this moment we can repeat the proof of [JW18, Theorem 3], since it is based on the
cancellation property and combinatorial arguments. Hence, it can be performed path-wise
and we arrive at

(5.23) E
(

sup
0≤t≤T

H
(
ρNt |ρ⊗Nt

))
≤

16e ∥k∥L∞(Rd)

δ

t∫
0

E
(
H
(
ρNs |ρ⊗Ns

))
+ C ds.

Finally, Gronwall’s lemma implies

sup
0≤t≤T

E
(
H
(
ρNt |ρ⊗Nt

))
≤

16e ∥k∥L∞(Rd) Te
CT

δ

for some positive constant C > 0. Utilizing this estimate in (5.23) we arrive at

(5.24) E
(

sup
0≤t≤T

H
(
ρNt |ρ⊗Nt

))
≤

16e ∥k∥L∞(Rd) T
2eCT

δ
.

□

An application of the Csiszár–Kullback–Pinsker inequality and the sub-additivity property
proves the following L1 estimate.

Corollary 5.21. In the setting of Theorem 5.19 we obtain

E
(

sup
0≤t≤T

∥∥∥ρr,Nt − ρ⊗rt

∥∥∥2
L1(Rdr)

)
≤ C

N
.

Remark 5.22. We want to end this section with a small comment how to make the calcu-
lations completely rigours. Basically we need to avoid the singularity of the log function. We
accomplish that by replacing the function x log(y) with (x+ ε) log(y+ ε). This guarantees the
application of the Itô’s formula and the vanishing of the stochastic integrals in all calculations.
Obviously we can not longer integrate over the whole space RdN . Therefore a multiplication
with a suitable cut-off function depending on some parameter ε̃ and than integrating over RdN
does the job. Finally we apply all estimates to the approximating system. Since all estimates
will be uniform in the parameters ε, ε̃ everything will be well-defined and we can take the limit
by connecting ε̃ with ε such that all appearing approximation terms vanish. Normally ε needs
to vanish much faster than ε̃, i.e. ε = O(ε̃L) for big enough L > 0 as ε̃→ 0.
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5.4. Stability for the stochastic Fokker–Planck and Liouville equations

The goal of this section is to lower the smoothness assumptions made in Section 5.3 and
obtain the estimate in Theorem 5.19 in the case k ∈ L2(Rd)∩L∞(Rd). Our strategy consists
of mollifying the coefficients, applying Theorem 5.19 and then use the almost everywhere
convergence along a subsequence to conclude the relative entropy estimate. Hence, let us
consider a non-negative smooth function J1 : Rd → R with compact support in the unit ball
and mass one. We replace the coefficients σ, ν, k by its mollified versions. More precisely, we
define for each index α, β, l̃ and ε > 0 the functions

[σt(·)σTt (·)](α,β) ∗ Jε(z) =
∫
Rd

[σt(y)σ
T
t (y)](α,β)J

ε(z − y) dy,

νβ,l̃t ∗ Jε(z) =
∫
Rd

νβ,l̃t (y)Jε(z − y) dy,

k ∗ Jε(z) =
∫
Rd

k(y)Jε(z − y) dy,

ρ0 ∗ Jε(z) =
∫
Rd

ρ0(y)J
ε(z − y) dy,

where Jε(z) = 1
εd
J1
(
z
ε

)
. With abuse of notation, let us denote the mollified coefficients by

kε(z), [σt(z)σ
T
t (z)]

ε
(α,β), [νt(z)ν

T
t (z)]

ε
(α,β) and the mollified initial condition by ρε0. Notice, that

the mollified functions also satisfy the regularity estimates in Assumption 5.1 uniformly in
ε. Additionally, by the properties of mollifiers we have [σt(z)σ

T
t (z)]

ε
(α,β), [νt(z)ν

T
t (z)]

ε
(α,β)

converging to [σt(z)σ
T
t (z)](α,β), [νt(z)ν

T
t (z)](α,β) uniformly on compact sets of Rd and kε, ρε

converge in the L2-norm towards k, ρ0.
Let ρN,ε, ρε be the solution to (5.4), (5.5) with the mollified coefficients. In the next step

we demonstrate that the mollified solutions ρN,ε, ρε converge to ρN , ρ.

Lemma 5.23. Fix N ∈ N and let k ∈ L2(Rd) ∩ L∞(Rd). Then we have the following
convergence between ρN,ε and ρN ,

lim
ε→0

∥∥ρN,ε − ρN
∥∥
L2
FW ([0,T ];H1(RdN ))

= 0.

Proof. We need to verify the stability assumptions of [Kry99, Theorem 5.7]. Since the
coefficients σ, ν are continuous uniform in time, the mollified versions convergence in the
supremums norm. Moreover, by the properties of mollification

(5.25) lim
ε→0

∥∥∥ρ⊗N,ε0 − ρ⊗N0

∥∥∥
L2(RdN )

= 0.

Indeed, for the case N = 2, we obtain∥∥∥ρ⊗2,ε
0 − ρ⊗2

0

∥∥∥
L2(R2d)

=

∫
R2d

|(ρε0(x1)− ρ0(x1))ρ
ε
0(x2) + ρ0(x1)(ρ

ε
0(x2)− ρε0(x2))|2 dx1 dx2

≤ 2 ∥ρε0 − ρ0∥L2(Rd) ∥ρ
ε
0∥L2(Rd) + 2 ∥ρε0 − ρ0∥L2(Rd) ∥ρ0∥L2(Rd)

≤ 4 ∥ρε0 − ρ0∥L2(Rd) ∥ρ0∥L2(Rd)

→ 0, as ε→ 0.
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The dN -dimensional case follows by an induction argument. Hence, we only need to take
care of the drift term. Define

f(XN , u) =
N∑
i=1

∇xi ·
(

1

N

N∑
j=1

k(xi − xj)u

)
, fε(x, u) =

N∑
i=1

∇xi ·
(

1

N

N∑
j=1

kε(xi − xj)u

)

for u ∈ L2
FW ([0, T ];H1(RdN )) and observe that

∥f ε − f∥L2
FW ([0,T ];H−1(RdN )) ≤

1

N

N∑
i,j=1

∥(kε(xi − xj)− k(xi − xj))u∥L2
FW ([0,T ];L2(RdN )) .

By the properties of mollification we can extract a subsequence, which we do not rename,
such that lim

ε→0
kε = k a.e. and

|(kε(xi − xj)− k(xi − xj))u|2 ≤ 2 ∥k∥2L∞(Rd) |u|
2.

