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Abstract
Requirements Elicitation (RE) is a crucial activity especially in the
early stages of software development. GUI prototyping has widely
been adopted as one of the most effective RE techniques for user-
facing software systems. However, GUI prototyping requires (i)
the availability of experienced requirements analysts, (ii) typically
necessitates conducting multiple joint sessions with customers and
(iii) creates considerable manual effort. In this work, we propose
SERGUI, a novel approach enabling the Self-Elicitation of Require-
ments (SER) based on an automated GUI prototyping assistant.
SERGUI exploits the vast prototyping knowledge embodied in a
large-scale GUI repository through Natural Language Requirements
(NLR) based GUI retrieval and facilitates fast feedback through GUI
prototypes. The GUI retrieval approach is closely integrated with a
Large Language Model (LLM) driving the prompting-based recom-
mendation of GUI features for the current GUI prototyping context
and thus stimulating the elicitation of additional requirements. We
envision SERGUI to be employed in the initial RE phase, creating
an initial GUI prototype specification to be used by the analyst as a
means for communicating the requirements. To measure the effec-
tiveness of our approach, we conducted a preliminary evaluation.
Video presentation of SERGUI at: https://youtu.be/pzAAB9Uht80
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1 Introduction
Numerous techniques have been proposed and employed over the
years with the aim of enhancing requirements elicitation in user-
facing software systems development [8]. GUI prototyping serves
as such an elicitation technique offering a mechanism for analysts
to visualize their comprehension of the requirements and allowing
customers to validate these through a tangible artifact. Addition-
ally, these prototypes lay the groundwork for actively involving
customers during the development phase. This involvement can
spark meaningful discussions leading to the clarification and refine-
ment of requirements [2, 9]. However, conducting RE using GUI
prototyping requires the availability of experienced requirements
analysts and creates considerable manual efforts. Furthermore, GUI
prototyping is an iterative and time-consuming process, often re-
quiring multiple joint sessions between analysts and customers,
resulting in outdated, invalid requirements [11].

In this work, we propose SERGUI, a novel RE approach that en-
ables customers to perform Self-Elicitation of Requirements (SER)
for user-facing software systems through automated NL-based GUI
prototyping and that provides an LLM-based GUI feature recom-
mendation mechanism to promote the automatic elicitation of ad-
ditional requirements. The general notion of SER refers to guiding
customers to uncover their own requirements and has originally
been introduced by LadderBot [10], thus reducing the effort of an-
alysts in the initial RE phase and facilitating to closely integrate
customers into the RE process. By extending the notion of SER
with automated GUI prototyping, we exploit the benefits of GUI
prototypes as a requirements specification artifact, facilitating to
obtain fast customer feedback and achieving early clarification of
requirements. In SERGUI, customers are guided through theGUI pro-
totyping process by a rule-based dialogue assistant which provides
matching GUIs and proactively recommends potentially relevant
GUI features. Our SERGUI prototype, source code and evaluation
datasets are all available at our accompanying repository [1, 12].

2 Approach: SERGUI
SERGUI is an approach to automate the initial RE phase by lever-
aging a comprehensive GUI repository in combination with a GUI
ranking and feature recommendation technique. Subsequently, an
overview of our approach is given and depicted in Fig. 1. SERGUI is
divided into multiple components: First, (A) an interaction model
encompassing the essential interaction mechanisms between the
customer and the automatic GUI prototyping assistant. Second, (B)
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Figure 1: Overview of the SERGUI approach with (A) the interaction model showing the main interaction mechanisms, (B)
NL-based GUI ranking approach, (C) the NL-based GUI feature ranking and (D) the LLM-based GUI feature recommendation

an NL-based GUI ranking technique building upon work of [4–6].
Third, (C) an NL-based GUI feature ranking mechanism. Fourth, (D)
an LLM-based GUI feature recommendation mechanism to proac-
tively suggest potentially relevant GUI features and simultaneously
illustrate them matched on the GUIs from the top-k GUI ranking.