Hence, by the dominated convergence theorem we obtain

lim
ε→0

∥f ε − f∥L2
FW ([0,T ];H−1(RdN )) = 0

and we can apply [Kry99, Theorem 5.7.]. □

Lemma 5.24. Let k ∈ L2(Rd)∩L∞(Rd). Then, there exists a sequence of smooth solutions
we have the following convergence between ρε and ρ,

lim
ε→0

∥ρε − ρ∥L2
FW ([0,T ];H1(Rd)) = 0.

Proof. The proof is based on the evolution of the L2-norm similar to Proposition 5.9.
By equation (5.17) we know that the Picard iteration (ρn, n ∈ N) convergence. Hence, it is
sufficient to find a smooth approximation for ρn,ε for each fixed n ∈ N. Consequently, let ρn,ε
be the solution of the Picard iteration with mollified coefficients

dρn,εt = ∇ · ((kε ∗ ρn−1,ε
t )ρn,εt )) dt−∇ · (νεt ρn,ε dWt)

+
1

2

d∑
α,β=1

∂xi,α∂xi,β

(
([σtσ

T
t ]
ε
(α,β) + [νεt (ν

ε
t )

T](α,β))ρ
n,ε
t

)
dt.

Then,

∥ρε − ρ∥L2
FW ([0,T ];L2(Rd)) ≤∥ρn − ρ∥L2

FW ([0,T ];L2(Rd)) + ∥ρε,n − ρε∥L2
FW ([0,T ];L2(Rd))

+ ∥ρε,n − ρn∥L2
FW ([0,T ];L2(Rd)) .(5.26)
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The first term vanishes in the limit for n→ ∞ by (5.17) and the second by similar arguments.
Notice that ρε,n − ρn solves the following SPDE

d(ρn,εt − ρnt )

= ∇ · ((kε ∗ ρn−1,ε
t )ρn,εt − (k ∗ ρn−1

t )ρnt ) dt−∇ · (((νεt − νt)ρ
n + νεt (ρ

n,ε − ρnt )) dWt)

+
1

2

d∑
α,β=1

∂xi,α∂xi,β

(
([σtσ

T
t ]
ε
(α,β) + [νεt (ν

ε
t )

T](α,β) − [σtσ
T
t ](α,β) + [νtν

T
t ](α,β))ρ

n
t

+ [σtσ
T
t ]
ε
(α,β) + [νεt (ν

ε
t )

T](α,β)(ρ
n,ε
t − ρnt )

)
dt,

where the coefficients σε, νε, σ, ν all satisfy Assumptions 5.1. Indeed, the mollification pre-
serves the uniform bounds and the divergence free property. By the non-negativity of the
mollifier, the ellipticity

d∑
α,β=1

[σsσ
T
s (x)]

ε
(α,β)λαλβ =

∫
Rd

Jε(x− y)
d∑

α,β=1

[σsσ
T
s (x)](α,β)λαλβ dy ≥ δ|λ|2

also holds. Utilizing the linearity we can perform the same steps as in Proposition 5.9 to
obtain

∥ρε,nt − ρnt ∥
2
L2(Rd) − ∥ρε,n0 − ρn0∥

2
L2(Rd)

≤ −2

t∫
0

∫
Rd

((kε ∗ ρn−1,ε
s )ρn,εs − (k ∗ ρn−1

s )ρns ) · ∇(ρn,εs − ρns ) dz ds

−
d∑

α,β=1

t∫
0

∫
Rd

[σsσ
T
s ]
ε
(α,β)∂xi,β (ρ

n,ε
s − ρns )∂xi,α(ρ

n,ε
s − ρns ) dz ds

+
δ

2

t∫
0

∥∇(ρn,εs − ρns )∥
2
L2(Rd) ds+ C(d, δ)

t∫
0

∥ρn,εs − ρns ∥
2
L2(Rd) ds

+
d∑

α,β=1

t∫
0

∫
Rd

([σsσ
T
s ]
ε
(α,β) + [νεs(ν

ε
s)

T](α,β) − [σsσ
T
s ](α,β) + [νsν

T
s ](α,β))ρ

n
s dz ds

+
m̃∑
l̂=1

t∫
0

∫
Rd

∣∣∣∣ d∑
β=1

∂xi,β (ν
β,l̂,ε
s − νβ,l̂s )ρns

∣∣∣∣2 dz ds
+ 2

m̃∑
l̂=1

d∑
β=1

t∫
0

∫
Rd

ρns (ρ
n,ε
s − ρns )∂xi,β (ν

β,l̂,ε
s − νβ,l̂s ) dz dW l̂

s.

At the moment we can ignore the last term, since it will vanish after taking the expectation.
For the penultimate term we use Lemma 5.8. Let us start with the case d ≥ 3 and denote by
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2∗ = 2d/(d− 2) the Sobolev exponent. Then for all R ∈ N we find

E
( m̃∑
l̂=1

t∫
0

∫
Rd

∣∣∣∣ d∑
β=1

∂xi,β (ν
β,l̂,ε
s − νβ,l̂s )ρns

∣∣∣∣2 dz ds)

≤
m̃∑
l̂=1

d∑
β=1

E
( t∫

0

∫
B(0,R)

|(νβ,l̂,εs − νβ,l̂s )ρns |2 +
∫
B(0,R)c

|(νβ,l̂,εs − νβ,l̂s )ρns |2 dz ds
)

≤
m̃∑
l̂=1

d∑
β=1

TC
(
∥ρ0∥L2(Rd)

) ∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+ CE
( t∫

0

∥ρns ∥
4

d+2

L1(B(0,R)c)
∥ρns ∥

2d
d+2

L2∗ (Rd)
ds

)

≤
m̃∑
l̂=1

d∑
β=1

TC
(
∥ρ0∥L2(Rd)

) ∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+
C

R
8

d+2

E
( t∫

0

∥∥ρns | · |2∥∥ 4
d+2

L1(Rd)
∥ρns ∥

2d
d+2

H1(Rd)
ds

)

≤
m̃∑
l̂=1

d∑
β=1

TC
(
∥ρ0∥L2(Rd)

) ∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+
CT

2
d+2

R
8

d+2

T∫
0

E
(∥∥ρns | · |2∥∥2L1(Rd)

) 2
d+2

∥ρns ∥
2d
d+2

L2
FW ([0,T ];H1(Rd))

≤
m̃∑
l̂=1

d∑
β=1

TC
(
∥ρ0∥L2(Rd)

) ∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+ C(ρ0, T )R
− 8

d+2 ,

where we used the interpolation inequality for Lp spaces and Assumption 5.1 (2) in the third
step, the Sobolev embedding in the fourth step and finally inequality (5.15) and Lemma 5.8
in the last step. In the case d = 2 we obtain a similar estimate by using the Lq-bound
on ρn [Leo17, Theorem 12.33] for all q ∈ [2, ,∞). Utilizing the same split of domains and
applying Lemma 5.8 we obtain

d∑
α,β=1

E
( t∫

0

∫
Rd

([σsσ
T
s ]
ε
(α,β) + [νεs(ν

ε
s)

T](α,β) − [σsσ
T
s ](α,β) + [νsν

T
s ](α,β))ρ

n
s dz ds

)

≤ T
d∑

α,β=1

( m̃∑
l̂=1

∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+
∥∥∥[σsσTs ]ε(α,β) − [σsσ

T
s ](α,β)

∥∥∥
C1(B(0,R))

)
+ C(ρ0)T

1
2R−2.
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Recall that [σsσ
T
s ]
ε
(α,β) is still elliptic and therefore

d∑
α,β=1

t∫
0

∫
Rd

[σsσ
T
s ]
ε
(α,β)∂xi,β (ρ

n,ε
s − ρns )∂xi,α(ρ

n,ε
s − ρns ) dz ds ≥ δ

t∫
0

∫
Rd

|∇(ρn,εs − ρns )|2 dz ds.

Combing the last three inequalities we obtain

E
(
∥ρε,nt − ρnt ∥

2
L2(Rd)

)

≤ E
(
− δ

2

t∫
0

∫
Rd

|∇(ρn,εs − ρns )|2 dz ds+ C(ρ0)T
1
2R−1

− 2

t∫
0

∫
Rd

((kε ∗ ρn−1,ε
s )ρn,εs − (k ∗ ρn−1

s )ρns ) · ∇(ρn,εs − ρns ) dz ds

+

m̃∑
l̂=1

d∑
β=1

TC
(
∥ρ0∥L2(Rd)

) ∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+ C(ρ0, T )R
− 4

d+2

+ T
d∑

α,β=1

( m̃∑
l̂=1

∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+
∥∥∥[σsσTs ]ε(α,β) − [σsσ

T
s ](α,β)

∥∥∥
C1(B(0,R))

))
.

We notice that by the mollification properties the last terms will vanish. The only difficulty
remaining is the drift term. Young’s inequality implies

− 2

t∫
0

∫
Rd

((kε ∗ ρn−1,ε
s )ρn,εs − (k ∗ ρn−1

s )ρns ) · ∇(ρn,εs − ρns ) dz ds

≤
t∫

0

∫
Rd

1

2δ
|(kε ∗ ρn−1,ε

s )ρn,εs − (k ∗ (ρn−1
s )ρns )|2 +

δ

2
|∇(ρn,εs − ρns )|2 dz ds.

Notice, that the last term can be absorbed by the diffusion. For the first term we obtain

1

2δ

t∫
0

∫
Rd

|(kε ∗ ρn−1,ε
s )ρn,εs − (k ∗ (ρn−1

s )ρns )|2 dz ds

≤ 2

δ

t∫
0

∫
Rd

|(kε − k) ∗ ρn−1,ε
s )ρn,εs |2 + (k ∗ (ρn−1,ε

s − ρn−1
s ))ρn,εs

+ k ∗ ρn−1
s (ρn,εs − ρns )|2 dz ds

≤ 2C(ρ0)

δ

(
T ∥kε − k∥2L2(Rd) +

t∫
0

∥∥ρn−1,ε
s − ρn−1

s

∥∥2
L2(Rd)

ds+

t∫
0

∥ρn,εs − ρns ∥
2
L2(Rd) ds

)
,
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where we used Lemma 5.7 and Young’s inequality for convolutions. Substituting this inequal-
ity and applying Gronwall’s lemma we find

E
(
∥ρε,nt − ρnt ∥

2
L2(Rd)

)
≤
(
A(ν, σ,R, ε) +

t∫
0

E
( ∥∥ρn−1,ε

s − ρn−1
s

∥∥2
L2(Rd)

)
ds

)
eCT ,(5.27)

where

A(ν, σ,R, ε)

=

m̃∑
l̂=1

d∑
β=1

TC
(
∥ρ0∥L2(Rd)

) ∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+ C(ρ0, T )R
− 8

d+2

+ T

d∑
α,β=1

( m̃∑
l̂=1

∥∥∥νβ,l̂,εs − νβ,l̂s

∥∥∥
C1(B(0,R))

+
∥∥∥[σsσTs ]ε(α,β) − [σsσ

T
s ](α,β)

∥∥∥
C1(B(0,R))

)

+ C(ρ0)T
1
2R−2 +

2C(ρ0)

δ
T ∥k − kε∥2L2(Rd) + ∥ρε,n0 − ρn0∥

2
L2(Rd) .

Applying the inequality n times we arrive at

E
(
∥ρε,nt − ρnt ∥

2
L2(Rd)

)
≤ A(ν, σ,R, ε)eCT

n−1∑
j=0

T jeCTj

j!
+
eCTn

n!
∥ρε0 − ρ0∥2L2(Rd) ,

which implies

sup
n∈N

E
(
∥ρε,nt − ρnt ∥

2
L2(Rd)

)
≤ A(ν, σ,R, ε)eCT eTe

CT
+ C ∥ρε0 − ρ0∥2L2(Rd)

and finally the convergence

lim sup
ε→0

sup
n∈N

∥ρε,n − ρn∥L2
FW ([0,T ];L2(Rd)) = 0,

by taking first ε → 0 in combination with (5.25) and the properties of mollifiers, and then
R→ ∞. Together with inequality (5.26) and the subsequent comment, this implies

lim sup
ε→0

∥ρε − ρ∥L2
FW ([0,T ];L2(Rd)) = 0.

Applying [Kry99, Theorem 5.1], the L2-bound (5.9) and k ∈ L2(Rd) we arrive at

lim sup
ε→0

∥ρε − ρ∥L2
FW ([0,T ];H1(Rd)) ≤ lim sup

ε→0
∥k ∗ (ρε − ρ)ρ∥L2

FW ([0,T ];L2(Rd))

≤ C lim sup
ε→0

∥k ∗ (ρε − ρ)∥L2
FW ([0,T ];L∞(Rd))

≤ C ∥k∥L2(Rd) lim sup
ε→0

∥ρε − ρ∥L2
FW ([0,T ];L2(Rd))

= 0.

□

Finally, we can present the analogous result to [JW18, Theorem 1] for bounded kernels.
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Theorem 5.25. Let k ∈ L2(Rd)∩L∞(Rd), ρN be a solution to the Liouville equation (5.4)
and ρ⊗N be a solution to the chaotic SPDE (5.6). Then, we have the following relative entropy
bound

(5.28) E
(

sup
0≤t≤T

H
(
ρNt |ρ⊗Nt

))
≤ C

(
T, δ, ∥k∥L∞(Rd)

)
for some non-negative constant C depending on ∥k∥L∞(Rd).