2.1 Interaction Model
SERGUI is built as an interactive dialogue-based approach provid-
ing guidance through the GUI prototyping process, facilitating the
close integration of customers. The interaction model encompasses
three essential patterns that are repeated for each GUI in the ap-
plication prototype. Initially, customers can specify their NLR for
a particular GUI (NLR𝐺𝑈 𝐼 ), which is responded by the approach
with a top-k GUI ranking, as illustrated in Fig. 1 A1. This ranking
represents the best matches as computed by the NL-based GUI rank-
ing model. The GUI ranking showcases many potentially relevant
GUIs encompassing potentially numerous variations, which already
stimulates RE. Second, customers are enabled to specify additional
NLR for individual features (NLR𝑓 𝑒𝑎𝑡 ), which is responded by the
approach with a top-𝑘 ranking of aspect-GUIs, as depicted in Fig. 1
A2. Therefore, the approach presents a ranking of matching GUIs
potentially containing the formulated GUI feature. If the customer
finds a relevant aspect-GUI, then it can be selected. Subsequently,
the GUI ranking is recomputed based on the new aspects and the
aspect-GUI will be saved as part of the GUI prototype. Third, when

the customer initially selects a GUI already satisfying many fea-
tures plus the specified aspect-GUIs, then the approach utilizes the
NLR𝐺𝑈 𝐼 , collection of NLR𝑓 𝑒𝑎𝑡 and the selected GUI to proactively
recommend potentially relevant GUI features, as shown in Fig. 1
A3. In an iterative fashion, the SERGUI approach will then present
each GUI feature with a short textual explanation and the top-k
ranking of potentially matching aspect-GUIs encompassing and
visualizing the respective GUI feature. Similarly to before, a rele-
vant aspect-GUI can directly be selected, which then will be added
to the overall GUI prototype specification and exploited for GUI
reranking. This GUI specification is then added to a simple linear
app prototype, allowing customers to briefly skip through the app.

2.2 NL-Based GUI Ranking
To achieve NL-based GUI ranking, we mainly adopt the work of [6]
and provide an extension for filtering and ranking models. The GUI
ranking exploits the GUI repository Rico [3], the largest GUI dataset
for mobile apps available. We follow the GUI filtering pipeline of
[6]. To filter opened menus, we trained a CNN-classifier (three con-
volution and pooling layers) and provided as input a combination
of both the original GUI screenshot image and the semantic an-
notation image as grayscale variants. We trained the CNN model
for 6 epochs (adagrad optimizer and binary crossentropy as loss)
and achieved a satisfying performance on a separate test set (Preci-
sion=.9818 / Recall=.7012).We focused on achieving a high precision,
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to avoid the removal of adequate GUIs. Overall, we filtered 23,817
GUIs (with 9,363 by the CNN) resulting in 48,402 GUIs remaining.

As a GUI ranking approach, we adopt the strong pretrained
embedding-based SentenceBERT model from [6]. This model com-
putes the ranking utilizing cosine-similarity between the embedded
query and embedded textual representation of the GUI i.e. score
S1 (𝑁𝐿𝑅𝐺𝑈 𝐼 ,𝐺𝑈 𝐼 ) = cos(e(𝑁𝐿𝑅𝐺𝑈 𝐼 ), e(𝐺𝑈 𝐼 )) with e referring
to the SentenceBERT embedding. Moreover, we extend this GUI
ranking score by incorporating the S2W dataset [14], adding an-
other artifact to the GUIs to score against. S2W is a large collection
of manually crafted high-level NL descriptions of Rico GUIs, pro-
viding five descriptions per GUI from different annotators. For
the S2W data, we similarly compute the average over the cosine-
similarity between the query and all five descriptions i.e. score
S2 (𝑁𝐿𝑅𝐺𝑈 𝐼 ,𝐺𝑈 𝐼 ) = 1

5
∑5
𝑖=1 cos(e(𝑁𝐿𝑅𝐺𝑈 𝐼 ), e(𝑆2𝑊 (𝐺𝑈 𝐼, 𝑖))). By

creating an ensemble GUI ranking model using both the extracted
GUI text and the high-level descriptions of S2W (see formula Fig. 1
B), we facilitate obtaining a more flexible and robust GUI ranking.