Proof. By Lemma 5.23 and Lemma 5.24 we know there exists a subsequence, which we
do not rename such that ρN,ε and ρ⊗N,ε converge almost everywhere on Ω×[0, T ]×RdN . Hence,
by the lower semicontinuity of the relative entropy, the estimate ∥kε∥L∞(Rd) ≤ C ∥k∥L∞(Rd)

and Theorem 5.19 our claim follows. □

As in the smooth case, we can also use the Csiszár–Kullback–Pinsker inequality and sub-
additivity property to prove L1-convergence of every r-marginal.

Corollary 5.26. In the setting of Theorem 5.25, we obtain

E
(

sup
0≤t≤T

∥∥∥ρr,Nt − ρ⊗rt

∥∥∥2
L1(Rdr)

)
≤ Cr

N

for every r ∈ N.

5.5. Conditional propagation of chaos

At the moment it is unclear whether the convergence results in Section 5.4 implies condi-
tional propagation of chaos in the sense of weak convergence of empirical measures. In this
section we will demonstrate some useful comparison results between the classical propagation
of chaos towards a deterministic measure and the conditional propagation of chaos in the
setting of common noise.

We demonstrate the following conditional exchangeability for the interacting particle sys-
tem (5.2), which is based on [CF16, Lemma 23] adjusted to our setting.

Lemma 5.27. Let t ≥ 0 and (Xi
t , i = 1, . . . , N) be given by (5.2). Then for any permutation

ϑ : {1, . . . , N} 7→ {1, . . . , N} the vector of random variables (Xi
t , i = 1, . . . , N) satisfies

E(h(X1
t , X

2
t , . . . , X

N
t )|FW

t ) = E(h(Xϑ(1)
t , X

ϑ(2)
t , . . . , X

ϑ(N)
t )|FW

t )

for every h ∈ Cb(RdN ).

Remark 5.28. In particular the condition (5.30) in Lemma 5.29 is fulfilled with G = FW
t .

Proof. Consider the particle system (5.2) without common noise. Then by [HRZ24] this
SDE has a strong solution. Thus, we know that the particle system (5.2) must also have a
strong solution. Additionally, by the exchangeability of the initial condition, the Yamada–
Watanabe theorem tells us that strong uniqueness implies uniqueness in law and therefore we
obtain

Law
(
((X1

t , X
2
t , . . . , X

N
t ), (W i

t , i = 1, . . . , m̃))
)

= Law
(
((X

ϑ(1)
t , X

ϑ(2)
t , . . . , X

ϑ(N)
t ), (W i

t , i = 1, . . . , m̃))
)
.

(5.29)
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Now choose a cylinder set A ∈ FW
t , i.e.

A = (W 1
t1,1)

−1(A1,1) ∩ · · · ∩ (W 1
t1,r1

)−1(A1,r1) ∩ (W 2
t2,1)

−1(A2,1) ∩ · · · ∩ (W m̃
tm̃,rm̃

)−1(Am̃,rm̃)

for r1, . . . , rm̃ ∈ N, ti,γ ∈ [0, t] for i = 1, . . . , m̃, γ = 1, . . . ,max(r1, . . . , rm̃). These cylinder

set are closed under intersections and generate the σ-algebra FW
t . For f ∈ Cb(RdN ) we find

E(1Ah(X1
t , X

2
t , . . . , X

N
t )) = E(1Ah(X

ϑ(1)
t , X

ϑ(2)
t , . . . , X

ϑ(N)
t ))

by the representation of A as the intersection of inverse images of W and the uniqueness of
laws (5.29). Consequently, the conditional expectations must coincide. □

Let us partially transfer the convergence results by Sznitman’s Proposition 1.2 to the case
of random limiting measure.

Lemma 5.29. Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra of F . Let
ZN = (Z1,N , . . . , ZN,N ) be a RdN -valued exchangeable vector of measurable variables and
f1,N ∈ L1

G(L
1(Rd)), f2,N ∈ L1

G(L
1(R2d) be the conditional densities given the σ-algebra G

of the random variables Z1,N , (Z1,N , Z2,N ), respectively. Additionally, suppose there exists a
measurable function g ∈ L1

G(L
1(Rd)) ∩ L∞

G (L1(Rd)) such that

lim
N→∞

(∥∥f1,N − g
∥∥
L1
G(L

1(Rd))
+
∥∥f2,N − g ⊗ g

∥∥
L1
G(L

1(R2d))

)
= 0

and for any bounded continuous function h ∈ Cb(Rd) the equality

(5.30) E(h(Z1,N )|G) = E(h(Zi,N )|G), for all i ≤ N

holds. Then, the empirical measure converges to g in the sense of random measures equipped
with the topology of weak convergence. More precisely, for any bounded continuous function
φ ∈ Rd we have 〈

1

N

N∑
i=1

δZi,N , φ

〉
d−−−−→

N→∞
⟨g, φ⟩,

where the convergence is in the sense of distributions.

Proof. Let φ : Rd 7→ R be a bounded continuous function. We show L2-converges, which
then implies converges in distribution. Expanding the square we find

E
(∣∣∣∣〈 1

N

N∑
i=1

δZi,N , φ

〉
− ⟨g, φ⟩

∣∣∣∣2)

=
1

N2

N∑
i,j=1

E(φ(Zi,N )φ(Zj,N ))− 2
1

N

N∑
i=1

E(φ(Zi,N )⟨g, φ⟩) + E(⟨g, φ⟩2)

=
1

N
E(φ(Zi,N )2) +

(N2 −N)

N2
E(φ(Z1,N )φ(Z2,N ))

− 2E(E(φ(Z1,N )|G)⟨g, φ⟩) + E(⟨g, φ⟩2).
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Notice that φ is bounded and therefore the first term vanishes. The factor of the second term
converges to one and for the expected value we obtain

|E(φ(Z1,N )φ(Z2,N ))− E(⟨φ, g⟩2)| = |E(φ(Z1,N )φ(Z2,N )|G)− E(⟨φ, g⟩2)|
= |E(⟨φ⊗ φ, f2,N ⟩)− E(⟨φ⊗ φ, g ⊗ g⟩)|

≤ ∥φ∥2L∞(Rd

∥∥f2,N − g ⊗ g
∥∥
L1
G(L

1(R2d))

→ 0, as N → ∞.

For the third term we find

|E(E(φ(Z1,N )|G)⟨φ, g⟩)− E(⟨φ, g⟩2)| = |E((⟨φ, f1,N ⟩ − ⟨φ, g⟩)⟨φ, g⟩)|
≤ ∥φ∥L∞(Rd)

∥∥f1,N − g
∥∥
L1
G(L

1(Rd))
∥⟨φ, g⟩∥L∞

G

≤ ∥φ∥2L∞(Rd) ∥g∥L∞
G (L1(Rd))

∥∥f1,N − g
∥∥
L1
G(L

1(Rd))

→ 0, as N → ∞.

Combining the two convergences proves the lemma. □

Combining Lemma 5.29, Lemma 5.27 and Theorem 5.25 we obtain conditional propagation
of chaos.

Corollary 5.30. Let k ∈ L2(Rd)∩L∞(Rd), then conditional propagation of chaos holds
for the interacting particle system (5.2) towards the random measure with density ρ given by
the solution of the SPDE (5.5).

5.6. Comments

At the conclusion of this thesis, it is fitting to reflect on the outcomes and implications of
our study.

The results in this chapter, while significant, appear somewhat unsatisfactory in that
the inclusion of common noise did not provide a regularizing effect or introduce new terms
in the relative entropy that originate from the common noise. Together with Lemma A.36,
our findings essentially extend the work of Jabin and Wang [JW18] to a bounded setting.
This raises an intriguing question about the utility of adding common noise to the system:
Does it influence the mean-field limit? Could transport noise have a different impact? These
questions remain open and validates further investigation.

One potential explanation is that the scaling in mean-field limits might be too strong. To
achieve term cancellation in the relative entropy, it is necessary to consider the conditional
Liouville equation rather than the original system. Remark 5.17 indicates that we essentially
freeze the common noise in all calculations. Nonetheless, Lemma 5.29 shows that considering
this frozen scenario is sufficient to demonstrate propagation of chaos. At the beginning of
this project, we anticipated that including common noise in the relative entropy framework
would yield novel insights, freeing us from classical methods. However, we found ourselves
returning to these classical methods, perhaps due to our focus on the conditional Liouville
equation. Future research could explore not considering the conditional Liouville equation,
potentially revealing new and interesting phenomena.
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But what about fluctuations or large deviation principles? We know that relative entropy
is crucial in large deviation theory [HHMT24]. Understanding how our results contribute to
this context and how they can be applied is an interesting challenge. Comparing our findings
with large deviation principles, which were established by mean-field games, it still remains
unclear how to connect these results. Thus, deeper analysis of regularization by common
noise is necessary.

Our study also highlights the importance of SPDE stability. Often, a priori estimates can
be achieved, or, as demonstrated in this thesis, results can be proven at an intermediate level,
as shown by the top arrow of Figure 1. However, the left arrow in Figure 1 is not well-studied
in the mean-field community. For example, Jabin and Wang [JW18] avoid this by restricting
the domain to the torus and requiring so-called entropy solutions [JW18, Definition 2], but
uniqueness in this class is still lacking. From a probabilistic viewpoint, this suggests that
for the sequence (Xε, ε > 0), we can show tightness and that it solves the limiting problem,
but not that the problem itself is uniquely solvable due to the lack of uniqueness in the
class of entropy solutions. This challenge restricts us to k ∈ L2(Rd)∩L∞(Rd) in this chapter,
preventing us from achieving the desired regularity k ∈W−1,∞ from Jabin and Wang [JW18],
without additional assumptions and a torus setting.

Finally, throughout this thesis, we have explored mean-field limits, propagation of chaos,
PDEs, and SPDEs. However, when examining the limiting procedure, it appears that the
mean-field limit term (1.25) introduced in Chapter 1 is always present, lurking behind various
methods. We have approached it from different perspectives: convergence in probability in
Chapter 2, and through relative entropy in Chapters 3 and 5. Each method has its advantages
depending on the specific kernel k, which we hope have been clearly presented. The ultimate
goal from our perspective, is to develop a unifying theory that integrates these approaches
and provides a comprehensive understanding of the quantity described in (1.25).



Chapter A

Miscellanea

For completion purposes we present some useful inequalities and embeddings, which are
needed throughout the thesis. Most of them are well-known. We refer to [LL01, Fol99, AF03,
Eva10, Emm13, Leo17] for the proofs. Additionally, we recall some stochastic inequalities and
the stochastic Fubini theorem. Finally, we demonstrate a nice result about relative entropy
and conditional densities in Section A.6.

A.1. Inequalities

Lemma A.1 (Young’s inequality with epsilon). Let a > 0, b > 0, ε > 0, p > 1, q > 1 and
1
p +

1
q = 1. Then

ab ≤ ε

p
ap +

ε
− q

p bq

q
.

Theorem A.2 (Minkowski’s inequality). Let 1 ≤ p < ∞. Suppose that Ω and Ω′ are
two spaces with σ-finite measures µ and ν, respectively. Let f be a non-negative function on
Ω× Ω′, which is µ× ν measurable. Then(∫

Ω

(∫
Ω′
f(x, y) dν(y)

)p
dµ(x)

) 1
p

≤
∫
Ω′

(∫
Ω
f(x, y)p dµ(x)

) 1
p

dν(y).

The equation should be understood in the sense that the finiteness of the right-hand side implies
the finiteness of the left-hand side.

Lemma A.3 (Interpolation inequality). Let U ⊆ Rd be a measurable set. Let 1 ≤ p ≤ q ≤
r ≤ ∞ and

1

q
=
θ

p
+

1− θ

r
, that is, θ =

1/q − 1/r

1/p− 1/r
.

Moreover, suppose f ∈ Lp(U) ∩ Lr(U). Then f ∈ Lq(U) and

∥f∥Lq(U) ≤ ∥f∥θLp(U) ∥f∥
1−θ
Lr(U) .

Theorem A.4 (Young’s Inequality for integrals). Let p, q, r ≥ 1 and 1
p +

1
q +

1
r = 2. Let

f ∈ Lp(Rd), g ∈ Lq(Rd) and h ∈ Lr(Rd). Then∣∣∣∣∫
Rd

f(x)(g ∗ h)(x) dx
∣∣∣∣ = ∣∣∣∣∫

Rd

∫
Rd

f(x)g(x− y)h(y) dy dx

∣∣∣∣
≤ C(p, q, r, d) ∥f∥Lp(Rd) ∥g∥Lq(Rd) ∥h∥Lr(Rd) ,

where C(p, q, r, d) is a constant which depends on the parameters p, q, r, d.

184
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Corollary A.5 (Young’s inequality for convolution). A special case of Theorem A.4
above is the following inequality. For g ∈ Lq(Rd) and h ∈ Lr(Rd) we have

∥g ∗ h∥Lp(Rd) ≤ C(p, q, r, d) ∥g∥Lq(Rd) ∥h∥Lr(Rd)

with 1
q +

1
r = 1 + 1

p .

Theorem A.6 (Hardy–Littlewood–Sobolev inequality). Let p, q > 1 and 0 < σ < n with
1
p +

σ
n +

1
q = 2. Let f ∈ Lp(Rd) and g ∈ Lq(Rd). Then there exists a sharp constant C(d, σ, p),

independent of f and g such that∫
Rn

∫
Rn

|f(x)||g(y)|
|x− y|σ

dx dy ≤ C(d, σ, p) ∥f∥Lp(Rd) ∥g∥Lq(Rd) .