2.3 NL-Based GUI Feature Ranking
To achieveNL-basedGUI feature ranking, we employ the top-k GUIs
representing potentially relevant context for matching the features.
Here, we restrict GUI features to individual GUI components. From
the top-k GUIs, textual representations of the GUI components are
extracted, including multiple texts for each component (displayed
text, resource-id and semantic classes). These text representation
are then utilized to match against 𝑁𝐿𝑅𝑓 𝑒𝑎𝑡 again based on the
cosine-similarity of the SentenceBERT embeddings (see Fig. 1 C).

2.4 LLM-Based GUI Feature Recommendation
Within the SERGUI approach, the GUI feature recommendations
are based on few-shot prompting of an LLM (GPT-4) using the
context of (i) the initial textual requirements denoted by 𝑁𝐿𝑅𝐺𝑈 𝐼 ,
(ii) a collection of already specified features by the customer as
𝑁𝐿𝑅𝑓 𝑒𝑎𝑡 and (iii) an initially selected GUI from the top-k GUI rank-
ing. With these contextual inputs, we fill in a prompt template.
First, (A) we provide the task instructions asking the model to rec-
ommend the top-30 GUI features given the described context. Next,
(B) the template displays the initial requirements as 𝑁𝐿𝑅𝐺𝑈 𝐼 . Third,
(C), the initially selected GUI is provided to the model. Since the
original XML-based GUI hierarchy contains a large amount of in-
formation, transforming the GUI hierarchy into a more abstract
and focused representation is necessary. Each GUI component is
transformed to a string of "uicomp-text" (uicomp-type) (resource-id)
and then arranged in a two-level list based on grouping information
(prompt details in [1]). To compute a GUI feature ranking, each
of the predicated features is matched against the features in each
GUI in the top-k GUI ranking. To obtain a confidence score that
a GUI contains a predicated feature (𝑁𝐿𝑅𝑓 𝑒𝑎𝑡 ) and to determine
which GUI component within the GUI matches best (as aspect-GUI),
we compute S𝑔 (𝑁𝐿𝑅𝑓 𝑒𝑎𝑡 ,𝐺𝑈 𝐼 ) = max𝑓 ∈𝐺𝑈 𝐼𝑓 𝑒𝑎𝑡𝑠 S𝐹 (𝑁𝐿𝑅𝑓 𝑒𝑎𝑡 , 𝑓 ).
For each predicated GUI feature, we compute a feature score as
S𝑝𝑓 (𝑁𝐿𝑅𝑓 𝑒𝑎𝑡 ) = 1

𝑘

∑𝑘
𝑖=1 𝑆𝑔 (𝑁𝐿𝑅𝑓 𝑒𝑎𝑡 ,𝐺𝑈 𝐼𝑘 ) over the top-k GUI

ranking to estimate the feature coverage among top-k GUIs. The
features are then recommended in the sorted order by utilizing the

Figure 2: Web app implementation of the SERGUI approach
with a chat-section, workbench and GUI prototype preview

score S𝑝𝑓 and showing the top-k aspect-GUIs. Using a few-shot
prompt, we generate text explanations for each predicted feature.

2.5 Feature-Based GUI Reranking
Based on positive feedback from the customer by selecting an as-
pect-GUI from the top-k aspect-GUI ranking, we can compute a
reranking of the GUIs. Often customers may not explore muchmore
than the top-20 or top-30 GUIs in the ranking, missing potentially
relevant GUI features. By reranking the top-k GUIs, customers po-
tentially find more relevant GUIs at the top of the GUI ranking or
they can keep their original choice. We compute the GUI reranking
as S𝑅𝑅 (𝐺𝑈 𝐼 ) = 𝛽S(𝑁𝐿𝑅𝐺𝑈 𝐼 ,𝐺𝑈 𝐼 )+(1−𝛽) 1

|𝐹 |
∑

𝑓 ∈𝐹 S𝑔 (𝑓 ,𝐺𝑈 𝐼 ) en-
semble of GUI ranking and normalized sum over all feature scores.