Alternative the conditions on p, q, σ, d can be rephrased as p, q > 1, 1 < 1
p + 1

q < 2 and

σ = d
(
p−1
p + q−1

q

)
.

Theorem A.7 (Hardy–Littlewood–Sobolev inequality (second version)). Let 0 < σ < n,
1 < p < q <∞ and σ = d(1− 1/p+ 1/q). Then we have the estimate(∫

Rd

∣∣∣∣ 1

|x− y|σ
f(y)

∣∣∣∣q dy) 1
q

≤ C(p, q) ∥f∥Lp(Rd) .

Theorem A.8 (Sobolev inequality). Let 1 ≤ p < d and p∗ = dp
d−p . Then there exist a

constant C = C(p, d) such that for all u ∈W 1,p(Rd)

∥u∥Lp∗ (Rd) ≤ C ∥∇u∥Lp(Rd)

holds true.

Theorem A.9. Let U ⊂ Rd be open with compact closure in Rd and Lipschitz continuous
boundary. Let m, l ∈ N0 and 1 ≤ p, q <∞. Then for m ≥ l and m− d

p ≥ l − d
q the following

embeddings are continuous

Wm,p(U) ↪→W l,q(U).

Furthermore, if the inequalities on m, l, p, q are strict, then the above embedding is compact.

Theorem A.10 (Sobolev embedding in the case kp = d). Let k, n ∈ N be such that n > m.
Then there exists a positive constant C = C(d, k) such that for every function u ∈ W k,p(Rd)
with p = d/k

∥u∥Lq(Rd) ≤ Cq
1−m

n
+ 1

q ∥u∥Wk,p(Rd)

holds true for every q ≤ p <∞.

Theorem A.11 (Morrey’s inequality in W 1,p(Rd)). Let d ∈ N and d < p < ∞. Then

W 1,p(Rd) ↪→ C0,1−d/p(Rd) and W 1,p(Rd) ↪→ L∞(Rd). Hence, for a function u ∈W 1,p(Rd) we
can find a representative ū such that ū = u a.e. and ū ∈ C

0,1−d/p
b (Rd).
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Theorem A.12 (Rellich–Kondrachov Compactness Theorem). Let U ⊂ Rd be an open
set with compact closure in Rd, Lipschitz continuous boundary, and 1 ≤ p < ∞. Then the
following embedding

W 1,p(U) ↪→ Lp(U)

is compact. Furthermore, if 1 ≤ p ≤ d and p∗ = dp
d−p is the Sobolev exponent, then the

embedding

W 1,p(U) ↪→ Lq(U)

is compact for each 1 ≤ q < p∗.

For the next theorem we need the following notation. Let r ∈ [−∞,∞]\{0} and for r < 0
we set l := ⌊−d

r ⌋ and a := −l − d
r ∈ [0, 1). For a function u : Rd → R we define

|u|r =


∥u∥Lr(Rd) if r > 0,∥∥∇lu

∥∥
L∞(Rd)

if r < 0 and a = 0,

|∇lu|C0,a(Rd) if r < 0 and 0 < a < 1,

provided that the right-hand side is well-defined.

Theorem A.13 (Gagliardo–Nirenberg interpolation). Let 1 ≤ p, q ≤ ∞, let 0 ≤ θ ≤ 1
and let r be such that

1− θ

(
1

p
− 1

d

)
+
θ

q
=

1

r
∈ (−∞, 1].

Then there exists a constant C = C(n, p, q, θ) such that

|u|r ≤ C ∥∇u∥1−θLp(Rd) ∥u∥
θ
Lq(Rd)

for every u ∈ Lq(Rd)∩W 1,p(Rd), with the exception that if p < d and q = ∞ we assume that
u vanishes at infinity, while if p = d we take 0 < θ ≤ 1.

A.2. Mollification

For U ⊆ Rd open we introduce the following set

Uε := {z ∈ U | dist(x, ∂U) > ε}.

And for U = Rd we define Rdε := Rd.

Definition A.14. Define the standard mollifier J ∈ C∞
c (Rd) by

J(z) :=

{
C exp

(
1

|z|2−1

)
, if |z| < 1,

0, if |z| ≥ 1,

the constant C is selected such that
∫
Rd J(z) dz = 1. For each ε > 0 let

Jε(z) :=
1

εn
J
(z
ε

)
.
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The functions Jε ∈ C∞
c (Rd) satisfy∫

Rd

Jε(z) dz = 1, supp(Jε) ⊆ B(0, ε).

Definition A.15. If f : U → R is locally integrable, we define the mollification of f as

fε(z) := (f ∗ Jε)(z) for z ∈ Uε.

In particular

fε(z) =

∫
U
Jε(z − y)f(y) dy =

∫
B(0,ε)

Jε(y)f(z − y) dy.

Theorem A.16 (Universal mollification). Let U ⊆ Rd be open, f ∈ Lp(U) for some
1 ≤ p <∞ and h ∈ L1(U) with

∫
U hdx = 1. Set fε = hε ∗ f with hε(x) = ε−nh(x/ε). Then

fε ∈ Lp(Rd) and ∥fε∥p ≤ ∥h∥1 ∥f∥p ,

fε → f strongly in Lp(Rd) as ε→ 0.

If h ∈ C∞
c (U), then fε ∈ C∞(Uε) and

Dαfε = (Dαhε) ∗ f.

Remark A.17. In particular for h = J we obtain fε ∈ C∞(Uε)

fε → f strongly in Lp(U) as ε→ 0

fε → f P-a.s. on U.

Definition A.18 (Cut-off function). Fix a function ζ ∈ C∞
c (B(0, 2)) such that ζ = 1 on

B(0, 1) and 0 ≤ ζ ≤ 1. Then

ζn(z) := ζ
( z
n

)
, n = 1, 2, . . .

is called a sequence of cut-off functions for Rd. In addition, for a multi-index γ we have the
following bound

|∂γζn| ≤ ∥∂γζ∥L∞(B(0,2)) n
−|γ|

1B(0,2n)\B(0,n),

where |γ| := γ1 + . . .+ γn.

From the previous theorem we can guess that a function u ∈ W 1,∞(Rd) is actually Lips-
chitz continuous. The next theorem shows us that even the converse is true.

Theorem A.19. Let u ∈ L1
loc(Rd). Then u has a representative that is bounded and

Lipschitz continuous if and only if u ∈W 1,∞(Rd).

A.3. Gronwall’s inequalities and fundamental lemma of variations

Lemma A.20 (Gronwall’s inequality integral version). Let I denote an interval on the real
line of the form [a,∞), [a, b], [a, b) with a < b. Let u be a non-negative, absolutely continuous
function on I, which satisfies for a.e. t ∈ I the differential inequality

d

dt
u(t) ≤ c(t) + λ(t)u(t),
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where c, λ are non-negative, summable functions on I. Then u satisfies

u(t) ≤ exp

 t∫
a

λ(s) ds

u(0) + t∫
a

c(s) ds


for all t ∈ I. In particular, if α, c are non-negative constant we obtain

u(t) ≤ e(t−a)λ(u(a) + (t− a)c).

Lemma A.21 (Gronwall’s inequality integral version). Let I denote an interval on the real
line of the form [a,∞), [a, b], [a, b) with a < b. Let u be a non-negative, measurable function
such that for a.e. t ∈ I

t∫
a

|u(s)| ds <∞

and

u(t) ≤ c(t) +

t∫
a

λ(s)u(s) ds

for some measurable and bounded functions c, λ : I → R with λ ≥ 0. Then for a.e. t ∈ I

u(t) ≤ c(t) +

t∫
a

exp(Λ(t)− Λ(s))λ(s)c(s) ds

where Λ(t) :=
t∫
a
λ(z) dz. In particular, if c(t) = C and λ(t) = A for some non-negative

constants C,A, then

u(t) ≤ C exp(A(t− a)).

If in addition the function u is continuous, the statement holds for all t ∈ I.

Remark A.22. We will mostly use Gronwall’s lemma for the interval [0, T ] with T > 0 to
show that u is bounded in some appropriate sense. The special case C = 0 and u non-negative
provides us with u = 0 a.e.

Lemma A.23 (Comparison principle). Let u : J × R → R be a continuous and locally
Lipschitz in x, J = [0, T ], ρ : J → R a continuous and almost everywhere differentiable
function, which satisfies the differential equation d

dtρ(t) ≤ u(t, ρ(t)), t ∈ J with ρ(0) ≤ v0.

Furthermore, let v ∈ C1(J,R) be the solution of the following differential equation{
d
dtv(t) = u(t, v(t)),

v(0) = v0,

which should exist on J . Then ρ(t) ≤ v(t) for almost all t ∈ J .
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A.4. Weak convergence and Aubin lemma

We encounter the use of weak convergence techniques to solve non-linear partial differential
equations. Therefore, we recall the most crucial results of weak convergence on normed spaces
in this section.

Definition A.24. Let X be a normed space. We say a sequence (xn, n ∈ N) converges
weakly to x, written

xn ⇀ x,

if

x′(xn) → x′(x) ∀x′ ∈ X ′,

where X ′ denotes the dual space of X.

Since X ′ separates points, the weak limit is unique.

Lemma A.25 (Mazur’s lemma). Let X be a normed space, V ⊂ X a closed convex subset
and (xn, n ∈ N) a weak convergent sequence in V with xn ⇀ x. Then x ∈ V.

Lemma A.26 (Mazur’s lemma second version). Assume that X is a normed space and
that (xn, n ∈ N) converges weakly to x as n → ∞. Then there exists a sequence of convex
combinations (x̃n, n ∈ N) defined by

x̃n =

mn∑
k=n

an,kxn

with an,k ≥ 0 and
mn∑
k=n

an,k = 1 such that x̃n → x in the norm of X as n→ ∞.

Theorem A.27 (Weak compactness). Let X be a reflexive Banach space and suppose the
sequence (xn, n ∈ N) is bounded in X. Then there exists a subsequence (xnk

, k ∈ N) and
x ∈ X such that

xnk
⇀ x.

The next corollary is a special case of the above theorem for Lp-spaces. An interesting
point is the fact that in contrast to previous theorem, which relies on the axiom of choice, we
do not need the axiom of choice for the following corollary.

Theorem A.28 (Banach-Alaoglu). Let Ω be measure space, µ a σ-finite measure and
1 < p <∞. Then the following statements hold true.

(i) The space Lp(Ω) is reflexive.
(ii) Let (fn, n ∈ N) be a bounded sequence in Lp(Ω), then there exists a f in Lp(Ω) such

that

fnk
⇀ f

for a subsequence (fnk
, k ∈ N).



190 Miscellanea

(iii) Let (fn, n ∈ N) be a sequence and fn ⇀ f in Lp(Ω), then the Lp-norm is weak lower
semicontinuous, i.e.

∥f∥Lp(Ω) ≤ lim inf
n→∞

∥fn∥Lp(Ω) .

This also holds true for p = 1,∞.

Proof. Follows from Theorem A.27 and the characterization of the dual space of Lp. □

Lemma A.29. Let U ⊂ Rd be open and 1 ≤ p <∞. Suppose (fn, n ∈ N) is a sequence in
W 1,p(U) which satisfies

(i) fn ⇀ f as n→ ∞ in Lp(U),

(ii) ∂fn
∂xi

⇀ gi as n→ ∞ in Lp(U) for i = 1, . . . , n.

Then f ∈W 1,p(U) and ∂if = gi.

Proof. This is an easy consequence of the fact that C∞
c (U) ⊂ Lp(U) for all 1 ≤ p ≤ ∞

and the characterization of the dual space. □

Lemma A.30 (Products of weak and strong converging sequences). Let U ⊂ Rd be open
and 1 < p < ∞. Let (fn, n ∈ N) be a sequence with fn ∈ Lp(U) and f ∈ Lp(U). Moreover,
let (gn, n ∈ N) be a sequence with gn ∈ Lq(U), g ∈ Lq(U) and 1/p+ 1/q = 1. Suppose

fn ⇀ f in Lp(U)

gn → g in Lq(U).

Then

fngn ⇀ fg in L1(U).

Lemma A.31 (Aubin Lemma). Let (X, ∥·∥X), (Y, ∥·∥Y ), (Z, ∥·∥Z) be Banach spaces, such
that

X ↪→ Y ↪→ Z,

where the first inclusion X ↪→ Y is compact. Let 1 ≤ p < ∞ and (fn, n ∈ N) a sequence of
functions with

(i) ∥fn∥Lp([0,T ];X) ≤ C1

(ii)
∥∥∥∂fn∂t ∥∥∥Lp([0,T ];Z)

≤ C2

for some positive constants C1, C2. Then (fn, n ∈ N) is relatively compact in Lp([0, T ];Y ).