2.6 Prototyping Artifact
At the end of the GUI prototyping process, SERGUI produces an
app summary including (i) a visualization of the overall app and (ii)
for each GUI the main selected GUI, the collection of aspect-GUIs
and an additional collection of textual requirements, representing
recommended features that were relevant but no aspect-GUI was
found. This GUI prototyping artifact produced by SERGUI can then
be employed by analysts as a starting point for further elicitation.

3 Experimental Evaluation
To assess the performance of (i) the feature recommendation, (ii) rel-
evance of matched aspect-GUIs and (iii) feature-based GUI rerank-
ing, we conducted a small preliminary evaluation. We recruited
12 annotators possessing technical backgrounds (BSc.:7|MSc.:5). In
addition, the recruited participants had medium to high experience
in software development (Mean:3.50|SD:0.90), as self-reported on
a five-point Likert scale, allowing them to evaluate the relevance
of the recommendation results. The evaluation consisted of three
applications from diverse domains (shopping, news and social), each
encompassing three GUIs, overall resulting in nine different GUIs.
Each application was presented to the participants as a low-fidelity
GUI prototype, containing solely a minimal collection of features
to enable participants to recognize the notion of the GUI. On this
basis, participants were asked to employ SERGUI for prototyping
and evaluate the relevance of the results. Overall, 72 GUIs were
prototyped during the preliminary evaluation (six per annotator).
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3.1 GUI Feature Recommendation Relevance
To evaluate the feature recommendation relevance, 720 recommen-
dations were made (10 per GUI) and we computed MAP, MRR and
P@k. A MAP of .741 indicates a strong feature recommendation
performance as approximately three out of four features are marked
as relevant on average. Likewise, the MRR of .816 describes that
the first relevant feature occurs at rank 1.22 on average indicating
that the top-features are relevant. In addition, also the P@k values
indicate a substantial recommendation performance starting from
.691 (P@1) to .638 (P@10). This also shows that the feature scoring
accordingly ranks more relevant documents higher as intended.

3.2 GUI Feature Ranking Relevance
To evaluate the relevance of the matched aspect-GUIs, we employed
the identical setup as described before (10 features per GUIs with
top-15 aspect-GUIs) and for each relevant feature (either answered
by yes or by picking an aspect-GUI), we employed the rank of
the selected aspect-GUI to compute respective ranking metrics.
Since we only have at maximum one single relevant aspect-GUI,
we computed the MRR and HITS@k. A MRR of .390 shows that
that the first relevant aspect-GUI appears at rank 2.56 on average
indicating a substantial performance in finding relevant aspect-GUI
matches. Moreover, starting from a HITS@1 of .270 represents that
on average in 27% a relevant aspect-GUI could be found at the
top-1 position. A HITS@15 of .691 represents that on average our
matching approach could find a relevant aspect-GUI in 69.1% within
the top-15 aspect-GUI ranking. Therefore, for a large amount of
recommended features our feature matching approach is capable
of finding a relevant aspect-GUI visualizing the predicted feature.

3.3 GUI Reranking Performance
By comparing the SentenceBERT (MRR: .172) and S2W (MRR: .210)
ranking models with the ensemble model (MRR: .429), we see that
the ensemble considerably improves the GUI ranking performance.
Based on the positive feature feedback (selecting an aspect-GUI),
we computed a reranking of the GUIs. Participants could initially
select a GUI and then are presented with feature recommenda-
tions. Afterwards, participants could either chose a new GUI from
the updated ranking or keep their previous choice. In 68.05% of
the cases, the participants selected a better matching GUI. The
reranking score (initial - updated rank) is +61.89 ranks on aver-
age (SD:79.82|Min:-26|Max:335) indicating that the feature-based
reranking can substantially improve the ranks of relevant screens.