A.5. Stochastic inequalities and Fubini’s theorem

Theorem A.32 (Burkholder–Davis–Gundy inequality). Consider a continuous martin-
gale M which, along with its quadratic variation process ⟨M⟩, is bounded. For every stopping
time τ , we have

(A.1) E
(
|Mτ |2m

)
≤ CmE

(
⟨M⟩mτ

)
; m > 0

for a suitable positive constant Cm, which is universal (i.e., depend only on the number m,
not on the martingale M nor the stopping time τ).
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Theorem A.33 (Itô isometry). Let B be a Brownian motion on some probability space
(Ω,F ,P) and (Xt, t ≥ 0) and adapted to the natural filtration of B. Then

E

((∫ T

0
Xt dBt

)2
)

= E
(∫ T

0
X2
t dt

)
for all T ≥ 0.

In the following we recall the stochastic Fubini theorem [HvS21, Lemma A.5] , which
is a central key in connecting the stochastic Fokker–Planck equation with the conditional
McKean–Vlasov equation.

Definition A.34 (Immersion and compatibility). . Let two filtrations F and G on a
probability space (Ω,F ,P) be such that F ⊂ G. Then F is said to be immersed in G under
P if every square integrable F martingale is a G martingale. For two stochastic processes X
and Y defined on this probability space, X is said to be compatible with Y if FY is immersed
in FX,Y := FX ∨ FY under P, where FX ∨ FY is the smallest σ-algebra containing both
FX ,FY .

Theorem A.35 (Fubini-type theorem for conditional expectation and Itô integrals).

Given a probability space (Ω,F ,P), three filtrations F j = (F j
t )t∈I , j = 1, 2, 3 and three pro-

cesses B, H, W satisfying the following conditions:

(1) F1 ⊆ F2 ⊆ F3, i.e., ∀t ∈ I, F1
t ⊆ F2

t ⊆ F3
t .

(2) F1 is immersed in F2 under P.
(3) H is a bounded F2-predictable process.
(4) W and B are F3 Brownian motions.
(5) W is F1-adapted.
(6) For any s, t ∈ I, s ≤ t, σ(Br −Bs : s ≤ r ≤ t) ⊥⊥ (F1

t ∨ F2
s ).

Then the following hold P-a.s. for all t ∈ I:

E

[∫ t

0
HsdBs

∣∣∣∣F1
t

]
= 0,(A.2)

E

[∫ t

0
HsdWs

∣∣∣∣F1
t

]
=

∫ t

0
E
[
Hs

∣∣F1
s

]
dWs.(A.3)

A.6. Conditional relative entropy

We demonstrate that the relative entropy on laws can be estimated by the relative entropy
on the conditional laws. Consequently, demonstrating convergence in relative entropy on some
conditional laws is always a stronger statement, which justifies the use of the conditional
Liouville equation (5.4).

Lemma A.36. Let (E, E) be a Banach space and X,Y be two (E, E)-valued random vari-
ables defined on some probability space (Ω,F ,P). Let Gi for i = 1, 2 be sub σ-algebras of F .
Then, we have the following inequality

H(LX |LY ) ≤ E(H(LX|G1 |LY |G2)).
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Choosing G1 or G2 as the trivial σ-algebra we obtain

H(LX |LY ) ≤ min

(
E(H(LX|G1 |LY )),E(H(LX |LY |G2))

)
.

Proof. Let Bb(E) denote the set of bounded measurable functions. Using the variational
formula and Jensen inequality we obtain

H(LX |LY ) = sup
ψ∈Bb(E)

(
E(ψ(X))− log

(
E(exp(ψ(Y )))

))
= sup

ψ∈Bb(E)

(
E(ψ(X))− log

(
E(E(exp(ψ(Y ))|G2))

))
≤ sup

ψ∈Bb(E)

(
E(E(ψ(X)|G1))− E(log(E(exp(ψ(Y ))|G2)))

)
= sup

ψ∈Bb(E)

(
E
(
E(ψ(X)|G1)− log

(
E(exp(ψ(Y ))|G2)

)))
≤ E

(
sup

ψ∈Bb(E)

(
E(ψ(X)|G1)− log

(
E(exp(ψ(Y ))|G2)

)))
= E(H(LX|G1)|LY |G2)).

□



Bibliography
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Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 51 (2015), no. 3, 965–992.

[Han23] Yi Han, Entropic propagation of chaos for mean field diffusion with lp interactions via hierarchy,
linear growth and fractional noise, ArXiv preprint arXiv:2205.02772 (2023), 25.

[HHMT24] Jasper Hoeksema, Thomas Holding, Mario Maurelli, and Oliver Tse, Large deviations for singu-
larly interacting diffusions, Ann. Inst. Henri Poincaré Probab. Stat. 60 (2024), no. 1, 492–548.
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2017, pp. 379–402. MR 3644596

[JW18] , Quantitative estimates of propagation of chaos for stochastic systems with W−1,∞ kernels,
Invent. Math. 214 (2018), no. 1, 523–591.

[Kac56] Mark Kac, Foundations of kinetic theory, Proceedings of the third Berkeley symposium on math-
ematical statistics and probability, vol. 3, 1956, pp. 171–197.

[Kal17] Olav Kallenberg, Random measures, theory and applications, Probability Theory and Stochastic
Modelling, vol. 77, Springer, Cham, 2017. MR 3642325

[KHLN97] Arturo Kohatsu-Higa, Jorge A. León, and David Nualart, Stochastic differential equations with
random coefficients, Bernoulli 3 (1997), no. 2, 233–245.

[Kle20] Achim Klenke, Probability theory—a comprehensive course, third ed., Universitext, Springer,
Cham, [2020] ©2020. MR 4201399

[Kry99] N. V. Krylov, An analytic approach to SPDEs, Stochastic partial differential equations: six per-
spectives, Math. Surveys Monogr., vol. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 185–242.
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[RZ21] Michael Röckner and Xicheng Zhang, Well-posedness of distribution dependent SDEs with singular
drifts, Bernoulli 27 (2021), no. 2, 1131–1158.

[Ser20] Sylvia Serfaty, Mean field limit for Coulomb-type flows, Duke Math. J. 169 (2020), no. 15, 2887–
2935.



200 Bibliography

[Sho97] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations,
Mathematical Surveys and Monographs, vol. 49, American Mathematical Society, Providence, RI,
1997.

[Spo17] Dominic Spohr, Fake news and ideological polarization: Filter bubbles and selective exposure on
social media, Business Information Review 34 (2017), no. 3, 150–160.

[SS20] Justin Sirignano and Konstantinos Spiliopoulos, Mean field analysis of neural networks: a law of
large numbers, SIAM J. Appl. Math. 80 (2020), no. 2, 725–752. MR 4074020

[Ste70] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathe-
matical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[SZ24] Yufei Shao and Xianliang Zhao, Quantitative particle approximations of stochastic 2d navier-stokes
equation, arXiv preprint arXiv:2402.02336 (2024), 1–51.

[Szn91] Alain-Sol Sznitman, Topics in propagation of chaos, École d’Été de Probabilités de Saint-Flour
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