4 Related Work
The Fast Feedback technique [11] reduces the number of necessary
RE sessions with the customer by providing a tool-based support
to rapidly and interactively create pen-paper prototypes combined
with use cases and directly allows to incorporate customer feedback.
However, still an experienced analyst is required to conduct the
initial elicitation. Recent approaches GUI2WiRe [4, 5] and RaWi
[6] support analysts to rapidly create GUI prototypes via NL-based
GUI retrieval, however, cannot readily be employed by customers
due to the lack of knowledge and experience with GUI prototyping
and hence are dependent on analysts. In the RE approach in [13],
analysts create initial prototypes based on a start-up meeting with

the clients, subsequently enabling the customers to modify the
prototype through a web-based tool. Similarly, the Graphical Re-
quirements Collector [7] requests users to directly create their own
GUI prototypes by constructing them bottom-up and augmenting
them with textual requirements. This integrates customers closely
into the process, however, due to the lack of guidance, requires cus-
tomers to have technical knowledge and experience with GUI proto-
typing. Moreover, LadderBot [10] is able to conduct dialogue-based
elicitation with customers by applying laddering, a structured inter-
view technique. However, this automatic dialogue-based elicitation
approach focuses on the collection of simple textual requirements
solely and therefore cannot be applied for the initial elicitation with
GUI prototyping. Consequently, this technique cannot provide fast
feedback to customers on the basis of GUI prototypes like SERGUI.

5 Conclusion and Future Work
In this work, we proposed SERGUI as the first approach towards en-
abling the Self-Elicitation of Requirements with GUIs for customers.
The evaluation results show that SERGUI is able to effectively sup-
port users during the GUI prototyping process in terms of providing
relevant GUIs on the basis of NLR, recommending relevant GUI fea-
tures and their visualizations. For future work, we plan to conduct
a large user study to more comprehensibly evaluate our approach.

References
[1] [n. d.]. SERGUI - Self-Elicitation of Requirements with GUIs GitHub. https:

//github.com/SERGUI-Prototyper/SERGUI-Prototyping. Accessed: 2024-06-20.
[2] Michel Beaudouin-Lafon and WE Mackay. 2002. Prototyping development and

tools. Handbook of Human-Computer Interaction (2002), 1006–1031.
[3] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,

Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[4] Kristian Kolthoff, Christian Bartelt, and Simone Paolo Ponzetto. 2020. GUI2WiRe:
Rapid Wireframing with a Mined and Large-Scale GUI Repository using Natural
Language Requirements. In 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’20). ACM.

[5] Kristian Kolthoff, Christian Bartelt, and Simone Paolo Ponzetto. 2021. Auto-
mated Retrieval of Graphical User Interface Prototypes from Natural Language
Requirements. In International Conference on Applications of Natural Language to
Information Systems. Springer, 376–384.

[6] Kristian Kolthoff, Christian Bartelt, and Simone Paolo Ponzetto. 2023. Data-
driven prototyping via natural-language-based GUI retrieval. Automated Software
Engineering 30, 1 (2023), 13.

[7] J Michael Moore and Frank M Shipman. 2000. A comparison of questionnaire-
based and GUI-based requirements gathering. In Proceedings ASE 2000. Fifteenth
IEEE International Conference on Automated Software Engineering. IEEE, 35–43.

[8] Klaus Pohl. 2010. Requirements engineering: fundamentals, principles, and tech-
niques. Springer Publishing Company, Incorporated.

[9] Alon Ravid and Daniel M Berry. 2000. A method for extracting and stating
software requirements that a user interface prototype contains. Requirements
Engineering 5, 4 (2000), 225–241.

[10] Tim Rietz and Alexander Maedche. 2019. LadderBot: A requirements self-
elicitation system. In 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, 357–362.

[11] Kurt Schneider. 2007. Generating fast feedback in requirements elicitation. In
International working conference on requirements engineering: Foundation for
software quality. Springer, 160–174.

[12] SERGUI - Self-Elicitation of Requirements with GUIs - website [n. d.]. http:
//www.sergui-tool.com/sergui/. Accessed: 2024-06-20.

[13] Leonor Teixeira, Vasco Saavedra, Carlos Ferreira, João Simões, and Beatriz
Sousa Santos. 2014. Requirements engineering using mockups and prototyping
tools: developing a healthcare web-application. In International Conference on
Human Interface and the Management of Information. Springer, 652–663.

[14] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2words: Automatic mobile UI summarization with multimodal
learning. In The 34th Annual ACM Symposium on User Interface Software and
Technology. 498–510.

2357


